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Abstract

We explore the embedding of Spin groups of arbitrary dimension
and signature into simple superalgebras in the case of extended super-
symmetry. The R-symmetry, which generically is not compact, can
be chosen compact for all the cases that are congruent mod 8 to the
physical conformal algebra so(D − 2,2), D ≥ 3. An so(1, 1) grading
of the superalgebra is found in all cases. Central extensions of super
translation algebras are studied in this framework.
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1 Introduction

Supersymmetry algebras in higher dimensions [1, 2] have been the subject of
investigation in recent years in connection with their relation to string and
M theories [3]. The AdS-CFT correspondence (for a review, see Ref. [4]),
which describes a duality between world-volume brane theories and AdS
supergravities, has renewed the interest in superconformal field theories and
their underlying superalgebras [5, 6, 7, 8]. It has also been conjectured [3,
5, 6, 7, 9, 10] that brane superalgebras are closely related to the extension
of superconformal algebras to larger algebras including antisymmetric tensor
generators.

The most remarkable example is osp(1|32,R), with 32 real spinor charges.
By contraction [11] it gives the M-theory superalgebra (super Poincaré in an
11-dimensional space of signature (10, 1)), with the maximal central exten-
sion (two and five brane charges). It also can be seen as the super conformal
algebra in a space of dimension D = 10 and signature (9, 1) [5, 6]. The con-
formal group in D = 10 acts linearly on a space of dimension 12, (10, 2), and
the spinor charge is a real Weyl spinor in this space. The (1,0) chiral D = 10
super Poincaré algebra with a five-brane central charge is a subalgebra of
osp(1|32,R).

Moving to one dimension more, the M-theory super Poincaré algebra
(with two and five-brane charges) can be regarded as a subalgebra of the
superconformal algebra of a space time of dimension 11. This superalgebra
is osp(1|64,R), whose odd part (64 spinorial charges) forms a real spinor in
a space of dimension 13, (11, 2) [12, 13]. This example is relevant because it
has been shown that M-theory can be regarded as a phase of an osp(1|64,R)
theory [14]. The full symmetry is spontaneously broken, so it is realized non
linearly. Some attempts to derive M-theory from a gauge theory of the group
Sp(32,R) have been made in Ref. [10]

In this paper we generalize the classification of space-time superalgebras
given in Ref. [13], in terms of the dimension D and signature ρ of space time,
to extended supersymmetry algebras with an R-symmetry group acting on
the conformal spinors.

Other than brane superalgebras, the present results are in relation with
different versions of supersymmetric theories with D ≤ 11, in particular with
the theories introduced by Hull [15], M, M∗ and M’, which are formulated
in 11 dimensional space-times with signatures (s, t) = (10, 1), (9, 2), (6, 5)
respectively. Notice that the signature for all these theories is ρ = s−t = ±1
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mod 8. Our analysis implies that the superalgebras appearing in them can be
seen as a contraction of the very same osp(1|32,R) algebra or as a subalgebra
of osp(1|64,R). This suggests that they are all different phases of the same
theory [15, 16].

The present study evidences the deep relation between the R-symmetry
algebra and the space-time algebra (the Spin(s, t)-algebra which embeds
so(s, t), according to the notation of [13] ) that appear as simple factors
in the bosonic part of the superconformal algebra. For the signature of the
physical conformal group, (s, t) = (D − 2, 2) a compact R-symmetry group
is allowed. For the Euclidean superconformal algebra, that is, for signature
(s, t) = (D − 1, 1) only non compact R-symmetry groups are allowed. This
implies that a proper treatment of Euclidean supersymmetric theories re-
quire superalgebras with non compact R-symmetry, as observed long ago by
Zumino [17], and recently discussed in [18, 19, 20].

The paper is organized as follows. In Section 2 we extend the analysis of
ref. [13] to N supersymmetries. In Section 3. we show how, in any dimension,
the superconformal algebra has an so(1,1) grading. The super Poincaré alge-
bra emerges as a non semisimple subalgebra of the superconformal algebra.
In Section 4. we consider N-extended super Poincaré algebras with maximal
central extension.

