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Piazza di Porta S. Donato, 5. 40126 Bologna. Italy.

3Departament de F́ısica Teòrica,
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Abstract

We give a quantum deformation of the chiral super Minkowski space
in four dimensions as the big cell inside a quantum super Grassman-
nian. The quantization is performed in such way that the actions of the
Poincaré and conformal quantum supergroups on the quantumMinkowski
and quantum conformal superspaces are presented.
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2 CHIRAL SUPERSPACES

1 Introduction

The Minkowski space in four dimensions is just R4 with the pseudoeuclidean
metric diag(1,−1,−1,−1). The Poincaré group P(1, 3) = SO(1, 3) ∝ R4

is the group that preserves such metric, while the conformal group is the
group that preserves the metric up to a global factor. It is in fact the group
SO(2, 4) and it acts non linearly on a compactification of the Minkowski
space, obtained by adjoining to it not just a point at infinity, but the closure
of a cone [1]. This compactification turns out to be the Grassmannian
manifold G(2, 4), that is, the space of 2-planes inside a four dimensional
vector space and the Poincaré group together with the dilations is precisely
the subgroup of SO(2, 4) consisting of the elements that leave the Minkowski
space invariant. The rest of the conformal transformations may send a point
in the Minkowski space to a point at infinity. The Minkowski space sits inside
the Grassmannian G(2, 4) as its big cell, which is a dense open set inside it.
We will refer to the Grassmannian G(2, 4) as the conformal space.

The relation between the Poincaré and conformal group on one side and
the Minkowski and conformal space on the other side, are well known, see
for example Ref. [2]. A brief but complete review can also be found in Ref.
[3], which we have followed very closely in spirit and notation. The analysis
in there starts by considering the spin group of SO(2, 4), which is SU(2, 2),
that contains the spin group of SO(1, 3), which is SL(2,C)R. It is more
natural to work in the complexified spaces (SL(4,C) and SL(2,C)×SL(2,C)
respectively) and to look at the end for the particular real form associated
to Minkowskian signature.

This approach is very useful when extending the results to the Minkowski
and conformal superspaces (see [1]), since the action on spinors is explicit
in the formalism. The fascinating subject of supergeometry emerges here as
a very natural framework. Supergeometry extends standard algebraic and
differential geometry in a less dramatic way than non commutative geometry
in general [4]. The category of algebras considered in supergeometry are non
commutative, but their non commutativity affects only to some generators
that anticommute. These are the odd generators.

The functor of points is another tool, that one borrows from standard
algebraic geometry and extends to the super setting. For a standard alge-
braic variety, the geometric points are the morphisms from the coordinate
ring of the supervariety to the ground field. If one considers the morphisms
from the coordinate ring to another commutative ring, say R, one has the
R-points of the algebraic variety. For a supervariety one takes R to be a
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commutative superalgebra, and the R-points still make sense. The geomet-
ric points turn out to give the points of a standard variety called the reduced
variety, and the odd variables disappear. Only by considering morphisms to
superalgebras instead than to commutative algebras or just the ground field
one can recover the role of the odd variables, and with it all the information
to reconstruct the supervariety.

We then see that via the functor of points the true nature of the odd
variables appears in a beautiful, perfectly consistent framework [5, 3, 6],
which is very close to the way in which physicists have been thinking and
talking about superspaces and supergroups. The terminology and perhaps
the level of rigor becomes more sophisticated, but a closer look reveals many
old concepts that have been used implicitly by physicists are at the core of
the mathematical formulation.

The next step is to produce a non commutative version of the Minkowski
and conformal superspaces. In order to do this, we need to substitute the
commutative superalgebras by noncommutative ones, but in that step the
geometric intuition that we had retained in supergeometry with the functor
of points is lost. We have then to rely on the algebraic counterpart of the
geometric objects and try to generalize them to the non commutative setting.
Non commutative geometry [4] is certainly the most complete framework to
do so, and ultimately it will be connected to the quantization of space and
superspace.

The approach that we follow here is the following: we substitute the
supergroups by quantum supergroups and the corresponding homogeneous
spaces by quantum homogeneous spaces. This was the approach followed
in Refs. [7, 8, 9] for the non super case. We are then able to preserve
also the realization of the quantized super Minkowski space as the ‘big cell’
(appropriately defined) of the quantum conformal space.

The problem of quantizing the Minkowski superspace has appeared in
many places in the physics literature. We mention some references, although
our list is not exhaustive. We find a first step as early as in Ref. [10] and
[11], and deformations (mostly with constant Poisson bracket) inspired in
string theory [12, 13, 14, 15]. In other papers one finds the quantization of a
super Minkowski ‘phase space’, which, although it is not exactly the problem
that we examine here, it is also of interest [16, 17, 18]. Quantizations for
other superspaces such as supergroups [19, 20, 21], their coadjoint orbits
[22] or other homogeneous superspaces CPm|n [23] are constructed.
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The principle that guides us in choosing a particular deformation is that
we want them to preserve the action of the corresponding symmetry groups
and we also ask that the quantum Minkowski superspace appears as the big
cell (appropriately defined in algebraic terms) inside the quantum conformal
superspace. Obviously, all of these requests have to be made precise in the
framework of deformation quantization.

The content of the present paper is as follows.

We start in Section 2 by giving an overview on the physical question that
originates our discussion. We are after a rigorous mathematical description
of the chiral superfields and their quantization, making sure to preserve
the natural supergroup actions of the superconformal and super Poincaré
groups.

We will devote Section 3 to give an intuitive explanation of how the
functor of points works in terms of superalgebras.

In Section 4 we review briefly the classical theory of the Grassmannian
manifold as embedded in the projective space. This is the standard Plücker
embedding. We then generalize these structures to the super setting.

In Section 5 we use the technology developed in the series of papers
[7, 8, 9], to quantize the Grassmannian and flag supervarieties by replacing
the symmetry supergroup by a quantum supergroup. We then discuss quan-
tum supergroups and their homogeneous spaces [19, 20, 21, 1], by looking
at the corresponding non commutative superalgebras. One result of this
approach is that although the algebras become non commutative, the group
law, represented by the comultiplication in the quantum supergroup, is not
deformed. This can be interpreted by saying that the physical symmetry
principle remains intact in the process of quantization.

In Section 6 we give a definition of the quantum big cell inside the quantum
Grassmannian, presenting a coaction of the quantum super Poincaré group.

In Section 7 we state our conclusions and give the guidelines for further
work.

We have left for Appendix A a brief and formal account of the most
fundamental concepts of supergeometry.

Notation.
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We will say that a superalgebra is commutative if for two elements a and
b of definite parities pa and pb we have

a · b = (−1)papbb · a.

In physics this is usually called an (anti)commutative or supercommutative
algebra, but we prefer to keep the word commutative as in [5].

In this paper the word ‘classical’ is used for commutative superalgebras,
as opposed to the ‘quantum’ superalgebras, which are noncommutative.

Also, we stress that all our definitions are done in terms of algebras and
superalgebras, since it is the only aspect that survives in the noncommuta-
tive case. �

2 Real and chiral superfields in Minkowski superspace

We want to devote this section to introduce real and chiral superfields as
they are used in physics as well as to motivate the importance of having them
quantized. For this purpose we will consider superfields in super Minkowski
space: one can then introduce the notion of conformal or superconformal
invariance in quuantum field theory.

2.1 Definitions

We consider the complexified Minkowski space C4. The N = 1 scalar super-
fields on the complexified Minkowski space are elements of the commutative
superalgebra

(1) O(C4|4) ≡ C∞(C4)⊗ Λ[θ1, θ2, θ̄1, θ̄2],

where Λ[θ1, θ2, θ̄1, θ̄2] is the Grassmann (or exterior) algebra generated by
the odd variables θ1, θ2, θ̄1, θ̄2. Giving this superalgebra is equivalent to
giving the superspace C4|4 as defined in Appendix A.1.

We will denote the coordinates (or generators) of the superspace as

xµ, µ = 0, 1, 2, 3 (even coordinates),

θα, θ̄α̇, α, α̇ = 1, 2 (odd coordinates),

and a superfield, in terms of its field components, as

Ψ(x, θ, θ̄) =ψ0(x) + ψα(x)θ
α + ψ′

α̇(x)θ̄
α̇ + ψαβ(x)θ

αθβ + ψ
αβ̇

(x)θαθ̄β̇+

ψ′
α̇β̇

(x)θ̄α̇θ̄β̇ + ψαβγ̇(x)θ
αθβ θ̄γ̇ + ψ′

αβ̇γ̇
(x)θαθ̄β̇ θ̄γ̇ + ψαβγ̇δ̇(x)θ

αθβ θ̄γ̇ θ̄δ̇.
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A conjugation on a superalgebra A (not necessarily commutative) is an
antilinear involutive map satisfying

(2) (f · g)∗ = (−1)pfpgg∗f∗, f, g ∈ A

where pf is the parity of the element f . Here we take the convention of Ref.
[5] (see page 89 in there for a detailed explanation) because it has categorical
meaning. Moreover, it is much more appropriate for superalgebras that are
not necessarily commutative. It differs from the one used in physics, because
if f and g are odd elements, then

(f · g)∗ = −g∗f∗,

and if the superalgebra is commutative

(f · g)∗ = f∗g∗.

Instead, physicists use an operation such that

(f · g)ρ = gρfρ,

but this gives rise to minus signs and ‘ i ’ factors that we would like to avoid.
As explained in Ref. [5], one convention can be reverted into the other by
a change

f∗ =





fρ if f is even,

ifρ if f is odd,
so

(f · g)ρ = gρfρ.

On the space of complex functions C∞(C4), there exists the standard
complex conjugation, denoted as

f∗ = f̄ , f ∈ C∞(C4).

Hence, to give a conjugation it is enough to give it on the odd generators.
This is done formally in the following way

(3) (θα)∗ = θ̄α̇, (θ̄α̇)∗ = θα.

This is then extended by (2) and antilinearity to the whole superalgebra

O(C4|4). Real superfields then belong to O(R4|4).

Using the convention (2) a superfield Ψ(x, θ, θ̄) is real if and only if its
field components satisfy

ψ∗
0 = ψ0, ψ∗

α = ψ′
α̇, ψ∗

αβ = ψ′
α̇β̇

ψ∗
αβ̇

= −ψβα̇,

ψ∗
αβ̇γ̇

= ψ′
γα̇β̇

, ψ∗
αβγ̇δ̇

= ψ
γδα̇β̇

.

Action of the Lorentz group SO(1,3). There is an action of the
double covering of the complexified Lorentz group, Spin(1, 3)c ≈ SL(2,C)×
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SL(2,C) over C4|4. The even coordinates xµ transform in the fundamental
representation of SO(1, 3) (V ),

xµ 7→ Λµ
νx

ν ,

while θ and θ̄ are Weyl spinors (or half spinors). More precisely, the coor-
dinates θ transform in one of the spinor representations, say S+ ≈ (1/2, 0),
and θ̄ transform in the opposite chirality representation, S− ≈ (0, 1/2),

θα 7→ Sα
βθ

β, θ̄α̇ 7→ S̃α̇
β̇θ

β̇.

In fact, for the real form Spin(1, 3), the representations S+ and S− are
complex, and they are related by complex conjugation, so this is consistent
with the rule (3).

The scalar superfields are invariant under the action of the Lorentz group,

Ψ(x, θ, θ̄) = (RΨ)(Λ−1x, S−1θ, S̃−1θ̄),

where RΨ is the superfield obtained by transforming the the field compo-
nents

Rψ0(x) = ψ0(x), Rψα(x) = Sα
βψβ(x), . . .

The hermitian matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
,

define a Spin(1, 3)-morphism

S+ ⊗ S− −−−−→ V

sα ⊗ tα̇ −−−−→ sασµαα̇t
α̇.

�

Derivations. A left derivation of degree m = 0, 1 of a super algebra A
is a linear map DL : A 7→ A such that

DL(Ψ · Φ) = DL(Ψ) · Φ+ (−1)mpΨΨ ·DL(Φ).

Graded left derivations span a Z2-graded vector space (or supervector space).

