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Abstract

We present a novel method to perform a direct T (time reversal) sym-
metry test in the neutral kaon system, independent of any CP and/or CPT
symmetry tests. This is based on the comparison of suitable transition proba-
bilities, where the required interchange of in↔ out states for a given process
is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral
kaon pairs produced at a φ-factory. In the time distribution between the two
decays, we compare a reference transition like the one defined by the time or-
dered decays (`−, ππ) with the T -conjugated one defined by (3π0, `+). With
the use of this and other T conjugated comparisons, the KLOE-2 experiment
at DAΦNE could make a significant test.
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1. Introduction

CP violation in the Standard Model (SM) arises from the single physically
relevant phase in the three families Cabibbo-Kobayashi-Maskawa (CKM)
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mixing matrix. The existence of this matrix conveys the fact that the quarks
that participate in weak processes are a linear combination of mass eigen-
states. This mechanism has been validated in the past years of experiments
probing CP violation, especially in K [1, 2] and B [3, 4] meson decays. In the
context of local quantum field theories with Lorentz invariance and Hermitic-
ity, the CPT theorem ensures an automatic theoretical connection between
CP symmetry and T (time reversal) symmetry. Since the SM is CPT invari-
ant, it predicts T violating effects in parallel to each CP-violation effect that
arises due to the interference of amplitudes with different weak phases.

Even though CPT invariance has been confirmed by all present experi-
mental tests, particularly in the neutral kaon system where there are strong
limits to possible CPT violation effects [5, 6, 7, 8, 9, 10], the theoretical
connection between CP and T symmetries does not imply an experimen-
tal identity between them, except for processes which are CPT even, e.g.
K0 → K̄0 [11]. Therefore it is of great interest to search for direct evidence
of non-invariance under time reversal, independent of CP violation and CPT
invariance. Only recently, the first direct observation of T violation, in this
sense, has been accomplished in the neutral B meson system [12]. In the
case of transition processes a test of T non-invariance needs the comparison
between the transition amplitudes under the interchange between in states
and out states. For unstable systems, the associated irreversibility looks like
it prevents a true test of T symmetry [13].

In this article we describe the methodology to perform a direct test of
T symmetry in the neutral K meson system at a φ-factory, overcoming the
irreversibility problem, similarly as described in Ref. [14] for a B-factory. This
methodology makes use of Einstein-Podolski-Rosen (EPR) entanglement [15],
and relies on the possibility of preparing the quantum mechanical individual
state of the neutral K meson by the observation of particular decay channels
of its orthogonal entangled partner, and studying the time evolution of the
filtered state of the still living meson. This strategy allows the interchange
of in ↔ out states for a given process, as needed for a genuine test of
T symmetry. Whereas the basic ideas have been presented previously [16]
and scrutinized later [13, 17, 18, 19], the discussion of the steps to implement
these concepts into a B-factory experiment able to produce the desired result
has been recently presented [14] and later actually observed in the neutral B
meson system [12]. Here we discuss the corresponding concepts needed for
a direct T symmetry test in the physical context of the neutral K meson
system at a φ-factory. In addition we evaluate the statistical significance of
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the test achievable with the KLOE-2 experiment at DAΦNE, the Frascati
φ-factory [20].

2. The kaon states

In order to formulate a possible T symmetry test with neutral kaons,
it is necessary to precisely define the different states involved. First, let us
consider the physical states |KS〉, |KL〉, i.e. the states with definite masses
mS,L and lifetimes τS,L which evolve as a function of the kaon proper time t
as pure exponentials

|KS(t)〉 = e−iλSt|KS〉
|KL(t)〉 = e−iλLt|KL〉 . (1)

with λS,L = mS,L− iΓS,L/2, and ΓS,L = (τS,L)−1. They are usually expressed
in terms of the flavor eigenstates |K0〉, |K̄0〉 as:

|KS〉 =
1√

2 (1 + |εS|2)

[
(1 + εS)|K0〉+ (1− εS)|K̄0〉

]
(2)

|KL〉 =
1√

2 (1 + |εL|2)