2 Conformal superalgebras withN supersym-

metries

We recall here briefly the formalism used in Ref. [13]. Let S be a complex
vector space. A conjugation of S is an antilinear map σ : S → S,

σ(av) = a∗ψ(v), a ∈ C, v ∈ S,

such that σ2 = 1. The set

Sσ = {v ∈ S|σ(v) = v}

is a real vector space. If instead σ2 = −1 we say that σ is a pseudoconjugation
of S, and the condition σ(v) = v is inconsistent.

Suppose now that S is a G-module, for a complex Lie algebra G. Let
σ : S → S be an antilinear map satisfying σ2 = ±1 (that is, σ is a conjugation
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or a pseudoconjugation on S). Then the map

ψ(X) = σ ◦X ◦ σ−1

is a conjugation of G. If S is irreducible one can prove that Gψ is a real form
of G. The action of Gψ on S commutes with σ.

The real forms of classical Lie algebras arise in this way, except for the
unitary algebras su(p, q). The algebras sl(n,R), so(p, q), sp(2p,R) correspond
to conjugations on the space of the fundamental representation and the al-
gebras su∗(2p), so∗(2p) and usp(2p, 2q) correspond to pseudoconjugations.

Let V be a real vector space of dimension D = s+t with a non degenerate
symmetric bilinear form of signature ρ = s− t. We denote by Spin(s, t) the
corresponding spin group. Spinor representations are linear, orthogonal or
symplectic depending on the existence of a Spin(s, t)-invariant bilinear form,
which can be symmetric or antisymmetric. The existence and symmetry
of the bilinear form depend exclusively on the dimension D modulo 8 [21].
The complexified group Spin(s, t)C is then embedded into a classical Lie
group, Sl(n,C), SO(n,C) or Sp(n,C) where n is the dimension of the spinor
representation. Denoting by D = D0 mod(8) and ρ = ρ0 mod(8), we have
that for D0 = 2, 6 the spinors are linear, for D0 = 0, 1, 7 they are orthogonal
and for D0 = 3, 4, 5 they are symplectic.

The existence of a conjugation or a pseudoconjugation in the space S
of the spinor representation (commuting with the action of the orthogonal
algebra) depends on the signature ρ mod 8. We have then that o(s, t) is
embedded into a real form of the above algebra, which will be determined
in terms of ρ. This real algebra is called the Spin(s, t) algebra. In Table 1
the real form for each case is listed [13]. The odd and even cases are treated
separately.

We consider now superalgebras containing so(s, t) in the even part and
whose odd part consists on one or more copies of the spinor representation
of so(s, t). If the superalgebra is required to be simple, then the anticommu-
tators of the odd charges generate the whole even subalgebra. In particular,
the generators of the orthogonal group in the spinor representation must
have the appropriate symmetry to appear in the right hand side of the an-
ticommutator of two spinors. This analysis was carried out in Ref. [13] for
N = 1 supersymmetry. The smallest simple superalgebra containing so(s, t)
has even part equal to the Spin(s, t) algebra, listed in Table 1, times an
R-symmetry algebra which is usp(2) or so∗(2) (quaternionic case) or u(1)
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Orthogonal Real, ρ0 = 1, 7 so(2
(D−1)

2 ,R) if D = ρ

D0 = 1, 7 so(2
(D−1)

2
−1, 2

(D−1)
2

−1) if D 6= ρ

Quaternionic, ρ0 = 3, 5 so∗(2
(D−1)

2 )

Symplectic Real, ρ0 = 1, 7 sp(2
(D−1)

2 ,R)

D0 = 3, 5 Quaternionic, ρ0 = 3, 5 usp(2
(D−1)

2 ,R) if D = ρ

usp(2
(D−1)