In general, linear maps over a supervector space are also a Z2-graded
vector space. A map has degree 0 if it preserves the parity and degree
1 if it changes the parity. For the case of derivations of a commutative
superalgebra, an even derivation has degree 0 as a linear map and an odd
derivation has degree 1 as a linear map.

In the same way one defines right derivations,

DR(Ψ · Φ) = (−1)mpΦDR(Ψ) · Φ+Ψ ·DR(Φ).
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Notice that derivations of degree zero are both, right and left derivations.
Moreover, given a left derivation DL of degree m one can define a right
derivation DR also of degree m in the following way

(4) DRΨ = (−1)m(pΨ+1)DLΨ.

Let us now focus on the commutative superalgebra O(C4|4). We define
the standard left derivations

∂LαΨ = ψα + 2ψαβθ
β + ψ

αβ̇
θ̄β̇ + 2ψαβγ̇θ

β θ̄γ̇ + ψ′
αβ̇γ̇

θ̄β̇ θ̄γ̇ + 2ψ
αβγ̇δ̇

θβ θ̄γ̇ θ̄δ̇,

∂Lα̇Ψ = ψ′
α̇ − ψβα̇θ

β + 2ψ′
α̇β̇
θ̄β̇ + ψγβα̇θ

γθβ−̄2ψ′
βα̇γ̇θ

β θ̄γ̇ + 2ψ
γβα̇δ̇

θγθβ̄ θ̄δ̇.

With our convention (2), one has that

(∂LαΨ)∗ = ∂Lα̇Ψ
∗.

Also, using (4) one can define ∂Rα , ∂
R
α̇ . They have the same property than

the left derivatives under complex conjugation.

We consider now the odd left derivations

QL
α = ∂Lα − iσµαα̇θ̄

α̇∂µ, Q̄L
α̇ = −∂Lα̇ + iθασµαα̇∂µ.

They satisfy the anticommutation rules

{QL
α , Q̄

L
α̇} = 2iσµαα̇

∂

∂xµ
, {QL

α , Q
L
β} = {Q̄L

α̇, Q̄
L
β̇
} = 0.

QL and Q̄L are the supersymmetry charges or supercharges. Together with

Pµ = −i
∂

∂xµ
,

they form a Lie superalgebra, the supertranslation algebra, which then acts
on the superspace C4|4.

Let us define another set of (left) derivations,

DL
α =

∂L

∂θα
+ iσµαα̇θ̄

α̇ ∂

∂xµ
, D̄L

α̇ = −
∂L

∂θ̄α̇
− iθασµαα̇

∂

∂xµ
,

with anticommutation rules

{DL
α , D̄

L
α̇} = −2iσµαα̇

∂

∂xµ
, {DL

α ,D
L
β } = {D̄L

α̇ , D̄
L
β̇
} = 0.

They also form a Lie superalgebra, isomorphic to the supertranslation alge-
bra. This can be seen by taking

QL → −DL, Q̄L −→ D̄L.
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It is easy to see that the supercharges anticommute with the derivations
DL and D̄L. For this reason, DL and D̄L are called supersymmetric covari-
ant derivatives or simply covariant derivatives, although they are not related
to any connection form.

�

We go now to the central definition.

Definition 2.1. A chiral superfield is a superfield Φ such that

(5) D̄L
α̇Φ = 0.

�

Because of the anticommuting properties of D′s and Q′s, we have that

D̄L
α̇Φ = 0 ⇒ D̄L

α̇(Q
L
βΦ) = 0, D̄L

α̇(Q̄
L
β̇
)Φ = 0.

This means that the supertranslation algebra acts on the space of chiral
superfields.

On the other hand, due to the derivation property,

D̄L
α̇(ΦΨ) = D̄L

α̇(Φ)Ψ + (−1)pΦΦD̄L
α̇(Ψ),

we have that the product of two chiral superfields is again a chiral superfield.

2.2 Shifted coordinates

One can solve the constraint (5) in the following way. Notice that the
quantities

(6) yµ = xµ + iθασµαα̇θ
α̇, θα

satisfy
D̄L

α̇y
µ = 0, D̄L

α̇θ
α = 0,

and using the derivation property, any superfield of the form

Φ(yµ, θ), satisfies D̄L
α̇Φ = 0

and so it is a chiral superfield. This is the general solution of (5).

We can make the change of coordinates

xµ, θα, θ̄α̇ −→ yµ = xµ + iθασµαα̇θ̄
α̇, θα, θ̄α̇.

A superfield may be expressed in both coordinate systems

Φ(x, θ, θ̄) = Φ′(y, θ, θ̄).
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The covariant derivatives and supersymmetry charges take the form

DL
αΦ

′ =
∂LΦ′

∂θα
+ 2iσµαα̇θ̄

α̇∂
LΦ′

∂yµ
D̄L

α̇Φ
′ = −

∂LΦ′

∂θ̄α̇
,

Q̄L
α̇Φ

′ = −
∂LΦ′

∂θ̄α̇
+ 2iθασµαα̇

∂LΦ′

∂yµ
QL

αΦ
′ =

∂LΦ′

∂θα
.

In the new coordinate system the chirality condition is simply

∂LΦ′

∂θ̄α̇
= 0,

so it is similar to a holomorphicity condition on the θ’s.

This shows that chiral scalar superfields are elements of the commutative
superalgebra O(C4|2) = C∞(C4) ⊗ Λ[θ1, θ2]. We shall realize this super-
space as the big cell inside the chiral conformal superspace, which is the
Grassmannian of 2|0-subspaces of C4|1.

The complete (non chiral) conformal superspace is in fact the flag super-

variety of 2|0-subspaces inside 2|1-subspaces of C4|1. On this supervariety
one can put a reality condition, and the real Minkowski superspace is the
big cell inside the superflag. It is instructive to compare Eq. (6) with the
incidence relation for the big cell of the flag manifold in Eq. (12) of Ref. [1].
We can then be convinced that the Grassmannian that we use to describe
chiral superfields is inside the (complex) superflag.

2.3 Supersymmetric theories

Wess-Zumino models are supersymmetric models for one or several chiral
superfields. These were the first type of supersymmetric theories that were
written down [24]. Chiral superfields also appear in super Yang-Mills the-
ories [25, 26], where the parameter of the gauge transformation is itself a
chiral superfield.

The study of the chiral super Minkowski space is then justified from the
physical point of view. Of course, most of the theories make use of the
real super Minkowski space, and one needs also to consider real fields to
formulate supersymmetric theories.

Also, it is important to consider the embedding of super Minkowski space
inside conformal superspace, since some theories (for example, some Wess-
Zumino models and N=4 super Yang-Mills theory) have this symmetry. In
fact, for the classic (non quantum) case, this has been done in the modern
language of supergeometry in [1].
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In this paper though, we want to consider a quantization of these su-
perspaces that preserves the action of the corresponding supergroups. It
has been particularly difficult to find deformations of the space of chiral
superfields involving also the odd variables [13, 15]. Up to now, this has
prevented to formulate Wess-Zumino or Yang-Mills models in a non com-
mutative superspace with a non trivial deformation of the odd part and
preserving the supersymmetry. Essentially, what happened in previous for-
mulations is that the covariant derivatives were not anymore derivations of
the noncommutative product, and then the ring of chiral superfields did not
extend to a quantum chiral ring. Some proposals to keep a chiral ring (but
not an antichiral one) include the partial (explicit) breaking of supersym-
metry [14, 13].

In our formulation, we start with the classical chiral ring and find a quan-
tum chiral ring in a natural way. We substitute the supergroup by a quantum
supergroup and preserving the relations among all the elements of the con-
struction. As it is well known, the comultiplication is not deformed when
going from the classic to the quantum group, which means that the su-
persymmetry algebra is preserved without deformation although now it is
realized on a non commutative superspace. Mathematically, this is already a
non trivial problem, and physically it is a problem that must be solved in or-
der to formulate the theories that use chiral superfields in non commutative
spaces.

Our approach will be complete once we extend it to the real super Minkowski
space. In order to do this, one has to deal with the flag supermanifold. The
Grassmannian then sits inside the complexified flag supermanifold.

One can certainly extend the same philosophy of quantization to the flag
supervariety. Nevertheless, the problem is non trivial, presents its own com-
plications and will be the subject of a forthcoming paper.

Finally, since the superconformal symmetry is implicit in our approach,
we expect to obtain in the future a basis to formulate conformal theories
in a non commutative space. This will include for example N = 4 super
Yang-Mills.

3 The functor of points

The functor of points is an extremely useful tool in classical algebraic ge-
ometry, which becomes essential in supergeometry in order to recover the
geometric intuition, otherwise lost. In this section we shall give an intuitive,
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though operative, summary of its definitions and properties, sending the
reader to the Appendix A for the complete treatment and all the references.

For definiteness, we take the ground field to be k = R,C. A superalgebra
A is a Z2-graded algebra, A = A0 ⊕A1, where p(x) denotes the parity of a
homogeneous element x, so p(x) = 0 if x ∈ A0 and p(x) = 1 if x ∈ A1. The
subspace A0 is an algebra, while the subspace A1 is an A0-module.

The superalgebra A is said to be commutative if for any two homogeneous
elements x, y

xy = (−1)p(x)p(y)yx.

From now on all superalgebras are assumed to be commutative unless other-
wise specified. The category of commutative superalgebras will be denoted
by (salg), and the category of sets is denoted by (sets).

A functor h : (salg) −→ (sets) is representable if there exists a superalge-
bra B such that

(7)
h : (salg) −−−−→ (sets)

A −−−−→ h(A) = Hom(B,A).

We say that the superalgebra representing the functor h is B. In that case,
we will denote the functor h as hB, to stress the fact that it is represented
by the superalgebra B. An element of Hom(B,A) is called an A-point of hB.

If we restrict the functor h to the category of k-algebras (that is, if we
remove the odd generators), and we also demand that the algebras are re-
duced1 and finitely generated (these algebras are often called affine alge-
bras), then a representable functor h corresponds to an algebra O(X), that
is the coordinate ring of an affine variety X.

Example 3.1. Let S2 be the unit 2-sphere in C3. Its coordinate ring is
given by

O(S2) = C[x, y, z]/(x2 + y2 + z2 − 1).

The elements in O(S2) correspond to the polynomial functions on the variety
S2 ⊂ C3. Each morphism O(S2) → C is given in terms of the images of the
generators

(x, y, z) −→ (a, b, c) with a, b, c ∈ C such that a2 + b2 + c2 = 1,

hence, any such morphism represents a point of the sphere. If we consider
morphisms O(S2) → Q, they are in one-to-one correspondence with rational
points on the sphere. In this example the geometric points (that is the C-
points) allow us to recover all the information on S2. �

1An algebra is reduced if it has no nilpotent elements.
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In Appendix A we give the definition of affine supervariety, however, for
all the practical purposes in this paper, we can identify an affine supervariety
X with its coordinate ring O(X), this time O(X) being a superalgebra. As
in the non super case, it results that affine supervarieties are in one to one
correspondence with affine superalgebras. This means only that the ordinary
algebra obtained by taking modulo by the odd ideal O(X)/Iodd is an affine
algebra. Then, there is an affine variety corresponding to O(X)/Iodd. This
is an affine variety underlying the affine supervariety.

The A-points of the supervariety X are the morphisms O(X) −→ A
and all the information about the affine supervariety is fully encoded in its
coordinate superalgebra, or equivalently in its functor of points

hX : (salg) −−−−→ (sets)

A −−−−→ hX(A) = Hom(O(X),A).

We have denoted hX instead of hO(X) for simplicity, since there is no possi-
bility of confusion in this context.

To clarify these concepts we describe a simple example.

Example 3.2. We define the polynomial superalgebra as:

k[x1, . . . , xp, θ1, . . . , θq] := k[x1, . . . , xp]⊗ Λ[θ1, . . . , θq]

We want to interpret this superalgebra as the coordinate ring of the affine
superspace of superdimension p|q, that we shall denote with the symbol kp|q.

