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Abstract

We analyze the radiative pion decay π+ → e+νeγ within nonlocal chiral quark models that

include wave function renormalization. In this framework we calculate the vector and axial-vector

form factors FV and FA at q2 = 0 —where q2 is the e+νe squared invariant mass— and the slope a

of FV (q
2) at q2 → 0. The calculations are carried out considering different nonlocal form factors,

in particular those taken from lattice QCD evaluations, showing a reasonable agreement with the

corresponding experimental data. The comparison of our results with those obtained in the (local)

NJL model and the relation of FV and a with the form factor in π0 → γ∗γ decays are discussed.
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The radiative pion decay π+ → e+νeγ is a very interesting process from different points

of view. According to the standard description, the corresponding decay amplitude consists

of the inner bremsstrahlung (IB) and structure-dependent (SD) terms. The IB contribution

corresponds to the situation in which the photon is radiated by the electrically charged ex-

ternal legs, either pion or lepton, while the SD terms are associated with the photon emission

from intermediate states generated by strong interactions. The latter can be parameterized

through the introduction of vector and axial-vector form factors, FV (q
2) and FA(q

2) respec-

tively, where q2 is the squared invariant mass of the e+νe pair [1]. Since π+ → e+νe is

helicity suppressed, same happens to the IB contribution to its radiative counterpart, and,

consequently, π+ → e+νeγ turns out to be an appropriate channel to uncover the nonper-

turbative SD amplitude. Recent measurements[2] of the π+ → e+νeγ branching ratio over a

wide region of phase space yields FV (0) = 0.0258(17), FA(0) = 0.0117(17) and a = 0.10(6),

where a is related to the dependence of FV on q2 parameterized as

FV (q
2) ≃ FV (0)

(

1 + a q2/m2
π+

)

for q2 ≪ m2
π+ . (1)

From the point of view of the physics of weak interactions, this determination has provided

a further check of conserved-vector-current (CVC) hypothesis. In fact, the value of FV (0)

given above is in good agreement to that extracted from the analysis of the π0 → γγ decay

[3]. Moreover, as stressed in Ref. [2], a good description of the data appears to be possible

without the need to include extra tensor contributions that arise in several extensions of

the Standard Model suggested in the literature [4, 5]. From the side of strong interaction

physics, the pion radiative decays have been analyzed using Chiral Perturbation Theory [6]

and effective meson lagrangian methods [7]. However, there still remains the question of

how the associated form factors are connected to the underlying quark structure. Due to

the nonperturbative nature of the quark-gluon interactions in the low-energy domain, to

address this issue one is forced to deal with models that treat quark interactions in some

effective way. Among these, the Nambu–Jona-Lasinio (NJL) model has been widely used as

an schematic effective theory for QCD [8–10], allowing e.g. the description of light mesons

as fermion-antifermion composite states. In the NJL model quarks interact through a local,

chiral invariant four-fermion coupling. The corresponding predictions for the vector and

axial-vector form factors at q2 = 0 have been calculated in Ref. [11], yielding FV (0) = 0.0244

and FA(0) = 0.0241. An extension of that calculation leads to a = 0.032. As we see,
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while the predictions in the vector sector are in reasonable agreement with the measured

values (the prediction for a being slightly below the empirical range), the calculated value

of FA(0) is a factor 2 too large. As a way to improve upon the NJL model, extensions which

include nonlocal interactions have been proposed (see Ref. [12] and references therein). In

fact, nonlocality arises naturally in several well established approaches to low energy quark

dynamics. This is e.g. the case of the instanton liquid model [13] and the Schwinger-Dyson

resummation techniques [14], and also lattice QCD calculations [15–17] indicate that quark

interactions should act over a certain range in momentum space. Indeed, nonlocal chiral

quark models have been successfully applied to study different hadron observables [18–26].

The aim of the present work is to investigate the predictions of this type of models for

the measured quantities associated to vector and axial-vector form factors in π+ → e+νeγ

decays.

