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Abstract

In this paper we study algebraic supergroups and their coadjoint
orbits as affine algebraic supervarieties. We find an algebraic defor-
mation quantization of them that can be related to the fuzzy spaces
of non commutative geometry.
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1 Introduction

The use of “odd variables” in physics is very old and quite natural. It is
unavoidable in the description of theories involving particles like the electron.
Physical theories are given by functionals on a certain kind of “fields” or
sections of a bundle over the manifold of spacetime M. The bundle has
fibers which are super vector spaces (Z2-graded vector spaces), and that have
a commutative superalgebra structure. In an open set U ⊂ M of spacetime
the set of fields can be written as

{φi(x), ψα(x)}, i = 1, . . . p, α = 1, . . . q, x ∈ U,

with the superalgebra structure given by the relations

φi(x)φj(x) − φj(x)φi(x) = 0, φi(x)ψα(x) − ψα(x)φi(x) = 0,

ψα(x)ψβ(x) + ψβ(x)ψα(x) = 0.

Free fields (i.e. fields satisfying the free equations of motion) define uni-
tary representations of the Poincaré group. It was soon realized that in order
to have a consistent description, the half integer spin representations had to
be described by odd valued fields while the integer spin representations were
described by even valued fields. This is known as the spin-statistics theorem.

Once the necessity of odd or Grassmann coordinates was established on
physical grounds it would have been natural to consider superspaces or su-
permanifolds. Nevertheless, there was still an important conceptual step to
be taken, and the input came also from physics. To have a supermanifold, all
the coordinates, even and odd, must be put on equal grounds. This means
that changes of coordinates mix together even and odd quantities in a con-
sistent way. From the physics point of view, this would mean that fields
with different spin and statistics could be mixed by certain transformations.
But all the groups of symmetries considered in physics until then would pre-
serve the even and odd subspaces, not allowing such a mixing. They were
all even transformations or super vector space morphisms, since they would
not change the degree of the vector on which they act. The first exam-
ple of super transformations, that is, transformations that mix the odd and
even subspaces irreducibly, appeared in the seminal paper by Gol’fand and
Likhtman [1]. (Other examples of Lie superalgebras had appeared in the
mathematical literature before, but not related to trasformation groups). In
that paper, an extension of the Poincaré algebra by means of a set of odd
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translations whose anticommutator is proportional to an ordinary translation
was constructed. To comply with the spin-statistics theorem, the generators
of the odd translations where in a spin 1/2 representation of the Poincaré
group. This was the first example in physics of a Lie superalgebra.

Natural as it seems from this historical perspective, the introduction of
Lie superalgebras (and Lie supergroups) has been revolutionary in physics.
The assumption that supersymmetry (that is, symmetry under a supergroup
of transformations) is realized in nature has profound implications, since it
restricts significantly the number of theories that can be considered. On the
other hand, supersymmetric field theories have many advantages in the quest
for a unified theory of all interactions. Accordingly, there is a huge number
of works dealing with supersymmetric field theories. Some pioneering works
are the one by Wess and Zumino [2] on the chiral multiplet, by Salam and
Strathdee [3] and Ferrara, Wess and Zumino [4] on superspace, by Wess and
Zumino [5] on supersymmetric electrodynamics, by Ferrara and Zumino [6]
and Salam and Strathdee [7] on supersymmetric Yang-Mills theories [6], and
by Ferrara, Freedman and van Nieuwenhuizen [8] and Deser and Zumino
[9] on supergravity. Further information and references can be found in the
collected reprint volume [10].

Since those first days the concept of supermanifold in mathematics has
evolved to a very precise formulation. Starting with the superanalysis of
Berezin [11], and together with other works by Kostant [12], Leites [13],
Manin [14], Bernstein, Deligne and Morgan [15] to mention some of the most
representative. Supermanifolds are seen roughly as ordinary manifolds to-
gether with a sheaf of superalgebras. The odd coordinates appear in the
stalks of the sheaf. This approach allows considerable freedom. Following
Manin [14], one can define different kinds of superspaces, supermanifolds
or algebraic supervarieties by choosing a base space with the appropriate
topology. The sheaves considered are superalgebra valued, so that one can
generalize the concepts of complex and algebraic geometry to this new set-
ting.

In this paper we will deal strictly with algebraic supervarieties, but the
concept of supermanifold has been treated extensively in the literature men-
tioned above.

It is interesting to note that there is an alternative definition of algebraic
variety in terms of its functor of points. Essentially, an algebraic variety can
be defined as a certain functor from some category of commutative algebras

3



to the category of sets. It is then very natural to substitute the category
of algebras by an appropriate category of commutative superalgebras and to
call this a supervariety. The same can be done for supergroups, super Lie
algebras, coadjoint orbits of supergroups and other “super” objects. The
elegance of this approach cannot hide the many non trivial steps involved
in the generalization. As an example, it should be enough to remember the
profound differences between the classifications of semisimple Lie algebras
and semisimple Lie superalgebras [11, 16, 17].

The purpose of this paper is to study the coadjoint orbits of certain
supergroups, to establish their structure as algebraic supermanifolds and to
obtain a quantum deformation of the superalgebras that represent them.

Recently there has been a growing interest in the physics literature on
non commutative spaces (also called “fuzzy spaces”). The idea that space-
time may have non commuting coordinates which then cannot be deter-
mined simultaneously has been proposed at different times for diverse mo-
tives [20, 21, 22, 23]. In particular, these spaces have been considered as
possible compactification manifolds of string theory [23].

In general, we can say that a “fuzzy” space is an algebra of operators
on a Hilbert space obtained by some quantization procedure. This means
that it is possible to define a classical limit for such algebra, which will be a
commutative algebra with a Poisson structure, that is, a phase space. As it is
well known, the coadjoint orbits of Lie groups are symplectic manifolds and
hamiltonian spaces with the Kirillov Poisson structure of the corresponding
Lie group. There is a wide literature on the quantization of coadjoint orbits,
most of the works based on the Kirillov-Kostant orbit principle which asso-
ciates to every orbit (under some conditions) a unitary representation of the
group. Let us consider as an example the sphere S2, a regular coadjoint orbit
of the group SU(2). In physical terms, the quantization of S2 is the quanti-
zation of the spin; it is perhaps the most classical example of quantization,
other than flat space R2n. In the approach of geometric quantization (see
Ref. [18] for a review) the sphere must have half integer radius j and to this
orbit it corresponds the unitary representation of SU(2) of spin j (which is
finite dimensional). Let us take the classical algebra of observables to be the
polynomials on the algebraic variety S2. Given that the Hilbert space of the
quantum system is finite dimensional, the algebra of observables is also finite
dimensional. It is in fact of dimension (2j+1)2 and isomorphic to the algebra
of (2j + 1) × (2j + 1)-matrices [19, 20]. After a rescaling of the coordinates,
we can take the limit j → ∞ maintaining the radius of the sphere constant.
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In this way the algebra becomes infinite dimensional and all polynomials are
quantized. This procedure is most appropriately described by Madore [20],
being the algebras with finite j approximations to the non commutative or
fuzzy sphere.

The deformation quantization approach [24] is inspired in the correspon-
dence principle: to each classical observable there must correspond a quan-
tum observable (operator on a Hilbert space). This quantization map will
induce a non commutative, associative star product on the algebra of classical
observables which will be expressed as a power series in ~, having as a zero
order term the ordinary, commutative product and as first order term the
Poisson bracket. One can ask the reverse question, and explore the possible
deformations of the commutative product independently of any quantization
map or Hilbert space. It is somehow a semiclassical approach. Very often,
the star product is only a formal star product, in the sense that the series in ~

does not converge. It however has the advantage that many calculations and
questions may be posed in a simpler manner (see [32] for the string theory
application of the star product).