If A is a generic (commutative) superalgebra, an A-point of kp|q is given by a
morphism k[x1, . . . , xp, θ1, . . . , θq] −→ A, which is determined once we know
the images of the generators

(x1, . . . , xp, θ1, . . . , θq) −→ (a1 . . . ap, α1 . . . αq),

with ai ∈ A0 and αj ∈ A1. Notice that the k-points of kp|q are given by
(k1 . . . kp, 0 . . . 0) and coincide with the points of the affine space kp. From
this example it is clear that the knowledge of the geometric points, that is
the k-points, is by no means sufficient to describe the supergeometric object.

�

There is an important property of the functor of points, which is con-
stantly used and makes all calculations easier. In complete analogy with the
classical setting, the functor of points of an affine supervariety is determined
by its image on the local superalgebras2 (For the proof of this fact see Ref.

2A local superalgebra is a superalgebra that has a unique, maximal ideal which is

homogeneous with respect to the Z2 grading.
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[6] ch. 10). Local superalgebras are important, since their behavior resem-
bles those of fields, thus rendering the functor of points easier to describe in
the examples that we are interested in.

We now turn to projective supervarieties. In the classical setting projec-
tive varieties are harder to describe, since the homogeneous coordinate ring
that we associate to a projective variety encodes not only the structure of
the variety, but also its embedding into projective space. Such ring hence
has more information than the variety itself. As a consequence we have that
non isomorphic coordinate homogeneous rings may correspond to the same
projective variety, a phenomenon that we do not see in the affine case, where
coordinate rings and affine varieties correspond bijectively to each other and
contain essentially the same information. A fancy way to express this, is to
say that the category of affine (super)varieties over k is equivalent to the
category of affine k-(super)algebras. So in the affine setting we have that in
both, the classical and the super setting,

Hom(O(X),O(Y )) = Hom(Y,X).

Notice that the role of X and Y are interchanged when passing from the
coordinate (super)rings to the (super)varieties.

There are two equivalent, but different, ways to approach projective va-
rieties in the ordinary setting and we shall briefly describe them. Both can
be generalized to the super setting. For us the second one is far more im-
portant, since it gives a setting suitable for the quantization. The first one
will also be used (implicitly) when we perform the quantization of the big
cell in Sec. 6.

One way to approach projective varieties is to view them locally as affine
varieties that can suitably be patched together. In other words a projective
variety is a topological space that is covered by affine varieties, whose coor-
dinates, in the overlaps of different affine varieties, behave in a certain way.
We can build the functor of points of a projective variety by giving the func-
tors of points of the affine varieties and then asking that they satisfy certain
gluing conditions. This is in essence the meaning of the Representability
Theorem3 in Appendix A.

A second equivalent way to define a projective variety X is to look
at the points in a projective space Pn, satisfying homogeneous equations
f1 = 0, . . . fn,= 0 (homogeneous here refers to the Z-grading of polynomi-
als). Hence the homogeneous ring S = k[x0 . . . xn]/(f1, . . . , fn) determines

3The Representability Theorem is stated in the more general setting of superschemes,

which are a far reaching generalization of projective supervarieties.
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uniquely the projective variety X together with its embedding into Pn.
However, as we have already remarked, the variety X does not determine
uniquely the ring S: there could in fact be a different embedding of X into
some other projective space, yielding a homogeneous algebra non isomor-
phic to S. For this reason the functor of points of a projective variety is
more tricky and it is not directly related to the coordinate ring S of the
variety itself as it happens for the affine case. In particular this functor is
never representable, hence making the theory more difficult since there is no
algebra that can be naturally associated to it. Hence we are facing a new
problem: how can we decide whether a functor h : (salg) −→ (sets) is the
functor of points of a projective supervariety? Certainly we cannot say as
before that this is equivalent for h to be representable. The answer is again
the Representability Theorem in Appendix A.

As an example of its application, let us examine the functor of points of
the projective space Pn.

Example 3.3. Let us consider the functor: h : (salg) −→ (sets), where
h(A) are the projective A-modules of rank one in An

Equivalently h(A) consists of the pairs (L, φ), where L is a projective A-
module of rank one, and φ is a surjective morphisms φ : An+1 −→ L. These
pairs are taken modulo the equivalence relation

(L, φ) ≈ (L′, φ′) ⇔ L ≈ L′, φ′ = a ◦ φ,

where a : L → L′ is the isomorphism. We can substitute the last condition
by saying that φ and φ′ have the same kernel.

If A = k is a field, then projective modules are free and a morphism

φ : kn+1 → k

is specified by a n-uple (a1, . . . an+1), with ai ∈ k, not all of the ai = 0. The
equivalence relation becomes

(a1, . . . an+1) ∼ (b1, . . . bn+1) ⇔ (a1, . . . an+1) = λ(b1, . . . bn+1),

with λ ∈ k× understood as an automorphism of k. It is clear then that h(k)
consists of all the lines through the origin in the vector space kn+1.

If A is local, projective modules are free over local rings. We then have
a situation similar to the field setting: equivalence classes are lines in the
A-module An+1. The functor h is ‘covered’ by functors which on a local
algebra A

hi(A) =
{
span{(a1, . . . , an+1)} ∈ An+1 | ai is invertible

}
.
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In fact, in order to correspond to a surjective morphism, the n-uple (a1, . . . , an+1)
must contain at least an invertible ai. Hence, using the equivalence rela-
tion, we have that hi(A) = {(a1/ai, . . . , âi, . . . a

n+1/ai)} and consequently
hi = hAn , as described in the Example 3.2.

Using the Representability Theorem one can then show that the functor
h is the functor of points of a variety that we call the projective space and
whose geometric points coincide with the projective space Pn over the field
k as we usually understand it. �

This example can be easily generalized to the supercontext: we consider
the functor hPm|n : (salg) −→ (sets), where hPm|n(A) is defined as the set

the projective A-modules of rank 1|0 in Am|n := A ⊗ km|n. This is the
functor of points of a supervariety, called the projective superspace.

The next question that we want to tackle is how we can define an embed-
ding of a (super)variety into the projective (super)space using the functor
of points notation.

Let X be a projective supervariety and Φ : X −→ Pn|m be an injective
morphism. In the notation of the functor of points, Φ is a natural transfor-
mation between the two functors hX and hPn|m , given by

ΦA : hX(A) −→ hPn|m(A)

with ΦA injective.

If A is a local superalgebra, then an A-point in hPn|m(A) is in φA(hX(A))
if and only if it satisfies certain homogeneous polynomial relations f1 =
0, . . . , fr = 0 in the indeterminates x1, . . . xn, ξ1, . . . ξm. Moreover X is the
projective supervariety associated to k[x1, . . . , xn, ξ1, . . . , ξm]/(f1, . . . , fr).
In other words the superalgebra k[x1 . . . xn, ξ1 . . . ξm]/(f1 . . . fr) is the co-
ordinate superalgebra of the projective super variety X with respect to the
embedding φ. Recall that, although X does not determine a coordinate
superalgebra as in the affine case, the coordinate superalgebra of X with
respect to an embedding into projective superspace does determine the pro-
jective supervariety X.

In summary, to determine the coordinate superalgebra of a projective
supervariety with respect to a certain projective embedding, we need to
check the relations satisfied by the coordinates just on local superalgebras.
This will be our starting point in Section 4.2 when we shall determine the
coordinate superalgebra of the Grassmannian supervariety with respect to
its Plücker embedding.
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As a side remark we want to notice that the Grassmannian supervariety
is not in general a projective supervariety [27, 28], contrary to the clas-
sical setting. This unpleasant feature luckily does not affect us, since the
particular Grassmannian variety that we see in this paper is projective.

4 The super Grassmannian variety

We will start by reviewing the Plücker embedding of the Grassmannian
variety. We then turn to a description of the same object as a quotient
space for the action of the special linear supergroup and we give an explicit
description of the big cell inside the Grassmannian supervariety. The big
cell is especially important since it is identified with the complex Minkowski
superspace, while the subgroup of SL(4|1) stabilizing the big cell contains
the Poincaré supergroup times the dilations.

Our point of view is purely algebraic, since it is the most suitable for the
quantization. The reader however must be aware that these objects have a
natural differential structure, as always is the case for smooth supergroups
and the supervarieties on which they are acting [29].

4.1 Plücker embedding of the Grassmannian variety and the big
cell

The Grassmannian variety G(2, 4) is the set of 2-planes inside a four dimen-
sional space C4. It is a projective variety embedded in P5 and the embedding
is known as the Plücker embedding. This can be found explained in many
references (see for example Refs. [3, 1]).

Let {e1, e2, e3, e4} be the canonical basis of C4 and π0 = span{e1, e2} the
2-plane generated by e1 and e2. Then

G(2, 4) = SL(4,C)/P0,

where the isotropy group P0 is the subgroup that leaves invariant π0:

P0 =

{(
L M
0 R

)
∈ SL(4,C)

}
,

with L,M,R being 2× 2 matrices, and L and R invertible.

We will call SL(4,C) the conformal group in four dimensions. Indeed, this
is the complexified spin group of SO(2, 4), easily recognizable as the confor-
mal group of the Minkowski metric in four dimensions diag(1,−1,−1,−1).
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Notice also that we can substitute SL(4,C) by GL(4,C) and the construction
will also work.

To obtain the Plücker map, one starts by considering the vector space
E = Λ2(C4) ≈ C6 with basis {ei ∧ ej}i<j , i, j = 1, . . . , 4. Then, for any
plane π = span{a, b} we have

a ∧ b =
∑

i<j

yijei ∧ ej .

A change of basis (a′, b′) = (a, b)u, where u ∈ GL(2,C), produces a change

a′ ∧ b′ = det(u)a ∧ b,

so the image π → [a ∧ b] is well defined into the projective space P(E) ≈

P5. This is called the Plücker map and it is not hard to see that it is an
embedding. The quantities yij are the homogeneous Plücker coordinates,
and the image of the Plücker map can be identified with the solution of the
equation p ∧ p = 0 for p ∈ E. In coordinates, this reads

(8) y12y34 + y23y14 + y31y24 = 0, ( with yij = −yji).

Equation (8) is called the Plücker relation or Klein quadric. In algebraic
terms, the fact that the Grassmannian is embedded in the projective space
is reflected in the fact that the ideal IP generated by the relation (8) in
Pol(C6) is homogeneous.

The Poincaré group plus dilatations and the big cell.

We give an open cover for the projective variety G(2, 4). Let a and b
be two linearly independent vectors spanning the 2-plane π that can be
represented by the matrix

π = span{a, b} =




a1 b1
a2 b2
a3 b3
a4 b4


 .

This matrix has rank 2, so at least one of the 6 minors yij = aibj − biaj,
i < j is different from zero. The sets

(9) Uij = {(a, b) / yij 6= 0}

are open affine sets of G(2, 4) and cover it. U12 is called the big cell. By a
change of basis (action of u ∈ GL(2,C)), a plane π in the big cell can always
be represented by the matrix

(10) π =

(
11
A

)
, A =

(
a11 a12
a21 a22

)
,
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so U12 ≈ M2(C) ≈ C4, and U12 is again the affine space C4, represented
with the algebra C[aij].

Given an element of SL(4,C), since the columns are linearly independent,
we can choose the first two columns to be the vectors a and b representing
a 2-plane π. If the plane is in the big cell, it is easy to see that there is a
transformation in P0 that brings the matrix of SL(4,C) to the form

(
112 0
A 112

)
.

The big cell is left invariant by the subgroup of SL(4,C) consisting of the
matrices of the form

{(
L 0
NL R

)
, L,R invertible, detR · detL = 1

}
.

The bottom left entry is arbitrary but we have written it like that for con-
venience. The action on U12 is then

(11) A 7→ N +RAL−1,

so P has the structure of semidirect product P = H⋉M2, whereM2 = {N}
is the set of 2× 2 matrices acting as translations, and

H =

{(
L 0
0 R

)
, L,R ∈ GL(2,C), detL · detR = 1

}
.

The subgroup H is the direct product SL(2,C) × SL(2,C) × C×. But
SL(2,C) × SL(2,C) is the spin group of SO(4,C), the complexified Lorentz
group, and C× acts as a dilation. P is then the Poincaré group times dila-
tions. In the basis of the Pauli matrices

(12) σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

an arbitrary matrix A can be written as

A =

(
a11 a12
a21 a22

)
= x0σ0 + x1σ1 + x2σ2 + x3σ3 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

and (x0, x1, x2, x3) are the ordinary coordinates of Minkowski space. More-
over,

detA = (x0)2 − (x1)2 − (x2)2 − (x3)2.