[
(1 + εL)|K0〉 − (1− εL)|K̄0〉

]
, (3)

with εS and εL two small complex parameters describing the CP impurity in
the physical states. One can equivalently define ε ≡ (εS + εL)/2, and δ ≡
(εS − εL)/2; adopting a suitable phase convention (e.g. the Wu-Yang phase
convention [23]) ε 6= 0 implies T violation, δ 6= 0 implies CPT violation,
while δ 6= 0 or ε 6= 0 implies CP violation.
Let us also consider the states |K+〉, |K−〉 defined as follows: |K+〉 is the
state filtered by the decay into ππ (π+π+ or π0π0), a pure CP = +1 state;

|K̃−〉 is the state orthogonal to |K+〉, i.e. 〈K̃−|K+〉 = 0, which cannot decay

into ππ, 〈ππ|T |K̃−〉 = 0, and is defined by [24]:

|K̃−〉 ≡ Ñ− [|KL〉 − ηππ|KS〉] (4)

where ηππ = 〈ππ|T |KL〉
〈ππ|T |KS〉

, and |Ñ−|2 = [1 + |ηππ|2 − 2< (ηππ〈KL|KS〉)]−1
defines

the normalization constant up to a phase factor. Therefore the state |K+〉
can be explicitly written as the state orthogonal to |K̃−〉 as:

|K+〉 = N+ [|KS〉+ α|KL〉] (5)
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where

α =
η?ππ − 〈KL|KS〉
1− η?ππ〈KS|KL〉

, (6)

and |N+|2 = [1 + |α|2 + 2< (α〈KS|KL〉)]−1
.

Analogously |K−〉 is the state filtered by the decay into 3π0, a pure CP =

−1 state; |K̃+〉 is the state orthogonal to |K−〉, i.e. 〈K̃+|K−〉 = 0, which

cannot decay into 3π0, 〈ππ|T |K̃−〉 = 0, and is defined by:

|K̃+〉 ≡ Ñ+

[
|KS〉 −

(
η−1

3π0

)
|KL〉

]
(7)

where
(
η−1

3π0

)
= 〈3π0|T |KS〉
〈3π0|T |KL〉

, and |Ñ+|2 =
[
1 + |

(
η−1

3π0

)
|2 − 2<

((
η−1

3π0

)? 〈KL|KS〉
)]−1

.

Therefore the state |K−〉 can be explicitly written as the state orthogonal to

|K̃+〉 as:
|K−〉 = N− [|KL〉+ β|KS〉] (8)

where

β =

(
η−1

3π0

)? − 〈KS|KL〉
1−

(
η−1

3π0

)? 〈KL|KS〉
, (9)

and |N−|2 = [1 + |β|2 + 2< (β〈KL|KS〉)]−1
.

Even though in the following we will assume that

|K+〉 ≡ |K̃+〉
|K−〉 ≡ |K̃−〉 , (10)

here we have kept separate definitions of the states |K+〉 and |K−〉, which

are observed through their decay, from the states |K̃+〉 and |K̃−〉, which are
produced exploiting the EPR correlations in entangled kaon pairs, as we will
see in the next section.

Assumption (10) corresponds to impose the condition of orthogonality

〈K−|K+〉 = 0 or 〈K̃−|K̃+〉 = 0. This implies that β = −ηππ and α = −
(
η−1

3π0

)
,

which in turn imply a precise relationship between the two amplitude ratios
ηππ and

(
η−1

3π0

)
, i.e.:

ηππ =
〈KS|KL〉 −

(
η−1

3π0

)?
1−

(
η−1

3π0

)? 〈KL|KS〉
' 〈KS|KL〉 −

(
η−1

3π0

)?
, (11)
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or put in another form:

ηππ +
(
η−1

3π0

)? ' 〈KS|KL〉 ' εL + ε?S . (12)

This equation clearly indicates that we have to neglect direct CP violation
when imposing assumption (10). In fact, for instance, eq.(12) cannot be
simultaneously satisfied for π+π+ and π0π0 decays, being (ηπ+π− − ηπ0π0) =
3ε′, with ε′ the direct CP violation parameter [6].
The relevance of this assumption will be discussed in Appendix A, where
it will be shown that direct CP violation can be safely neglected for our
purposes.