2
−1, 2

(D−1)
2

−1) if D 6= ρ

Orthogonal Real, ρ0 = 0 so(2
D

2
−1,R) if D = ρ

D0 = 0 so(2
D

2
−2, 2

D

2
−2) if D 6= ρ

Quaternionic, ρ0 = 4 so∗(2
D

2
−1)

Complex, ρ0 = 2, 6 so(2
D

2
−1,C)R

Symplectic Real, ρ0 = 0 sp(2
D

2
−1,R)

D0 = 4 Quaternionic, ρ0 = 4 usp(2
D

2
−1,R) if D = ρ

usp(2
D

2
−2, 2

D

2
−2) if D 6= ρ

Complex, ρ0 = 2, 6 sp(2
D

2
−1,C)R

Linear Real, ρ0 = 0 sl(2
D

2
−1,R)

D0 = 2, 6 Quaternionic, ρ0 = 4 su∗(2
D

2
−1)

Complex, ρ0 = 2, 6 su(2
D

2
−1) if D = ρ

su(2
D

2
−2, 2

D

2
−2) if D 6= ρ

Table 1: Spin(s, t) algebras.

(complex case)1. This superalgebra is called Spin(s, t) superalgebra. The
same structure appears in the case of extended supersymmetry, although the
generalization is not completely straightforward since new cases appear due
to the presence of the internal index space.

The odd part of the superalgebra is, as a vector space, a tensor product
S ⊗W of the spinor representation space S with the R-symmetry space W .
If the spin algebra is a symplectic algebra, the R-symmetry is an orthogonal
algebra and they build an orthosymplectic algebra. If the spin algebra is
orthogonal, then the R-symmetry is symplectic and they give an orthosym-
plectic algebra with the roles of the orthogonal and symplectic groups in-

1Except for D = 7, ρ = 3, where a smaller simple superalgebra, the exceptional super-
algebra f(4), contains the orthogonal group in its even part.
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terchanged. If the spin algebra is a linear (unitary) algebra, then the R-
symmetry is also a linear (unitary) algebra and they build a superalgebra
form the linear (unitary) series.

In order to obtain a real superalgebra, a conjugation commuting with the
action of the even part of the superalgebra must exist in the total space S⊗W .
If the spinor is real then there is a conjugation σS of S commuting with the
action of the Spin(s, t) algebra. The R-symmetry factor which acts on W also
commutes with a conjugation, σW . If the spinor is quaternionic then there
is a pseudoconjugation σS on S, and there is also a pseudoconjugation on W
commuting with the R-symmetry. Then σS⊗σW is a conjugation in the total
space. If the spinor is complex, the Spin(V ) algebra is either su(p, q) or a
complex group (symplectic or orthogonal). In the first case the R-symmetry
is also su(m,n) and in the second case the R-symmetry is a complex group
(orthogonal or symplectic respectively). The real representation is obtained
by taking the complex vector space as a real one of twice the dimension.

As an example, we compute the case D0 = 1, 7, ρ0 = 1, 7. The spinors
are orthogonal and real. The anticommutator of two odd generators is of the
form

{Qi
α, Q

j
β} =

∑

k

Aijγ
[µ1···µk ]
αβ Z[µ1···µk ]. (1)

The generators of the orthogonal group are Z[µ1µ2]. For N = 1 the factor Aij

is not present. Then, in order to have Z[µ1µ2] in the right hand side of (1),

the morphism γ
[µ1µ2]
αβ must be symmetric. Since it is antisymmetric, there

is no superconformal algebra in this case. For N > 1, one can choose an
antisymmetric matrix Aij = ǫij and the orthogonal generators are allowed in
the right hand side of (1). If follows that the R-symmetry group is Sp(2N,R).

In Table 2 we list the R-symmetry groups and the Spin(s, t) superalgebras.
The compact cases D = ρ are not listed but they are immediate. We mark
with the symbol “◦” the cases that do not arise in the non extended case.