This concludes the interpretation of the big cell as the complexification of
the Minkowski space. �
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4.2 The Plücker embedding for the super Grassmannian

We are interested in the super Grassmannian of (2|0) planes inside the super-

space C4|1. Since we are only concerned with this particular Grassmannian,
we will just denote it as Gr = G(2|0; 4|1). In the Appendix A we give an
exhaustive description of its functor of points, hGr. Here, we will use the
fact that we can work on local algebras. Then the projective modules are
free modules and the description is greatly simplified. On a local algebra A,
hGr(A) consists of free submodules of rank 2|0 in A4|1. One such module can
be specified by a couple of independent even vectors, which in the canonical
basis {e1, e2, e3, e4, E5} are

(13) π = span{a, b} = span








a1 b1
a2 b2
a3 b3
a4 b4
α5 β5







,

with ai, bi ∈ A0 and α5, β5 ∈ A1.

We want now to work out the expression for the Plücker embedding. We
want to give a natural transformation among the functors

p : hGr → hP(E).

where E is the super vector space E = ∧2C4|1 ≈ C7|4. We recall that for an
arbitrary super vector space V ,

Λ2V = V ⊗ V/〈u⊗ v + (−1)|u||v|v ⊗ u〉, u, v ∈ V.

Given ,the canonical basis for C4|1 we construct a basis for E

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4, E5 ∧ E5, (even)

e1 ∧ E5, e2 ∧ E5, e3 ∧ E5, e4 ∧ E5, (odd)(14)

As in the super vector space case, if L is a A-module, we can construct ∧2L

Λ2L = L⊗ L/〈u⊗ v + (−1)|u||v|v ⊗ u〉, u, v ∈ L.

If L ∈ hGr(A), then ∧2L ⊂ ∧2A4|1. It is clear that if L is a projective
A-module of rank 2|0, then ∧2L is a projective A-module of rank 1|0. In

other words, it is an element of hP(E)(A) for E = ∧2C4|1. Hence we have
defined a natural transformation:

hGr(A)
p

−−−−→ hP(E)(A)

L −−−−→ ∧2L.
, A ∈ (salg)
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Once we have the natural transformation defined, we can restrict to work on
local algebras. For a local algebra A, Gr(A) consists of the free 2|0-modules

inside A4|1.

Let a, b be two even independent vectors in A4|1. For any superalgebra
A, they generate a free submodule of A4|1 of rank 2|0. The natural trans-
formation described above is as follows.

hGr(A)
pA

−−−−→ hP(E)(A)

spanA{a, b} −−−−→ spanA{a ∧ b},

whereE = Λ2(C4|1). The map pA is clearly injective. The image pA(hGr(A))
is the subset of even elements in hP(E)(A) decomposable in terms of two even

vectors of A4|1. We are going to find the necessary and sufficient conditions
for an even element Q ∈ hP(E)(A) to be decomposable in terms of even
vectors. In terms of the canonical basis (14) we have

Q = q + λ ∧ E5 + a55E5 ∧ E5, with

q = q12e1 ∧ e2 + · · ·+ q34e3 ∧ e4, qij ∈ A0,

λ = λ1e1 + · · ·+ λ4e4, λi ∈ A1.(15)

Q is decomposable if and only if

Q = (r + ξE5) ∧ (s+ θE5) with

r = r1e1 + · · ·+ r4e4, s = s1e1 + · · · + s4e4, ri, si ∈ A0 ξ, θ ∈ A1,

which means

Q = r ∧ s+ (θr − ξs) ∧ E5 + ξθE5 ∧ E5.

This is equivalent to

q = r ∧ s, λ = θr − ξs, a55 = ξθ,

and these are in turn equivalent to the following:

q ∧ q = 0, q ∧ λ = 0, λ ∧ λ = 2a55q λa55 = 0.

Plugging (15) we obtain

q12q34 − q13q24 + q14q23 = 0, (classical Plücker relation)

qijλk − qikλj + qjkλi = 0, 1 ≤ i < j < k ≤ 4

λiλj = a55qij 1 ≤ i < j ≤ 4

λia55 = 0.(16)

These are the super Plücker relations. As we shall see in the next section
the superalgebra

(17) O(Gr) = k[qij, λk, a55]/IP ,



22 CHIRAL SUPERSPACES

is associated to the supervariety Gr in the Plücker embedding described
above, where IP denotes the ideal of the super Plücker relations (16).

Remark 4.1. We want to stress that although O(Gr) does not represent
the functor of points hGr, (it is not representable as a functor from (salg)
to (sets)), one can recover all the information about the supervariety from
O(Gr) by the procedure described in the Appendix A.2. (In the notation
used there one has that S = AGr).

�

4.3 The superstraightening algorithm

We want to take a small digression to explain why the relations (16) generate
the ideal IP of all the relations among the coordinates qij, λk, a55. This could
be done with a direct calculation as in [33], however we prefer to justify it by
resorting to the theory of semistandard tableaux and the superstraightening
algorithm. The algorithm has interest on his own, but we will also need
these notions later, in the quantum setting.

Definition 4.2. A Young diagram is a finite collection of boxes, or cells,
arranged in left-justified rows, with the row lengths weakly decreasing (each
row has the same or shorter length than its predecessor). Listing the number
of boxes in each row gives a partition of a non-negative integer n, the total
number of boxes of the diagram. A Young tableau is obtained by filling in
the boxes of the Young diagram with symbols taken from some alphabet,
which is usually required to be a totally ordered set. Usually the alphabet
consists of the first natural numbers.

Let us assume now that the set of indices is separated into two disjoint
subsets: the even and the odd indices. A tableau is called semistandard or
superstandard the following conditions are satisfied:

• The entries are non decreasing along each row.
• The rows have no repeated even entries.
• The entries are non decreasing down each column.
• The columns have no repeated odd indices. �

Some authors take the opposite convention, interchanging rows and columns.

To describe the super Grassmannian we take indices 1, 2, 3, 4, 5 with 1,
2, 3, 4 being even and 5 being odd. Each of the generators of the super
Grassmannian is associated to a pair of multi-indices, that we shall write
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using the letterplace notation [30], [31]. The first pair of indices indicates
the rows and the second pair indicates the columns that determine the sub-
matrix whose minor is associated to the generator. Then we have, also in
terms of the semistandard tableaux,

qij −−−−→ (i, j|1, 2) −−−−→ i j , 1 2

λk −−−−→ (k, 5|1, 2) −−−−→ k 5 , 1 2

a55 −−−−→ (5, 5|1, 2) −−−−→ 5 5 , 1 2 .

We can suppress the second tableau, which indicates the columns, since it
is going to be the same in what follows. A monomial in the generators
can be encoded in a tableau where each line corresponds to the indices of
the coordinates, in the order in which they are written. For example the
monomials q12q34λ3a55, q12q23λ55 correspond to the tableaux:

1 2
3 4
3 5
5 5

1 2
2 3
5 5

The second one is semistandard, while the first one is not. As the reader
can quickly notice, there is in fact a relation among the coordinates whose
indices appear in the first tableau: λ3a55 = 0.

The semistandard tableaux are very important since the monomials as-
sociated to them are a basis for the superring O(Gr). The next theorem
provides us with a presentation of such ring and with a basis. Its proof
is based on the straightening algorithm in the super setting, which we are
unable to describe here, since it would take us too far from our purpose. We
refer the reader to the beautiful works [30], [31], where the full details are
discussed.

Theorem 4.3.

1) The Grassmannian superring is given in terms of generators and rela-
tions as:

O(Gr) = C[qij, λj , a55] /IP , 1 ≤ i < j ≤ 5 and i = j = 5

where IP is the two-sided ideal generated by the super Plücker relations
(16).

2) The Grassmannian superring is the free superring over k generated
by the monomials in the variables qij , λj, a55 whose indeces form a
semistandard tableau.

�
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Remark 4.4. In our special case a semistandard tableaux means that the
indices of the variables forming the monomial and appearing in the tableau
in two consecutive lines are such that (ik, jk) < (ik+1, jk+1) lexicographically,
but the even pairs of type (1, 4) and (2, 3) (and more generally (i, j), (k, l),
with i < k < l < j) are not allowed to appear: such pairs shall be disposed
using the (super) Plücker relations, through the straightening algorithm
[30]. �

The ringO(Gr) is our starting point for the quantization: we will quantize
the Grassmannian together with its embedding into P(E) by obtaining a
quantization of the ring O(Gr). We will obtain the quantized superalgebra
as a sub superalgebra of the quantum supergroup SLq(4|1). In this way,
the quantized Grassmannian Grq will carry a natural action of the quantum
supergroup SLq(4|1), just as in the classical case.

4.4 The conformal and Poincaré supergroups and the big cell

We start by describing the natural action of the special linear supergroup,
the conformal supergroup, on the Grassmannian supervariety.

The functor of points of the supergroup, in terms of local algebras, is

(18) hSL(4|1)(A) =




g =




c11 c12 c13 c14 ρ15
c21 c22 c23 c24 ρ25
c31 c32 c33 c34 ρ35
c41 c42 c43 c44 ρ45
δ51 δ52 δ53 δ54 d55



, Ber(g) = 1




,

where cij , d55 ∈ A0 and ρi5, δ5i ∈ A1. Ber stands for the Berezinian or
superdeterminant of the matrix g. We refer the reader to [6] Ch. 1 for its
definition and main properties.

Remark 4.5. The functor hSL(4|1) is representable, and it is represented by
the algebra

(19) O(SL(4|1)) = C[gij, g55, γi5, γ5j ]/(Ber − 1)

with i, j = 1, . . . , 4. Again, latin letters are for even generators and odd
letters for odd generators. If we prefer to use the supergroup GL(4|1) we
will have instead

O(GL(4|1)) = C[gij , g55, γi5, γ5j ,X,D]/(X · det gij − 1, D · g55 − 1),

where X and D are even generators. �
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We can describe the action of the supergroup SL(4|1) over Gr as a natural
transformation of the functors,

hSL(4|1)(A)× hGr(A) −→ hGr(A), A local,

which in this language is simply given by the multiplication of matrices (18)
and (13). We leave to the reader as an exercise the fact that this definition,
given for local superalgebras, can be extended to all superalgebras (see [6]
Ch. 9). Also, we refer the reader to Appendix A.5 for all the definitions
concerning actions and stabilizers.

As in the even case, we may take π0 = span{e1, e2}. The stabilizer of this
point is the upper parabolic sub-supergroup Pu, whose functor of points is

(20) hPu(A) =








c11 c12 c13 c14 ρ15
c21 c22 c23 c24 ρ25
0 0 c33 c34 ρ35
0 0 c43 c44 ρ45
0 0 δ53 δ54 d55







.

Then, the Grassmannian can be identified with the quotient

hGr(A) = hSL(4|1)(A)/hPu(A).

The description of homogeneous spaces for super Lie groups is done in detail
in [1].

These algebras are commutative Hopf superalgebras. The comultipli-
cation is given as usual by matrix multiplication, (see for example Refs.
[20, 21], also for the counit and antipode), by organizing the generators in
matrix form:

∆

(
gij γi5
γ5j g55

)
=

(
gik γi5
γ5k g55

)
⊗

(
gkj γk5
γ5j g55

)
.

The superalgebraO(Gr) is a sub superalgebra (not a Hopf sub superalgebra)
of O(SL(4|1)). It is in fact the superalgebra generated by the corresponding
minors, and the Plücker relations are all the relations satisfied by these
minors in O(SL(4|1)).

As in the non super case, the super Grassmannian admits an open cover
in terms of affine superspaces. In terms of the functor of points we say that
Gr admits a cover by ‘open affine subfunctors’. This is explained in detail
in the Appendix A.4, and it generalizes the open cover of the non super case
given in Section 4.1. As we have detailed in the previous section, we shall
concentrate our attention just on local algebras. We will describe hU12 , the
functor of points of the big cell U12. First of all, we write an element of
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hSL(4|1)(A) in blocks as (see (18))


C1 C2 ρ1
C3 C4 ρ2
δ1 δ2 d55


 .

