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Nonlo
al 
hiral quark models with wavefun
tion renormalization: sigma propertiesand π − π s
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a,Av. Libertador 8250, 1429 Buenos Aires, Argentina and
d Universidad Favaloro, Solís 453, 1078 Buenos Aires, ArgentinaWe analyze the sigma meson mass and width together with the pion-pion s
attering parametersin the 
ontext of non-lo
al 
hiral quark models with wave-fun
tion renormalization (WFR). We
onsider both non-lo
al intera
tions based on the frequently used exponential form fa
tor, and on�ts to the quark mass and renormalization fun
tions obtained in latti
e 
al
ulations. In the 
aseof the sigma properties we obtain results whi
h are less dependent on the parameterization than inthe standard lo
al NJL model, and whi
h are in reasonable agreement with the re
ently reportedempiri
al values. We also show that the in
lusion of the WFR tend to improve the des
ription ofthe π-π s
attering parameters, with the latti
e inspired parameterization providing the best overallresults. Finally, we analyze the 
onne
tion of the non-lo
al quark models dis
ussed here with ChiralPerturbation Theory, and present the model predi
tions for the low energy 
onstants relevant for

π-π s
attering to O(4) in the 
hiral expansion.I. INTRODUCTIONAlthough mu
h e�ort has been made in trying to predi
t low energy hadron observables dire
tly from QCD, oneis still far from rea
hing this goal due to the extremely 
omplex non-perturbative behavior of the theory in thatregime. In su
h a situation it proves 
onvenient to turn to the study of e�e
tive models. For two light �avors it isbelieved that QCD supports an approximate SU(2) 
hiral symmetry whi
h is dynami
ally broken at low energies,and pions play the role of the 
orresponding Goldstone bosons. A simple s
heme in
luding these properties is thewell known Nambu−Jona-Lasinio (NJL) model [1℄, proposed more than four de
ades ago. The NJL model has beenwidely used as an s
hemati
 e�e
tive theory for QCD [2, 3, 4℄, allowing e.g. the des
ription of light mesons asfermion-antifermion 
omposite states. In the NJL model quarks intera
t through a lo
al, 
hiral invariant four-fermion
oupling. Be
ause of the lo
al nature of this intera
tion, the 
orresponding S
hwinger-Dyson and Bethe-Salpeterequations be
ome relatively simpli�ed. However, the main drawba
ks of the model are dire
t 
onsequen
es of thislo
ality: loop integrals are divergent (and therefore have to be regulated somehow), and the model is non
on�ning. Asa way to improve upon the NJL model, extensions whi
h in
lude nonlo
al intera
tions have been proposed (see Ref. [5℄and referen
es therein). In fa
t, nonlo
ality arises naturally in quantum �eld theory and, parti
ularly, in several wellestablished approa
hes to low energy quark dynami
s, as e.g. the instanton liquid model [6℄ and the S
hwinger-Dysonresummation te
hniques [7℄. Latti
e QCD 
al
ulations [8, 9, 10℄ also indi
ate that quark intera
tions should a
t overa 
ertain range in the momentum spa
e. Moreover, it has been argued that nonlo
al extensions of the NJL model donot show some of the above mentioned in
onvenien
es of the lo
al theory. Indeed, nonlo
al intera
tions regularize themodel in su
h a way that anomalies are preserved [11℄ and 
harges are properly quantized, the e�e
tive intera
tion is�nite to all orders in the loop expansion and therefore there is not need to introdu
e extra 
uto�s [12℄, soft regulatorssu
h as Gaussian fun
tions lead to small next-to-leading order 
orre
tions [13℄, et
.In the present work we will re
onsider non-lo
al models adopting as the basi
 ingredient a reliable des
ription ofthe quark propagator as given from fundamental studies, su
h as latti
e QCD. In this sense, it should be noti
ed that,ex
ept for Ref.[14, 15℄, most of the 
al
ulation performed so far using non-lo
al 
hiral quark models have negle
ted thewave fun
tion renormalization in the propagator (See e.g. Refs. [16, 17, 18, 19, 20℄). Re
ent latti
e QCD 
al
ulationssuggest, however, that su
h renomalization 
an be of the order of 30 % (or even more) at zero momentum[8, 9, 10℄.Moreover, these 
al
ulations also show that the quark masses tend to their asymptoti
 values in a rather soft way.Thus, it is of importan
e to perform a detailed study on the in
orporation of these features in this type of models,
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2and analyze their role in the predi
tion for di�erent hadroni
 observables. The lagrangian we will use is the minimalextension whi
h allows to in
orporate the full momentum dependen
e of the quark propagator, through its mass andwave fun
tion renormalization. Using this lagrangian we explore whi
h are the impli
ations for some pion and sigmameson properties originated by 
hanges in the quark propagator. In parti
ular, we present here results for the sigmameson mass and width, and for the pion-pion s
attering parameters. Studying these s
attering parameters 
lose tothe 
hiral limit we are also able to obtain predi
tions for some of the low energy 
onstants of the Chiral PerturbationTheory (χPT) Lagrangian [21℄.The present arti
le is organized as follows. In Se
. II we present the model lagrangian and the formalism ne
essaryto derive some sele
ted pion and sigma meson properties. In Se
. III we dis
uss di�erent ways to obtain the modelparameters and 
ompare the resulting quark propagators with available latti
e data. In Se
. IV we present anddis
uss the predi
tions of the model for the sele
ted parametrizations, paying spe
ial attention to the role playedby the in
orporation of the wavefun
tion renormalization and by the di�eren
e in the quark intera
tion momentumdependen
e. In Se
. V we analyze the 
onne
tion of the non-lo
al quark models des
ribed here with χPT, and presentthe predi
tions for the 
orresponding low energy 
onstants relevant for π-π s
attering to O(4) in the 
hiral expansion.Finally, in Se
. VI our main 
on
lusions are summarized.II. THE MODELA. E�e
tive a
tionLet us begin by stating the Eu
lidean a
tion for the nonlo
al 
hiral quark model in the 
ase of two light �avors,
SE =

∫

d4x

{

ψ̄(x) (−i/∂ +mc)ψ(x)−
GS

2

[

ja(x)ja(x) − jP (x)jP (x)
]

}

. (1)Heremc is the 
urrent quark mass, whi
h is assumed to be equal for u and d quarks. The nonlo
al 
urrents ja(x), jP (x)are given by
ja(x) =

∫

d4z g(z) ψ̄
(

x+
z

2

)

Γa ψ
(

x−
z

2

)

.