Finally we will assume the validity of the ∆S = ∆Q rule, so that the two
flavor orthogonal eigenstates |K0〉 and |K̄0〉 are identified by the charge of
the lepton in semileptonic decays, i.e. a |K0〉 can decay into π−`+ν and not
into π+`−ν̄, and vice-versa for a |K̄0〉.

3. Observables for the T symmetry test

A direct evidence of T violation would mean an experiment that, consid-
ered by itself, clearly shows the violation independent of and unconnected
to the results of CP violation. There is no existing result in the neutral K
system that clearly demonstrates time reversal violation in this sense [13].
Sometimes the Kabir asymmetry K0 → K̄0 vs. K̄0 → K0 has been pre-
sented [21, 22, 18] as a proof for T violation. This process has, however,
besides the drawbacks discussed in [13], the feature that K0 → K̄0 is a CPT
even transition, so that it is impossible to separate T violation from CP vio-
lation in the Kabir asymmetry: these two transformations are experimentally
identical in this case.

There are effects in particle physics that are odd under time t→ −t, but
they are not genuine violations of time reversal T , because do not correspond
to an interchange of in-states into out-states. These kinds of t-asymmetries,
like the macroscopic and the Universe t-asymmetry, can occur in theories
which have an exact T symmetry in the underlying fundamental physics [17].
In fact, the t-asymmetry can only be connected [16] to T asymmetry under
the assumptions of CPT invariance plus the absence of an absorptive part
difference between the initial and final states of the transition. As a conse-
quence, we have to disregard these t-asymmetries as direct evidence for T
violation.
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As shown in [16, 19], B-factories and φ-factories offer the unique opportu-
nity to show evidence for T violation (and CP violation) independently from
the other symmetries and to measure the corresponding effects. The EPR
entanglement here plays a crucial role. Let us consider the neutral kaon pair
produced at a φ-factory in a coherent quantum state with quantum numbers
JPC = 1−− [26]:

|i〉 =
1√
2
{|K0〉|K̄0〉 − |K̄0〉|K0〉} (13)

=
1√
2
{|K+〉|K−〉 − |K−〉|K+〉} . (14)

It’s worth noting that one can rewrite the two particle state |i〉 in terms of
any pair of orthogonal states of individual neutral K mesons, e.g., K0 and
K̄0, or K+ and K− defined in section 2. The time evolution of the initial
state is simply given by |i(t)〉 = e−i(λS+λL)t|i〉, with t common proper time
of the two kaons; the initial EPR correlation given by |i〉 remains unaltered
until one of the two kaons decays. One has also to emphasize, following what
quantum mechanics dictates, that the individual state of one neutral meson
in the entangled state is not defined before the decay process of its partner
occurs, imposing a tag over the undecayed kaon. Thus it is possible to have
a “flavor-tag”, i.e. to infer the flavor (K0 or K̄0) of the still alive meson
by observing the specific flavor decay (π+`−ν̄ or π−`+ν) of the other (and
first decaying) meson. Similarly we may define a “CP-tag” [25] as the filter
imposed by the decay of one of the entangled states to a K+ or K−, preparing
its partner, which has not decayed yet, into the orthogonal state K− or K+,
respectively. In this way we may proceed to a partition of the complete set
of events into four categories, defined by the tag in the first decay as K+,
K−, K0 or K̄0.

Let us first consider K0 → K+ as the reference process, by observation of
a π+`−ν̄ decay at a proper time t1 of the opposite K̄0 meson1 and a ππ decay
at a later time t2 > t1, denoted as (`−,ππ), and consider:

i) Its T transformed K+ → K0 (3π0, `+), so that the asymmetry between
K0 → K+ and K+ → K0, as a function of ∆t = t2 − t1, is a genuine T
violating effect.

1To relax the notation we will denote π+`−ν̄ as `− and π−`+ν as `+, because of the
lepton charge.
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ii) Its CP transformed K̄0 → K+ (`+,ππ), so that the asymmetry between
K0 → K+ and K̄0 → K+, as a function of ∆t = t2 − t1, is a genuine CP
violating effect.

iii) Its CPT transformed K+ → K̄0 (3π0, `−), so that the asymmetry be-
tween K0 → K+and K+ → K̄0, as a function of ∆t = t2− t1, is a genuine
test of CPT invariance.

