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Abstract. We study the Wigner function for a quantum system with a discrete,

infinite dimensional Hilbert space, such as a spinless particle moving on a one

dimensional infinite lattice. We discuss the peculiarities of this scenario and of the

associated phase space construction, propose a meaningful definition of the Wigner

function in this case, and characterize the set of pure states for which it is non-negative.

We propose a measure of non-classicality for states in this system which is consistent

with the continuum limit. The prescriptions introduced here are illustrated by applying

them to localized and Gaussian states, and to their superpositions.
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1. Introduction

The formalism of Wigner functions and the formulation of quantum mechanics in phase

space have been used since the early days of quantum physics. Originally motivated by

the attempt to describe quantum effects in thermal ensembles, various quasi-probability

distribution functions have been developed and applied to many different fields in

quantum physics, as alternative formalisms which provide useful computational tools

and facilitate physical insight into the quantum nature of states [1, 2].

The first quasi-probability distribution function was introduced by Wigner in

1932 [3], in the context of statistical mechanics, to study quantum corrections to the

thermodynamic equilibrium properties. In analogy to the classical situation, in which a

state can be completely described in terms of its phase-space density, a quantum state

can also be entirely characterized by its Wigner function, and the expectation values

of all observables can be computed as a sum over the whole phase-space weighted by

this function. In contrast to the classical case, in the quantum scenario probability

distributions cannot be defined simultaneously over position and momentum. Thus the

Wigner function is not a true probability distribution, as becomes apparent in the fact

that it can adopt negative values. Instead, it can be interpreted as a quasi-probability

distribution whose marginals reproduce the true probability distributions over single

observables. Operators and dynamics can also be accommodated in the phase-space

picture [4], so that quantum mechanics can be entirely formulated in this framework.

The Wigner function and other phase-space representations have found application

to many different physical problems [1], including quantum optics, statistical mechanics,

hydrodynamics, nuclear theory and quantum field theory. In particular, in the field of

quantum optics, the phase-space descriptions of quantum states have found extensive

application. Specially interesting from the experimental point of view is the ability

to reconstruct the Wigner function (and thus the quantum state) from measurements

of the electromagnetic field quadratures, thus making it a very powerful tool for state

tomography [5, 6, 7]. Remarkably, the fact that the Wigner function is not positive

definite has itself a practical use, since the volume of its negative part can be used as a

measure of non-classicality of the state [8].

In the last two decades, the interest in quantum information processing systems

boosted the generalization of Wigner functions to quantum systems in finite dimensional

Hilbert spaces. Although an early approach was pioneered by Stratonovich [9], who

introduced a spherical, continuous phase space for a spin particle, more recent definitions

target discrete phase spaces. The first such generalization was proposed by Wootters in

1987 [10] for prime dimensional systems, and later generalized to any power of primes

in [11]. A different construction was followed in [12, 13, 14] which could cope with any

dimension of the Hilbert space at the expense of enlarging the size of the phase space

grid. The concept of negativity has also been studied in this context [15, 16, 17] and

connected to beyond-classical features of quantum algorithms.

In this work we focus on a scenario not covered by the previous literature, namely
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that of a quantum system with an infinite dimensional but discrete Hilbert space. The

most immediate example would be a spinless particle moving on a one-dimensional

lattice. We present a definition of the phase space and the Wigner function for this

situation, which connects to both the features of the discrete constructions mentioned

above and the proper continuum limit.

The rest of the paper is organized as follows. In Sect. 2 we review the construction

of the continuous and discrete Wigner functions used in the literature, and comment on

the different features of each case. Sect. 3 presents our definition of the Wigner function

for the infinite discrete quantum system, sketches the proof of its main properties, and

shows that it reproduces the correct continuous limit. In Sect. 4 we introduce a measure

of non-classicality of the states which can be computed from the Wigner function. Our

definitions are illustrated in Sect. 5 with an explicit calculation of the Wigner function

and the non-classicality for several examples. Finally, in Sect. 6 we discuss the utility

of this definition, and how it can be applied to more general settings, for instance, to

the case of a particle with spin moving on the lattice, or to several particles.