jP (x) =

∫

d4z f(z) ψ̄
(

x+
z

2

) i
←→/∂

2 κp
ψ
(

x−
z

2

) (2)Here, Γa = (11, iγ5~τ ) and u(x′)←→∂ v(x) = u(x′)∂xv(x)−∂x′u(x′)v(x). The fun
tions g(z) and f(z) in Eq.(2), are nonlo
al
ovariant form fa
tors 
hara
terizing the 
orresponding intera
tions. The four standard quark 
urrents, ja(x), requirethe same g(z) form fa
tor to guarantee 
hiral invarian
e. The new term, jP (x)jP (x), is self-invariant under 
hiraltransformations. The s
alar-isos
alar 
omponent of the ja(x) 
urrent will generate the momentum dependent quarkmass in the quark propagator, while the "momentum" 
urrent, jP (x), will be responsible for a momentum dependentwave fun
tion renormalization of this propagator. For 
onvenien
e, we take the same 
oupling parameter, GS , forthe standard 
hiral quark intera
tion and for the new jP (x)jP (x) term. Note, however, that the relative strengthbetween both intera
tion terms will be 
ontrolled by the mass parameter κp introdu
ed in Eq.(2). We have 
hoosenthe relative sign between these terms in order to have a real value for κp for the 
ase in whi
h the wave fun
tionrenormalization Z (p) (expli
itly de�ned in Eq.(10 below) is less than 1. In what follows it is 
onvenient to Fouriertransform g(z) and f(z) into momentum spa
e. Note that Lorentz invarian
e implies that the Fourier transforms g(p)and f(p) 
an only be fun
tions of p2.In order to deal with meson degrees of freedom, one 
an perform a standard bosonization of the theory. This isdone by 
onsidering the 
orresponding partition fun
tion Z =
∫

Dψ̄Dψ exp[−SE ], and introdu
ing auxiliary �elds
σ1(x), σ2(x), ~π(x)), where σ1,2(x) and ~π(x) are s
alar and pseudos
alar mesons, respe
tively. Integrating out the quark�elds we get

Z =

∫

Dσ1Dσ2 D~π exp[−Sbos
E ] , (3)where

Sbos
E = − ln detA+

1

2GS

∫

d4p

(2π)4
[σ1(p) σ1(−p) + ~π(p) · ~π(−p) + σ2(p) σ2(−p)] . (4)



3The operator A reads, in momentum spa
e,
A(p, p′)=(−/p+mc) (2π)4 δ(4)(p− p′) + g

(

p+ p′

2

)

[σ1(p
′ − p) + iγ5~τ · ~π(p′ − p)]

+ f

(

p+ p′

2

) /p+ /p′
2 κp

σ2(p
′ − p), (5)At this stage we assume that the σ1,2 �elds have nontrivial translational invariant mean �eld values σ̄1,2, while themean �eld values of the pseudos
alar �elds πi are zero. Thus we write

σ1(x) = σ̄1 + δσ1(x) (6)
σ2(x) = κp σ̄2 + δσ2(x) (7)
~π(x) = δ~π(x) (8)Repla
ing in the bosonized e�e
tive a
tion, and expanding in powers of the meson �u
tuations, we get

Sbos
E = SMFA

E + Squad
E + ...Here the mean �eld a
tion per unit volume reads

SMFA
E

V (4)
= −2Nc

∫

d4p

(2π)4
tr ln [D−1

0 (p)
]

+
σ̄2

1

2GS
+

κ
2
p σ̄

2
2

2GS
, (9)where the quark propagator in the mean �eld approximation D0(p) is given by

D0(p) =
Z(p)

−/p+M(p)
(10)with

Z(p) = (1− σ̄2 f(p))−1

M(p) = Z(p) (mc + σ̄1 g(p)) (11)The quadrati
 terms 
an be written as
Squad

E =
1

2

∫

d4p

(2π)4
[

Gσ(p2) δσ(p) δσ(−p) +Gσ′ (p2) δσ′(p) δσ′(−p) + Gπ(p2) δ~π(p) · δ~π(−p)
]

, (12)where the σ and σ′ �elds are related to σ1 and σ2 by
δσ = cos θ δσ1 − sin θ δσ2 (13)
δσ′ = sin θ δσ1 + cos θ δσ2 , (14)and the mixing angle θ is de�ned in su
h a way that there is no σ − σ′ mixing at the level of the quadrati
 a
tion.The fun
tion Gπ(p2) introdu
ed in Eq. (12) is given by

Gπ(p2) =
1

GS
− 8Nc

∫

d4q

(2π)4
g2(q)

Z(q+)Z(q−)

D(q+)D(q−)

[

q+ · q− +M(q+)M(q−)
] (15)with q± = q ± p/2 and D(q) = q2 +M2(q), while for the σ − σ′ system we have

G„

σ
σ′

«(p2) =
Gσ1σ1

(p2) +Gσ2σ2
(p2)

2
∓

√

[Gσ1σ2
(p2)]

2
+

[

Gσ1σ1
(p2)−Gσ2σ2

(p2)

2

]2 (16)where
Gσ1σ1

(p2) =
1

GS
− 8Nc

∫

d4q

(2π)4
g2(q)

Z(q+)Z(q−)

D(q+)D(q−)

[

q+ · q− −M(q+)M(q−)
]

Gσ2σ2
(p2) =

1

GS
+

8Nc

κ
2
p

∫

d4q

(2π)4
q2f2(q)

Z(q+)Z(q−)

D(q+)D(q−)

[

(q+ · q−)−M(q+)M(q−) +
(q+)2(q−)2 − (q+ · q−)2

2q2

]

Gσ1σ2
(p2) = −

8Nc

κp

∫

d4q

(2π)4
g(q)f(q)

Z(q+)Z(q−)

D(q+)D(q−)
q ·
[

q−M(q+) + q+M(q−)
] (17)



4B. Mean �eld approximation and 
hiral 
ondensatesIn order to �nd the mean �eld values σ̄1,2, one has to minimize the a
tion SMFA
E . A straightforward exer
ise leadsto the 
oupled gap equations

σ̄1 − 8Nc GS

∫

d4p

(2π)4
g(p)

Z(p)M(p)

D(p)
= 0

σ̄2 + 8Nc GS

∫

d4p

(2π)4
p2

κ
2
p

f(p)
Z(p)

D(p)
= 0. (18)Now the 
hiral 
ondensates are given by the va
uum expe
tation values 〈q̄q〉 = 〈ūu〉 = 〈d̄d〉. They 
an be easilyobtained by performing the variation of ZMFA = exp[−SMFA

E ] with respe
t to the 
orresponding 
urrent quarkmasses. This expression turns out to be divergent. Thus, as 
ustomary, we regularize it by subtra
ting its value fornon-intera
ting quarks. We obtain
〈 q̄ q 〉 = − 4Nc

∫

d4p

(2π)4

(

Z(p)M(p)

D(p)
−

mc

p2 +m2
c

)

.C. Meson masses and quark-meson 
oupling 
onstantsThe meson masses 
an be obtained by solving the equation
GM (−m2

M ) = 0 . (19)In the 
ase of the σ − σ′ system the mixing angles is given by θ(−m2
σ,σ′), where

tan 2 θ(p2) =
2Gσ1σ2

(p2)

Gσ2σ2
(p2)−Gσ1σ1

(p2)
(20)Finally, the on-shell meson-quark 
oupling 
onstants gMqq̄ are given by

g−2
Mqq̄ ≡ G

−2
Mqq̄(−m

2
M ) =

dGM (p)

dp2

∣

∣

∣

∣

p2=−m2

M

. (21)Note that due to the mixing, in the s
alar meson 
hannel the 
orresponding vertex has two 
omponents. Thus for
σqq̄ vertex we have