The deformation quantization of the sphere and other coadjoint orbits has
been treated in the literature [25, 26, 27, 28, 29]. The immediate question
is if deformation theory can give some information on representation theory
and the Kirillov-Kostant orbit principle [30, 31].

In Ref. [28] a family of algebraic star products is defined on regular orbits
of semisimple groups. The star product algebra is isomorphic to the quotient
of the enveloping algebra by some ideal. It is in fact possible to select this
ideal in such a way that it is in the kernel of some unitary representation.
The image of this algebra by the representation map will give a finite dimen-
sional algebra. In this way we can obtain the fuzzy sphere and other fuzzy
coadjoint orbits from the star product. The star product is then seen as a
structure underlying and unifying all the finite dimensional fuzzy algebras.
The classical limit and the correspondence principle are seen naturally in this
approach.

In this paper we extend the approach of Ref. [28] to some coadjoint
orbits of some semisimple supergroups. The extension to the super category
is not straightforward and this is reflected in the fact that we have to restrict
ourselves to the supergroups SLm|n and OSpm|n, and orbits of elements with
distinct eigenvalues (see Theorem 4.1) to obtain the extension. This is by no
means an affirmation that the procedure could not be in principle be applied
to more general supergroups and orbits, but a consequence of the technical
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difficulties involved.
Other treatments of the “fuzzy supershere” can be found in Refs. [35,

34, 33]. A comparison with these approaches as well as a relation of our
star product with representation theory of supergroups will be discussed
elsewhere.

The paper is organized as follows: Section 2 is dedicated to the definition
of algebraic supervariety and its functor of points. The definitions and re-
sults that we mention are somehow scattered in the literature and we want
to give a comprehensive account here [36, 20]. Section 3 is dedicated to al-
gebraic supergroups and their associated Lie superalgebras in terms of their
functors. The correspondence between the algebraic Lie supergroup and its
Lie superalgebra is treated in detail. Most of the definitions and theorems
extend easily from the classical case, but we are not aware of any reference
where this account has been done explicitly for the algebraic case (instead,
the differential case is better known). We show proofs when we think it can
help to read the paper. We also illustrate the abstract definitions with the
examples of GLm|n and SLm|n. In Section 4 we retrieve the coadjoint orbits
of the supergroups mentioned above as certain representable functors, and
then as affine algebraic supervarieties. Finally, in Section 5 we present a de-
formation of the superalgebra that represents the functor associated to the
coadjoint orbit.

2 Algebraic supervarieties and superschemes

In this section we want to give a definition of algebraic supervarieties and
superschemes. Our description is self-contained and very much inspired in
the approach of Refs. [14, 15]. We assume some knowledge of basic algebraic
geometry and of super vector calculus. We are especially interested in the
description of a supervariety in terms of its functor of points.

Let k be a commutative ring. All algebras and superalgebras will be
intended to be over k and are assumed to be commutative unless otherwise
stated. If A is a superalgebra we will denote by A0 the even part and by A1

the odd part, so A = A0 + A1. Let Iodd
A be the ideal in A generated by the

odd part. The quotient A◦ = A/Iodd
A is an ordinary algebra. Notice that A

is both, an A0-module and an A◦-module.
If OX is a sheaf of superalgebras over a topological space X, then OX,0
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and O◦
X are sheaves of algebras with

OX,0(U) = OX(U)0, O◦
X(U) = OX(U)◦ U ⊂open X.

We denote by (algrf) the category of commutative k-algebras which are
reduced2 and finitely generated (often called affine algebras), and by (salgrf)
the category of commutative k-superalgebras finitely generated, and such
that, modulo the ideal generated by the odd elements, they are reduced.

We denote also by (alg) and (salg) the categories of commutative k-
algebras and commutative k-superalgebras respectively.

2.1 Ringed superspaces

Definition 2.1 A superspace (X,OX) is a topological space X together with
a sheaf of superalgebras OX , such that:
a. (X,OX,0) is a noetherian scheme,
b. OX is a coherent sheaf of OX,0-modules.

Definition 2.2 A morphism of superspaces (X,OX) and (Y,OY ) is given
by a pair (f, ψ) where f : X → Y is a continuous map, ψ : OY → f∗OX

is a map of sheaves of superalgebras on Y and (f, ψ|OY
) is a morphism of

schemes.

f∗OX denotes the push-forward of the sheaf OX under f .

Example 2.1

Let A be an object of (salg). We consider the topological space XA :=
Spec(A0) = Spec(A◦) (they are isomorphic since the algebras differ only by
nilpotent elements) with the Zariski topology.

On XA we have the structural sheaf, OA0
. The stalk of the sheaf at the

prime p ∈ Spec(A0) is the localization of A0 at p. As for any superalgebra, A
is a module over A0, so we have indeed a sheaf of OA0

-modules over XA with
stalk the localization of the A0-module A over each prime p ∈ Spec(A0). It
is a sheaf of superalgebras that we will denote by Ã. (XA, Ã) is a superspace.
(For more details on the construction of the sheaf M̃ , for a generic A0-module
M , see [37] II §5). �

2A reduced algebra is an algebra that has no nilpotent elements.
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Definition 2.3 An affine algebraic supervariety is a superspace isomorphic
to (XA, Ã) for some superalgebra A in (salgrf).

A is often called the coordinate superalgebra of the supervariety. The affine
algebraic supervarieties form a category denoted by (svaraff). Given an affine
algebraic supervariety (V,OV ) (or just V for short) we have an ordinary affine
algebraic variety associated to it, (V,O◦

V ). It is called the reduced variety of
V and denoted also by V ◦.

It is straightforward to generalize the construction to an arbitrary com-
mutative superalgebra A. We then have the following

Definition 2.4 An affine superscheme is a superspace isomorphic to (XA, Ã)
for some superalgebra A in (salg).

The affine superschemes over k form a category denoted by (sschemesaff).
As in the classical case, general supervarieties and superschemes are defined
as superspaces that are locally affine supervarieties and affine superschemes.

To any superscheme (S,OS) one can associate an ordinary scheme (S,O◦
S),

called the reduced scheme.

Example 2.2 Supervariety over the sphere S2.

(See Ref.[11], page 8). This is an example of a supervariety explicitly given
by the superalgebra representing the functor. We will see how the sheaf is
constructed in the closed points (maximal ideals) of the topological space.
Consider the free commutative superalgebra generated by three even vari-
ables x1, x2, x3 and three odd variables ξ1, ξ2, ξ3, k[x1, x2, x3, ξ1, ξ2, ξ3], and
the ideal

I = (x2
1 + x2

2 + x2
3 − 1, x1 · ξ1 + x2 · ξ2 + x3 · ξ3).

The superalgebra k[V ] = k[x1, x2, x3, ξ1, ξ2, ξ3]/I represents a supervariety
whose reduced variety V ◦ is the sphere S2. At each maximal ideal in k[V ]0,

m = (xi − ai, ξiξj) with i, j = 1, 2, 3, ai ∈ k and a2
1 + a2

2 + a2
3 = 1,

the local ring of k[V ]0 is the ring of fractions

(k[V ]0)m = {
f

g
/ f, g ∈ k[V ]0, g /∈ m}.
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The stalk of the structural sheaf at m is the localization of k[V ] as a k[V ]0-
module, that is

k[V ]
m

= {
m

g
/ m ∈ k[V ], g ∈ k[V ]0, g /∈ m}.

Notice that if a1 6= 0 (not all ai are zero simultaneously), then x1 is invertible
in the localization and we have

ξ1 =
1

x1
(x2ξ2 + x3ξ3),

so {ξ2, ξ3} generate k[V ]
m

as an Ok[V ]0-module. �

2.2 The functor of points

We recall first the definition of the functor of points in the classical (non
super) case.