The cases marked with a symbol “⋆” allow the possibility of a compact R-
symmetry group. They correspond to so(s, 2), that is the physical conformal
groups.
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D0 ρ0 R-symmetry Spin(s, t) superalgebra

◦ 1,7 1,7 sp(2N,R) osp(2
D−3

2 , 2
D−3

2 |2N,R)

⋆ 1,7 3,5 usp(2N − 2q, 2q) osp(2
D−1

2
∗|2N − 2q, 2q)

⋆ 3,5 1,7 so(N − q, q) osp(N − q, q|2
D−1

2 )

3,5 3,5 so∗(2N) osp(2N∗|2
D−3

2 , 2
D−3

2 )

◦ 0 0 sp(2N,R) osp(2
D−4

2 , 2
D−4

2 |2N)

◦ 0 2,6 sp(2N,C)R osp(2
D−2

2 |2N,C)R

⋆ 0 4 usp(2N − 2q, 2q) osp(2
D−2

2
∗|2N − 2q, 2q)

2,6 0 sl(N,R) sl(2
D−2

2 |N,R)

⋆ 2,6 2,6 su(N − q, q) su(2
D−4

2 , 2
D−4

2 |N − q, q)

◦ 2,6 4 su∗(2N,R) su(2
D−2

2 |2N)∗

⋆ 4 0 so(N − q, q) osp(N − q, q|2
D−2

2 )

4 2,6 so(N,C)R osp(N |2
D−2

2 ,C)R

4 4 so∗(2N) osp(2N∗|2
D−4

2 , 2
D−4

2 )

Table 2: Spin(s, t) superalgebras.

3 so(1, 1) grading of the Spin(s, t) superalgebra

Let Gk be a compact semisimple Lie algebra, its complexification being Gc.
Let θ : Gk 7→ Gk be an involutive automorphism, θ2 = 1. Gk splits into two
eigenspaces,

Gk = K + P.

K is the eigenspace with eigenvalue +1 of θ, and P the eigenspace with
eigenvalue −1. The vector space

G = L0 + iP (2)

is a non compact real form of Gc. (2) is called a Cartan decomposition of
G and the procedure is known as the Weyl unitary trick. All the Cartan
decompositions are listed in Ref.[22]. L0 is the maximal compactly embedded
subalgebra of G, and P carries an irreducible representation of L0.

If G is simple, then the algebra K is either semisimple or is a semisimple
algebra plus a u(1) factor. For example, let Gk = so(p + q) and θp,q(X) =
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Ip,qXIp,q, where

Ip,q =

(

Ip 0
0 −Iq

)

.

Then K = so(p) ⊕ so(q). P is the bifundamental representation of so(p) ⊕
so(q), (p,q) .

One can apply the Weyl unitary trick to G with respect to a Cartan
involution θ′ that commutes with θ. G splits into four eigenspaces of the
simultaneous eigenvalues of θ and θ′,

G = G++ + G+− + iG−+ + iG−−.

The first sign is the eigenvalue of θ and the second is the eigenvalue of θ′. So

K = G++ + G+−, P = G−+ + G−−.

The Lie algebra
G′ = G++ + iG+− + iG−+ + G−−

is another non compact form of Gc (corresponding to the Cartan involution
θ′ ◦ θ). The maximal compact subalgebra is G++ +G−−. We take the decom-
position

L0 = G++ + iG+−, P ′ = iG−+ + G−−.

L0 is a non compact real form of the complexification of K.
In the example of so(d), we can take θ = θd−2,2 and θ′ = θs,t, s + t = d.

Then
G′ = so(s, t), L0 = so(s − 1, t − 1) ⊕ so(1, 1)

and the bifundamental representation (d− 2, 2) splits into two irreducible
representations, whith charges ±1 with respect to so(1, 1), (d − 2)+1⊕(d − 2)−1.
This is in fact the splitting of the conformal algebra with respect to the
Lorentz subalgebra times the dilatation. The vector space P ′ contains the
translations Pµ and the conformal boosts Kµ.