Vσqq̄ = g0
σqq̄ 11 + g1

σqq̄

/p+ /p′
2κp

(22)where
g
(0)
σqq̄ = gσqq̄ cos θ ; g

(1)
σqq̄ = gσqq̄ sin θ (23)D. Pion weak de
ay 
onstantBy de�nition the pion weak de
ay 
onstant fπ is given by the matrix element of the axial 
urrent Aa

µ(x) betweenthe va
uum and the renormalized one-pion state at the pion pole:
〈0|Aa

µ(0)|π̃b(p)〉 = i δab pµ fπ . (24)In order to obtain an expli
it expression for the axial 
urrent, we have to �gauge� the e�e
tive a
tion SE byintrodu
ing a set of axial gauge �elds Aa
µ(x). For a lo
al theory this �gauging� pro
edure is usually done by performingthe repla
ement

∂µ → ∂µ +
i

2
γ5 ~τ · ~Aµ(x) . (25)



5In the present 
ase �owing to the nonlo
ality of the involved �elds� one has to perform additional repla
ements inthe intera
tion terms. Namely,
ψ(x− z/2) → WA (x, x− z/2) ψ(x − z/2)

ψ†(x + z/2) → ψ†(x + z/2) WA (x+ z/2, x) (26)Here x and z are the variables appearing in the de�nitions of the nonlo
al 
urrents (see Eq.(2)), and the fun
tion
WA(x, y) is de�ned by

WA(x, y) = P exp

[

i

2

∫ y

x

dsµ γ5 ~τ · ~Aµ(s)

]

, (27)where s runs over an arbitrary path 
onne
ting x with y.On
e the gauged e�e
tive a
tion is built, it is easy to get the axial 
urrent as the derivative of this a
tion withrespe
t to Aa
µ(x), evaluated at ~Aµ(x) = 0. Performing the derivative of the resulting expressions with respe
t tothe renormalized meson �elds, we 
an �nally identify the 
orresponding meson weak de
ay 
onstants. After a ratherlengthy 
al
ulation we obtain

fπ =
mc gπqq̄

m2
π

F0(−m
2
π) . (28)with

F0(p
2) = 8Nc

∫

d4q

(2π)4
g(q)

Z(q+)Z(q−)

D(q+)D(q−)

[

q+ · q− +M(q+)M(q−)
] (29)It is important to noti
e that the integration over the path variable s appearing in this 
al
ulation turns out to betrivial and, thus, the result path-independent. In the 
hiral limit the expression Eq.(28) has a rather simple form [14℄given by

fπ =
M (0)

gπqqZ (0)
, (30)whi
h 
onne
ts with the Goldberger-Treiman relation.E. The de
ay width of the Sigma mesonTo obtain the de
ay amplitude of the σ meson into two pion we need to 
al
ulate

δSbos
E

δσ(q)δπa(q1)δπb(q2)
= (2π)4 δ4(q + q1 + q2) δab Gσππ(q2, q21 , q

2
2) (31)where the meson �elds are assumed to be already renormalized. In terms of the unrenormalized �elds and taking intoa

ount the σ1 − σ2 mixing we have

Gσππ(q2, q21 , q
2
2) = Gσqq̄(q

2) Gπqq̄(q
2
1) Gπqq̄(q

2
2) G̃σππ(q2, q21 , q

2
2) (32)where

G̃σππ(q2, q21 , q
2
2) = Gσ1ππ(q2, q21 , q

2
2) cos θ(q2)−Gσ2ππ(q2, q21 , q

2
2) sin θ(q2) (33)and the expressions of the unrenormalized σ1 and σ2 
oupling 
onstants to two π 
an be obtained by expanding Γ tothird order in the �u
tuations. We get

Gσ1ππ(q2, q21 , q
2
2) = −16Nc

∫

d4k

(2π)4
g

(

k1 + k2

2

)

g

(

k + k1

2

)

g

(

k + k2

2

)

Z(k)Z(k1)Z(k2)

D(k)D(k1)D(k2)
×

×
[

M(k) k1 · k2 −M(k1) k · k2 −M(k2) k · k1 −M(k) M(k1) M(k2)
] (34)

Gσ2ππ(q2, q21 , q
2
2) = −

8Nc

κp

∫

d4k

(2π)4
f

(

k1 + k2

2

)

g

(

k + k1

2

)

g

(

k + k2

2

)

Z(k)Z(k1)Z(k2)

D(k)D(k1)D(k2)
×

×
[

k2
2 k · k1 + k2

1 k · k2 + (k1 + k2) · [M(k1) M(k) k2 −M(k2) M(k1) k +M(k2) M(k) k1]
] (35)



6where k1 = k + q1 and k2 = k − q2 and q2 = (q1 + q2)
2. Similarly for σ′ we have

Gσ′ππ(q2, q21 , q
2
2) = Gσ′qq̄(q

2) Gπqq̄(q
2
1) Gπqq̄(q

2
2) G̃σ′ππ(q2, q21 , q

2
2) (36)where

G̃σ′ππ(q2, q21 , q
2
2) = Gσ1ππ(q2, q21 , q

2
2) sin θ(q2) +Gσ2ππ(q2, q21 , q

2
2) cos θ(q2) (37)In terms of gMππ = GMππ(m2

M ,m2
π,m

2
π) the M = σ, σ′ width reads

ΓM→ππ =
3

2

g2
Mππ

16πmM

√

1−
4m2

π

m2
M

(38)F. π-π s
atteringIn general, the total amplitude for the π-π s
attering pro
ess 
an be expressed as
A
(

πα(q1) + πβ(q2)→ πγ(q3) + πδ(q4)
)

= δαβδγδA(s, t, u) + δαγδβδA(t, s, u) + δαδδβγA(u, t, s) (39)where
s = (q1 + q2)

2 ; t = (q1 − q3)
2 ; u = (q1 − q4)

2 (40)Within the present model, this amplitude gets two 
ontributions. One 
orresponds to the box diagram and the otherto the s
alar meson pole diagram. Thus,
A(s, t, u) = Abox(s, t, u)− g4

πqq̄

∑

M=σ,σ′

G̃2
Mππ(s,m2

π,m
2
π) G−1

M (s) (41)where
Abox(s, t, u) = g4

πqq̄ [J(s, t, u) + J(s, u, t)− J(u, t, s)] (42)and
J (s, t, u) =

1

2
[Jbox (q1, q2, q3) + Jbox (q1,−q3,−q2)] (43)with

Jbox (q1, q2, q3) = 16Nc

∫

d4k

2π
g

(

k + k1

2

)

g

(

k + k2

2

)

g

(

k1 + k13

2

)

g

(

k2 + k13

2

)

Z(k1)Z(k)Z(k2)Z(k13)

D(k1)D(k)D(k2)D(k13)
×

{

[k1 · k +M(k1)M(k)] [k2 · k13 +M(k1)M(k13)]− [k1 · k2 +M(k1)M(k2)] [k · k13 +M(k)M(k13)]

+ [k1 · k13 +M(k1)M(k13)] [k · k2 +M(k)M(k2)]
} (44)where k1 = k + q1, k2 = k − q2, k13 = k + q1 − q3.It is 
ustomary to de�ne the s
attering amplitudes of de�ned isospin

T 0 = 3A(s, t, u) +A(t, s, u) +A(u, t, s)

T 1 = A(t, s, u)−A(u, t, s)

T 2 = A(t, s, u) +A(u, t, s) (45)In terms of these amplitudes the s
attering lengths aI
ℓ and slope parameters bIℓ are de�ned by the partial waveexpansion at low q2

1

64πmπ

∫ 1

−1

dx Pℓ(x) T
I(s, t, u) = q2ℓ

(

aI
ℓ + bIℓ q

2 + ...
) (46)where Pℓ(x) is the Lagrange polynomial of order l.