Let X be an affine variety. The representable functor hX : (varaff)opp →
(sets) 3 from the category of affine varieties to the category of sets

hX(Y ) = hom(varaff )(Y,X)

is the functor of points of X. An element of hom(varaff )(Y,X) is an Y -point
of X. Given the equivalence of categories

F : (algrf) −→ (varaff)

R −→ Spec(R),

we can equivalently define the functor of points of an affine variety X =
Spec(R) as the representable functor

hR(T ) = hom(algrf )(R, T ), T ∈ (algrf).

This leads to an alternative definition of affine variety as a representable
functor between the categories (algrf) and (sets).

These definitions and observations can be extended immediately to the
super case.

3By the label opp we denote the category with the direction of morphisms inverted.
We could equally speak about contravariant functors.
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Definition 2.5 The functor of points of a supervariety X is a representable
functor

hX : (svaraff)opp → (sets).

Observation 2.1

The construction of Example 2.1 defines an equivalence of categories between
(svaraff) and (salgrf) and between (sschemesaff) and (salg). So the functor of
points can be equivalently be given by a representable functor hA : (salgrf) →
(sets). For example, as we will see in the next section, algebraic supergroups
can easily be defined as certain representable functors.

In the general case, for a general superscheme X, its functor of points
can be defined either as a representable functor from (sschemes)opp → (sets)
or as the functor

hX : (salg)opp −→ (sets), hX(A) = hom(sschemes)(XA, X)

where XA is the affine superscheme associated to the superalgebra A (see
Example 2.1). In fact, as it happens in the non super case (see Ref. [41]
pg 253), the functor of points of a superscheme is determined by looking
at its restriction to affine superschemes. Since we are mainly interested in
affine supervarieties and affine superschemes we will not pursue further this
subject.

3 Algebraic supergroups and their Lie su-

peralgebras

In this section we generalize the basic notions of algebraic groups to the super
case.

3.1 Supergroups and supergroup functors

Definition 3.1 An affine algebraic supergroup is a representable, group val-
ued functor

G : (salgrf) → (sets).
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The superalgebra k[G] representing a supergroup has the additional struc-
ture of a commutative super Hopf algebra. The coproduct

∆ : k[G] −→ k[G] ⊗ k[G]

f −→ ∆f

is such that for any affine superalgebra A and two morphisms (A-points)
x, y ∈ G(A) = homk−superalg(k[G], A) the following relation holds:

mA

(

x⊗ y(∆f)
)

= x · y(f) ∀f ∈ k[G],

where mA denotes the multiplication in A and “ ·” denotes the multiplication
in the group G(A). The tensor product is understood in the tensor category
of super vector spaces [15]. The counit is given by

E : k[G] −→ k

f −→ e(f)

where e is the identity in G(k). The antipode is defined as

S : k[G] −→ k[G]

f −→ S(f)

with x(f) = x−1(S(f)) ∀x ∈ G(A), and where x−1 denotes the group in-
verse of x in G(A).

Example 3.1 The supergroups GLm|n and SLm|n.

Let A be a commutative superalgebra. We denote by Am|n the free module
over A generated by m even generators and n odd generators. The endomor-
phisms of this super vector space (linear maps that preserve the grading) are
given by matrices (we use the conventions of Ref. [15])

(

pm×m qm×n

rn×m sn×n

)

(1)

where p and s have even entries and q and r have odd entries in A. We
denote the set of these matrices as glm|n(A). We can define a functor

glm|n : (salgrf) −→ (sets)

A −→ glm|n(A).
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glm|n is a representable functor. It is represented by the superalgebra

k[glm|n] := k[xij , yαβ, ξiβ, γαj], i, j = 1, . . .m, α, β = 1, . . . n

where x and y are even generators and ξ and γ are odd generators. In fact,
writing the generators in matrix form,

(

{xij} {ξiβ}
{γαj} {yαβ}

)

,

any matrix as in (1) assigns to a generator of k[glm|n] an element of A, and the
assignment has the right parity. Hence, it defines a superalgebra morphism
k[glm|n] → A.

GLm|n(A) is defined as the set of all morphisms g : Am|n → Am|n which
are invertible. In terms of the matrix (1), this means that the Berezinian
[11] or superdeterminant

Ber(g) = det(p− qs−1r) det(s−1)

is invertible in A. A necessary and sufficient condition for g to be invertible
is that p and s are invertible. The group valued functor

GLm|n : (salgrf) −→ (sets)

A −→ GLm|n(A).

is an affine supergroup represented by the algebra [40]

k[GLm|n] := k[xij , yαβ, ξiβ, γαj , z, w]/
(

(w det(x) − 1, z det(y) − 1
)

,

i, j = 1, . . .m, α, β = 1, . . . n.

Requiring that the berezinian is equal to 1 gives the supergroup SLm|n, rep-
resented by

k[GLm|n]/
(

det(x− ξy−1γ)z − 1
)

.

where y−1 is the matrix of indeterminates, inverse of the matrix y, whose
determinant is invertible and has inverse z.

In Ref.[40] the Hopf superalgebra structure of this affine supergroup was
explicitly computed. �

In the classical case, the concept of group functor is a generalization of
the concept of algebraic group. This is treated extensively in [42] II, §1. It
will be useful to introduce this notion for the super case, which can be done
easily with suitable changes.
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Definition 3.2 Let G be a functor from (salg) to (sets). We say that G is
a supergroup functor if:

1. There exists a natural transformation called the composition law

m : G×G −→ G

satisfying the associativity condition: m · (m× 11) = m · (11 ×m).
2. There exists a natural transformation, the unit section, u : ek −→ G,

where ek : (salg) −→ (sets), ek(A) = 1A, satisfying the commutative diagram:

G× ek
id×u
−→ G×G

u×id
−→ ek ×G

ց m





y
ւ

G

3. There exists a natural transformation σ : G −→ G satisfying:

G
(id,σ)
−−−→ G×G





y





y

m

ek
u

−−−→ G

A morphism of supergroup functors is defined as a natural transformation
preserving the composition law.

Because of their representability property, affine algebraic supergroups
are supergroup functor.

3.2 Lie superalgebras

Let Ok : (salgrf) −→ (sets) be the functor represented by k[x]. k[x] corre-
sponds in fact to an ordinary algebraic variety, Spec(k[x]), the affine line.
For a superalgebra A we have that Ok(A) = A0.

Definition 3.3 A Lie superalgebra is a representable, group valued functor

g : (salgrf) −→ (sets)

with the following properties:
1. g has the structure of Ok-module, that is, there is a natural trans-

formation Ok × g −→ g. For each superalgebra A we have an A0-module
structure on g(A).
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2. There is a natural transformation [ , ] : g× g −→ g which is Ok-linear
and that satisfies commutative diagrams corresponding to the antisymmetric
property and the Jacobi identity. For each superalgebra A, [ , ] defines a Lie
algebra structure on g(A), hence the functor g is Lie algebra valued.

For any algebraic supergroup there is a Lie superalgebra which is naturally
associated. It is our purpose to construct it explicitly. Again, the construc-
tion is a generalization (not completely straightforward) of what happens in
the non super case. Our treatment is very similar to the one in Ref.[15] II,
4, no 1.

Let A be a commutative superalgebra and let A(ǫ) =def A[ǫ]/(ǫ2) be the
algebra of dual numbers (ǫ here is taken as an even indeterminate). We have
that A[ǫ] = A⊕ ǫA and there are two homorphisms: i : A→ A(ǫ) defined by
i(1) = 1 and p : A(ǫ) → A defined by p(1) = 1, p(ǫ) = 0.

Definition 3.4 Let G be a supergroup functor. Consider the homomorphism
G(p) : G(A(ǫ)) −→ G(A). For each G there is a supergroup functor, Lie(G),
defined as

Lie(G)(A) =def ker(G(p)).

We will see that when G is an affine algebraic supergroup (so it is a repre-
sentable group functor) Lie(G) is indeed a Lie superalgebra.

It is instructive to see first an example.