Assuming that detC1 is invertible, we can bring this matrix, with a trans-
formation of hPu(A), to the form

(21)



112 0 0
A 112 0
α 0 1


 .

The assumption that detC1 invertible means that the matrix is in the open
set U12 = Gr ∩ V12, where V12 is the affine open set defined by taking in
P(E) the coordinate q12 6= 0.

So if the column vectors of 

C1

C3

δ1




with detC1 invertible represent a 2|0-module in the big cell, the same module
can be represented by a matrix of the form


112
A
α


 , A =

(
a11 a12
a21 a22

)
, α = (α1, α2),

with the entries of A in A0 and the entries of α in A1. The big cell U12 of
Gr is then the affine superspace associated with the superalgebra

(22) O(U12) = C[aij, αj ] ≈ C4|2.

We are now interested in the super subgroup of hSL(4|1)(A) that preserves
the big cell U12. This is the stabilizer functor StabU12 . According to the
Definition A.18 we have

StabU12(A) = {g ∈ hSL(4|1)(A) | g·hU12(A
′) ⊂ hU12(A

′) for all A-algebras A′ }.

As we remarked after Definition A.18, StabU12 is not in general representable,
and it does not correspond to the functor of points of a supervariety. Nev-
ertheless, there exists a subsupergroup StU12 of SL(4|1), whose functor of
points is the largest subgroup functor of StabU12 .

In our case, StU12 is the lower parabolic sub supergroup Pl, whose functor
of points is given in suitable coordinates by matrices of the type

(23) hPl
(A) =







x 0 0
tx y yη
dτ dξ d





 ,
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where x and y are even, invertible 2×2 matrices, t is an even, arbitrary 2×2
matrix, η a 2× 1 odd matrix and τ, ξ a 1× 2 odd matrix. d is an invertible
even element given by the superdeterminant equal 1 condition.

Let us see this. We clearly have from the definitions

hPl
(A) ⊂ hStU12

(A).

Since this embedding is functorial, we have an embedding Pl ⊂ StU12 of the
algebraic supergroups. Since any supergroup over C is also a supermanifold
(see [29]) we have that this is also a supermanifold embedding.

Let us look at the superdimension of the stabilizer StU12 and Pl. The
superdimension is well defined since these are supermanifolds. To compute
them one can look at the tangent spaces. We then have

dimStU12 ≤ dimSL(4|1) − dimU12 = 42 + 1|2 · 4− 4|2 = 13|6,

but
dimPl = 22 + 22 + 22 + 1|2 + 2 + 2 = 13|6,

hence dimStU12 = dimPl. Now, the equality StU12 = Pl follows from the
following theorem.

Theorem 4.6. Let M and N be two supermanifolds with the same dimen-
sion and such that |M | = |N |. If we have an embedding M ⊂ N then
M ∼= N .

Proof. See in [6] ch. 5. �

The action of the stabilizer supergroup Pl on the big cell U12 is as follows,

hPl
(A)× hU12(A) −−−−→ hU12(A)





x 0 0
tx y yη
dτ dξ d


 ,



112
A
α




 −−−−→



112
A′

α′


 ,

where, using a transformation of hPu(A) to revert the resulting matrix to
the standard form (21), we have

(24)



112
A′

α′


 =




112
y(A+ ηα)x−1 + t
d(α+ τ + ξA)x−1


 .

The subgroup with ξ = 0 is the super Poincaré group times dilations (com-
pare with Eq. (14) in Ref [1]). In that case

d = detxdet y.
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5 Quantum super Grassmannian

Before giving the definition of quantum super Grassmannian, we need some
preliminaries on quantum supergroups in general.

5.1 Quantum supergroups

In this section we follow Manin [19].

Definition 5.1. The quantum matrix superalgebra Mq(m|n) is defined as

Mq(m|n) =def Cq〈xij , ξkl〉/IM

where Cq〈xij, ξkl〉 denotes the free superalgebra over Cq = C[q, q−1] gener-
ated by the even variables

xij , for 1 ≤ i, j ≤ m or m+ 1 ≤ i, j ≤ m+ n.

and by the odd variables

ξkl for 1 ≤ k ≤ m, m+ 1 ≤ l ≤ m+ n

or m+ 1 ≤ k ≤ m+ n, 1 ≤ l ≤ m,

satisfying the relation: ξ2kl = 0. IM is an ideal generated by relations that
we will describe shortly.

To simplify the notation it is convenient sometimes to have a common
notation for even and odd variables

aij =





xij 1 ≤ i, j ≤ m, or m+ 1 ≤ i, j ≤ m+ n

ξij 1 ≤ i ≤ m, m+ 1 ≤ j ≤ m+ n, or

m+ 1 ≤ i ≤ m+ n, 1 ≤ j ≤ m

The ideal IM is generated by the relations [19]:
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aijail = (−1)π(aij )π(ail)q(−1)p(i)+1
ailaij, for j < l

aijakj = (−1)π(aij )π(akj )q(−1)p(j)+1
akjaij , for i < k

aijakl = (−1)π(aij )π(akl)aklaij , for i < k, j > l

or i > k, j < l

aijakl − (−1)π(aij )π(akl)aklaij = (−1)π(aij )π(akj )(q−1 − q)akjail,

for i < k, j < l

where π(aij) = p(i) + p(j) mod 2 denotes the parity of aij (with p(i) = 0 if
1 ≤ i ≤ m and p(i) = 1 otherwise). �

Remark 5.2. In our definition we take q to be an indeterminate. However
this definition makes sense also for any value of q ∈ C× (usually one asks
away from roots of one). In any case, whenever we make use of the fact that
q needs to be an indeterminate we will say it. �

Mq(m|n) is a super bialgebra with the usual comultiplication and counit:

(25) ∆(aij) =
∑

aik ⊗ akj, E(aij) = δij .

Notice that the comultiplication, which encodes the matrix product law (and
then the group law) is not deformed. In fact M(m|n) is a bialgebra with
the commutative product (q = 1 in IM) and the same comultiplication and
counit. For later use, we will display here the commutative diagram for the
coassociativity axiom satisfied by the comultiplication,

(26)

Mq(m|n)
∆

−−−−→ Mq(m|n)⊗Mq(m|n)

∆

y
y∆⊗11

Mq(m|n)⊗Mq(m|n) −−−−→
11⊗∆

Mq(m|n)⊗Mq(m|n)⊗Mq(m|n)

We are ready to define the general linear supergroup. Let

D1 =def

∑

σ∈Sm

(−q)−l(σ)a1σ(1) . . . amσ(m)

D2 =def

∑

σ∈Sn

(−q)l(σ)am+1,m+σ(1) . . . am+n,m+σ(n)
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be the quantum determinants of the diagonal blocks.

Definition 5.3. The quantum general linear supergroup GLq(m|n) is de-
fined as

GLq(m|n) =def Mq(m|n)[D1
−1,D2

−1],

where D1
−1 and D2

−1 are even indeterminates such that

D1D
−1
1 = 1 = D1

−1D1,

D2D2
−1 = 1 = D2

−1D2

The quantum general linear supergroup GLq(m|n) is defined as

SLq(m|n) =def Mq(m|n)
/
〈Berq − 1〉,

where Berq is the quantum Berezinian (for its definition and properties refer
to [21]). �

GLq(m|n) and SLq(m|n) are Hopf superalgebras. The comultiplication
and the counit are the same as in Mq(m|n). One must give also the comul-

tiplication on D−1
1 and D−1

2 , and the antipode S. This has been done in
detail in Refs. [20, 21].

The roles of GLq(m|n) and SLq(m|n) can be interchanged in what follows,
as it happens for the super non quantum setting. We then make the choice
to use SLq(m|n).

5.2 Presentation of the quantum super Grassmannian Grq

Let the notation be as above. We are going to define the quantum super
Grassmannian Grq in terms of generators and relations. Then we will prove
that it is a deformation of the algebra O(Gr) given in (17). We are now ready
for the central definition of our paper, namely the quantum deformation of
the super Grassmannian.

Definition 5.4. The quantum super Grassmannian of 2|0 planes in 4|1
dimensional superspace is the non commutative superalgebra Grq generated
by the following quantum super minors in SLq(4|1):

Dij = ai1aj2 − q−1ai2aj1, 1 ≤ i < j ≤ 4,

Di5 = ai1a52 − q−1ai2a51, 1 ≤ i ≤ 4

D55 = a51a52.

�
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For clarity we write explicitly all the generators:

D12, D13, D14, D23, D24, D34, D55, (even)

D15, D25, D35, D45 (odd).(27)

Notice that D55 is an even nilpotent element.

The parity is easily given by the rule:

|Dij | = (−1)|i|+|j|, |i| = 0 for i = 1, . . . 4, and |i| = 1 for i = 5.

We will see that this subalgebra of SLq(4|1) is generated, as a vector space,
by monomials in the above determinants. This fact is not obvious at all,
since the commutation relations of the minors could introduce minors that
are not included in (27). For q = 1 we recover the classical Grassmannian
algebra O(Gr) described in detail in Sec. 4.2.

More precisely, we will find a presentation of Grq in terms of generators
Xij (identified with the Dij in (27)) and relations. In order to do so, we
first work out the commutation relations of the minors. Then, as in the
classical setting, there will be additional relations among the generators:
the quantum super Plücker relations.

Let us start with the commutation relations. In Ref. [7] such commuta-
tion relations are given for the even minors Dij, with 1 ≤ i < j ≤ 4. As
one can readily check, they hold also when just one of the indices is 5. The
reason is that the commutation of one even and one odd variable in the
matrix bialgebra generated by the aij’s is the same as the commutation of
two even variables, and the expression of Dkl in terms of aij is formally the
same.

The commutation relations are as follows:

• If i, j, k, l are not all distinct we have:

(28) DijDkl = q−1DklDij , (i, j) < (k, l), 1 ≤ i < j < k < l ≤ 5

where ‘<’ refers to the lexicographic ordering.
• If i, j, k, l are all distinct we have:

DijDkl = q−2DklDij , 1 ≤ i < j < k < l ≤ 5,

DijDkl = q−2DklDij − (q−1 − q)DikDjl, 1 ≤ i < k < j < l ≤ 5,

DijDkl = DklDij, 1 ≤ i < k < l < j ≤ 5.(29)
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So the only quantum commutation relations that have to be computed
are for

DijD55, Di5Dj5, Di5D55.

After some computations one gets (for 1 ≤ i < j ≤ 4):

DijD55 = q−2D55Dij ,

Di5Dj5 = −q−1Dj5Di5 − (q−1 − q)DijD55 = −qDj5Di5

Di5D55 = D55Di5 = 0.(30)

This concludes the discussion of the commutation relations. We are ready
to tackle the calculation of the quantum super Plücker relations.

Again using the result for the non super setting (Ref. [7]) we have

D12D34 − q−1D13D24 + q−2D14D23 = 0

DijDk5 − q−1DikDj5 + q−2Di5Djk = 0, 1 ≤ i < j < k ≤ 4,(31)

which yield a total of 5 relations. To these we must add the relations, which
can be computed directly:

(32) Di5Dj5 = qDijD55, 1 ≤ i < j ≤ 4.

The relations (31,32) are the quantum super Plücker relations. If one
specifies q = 1, the superalgebra becomes commutative and the quantum
super Plücker relations become the standard ones (16).

Now we want to show that the commutation relations together with the
quantum super Plücker relations are all the relations among the determi-
nants. We do this in the following proposition.

Proposition 5.5.

1) The quantum Grassmannian superring is given in terms of generators
and relations as:

Grq = Cq〈Xij〉/IGr, 1 ≤ i < j ≤ 5 and i = j = 5

where IGr is the two-sided ideal generated by the commutations rela-
tions (28,29,30) and the quantum super Plücker relations (31,32) where
Dij is substituted by the indeterminates Xij . Moreover Grq/(q − 1) ∼=
O(Gr) (see Section 4.2).
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2) The quantum Grassmannian ring is the free ring over Cq generated by
the monomials in the quantum determinants:

Di1j1 · · ·Dirjr

where (i1, j1), . . . , (ir, jr) form a semistandard tableau (see 4.2).