7III. DETERMINATION OF THE MODEL PARAMETERSIn this se
tion we present in some detail the pro
edure used to determine the model parameters as well as the formfa
tors g(q) and f(q) whi
h 
hara
terize the non-lo
al intera
tions.In our �rst model (s
enario S1) we use exponential fun
tions to model the non-lo
al intera
tions. These are wellbehaved fun
tions whi
h have been often used in the literature (see e.g. [16, 17, 18, 19℄) to de�ne g(q). Here, we alsouse su
h form for f(q). Thus, for S1 we have
g(p) = exp(−p2/Λ2

0) ; f(p) = exp(−p2/Λ2
1) (47)Note that the range (in momentum spa
e) of the nonlo
ality in ea
h 
hannel is determined for the parameters Λ0 and

Λ1, respe
tively. From Eq. (11) we obtain
M (p) = Z (p)

[

mc + σ̄1 exp(−p2/Λ2
0)
]

Z (p) =
[

1− σ̄2 exp(−p2/Λ2
1)
]−1 (48)We �x the values of mc and < qq̄ >1/3 to reasonable values mc = 5.7 MeV and < qq̄ >1/3= −240 MeV determiningthe rest of the parameters so as to reprodu
e the empiri
al values fπ = 92.4 MeV and mπ = 139 MeV, and Z(0) = 0.7whi
h is within the range of values suggested by re
ent latti
e 
al
ulations[8, 10℄.For the se
ond parametrization we follow Ref.[14℄, where a parametrization based on a �t to the mass and renor-malization fun
tions obtained in a Landau gauge latti
e 
al
ulation was used. Su
h parametrization is

M(p) = mc + αm fm(p) ,

Z(p) = 1 + αz fz(p) , (49)with
fm(p) =

[

1 +
(

p2/Λ2
0

)3/2
]−1

; fz(p) =
[

1 +
(

p2/Λ2
1

)]−5/2
, (50)where the analyti
al form of fm (p) has been proposed in Ref.[9℄. The analyti
al form of fz (p) is 
hosen in orderto guarantee the 
onvergen
e of the integrals. Some alternative parametrization of this type suggested from ve
tormeson dominan
e of the pion form fa
tor 
an be found in Ref.[22℄. In terms of the fun
tions fm(p) and fz(p), andthe 
onstants mc, αm, αz the form fa
tors g(q) and f(q) are given by

g(p) =
1 + αz

1 + αzfz(p)

αmfm(p)−mcαzfz(p)

αm −mcαz
,

f(p) =
1 + αz

1 + αzfz(p)
fz(p) . (51)and the mean �eld values are

σ̄1 =
αm −mcαz

1 + αz

σ̄2 =
αz

1 + αz
(52)The parameters for this se
ond model (s
enario S2) are determine as follows. As before we take Z(0) = 0.7 and �x

Λ0 and Λ1 in su
h a way that the fun
tions fm (p) and Z (p) agree reasonable well with latti
e results of Ref.[8℄. Nextwe �x mc and αm in order to reprodu
e the physi
al values of mπ and fπ. The resulting parameters are mc = 2.37MeV, αm = 309 MeV, and with Λ0 = 850 MeV and Λ1 = 1400 MeV.Finally, in order to 
ompare with previous studies where the wavefun
tion renormalization of the quark propagatorhas been ignored we 
onsider a third model (s
enario S3). In su
h s
enario we take Z(p) = 1 and exponentialparametrization for g(p). Su
h model 
orresponds to the "Model II" dis
ussed in Ref.[18℄, from where we take theparameters 
orresponding to < qq̄ >1/3= −240 MeV.The values of the model parameters for ea
h of the 
hosen s
enarios are summarized in Table I. In Fig.1 we
ompare the quark mass fun
tion fm(p) and renormalization fun
tion Z(p) as obtained from our three s
enarios withdata extra
ted from the latti
e results of Ref.[8℄. The main reason for 
omparing fm(p) (instead of M (p)) is thatanalyzing latti
e data from di�erent groups using Landau gauge �xing[8, 10℄, and also results for M (p) obtainedby ea
h group using di�erent inputs, we observed that the resulting fun
tions fm(p) are very similar in spite of the



8di�erently looking M(p). On the other hand, the renomalization fun
tions Z (p) are mu
h less sensitive to the 
hoi
eof latti
e parameters, and in fa
t the two latti
e groups [8, 10℄ provide similar results. We observe that the fun
tions
fm (p) and Z (p) for s
enario S1, based on exponential fun
tions, de
rease faster than the latti
e data. For s
enarioS2, however, they go to zero as (p2)−3/2 and (p2)−5/2, respe
tively, following the latti
e data in a 
loser manner.Finally, in the 
ase of S3 the exponential de
rease of fm(p) is even faster than that of S1.IV. NUMERICAL RESULTSIn this se
tion we present and dis
uss our numeri
al results. In Table I we give the results for the mean-�eldproperties, together with the pion and sigma masses and de
ay parameters. As it 
an be seen in this table, whilefor the exponential parameterizations (i.e. S1 and S3) the empiri
al values of fπ and mπ are 
onsistent with aquark 
ondensate whi
h lies within the range of the usually quoted phenomenologi
al values −〈q̄q〉1/3 ≃ 200 -
260 MeV [23, 24℄ the s
enario S2 leads to a value of the 
hiral 
ondensate somewhat above su
h range. On theother hand, the 
orresponding 
urrent quark mass is quite smaller than those obtained for the s
enarios S1 and S3.This issue deserves some 
omment. The 
hiral 
ondensate, as well as the 
urrent quark masses, are s
ale dependentobje
ts. In parti
ular, the phenomenologi
al values quoted above for the 
ondensate 
orrespond to a 
hoi
e of therenormalization s
ale µ = 1 GeV. In the parametrization S2 some parameters have been determined so as to obtaina good approximation to the latti
e mass renormalization fun
tion Z(p), a quantity whi
h also depends on therenormalization point. In parti
ular, we use the fun
tion Z(p) obtained in Ref.[8℄ where the renormalization s
alehas been 
hosen to be µ = 3 GeV. One might wonder whether the fa
t that this renormalization point di�ers fromthe one usually used to quote the values of the 
ondensate 
an a

ount for the fa
t that the S2 predi
tion is outsidethe empiri
al range. If one assumes that this di�eren
e is also responsible for the rather low value of mc this 
an beinvestigated in the following way. To leading order in the 
hiral expansion the 
urrent quark mass and the 
ondensateare related by the Gell-Mann-Oakes-Renner (GMOR) relation

f2
π m2

π = 2 < q̄q > m̂ (53)where m̂ = (mu +md) /2. The validity of GMOR to that order is well justi�ed by the low energy behavior of the ππs
attering amplitudes [25℄. Using that, a

ording to Ref.[26℄, m̂ runs from 5.5 MeV at the s
ale µ = 1 GeV to 4.1 MeVat µ = 2 GeV we expe
t that a typi
al value of 〈q̄q〉1/3 = −240 MeV at µ = 1 GeV will run to 〈q̄q〉1/3 = −270 MeVat µ = 2 GeV [27℄. Latti
e 
al
ulations provide an independent determination of quark masses and q̄q 
ondensate[28, 29, 30℄:
mMS

ud (2 GeV ) = 4.3± 0.4stat
+1.1

−0.4 sys
MeV (54)