2. Continuous and discrete Wigner functions

The phase spaces of continuous and discrete quantum systems turn out to have striking

differences. Defining a Wigner function for a discrete case, thus, requires more than a

simple discretization of the continuum equations. There have been several prescriptions

proposed for this kind of systems. In this section, after reviewing the main characteristics

of the continuous Wigner function that a discrete version should respect, we summarize

the different approaches that have been proposed, and their connection to the continuous

definition.

2.1. Continuous case

For a quantum one-dimensional system, the Wigner function can be written [3]

Wc(x, p) =
1

π

ˆ ∞
−∞

dy〈x+ y|ρ|x− y〉 e−i2py, (1)

where ρ is the density matrix of the system, and |x〉 represents the eigenbasis of the

position operator, X̂ ‡.
It is also possible to define the Wigner function axiomatically [5]. The fundamental

properties that it must satisfy are usually formulated as follows.

(i) Reality: the Wigner function is real.

(ii) Projection: the integral of the Wigner function along any direction, (α, β), in

phase space, yields the probability distribution for the outcomes of measuring the

observable αX̂ + βP̂ , being P̂ the momentum operator. In particular, then, the

‡ We use natural units, such that ~ = 1.
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marginal distributions for position and momentum can be obtained, respectively,

by
´
dpW (x, p) = P (x) and

´
dxW (x, p) = P (p). §

(iii) Inner product: the inner product of two states, given by their density operators, ρ1

and ρ2, can be computed from their Wigner functions as

tr (ρ1ρ2) = 2π

ˆ
dxdpW1(x, p)W2(x, p). (2)

The expectation value of any operator, Ô, can be also computed from its Wigner

representation, WO(x, p).

The Wigner function can also be constructed from the phase-point operators, defined

for all points in the phase space as

A(x, p) ≡ 1

π
D(x, p)ΠD(x, p)†, (3)

where D(x, p) are displacement operators and Π is the parity reflection. The phase-

point operators form a complete set, spanning all Hermitian operators. In particular,

the Wigner function corresponds to coefficients of the density matrix in this basis,

W (x, p) = tr (ρA(x, p)) , (4)

so that the full state can be reconstructed by

ρ =

ˆ
dxdpW (x, p)A(x, p). (5)

Properties equivalent to (i)-(iii) can be formulated for phase-point operators,

leading to the same definition of the phase space. According to these properties the

operators A(x, p) should be Hermitian and satisfy an orthogonality condition, and

integrating A(x, p) along a line in phase space must yield a projector.

2.2. Discrete finite case

A valid generalization of the Wigner function to the case of a discrete Hilbert space

involves generalizing the concept of phase space and the definition of phase space

operators. Several approaches have been proposed in the literature for the case of a finite

dimensional, periodic Hilbert space. Here we briefly describe the two main alternatives,

emphasizing their relation to the continuous case, and we establish the basis for our

definitions (see [18, 2] for more comprehensive reviews).

Wootters [10] generalized the definition of the Wigner function to discrete periodic

Hilbert spaces of prime dimension, N . In Wootter’s original construction the phase space

was a two dimensional N ×N array, indexed by integers. Complete sets of parallel lines

in this phase space, or striations, which are defined using arithmetics modulo N , were

associated to projective measurements. For more general cases, such as power of primes

dimensions or composed systems with both discrete and continuous degrees of freedom,

§ In the rest of the paper, unspecified integral (or sum) limits will be understood as extending over

the whole range of the integrated (summed) variable.
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Figure 1. Graphical representation of the phase space for an infinite one-dimensional

lattice. The momentum-like coordinate is continuous and periodic, k ∈ [−π, π[, and

the position-like coordinate is discrete, labelled by integer values, m.

the phase space could be constructed as a Cartesian product of the fundamental pieces.

A related, more general construction, valid for systems whose dimension is an integer

power of a prime number, was put forward in [11]. In the general construction the

discrete phase space has also size N × N , and was labelled by a finite field. To give

a physical interpretation to the discrete phase space, each line is assigned to a pure

quantum state. The set of all lines parallel to a given one corresponds to an orthogonal

basis, and the distinct sets are mutually unbiased basis [19]. This assignment of states to

lines determines the particular definition of the Wigner function for the system, which is

therefore not unique. Although closely connected to quantum information concepts and

useful to describe systems of n qubits [20, 16], the lack of a unique physical interpretation

and the restriction to dimensions which are powers of primes makes this approach less

appropriate for the kind of system we want to describe.

