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Late-time correlators in semiclassical particle-black hole scattering
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We analyse the quantum corrected geometry and radiation in the scattering of extremal black holes by low-
energy neutral matter. We point out the fact that the correlators of local observables inside the horizon are the
same as those of the vacuum. Outside the horizon the correlators at late times are much bigger than those of the
(thermal) case obtained neglecting the backreaction. Thissuggests that the corrected Hawking radiation could
be compatible with unitarity.
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The discovery that black holes emit thermal radiation [1]
has raised a serious conflict between quantum mechanics and
general relativity. If a black hole is formed from the collapse
of matter, initially in a pure quantum state, the subsequent
evaporation produces radiation in a mixed quantum state [2].
If the analysis is performed in a fixed background geometry it
is very hard to imagine how this conclusion can be avoided.
The core of the problem is connected with the black hole
causal structure. The information that flows through the hori-
zon is not accessible to the outside observer and therefore one
has to trace over the internal (unobserved) states. This gen-
erates a density matrix and the information, codified in cor-
relations between internal and external states, is indeed lost
in the singularity. There are several posibilities to avoidsuch
a radical conclusion, but the most conservative one suggests
that the information is recovered in the corrected Hawking ra-
diation due to large backreaction effects [3–5]. However itis
difficult to unravel a detailed mechanism capable to produce
information return. Even more, it seems unlikely that unitar-
ity can be preserved within the semiclassical approximation.
It is usually stated that unitarity can only be obtained in a pure
quantum gravity theory. Since we still do not have such a the-
ory it is useful to consider a particular situation for whichthe
problem can be simplified and, in turn, the backreaction ef-
fects can be controlled in a very efficient way. Such a scenario
is given by the scattering of low-energy particles by extremal
Reissner-Nordström charged black holes.
We now briefly recall the standard picture of the process in a
fixed background spacetime approximation. Throwing long-
wavelength particles into an extremal black hole results into
a non-extremal one which then emits Hawking radiation. The
Penrose diagram of such a process is given in Fig.1. There
exists radiation flowing to future null infinityI+ (Hawking
radiation) and in general also inside the horizon. The quan-
tum state of radiation is given by:

|0〉in =
∑

i,j

ci,j |ψi〉int ⊗ |ψj〉ext (1)

i.e., a superposition of products of internal and external states

of right-moving modes (note that we shall be mostly con-
cerned with right-movers, as in [6], because they are the ones
which transmit the Hawking radiation). At late time this state
takes the form

|0〉in =
∏

w

√

1 − e−2πw/κ
∑

n

e−πnw/κ|nw〉int ⊗ |nw〉ext

(2)

where|nw〉 is a n-particle state with frequencyw. An observer
on I+ will describe his measurements in terms of a reduced
thermal density matrix

ρ =
∏

w

(1 − e−2πw/κ)
∑

n

e−2πnw/κ|nw〉ext〈nw|ext. (3)
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FIG.1.Penrose diagram corresponding to the creation of a near-
extremal charged black hole from the extremal one. The ingoing
arrow line represents an infalling shock wave.

In this paper we shall analyse how this scenario gets modi-
fied when backreaction effects are taken into account. Due to
Hawking emission the radiating non-extremal configuration
will decay back to the extremal black hole, if charged particles
are sufficiently massive. The corresponding Penrose diagram
is given in Fig.2. Comparing the diagrams of Figs. 1 and 2
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we see that the right singularity, being an artifact of the fixed
background approximation, has completely disappeared. It
appears very unlikely the preservation of purity if radiation is
still present atH (which is part of the future Cauchy horizon),
since this would mean that the information is indeed lost in
another causally disconnected and asymptotically flat region.

H +
I

+

H
−

H

x = x− −
int

r=ql

FIG.2. Penrose diagram corresponding to the process of particle
capture by an extremal charged black hole followed by Hawking
radiation. The end-state geometry is, due to backreaction effects,
an extremal black hole. The location of the event horizonH

+ is at
x
−

= x
−

int
.

We shall exploit the fact that the dominant Hawking emis-
sion is carried away in s-waves. Moreover, in the region very
close to the initial extremal horizonr = ql (q is the black hole
charge andl2 is Newton’s constant), which is the relevant one
to study the radiation atH , a scalar matter fieldf obeys the
free equation

∂2
t f − ∂2

r∗f = 0, (4)

wherer∗ is the tortoise coordinate. The dynamics in the re-
gion close tor = ql is controlled by the Jackiw-Teitelboim
model [7], as it has been explained in [8]. The advantage of
this model is that the backreaction effects can be incorporated
immediately by adding the Polyakov-Liouville term [9]. In
summary, the effective semiclassical model is given by the
action

I =

∫

d2x
√−g

[

Rφ̃+ 4λ2φ̃− 1

2
|∇f |2

]