〈q̄q〉 (2 GeV ) = − (265± 5stat ± 22sysMeV )
3 (55)whi
h 
on�rms the µ = 2 GeV values given above. Note that sin
e these two latti
e 
al
ulations are not 
onne
ted, thequoted values imply a veri�
ation of the GMOR relation. Sin
e the GMOR relation is well satis�ed by our lagrangianmodel [14℄, and in all our s
enarios fπ and mπ are �tted to their empiri
al values, it is 
lear that the quality of thedes
ription of the quark 
ondensate and the 
urrent quark mass are 
losely related. Thus, a further running up to

µ = 3 GeV implies that the 
urrent quark mass must be s
aled by a fa
tor of the m̂(2 GeV)/m̂(3 GeV) = 1.11. Thisvalue is rather di�erent from the fa
tor 1.81 obtained from the ratio between the latti
e result at µ = 2 GeV and thevalue of mc for the s
enario S2 given in Table I. This 
learly indi
ates that possible ambiguities related to the 
hoi
eof renormalization point 
annot fully a

ount for the rather high value of the 
ondensate for the s
enario S2. In fa
t,using the above mentioned fa
tors to rees
ale the value −〈q̄q〉1/3 ≃ 326 MeV quoted in Table I down to µ = 1 GeVwe get −〈q̄q〉1/3 ≃ 284 MeV whi
h is about 10% above the empiri
al upper limit. A possible way to redu
e the valueof the quark 
ondensate in S2 is to redu
e the parameter Λ0. For Λ0 ∼ 600 MeV we 
an obtain values for the quark
ondensate and quark masses whi
h are within the phenomenologi
al bounds.The mass and width of the sigma meson display some dependen
e on the parametrization. However, su
h dependen
eis smaller than the one found in the lo
al NJL model[31℄. The obtained values for the masses are somewhat larger thanthe re
ently extra
ted empiri
al values 478+24
−23 ± 17MeV [32℄ and 390+60

−36MeV [33℄ while the widths are 
ompatiblewith the experimentally reported values 324+42
−40 ± 21MeV [32℄ and 282+77

−50MeV [33℄.The situation 
on
erning the σ′ meson deserves some 
omment. In general, for the non-lo
al models under 
on-sideration the quark propagators develop a series of poles in the 
omplex plane. In Eu
lidean spa
e, su
h poles 
anbe purely imaginary (as in the NJL model whi
h only has one pole of this type) or fully 
omplex. The existen
e ofthese poles implies the appearan
e of "pin
h points" [16℄ in the 
al
ulation of the meson two-point fun
tions. The



9external momentum for whi
h the �rst of su
h "pin
h points" appears is given by ppp = 2Si where Si is the imaginarypart of the �rst pole of the quark propagator. From this point on the fun
tions G in Eq.(17) do in general developan imaginary 
omponent related to the unphysi
al de
ay into qq̄ pairs, whi
h is usually asso
iated with the la
k of
on�nement. In some 
ases, depending on the regulator and/or parametrization, one 
an �nd a pres
ription for theintegration path along the 
omplex plane su
h that this imaginary 
omponent 
an
els out[16, 17, 34℄. It is 
lear,however, that the 
orresponding results turn out to be pres
ription dependent and, unless the meson pole appearsno far above ppp, not very reliable. For this reason, in this work we take the point of view that ppp marks the limitof validity of our model. For the three s
enarios under 
onsideration we have found ppp to be about 1 GeV, whi
happears to be a reasonable s
ale for a low energy e�e
tive model of QCD. As for the σ′ 
hannel we have veri�ed thatno pole 
orresponding to a meson of this type appears below that s
ale.We turn now to the low-energy parameters for π − π s
attering. These parameters have been matter of mu
hattention in the re
ent past years. In parti
ular, re
ent results on Kl4 de
ays [35, 36℄ have led to an improvedphenomenologi
al determination[37, 38℄ of the threshold parameters for S-, P-, D- and F- waves. Our results for the Sand P waves are displayed in Table II while those 
orresponding to D and F waves in Table III. Sin
e the 
al
ulationof sigma pole 
ontributions in
lude o�-shell quantities it is not possible to perform a 
lear and unique separationbetween σ and σ′ 
ontributions. Thus, only the sum of su
h 
ontributions is given. In general, reasonable estimatesindi
ate that σ′ 
ontributions represent only a few per
ent of this total value. The phenomenologi
al values extra
tedin Ref.[38℄ are also indi
ated. In 
omparing our results with these values one should keep in mind that the presentmodel does not in
orporate pion loops, and hen
e there is still room for improvement. Finally, for 
omparison, inTables II and III the existing results for the lo
al SU(2) NJL model [39, 40℄ are given. Results obtained in alternativeQCD-based quark models 
an be found, e.g. in Ref.[41℄We analyze �rst the results 
orresponding to the S- and P-waves. Let us re
all that to leading order in the 
hiralexpansion the 
orresponding length and slope parameters 
an be obtained from the Weinberg amplitude
A (s, t, u) =

s− f2
π

m2
π

(56)whi
h leads to the predi
tions
8

7
a0
0 ·mπ = −4 a2

0 ·mπ = b00 ·m
3
π = −2 b20 ·m

3
π = 6 a1

1 ·m
3
π =

m2
π

4 π f2
π

(57)Sin
e our three di�erent s
enarios lead to the same values of fπ and mπ the predi
tions for these �ve s
atteringparameters are expe
ted to be quite similar. In fa
t, results in Table II 
on�rm this, although those of S2 are inslightly better agreement with empiri
al data. This is parti
ularly interesting in the 
ase of a2
0, whi
h results froma rather strong 
an
ellation between box and sigma 
ontributions. In order to be more sensitive in the 
omparisonbetween s
enarios, we also give in Table II the 
ombination of the S-wave isospin 0 and 2 parameters 2a0