Example 3.2 Lie(GLm|n), Lie(SLm|n)

We want to determine the functor Lie(GLm|n). Consider the map:

GLm|n(p) : GLm|n(A(ǫ)) −→ GLm|n(A)
(

p+ ǫp′ q + ǫq′

r + ǫr′ s+ ǫs′

)

7→

(

p q
r s

)

with p, p′, s, s′ having entries in A0 and q, q′, r, r′ having entries in A1. p and
s are invertible matrices. One can see immediately that

Lie(GLm|n)(A) = ker(GLm|n(p)) =
{

(

1 + ǫp′ ǫq′

ǫr′ 1 + ǫs′

)

}

.

The functor Lie(GLm|n) is clearly group valued and can be identified with
the (additive) group functor glm|n (see Example 3.1).
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For Lie(SLm|n) one gets the extra condition Ber = det(1 + ǫp′) det(1 −
ǫs′) = 1, which implies the zero supertrace condition, that is, tr(p′)−tr(s′) =
0. The functor Lie(SLm|n) is then identified with the (additive) group functor

slm|n(A) = {x ∈ glm|n(A) / str(x) = 0}.

The functors glm|n and slm|n are representable and Lie algebra valued.
We have already seen that glm|n is representable (see Example 3.1). slm|n is
represented by the superalgebra:

k[slm|n] = k[Mm|n]/str(m)

where m is the matrix of indeterminates generating the algebra k[glm|n]. �

We want to show that when G is an affine algebraic group then Lie(G) is
a superalgebra. We will show first that the functor satisfies both properties
in Definition 3.3. Then we will show that it is representable. We start by
seeing that Lie(G) has a structure of Ok-module.

Let ua : A(ǫ) −→ A(ǫ) be the endomorphism, ua(1) = 1, ua(ǫ) = aǫ,
for a ∈ A0. Lie(G) admits a Ok-module structure, i.e. there is a natural
transformation

Ok × Lie(G) −−−→ Lie(G)

such that for any superalgebra A, a ∈ Ok(A), x ∈ Lie(G)(A),

(a, x) 7→ ax = Lie(G)(ua)x.

Notice that for subgroups of GLm|n(A), ax corresponds to the multiplication
of the matrix x by the even scalar a.

Let us consider the group of linear automorphisms of Lie(G)(A). Because
of the natural Ok-module structure of Lie(G) we have a group functor

GL(Lie(G)) : (salgrf) −→ (sets).

Alternatively one can also denote GL(Lie(G)) = Aut(Lie(G)).
We now want to introduce the Lie algebra structure (property 2 in Defi-

nition 3.3). We will do it through the adjoint actions, seen as natural trans-
formations.

Definition 3.5 Let G be a supergroup functor. The adjoint action of G on
Lie(G) is defined as the natural transformation

G
Ad

−−−→ GL(Lie(G))

15



which for any superalgebra A and g ∈ G(A), x ∈ Lie(G)(A)

AdA(g)x =def G(i)(g)xG(i)(g)−1

AdA(g)x ∈ G(A(ǫ)) but since G(p) is a group homomorphism, AdA(g)x ∈
Lie(G)(A).

Ad is a morphism in the category of group functors. So we can make the
following definition:

Definition 3.6 Let G be a supergroup functor. The adjoint action of Lie(G)
on Lie(G) is defined as

ad =def Lie(Ad) : Lie(G) −→ Lie(GL(Lie(G))) = End(Lie(G))

Finally, the bracket on Lie(G)(A) is defined as

[x, y] =def ad(x)y, x, y ∈ Lie(G)(A).

The arguments in Ref.[42] II §4 4.2, 4.3 apply with small changes to our case
and prove that [ , ] is a Lie bracket.

Example 3.3 GLm|n

We want to see that in the case of GLm|n the Lie bracket [ , ] is the commu-
tator. We have

AdA : GL(A) −→ GL(Lie(GLm|n))(A) = GL(Mm|n(A))
g 7→ Ad(A)(g),

Ad(g)x = gxg−1, x ∈ Mm|n(A).

By definition we have: Lie(GL(glm|n))(A) = {1+ ǫα / α ∈ GL(glm|n)(A)} So
we have, for a, b ∈ glm|n(A) ∼= Lie(GLm|n)(A) = {1 + ǫa | a ∈ glm|n(A)}:

ad(1 + ǫa)b = (1 + ǫa)b(1 − ǫa) = b+ (ab− ba)ǫ = b+ ǫ[a, b].

Hence ad(1 + ǫa) = 11 + ǫα(a), with α(a) = [a, ] as we wanted to show.
It is also clear that the same computation will hold for any closed sub-

group of GLm|n. �

Finally we have to address the issue of the the representability of the
functor Lie(G). From the classical (non super) case, we know that it is not,
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in general, representable (see Ref.[42] II, 4, 4.8). The most useful example is
when G is a linear group, that is, a closed subgroup of GLn. Then Lie(G) is
representable, and we will see that the same is true for the super case.

More generally, for any affine algebraic supergroup G, the associated func-
tor Lie(G) can be shown to be representable. Theorem 3.1 characterizes
Lie(G) geometrically as the tangent space at the identity. In the classical
case, this result is a particular case of a more general one involving schemes,
whose proof can be found in Ref. [42]. Since we are only concerned with affine
algebraic supergroups, all we need is an extension to the super category of the
(simpler) proof for affine algebraic groups. We find then convenient to write
explicitly the proof of the following theorem, although the super extension
in this particular case presented no difficulty.

Theorem 3.1 Let k be a field and G be an affine algebraic group, with k[G]
its coordinate superalgebra. As in Section 3.1, let E denote the counit in
the superHopf algebra k[G]. We denote by mE = ker(E) and by ω be the
super vector space mE/m

2
E . Then, Lie(G) is a representable functor and it is

represented by k[ω] where

k[ω] = k[x1, . . . xp, ξ1, . . . ξq]

with x1 . . . xp, and ξ1 . . . ξq being even and odd indeterminates respectively,
and p|q is the superdimension of ω.

Proof. We have to prove that Lie(G)(A) = homk−superalg(k[ω], A). It is
immediate to verify that

homk−superalg(k[ω], A) ∼= homk−supermod(ω,A) ∼= (ω∗ ⊗ A)0,

hence it is enough to show that Lie(G)(A) ∼= homk−supermod(ω,A).
We will define a map ρ : homk−supermod(ω,A) → Lie(G)(A) and then show

that it is a bijection. Let d ∈ homk−supermod(ω,A), d : ω −→ A. We first
consider the following maps:

φ : k[G] −→ k ⊕ ω = k ⊕ mE/m
2
E

f 7→ (E(f), f − E(f) + m2
E),

and for each d
d′ : k ⊕ ω −→ A(ǫ)

(s, t) 7→ s+ d(t)ǫ.
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We define ρ(d) as the composition ρ(d) = d′ ◦ φ. Then we have that

G(p)(ρ(d))(f) = E(f),

so ρ(d) ∈ kerG(p) = Lie(G)(A).
We want now to give the inverse z : Lie(G)(A) → homk−supermod(ω,A).

Assume ψ ∈ Lie(G)(A). We can write: ψ(f) = E(f) + ǫf ′. Now consider

ψ|
me

: me −→ A(ǫ)
f 7→ ǫf ′

Observe that ψ|
m

2
e

= 0, hence going to the quotient we have a supermodule

map ψ̃ : ω −→ A(ǫ), ψ̃(f) = f ′ǫ. Now define z(ψ)(f) = f ′. This is the
inverse of a. The fact z · ρ = id is straightforward. For ρ · z observe that
given ψ : k[G] −→ A(ǫ), this can always be written as: ψ(g) = E(g) + g′′ǫ.
Observe that g − E(g) ∈ me hence ψ|

me
(g − E(g)) = g′′ǫ, now the result

follows easily. �.