In general, the amplitude for the process π+ → e+νe(q) + γ(k) can be written as [1]

M =
GF√
2
e cos θC εµ

[√
2 fπ

{

(q + k)α Lαµ − lν
[

gµν +
qµqν
(q · k)

]}

+lν
{

− i ǫµναβ kαqβ
FV (q

2)

mπ

+ [qµkν − gµν (q · k)]
FA(q

2)

mπ

} ]

, (2)

with (q+ k)2 = m2
π, k

2 = 0. Here GF and θC stand for the Fermi constant and the Cabibbo

angle, respectively; εµ is the photon polarization vector, lµ is the lepton current, Lαµ is

a lepton tensor, and FV (q
2) and FA(q

2) denote the vector and axial-vector hadronic form

factors mentioned above. In this work we are interested in the study of the predictions

for the measured quantities associated with these form factors in the context of nonlocal

chiral models. We consider SU(2) chiral models that include wave function renormalization,

defined by the following Euclidean action [24, 26]

SE =

∫

d4x

{

ψ̄(x) (−i/∂ +mc)ψ(x)−
GS

2

[

ja(x)ja(x) + jP (x)jP (x)
]

}

. (3)

Here mc is the current quark mass, which is assumed to be equal for u and d quarks, while

the nonlocal currents ja(x), jP (x) are given by

ja(x) =

∫

d4z g(z) ψ̄
(

x+
z

2

)

Γa ψ
(

x− z

2

)

,

jP (x) =

∫

d4z f(z) ψ̄
(

x+
z

2

) i
←→
/∂

2 κp

ψ
(

x− z

2

)

, (4)

3



where Γa = (11, iγ5~τ ) and u(x
′)
←→
∂ v(x) = u(x′)∂xv(x)− ∂x′u(x′)v(x). The functions g(z) and

f(z) in Eq. (4) are nonlocal covariant form factors characterizing the corresponding interac-

tions. In what follows it is convenient to Fourier transform g(z) and f(z) into momentum

space. Note that Lorentz invariance implies that the Fourier transforms gp and fp can only

be functions of p2.

In order to deal with meson degrees of freedom, one can perform a standard bosoniza-

tion of the theory. This is done by considering the corresponding partition function

Z =
∫

Dψ̄Dψ exp[−SE ], and introducing auxiliary fields σ1(x), σ2(x), ~π(x), where σ1,2(x)

and ~π(x) are scalar and pseudoscalar mesons, respectively. An effective bosonized action is

obtained once the fermion fields are integrated out. To treat that bosonic action we assume,

as customary, that σ1,2 fields have nontrivial translational invariant mean field values σ̄1,2,

while the mean field values of pseudoscalar fields πi are zero. Thus we write

σ1(x) = σ̄1 + δσ1(x) , σ2(x) = κp σ̄2 + δσ2(x) , ~π(x) = δ~π(x) . (5)

Replacing in the bosonized effective action and expanding in powers of meson fluctuations

we get

Sbos
E = SMFA

E + Squad
E + ...

Here the mean field action per unit volume reads

SMFA
E

V (4)
=

1

2GS

(

σ̄2
1 + κ

2
p σ̄

2
2

)

− 4Nc

∫

d4p

(2π)4
ln

[

zp
−/p +mp

]−1

, (6)

with

zp = (1− σ̄2 fp)−1 , mp = zp (mc + σ̄1 gp) . (7)

The minimization of SMFA
E with respect to σ̄1,2 leads to the corresponding gap equations.

The quadratic terms can be written as

Squad
E =

1

2

∫

d4p

(2π)4

∑

M=σ,σ′,π

GM(p2) δM(p) δM(−p) , (8)

where σ and σ′ fields are meson mass eigenstates, defined in such a way that there is no

σ−σ′ mixing at the level of the quadratic action. The explicit expressions of GM(p2), as well

as those of the gap equations mentioned above, can be found in Ref. [26]. Meson masses can

be obtained by solving the equation GM(−m2
M ) = 0, while on-shell meson-quark coupling
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constants gMqq̄ are given by

gMqq̄
−2 =

dGM(p2)

dp2

∣

∣

∣

∣

p2=−m2
M

. (9)

As in Ref. [26], we will consider here different functional dependencies for the form factors

gp and fp. First, we consider a relatively simple case in which there is no wave function

renormalization of the quark propagator, i.e. fp = 0, zp = 1, and we take an often used

exponential parameterization for gp,

gp = exp
(

−p2/Λ2
0

)

. (10)