One may check, that the events used for the asymmetries i), ii), and iii)
are completely independent.

There are other three independent comparisons between T -conjugated
processes, as summarized in Table 1. Analogously, we can apply the same
methodology for similar tests of CP violation and CPT invariance. Tables 2
and 3 summarize all the possible comparisons of CP- and CPT -conjugated
transitions with their corresponding decay products.

Reference T -conjugate
Transition Decay products Transition Decay products

K0 → K+ (`−, ππ) K+ → K0 (3π0, `+)

K0 → K− (`−, 3π0) K− → K0 (ππ, `+)

K̄0 → K+ (`+, ππ) K+ → K̄0 (3π0, `−)

K̄0 → K− (`+, 3π0) K− → K̄0 (ππ, `−)

Table 1: Possible comparisons between T -conjugated transitions and the associated time-
ordered decay products in the experimental φ-factory scheme.

Reference CP-conjugate
Transition Decay products Transition Decay products

K0 → K+ (`−, ππ) K̄0 → K+ (`+, ππ)

K0 → K− (`−, 3π0) K̄0 → K− (`+, 3π0)

K̄0 → K+ (`+, ππ) K0 → K+ (`−, ππ)

K̄0 → K− (`+, 3π0) K0 → K− (`−, 3π0)

Table 2: Possible comparisons between CP-conjugated transitions and the associated time-
ordered decay products in the experimental φ-factory scheme.
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Reference CPT -conjugate
Transition Decay products Transition Decay products

K0 → K+ (`−, ππ) K+ → K̄0 (3π0, `−)

K0 → K− (`−, 3π0) K− → K̄0 (ππ, `−)

K̄0 → K+ (`+, ππ) K+ → K0 (3π0, `+)

K̄0 → K− (`+, 3π0) K− → K0 (ππ, `+)

Table 3: Possible comparisons between CPT -conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Our goal is to demonstrate and measure the violation of time reversal
invariance. Therefore we have to consider the following ratios of probabilities:

R1(∆t) = P
[
K0(0)→ K+(∆t)

]
/P
[
K+(0)→ K0(∆t)

]
R2(∆t) = P

[
K0(0)→ K−(∆t)

]
/P
[
K−(0)→ K0(∆t)

]
R3(∆t) = P

[
K̄0(0)→ K+(∆t)

]
/P
[
K+(0)→ K̄0(∆t)

]
R4(∆t) = P

[
K̄0(0)→ K−(∆t)

]
/P
[
K−(0)→ K̄0(∆t)

]
. (15)

The measurement of any deviation from the prediction

R1(∆t) = R2(∆t) = R3(∆t) = R4(∆t) = 1 (16)

imposed by T invariance is a signal of T violation. This outcome will be
highly rewarding as a model-independent and a direct observation of T vio-
lation.

If we express two generic orthogonal basis {KX, K̄X} and {KY, K̄Y}, which
in our case correspond to {K0, K̄0} or {K+,K−}, as follows:

|KX〉 = XS|KS〉+XL|KL〉 (17)

|K̄X〉 = X̄S|KS〉+ X̄L|KL〉 (18)

|KY〉 = YS|KS〉+ YL|KL〉 (19)

|K̄Y〉 = ȲS|KS〉+ ȲL|KL〉 . (20)

the generic quantum mechanical expression for the probabilities entering
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in eqs.(15) is given by

P [KX(0)→ KY(∆t)] = |〈KY|KX(∆t)〉|2 (21)

=
1

| detY |2
∣∣e−iλS∆tXSȲL − e−iλL∆tXLȲS

∣∣2
=

1

| detY |2
{e−ΓS∆t|XSȲL|2 + e−ΓL∆t|XLȲS|2

−2e−
(ΓS+ΓL)

2
∆t<

(
ei∆m∆tXSȲLX

?
LȲ

?
S

)
} ,

with

detY = YSȲL − YLȲS (22)

and

|detY |2 = |detX|2 =
1

1− |〈KS|KL〉|2
. (23)

Its inverse P [KY(0)→ KX(∆t)] is obtained simply with the substitution
X ↔ Y .