Corollary 3.1 Let k be a field and G be an affine algebraic supergroup. Then
Lie(G) is a Lie superalgebra

�

We want to remark that ω = me/m
2
e can be regarded as the dual of the

tangent space at the identity of the supergroup G. Theorem 3.1 hence states
that such tangent space is the same as Lie(G), as it happens in the non super
case.

Observation 3.1 Lie superalgebras as super vector spaces with a graded
bracket.

Lie superalgebras were first introduced in physics [1] with a different
definition. A Lie superalgebra is a super (Z2-graded) vector space g = g0+g1

with a bilinear, graded operation

[ , ] : g ⊗ g −→ g

X ⊗ Y −→ [X, Y ]

such that
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1. [X, Y ] = −(−1)pXpY [Y,X]
2. [X, [Y, Z]] + (−1)pXpY +pXpZ [Y, [Z,X]] + (−1)pXpZ+pY pZ [Z, [X, Y ]] = 0
where X, Y, Z are homogeneous elements of g with parities pX , pY , pZ . This
definition is used mostly when Lie superalgebras are treated independently
of Lie supergroups [11, 16].

This definition of Lie superalgebra can be shown to be equivalent to
Definition 3.3 in functorial terms. This is proven in Ref. [15], Corollary 1.7.3
pg 57, using the even rules principle. We will show how it works for the
specific example glm|n (Example 3.4).

We have then that in the super vector space ω∗ there is a graded bracket
[ , ] and a Lie superalgebra structure in the sense mentioned above.

Example 3.4

Let us consider the set of (m+ n) × (m+ n) matrices with arbitrary entries
in A denoted as glm|n(A). We also denote

I = 1, . . .m+ n, I = i for I = 1, . . .m

I = n + α for I = n+ 1, . . .m+ n.

Let {EIJ} be the standard basis of matrices with 1 in the place IJ and 0
everywhere else. An element X ∈ glm|n(A) can be written in terms of the
standard basis

X = XIJEIJ = pijEij + qiβEiβ + rαjEαj + sαβEαβ ,

where sum over repeated indices is understood and the parities of p, q, r and
s are arbitrary.

We assign even degree to Eij and Eαβ (block diagonal matrices) and odd
degree to Eiβ and Eαj (block off diagonal matrices). This corresponds to even
and odd linear maps. With this assignments glm|n(A) is a non commutative,
associative superalgebra, and glm|n(A) is its even part. It corresponds to the
even linear maps or super vector space morphisms.

We can give it a super Lie algebra structure with the ordinary commutator
of matrices among even elements or among an even and an odd one and the
ordinary anticommutator of matrices among odd elements. Then, the even
part of this Lie superalgebra is the Lie algebra glm|n(A).

In general, giving a representable, Lie algebra valued functor is equiva-
lent to give a super Lie algebra through the (anti)commutation rules of the
generators. �
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4 Coadjoint orbits of supergroups.

Let G ⊂ GL(m|n) be an algebraic Lie supergroup and g = Lie(G) the asso-
ciated Lie superalgebra. Let g∗ be the functor g∗(A) = g(A)∗.

We want to define a coadjoint orbit of the supergroup G. Let X0 be a
geometric point of g∗, that is X0 ∈ g∗(k). g(k) is an ordinary Lie algebra
over k, and g(k) ⊂ g(A) for any A through the unit map of A. We consider
the following functor,

CX0
: (salg) −→ (sets)

A −→ {Ad∗
gX0, ∀g ∈ G(A)} = G(A)/H(A), (2)

where H(A) is the stability group of X0. Notice that it is necessary to choose
a geometric point in order to have a functor.

The functor CX0
is not, in general, representable. The problem arises

already at the classical level. We can see it with an example. Let us consider
the algebraic group SLn over the complex numbers and its Lie algebra sln.
Their functors of points are represented respectively by

C[SLn] = C[xij ]/
(

det(x) − 1
)

,

C[sln] = C[xij ]/
(

tr(x)
)

i, j = 1, . . . n.

Let X0 = diag(l1 . . . ln) ∈ sln(C), li 6= lj , for i 6= j. The coadjoint orbit of X0

is an algebraic variety represented by

C[CX0
] = C[xij ]/(p1 − c1, · · · pl − cl), (3)

where pi = tr(X i) and ci = pi(X0).
An A-point of CX0

is a morphism C[CX0
] → A and it is given by a matrix

(aij) ∈ gln(A), such that pk(aij) = ck, k = 1 . . .m+ n.
If the functor CrX0

, defined as CX0
but restricted to the category of com-

mutative algebras were representable, any such matrix would be of the form
X = gX0g

−1, that is, conjugate to a diagonal one through an element
g ∈ SLn(A). But this is not necessarily true in an arbitrary algebra A.

In the classical case the functor of points of the coadjoint orbit is obtained
as the sheafification (see Definition 4.1) of CrX0

([42] pg 341). We will see that
the same is true for the super case.
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We will start by considering a functor

F : (salg) −→ (sets).

This is a generalization of the concept of Z-functor defined in [42] pg 9.
CX0

is an example of such a functor. Due to the equivalence of categories
between (salg) and (sschemesaff) we can give equivalently the functor:

F : (sschemesaff)opp −→ (sets).

(Abusing the notation, we use the same letter for both functors).
For each affine superscheme X the restriction FX of F to Top(X) defines

a presheaf on X (Top(X) denotes the category of open sets in X). A functor
F : (salg) −→ (sets) is said to be local if FX is a sheaf for each X ∈
(sschemes).

Equivalently, F is local if for any A ∈ (salgrf) and elements f1 . . . fs ∈ A
such that (f1 . . . fs) = (1) we have the exact sequence:

F (A)
F (αi)
→ F (Afi

)
F (αij)

⇉ F (Afifj
)

In particular, any representable functor is local.

Definition 4.1 Let us consider a functor F : (salg) −→ (sets). We will
denote by F̃ the unique local functor such that for f1 . . . fs ∈ A, (f1 . . . fs) =
(1), F̃(Afi

) = F(Afi
). F̃ is called the sheafification of F .

It is perhaps more natural to introduce the sheafification in terms of
the presheaves FX . To any presheaf one can associate a sheaf that is the
“closest” sheaf to the given presheaf; it is called its sheafification. Then
F̃ can be equivalently defined as the local functor obtained by doing the
sheafification of the presheaves FX for all X ∈ (sschemes).

Observation 4.1 . If P is a subfunctor of a local functor F and for all
R ∈ (salg) there exist f1 . . . fr ∈ Ro such that (f1 . . . fr) = (1) and P(Rfi

) =
F(Rfi

) then P̃= F . (R is viewed as an R0 module).

Our strategy to determine the functor of the coadjoint orbits of super-
groups will be to find a representable (hence local) functor and to prove that
it is the sheafification of (2).

We need first some notions about the invariant polynomials of a superal-
gebra.
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4.1 Invariant polynomials

For the rest of the section we take k = C. The Cartan-Killing form of a
super Lie algebra g is a natural trasformation: B : g × g −→ g,

BA(X, Y ) = str(adXadY ) X, Y ∈ g(A).

BA is an invariant, supersymmetric bilinear form. In the following, we will
consider simple Lie superalgebras whose Cartan-Killing form is non degen-
erate, namely slm|n with m 6= n, ospm|n with m

2
− n

2
6= 1 (m,n even), f4 and

g3 [16].
There is a natural isomorphism between the functors g and g∗ such that

to each object A in (salgrf) assigns a morphism

ϕA : g(A) −→ g∗(A)

X −→ ϕA(X) with ϕA(X)(Y ) = BA(X, Y ).

This isomorphism gives also an isomorphism between the superalgebras rep-
resenting both functors, C[g] ≃ C[g∗] and intertwines the adjoint and coad-
joint representation, so the adjoint orbits are the same as the coadjoint orbits.
From now on we will use the algebra C[g].