The model parameters mc, GS and Λ0 are determined by fitting the pion mass and decay

constant to their empirical values mπ = 139 MeV and fπ = 92.4 MeV, and fixing the chiral

condensate to the phenomenologically acceptable value 〈q̄q〉1/3 = −240 MeV. In what follows

we refer to this choice of model parameters as Set A. Second, we consider a more general

case that includes the wave function renormalization of the quark propagator. We keep the

exponential shape (10) for the form factor gp and assume also an exponential form for fp,

namely

fp = exp
(

−p2/Λ2
1

)

. (11)

Note that the range (in momentum space) of the nonlocality in each channel is determined

by the parameters Λ0 and Λ1, respectively. As in the previous case, model parameters are

determined so as to reproduce the desired values of mπ, fπ and 〈q̄q〉1/3. The form factor

fp introduces now an additional free parameter Λ1, consequently we introduce as a fourth

requirement the condition zp(0) = 0.7, which is within the range of values suggested by

recent lattice calculations [8, 10]. This choice of model parameters and form factors will be

referred to as parameterization Set B. Finally, we consider a different functional form for

the form factors, given by

gp =
1 + αz

1 + αz fz(p)

αm fm(p)−m αzfz(p)

αm −m αz

, fp =
1 + αz

1 + αz fz(p)
fz(p) , (12)

where

fm(p) =
[

1 +
(

p2/Λ2
0

)3/2
]−1

, fz(p) =
[

1 +
(

p2/Λ2
1

)]−5/2
. (13)

As shown in Ref. [26], taking mc = 2.37 MeV, αm = 309 MeV, αz = −0.3, Λ0 = 850 MeV

and Λ1 = 1400 MeV one can very well reproduce the momentum dependence of mass and
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renormalization functions obtained in lattice calculations, as well as the physical values ofmπ

and fπ. In what follows we will refer to this choice of model parameters as parameterization

Set C. The parameter values for all three parameter sets, as well as the corresponding

predictions for several meson properties, can be found in Ref. [26].

In order to derive the form factors we are interested in, one should “gauge” the effective

action SE by introducing the electromagnetic field Aµ(x) and the charged weak fieldsW±
µ (x).

For a local theory this “gauging” procedure is usually done by performing the replacement

∂µ → ∂µ + i Gµ(x) , (14)

where

Gµ(x) =
e

2

(

1

3
+ τ 3

)

Aµ(x) + gW
1− γ5

2

τ+W+
µ (x) + τ−W−

µ (x)√
2

, (15)

with g2W/(8M
2
W ) = GF cos θC/

√
2 and τ± = (τ 1 ± iτ 2)/2. In the present case —owing to

the nonlocality of the involved fields— one has to perform additional replacements in the

interaction terms, namely

ψ(x− z/2) → WG (x, x− z/2) ψ(x− z/2) ,

ψ†(x+ z/2) → ψ†(x+ z/2) WG (x+ z/2, x) . (16)

Here x and z are the variables appearing in the definitions of the nonlocal currents [see

Eq.(4)], and the function WG(x, y) is defined by

WG(x, y) = P exp

[

i

∫ y

x

drµ Gµ(r)

]

, (17)

where r runs over an arbitrary path connecting x with y.

Once the gauged effective action is built, the explicit expressions for the vector and

axial-vector form factors can be obtained by expanding to leading order in the product

δπ+AµW
+
ν . This is a rather lengthy calculation that can be simplified by considering

q2 ≪ m2
π+ , as needed to make predictions for the measured quantities FV (0), FA(0) and a.

The vector form factor is obtained from the triangle diagram represented in Fig. 1a. As

stated, FV (q
2) can be expanded at leading order in q2 as in Eq. (1), just changing q2 → −q2

since we are working in Euclidean space. Performing such an expansion we obtain

FV (0)

mπ+

=

√
2 gπqq̄Nc

3

∫

d4ℓ

(2π)4
gℓ0

(zℓ + zℓK )(zℓ + zℓQ)

Dℓ DℓK DℓQ zℓ

[

mℓ −
ℓ2

2

(

mℓQ −mℓ

Q · ℓ − mℓK −mℓ

K · ℓ

)]

,

(18)
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where K and Q are the photon and e+νe pair momenta, respectively, taken at q2 = 0.

In Eq.(18) we have used the definitions Dℓ = ℓ2 + m2
ℓ , ℓQ = ℓ + Q, ℓK = ℓ − K and

ℓ0 = (ℓQ + ℓK)/2. For convenience we also define ℓ±Q = ℓ ± Q/2, ℓ±K = ℓ ± K/2 and

ℓ±KQ = ℓ± (K +Q)/2, which will be used below.