The Lie algebra G′ = so(s, t) has a Lie algebra grading,

G′ = L−1 + L0 + L+1,

being the grade the charge with respect to so(1, 1). L±1 are abelian subalge-
bras and L0sL±1 is the Poincaré algebra.

The same procedure can be applied to all the Spin(s, t) algebras in Table
1, and a grading is always found with respect to a so(1, 1) subalgebra, which
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can always be identified with the dilatation of the conformal group embedded
into the Spin(s, t) algebra. L0sL±1 is a semidirect sum of algebras that
generalizes the super Poincaré algebra. L±1 are abelian algebras containing
the translations and central charges. These decompositions are listed in [23]
for all the simple Lie algebras. In Table 3 we give L0 for all the Spin(s, t)
algebras.

Spin(s, t) algebra L0 Fundamental Representation

so(n, n) sl(n,R) ⊕ so(1, 1) 2n = (n)1/2 ⊕ (n′)−1/2

so∗(4n) su∗(2n) ⊕ so(1, 1) 4n = (2n)1/2 ⊕ (2n′)−1/2

so(2n,C) gl(n,C) 2n = (n)1/2 ⊕ (n′)−1/2

sp(2n,R) sl(n,R) ⊕ so(1, 1) 2n = (n)1/2 ⊕ (n′)−1/2

usp(2n, 2n) su∗(2n) ⊕ so(1, 1) 4n = (2n)1/2 ⊕ (2n′)−1/2

sp(2n,C) gl(2n,C) 2n = (n)1/2 ⊕ (n′)−1/2

sl(2n,R) sl(n,R) ⊕ sl(n,R)⊕ 2n = (n, 1)1/2 ⊕ (1,n′)−1/2

so(1,1) 2n′ = (n′, 1)−1/2 ⊕ (1,n)1/2

su∗(4n) su∗(2n) ⊕ su∗(2n)⊕ 4n = (2n, 1)1/2 ⊕ (1, 2n′)−1/2

so(1,1) 4n′ = (2n′, 1)−1/2 ⊕ (1, 2n)1/2

su(n, n) sl(n,C)⊕ 2n = (n)1/2 ⊕ (n̄′)−1/2

so(1,1) 2n̄ = (n̄)1/2 ⊕ (n′)−1/2

Table 3: so(1, 1)-grading.

When the Spin(s, t) algebra is an orthogonal algebra, L±1 are in the two-
fold antisymmetric representation of L0. When the Spin(s, t) algebra is a
symplectic algebra, then L±1 are in the two-fold symmetric representation
of L0. When the Spin(s, t) algebra is a linear algebra, then L±1 are in the
bifundamental representation of L0.

The spinor representation of so(s, t), S(s,t) decomposes as

S(s,t) −−−−−−−−−−−→
so(s−1,t−1)⊕so(1,1)

S
1/2
(s−1,t−1) ⊕ S

−1/2
(s−1,t−1). (3)

If D is even, then a chiral representation decomposes into two representations
with opposite chirality.

so(s−1, t−1) is embedded into L0. When promoting the spinor represen-
tation of so(s, t) to the fundamental representation of the Spin(s, t) algebra,
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the splitting (3) corresponds to the splitting under L0, which is given also in
Table 3. n′ denotes the dual representation of n.

In fact, one can check that L0 contains in each case, the full Spin(s −
1, t− 1)-algebra. The embeddings are given in Table 4.

Real case Quaternionic case Complex case

sl(2n,R) ⊃ so(n, n) su∗(2n) ⊃ so∗(2n) sl(2n,C) ⊃ so(2n,C)
sl(2n,R) ⊃ sp(2n,R) su∗(2n) ⊃ usp(n, n) sl(2n,C) ⊃ sp(2n,C)

Table 4: Embedding of Spin(s, t) algebras.

The superalgebras of Table 2 have also a so(1, 1) grading

S = L−1 + S−1/2 + L0 + S+1/2 + L+1.