Proof. Though the proof is based on the classical result and it is the same
as [34] we briefly sketch it, since its importance in our construction.

The generic monomials in the quantum determinants Dij generate the
ring Grq as Cq-module. Using the commutation relations we can certainly
write any monomial as a lexicographically ordered monomial, then using
the quantum Plücker relations and the straightening algorithm [40], we can
rewrite any lexicographically ordered monomial as a linear combination of
standard monomials.

Notice that there are two obstacles to apply the straightening algorithm
to the quantum setting, but they are both easily overcome. The first is the
presence of the coefficients q in the Plücker relations. This is not a problem,
since q is invertible. The second is the non commutativity: when we are
commuting two quantum determinants one may argue that the pairs of the
forbidden kind, that is (i, j) and (k, l) with i < k < l < j may arise. However
a closer look to the commutation relations shows that this is never the case.

So both (1) and (2) will be done if we can show that the standard mono-
mials in the Dij ’s are linearly independent (i.e. there are no other relations
among them apart the IGr ones). Assume there is a relation R among such
monomials. Clearly R = 0 mod (q − 1) since there are no relations among
the standard classical monomials, hence R = (q − 1)R′. Such relation ev-
idently holds also in the bigger superalgebra SLq(m|n), which is known to
be torsion free. Hence the quantum determinants satisfy R′ and repeating
this same argument enough times we obtain a non trivial relation among
the classical monomials, hence the relation R we start with cannot exist. �

5.3 Grq as a homogeneous quantum space

We want to prove that the quantum super Grassmannian that we have con-
structed admits a coaction of a quantum group on it, namely the quantum
group SLq(4|1), as it happens in the classical setting.

Proposition 5.6. Grq is a quantum homogeneous superspace for the quan-
tum supergroup SLq(4|1), i. e., there is a coaction on Grq given via the
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restriction of the comultiplication on SLq(4|1) (25):

∆|Grq : Grq −→ SLq(4|1) ⊗Grq

Proof. We just have to check that the restriction is well defined. Then,
the coaction property

Grq
∆|Grq
−−−−→ SLq(4|1) ⊗Grq

∆|Grq

y
y∆⊗11

SLq(4|1)⊗Grq −−−−−−→
11⊗∆|Grq

SLq(4|1) ⊗ SLq(4|1) ⊗Grq

is guaranteed by the coassociativity (26).

So we need to verify that

∆(Dij), ∆(Di5), ∆(D55) ∈ SLq(4|1) ⊗Grq.

Let us denote the generic 2× 2 quantum minors as

(33) Dkl
ij = aikajl − q−1ailajk,

so in the previous notation Dij = D12
ij . In the purely even setting, we can

use the formula (see Ref. [7])

(34) ∆(D12
ij ) =

∑

1≤k<l≤4

Dkl
ij ⊗D12

kl .

In the super case, we can extend the sum to l = 5. Also for the minors Di5

(the only odd ones) the calculation is the same. This proves immediately
that

∆(Dij), ∆(Di5) ∈ SLq(4|1) ⊗Grq, for 1 ≤ i < j ≤ 4.

For ∆(D55) it is a straightforward (long) check. �

6 Quantum deformation of the big cell inside the super

Grassmannian

We want now to define the analogue, in the quantum setting, of the superal-
gebra representing the big cell of the Grassmannian supermanifold. At the
classical level we obtained it in (22).

The superalgebra O(U12) ≈ C4|2 is the superalgebra corresponding to the
chiral Minkowski superspace (see Sec. 2). In Section 4.4 we wrote the action
of the lower parabolic supergroup Pl (which includes the super Poincaré
group times dilations) using the functor of points (24). We want now to
translate it into the coaction language to make the generalization to the
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quantum setting. The first step is to understand the Hopf superalgebra of
the lower parabolic supergroup Pl, as the quotient, by a suitable ideal, of
the algebra representing SL(4|1)

O(SL(4|1)) = C[gij, g55, γi5, γ5j ]/(Berq − 1)

(see Eq. (19)). The generators can be written in matrix form
(
gij γi5
γ5j g55

)
,

so to read the comultiplication as the matrix product.

Proposition 6.1. Let O(Pl) be the superalgebra:

O(Pl) := O(SL(4|1))/I

where I is the (two-sided) ideal generated by

g1j , g2j , for j = 3, 4 and γ15, γ25.

This is the Hopf superalgebra of the lower parabolic subgroup, with comulti-
plication naturally inherited by O(SL(4|1)).

Proof. One can readily check that I is a Hopf ideal, in other words

∆(I) = I ⊗ O(SL(4|1)) +O(SL(4|1)) ⊗ I.

Hence the Hopf superalgebra structure goes to the quotient. The fact that
O(Pl) represents the lower parabolic supergroup Pl is also clear. �

In matrix form, for A local, we have

(35) hPl
(A) =








g11 g12 0 0 0
g21 g22 0 0 0
g31 g32 g33 g34 γ35
g41 g42 g43 g44 γ45
γ51 γ52 γ53 γ54 g55








⊂ hSL(m|n)(A).

The superalgebra representing the big cell is in fact a sub superalgebra (not
a Hopf subalgebra) of O(Pl). It is more convenient to make a change of
variables for the generators, so



g11 g12 0 0 0
g21 g22 0 0 0
g31 g32 g33 g34 γ35
g41 g42 g43 g44 γ45
γ51 γ52 γ53 γ54 g55




=



x 0 0
tx y yη
τ̃x dξ d


 .

The notation used here is slightly different to the notation used in (23). We
can define

(36) dτ = τ̃x,
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but we will see that having τ̃ is essential to describe the bigcell. With this
change of variable we have:

hPl
(A) =



x 0 0
tx y yη
dτ dξ d


 .

Proposition 6.2. The Hopf superalgebra O(Pl) is generated by the two
alternative set of variables:

• x, y, t, τ̃ , ξ, η and d;
• x, y, t, τ , ξ, η and d.

The sub superalgebra of O(Pl) generated by (t, τ̃ ) coincides with the big cell
superring O(U12) as defined in (22).

Moreover, there is a well defined coaction of O(Pl) on O(U12) induced by
the comultiplication (37),

∆̃ : O(U12) −−−−→ O(Pl)⊗O(U12)

which explicitly takes the form:

∆̃tij = tij ⊗ 1 + yiaS(x)bj ⊗ tab + yiηaS(x)bj ⊗ τ̃jb,

∆̃τ̃j =(d⊗ 1)(τa ⊗ 1 + ξb ⊗ tba + 1⊗ τ̃a)(S(x)aj ⊗ 1).

(The reader should notice right away that this is the dual to the expression
24).

Proof. First of all it is clear that the two given sets generate the superring
O(Pl). The comultiplication of the new variable introduced can be computed
in terms of the comultiplication of the old variables

(37) ∆



x 0 0
tx y yη
τ̃x dξ d


 =



x 0 0
tx y yη
τ̃x dξ d


⊗



x 0 0
tx y yη
τ̃x dξ d


 .

From (37) we have that

∆x = x⊗ x,

∆(tx) = tx⊗ x+ y ⊗ tx+ yη ⊗ τx,

∆(τ̃x) = τx⊗ x+ dξ ⊗ tx+ d⊗ τx.
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It is convenient to write this in component form. From (37) we have that

∆xij = xik ⊗ xkj,

∆(tijxjl) = (∆tij)(∆xjl) = tiaxab ⊗ xbl + yia ⊗ tabxbl + yiaηa ⊗ τ̃jbxb =

(tij ⊗ 1 + yiaS(x)bj ⊗ tab + yiηaS(x)bj ⊗ τ̃jb)(xjp ⊗ xpl),

∆(τ̃jxjl) = (∆τ̃j)⊗ (∆xjl) = τ̃jxjk ⊗ xkl + dξj ⊗ tjkxkl + d⊗ τ̃jxjl =

(τ̃j ⊗ 1 + dξbS(x)aj ⊗ tba + dS(x)aj ⊗ τ̃a)(xjk ⊗ xkl),

where S is the antipode,

S(x) = x−1 =
1

det(x)

(
x22 −x12
−x21 x11

)
.

From these equations we can read the coaction of the group on the big cell,

∆̃tij = tij ⊗ 1 + yiaS(x)bj ⊗ tab + yiηaS(x)bj ⊗ τ̃jb,

(38)

∆̃τ̃j = τ̃j ⊗ 1 + dξbS(x)aj ⊗ tba + dS(x)aj ⊗ τ̃a.(39)

It is straightforward now to compare (39) with (24) to realize that the
action and the coaction are dual to each other. It is enough to use (36) but
only in the first factor of the tensor product:

∆̃τ̃j =dτaS(x)aj ⊗ 1 + dξbS(x)aj ⊗ tba + dS(x)aj ⊗ τ̃a =

(d⊗ 1)(τa ⊗ 1 + ξb ⊗ tba + 1⊗ τ̃a)(S(x)aj ⊗ 1),

and we obtain the coaction in the desired form.

�

We now turn to the quantum setting. We shall repeat all the classical
arguments, exerting however extreme care, since in all of our calculations,
the Manin commutation relations (see Definition 5.1) now play a key role. In
order to keep our notation minimal we use the same letters as in the classical
case to denote the generators of the quantum big cell and the quantum
supergroups.

Proposition 6.3. Let O(Pl,q) be the superalgebra:

O(Pl,q) := O(SLq(4|1))/Iq

where Iq is the (two-sided) ideal in O(SLq(4|1)) generated by

(40) g1j , g2j , for j = 3, 4 and γ15, γ25.
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This is the Hopf superalgebra of the quantum lower parabolic subgroup, with
comultiplication the one naturally inherited from O(SLq(4|1)).

Proof. Notice that the comultiplication is the same than in the classical
case, so Iq is a Hopf ideal (see Proposition 6.1) and the Hopf superalgebra
structure goes to the quotient. �

Remark 6.4. The quantum lower parabolic supergroup is generated by the
images in the quotient of the generators gij and γij that are not listed in (40).
In the quantum case, this is a non trivial fact, because in the commutation
relations among the generators of the ideal may appear generators other
than the ones in (40), giving then a ‘bigger’ ideal than in the classical case.
One can check that this does not happen here (see for example Ref. [32]).�

As in the classical case, it is convenient to change coordinates

(41)




g11 g12 0 0 0
g21 g22 0 0 0
g31 g32 g33 g34 γ35
g41 g42 g43 g44 γ45
γ51 γ52 γ53 γ54 g55




=



x 0 0
tx y yη
τ̃x dξ d


 .

Notice that in O(Pl,q) the elements D12 and D
34
34 are invertible (these are the

quantum determinants (33). One can compute explicitly the inverse change
of variables,

x =

(
g11 g12
g21 g22

)
, t =

(
−q−1D23D

−1
12 D13D

−1
12

−q−1D24D
−1
12 D14D

−1
12

)

y =

(
g33 g34
g43 g44

)
, d = g55,

τ̃ =
(
g−1
55 γ51 g−1

55 γ51
)
, ξ =

(
g−1
55 γ53 g−1

55 γ54
)

ρ = y−1

(
γ35
γ45

)
= D34

34
1

(
g44 −q−1g34

−qg43 g33

)
=

(
D34

34
−1
γ35

D34
34

−1
γ45

)

It is not hard to see that O(Pl,q) is also generated by x, y, d, η, ξ and τ̃ .

The quantum Poincaré supergroup times dilations is the quotient ofO(Pl,q)
by the ideal ξ = 0. One can also check that it is a Hopf ideal, so the comul-
tiplication goes to the quotient. The quantum Poincaré supergroup times
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dilations is then generated by the images in the quotient of x, y, d, η and τ̃ .
Here, the Remark 6.4 applies as well. In matrix form, one has


x 0 0
tx y yη
τ̃x 0 d


 .

Definition 6.5. We definethe quantum big cell Oq(U12) as the subring of
O(Plq) generated by t and τ̃ . �

We compute now the quantum commutation relations among the gener-
ators of the quantum big cell.