Using the expected values for the XS,L, X̄S,L, YS,L and ȲS,L coefficients in
terms of the measured ε and δ parameters [6], it can be easily demostrated
that the ratios Ri depend on ∆t, as it is shown in Fig.1. This result is in
contrast with the Kabir T -violating asymmetry [11, 21, 22], which is inde-
pendent of time:

P
[
K0(0)→ K̄0(∆t)

]
P
[
K̄0(0)→ K0(∆t)

] =

∣∣XSXLe
−iλS∆t −XLXSe

−iλL∆t
∣∣2∣∣X̄SX̄Le−iλS∆t − X̄LX̄Se−iλL∆t
∣∣2 =

|XSXL|2∣∣X̄SX̄L

∣∣2
' (1− 4<ε)

(1 + 4<ε)
' 1− 8<ε . (24)

It is worth noting that for ∆t = 0 we have:

R1(0) = R2(0) = R3(0) = R4(0) = 1 (25)

and for ∆t� τS :

R2(∆t� τS) ' 1− 2<εS
1 + 2<εL

' 1− 4<ε (26)

R4(∆t� τS) ' 1 + 2<εS
1− 2<εL

' 1 + 4<ε (27)
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Figure 1: The ratios Ri as a function of ∆t; R1 top left, R2 top right, R3 bottom left, R4

bottom right .
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4. Measurement of Ri at a φ-factory

From the experimental point of view the observable quantity at a φ-
factory is the double differential decay rate of the state |i〉 into decay products
f1 and f2 at proper times t1 and t2, respectively [26]. For the time evolution
of the system it is convenient to rewrite the entangled state |i〉 as:

|i〉 =
N√

2
{|KS〉|KL〉 − |KL〉|KS〉} (28)

with |N |2 = |detX|2 = [(1 + |εS|2)(1 + |εL|2)]/(1− εSεL)2 ' 1 a normaliza-
tion factor. The double differential decay rate is given by:

I(f1, t1; f2, t2) = C12{|η1|2e−ΓLt1−ΓSt2 + |η2|2e−ΓSt1−ΓLt2

−2|η1||η2|e−
(ΓS+ΓL)

2
(t1+t2) cos[∆m(t1 − t2) + φ2 − φ1]} (29)

where

ηi ≡ |ηi|eiφi =
〈fi|T |KL〉
〈fi|T |KS〉

, (30)

C12 =
|N |2

2
|〈f1|T |KS〉〈f2|T |KS〉|2 .

After integration on t1 at fixed time difference ∆t = t2−t1 > 0, the decay
intensity (29) can be rewritten in a more suitable form, putting in evidence
the probabilities we are aiming for. In particular it will be a function of the
first decay product f1 = fX̄ (which takes place at time t1, identifies a K̄X

state, and tags a KX state on the opposite side), the second decay products
f2 = fY (which takes place at time t2 and identifies a KY state):

I(fX̄ , fY ; ∆t) =

∫ ∞
0

I(fX̄ , t1; fY ; t2)dt1

=
1

ΓS + ΓL

∣∣〈KXK̄X|i〉〈fX̄ |T |K̄X〉〈KY|KX(∆t)〉〈fY |T |KY〉
∣∣2

= C(fX̄ , fY )× P [KX(0)→ KY(∆t)] , (31)

where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and
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fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣〈fX̄ |T |K̄X〉〈fY |T |KY〉
∣∣2

=
|〈fX̄ |T |KS〉|2 |〈fY |T |KS〉|2

2(ΓS + ΓL)
×
∣∣(X̄S + ηX̄X̄L)(YS + ηY YL)

∣∣2 ,

(32)

and the generic probability P [KX(0)→ KY(∆t)], containing the only time
dependence, is the one given by eq.(21).
From eq.(32) and the condition:

I(fX̄ , fY ; ∆t = 0) = C(fX̄ , fY )× |〈KY|KX〉|2

= C(fY , fX̄)×
∣∣〈K̄X|K̄Y〉

∣∣2 , (33)

it can be easily shown that the coefficient C(fX̄ , fY ) is invariant under inter-
change fY ↔ fX̄ , i.e.