In the case of extended supersymmetry, L0 contains also the R-symmetry
factor. The spaces L±1 have a simple meaning in terms of the γ-matrices
of so(s − 1, t − 1). From the grading properties and the simplicity of the
superalgebra, it is clear that

{S±1/2,S±1/2} = L±1.

In fact, L± are irreducible representations of L0. The anticommutator

{Q±1/2, Q±1/2}

can in general be written as in (1), and the term γµ (µ = 1, . . . , s + t − 2)
appears since it corresponds to the momentum (with grade 1). It follows
that in the r.h.s of (1) will appear only terms corresponding to matrices
γ[µ1...µm] with the same symmetry properties as γµ. In fact, from dimensional
considerations, all of these terms appear. For s + t = 7, 8, 9 mod 8, the
γµ are antisymmetric and dim(L±) = n(n−1)

2
. For s + t = 3, 4, 5 mod 8,

they are symmetric and dim(L±) = n(n+1)
2

. For s + t = 2, 6 mod 8, the
relevant anticommutator is a left spinor with a right spinor. In this case the
morphisms (coefficients in the r.h.s. of (1)) have no definite symmetry and
dim(L±) = n2.
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4 The orthosymplectic algebra and the max-

imal central extension of Poincaré super-

symmetry

Let 2n be the real dimension of a spinor representation and N the number
of such spinors present in the superalgebra. The spinor charges are denoted

Qi
α, i = 1, . . . N, α = 1, . . . 2n.

Since the anticommutator {Qi
α, Q

j
β} is symmetric, the biggest simple superal-

gebra containing only these odd generators (maximal Spin(s, t) algebra in the
language of Ref. [13]) is osp(1|2nN,R), with bosonic part L̂ = sp(2nN,R).
It is clear that L contains as a subalgebra the Spin(s, t) algebra plus the
R-symmetry,

L ⊕ R−symmetry ⊂ L̂.

We want to show that the so(1,1) grading of L extends to L̂ and to osp(1|2nN).
We have that

L̂ = L̂+1 + L̂0 + L̂−1,

where L̂0 = sl(nN,R)⊕ so(1, 1) and L̂±1 are in the two-fold symmetric repre-
sentation of sl(nN,R) with charges ±1 with respect to so(1, 1). To show that
this grading is compatible with the one of the Spin(s, t) algebra, we have to
show that

L0 ⊕ R−symmetry ⊂ L̂0.

We consider the complex linear algebra

sl(nN,C) ≃ gl(n,C) ⊗ gl(N,C)/C∗.

(The bracket in the tensor product of algebras is defined as

[a⊗ a′, b⊗ b′] = [a, b] ⊗ [a′, b′]).

One has that

sl(n,C) ≃ sl(n,C) ⊗ Id ⊂ sl(nN,C)

sl(N,C) ≃ Id ⊗ sl(N,C) ⊂ sl(nN,C),
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and that
sl(n,C) ⊕ sl(N,C) ⊂ sl(nN,C).

Notice that the fundamental representation of sl(nN,C) becomes the bifunda-
mental (Cn⊗CN ) of sl(n,C)⊕sl(N,C). The adjoint of sl(nN,C) decomposes
under sl(n,C) ⊕ sl(N,C) in the adjoint of sl(n,C) ⊕ sl(N,C) plus the tensor
products of the adjoints of sl(n,C) and sl(N,C).

Let Gn ⊂ sl(n,C) and GN ⊂ sl(N,C). Then we have

Gn ⊕ GN ⊂ sl(nN,C).

In particular, Gn and GN can be orthogonal, symplectic, or the linear algebras
themselves. We have just to check that the appropriate real forms are con-
tained in sl(nN,R). We recall that the real form sl(nN,R) is obtained from a
conjugation in the fundamental representation space. Moreover, sl(nN,R) is
the set of all traceless matrices in sl(nN,C), commuting with a conjugation in
CnN (which can be brought by an isomorphism to the standard conjugation
on CnN).