Proposition 6.6. The quantum big cell superring Oq(U12) has the following
presentation:

Oq(U12) := Cq〈tij , τ̃kl〉
/
IU

where IU is the ideal generated by the relations:

ti1ti2 = q ti2ti1, t3jt4j = q−1 t4jt3j, 1 ≤ j ≤ 2, 3 ≤ i ≤ 4

t31t42 = t42t31, t32t41 = t41t32 + (q−1 − q)t42t31,

τ̃51τ̃52 = −q−1τ̃52τ̃51, tij τ̃5j = q−1τ̃5jtij , 1 ≤ j ≤ 2

ti1τ̃52 = τ̃52ti1, ti2τ̃51 = τ̃51ti2 + (q−1 − q)ti1τ̃52.

Proof. Direct check. �

As in the classical setting we have the following proposition.

Proposition 6.7. The quantum big cell Oq(U12) admits a coaction of O(Pl,q)
obtained by restricting suitably the comultiplication in O(Pl,q). Explicitly
(see 39)),

∆̃tij = tij ⊗ 1 + yiaS(x)bj ⊗ tab + yiηaS(x)bj ⊗ τ̃jb,

∆̃τ̃j = (d⊗ 1)(τa ⊗ 1 + ξb ⊗ tba + 1⊗ τ̃a)(S(x)aj ⊗ 1).

by choosing as before the set of generators x, y, t, d, τ , ρ and ξ for O(Pl,q)
and t, τ̃ for Oq(U12) with dτ = τ̃x.

Proof. This is so because the comultiplication is the same in the classical
and the quantum group, given essentially by matrix multiplication. One has
to be careful, though, when expressing the comultiplication in terms of the
new generators, since the ordering appearing in the Definition (41) has to
be kept consistently. �
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7 Conclusions

In this paper we have obtained a quantum chiral conformal superspace as a
non commutative superalgebra that admits the action of the superconformal
group SLq(4|1). The quantum chiral Minkowski superspace is realized as the
big cell inside the quantum conformal superspace, and the quantum super
Poincaré group is properly defined as a sub supergroup of the conformal
supergroup that preserves the bigcell.

In particular, we have used the non obvious property of the chiral confor-
mal superspace, the super Grassmannian of 2|0-planes inside C4|1, of having
an embedding in a superprojective space. The quantization has been per-
formed using explicitly this embedding, thus giving implicitly a deformation
of the projective superspace perhaps to be compared with the one in Ref.
[23].

To obtain a supermanifold which admits the correct real form of the
Minkowski and conformal superspaces, one has to go to a larger superge-
ometric object, namely the flag supermanifold F (2|0, 2|1, 4|1) [28, 27, 1].
Luckily enough, this superflag is also projective (which is not true for an
arbitrary superflag, contrary to the non super case), so the same method
employed here to quantize the Grassmannian can be used for the superflag.
This, however, is work that has its own peculiarities and that we leave for a
further paper.

From the physical point of view, this opens the possibility of constructing
supersymmetric field theories with chiral superfields on genuinely noncom-
mutative superspaces which carry an undeformed action of the supersym-
metry algebra.
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hospitality during the realization of this work.



CERVANTES, FIORESI, LLEDÓ 41
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Appendix A Supergeometry

In this appendix we want to recall some basic definitions and facts in super-
geometry. For more details see refs. [3, 22, 5, 28].

A.1 Basic definitions

For definiteness, we take the ground field to be k = R,C. A superalgebra
A is a Z2-graded algebra, A = A0 ⊕ A1. A0 is an algebra, while A1 is an
A0-module. Let p(x) denote the parity of a homogeneous element x,

p(x) = 0 if x ∈ A0, p(x) = 1 if x ∈ A1.

The superalgebra A is said to be commutative if for any two homogeneous
elements x, y

xy = (−1)p(x)p(y)yx.

The category of commutative superalgebras will be denoted by (salg). We
call Ar = A/Iodd, with Iodd the (two-sided) ideal generated by the odd
nilpotents the, reduced algebra associated with A. Notice that Ar may have
even nilpotents, making the terminology a bit awkward.

From now on all superalgebras are assumed to be commutative unless
otherwise specified.

Definition A.1. A superspace S = (|S|,OS) is a topological space |S| en-
dowed with a sheaf of superalgebras OS such that the stalk at a point x ∈ |S|
denoted by OS,x is a local superalgebra for all x ∈ |S|, i. e. it has a unique
(two-sided) ideal.

Definition A.2. A morphism φ : S −→ T of superspaces is given by
φ = (|φ|, φ#), where φ : |S| −→ |T | is a map of topological spaces and

φ# : OT −→ φ∗OS is a local sheaf morphism, that is, φ#x (m|φ|(x)) = mx,
where m|φ|(x) and mx are the maximal ideals in the stalks OT,|φ|(x) and OS,x

respectively.

The most important examples of superspaces are given by supermanifolds
and superschemes. Let us introduce them.
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Example A.3. The superspace Rp|q is the topological space Rp endowed
with the following sheaf of superalgebras. For any U ⊂open Rp

ORp|q (U) = C∞(Rp)(U) ⊗R[ξ1, . . . , ξq],

where R[ξ1, . . . , ξq] is the exterior algebra (or Grassmann algebra) generated
by the q variables ξ1, . . . , ξq. �

Definition A.4. A supermanifold of dimension p|q is a superspace M =

(|M |,OM ) which is locally isomorphic to the superspace Rp|q, i. e. for all

x ∈ |M | there exist an open set Vx ⊂ |M | and U ⊂ Rp|q such that:

OM |Vx
∼= ORp|q |U .

�

Let now S = (|S|,OS) be a superspace and let OS,0 and OS,1 denote the
following sheaves:

OS,0(U) := (OS(U))0 , OS,1(U) := (OS(U))1 , U ⊂open |S|.

Notice that OS,0 is a sheaf of algebras, while OS,1 is a sheaf of OS,0-modules.
We have the following.

Definition A.5. A superscheme S is a superspace (|S|,OS) such that OS,1

is a quasi coherent sheaf of OS,0-modules. �

Morphisms of supermanifolds or of superschemes are just the morphism
of the corresponding superspaces. As for supermanifolds, also superschemes
can be characterized by a local model. Let us briefly describe it.

Definition A.6. SpecA.

Let A be an object of (salg). Since A0 is an algebra, we can consider the
topological space

Spec(A0) = {prime ideals p ⊂ A0}

with its structural sheaf OA0 . The stalk Ap of the structural sheaf at the
prime p ∈ Spec(A0) is the localization of A0 at p. As for any superalgebra,

A is a module over A0, and we have indeed a sheaf Ã of OA0-modules over
SpecA0 with stalk Ap, the localization of the A0-module A over each prime

p ∈ Spec(A0). SpecA =def (SpecA0, Ã) is a superscheme. For more details

concerning the construction of the sheaf M̃ for a generic A0 module M , see
Ref. [35] II §5. �

It is not hard to see that Spec is also a functor from the category of
superalgebras to the category of superschemes. The proof is very similar to
the ordinary setting (see [39] Ch. II) and can be found in [6] Ch. 10.
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Example A.7. We define Am|n := Speck[x1, . . . , xm, ξ1, . . . , ξm]. This su-
perscheme is called the affine superspace of dimension m|n. Its underlying
scheme is the affine space Am of dimension m.

A superscheme S which is isomorphic to SpecA for some algebra A is
said to be an affine superscheme. When the reduced algebra Ar = A/Iodd
is finitely generated and reduced, that is, it has no nilpotents, we say that
SpecA is a supervariety. We have the following.

Proposition A.8. A superspace S is a superscheme if and only if it is
locally isomorphic to SpecA for some superalgebra A, i. e. if for every
x ∈ |S|, there exists Ux ⊂ |S| open such that (Ux,OS |Ux)

∼= SpecA for some
superalgebra A (that clearly depends on Ux).

Proof. See Ref. [6] §5. �

Next we want to introduce the concept of functor of points of a super-
scheme.

Definition A.9. The functor of points of a superscheme X is the repre-
sentable functor:

hX : (sschemes)o −−−−→ (sets)

T −−−−→ hX(T ) = Hom(T,X)

and hX(φ)f = f ◦ φ for any morphism φ : T −→ S. The elements in hX(T )
are called the T -points of X. �

(The label ‘ o ’ means that we are taking the opposite category.)

The following facts detailed in the next observation are not difficult to
prove (See Ref. [6]). They will be important in the sequel.

Observation A.10.

1. The functor of points of a superscheme is determined by its restriction
to the category of affine superschemes.

2. The category of affine superschemes is equivalent to the category of
affine superalgebras, denoted by (salg), hence the functor of points of a
superscheme can be equivalently defined also as a functor from (salg) to
(sets). In other words given a superscheme X, we can equivalently define
its functor of points as:

hX : (salg) −−−−→ (sets)

A −−−−→ hX(A) = Hom(SpecA,X)
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and hX(φ)f = f ◦ Specφ for any morphism φ : A −→ B.

The elements in hX(A) are called the A-points of X.

When X is itself an affine superscheme, the functor of points can be
written as follows:

hX : (salg) −−−−→ (sets)

A −−−−→ hX(A) = Hom(O(X), A)

and hX(φ)f = φ ◦ f for any morphism φ : A −→ B.

Notice that unless X is an affine superscheme, the functor hX : (salg) −→
(sets) will not be representable.

3. The functor of points of a superscheme seen as F : (salg) −→ (sets) is a
local functor i. e. it has the sheaf property. In other words let A ∈ (salg)
and (fi, i ∈ I) = (1) = A. Let φk : A −→ Afk be the natural map of the
algebra A to its localization and also φkl : Afk −→ Afkfl . Then, for a family
αi ∈ F (Afi), such that F (φij)(αi) = F (φji)(αj) there exists α ∈ F (A) such
that F (φi)(α) = αi.

4. (Yoneda) Given superschemes S and T , the natural transformations
hS −→ hT are in one-to-one correspondence with the superscheme mor-
phisms S −→ T . Consequently two superschemes are isomorphic if and
only if their functor of points are isomorphic.

�

A.2 Projective supergeometry

We want now to consider projective superschemes and supervarieties. Re-
call that to an ordinary graded algebra R = ⊕i≥0R

i, we can associate the
topological space

ProjR = {relevant homogeneous prime ideals p ⊂ R}

(An ideal is relevant if it does not include R+ = ⊕i>0R
i, see Ref. [35] pg

116). The structural sheaf of ProjR, denoted by POR has stalk at p:

Rp =

{
f

g
| f ∈ R, g homogeneous ∈ R− p

}
.

We want to generalize this construction to superalgebras.
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Notation. We shall use the lower indices to indicate the Z2-gradation,
while the upper indices will indicate the Z-gradation. When we say ‘graded’
we shall always mean Z-graded, while for the Z2-graded objects we shall use
the word ‘super’. �

Let us consider a graded superalgebra A = ⊕i≥0A
i, with πi : A → Ai

the natural projection. We always assume that this Z-grading is compatible
with the Z2-grading A = A0 +A1 i. e.

πi(A0) = A0 ∩A
i.

Then we have that A0, the even part of A, is a graded algebra,

A0 = ⊕i≥0A
i
0, Ai

0 = A0 ∩A
i,

and A is a graded A0-module.

Definition A.11. ProjA.

Let A be a graded superalgebra. Similarly to Definition A.6 we consider

the sheaf of graded superalgebras Ã on the topological space ProjA0 with
stalk at p ∈ ProjA0

Ap =

{
f

g
| f, g ∈ A, g homogeneous ∈ A0 − p

}
.

One can check that (ProjA0, Ã) is a superscheme, and we will denote it with
ProjA (see [35] Ch. II §5 for more details). �

Let us see two important examples: the projective superspace and the
projective supervarieties.

Example A.12. Projective superspace.

Consider the graded superalgebra S = C[x0 . . . xm, ξ1 . . . ξn]. We want to
describe ProjS explicitly as a superscheme.

For each r, 0 ≤ r ≤ m, we consider the graded superalgebra

S[r] = C[x0, . . . , xm, ξ1, . . . , ξn][x
−1
r ], deg(x−1

r ) = −1.