0 +7a2
0 whi
hvanishes in the 
hiral limit. We observe that in all s
enarios the 
orre
tion goes in the right dire
tion. Moreover, inthe 
ase of S2 its magnitude is larger providing therefore a better des
ription of the experimental result. Anotherway to improve on the dis
rimination between the di�erent parametrizations of our model is to 
onsider 
orre
tionsup to q6 order in the expansion Eq.(46). Thus, we 
al
ulate the parameters cIl and dI

l 
orresponding to the q4 and
q6 
orre
tions, respe
tively. We observe that in ea
h partial wave the exponential intera
tion produ
es s
atteringparameters whi
h de
rease rather fast with the power of q2. On the other hand, the s
enario S2 predi
ts 
oe�
ientswhi
h are of the same order of magnitude in ea
h partial wave.We 
onsider now the s
attering lengths and slope parameters for D- and F-waves displayed in Table III. Theseresults, together with the s
attering lengths and slope parameters of S- and P-waves given in Table II, 
omplete all
ases for whi
h there are phenomenologi
al determinations available. For S1 and S3, we observe that the signs of theparameters are 
orre
tly predi
ted, ex
ept for b02 in S3. The absolute values for the s
attering lengths are o� by afa
tor between 1.5 and 2.5, whereas the slope parameters fail by one order of magnitude. On the other hand, thes
enario S2 gives the right sign and order of magnitude in all 
ases, deviating only by a fa
tor 3 in the worse 
ase, b13.From the previous results we 
an 
on
lude that although the exponential intera
tion might be able to reprodu
ethe s
attering lengths parameters rather well the des
ription of higher power 
oe�
ients is, in general, expe
ted tobe less a

urate as the power in q2 in
reases. This is parti
ularly so for the higher partial waves. On the otherhand, the momentum dependen
e of the s
enario S2 seems to be better adapted for the des
ription of the higherpower parameters. In fa
t, the only 
ase where this s
enario gives a worse result than the exponential ones is in thepredi
tion for b11, where a strong 
an
ellation between the box and sigma 
ontribution takes pla
e.Comparing s
enarios S1 and S3 we 
an observe the e�e
t on the s
attering parameters of taking into a

ount thewave fun
tion renormalization. Ex
ept for the parameters listed in Eq.(57), we observe that as the power in q2in
reases the asso
iated parameters obtained in s
enario S3 de
rease faster than in s
enario S1. We 
an 
on
lude that



10the e�e
t of the wave fun
tion renormalization term goes in the right dire
tion, even if this e�e
t is less importantthan the one produ
ed by the di�eren
e in the momentum dependen
e of the intera
tions. It should be noti
ed thatour s
enario S3 is very similar to the model used in Ref.[42℄. In fa
t, in both 
ases the wave fun
tion renormalizationis not in
luded, exponential parameterizations are used and the values of mπ and fπ are �tted. The di�eren
e 
omesfrom the way in whi
h the third parameter of the model is determined. In Ref.[42℄ the rather sensitive value of a2
2was used, while here we 
hoose to �x the 
hiral 
ondensate.In our s
enarios whi
h in
lude wavefun
tion renormalization we have �xed Z(0) = 0.7. As it 
an be seen in Fig.1,however, for small values of p the errors in the latti
e results are rather large. Thus, Z(0) is not well 
onstrainedby latti
e 
al
ulations. In order to test the sensitivity of our results to this kind of un
ertainties we have redu
ed itto Z(0) = 0.6, and 
onsidered the s
enario S2 for two alternative situations. In the �rst 
ase we varied the modelparameters so that fπ and mπ remain at their empiri
al values, while in the se
ond 
ase we kept the model parameters�xed. In both 
ases we found that most of our results 
hange by less that 10%, the most notorious ex
eption beingthe ππ s
attering length a2

2 whi
h 
hanges about 15 %. It is interesting to note that in the se
ond 
ase the pion massand de
ay 
onstant, as well as the 
hiral 
ondensate, get redu
ed. We obtain mπ = 138.7 MeV , fπ = 91.2 MeV and
− < q̄q >1/3= 323 MeV .V. COMPARISON WITH CHIRAL PERTURBATION THEORYIn the previous se
tion we have fo
used our attention on the ability of our quark model to reprodu
e the phe-nomenologi
al π-π s
attering parameters. An alternative point of view (see, for example Refs. [39, 43, 44, 45, 46, 47℄)is to 
onsider the quark models as the generators of the pion Chiral Perturbation Theory (χPT) Lagrangian[21℄.
χPT des
ribes the low energy physi
s of pions in a universal way, on
e the order in the momentum and 
hiral break-ing expansion (i.e. the order in the 
hiral expansion) is spe
i�ed. Di�erent s
enarios for quark models will lead to
χPT Lagrangians with di�erent values of the so-
alled low energy 
onstants (LECs). In this se
tion we analyze the
onne
tion between our quark s
enarios and the χPT Lagrangian up to the fourth order in the 
hiral expansion.To perform this 
onne
tion we introdu
e the pioni
 Lagrangian

L = L2 + L4 , (58)where
L2 =

f2

4

〈

∂µU
† ∂µU + U †χ+ χ†U

〉

, (59)
L4 = ℓ1

〈

∂µU
† ∂µU

〉2
+ ℓ2

〈

∂µU
† ∂νU

〉 〈

∂µU † ∂νU
〉2

+ ℓ3 〈χU〉
2 + ℓ4 〈∂µχ ∂

µU〉2 + ... , (60)and
U = exp

(

i
~τ.~π

f

)

; χ = m2

(

1 0
0 1

)

. (61)Note that among all possible O(4) terms only those relevant for π-π s
attering to that order have been expli
itlygiven. To the order we are working, the parameters f and m 
an be related with the predi
ted values for fπ and mπthrough
fπ = f

(

1 +

(

mπ

fπ

)2

ℓ4

)

, (62)
m2

π = m2

(

1 + 2

(

mπ

fπ

)2

ℓ3

)

. (63)Using (62) and (63), we 
an express the s
attering parameters resulting from Eq.(58) in terms of the ℓi 
oupling
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onstants and the mπ and fπ values as follows
mπ a0

0 =
7

32π

(

mπ

fπ

)2
{

1 +
1

7

(

mπ

fπ

)2

[40 ℓ1 + 40 ℓ2 + 10 ℓ3 + 14 ℓ4]

}

mπ a2
0 = −

1

16π

(

mπ

fπ

)2
{

1−

(

mπ

fπ

)2

[8 ℓ1 + 8 ℓ2 + 2 ℓ3 − 2 ℓ4]

}

m3
π b

0
0 =

1

4π

(

mπ

fπ

)2
{

1 +
1

4

(

mπ

fπ

)2

[64 ℓ1 + 48 ℓ2 + 8 ℓ4]

}

m3
π b

2
0 = −

1

8π

(

mπ

fπ

)2
{

1−
1

2

(

mπ

fπ

)2

[16 ℓ1 + 24 ℓ2 − 4 ℓ4]

}

m3
π a1

1 =
1

24π

(

mπ

fπ

)2
{

1 +

(

mπ

fπ

)2

[−8 ℓ1 + 4 ℓ2 + 2 ℓ4]