Let G be an affine algebraic supergroup, subfunctor of GL(m|n), with
super Lie algebra g. We say that p ∈ C[g] is an invariant polynomial if for
any A-point x : C[g] → A of g and g : C[G] → A of G we have that

x(p) = AdA(g)x(p). (4)

The invariant polynomials are a subalgebra of C[g]. Contrary to what hap-
pens in the classical case, this algebra may be not finitely generated [11, 44].
This is the case for the algebra of invariant polynomials on glm|n. The genera-

tors can be taken to be the supertraces of arbitrary order, str(Xk), which are
independent. The invariant polynomials in the reduced Lie algebra, glm×gln
are generated by traces tr(Xk) with k = 1, . . .m+n, since higher order traces
can be expressed in terms of the first m+ n ones.

4.2 The coadjoint orbits of a supergroup as algebraic

supervarieties

For a regular, semisimple element X0 of g(C), its orbit under the adjoint
action of the group G(C) is an algebraic variety defined by the values of
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the homogeneous Chevalley polynomials p1, . . . pl, where l is the rank of the
group. We will see that the supersymmetric extensions of these polynomials
define the adjoint orbit of the supergroup. More specifically, we have the
following

Theorem 4.1 Let p̂1, . . . p̂l be polynomials on a simple Lie superalgebra of
the type slm|n or ospm|n with the following properties:

1. They are invariant polynomials under the adjoint action (4).

2. Let p1, . . . pl be the projections of p̂1, . . . p̂l onto the reduced algebra C[g◦] =
C[g]/Iodd. The ideal of the orbit of a regular, semisimple element X0 ∈ g(C)
with distinct eigenvalues, is J = (p1 − c1, . . . pl − cl), ci = pi(X0). So the
orbit of X0 is an algebraic variety whose functor is represented by

C[g◦]/J .

Then the sheafification of the functor CX0
(2) is representable and is repre-

sented by
AX0

= C[g]/I. (5)

with I = (p̂1 − c1, . . . p̂l − cl).

Proof. Let us denote by F : (salgrf) → (sets) the functor represented by
AX0

in (5). It is clear that CX0
is a subfunctor of F , since for any superalgebra

R, an element of CX0
(R) = {gX0g

−1, g ∈ G(R)} is given by a matrix in g(R),

M :

(

pij qiβ
rαj sαβ

)

whose entries satisfy p1 − c1 = 0, . . . pl− cl = 0, and then defines a homomor-
phism

M : AX0
−→ R.

In view of the Observation (4.1) we just have to show that for f1 . . . fs ∈ Ro,
(f1 . . . fs) = (1), F (Rfi

) = CX0
(Rfi

).
Let f ∈ R◦. By the previous observation there is an obvious injective

map CX0
(Rf ) → F (Rf). We have to show that the fi can be chosen in such

a way that the map is also surjective.
This means that we need to prove that given W ∈ CX0

(R), there exist
f ∈ R◦ and g ∈ G(Rf ) such that

gWg−1 = D, or gW = Dg (6)
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where D is a diagonal matrix diagonal. Later on we will prove that D = X0.
We consider first a superalgebra R is a free superalgebra in the odd gener-

ators. We decompose the matrices in (6) as sums of matrices whose elements
are homogeneous in the odd variables

(g0 + g1 + · · · )(W0 +W1 + · · · ) = (D0 +D1 + · · · )(g0 + g1 + · · · ).

Then we can compare elements of the same degree obtaining

g0Wn + g1Wn−1 + · · · gnW0 = D0gn +D1gn−1 + · · · +Dng0. (7)

We will prove the result by induction. For n = 0 we have

g0W0 = D0g0 (8)

But this is the classical result, with D0 = X0. By the hypothesis 2. of
the theorem, (p1 − c1, . . . pl − cl) is the ideal of the reduced orbit, so when
we restrict to the category of commutative algebras we know that F is the
sheafification of CX0

and so it is represented by C[g◦]/(p1 − c1 . . . pl − cl).
This means that there exist f ∈ R◦, g0 ∈ G(R◦), such that g0W0g

−1
0 =

D0. Moreover, the classical results guarantees that one can choose f1 . . . fr
among all possible f ’s in such a way that the ideal that they generate in R◦,
(f1 . . . fr) = (1) = R◦.

The induction proof is based on an argument given in Ref. [11], page 117.
We assume that the result is true up to order n − 1. Then we multiply (7)
by g−1

0 to the right. Using (8) we obtain

X0gng
−1
0 − gng

−1
0 X0 +Dn = Kn, (9)

where Kn is a known matrix

Kn = −D1gn−1g
−1
0 −D2gn−2g

−1
0 − · · · + g0Wn−1g

−1
0 + · · ·+ gn−1W1g

−1
0

and Dn is a diagonal matrix. The matrix X0gng
−1
0 − gng

−1
0 X0 has only el-

ements outside the diagonal, and if (λi) are the eigenvalues of X0 we have
that the entry (ij) is given by

(X0gng
−1
0 − gng

−1
0 X0)ij = (λi − λj)(gng

−1
0 )ij .

Then, gn and Dn can be computed from (9) provided λi 6= λj .
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To finish the proof we will have to show that Dn = 0 for n ≥ 0. Let us
consider the case of sl(m|n). Then the invariant polynomials pi ∈ C[sl(m|n)]
that we have to consider are

pi(M) = strM i, i = 1, . . .m+ n.

We want to prove that for a diagonal matrix D = D0 +D1 + · · · , if

pi(D) = pi(D0), (10)

then D = D0. Let

D = diag(λ1 + λ′1, λ2 + λ′2, . . . λm+n + λ′m+n),

with λ′i contains all the terms in the odd variables. Then (10) implies the
following homogeneous system:









1 · · · 1 −1 · · · −1
λ1 · · · λm −λm+1 · · · −λm+n

· · ·
λm+n

1 · · · λm+n
m −λm+n

m+1 · · · −λm+n
m+n

















λ′1
λ′2
· · ·
λ′m+n









which can have non trivial solution solution if the determinant

det









1 · · · 1 −1 · · · −1
λ1 · · · λm −λm+1 · · · −λm+n

· · ·
λm+n

1 · · · λm+n
m −λm+n

m+1 · · · −λm+n
m+n









= (−1)nm
∏

i>j

(λi − λj)

is different from zero (Vandermonde determinant). So we have our result if
all the eigenvalues are different.

In the case of ospm|n, the relevant polynomials are of the form strM2i, so
the result can be reproduced without difficulty.

In the case we consider a superalgebra R/J with J an ideal, it is enough
to look at the images of the (f1, · · · fr) under the projection F/J .

�

5 Deformation quantization of coadjoint or-

bits of supergroups.

Let k = C. We start with the definitions of Poisson superalgebra and its
deformation.
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Definition 5.1 Let A be a commutative superalgebra. We say that A is a
Poisson superalgebra if there exists a linear map (Poisson superbracket)

{ , } : A⊗ A −→ A

f ⊗ g −→ {f, g}

such that

1. {a, b} = −(−1)papb{b, a}
2. {a, {b, c}} + (−1)papb+papc{b, {c, a}} + (−1)papc+pbpc{c, {a, b}} = 0
3. {a, bc} = {a, b}c+ (−1)papbb{a, c}

where a, b, c are homogeneous elements of A with parities pa, pb, pc
4.

