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Quadratic deformation of Minkowski space
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We present a deformation of the Minkowski space as embeddedhe conformal space (in the formalism
of twistors) based in the quantum versions of the correspgrkinematic groups. We compute explicitly
the star product, whose Poisson bracket is quadratic. We #tad the star product although defined on the
polynomials can be extended differentiably. Finally we poite the Eucliden and Minkowskian real forms
of the deformation.

Copyright line will be provided by the publisher

1 The Grassmannian and the Minkowski space

We consider the Grassmanni@i(2, 4), the set of two-planes insidé*. A planer € G(2,4) is given by
two linearly independent vectors or by any two linear corations of them that are independent, so

7 = span(a, b) = span(a’, V'), (', V) = (a,b)h, h € GL(2,C).
There is a transitive action ¢fL(4, C) (or SL(4,C)) ) onG(2,4).
gm = span{ga, gb}, g € GL(4,C).

If we consider a particular point,

Tp = span , with stability group

arxXiv:1207.1316v1 [hep-th] 5 Jul 2012

Py = {(ﬁ ]g) € SL(4,<C)} . and  G(2,4)=SL(4,C)/P,.
We notice that the conformal group of space tit$©2, 4), has spin groufU(2, 2). Its complexifica-
tion, SO(6, C), has spin groupL(4, C).
How to extract the Minkowski space fro6i(2, 4)? Notice that since the two vectors are independent,
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at least one of thé x 2 determinants in this matrix ig 0. The space is covered by the atlas
Uij ={(a,b) eC*xC* | abj —bia; #0},i<j, i,j=1,...4.
U2 is thebig cell, and using th& L (2, C) freedom, a plane iV, can be represented by

1 0

|0 1 :(11>
t31  t32 t)’
ty  ta2

with the entries of totally arbitrary. Sd/;» ~ C*, and it is a good candidate for the Minkowski space.
What about the group actiori?, is left invariant by théower parabolic subgroup oSL(4, C),

z 0
Pl_{(Tx y)’ / detx-dety—l},

t—yte L+ T.

The group isSL(2,C) x SL(2,C) x C* x T, so it is the Poincaré group where instead of the Lorentz
group we have put its double cover.

t belongs to thewistor space associated to spacetime. Using the Pauli matrices, we venttte the
spacetime notation and obtain the standard action of thecB@ group on Minkowski spacetime

. " 20 4+ 23 2l —iz?
=zt = : .
® ot +iz? 2% —ad

and it acts ort as

Also the spacetime metric has an interpretation in the owvigtrmalism,

dett = (2°)? — (21)? — (2®)? — (2®)%.

2 Algebraic approach

Quantization of spacetime means to deform the commutaltiygbea of functions (can be polynomials or
smooth functions) to a non commutative algebra. Other ptigsdhat we want to consider in the quantum
setting have to be first defined in the algebraic formalism thieth 'quantized’. This is the case of the
group actions. The respective algebras are

O(SL(4,C)) = Clgap]/(det g — 1), A, B=1,...,4.
O(P) = Clwij, yab, Tai) /(det x - dety — 1), 4,5 =1,2, a,b=3,4.
OM) = Clta1, 32, ta1, taz].
The group law is expressed in terms afagproduct
O(SL(4,C)) —2< O(SL(4,C)) ® O(SL(4,C))

JAB - > ¢ 94c ® 9o,

with the property
pa o (Acf)(g1,92) = flgrg2), [ € O(GL(4,C)).
The action on the Minkowski space iseaction

o) —2— 0B e o)
tai — yabs(z>ji & tbj + Tai ® 1.
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3 The quantum Minkowski space

In Refs. [2[33] one substitutes the grosip(4, C) by SL, (4, C)in the twistor construction. All the scheme
of coaction and big cell can be repeated in the quantum cdseh\gives a quantization for the Minkowski
space as a big cell inside a quantum conformal space (a qu@itassmannian).

We just state the result: The quantum Minkowski space is atgna matrix algebra with the rows
interchanged. The correspondeddg(2) — O, (M) is given in terms of the respective generators:

dll de = 1?32 1?31
G21 Q22 tae ta1)
This means that the commutation relations among the quagémarators are the following

taotsr = q Mtartao, ta1tar = ¢ Mtaita, taatar = tartse + (g7 ' — q)tastsn,
t31tas = taatsr, taatsn = q Mtaotso, taolsr = ¢ g1tz

What happened to the groups? They have becgumstum groups with a non commutative product and
a coproduct that ithe same than the one we had before. This means that the group law hahaoged,
nor the coaction on the Grassmannian and the Minkowski sgdeeonly change is that all these varieties
have become non commutative. It is a remarkable propertyadfixguantum groups that the coproduct is
compatible with both, the commutative product and the nonroatative one.

In the quantum versio®,(P,), the sets of generators y andT are separately isomorphic B x
2 matrix algebras, but while andy commute among theni, does not commute with the rest of the
generators.