The calculation of a is somewhat more involved. In particular, the result depends on the

integration path appearing in the nonlocal contribution to the quark−gauge boson vertices

[see Eq. (17)]. One obtains:

a = − mπ+

FV (0)

√
2
Nc

3
gπqq̄

∫

d4ℓ

(2π)4
gℓ0

(zℓ + zℓK ) (zℓ + zℓQ)

Dℓ DℓK DℓQ zℓ
B(ℓ,K,Q) , (19)

where

B(ℓ,K,Q) =

[

mℓ −
ℓ2

2

(

mℓQ −mℓ

Q · ℓ − mℓK −mℓ

K · ℓ

)]

× 2

[

K · ℓQ
(

D′
ℓQ

DℓQ

−
z′ℓQ

zℓ + zℓQ

)

+K · ℓK
(

D′
ℓK

DℓK

−
z′ℓK

zℓ + zℓK

)

−K · ℓ0
g′ℓ0
gℓ0

]

+ ℓ2
(

K · ℓQ
Q · ℓ m′

ℓQ
−m′

ℓK

)

+
1

2

(

2 K · ℓ
K ·Q −

ℓ2

K · ℓ

)

(mℓK −mℓ)

+

(

K · ℓ− ℓ2

2

K ·Q
Q · ℓ

)[

K · ℓQ
Q · ℓ K ·Q(mℓQ −mℓ) +

2 zℓQzℓ

zℓQ + zℓ

(

αℓ,Q +
mℓQ +mℓ

2
βℓ,Q

)]

.

(20)

Here primes stand for derivatives, e.g. g′ℓ = dgℓ/dℓ
2. The functions αℓ,Q and βℓ,Q are, in

general, path dependent. Here. for simplicity, we choose to use the “straight line path” for

which they read

αℓ,Q = σ̄1

∫ 1

−1

dλ λ g′
ℓ+
Q
+λ

2
Q
, βℓ,Q = σ̄2

∫ 1

−1

dλ λ f ′

ℓ+
Q
+λ

2
Q
. (21)

The axial-vector form factor receives not only a contribution from the triangle diagram

in Fig. 1a (as occurs in the local NJL model) but also from other diagrams, which are

represented in Figs.1b-1e. Thus, for q2 = 0 one has

FA(0) =

e
∑

α=a

FA(0)|α . (22)

The contribution from the triangle diagram is given by

FA(0)

mπ+

∣

∣

∣

a
= −
√
2gπqqNc

(K.Q)2

∫

d4ℓ

(2π)4
gℓ0

zℓQ zℓK
DℓDℓQDℓK

Aa , (23)
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where

Aa = 2

(

4− K ·Q
K · ℓ Q · ℓ ℓ

2

)

×
{

(ℓQ · ℓK +mℓQ mℓK )

[(

mℓ+
Q

zℓ+
Q

+
mℓ−

K

zℓ−
K

− mℓ

zℓ

)

Dℓ + K ·Q
mℓ (zℓQ + zℓ)(zℓK + zℓ)

4 zℓzℓQzℓK

]

−
zℓ mℓ−

K

zℓQzℓ−
K

(ℓ · ℓK +mℓ mℓK )DℓQ −
zℓ mℓ+

Q

zℓKzℓ+
Q

(ℓ · ℓQ +mℓ mℓQ)DℓK +
zℓ mℓ

zℓK zℓQ
DℓQDℓK

}

+ K ·Q
(

2− K ·Q
K · ℓ Q · ℓ ℓ

2

) (

1 +
zℓ
zℓQ

)(

1 +
zℓ
zℓK

)

×
{

mℓ+
Q

zℓ+
Q

ℓ · ℓK +mℓ mℓK

1 + zℓ/zℓQ
+

mℓ−
K

zℓ−
K

ℓ · ℓQ +mℓ mℓQ

1 + zℓ/zℓK
− mℓ

zℓ
(ℓ20 +mℓQ mℓK )

}

, (24)

while the remaining contributions are given by

e
∑

α=b

FA(0)

mπ+

∣

∣

∣

α
=

4
√
2 gπqq̄Nc

(K ·Q)2
∫

d4ℓ

(2π)4

[(

K ·Q
K · ℓ Q · ℓ

ℓ2

2
− 2

)