Let g be a Lie superalgebra with Lie superbracket

[XI , XJ ] = cKIJXK

for a certain homogeneous basis {XI}
s+r
I=1 with the first s vectors even and

the last r odd. Then C[g∗] ≃ C[x1, . . . xs, xs+1, · · ·xs+r] has a Poisson super-
algebra structure with superbracket given by

{xI , xJ} =
∑

K

xK([XI , XJ ])xK =
∑

K

cKIJxK

and extended to the whole algebra by property 3. of Definition 5.1.
Let g be one of the Lie algebras considered in Theorem 4.1, which have

a Cartan-Killing form, so g ≃ g∗ and C[g] ≃ C[g∗]. Let A = C[g]/I be
the algebra associated to the superorbit of a geometric element X0 with the
conditions of Theorem 4.1. Then A is also a Poisson superalgebra with the
Poisson superbracket induced by the one in C[g]. This follows from the
derivation property 3. in Definition 5.1 and the fact that p̂i are invariant
polynomials.

In this section we want to construct a deformation quantization of the
superalgebra representing the orbit of a supergroup. We will extend the
method used in Refs. [28, 29] for the classical (non super) case.

Definition 5.2 Given a Poisson superalgebra A, a formal deformation (or
deformation quantization) of A is an associative non commutative superalge-
bra algebra Ah over C[[h]], where h is a formal parameter, with the following
properties:

4We want to remark that with this definition we have only even Poisson brackets.
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1. Ah is isomorphic to A[[h]] as a C[[h]]-module.

2. The multiplication ∗h in Ah reduces mod(h) to the one in A.

3. ã ∗h b̃ − b̃ ∗h ã = h{a, b} mod (h2), where ã, b̃ ∈ Ah reduce to a, b ∈ A
mod(h) and { , } is the Poisson superbracket in A.

Let g be a Lie superalgebra and gh the Lie superalgebra over C[[h]] obtained
by multiplying the Lie bracket of g by the formal parameter h. Let us denote
by Uh the universal enveloping algebra of gh ([11] pg. 279). As in the classical
case, it is easy to prove that the associative, non commutative superalgebra
Uh is a deformation quantization of C[g∗].

Let g be a Lie superalgebra over C of the type considered in Theorem
4.1. By property 1 in Definition 5.2, there exists an isomorphism of C[[h]]-
modules ψ : C[g∗][[h]]] → Uh. We want to prove that ψ can be chosen in
such a way that there exists an ideal Ih ⊂ Uh such that ψ(I) = Ih

5, and the
map induced on the quotients ψh : C[g∗]/I[[h]] → Uh/Ih is an isomorphism
of C[[h]]-modules. We have then that the following diagram

C[g∗][[h]]
ψ

−−−→ Uh




y

π





y

πh

C[g∗]/I[[h]]
ψh−−−→ Uh/Ih

with π and πh the canonical projections, commutes.

We list first some known results about the enveloping algebra of g, U(g)
[11]. We denote by S(g) the algebra of super symmetric tensors on g. We
have that S(g) ≃ C[g∗]. As before, {XI}

s+r
I=1 denotes a homogeneous basis of

g as vector superspace. Let τ : C[g∗] → U(g) be the supersymmetrizer map

τ(xI1 · · ·xIp) =
1

p!

∑

s∈Sp

(−1)σ̄(s)Xs(I1) ⊗ · · · ⊗Xs(Ip)

where Sp is the group of permutations of order p and σ̄(s) is the sign arising
when performing the permutationXI1 ⊗ · · · ⊗XIp

s
−−−→ Xs(I1) ⊗ · · · ⊗Xs(Ip)

as if the homogeneous elements XIj where supercommuting. τ is an isomor-
phism of g-modules. Let C[g]g denote the set of polynomials invariant under

5the ideal I is understood here as an ideal of C[g∗][[h]]
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the adjoint action of g (in particular p̂i ∈ C[g]g). Then τ induces an isomor-
phism of g-modules:

C[g]g ≃ Z(U(g))

where Z(U(g)) is the center of U(g)

Let I = (p1 − c1, . . . pl − cl) as in Theorem 4.1. We set

Ih = (P1 − c1(h) . . . Pl − cl(h)) ⊂ Uh, Pi = τ(p̂i), ck(0) = ck,

with ci(h) ∈ C[[h]].

Theorem 5.1 In the settings of Theorem 4.1, Uh/Ih is a deformation quan-
tization of C[g∗]/I.

Proof The only property in Definition 5.2 which is not immediate is
property a., that is, the fact of Uh/Ih ≃ C[g∗]/I[[h]] as C[[h]]-modules.
The proof can be almost translated from the classical case in Ref. [28].
Let {xI1 , . . . , xIk}(I1,...,Ik)∈S be a basis of C[g∗]/I as C-module, where S is
a fixed set of multiindices appropriate to describe the basis. In particular,
we can take them such that I1 ≤ · · · ≤ Ik. Proving that the monomials
B = {XI1 · · ·XIk}(I1,...,Ik)∈S are a basis for Uh/Ih will be enough. The proof
that B is a generating set for Uh/Ih is identical to the proof of Proposition
3.13 in Ref. [28] and we will not repeat it here. For the linear independence,
we have to show that there is no relation among them. Suppose that G ∈ Ih
is such relation,

G = G0 +G1h+ · · · , Gi ∈ spanC{XI1 · · ·XIk}(I1...Ik)∈S .

Assume Gi = 0, i < r, Gr 6= 0 so we can write G = hrF , with

F = F0 + hF1 + · · · , F0 6= 0. (11)

We need to prove the non trivial fact that if hF ∈ Ih then F ∈ Ih. We
will denote by a capital letter, say P , an element in Uh, by p̂ its projection
onto C[g∗] and by p its further projection onto C[g◦∗]. Assume that

hF =
∑

i

Ai(Pi − ci(h)) (12)

with ci(h) = ci + c1ih+ . . . cnh
n.
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Then, reducing mod h (taking h = 0) we obtain

0 =
∑

i

âi(p̂i − ci). (13)

Setting all the odd variables to 0, we have that (13) implies that there exist
bij , antisymmetric in i and j such that

ai =
∑

j

bij(pj − cj)

(see for example Ref. [45], pg 81, or lemma 3.8 of Ref. [28]), provided that
the differentials dpi are independent on the orbit (condition which is satisfied
[46] in our case). The generalization of this property to the supersymmetric
case deserves special treatment, but the proof is rather technical and we will
do it separately in Lemma 5.1. Assuming that this is true, then there exist
b̂ij , antisymmetric in i and j such that

âi =
∑

j

b̂ij(p̂j − cj).

It is easy to convince oneself that this equation can be lifted to Uh, so there
exists A′

i and Bij antisymmetric in i and j such that

A′
i =

∑

j

Bij(Pj − cj(h)),

with Ai = A′
i mod h, since they both project to ai, i.e. Ai = A′

i + hCi. If
one substitutes in (12):

hF = h
∑

i

Ci(Pi − ci(h))

since
∑

j Bij(Pj−cj(h))(Pi−ci(h)) = 0 (the Bij’s are antisymmetric). Hence
we get the fact: hF ∈ Ih then F ∈ Ih.

So being F ∈ Ih, we can reduce (11) mod h,

f =
∑

ai(p̂i − ci).

But f would represent a non trivial relation among the monomials
{xI1 · · ·xIk}(I1...Ik)∈S in C[g∗]/I, which is a contradiction, so the linear in-
dependence is proven. �
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Lemma 5.1 . Let A be the free commutative superalgebra over C generated
by M even variables x1 . . . xM and N odd variables ξ1 . . . ξN . Let q1 . . . qn even
polynomials in A and denote by q◦1, . . . q

◦
n their projections onto A◦. Assume

that the q◦i ’s satisfy the following property:

If
∑

i q
◦
i f

◦
i = 0 for some f ◦

i ∈ A◦, then there exist F ◦
ij ∈ A◦ such that

f ◦
i =

∑

j F
◦
ijq

◦
j , with F ◦

ij = −F ◦
ji, i, j = 1 . . . n.

Then, if
∑

i qifi = 0 for some fi ∈ A, there exist Fij ∈ A such that fi =
∑

j Fijqj, with Fij = −Fji, i, j = 1 . . . n.