}

m5
π b

1
1 =

1

6π

(

mπ

fπ

)4

{−2 ℓ1 + ℓ2}

m5
π a0

2 =
1

15π

(

mπ

fπ

)4

{ℓ1 + 2 ℓ2}

m5
π a2

2 =
1

30π

(

mπ

fπ

)4

{2 ℓ1 + ℓ2} (64)As already mentioned, the Lagrangian (58) is valid up to fourth order in the 
hiral expansion, therefore it 
an be fullyequivalent to our quark model s
enarios only when they are treated to the same order of approximation. Thus, toextra
t the LECs de�ning the pioni
 Lagrangian from the values of the s
attering parameters, fπ and mπ obtainedin ea
h of our quark s
enarios we should analyze the values of these parameters for small values of mc. In fa
t, wehave veri�ed that 
lose to the 
hiral limit the s
attering parameters display, as a fun
tion of (mπ/fπ)2, the quadrati
behavior expe
ted from Eqs.(64). From the determination of the 
orresponding linear and quadrati
 
oe�
ients itis possible to obtain the numeri
al values of LECs ℓi. It should be noti
ed that this pro
edure for obtaining ℓi is
ompletely equivalent to the bosonization of the quark Lagrangian followed by a 
ovariant gradient expansion (seeRef.[39℄ for the appli
ation of su
h method to the NJL model). At this stage we are 
onne
ting our quark model atthe one loop level to the pioni
 Lagrangian at the tree level. Our next step is to make the 
onne
tion with the χPTLagrangian. The main di�eren
e between the Lagrangian (58) and the χPT Lagrangian is that our ℓi parameters are�nite and no pion loop 
ontribution is present. The s
attering parameters in χPT [21℄ in
lude pion loop 
ontributions,and are written in terms of renormalized LECs ℓri . As expe
ted, Eqs.(64) 
oin
ide with the ones obtained from χPTif the 
orresponding pion loop 
ontributions are negle
ted. In this approximation the 
oupling 
onstants ℓi 
an beidenti�ed with the ℓri 
onstants at some given renormalization s
ale µ.Eqs.(64) imply several relations between the s
attering parameters. We fo
us on two of them
Test1 = mπ

(

2 a0
0 − 5 a2

0

)

+m3
π

(

−
9

2
a1
1 − b

0
0 +

5

2
b20

)

=

{

0 using (64)
m4

π

16π4f4
π

17π
12 using χPT (65)

Test2 =
5

2
mπ a2

2 +
3

10
mπ b

1
1 −mπ a

0
2 =

{

0 using (64)
1

16π4f4
π

7π
450 using χPT (66)Obviously these two relations vanish when we use our pioni
 Lagrangian (58) at the tree level. Therefore, a non-vanishing value obtained for these two quantities in any other 
al
ulation must be originated by loop 
orre
tions orby higher order terms in the 
hiral expansion. As indi
ated in Eqs.(65,66), in the 
ase of the χPT Lagrangian bothrelations have 
orre
tions from pioni
 loops. On the other hand, the deviation from zero of Test1 and Test2 whenevaluated using the s
attering parameters obtained in our quark s
enarios at the physi
al value of mπ is originated byhigher order terms in the 
hiral expansion. In Table IV we show the results for these two relations in our s
enarios. Alsoindi
ated are the χPT Lagrangian results, whi
h 
orresponds to the pion loop 
ontribution of the order (mπ/2πfπ)4.From this table we observe that the quark s
enarios previously studied give results for Test1 and Test2 whi
h are ofthe same order of magnitude than the pion loop 
ontributions. This implies that the studied quark models in
lude



12higher order 
ontributions (i.e. O(6) or higher) whi
h are as important as the 
hiral loops. The e�e
t of these higherorder 
ontributions is more important for the s
enario S2, due to its di�erent behavior for large momenta.In Table V we give the ℓi values 
orresponding to our di�erent s
enarios. It is interesting to note that in the 
ase of
ℓ1 the listed values result, in all 
ases, from an important 
an
ellation between the box and the sigma 
ontributions.For ℓ2 only box 
ontribution is present sin
e no s
alar meson 
ontribution is possible [48℄. Also given in Table Vare the values of the renormalized LECs ℓri (µ) obtained[37℄ in the framework of χPT at some parti
ular values ofrenormalization s
ale µ[49℄. We observe that the sign and order of magnitude of the most a

urately known LECs
ℓr2 and ℓr4 are well reprodu
ed for small values of µ. In fa
t, in the 
ase of the s
enarios S1 and S2 the agreementis remarkable good for µ around 2 mπ whi
h is a reasonable s
ale sin
e we have integrated out degrees of freedomfrom below the sigma mass. In the 
ase of the LECs ℓr1 and ℓr3, even though it is not so good in the 
ase of S2, theagreement is still a

eptable given the existing un
ertainties in the determination of the empiri
al values. Finally, asa referen
e, some typi
al values obtained within the lo
al NJL model taken from Ref.[39℄ are also listed in Table V.VI. CONCLUSIONSIn this work we have analyzed the sigma meson mass and width together with the π-π s
attering parameters inthe 
ontext of non-lo
al 
hiral quark models with wave-fun
tion renormalization (WFR) term. We have 
onsideredtwo types of momentum dependen
e for the quark intera
tions. The �rst one (s
enario S1) is based on the frequentlyused exponential form fa
tors. The se
ond one (s
enario S2) 
orresponds to a �t to the mass and renormalizationfun
tions obtained in latti
e 
al
ulations[8℄, and gives rise to a softer momentum dependen
e (e.g. at large momentum,the quark mass de
reases as (p2)−3/2 instead of exponentially). In order to test the in�uen
e of the WFR, we also
onsidered a third s
enario S3 whi
h 
orresponds to an exponential intera
tion but where this renormalization isabsent.Our results for the sigma mass are relatively stable, ranging from 552 MeV for S2 to 683 MeV for S3. We observethat the 
oupling between the s
alar term of the standard 
hiral intera
tion and the new s
alar term asso
iated withthe WFR term redu
es the value of the lower sigma mass, as it must be expe
ted. Comparing the S3 and S1 resultswe observe a redu
tion of a 10%, while in the 
ase of the S2 intera
tion there is a further redu
tion of 10% originatedby the softer momentum dependen
e of the intera
tion. The width of the sigma follows the same redu
tion as itsmass, as one goes from one s
enario to another. These results are less dependent on the parameterization than in thestandard NJL model. The predi
ted mass and width are reasonable 
lose to the re
ently reported empiri
al values[32, 33℄.Regarding the π−π s
attering parameters, we have 
ompared our results with the phenomenologi
al determinationmade in Ref.[38℄. Although the existen
e of the 
hiral limit relations, Eqs.(57), for the S- and P-wave s
attering lengthand slope parameters redu
es the sensitivity of these parameters to the 
hoi
e of the di�erent quark intera
tions, wehave been able to dis
riminate between these intera
tions by going to higher order in the momentum expansion orto higher partial waves. We 
on
lude that although the exponential intera
tion is able to reprodu
e the s
atteringlengths parameters rather well the des
ription of higher power 
oe�
ients turns out to be, in general, less a

urateas the power in q2 in
reases. This 
an be 
learly seen in the 
ase of higher partial waves. On the other hand, themomentum dependen
e of the s
enario S2 seems to be better adapted for the des
ription of the existing empiri
aldata. Comparing the predi
tions of the s
enarios based on exponential intera
tions, S1 and S3, we observe that thepresen
e of the WFR term tends to improve the results, even though its e�e
t is less noti
eable that the one produ
edby the di�eren
e on the momentum dependen
e of the intera
tions.Finally, we have analyzed the relation of our quark s
enarios with the 
hiral Lagrangian up to O(4) in the 
hiralexpansion. In parti
ular, we have obtained predi
tions for the low energy 
onstants ℓi involved in π-π s
atteringwithin our s
enarios. The pro
edure we followed, using the s
attering parameters, is equivalent to the standardmethod of bosonization followed by 
ovariant gradient expansion. Our predi
ted values for ℓi are in relative goodagreement with the values for the renormalized ℓri 
onstants de�ned in the χPT 
al
ulations [21℄ for a µ value about
2mπ. They are also in the range of values obtained in the NJL model 
al
ulation of Ref. [39℄. We have been ableto de�ne 
ombinations of the s
attering parameters whi
h allow to dis
riminate between higher 
hiral 
orre
tions(O(6) or higher) and pion loop 
orre
tions. We observe that the higher order 
orre
tions in
luded in our non-lo
alquark model 
al
ulations at physi
al mπ are of the same order that the pion loop 
orre
tions not 
onsidered in thiswork. The e�e
t of su
h 
orre
tions in our predi
tions for the mesoni
 observables is an issue that deserves furtherinvestigation.
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Table I: Model parameters and results for some alternative parameterizations.S1 S2 S3
mc MeV 5.70 2.37 5.78