The direct sum of real forms Grn⊕GrN is contained in sl(nN,R) if the bifun-
damental representation of Grn⊕GrN commutes with a conjugation. This hap-
pens when both, Grn and GrN , commute with a conjugation in their respective
spaces, Cn and CN , and when they both commute with a pseudoconjugation.

If the algebras are complex, then one can see (Gn′)R and (GN ′)R inside a
real group

(Gn′)R ⊂ sl(n′,C)R ⊂ sl(2n′,R)) ⊂ sp(4n′,R),

(GN ′)R ⊂ sl(N′,C)R ⊂ sl(2N′,R)) ⊂ sp(4N′,R) (4)

with n = 2n′, N = 2N ′.
The unitary algebras are embedded into complex algebras that one can

see as real, and then embedded in a linear complex group as above (4).
We give the embeddings for all dimensions and signatures in Table 5.

The real dimension of the spinor representation. is given in terms of D and
depends on the reality properties of the spinor. For clarity, it is given in
Table 6.

The grading extends to the orthosymplectic superalgebra Ŝ = osp(1|2m,R),
where m is the number appearing in the third column of Table 5,

Ŝ = L̂−1 + Ŝ−1/2 + L̂0 + Ŝ+1/2 + L̂+1.
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D0 ρ0 L̂0 L0 ⊕ R−symmetry

1,7 1,7 sl(2N2
D−3

2 ,R) sl(2
D−3

2 ,R) ⊕ sp(2N,R)

0 0 sl(2N2
D−4

2 ,R) sl(2
D−4

2 ,R) ⊕ sp(2N,R)

1,7 3,5 sl(2N2
D−3

2 ,R) su∗(2
D−3

2 ,R) ⊕ usp(2N − 2q, 2q)

3,5 1,7 sl(N2
D−3

2 ,R) sl(2
D−3

2 ,R) ⊕ so(N − q, q)

4 0 sl(N2
D−4

2 ,R) sl(2
D−4

2 ,R) ⊕ so(N − q, q)

3,5 3,5 sl(2N2
D−3

2 ,R) su∗(2
D−3

2 ) ⊕ so∗(2N)

4 4 sl(2N2
D−4

2 ,R) su∗(2
D−4

2 ) ⊕ so∗(2N)

0 2,6 sl(2N2
D−2

2 ,R) ⊃ sl(2N2
D−4

2 ,C) sl(2
D−4

2 ,C) ⊕ sp(2N,C)

2,6 0 sl(N2
D−2

2 ,R) sl(2
D−4

2 ,R) ⊕ sl(2
D−4

2 ,R) ⊕ sl(N,R)

2,6 2,6 sl(N2
D−2

2 ,R) ⊃ sl(N2
D−4

2 ,C) sl(N2
D−4

2 ,C) ⊕ su(N − q, q)

2,6 4 sl(2N2
D−2

2 ,R) su∗(2
D−4

2 ) ⊕ su∗(2
D−4

2 ) ⊕ su∗(2N)

4 2,6 sl(N2
D−2

2 ,R) ⊃ sl(N2
D−4

2 ,C) sl(2
D−4

2 ,C) ⊕ so(N,C)

0 4 sl(2N2
D−4

2 ,R) su∗(2
D−4

2 ,C) ⊕ usp(2N − 2q, 2q)

Table 5: Graded embeddings

To see this, it is enough to give the decomposition of the fundamental
representation of sp(2m,R) with respect to sl(m,R) ⊕ so(1, 1),

(2m) −−−−−−−−→
sl(m,R)⊕so(1,1)

(m)1/2 ⊕ (m′)−1/2
.

Finally, Ŝ+1/2 + L̂+1 is a superalgebra which is the maximal central ex-
tension of the supertranslation algebra.

ρ0(odd) real dim(S) reality ρ0(even) real dim(S±) reality

1 2(D−1)/2 R 0 2D/2−1 R

3 2(D+1)/2 H 2 2D/2 C

5 2(D+1)/2 H 4 2D/2 H

7 2(D−1)/2 R 6 2D/2 C

Table 6: Real dimensions of spinor representations
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