C(fX̄ , fY ) = C(fY , fX̄) . (34)

One can define the following observable ratios:

Rexp
1 (∆t) ≡ I(`−, ππ; ∆t)

I(3π0, `+; ∆t)
= R1(∆t)× C(`−, ππ)

C(3π0, `+)
(35)

Rexp
2 (∆t) ≡ I(`−, 3π0; ∆t)

I(ππ, `+; ∆t)
= R2(∆t)× C(`−, 3π0)

C(ππ, `+)
(36)

Rexp
3 (∆t) ≡ I(`+, ππ; ∆t)

I(3π0, `−; ∆t)
= R3(∆t)× C(`+, ππ)

C(3π0, `−)
(37)

Rexp
4 (∆t) ≡ I(`+, 3π0; ∆t)

I(ππ, `−; ∆t)
= R4(∆t)× C(`+, 3π0)

C(ππ, `−)
, (38)

which are proportional to the corresponding Ri(∆t) ratios.
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It should be noted that when we perform a measurement with decay
products in inverse time order (f2, f1) or t1 > t2, i.e. ∆t → −∆t, we are
actually measuring the inverse of another ratio, i.e.:

Rexp
2 (−∆t) =

1

Rexp
3 (∆t)

=
1

R3(∆t)
× C(3π0, `−)

C(`+, ππ)
(39)

Rexp
4 (−∆t) =

1

Rexp
1 (∆t)

=
1

R1(∆t)
× C(3π0, `+)

C(`−, ππ)
. (40)

Due to the property (34), the proportionality constant between Rexp
2(4)(−∆t)

and 1/R3(1)(∆t) is the same as the one between Rexp
2(4)(∆t) and R2(4)(∆t).

Therefore one can actually measure only two observables, Rexp
2 (∆t) and

Rexp
4 (∆t), with −∞ < ∆t < +∞; their expected behavior is shown in Fig.2.

From the point of view of a model independent and direct test of T
symmetry, it would be sufficient to prove that one of the predictions in eq.(16)
is not satisfied, i.e. that Ri(∆t) 6= 1, for any ratio Ri. Experimentally one
can adopt two different strategies to obtain this result:

1. The first one is to observe any significant dependence on ∆t in the mea-
sured ratio Rexp

2 (∆t) or Rexp
4 (∆t); therefore one may conclude that the

corresponding ratio Ri is not constant and cannot satisfy the prediction
in eq.(16).

2. The second strategy consists in measuring the ratioRexp
2 (∆t) orRexp

4 (∆t)
in the limit ∆t � τS, where they are expected to have a constant
value; given an independent evaluation of the corresponding ratio of

coeffiecients C(`−,3π0)
C(ππ,`+)

or C(`+,3π0)
C(ππ,`−)

one may extract the asymptotic value

R2(∆t � τS) or R4(∆t � τS) and verify the predicted deviation from
one, eq.(26) or (27).

For the second strategy we can consider that:

C(`−, 3π0)

C(ππ, `+)
=

∣∣∣∣〈`−|T |K̄0〉〈3π0|T |K−〉
〈`+|T |K0〉〈ππ|T |K+〉

∣∣∣∣2
=

∣∣∣∣〈3π0|T |K−〉
〈ππ|T |K+〉

∣∣∣∣2 (41)
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Figure 2: The ratios Rexp
2 and Rexp

4 as a function of ∆t.
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C(`+, 3π0)

C(ππ, `−)
=

∣∣∣∣〈`+|T |K0〉〈3π0|T |K−〉
〈`−|T |K̄0〉〈ππ|T |K+〉

∣∣∣∣2
=

∣∣∣∣〈3π0|T |K−〉
〈ππ|T |K+〉

∣∣∣∣2 (42)

neglecting possible CPT violation effects in semileptonic decays.
Neglecting second order terms, one has:

BR (KS → ππ) ΓS = |〈ππ|T |KS〉|2 =

∣∣∣∣ 〈ππ|T |K+〉
N+(1− αβ)

∣∣∣∣2
' |〈ππ|T |K+〉|2 (43)