Proof. We write

fi =
N

∑

k=0

∑

1≤α1<...αk≤N

fα1...αk

i ξα1
· · · ξαk

qi =

N
∑

l=0

∑

1≤β1<...βl≤N

qβ1...βl

i ξβ1
· · · ξβl

.

Since qi are even functions we have that l is always even number (that is, the
components with l odd are zero). The terms for k = 0 or l = 0 correspond
to f ◦

i and q◦i respectively.
The condition

∑n

i=1 fiqi = 0 reads in components

n
∑

i=1

p
∑

s=0

∑

1≤k1<···<ks≤p

(−1)ℓ(k1,...ks,1,...k̂1,...k̂s,...p)f
αk1

···αks

i q
α1···α̂k1

···α̂ks ···αp

i = 0,

(14)
for p = 1, . . . N and where ℓ(k1, . . . ks, 1, . . . k̂1, . . . k̂s, . . . p) is the length of
the permutation (k1, . . . ks, 1, . . . k̂1, . . . k̂s, . . . p). For p = 0 we have

n
∑

i=1

f ◦
i q

◦
i = 0. (15)

We will show the lemma by induction. Let Iodd
m be the ideal in A gener-

ated by the products

Iodd
m = (ξα1

· · · ξαm+1
, . . . , ξ1 · · · ξN),
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and consider the projections πm : A→ A/Iodd
m . Assume that there exists

Fm
ij =

m
∑

r=0

F δ1···δr
ij ξδ1 · · · ξδr ,

with Fm
ij = −Fm

ji , such that

πs(fi) = πs(F
m
ij pj) (16)

for all s ≤ m. (To simplify the notation the sum over reapeated indices i
and j will be understood). For m = 0 this is the classical condition, that is
guaranteed by (15) and the hypothesis of the theorem. We must show that

there exist F
δ1···δm+1

ij such that

Fm+1
ij =

m+1
∑

r=0

F δ1···δr
ij ξδ1 · · · ξδr

satisfies
πs(fi) = πs(F

m+1
ij pj)

for all s ≤ m+ 1. Since πN is the identity, we will have our result.

Let us write the induction hypothesis (16) in components,

fα1···αs

i =

s
∑

r=0

∑

1≤l1<···lr≤s

(−1)ℓ(l1...lr,1,...l̂1,...l̂r ,...s)F
αl1

...αlr

ij q
α1...α̂l1

...α̂lr ,...αs

j , (17)

with s ≤ m. We substitute this expression for s ≤ m in (14). Taking
p = m+ 1 we have

f
α1...αm+1

i q0
i +

m
∑

s=0

∑

1≤k1<···<ks≤m+1

s
∑

r=0

∑

k1≤kl1
<···<klr≤ks

(−1)ℓ(k1,...ks,1,...k̂1,...k̂s,...m+1)(−1)ℓ(kl1
...klrk1...k̂l1

...k̂lr ...ks)

F
αkl1

...αklr

ij q
αk1

...α̂kl1
...α̂klr

...αks

j q
α1,...α̂k1

...α̂ks ...αm+1

i = 0 (18)

We distinguish two kinds of terms in (18), the ones that are multiplied
by q◦i and the ones that are not. A generic term that does not contain q◦i is
of the form
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(−1)ℓ(k1,...ks,1,...k̂1,...k̂s,...m+1)(−1)ℓ(kl1
...klrk1...k̂l1

...k̂lr ...ks)

F
αkl1

...αklr

ij q
αk1

...α̂kl1
...α̂klr

...αks

j q
α1,...α̂k1

...α̂ks ...αm+1

i (19)

with r 6= s and s 6= m+ 1. We are going to see that these terms cancel. The
reason is that for each term as (19) there exists an identical term where qi is
interchanged with qj . Then, they cancel because of the antisymmetry of Fij .
We first consider the following set of indices

{k′1, . . . k
′
s′} =

(

{1, . . .m+ 1} − {k1, . . . ks}
)

∪{kl1, . . . klr}.

Then

{k′1, . . . k
′
s′} − {kl1, . . . klr} = {1, . . .m+ 1} − {k1, . . . ks}

{k1, . . . ks} − {kl1 , . . . klr} = {1, . . .m+ 1} − {k′1, . . . k
′
s′} (20)

and s′ = m + 1 − s + r. By construction {kl1, . . . klr} ⊂ {k′1, . . . k
′
s′}, so we

can consider the term

(−1)ℓ(k
′

1,...k
′

s′
,1,...k̂′1,...k̂

′

s′
,...m+1)(−1)ℓ(kl1

...klrk
′

1...k̂l1
...k̂lr ...k

′

s′
)

F
αkl1

...αklr

ij q
αk′

1
...α̂kl1

...α̂klr
...αk′

s′

j q
α1,...α̂k′

1
...α̂k′

s′
...αm+1

i (21)

(21) is equal to (19) with qi in the place of qj , except possibly by a sign. We
are going to see that the sign is the same. We start by observing that

ℓ(k1 . . . ks, 1 . . . k̂1 . . . k̂s . . .m+ 1) = ℓ(kl1 . . . klr , 1 . . . k̂1 . . . k̂s . . .m+ 1) +

ℓ(k1 . . . k̂l1 . . . k̂lr . . . ks, 1 . . . k̂1 . . . k̂s . . .m+ 1),

ℓ(k′1 . . . k
′
s′, 1 . . . k̂

′
1 . . . k̂

′
s′ . . .m+ 1) = ℓ(kl1 . . . klr , 1 . . . k̂

′
1 . . . k̂

′
s′ . . .m+ 1) +

ℓ(k′1 . . . k̂l1 . . . k̂lr . . . k
′
s′, 1 . . . k̂

′
1 . . . k̂

′
s′ . . .m+ 1).

It is now crucial the fact that s− r, m+ 1− s, s′ − r, m+ 1− s′ are all even
numbers. The last two terms in the above equalities are easily seen equal
modulo 2 by using (20). Then we have

ℓ(k1 . . . ks, 1 . . . k̂1 . . . k̂s . . .m+ 1) − ℓ(k′1 . . . k
′
s′, 1 . . . k̂

′
1 . . . k̂

′
s′ . . .m+ 1) =

ℓ(kl1 . . . klr , 1 . . . k̂1 . . . k̂s . . .m+ 1) − ℓ(kl1 . . . klr , 1 . . . k̂
′
1 . . . k̂

′
s′ . . .m+ 1) mod2 =

ℓ(kl1 . . . klr , k
′
1, . . . k̂l1 . . . k̂lr , . . . k

′
s′) − ℓ(kl1 . . . klr , k1, . . . k̂l1 . . . k̂lr , . . . ks) mod2,
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where we have used (20) again. We have proven our claim and all the terms
in (18) that do not contain q0

i cancel. Then from (18) we deduce

(

f
α1...αm+1

i −
m

∑

s=0

∑

1≤k1<···<ks≤m+1

(−1)ℓ(k1,...ks,1,...k̂1,...k̂s,...m+1)

F
αk1

...αks

ij q
α1,...α̂k1

...α̂ks ...αm+1

j

)

q◦i = 0.

From the hypothesis of the theorem, this means that there exists F
α1...αm+1

ij ,
antisymmetric in i and j such that

f
α1...αm+1

i −

m
∑

s=0

∑

1≤k1<···<ks≤m+1

(−1)ℓ(k1,...ks,1,...k̂1,...k̂s,...m+1)

F
αk1

...αks

ij q
α1,...α̂k1

...α̂ks ...αm+1

j = F
α1...αm+1

ij q◦j ,

from which one can compute

f
α1...αm+1

i =

m+1
∑

s=0

∑

1≤k1<···<ks≤m+1

(−1)ℓ(k1,...ks,1,...k̂1,...k̂s,...m+1)F
αk1

...αks

ij q
α1,...α̂k1

...α̂ks ...αm+1

j ,

terminating our induction.
�
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