Leonhardt [13] introduced another definition, more closely connected to the

continuous construction, in which the labels of the phase space axis could be connected

to discrete position and momentum basis of the physical system. For the case of an odd

dimensional system, the discretized version of the continuous definitions is enough to

obtain a valid definition of the Wigner function. However, in the case of even dimensional

Hilbert spaces, the naive discretization does not suffice to guarantee a Wigner function

with the desired properties. Instead, half-odd labels had to be introduced between the

integer points of the phase space axis, so that the size of the grid has to be increased to

2N × 2N (see also [21] for a discussion). A similar approach was pursued in [14], where

the construction followed from the definition of discrete phase-point operators and was

then applied to the analysis of quantum algorithms [22]. In [23], this approach was also

combined with Wootters’ prescription to compose degrees of freedom and employed for

the study of quantum teleportation. Our approach builds up on this construction, easily
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connected to the physical interpretation of the continuous phase space.

3. Definition in the infinite discrete lattice

We consider here a single particle moving on a discrete one-dimensional lattice, with

inter-site spacing a. We can define a discrete position basis, given by orthonormal

states |n〉, with n ∈ Z. Its Fourier transform defines then a quasi-momentum basis,

|q〉 =
√

a
2π

∑
n e

iqna|n〉, which can be restricted to the first Brillouin zone, q ∈ [−π
a
, π
a
[.

Unlike the discrete cases considered above, the Hilbert space of this system is not

periodic and has infinite dimension. The continuum limit is recovered as a → 0, and
1√
a
|n〉 → |x = na〉. We may require that the Wigner function for this system, besides

fulfilling the defining properties, also reproduces in that limit the usual one for a particle

in one dimension, (1).

In [13, 14] the problems in the direct discretization of Eq. (3) were connected to

the fact that, in the case of even dimensions, such a definition does not generate enough

independent operators. We may thus wonder whether the fact of having an infinite

dimensional system is enough to solve this problem. However, the direct discretization

of (3), in spite of producing an infinite number of operators, does not suffice either in

this case to obtain a Wigner function that fulfills the desired properties in the case of

interest.

Here we follow closely the construction of [14], starting with a definition of the

discrete phase space and the associated phase-point operators that then produce the

Wigner function.

A direct discretization of the phase-point operators leads to

Adirect(m, k) =
1

2π
U2mΠ̂V (−2k

a
)ei2km, (6)

where U is the discrete translation operator, shifting the lattice by one site, Um|n〉 =

|n + m〉, and V (q) is the continuous momentum translation, defined by its action on

the momentum basis as V (q′)|q〉 = |q + q′〉. Notice the hybrid character of the phase

space in this case, with discrete and unbounded values of m and continuous, periodic

k ∈ [−π, π[. It is easy to see that Adirect has periodicity π in the momentum coordinate,

Adirect(n, k ± π) = Adirect(n, k). The Wigner function following from these phase-point

operators does not fulfill the defining properties. In particular, summing over positions

does not produce the correct marginal. Instead,∑
n

Wdirect(n, k) ∝
〈
k
a
|ρ|k

a

〉
+
〈
k+π
a
|ρ|k+π

a

〉
. (7)

As a consequence, the resolution in k is not enough to retrieve all the information on

the state from the Wigner function (see [13, 21] for a discussion of this effect).

The problem does not appear if we integrate over the momentum coordinate, and

is thus an effect arising purely from the discrete character of the position basis. It is

not surprising, then, that the strategy in [14], consisting in doubling the number of

points in the phase space, serves us to define also here an appropriate set of phase-point
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operators. In our case, the doubling should only affect the position coordinate, and is

equivalent to adopting the definition

A(m, k) =
1

2π
UmΠ̂V (−2k

a
)eimk. (8)

In the position basis, the phase-point operators can then be written as A(m, k) =
1

2π

∑
n |m− n〉〈n|e−i(2n−m)k, and the Wigner function for our system reads

W (m, k) ≡ tr [ρA(m, k)] =
1

2π

∑
n

〈n|ρ|m− n〉e−i(2n−m)k. (9)

This corresponds to a phase space with the structure depicted in figure 1, where the

m coordinate takes integer values, whereas k is continuous and periodic, taking values

in [−π, π[. Notice that (m, k) cannot be directly interpreted as discrete positions, and

quasimomenta. Instead, they have to be understood as labels of the phase space points.