− ~

96π

∫

d2x
√
−gR �

−1R+
~

12π

∫

d2x
√
−gλ2 , (5)

where the relation between the fields appearing in (5) and the
four-dimensional metric is given by

ds2(4) =
ds2(2)√
φ

+ 4l2φdΩ2, φ =
q2

4
+ φ̃, (6)

andλ2 = l−2q−3. Usually, in order to make physical sense
of the semiclassical approximation one considers a huge num-
ber,N , of scalar fields. In this way the quantum gravitational
corrections can be safely neglected at one-loop order. Here

for simplicity we considerN = 1, but it is straightforward to
generalise our results to arbitraryN . We note that although
the model we study is certainly simplified compared to the
original 4d one the approximations made are reasonable. In-
deed, the Hawking radiation derived from the model (5) has
the same form as for 4d scalars in the limits considered, i.e.
close to the horizon andI+ at late times. The initial extremal
configuration can be described, nearr = ql, by the solution

ds2 = −2l2q3dx+dx−

(x− − x+)2
, φ̃ =

lq3

x− − x+
. (7)

The linex− = +∞ corresponds to the extremal radiusr = ql,
i.e. φ̃ = 0. This configuration is quantum mechanically sta-
ble and it does not produce radiation. If we send a very nar-
row pulse of classical null matter atx+ = x+

0 with small
energy∆m we create a near-extremal black hole of mass
m = q + ∆m. The semiclassical solutions are now more
involved, due to the non-locality of the quantum effective ac-
tion.

We are interested in the Hawking radiation detected by an
external observer atI+. In this region the quantum incom-
ing flux vanishes and therefore the metric can be naturally de-
scribed in the outgoing Vaidya-type form

ds2 = −
(

2x̃2

l2q3
− lm̃(u)

)

du2 − 2dudx̃, (8)

where x̃ = lφ̃ andu is a null Eddington-Finkelstein coor-
dinate. The relevant semiclassical equations in conformal
gauge,ds2 = −e2ρdx+dx−, are

−2∂2
+φ̃+ 4∂+ρ∂+φ̃ = − ~

12π

[

(∂+ρ)
2 − ∂2

+ρ
]

(9)

−2∂2
−φ̃+ 4∂−ρ∂−φ̃ = − ~

12π

[

(∂−ρ)
2 − ∂2

−ρ
]

(10)

− ~

24π

(

du

dx−

)2

{x−, u}

where{x−, u} is the Schwarzian derivative proportional to
the (late time) Hawking flux. In conformal coordinates, where
the metric takes the form (7), the effects of the evaporation
are all encoded in the field̃φ, expressed by means of a single
functionG(x−) through

φ̃ =
G(x−)

x+ − x−
+

1

2
G′(x−). (11)

The consistency of (8) with the equations (9-10) and (11) im-
plies thatdu/dx− = −lq3/G(x−) whereG(x−) satisfies the
differential equation

G′′′ = − ~

24π

(

−G
′′

G
+

1

2

(

G′

G

)2
)

. (12)

The recovery of the extremal solution at late times (u →
+∞) requires that̃m(u) (the mass deviation from extremal-
ity) vanishes forx− → x−int (with x− < x−int). This implies
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that in this limit{x−, u}→ 0, i.e. the relation betweenu and
x− is a Möbius transformation

u =
ax− + b

cx− + d
, (13)

wherea, b, c, d are real parameters verifying the condition
ad − bc = 1. It is now easy to evaluate the derivative
du/dx− = 1/(cx− + d)2, and then we face two qualitatively
different possibilities:c 6= 0 andc = 0. We will not consider
here the casec = 0 as it entails a period of negative Hawking
flux (we will give more details in [10]). Therefore the (reason-
able) assumption we make in this paper is that the Hawking
radiation is always positive.

Let us analyze the casec 6= 0. In Fig.3. we numerically
generate a solution forG(x−) with this behaviour

G(x−)
x−→x−

int∼ −1

2
A(x− − x−int)

2, (14)

whereA is a non-vanishing constant. Note that the simplest
solution which reproduces the extremal configuration at late
times is obtained whenG(x−) becomes a non-zero constant.
However this impliesc = 0. The parabolic behaviour (14)
is the only one which allows to recover the extremal solution
with c non-zero. Inserting (14) into eq. (11) we get

φ̃ = −A
2

(x− − x−int)(x
+ − x−int)

x+ − x−
(15)

which can be brought to the standard extremal form (7) af-
ter the change of coordinatesx±

′ ∼ 1/(x± − x−int). Further,
a short manipulation of the differential equation shows that
G(n)(x−int) = 0 for n ≥ 3. This implies that the unique func-
tion G(x−), for x− ≥ x−int, matching with the solution for
x− ≤ x−int is exactly the parabola (14). This is crucial, since
it means that inside the horizonH+, and so alongH , we can
express the solution in a form similar to (8) with̃m = 0 in
terms of a new null coordinateuH

uH = − 2lq3

A(x− − x−int)
. (16)

The correlators of quasi-primary fieldsΦi associated tof
atH are given by [11]

〈Φ1(uH1
) . . .Φn(uHn

)〉 = (17)
(

dx−

duH

)λ1

(x−1 ) . . .