4 Algebraic star product

A quantum matrix algebra is an algebra o@&y = C[g,¢ '], wheregq is a parameter. Moreover, as a
module ovelC,, it is a free module, which means that it has a basis. It is keslvn that there is at least
oneordering among the generators such that the standard monomialsatssido this ordering are a basis
of the quantum matrix algebra. (This is a non trivial propgrt
The ordering is the following
f41 < f42 < f31 < zg327

and then there is an isomorphisordering rule or quantization map) between?®, (M) andO(M)][q, ¢~ *]:

OM)g.q Y] —Ls  0,(M)

th that5itgy  —— 115,15,1%
With the quantization map we can pull back the non commuggtieduct tad(M)[q, ¢~ *]. This defines
astar product,

f*g = Ql:{l(QM(f)Ql\l(g))a fag € 0(1\4)[(]5(]_1]5
which can be computeekplicitly
(t21ti2t§1tg2) * (tﬂt22t13)1t§2> = q7mcjmbind7dpthmtigntgfptg;T
p=min(d,m)
+ Z qf(mfk)cf(mfk)bfn(dfk)fp(dfk) Fk (q, d, m)tzfmfkti;rk+nt§?k+ptg2fk+r
k=1

Fy.(q,d, m) are numerical factors defined recursively. We recover thedassical interpretation of the
algebra being an algebra of functions, but with a star produc
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5 Differential star product

The previous formula for the star product is nice and compttcan only be computed on polynomials.
Can we extend it to smooth functions? Not obvious. We progettiere exists a (unique) differential star
product that coincides with the one given above on polyntamia

Change of the parameter:= . We expand in powers df so we obtain a star product of the form

oo
Fxg="Ffg+> WC;f9),
j=1
with
f= t21tizt§1tg27 g = tyitpth s,
At each order, we have contributions from each of the ternts differentk

p=min(d,m)

Culf9)= Y, CP(f9).

k=0

We want to writeC’,, as a bidifferential operator. But this is not trivial becawad! the dependence in the
exponents should cancel.

Cy :Cfo) + Cfl) = —(t41131051 ® O41 + taots1042 @ D1+
t32t42032 ® Oz + t3at31030 © 031 + 2taat31032 ® Oa1),

Antisymmetrizing and changing variables we obtain the fwmidracket

{19} =1(()? = (@*))(01f 029 — D1902f) +2°2 (90 fOrg — gl f)
—a%2%(90f0rg — DogOrf) — v (02 Ong — Oagdaf) + a%a" (91 fOag — D1901))

Notice that if ther'’s are real, then the Poisson bracket is pure imaginary.,Al&quadratic.

We have computed explicitly up to the orde, but the expression is already too big to display it here.
We looked for an argument to show it at arbitrary order. This loe done by careful inspection. The proof
that it is differential at each order is rather technical areddo not reproduce it hergl[4] But having the
explicit formula for the polynomials is essential to apgig targument.

An example of the possible difficulty: suppose that we wameéfyoduce:™ ! as the result of applying
a differential operator ta™. We have several choices,

m—1 1 m—1

1
T =—z™, T = —0,z™,
T m

But none of them is both, independent on the expomerind polynomial in the variable. So the right
combination of coefficients should appear in order to catiwefactors that appear when differentiating.
For example, if the result werez™ 1, then we have a differential operator

ma™ ! = 9, a™.

Since we have recovered the interpretation of 'functionsthe non commutative algebra, we can try
to express the coaction as an action of this space of furectRemember that, formally, for the generators
the coaction is the same than in the commutative algebra.ugteged to pull it back to the star product
algebra.

We define the transformed variables (no translations arsidered here)

Tij ENGXMOA*(tij) = Yabtp; S(5i); SO
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[iGxm © Ay (B4 t551519,) = TH *GxM Tiy *GxM T3 *GxM T35 -
One just has to expand the star products in the right hand Wigléo orderh we have computed it in terms
of a differential operator,

1 1
§D1(T41, 741)02, 4 D1(T41,T42)0rpy Orpy + §D1(T42, 742)02, 4 D1 (742, T31)Or g Orgy +

T41 T42

1 1
§D1(T31, 731)02, + D1 (731, 732)Orgy Oryy + §D1(T32, T32)02,, + D1 (71, 731)Oryy Oryy +

D1 (741, 732) 074, Orgy + D1(Taz, T32) 07y, Orgs -

and the coefficients are polynomials of order 6 in the vaeshbly, t.

6 Real forms: Euclidean and Minkowski quantum spaces

Let A be a commutative algebra ov€r An involution: of A is an antilinear map satisfying, fgt g € A
anda, 8 € C

vaf + Bg) = a"uf + B g, (antilinearity)
u(fg) = u(f)ug), (automorphism)
tor=1.

Let us consider the set of fixed pointsof

A ={feA/uf) =T}

It is easy to see that this is a real algebra whose completxdice A. A" is areal formof A.
Classical Minkowski space:

<LM(t31) LM(tsz)) _ <t31 t41> () =T

i(tar)  om(taz) t32  t42

The combinations
o 1 1
T = §(f31 + t42), r = §(f32+ﬁ41),

1 1
2 3
X 21( 41 32)7 x 2( 31 42);

are fixed points of the involution. One has
OM)™ = R[z% 2!, 2% 23].
Classical Euclidean space:
tg(ts1) r(ts2)\ [ taz  —tn .
(LE(t41) tp(taz) ) \—tse  ts1 )’ () = cof(t).

The commbinations

1 1
22 = 5(1531 + ta2), 2= 5(1532 +ta1),
, 1 s i
5= 5(1541 — t32), z° = 5(1531 — ta2),
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are fixed points ofg, and as before,
OM)'E =R[2%, 21, 22, 23].

Formally, the same expressions on the generators as indb&i@dl case are involutions in the quantum
algebra. A few things change:

e Checking with the commutation relations they are antiawighisms, this is

wi(fg) = em(g)em(f),
LE(fg) = LE(!])LE(f)-

e This discards the interpretation of the real form of the nommutative algebra as the set of fixed
points of the involution.

e When pulling back to the star product algebra, the Poissacket is purely imaginary.

Finally one finds also the corresponding involutions in theaug,

LPz,M(w) = S(y)Ta LPZ,M(y) = S(«T)T, LPZ,M(T) = TT;
vp () = S(@)7T, e e(y) =S, (T = cof(T),

Itis not difficult to realize that in the Minkowskian case tfeal form of the Lorentz group (corresponding
to the generators andy) is SL(2, C)r and in the Euclidean case3%J(2) x SU(2).
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