BR
(
KL → 3π0

)
ΓL =

∣∣〈3π0|T |KL〉
∣∣2 =

∣∣∣∣ 〈3π0|T |K−〉
N−(1− αβ)

∣∣∣∣2
'

∣∣〈3π0|T |K−〉
∣∣2 . (44)

Using the above relations, eqs.(43) and (44), one has:

C(`−, 3π0)

C(ππ, `+)
' C(`+, 3π0)

C(ππ, `−)
' BR (KL → 3π0)

BR (KS → ππ)

ΓL
ΓS

. (45)

Therefore in the case of the second strategy, one can evaluate the ratio of
coefficients in terms of measurable branching ratios, and convert with the cor-
rect normalization the measured ratios Rexp

2 and Rexp
4 into the corresponding

values for R2 and R4, making possible a direct comparison of these values
with the prediction (16) obtained in the case of T symmetry invariance.

One can define the statistical sensitivity of an experiment

Qi(∆t) ≡
|1−Ri(∆t)|
σ (Ri(∆t))

, (46)

as the ratio between the expected deviation of Ri from prediction (16), as
given by the measured value of ε, and the statistical uncertainty on Ri, in a
bin width of 1 τS centered at the value ∆t, as shown in Figs. 3 and 4 2 .

2The plots in Figs. 3 and 4 have been evaluated assuming a large number of counts
and Poisson fluctuations in each ∆t bin of the measured I(f1, f2; ∆t) distributions, and
negligible uncertainties due to the knowledge of the ratio of coefficients (45) (needed for
the second strategy).

15



Figure 3: The statistical sensitivity Q2(∆t) (top) and Q4(∆t) (bottom) as a function of
∆t and normalized to the square root of the integrated luminosity

√
L(fb−1).
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Figure 4: As in Fig.3 but in the range 0 < ∆t < 300 τS .
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It is worth noting that the sensitivity of the test in the region ∆t < 0 is
limited by the large statistical uncertainties on Ri (due to a fast exponential
decrease of the events in this region) despite the expected large deviations of
Ri from unity. On the other hand, in the statistically most populated region
at ∆t > 0, the sensitivity is not large because small deviations of Ri from
unity are expected here (see eqs.(26) and (27)).

In the case of the KLOE-2 experiment at DAΦNE, where an integrated
luminosity L of O(10 fb−1) is expected [20], the I(f1, f2; ∆t) distributions
have been evaluated with a simple Monte Carlo simulation, making the ap-
proximation of a gaussian ∆t experimental resolution with σ = 1 τS, and
a full detection efficiency, as shown in Fig. 5. It can be noticed that the
I(`±, 3π0; ∆t) distributions have very few or no events for ∆t . −5 τS. While
a complete feasibility study is beyond the scope of the present paper, it ap-
pears that the first strategy described above is difficult to be implemented at
KLOE-2 due to the lack of enough statistics, whereas the second strategy is
much more viable. In fact considering a large ∆t interval in the statistically
most populated region, e.g. 0 ≤ ∆t ≤ 300 τS, a much larger global sensitivity
of Q ' 4.4, 6.2, and 8.8 is obtained for L = 5, 10, and 20 fb−1, respectively.

5. Conclusions

It has been shown that, by exploiting the EPR entanglement of neutral
kaon pairs produced at a φ-factory, it is possible to perform a direct test
of the time reversal symmetry in the neutral kaon system, independently
from CP violation and CPT invariance constraints, and therefore overcom-
ing some conceptual difficulties affecting previous tests. The proposed test
is highly model-independent, relying only on the validity of quantum me-
chanical prescriptions and EPR correlations. From the experimental point
of view, the test would require to measure ratios of intensities (29) with a
suitable choice of decay products in definite time ordering. The absolute nor-
malization of the measured ratios requires the knowledge of measurable kaon
branching ratios and lifetimes and would not suffer from other uncertainties.
The KLOE-2 experiment at the DAΦNE φ-factory could make a significant
T symmetry test with an integrated luminosity of O(10 fb−1).
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Figure 5: The I(`−, 3π0; ∆t) (top left), I(ππ, `+; ∆t) (top right), I(`+, 3π0; ∆t) (bottom
left), and I(ππ, `−; ∆t) (bottom right) distributions as a function of ∆t evaluated with a
simple Monte Carlo simulation, making the approximation of a gaussian ∆t experimental
resolution with σ = 1 τS , a full detection efficiency, and assuming L = 10 fb−1.
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Appendix A. Orthogonality constrains