To make the distinction clear, we reserve symbols m and k for the phase space and n,

q for the position and quasimomentum states of the lattice.

Although the periodicity of A(m, k) is now 2π, it is important to notice that not

all the operators are independent. Indeed, A(m, k ± π) = (−1)mA(m, k), from which it

follows

W (m, k ± π) = (−1)mW (m, k). (10)

It is easy to check that the definition (9) fulfills the main properties we require from

a valid Wigner function. In particular it is real, as follows from the Hermiticity of (8).

The inner product property (iii) is also easy to check, given operators Â and B̂,

2π
∞∑

m=−∞

ˆ +π

−π
dkWA(m, k)WB(m, k) = tr

(
ÂB̂
)
, (11)

In a very similar way, we obtain the explicit expression of the density operator in

terms of the Wigner function,

ρ = 2π
∑
m

ˆ +π

−π
dkW (m, k)A(m, k). (12)

Due to the relation (10), the orthogonality relation between phase-point operators

adopts the following form,

tr [A(m1, k1)A(m2, k2)] =
1

4π
δm1m2 [δ(k1 − k2) + (−1)m1Θ(k2)δ(k1 − k2 + π)

+(−1)m1Θ(−k2)δ(k1 − k2 − π)] , (13)

where Θ(k) is the Heavide step function. To obtain this relation we made use of∑
n e

ink = 2π
∑

r δ(k + 2πr), where the sum runs over all r ∈ Z. Eq. (13) reflects

the fact that operators associated to phase space points whose k coordinate is shifted

by π are not independent, but differ only in a phase.

We may also compute the marginal distributions of (9), and obtain

+∞∑
m=−∞

W (m, k) = 1
a
〈k
a
|ρ|k

a
〉, (14)



Wigner function for a particle in an infinite lattice 8

and ˆ +π

−π
dkW (m, k) =

∑
n

δm,2n〈n|ρ|n〉. (15)

The last equations make evident the distinction between the coordinates of the

momentum space points, m ∈ Z, k ∈ [−π, π[, and the position and quasimomentum

bases, n, q. The k coordinate is adimensional and does not directly represent a

momentum value, but is connected to q = k/a. The spatial label m in phase-space

is only connected to a discrete position, s, for even values , m = 2s, while the odd

values of m are analogous to the odd half-integer phase space grid points in [13, 14].

Keeping these considerations in mind, we can take the continuum limit that

transforms our discrete lattice into real space. This limit is attained by letting a → 0,

with na→ x ∈ R. With this prescription, we can easily see that the continuum limit of

Eq. (9) yields (up to a proportionality factor) the proper continuum Wigner function,

W (m, k) −→
a→0

1

2
Wc(y =

ma

2
, q =

k

a
)

=
1

2π

ˆ +∞

−∞
dz〈ma

2
+ z|ρ|ma

2
− z〉e−i2z

k
a , (16)

as can be checked from the definition (1) after a simple change of variable. Together

with the discussion above, this result shows how the proper continuum limit is attained

in the phase space coordinates. Indeed, as the spacing is decreased, ma
2
→ x and

k
a
→ q. The Wigner function is a quasi-probability distribution, and the physically

meaningful quantities are given by integrals over the phase space. The measure of the

integration must be modified according to this change of variables, so that we obtain

the correspondence, for the integral over any region of the phase space,∑
m

ˆ
dkW (m, k) −→

a→0

ˆ
dy

ˆ
dqW (y, q). (17)

4. Non-classicality of states: negativity of the Wigner function

The fact that the Wigner function is not positive definite over the phase space is

interpreted as a quantum feature, since it follows from the incompatibility of quantum

observables. This property has been applied to separate quantum states from classical

ones. In the continuous case, it is known that the only pure states with non-negative

Wigner function are Gaussian states [24]. The classification is not so clear for mixed

states, where nevertheless some bounds are known for states with positive Wigner

function [25]. From a quantitative point of view, the volume of the negative part of the

Wigner function can be used as a measure of non-classicality [8]. More recently, it has

been shown that the smallest distance to a state with positive Wigner function can also

be used to measure the non-classicality of a state, without needing full tomography [26].