The subalgebra S[r]0 ⊂ S[r] of degree 0 is

(42) S[r]0 ≈ C[u0, . . . , ûr, · · · , um, η1, . . . ηn], us =
xs
xr
, ηα =

ξα
xr
,

(the label ‘ ˆ ’ means that this generator is omitted). Let |Ur| be the set of
homogeneous prime ideals of S[r]0. Because of (42), a homogeneous prime
ideal of (Sr)0 corresponds to a prime ideal of the subalgebra of degree 0,
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S[r]00 in S[r]0 = S[r]00 ⊕ S[r]10, so |Ur| = SpecS[r]00. We denote by Ur the
superscheme

Ur = SpecS[r]0 ≈ (SpecS[r]00, S̃[r]
0), OUr =def S̃[r]0 = OPm ||Ur|⊗C[ξ1, . . . , ξn].

where Pm is the classical projective space of dimension m and OPm its
structural sheaf. We have then found affine open subsuperschemes Ur =
SpecS[r]00 whose topological spaces cover ProjS0, and

OUr ||Ur|∩|Us| = OUs ||Ur|∩|Us|.

We conclude that there exists a unique sheaf on Proj(S)0 that we denote as
OPm|n , whose restriction to |Ui| is OUi

and ProjS = (ProjS0,OPm|n).

We will call the superscheme ProjS = Pm|n the super projective space of
dimension m|n.

�

More in general if E is a super vector space and Sym(E) the algebra of
the polynomial functions on E, we will denote with P(E) the superscheme
Proj (Sym(E)).

�

Example A.13. Projective supervarieties.

Let I ⊂ S = C[x1 . . . xm, ξ1 . . . ξn] be a homogeneous ideal; then S/I is
also a graded superalgebra and we can consider the superscheme Proj(S/I).
The natural surjective morphism p : S → S/I defines a morphism of super-
schemes

p̂ : Proj(S/I) → ProjS.

Let us see this more in detail. We clearly have a morphism on the underlying
topological spaces as it happens in the classical case. In order to build a
sheaf morphism, we look at an affine cover of Proj(S/I)0. We define the
topological space:

|Vi| = Proj

(
C[x0, . . . xm, ξ1 . . . ξn]

I
[x−1

i ]

)

0

=

= Spec

(
C[x0, . . . xm, ξ1 . . . ξn]

I
[x−1

i ]

)0

0

=

= Spec

(
C[u0, . . . , ûi, . . . um, η1 . . . ηn]

Iloc

)
,
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where Iloc = (I[i])00 ⊂ C[u0, . . . , ûi, . . . um, η1 . . . ηn] in our previous notation.
We define the affine superscheme

Vi = Spec

(
C[u0, . . . , ûi, . . . um, η1 . . . ηn]

Iloc

)

One can check that the supersheaves OVi
are such that OVi

||Vi|∩|Vj | =

OVj
||Vi|∩|Vj |. Hence as before there exists a supersheaf Proj(S/I) on Proj(S/I)0

whose restriction to |Vi| is OVi
. The natural morphisms from Vi to Pm|n i.

e. the maps corresponding to the superalgebras morphisms:

S[x−1
i ] −→ (S/I)[x−1

i ]

glue accordingly to give the morphism p̂ : Proj(S/I) → ProjS. �

A.3 The functor of points of projective superspace.

We now want to understand the functor of points of the projective super-
space Pm|n and of its subvarieties. The situation is essentially the same as
in the classical case. We will briefly sketch it in the super setting. (For more
details of the classical case see Ref. [39] pg 111).

In Example A.12 we have given explicitly the projective superschemePm|n

and an open affine covering. We want to give now explicitly its functor of
points, namely

hPm|n(SpecA) = Hom(SpecA,Pm|n), A ∈ (salg).

Using the locality property (see 3 of Facts A.10), one can prove that a

morphism ψ : SpecA −→ Pm|n is determined by a family of morphisms

ψi : SpecAfi −→ Pm|n, where (fi, i ∈ I) = (1) = A, provided they induce
the same map on intersections (see Proposition III-39 in Ref. [39]). If we
denote by φ′kl : SpecAfkfl −→ SpecAfk , the maps of superschemes induced
by φkl : Afk −→ SpecAfkfl , then we have that

ψi ◦ φ
′
ij = ψj ◦ φ

′
ji.

We want now to give a description of the morphisms SpecA −→ Pm|n

when A is a local superalgebra (Proposition III-36 in Ref. [39]).

Proposition A.14. Let A be a local algebra. Then the morphisms SpecA −→

Pm|n are in one to one correspondence with the set of (m + 1|n)-tuples
(a0 . . . am, α1 . . . αn) ∈ A

m+1|n with at least one ai invertible, modulo multi-
plication by an invertible element in A.



48 CHIRAL SUPERSPACES

Proof. The proof is the same as the classical one, we briefly sketch it.
Consider the element (a0 . . . am, α1 . . . αn) ∈ Am+1|n with ai (i fixed) a unit.
We want to write the corresponding morphism of superschemes SpecA −→

Pm|n. We can write immediately the morphism of superalgebras

ϕ : k[Ui] = k[u1 . . . ûi . . . um, η1 . . . ηn] −→ A
uj 7→ aj/ai
ηk 7→ αk/ai

This is well defined with respect to the equivalence relation. Moreover it
defines a sheaf morphism ϕ∗ : OUi

−→ OA, with Ui = Speck[Ui]. One
can check that ϕ∗

i ||Ui|∩|Uj | = ϕ∗
j ||Ui|∩|Uj| hence the ϕ∗

i define a morphism
ϕ : OPm|n −→ OA.

Conversely, assume that we have a morphism ψ : SpecA −→ Pm|n. The
topological map sends the maximal ideal m of A0 into some |Ui|, |ψ|(m) ∈
|Ui|. We claim that all SpecA0 is mapped inside |Ui|. In fact |ψ|−1(|Ui|)
is an open set containing m hence necessarily the whole SpecA0. Hence
|ψ|(SpecA0) = |Ui|. The morphism ψ is then given by a superalgebra map:

k[Ui] = k[x0/xi, . . . , xm/xi, ξ1/xi, . . . , ξn/xi] −−−−→ A

xk/xi, ξµ/xi −−−−→ bk, βl

So this map determines: (b0, . . . , bi = 1, . . . bm, β1, . . . , βn). One can check
that this is well defined. In fact if |ψ|(m) is also in |Uj | we have that it
corresponds to a different m+ 1|n-uple which is a multiple of the previous
one. �

The next observation characterizes the functor of points of subvarieties
of the projective superspace, that is projective supervarieties as they are
defined in Example A.13.

Observation A.15. Let X ⊂ Pm|n be a projective supervariety defined
by the homogeneous ideal I = (f1 . . . fr). As we saw in Proposition A.14,

for A a local superalgebra, the A-points of Pm|n are the (m + 1|n)-tuples

(a0 . . . am, α1 . . . αn) ∈ A
m+1|n with at least one ai invertible. We have that

such an (m + 1|n)-tuple corresponds to an A-point of X if and only if it
is a zero of all the polynomials f1 . . . fr. We leave this to the reader as an
exercise. For more details on the ordinary setting, see [39] Ch. III. �
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A.4 The functor of points of the Grassmannian superscheme

In this section we want to construct the functor of points of the Grassman-
nian superscheme (for a general and more detailed treatment of functor of
points and Grassmannian see [6] §3).

We want to stress the importance of the functorial treatment since it is
more general and it gives geometric intuition to the problem. In fact it
allows to recover the description of Grassmannian superscheme as the set
of submodules of rank r|s inside some free m|n-module. Let us see more in
detail this construction.

Consider the functor Gr : (salg) −→ (sets), with Gr(A) the set of projec-

tive quotients of rank r|s of Am|n, that is,

(43) Gr(A) = {α : Am|n → L, with L a projective A-module of rank r|s}

where α ∼= α′ if and only if they have the same kernel.

This functor can also be equivalently defined on the objects as the set:

Gr(A) = {projective submodules L of Am|n of rank r|s}.

To complete the definition of functor of points we need to specify Gr on
morphisms ψ : A −→ B.

Given a morphism ψ : A → B on (salg), we can give to B the structure
of A-module by setting

a · b = ψ(a)b, a ∈ A, b ∈ B.

Also, given an A-module L, we can construct the B-module L ⊗A B. So
given ψ and the element of Gr(A), f : Am|n → L, we have an element of
Gr(B),

Gr(ψ)(f) : Bm|n = Am|n ⊗A B → L⊗A B.

We want to briefly motivate why Gr is the functor of points of a super-
scheme, sending the reader to [6] and [38] for more details and the complete
proof. We use the following result [6] §3:

Theorem A.16. A functor F : (salg) −→ (sets) is the functor of points
of a superscheme X if and only if it has the sheaf property and it admits a
cover by open affine subfunctors. �

We will start by showing that Gr admits a cover by open affine sub-
functors. Consider the multiindex I = (i1, . . . , ir|µ1, . . . , µs) and the map
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φI : A
r|s −→ Am|n defined by

φI(x1, . . . , xr|ξ1, . . . , ξs) = m|n− tuple with

x1, . . . xr occupying the position i1, . . . , ir,

ξ1, . . . ξs occupying the position µ1, . . . , µs

and the other positions are occupied by zero.

(For example, let m = n = 2 and r = s = 1. Then φ1|2(x, ξ) = (x, 0|0, ξ)).

If is possible to define subfunctors vI of Gr that on local superalgebras
look like:

vI(A) = {α : Am|n −→ L / α ◦ φI is invertible}.

It turns out that the vI ’s are representable and they correspond to the affine
superspace Ar|s×m|n, moreover they cover Gr.

As for the sheaf property of Gr, notice that classically we have a func-
torial equivalence between the categories of projective finitely generated A-
modules and coherent sheaves on SpecA which are locally of constant rank
(see [35] pg 111). One can check that this classical equivalence translates
to the super category, hence our functor can be identified with:

Gr(A) ∼= {F ⊂ O
m|n
A /F is a subsheaf, of locally costant rank r|s}

where O
m|n
A = km|n ⊗OA.

By its very definition this functor is local. Hence we have proven that Gr
is the functor of points of a superscheme i. e. G = hS .

A.5 Actions of Supergroups

In this section we briefly summarize the definition and main properties of
the stabilizer functor for the action of a supergroup on a superscheme. Since
a supervariety is in particular a superscheme, all our statements hold if we
replace the word ‘superscheme’ with ‘supervariety’.

Definition A.17. We say that a supergroup G acts on a superscheme X,
if we have a natural transformation between their functor of points:

hG(A)× hX(A) −→ hX(A)

g, x 7→ g · x

satisfying the usual axioms for an action:

• g · (h · x) = gh · x, for all g, h ∈ hG(A), x ∈ hX(A);
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• 1G · x = x, for all x ∈ hX(A).

Once a supergroup action is defined, we can talk about the stabilizer of a
subfunctor of hX . We are not assuming the subfunctor to be representable
or in general to be a sub-superscheme of X. In the following we are inspired
by [36] Ch. 1, §2.

Definition A.18. Let Y be a subfunctor of hX . We call StabY the stabilizer
of Y the following supergroup subfunctor of hG:

StabY (A) :=
{
g ∈ hG(A)

∣∣ g · Y (A′) = Y (A′) ∀A− algebras A′
}

Notice that by this definition there is no guarantee that StabY is the
functor of points of a superscheme and this even in the case in which Y is
a subscheme of X. In fact, as it happens already in the ordinary setting,
we have examples for Y an open subscheme of X, for which StabY is not
representable. Consider for example the natural action of the multiplicative
group G = A1 \ {0} on X = A1 by multiplication and let Y = hA1\{0}.
This is the functor of points of an open subscheme of X. Geometrically it is
clear that the only point stabilizing the open subset A1 \{0} is the identity.
However if one computes the stabilizer of Y one finds that StabY (A) consists
of the elements 1 + n, with n a nilpotent element of A and one can prove
this functor is not representable.

Despite this complication, we however have some positive answer to the
question whether StabY (A) is the functor of points of a superscheme (see
[6] Ch. 6 for more details and the proof of this statement).

Proposition A.19. Let the notation be as above and assume Y is the func-
tor of points of a closed subscheme of X. Then StabY is representable and
it is a closed subgroup of the supergroup G.
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