The orthogonality assumption (10) and condition (12) constrain the ηππ
and

(
η−1

3π0

)
parameters. Concerning the ηππ parameter one could safely ne-

glect any contribution from direct CP violation, because (ε′/ε) is experimen-
tally known to be O(10−3) [6]. One can also safely neglect possible contribu-
tions from direct CPT violation in the ππ decay. Therefore for the purposes
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of the present test, one can assume ηππ ' εL (e.g. adopting the Wu-Yang
phase convention).

Even though it would be reasonable to expect also for the
(
η−1

3π0

)
param-

eter a negligible contribution from direct CP and CPT violations [27, 28],
i.e.

(
η−1

3π0

)
' εS, unfortunately the experimental knowledge on this parame-

ter is much less precise than for ηππ, resulting at present in an upper limit(
η−1

3π0

)
< 9 × 10−3 at 90% C.L. [29]. However, also assuming a contribution

from direct CP violation much larger than in the case of ππ, e.g. giving
rise to a ±10% variation in the absolute value of

(
η−1

3π0

)
, or a ±10◦ variation

of its phase (with respect to the expected value, i.e.
(
η−1

3π0

)
' εS ' ε), the

impact of these variations on the measured ratios Rexp
i (∆t) does not spoil the

significance of the T symmetry test in the ∆t region statistically relevant for
the KLOE-2 experiment at DAΦNE, i.e. ∆t & −5τS, as shown in Figs. A.6
and A.7, where |〈3π0|T |KL〉|2 has been kept fixed to its measured value [6]
while varying

(
η−1

3π0

)
. Thus one can conclude that direct CP violation can be

safely neglected.
Apart from these considerations, it is also possible to experimentally per-

form a direct test of assumption (10) by measuring the ratio of processes

K0 → K+ vs. K̃+ → K̄0. In fact, taking into account the difference between
the tagged state K̃+ and the decaying state K+, using eq.(21) one can easily
evaluate the following ratio:

P [K0(0)→ K+(∆t)]

P [K̃+(0)→ K̄0(∆t)]
'

∣∣∣∣e−iλS∆t

(
1− εL√

2

)
+ e−iλL∆t(ηππ)

(
1− εS√

2

)∣∣∣∣2∣∣∣∣e−iλS∆t

(
1− εS√

2

)
+ e−iλL∆t(η−1

3π0)

(
1− εL√

2

)∣∣∣∣2 ,
(A.1)

which is constrained to be 1 if the condition ηππ = (η−1
3π0) holds, with the

assumption of CPT invariance (εS = εL = ε). Thus measuring this ratio
with enough precision, one can evaluate whether the direct CP violation
contribution to the 3π0 decay is negligible, or not. Analogous considerations
apply to other ratios like:

• P [K̄0(0)→ K+(∆t)]/P [K̃+(0)→ K0(∆t)]

• P [K0(0)→ K−(∆t)]/P [K̃−(0)→ K̄0(∆t)]

• P [K̄0(0)→ K−(∆t)]/P [K̃−(0)→ K0(∆t)]
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Figure A.6: The expected ratios Rexp
2 (∆t) (top) and Rexp

4 (∆t) (bottom) as a function of
∆t (solid line); dashed lines correspond to ±10% variation in the absolute value of

(
η−1
3π0

)
,

while dotted lines correspond to a ±10◦ variation of its phase (with respect to the expected

value, i.e.
(
η−1
3π0

)
' εS ' ε). The value of

∣∣〈3π0|T |KL〉
∣∣2 has been kept fixed while varying(

η−1
3π0

)
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Figure A.7: A zoom of the plots shown in fig.A.6 in the region 0 ≤ ∆t ≤ 20τS , which is
statistically relevant for the KLOE-2 experiment at DAΦNE.
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