(

dx−

duH

)λn

(x−n )
〈

Φ1(x
−
1 ) . . .Φn(x−n )

〉

whereλ1, . . . ,λn are the corresponding conformal weights.
Since (16) is a Möbius transformation the correlators are the
same as those of the vacuum. This means that the state atH is
just the restriction of the vacuum toH . Moreover, the range
of the coordinateuH can be prolonged beyondH (uH ≥ 0)
to cover the whole future Cauchy horizon up to the singularity
(i.e. up touH → +∞). This suggests that the state inside the
horizon is just the vacuum state (naturally defined by the null
time −∞ < uH < +∞) and, therefore, that the correlators

of the Hawking radiation can be obtained from a pure state
|ψ〉ext.
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FIG.3.Plot of the function G and its first and second derivatives.We
have takenA ≈ 0.808 andx

−

int
≈ 2.463

To deepen our analysis we shall compare the stress-tensor
2-point correlationC(x−1 , x

−
2 ) ≡ 〈T−−(x−1 )T−−(x−2 )〉 −

〈T−−(x−1 )〉〈T−−(x−2 )〉 measured by the external observer at
late times with and without backreaction. It is well known that
neglecting the backreaction the correlation is thermal

Cnb(u1, u2) =
~

2κ4

8π2

e2κ|u1−u2|

(eκ|u1−u2| − 1)4
, (18)

whereκ =
√

2∆m/lq3 is the surface gravity at the event
horizon.
In general we have [12]

C(u1, u2) =
~

2

8π2

x−
′

(u1)
2x−

′

(u2)
2

(x−(u1) − x−(u2))4
. (19)

The expression (18) is obtained using the (no-backreaction)
relationx− = −e−κu/κ. With backreaction effects included
the relation betweenx− and u, given by (12), is crucially
modified to (up to termsO(e−2Cu))

x− = x−int −
2lq3

Au
(1 − B

AC

e−Cu

u
) , (20)

whereC = ~/(24πlq3) and B/A = (24π)2lq3∆m/~2.
Therefore the two-point correlator at late times becomes

Cwb(u1, u2) =
~

2

8π2

1

(u1 − u2)4
− ~

2

8π2

∆(u1, u2)

(u1 − u2)4
, (21)

with

∆(u1, u2) =
2B

A
(e−Cu1 + e−Cu2) + (22)

4B

AC
(
e−Cu1

u1
+
e−Cu2

u2
+

1

u1 − u2
(
u2

u1
e−Cu1 − u1

u2
e−Cu2))] .

In the coincidence limitu2 − u1 = ǫ→ 0 the general expres-
sion (19) gives

C(u1, u2) →
1

ǫ4
[1 − 8π

~
〈Tuu〉 ǫ2]. (23)
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From eqs. (21) and (22) it is

Cwb →
1

ǫ4
[1 − ǫ2

3

BC2

A
e−Cu1 ] , (24)

from which one can extract the late time Hawking flux

〈Tuu〉 = ~

24π
∆m
lq3 e

− ~

24πlq3
u as computed in [13].

The increase in the correlations when backreaction effects
are included can be read off by considering the relative corre-
lator

Crel ≡
Cwb(u1, u2)

Cnb(u1, u2)
=

[1 − ∆(u1, u2)]

(u1 − u2)4
(eκ|u1−u2| − 1)4

κ4e2κ|u1−u2|
.

(25)

Crel by construction goes to1 whenu2 → u1 and is else-
where always bigger than1. In particular whenκ|u2 − u1| ≫
1 it grows exponentially without bound. Therefore backre-
action effects restore (fully or partially) the correlations that
were lost in the (thermal) fixed background approximation.

Summarizing, we have inspected in detail the process of
particle capture by an extremal Reissner-Nordström black
hole and its subsequent (Hawking) decay back to extremal-
ity. The solvable model (5) has allowed us to determine the
quantum corrected evaporation flux as detected by an external
asymptotic observer at late times and, by analytic continua-
tion, the quantum corrected geometry along the future Cauchy
horizon. We have given arguments indicating that the quan-
tum state of the radiation field in this region is the vacuum
(in particular, no radiation is present), thus suggesting that the
final state of the Hawking flux is pure (as exemplified by the
significant increase of correlations in the emitted radiation).
A full understanding of the problem requires to construct the
quantum state capable to reproduce the late time correlator
(21): the first term is reproduced by the vacuum state and the
second one (with (22)) requires a more involved state [10].

To finish we would like to remark that some years ago
the particle-hole scattering was widely studied for a dila-
ton gravity model [14,6]. This raised the hope of finding
a possible resolution of the information loss paradox in a
simplified context. However additional studies showed that
unitarity was not preserved at the one-loop semiclassical level
[15] (the emergence of strong correlations has only appeared
in the subcritical regime [16] and is crucially related to the
presence of negative energy radiation). It was then specu-
lated that only higher-order corrections could restore unitarity

[17,18]. We believe that we have provided evidence that, for
Reissner-Nordström black holes, the effects of backreaction
are stronger than for dilaton black holes, and therefore signals
of unitarity already emerge in the semiclassical approxima-
tion.
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