(

Ab +Ac +Ad

)

+Ae

]

, (25)

where

Ab = (gℓ − gℓ−
K
)

[

zℓ+
Q
mℓ+

Q

Dℓ+
Q

+
zℓ−

Q
mℓ−

Q

Dℓ−
Q

− 2
mℓ

zℓ

zℓ+
Q
zℓ−

Q

Dℓ+
Q
Dℓ−

Q

(

ℓ2 + mℓ−
Q
mℓ+

Q

)

]

Ac = gℓ−
K

[

zℓ+
Q
mℓ+

Q

Dℓ+
Q

−
zℓ−

Q
mℓ−

Q

Dℓ−
Q

]

Ad =
(

gℓ − gℓ−
K

)

[

zℓ mℓ

Dℓ
−
zℓ−

Q
mℓ−

Q

Dℓ−
Q

]

Ae = σ̄1 gℓ
zℓ+

KQ
zℓ−

KQ

Dℓ+
KQ
Dℓ−

KQ

(

ℓ+KQ · ℓ−KQ +mℓ+
KQ

mℓ−
KQ

) [

gℓ+
Q
+ gℓ−

K
− gℓ0 − gℓ − γ(ℓ,K,Q)

]

(26)

with

γ(ℓ,K,Q) =
K ·Q
2

∫ 1

0

dλ

(

ℓ2 − 2 K·ℓ Q·ℓ
K·Q

)(

g′
ℓ+λ

2
Q
− g′

ℓ−
K
+λ

2
Q

)

+ gℓ+λ
2
Q − gℓ−

K
+λ

2
Q

K ·
(

ℓ+ λ
2
Q
) . (27)

Note that, contrary to what happens with FV (0), the axial-vector form factor depends on

the path even at q2 = 0. This is due to the contribution of the diagram of Fig. 1e. The

expression for γ(ℓ,K,Q) given above corresponds to the “straight line path” choice.

Before discussing our predictions for the form factors associated with the charged pion

radiative weak decay, let us note that one can also consider the related decay processes

π0 → γγ and π0 → e+e−γ. The amplitude of these processes contains the π0γγ vertex form

8



factor F πγγ∗

(q2), where q2 is now the invariant mass of the virtual photon. As in the case

of FV (q
2) in the decay π+ → e+νγ, one can perform an expansion for low q2:

F πγγ∗ ≃ F πγγ∗

(0)
(

1 + a′ q2/m2
π0

)

, with q2 ≪ m2
π0 . (28)

Experimental measurements lead to F πγγ∗

(0) = 0.284(8) GeV−1 and a′ = 0.032(4) [3].

Here it is important to recall that, in the chiral limit, the anomaly leads to the constraint

F πγγ∗

(0) = 1/(4π2fπ) ≃ 0.274 GeV−1. Moreover, using CVC and isospin arguments it is

easy to prove that FV (0) = mπ F
πγγ∗

(0)/
√
2. We stress that our model satisfies this relation

as well as the anomaly constraint. In addition, it is easy to see that it leads to an analytical

expression for a′ which coincides with that given in Eq. (19) for a.

We discuss now our numerical results. In Table I we list the predicted values of FV (0)

and the slope a for the three parameterizations considered in this work. We also include the

available empirical data, as well as the (local) NJL model predictions. In the case of FV (0),

we observe that the predictions of all three parameterizations of the nonlocal model are in

good agreement with the empirical value and with the value obtained in the NJL model.

This is hardly surprising, given the chiral limit constraints mentioned above. Regarding the

slope parameter we find a too small value for all three parameterizations. There is a small

improvement by going from Set A to Set B (which implies the introduction of the wave

function renormalization of the quark propagator), and a larger improvement is obtained

by going from set B to C. One of the peculiarities of the nonlocal model is that the results

can be dependent on the path used in Eq. (17). As usual, we have chosen a straight line

path for the calculations, obtaining the expressions given in Eq. (21) for the path dependent

quantities αℓ,Q and βℓ,Q. To gauge the importance of this path dependence we have evaluated

the contribution of the corresponding terms, obtaining that it represents less than 3% for

parameterizations A and B and less than 0.5% for Set C. As for the predictions for a′ we

note that, even though in our model its analytical expression coincides with that for a, the

corresponding numerical values are somewhat different since in the case of a′ we evaluate