In the context of discrete systems the negativity of the Wigner function has also

been explored, but the different prescriptions discussed in the previous section lead
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to different conclusions. For the direct discretization, a discrete version of Hudson’s

theorem was proven by Gross [27, 17] for the case of a Hilbert space with odd dimension.

In that case the only pure states with non-negative Wigner functions are stabilizer states.

For the class of discrete Wigner functions defined as in [11] a characterization was given

in [15], where the set of non-negative states was identified with the convex hull of

stabilizer states when the Hilbert space dimension was small. Another scenario studied

in the literature, which closely relates to our construction, is that of a pair of quantum

variables, angular momentum and angle, and their associated phase space [28, 29] which

has the same mixed discrete-continuous structure of figure 1. For that case, it has been

shown that the only states with non-negative Wigner functions are those of well defined

angular momentum.

For the situation studied in this paper, a similar reasoning to that in [28] leads to

the conclusion that a pure state has a non negative Wigner function if and only if it is

a state of well defined position in the lattice, i.e. the components of the state vector in

the position basis are given by a delta function (see the Appendix for details).

With our definition, however, phases (10) imply that any state with a non-vanishing

Wigner function on some phase space point with odd-valued position-like coordinate,

W (m = 2s + 1, k) 6= 0, will necessarily have a contribution of opposite sign at points

(m, k ± π). These signs are fundamental in order to ensure that the Wigner function

reproduces the momentum and position probability distributions, but are not related

to the quantumness of the different states. Therefore a naive calculation of the volume

of the negative part of the function, i.e. applying the discrete version of the definition

in [8], will not be a valid measure of non-classicality, as it would result in a non-vanishing

value even for states expected to be classical, such as the discrete version of Gaussian

states.

A similar phenomenon has been observed in different contexts. In the field of

signal analysis, where Wigner functions have also been widely employed, the discrete

time Wigner distribution shows similar features, which are related to aliasing [30], and

various alternative definitions have been proposed to construct alias-free distributions,

and to allow a reconstruction of the continuum time signal from a discrete sample. In

the context of finite dimensional quantum systems, a proposal for a ghost free Wigner

function was put forward in [31]. In all such cases, the negative values of the Wigner

function respond to the very structure of the discretized phase space and not to the

features of the state or the signal. We would thus like to define a new quantity which

serves to estimate non-classicality of states in our system, and allows for a connection

to the well-defined continuum limit. In particular, we expect that this non-classicality

measure vanishes for all Gaussian states, so as to reproduce the well-known continuum

limit, and that it does not include the spurious negative parts from the extended phase

space.

The definition (9) leads to a discrete Wigner function which contains two images,

one in each half of the momentum domain. According to (10), they have the same

magnitude, but on odd position-like coordinates m, their sign is reverted, as can be
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seen in figure 3 for the case of a pure Gaussian state. Although in the continuum limit

(9) reduces to the original expression for the Wigner function, and the second, ghost

image disappears, we would like to have a quantity that characterizes the non-classicality

of discretized states. In particular, we require that the criterion is consistent with that

for the analogous continuous states, in the cases when such exist.

The so-called ghost image exhibits alternating signs between even and odd space-

like coordinates (see, for instance figure 4(a)), while the regular image is smooth. We

would thus like to use as a measure of the non-classicality the negativity restricted to the

regular image. However its position in the phase space plane is not fixed, but changes

with momentum shifts. A momentum displacement, q0, translates into a displacement

q0a in the k coordinate. As the lattice spacing vanishes the regular image lies on the

central region of the phase space, while the ghost image is pushed towards the edge,

which in the continuum is mapped to infinity.

Instead of trying to locate the regular image, so as to restrict the sum to the

corresponding phase-space region, we may apply a filter that eliminates the spurious

sign oscillations from odd values of m, and effectively produces two copies of the regular

image. We thus define the following quantity,

η(ρ) ≡
+∞∑

m=−∞

ˆ +π

−π
dk
[
|W (s)(m, k)| −W (s)(m, k)

]
, (18)

where W (s) is the result of filtering out the sign oscillations for odd m. If the filtering

is perfect, in the continuum limit η(ρ) will yield twice the negativity of the Wigner

function as defined in [8].