GsΛ
2
0 32.03 20.82 20.65

Λ0 MeV 814.42 850.00 752.2
κP GeV 4.18 6.03 −

Λ1 MeV 1034.5 1400 −

σ̄1 MeV 529 442 424
σ̄2 -0.43 -0.43 −

M(0) MeV 375 311 430
Z(0) 0.7 0.7 1.0

− < qq̄ >1/3 MeV 240 326 240
mπ MeV 139 139 139
gπqq̄ 5.74 4.74 4.62
fπ MeV 92.4 92.4 92.4
mσ MeV 622 552 683
g
(0)
σqq̄ 5.97 4.60 5.08

g
(1)
σqq̄ −0.77 −0.26 −

Γσππ MeV 263 182 347



15Table II: π − π s
attering parameters for S and P waves.
ontribution S1 S2 S3 NJL Empiri
alRef.[39℄ Ref.[40℄ Ref.[38℄
(mπ) × a0

0 box −1.536 −1.279 −1.618

σ 1.718 1.470 1.798Total 0.182 0.191 0.180 0.18 0.19 0.223 ± 0.009

(m3
π) × b0

0 box 0.114 0.117 0.114

σ 0.116 0.146 0.107Total 0.230 0.263 0.221 0.22 0.27 0.290 ± 0.006

(m5
π) × c0

0 box −0.0086 0.0233 −0.0076

σ 0.0412 0.0663 0.0302Total 0.0326 0.0897 0.0226

(m7
π) × d0

0 box 0.0005 0.065 0.0004

σ 0.0087 0.019 0.0051Total 0.0092 0.085 0.0055

(mπ) × a2
0 box −0.6851 −0.5790 −0.7170

σ 0.6404 0.5346 0.6721Total −0.0447 −0.0444 −0.0449 −0.046 −0.044 −0.0444 ± 0.0045

(m3
π) × b2

0 box −0.053 −0.049 −0.051

σ −0.031 −0.034 −0.033Total −0.084 −0.083 −0.084 −0.091 −0.079 −0.081 ± 0.003

(m5
π) × c2

0 box 0.0080 0.0078 0.0082

σ 0.0042 0.0056 0.0034Total 0.0121 0.0134 0.0116

(m7
π) × d2

0 box −0.0005 −0.0006 −0.0005

σ −0.0006 −0.0011 −0.0004Total −0.0011 −0.0017 −0.0009

mπ × (2a0
0 + 7a2

0) 0.052 0.072 0.046 0.04 0.072 0.135 ± 0.036

(m3
π 103) × a1

1 box 25.1 23.9 24.7

σ 10.5 11.3 11.1Total 35.7 35.2 35.7 37 34 38.1 ± 0.9

(m5
π 103) × b1

1 box 5.56 4.60 5.34

σ −2.10 −2.85 −1.72Total 3.45 1.75 3.62 5.13 ± 0.15

(m7
π 103) × c1

1 box 0.21 −2.70 0.15

σ 0.38 0.63 0.25Total 0.59 −2.06 0.40



16Table III: S
attering lengths and slope parameters for D and F waves.
ontribution S1 S2 S3 NJL Empiri
alRef.[39℄ Ref.[40℄ Ref.[38℄
(m5

π 104) × a0
2 box 9.71 9.76 9.93

σ 4.20 5.67 3.44Total 13.91 15.43 13.37 13.7 16.7 18.33 ± 0.36

(m7
π 104) × b0

2 box 0.98 0.85 1.04

σ −1.28 −2.20 −0.86Total −0.30 −1.34 0.18 −3.82 ± 0.25

(m5
π 104) × a2

2 box −2.74 −2.95 −2.43

σ 4.20 5.67 3.44Total 1.46 2.72 1.01 1.1 3.2 2.46 ± 0.25

(m7
π 104) × b2

2 box 0.08 0.07 0.13

σ −1.28 −2.20 −0.86Total −1.19 −2.14 −0.73 −3.59 ± 0.18

(m7
π 105) × a1

3 box 0.82 1.15 0.7

σ 1.82 3.09 1.2Total 2.65 4.24 1.9 6.05 ± 0.29

(m9
π 105) × b1

3 box 0.06 0.0 0.07

σ −0.70 −1.6 −0.40Total −0.64 −1.6 −0.33 −4.41 ± 0.36

Table IV: Results for Test1 and Test2 de�ned in Eqs.(65,66) as obtained in our quark s
enarios (S1,S2 and S3) and ChiralPerturbation Theory to O(4) (χPT). The results obtained using the empiri
al values of Ref.[38℄ (Empiri
al) are also given.S1 S2 S3 χPT Empiri
al [38℄
Test1× 102

−1.2 −2.5 −1.1 1.5 0.40 ± 4.4

Test2×
`

m4
π 104

´

0.1 −3.3 0.006 1.6 3.21 ± 1.4

Table V: Values of ℓi obtained in our di�erent s
enarios. The χPT values of ℓr
i as a funtion of µ are obtained from Ref.[37℄. Thelast two 
olumns 
orresponds to the NJL predi
tions from Ref. [39℄ for two di�erent 
onstituent quark mass: M = 220,264 MeV.Non Lo
al Quark Model χPT (ℓr

i (µ)) NJLS1 S2 S3 µ = mρ µ = 2 mπ µ = mπ M = 220 M = 264

ℓ1 × 103
−1.39 0.26 −2.07 −4.0 ± 0.6 −1.9 ± 0.6 −0.4 ± 0.6 −0.63 −2.28

ℓ2 × 103 6.46 6.41 6.51 1.9 ± 0.2 6.2 ± 0.2 9.1 ± 0.2 6.29 6.18

ℓ3 × 103
−2.3 −4.1 −1.1 1.5 ± 4.0 −1.8 ± 4.0 −4.0 ± 4.0 −8.50 −3.48

ℓ4 × 103 17.2 20.3 15.0 6.2 ± 1.3 19.1 ± 1.3 27.9 ± 1.3 22.73 12.16
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Figure 1: (Color online) fm(p) (Upper panel) and Z(p) (lower panel) for various parametrization as 
ompared with Latti
eresults of Ref. [8℄
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