Eq. (19) at P 2 = m2
π0 , whereas for a it is evaluated at P 2 = m2

π+ . This dependence on

the mass of the pion reduces the value of a′ in comparison with that of a by about 10% for

Sets A and B and 5% for Set C. We observe in Table I that a′ is better reproduced than

a, but the large errors in the experimental determination of the latter prevent us to take

definite conclusions. In fact, the discrepancies between our predictions for a and a′ and their
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experimental values are not unexpected, since no vector interaction has been included in our

model. For example, using the results of Ref. [28] we obtain that the vector contribution

to the π0 → γγ∗ process has the right order of magnitude and sign needed to account for

these discrepancies. Here it is interesting to point out that the contribution from the vector

channel could be different for a and a′, even preserving the isospin symmetry. This would be

achieved if one has different interactions in the vector-isoscalar channel and in the vector-

isovector channel. On the other hand, it can be seen that the NJL model is able to provide

a very good prediction for a′. However, it is worth to notice that in the NJL framework this

value is essentially given by the relation a′ ≃ m2
π/(12m

2
q) [27], and the value of mq (dressed

quark mass) turns out to be quite dependent on model parameterizations. The NJL values

quoted here correspond to a Pauli-Villars regularization.

In Table II we give our numerical results for FA(0), quoting the contribution of each

diagram. We have also quoted in Table II the result obtained in the NJL model, where the

triangle diagram is the only one that survives. We observe that although several diagrams

contribute in the case of the nonlocal models, the triangle diagram turns out to be the

dominant one. The contribution coming from diagrams (b) to (e) is less than 2% of the total

result, in all three parameterizations. In particular, diagram (e), the only one with a path

dependent term, contributes with less than 1% of the full result. It is interesting to mention

that FA(0) has also been evaluated in the spectral quark model, obtaining FA(0) ∼ FV (0)

as in the NJL model [29]. In this sense, the fact that nonlocal models of the type considered

here lead to values of FA(0) which are significantly different from those of FV (0) appears as

a quite important result. A similar conclusion has been obtained in a simplified calculation

in the chiral limit [30]. Given the triangle diagram dominance mentioned above, the origin

of this difference can be traced back to the different dressing of the γµ and γµγ5 terms in the

coupling of theW to the quarks [26]. Comparing our prediction for FA(0) with the empirical

value, we observe that the introduction of the nonlocality gives half of the difference needed

in the case of Set C and is near to exhaust this difference for Set A, which gives the best

result. In any case, as in the case of the slope of the vector form factor, additional effects

that have been neglected in the present calculation might help in improving the agreement

with the empirical value.
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TABLE I: Results for FV (0) and a. All results should be multiplied by 10−2. In column 5 we give

the empirical values of mπ+ F πγγ∗

(0)/
√
2 and a′. Note that in our model a = a′. In column 6 we

give the prediction of the local Nambu–Jona-Lasinio (NJL) model.

Set A Set B Set C Exp [2] Exp (π0 → γγ∗)[3] NJL

FV (0) 2.697 2.693 2.695 2.58 ± 0.17 2.80±0.08 2.441

a 1.651 1.726 2.011 10 ± 6 3.2±0.4 3.244

TABLE II: Results for FA(0). All results should be multiplied by 10−2. In column 5 we give the

prediction of the local Nambu–Jona-Lasinio (NJL) model.

Set A Set B Set C Exp [2] NJL

FA(0)|a 1.300 1.591 1.804 2.409

FA(0)|b 0.067 0.047 0.031 −

FA(0)|c -0.0002 -0.0002 -0.0001 −

FA(0)|d -0.044 -0.036 -0.026 −

FA(0)|e -0.003 0.013 0.017 −

FA(0) 1.319 1.614 1.825 1.19 ± 0.01 2.409

13



q

P k

k

qPP

k

q

P

P

k

q

P

q

k

FIG. 1: Diagrammatic representation of the possible contributions to π+ → e+νeγ decay. Double-

dashed lines, wavy lines and single-dashed lines represent the e νe pair, the outgoing photon and

the decaying pion, respectively. While for the vector form factor only the contribution from the

triangle diagram (a) is nonvanishing, in the case of the axial-vector form factor all five diagrams

contribute.
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