Different filtering operations can be tried to this aim. In particular, we propose to

use a sign-averaged Wigner function, defined by

W (s)(m, k) ≡

{
W (m, k) m even

χ(m, k)|W (m, k)| m odd,
(19)

with χ(m, k) = sign[2 sign(W (m−1, k))+sign(W (m, k))+2 sign(W (m+1, k))], i.e. the

even components are unchanged, and the sign of the odd ones is corrected according to

a majority criterion that takes into account the sign of the two closest neighboring even

points ‖. This produces approximately two copies of the regular image (see figure 4(b)),

so that η(ρ) is equivalent to twice the negativity restricted to the half space where this

image is supported.

5. Particular cases

To illustrate the definitions introduced in the previous sections, we explicitly compute

here the Wigner functions and negativities for several pure states.

‖ The factor 2 takes care of the situation when one of the adjacent even points has vanishing W (m, k).
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Figure 2. Wigner function for a state localized at the origin n0 = 0, assuming a = 1.

Notice that a plane projection of the phase space is represented, although it is periodic

in k, and the edges k = ±π have to be identified.

5.1. Localized state

We may consider the simplest case, in which the position of the particle is well defined,

|Ψδ〉 = |n0〉, so that, in position basis, 〈n|Ψδ〉 = δnn0 . The Wigner function can then be

computed exactly,

Wδ(m, k) =
1

2π
δm 2n0 . (20)

This function, represented in figure 2, is non-negative everywhere, so that η(δ) = 0.

5.2. Gaussian state

In the case of continuous degrees of freedom, Gaussian states play a fundamental

role. In particular, pure Gaussian states are the only pure states with non negative

Wigner function [24]. It makes then sense to consider the discretization of a state

Ψ(x) = 1

(σ
√
π)

1
2
e−

(x−x0)
2

2σ2 eiq0x, namely |ΨG〉 = 1
N

∑
n e
− (n−n0)

2

2σ̃2 eiq0na|n〉, for n0 ∈ Z being

σ̃ ≡ σ/a the width measured in units of the lattice spacing. The correct normalization

in the discrete case, N2 =
∑

n e
− (n−n0)

2

σ̃2 ≡ θ3(0, e−
1
σ̃2 ), is expressed in terms of the

Jacobi theta function, defined as θ3(z, q) ≡
∑

n q
n2
e2izn for complex arguments q, z,

with |q| < 1 [32].

The Wigner function for this state can also be computed exactly,

WG(m, k) =
1

2π
ei(k−q0a)me−

(m−n0)
2+n20

2σ̃2
θ3(k − q0a+ i m

2σ̃2 , e
− 1
σ̃2 )

θ3(0, e−
1
σ̃2 )

, (21)

and shown in figure 3 for the particular case σ̃ = 2, n0 = 0, q0 = 0. The figure shows

clearly the regular image, centered around k = 0, and the ghost image, exhibiting the

sign oscillations on odd sites. If we consider instead a displaced Gaussian, with q0 6= 0,

the whole figure is correspondingly shifted in momentum space, as shown in figure 4(a).
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Figure 3. Wigner function for a discretized Gaussian state with σ̃ = 2, q0 = 0 and

n0 = 0, taking a = 1.

Figure 4. Wigner function (left) for a discretized Gaussian state identical to that in

figure 3 with a displacement in momentum q0a = π/3. On the right, the sign-averaged

Wigner function (19).

To illustrate the meaning of the sign-averaged function defined in (19), we also plot it

in figure 4(b) for this state. Obviously, η(ΨG) = 0 for any pure Gaussian state.

5.3. Superposition of deltas

The Gaussian case has vanishing negativity, as expected from its correspondence in the

continuum limit. It actually includes the case of a localized state, too, which can be

interpreted as a Gaussian in the limit of a vanishing width, σ̃. Superpositions of such

states will instead have more quantum features.

We may in particular consider an arbitrary superposition of two localized states,

such as |Ψ2δ〉 = 1√
1+|α|2

∑
n (δnn1 + αδnn2) |n〉, for any n1 6= n2 ∈ Z and α ∈ C. The

corresponding Wigner function can be easily calculated,

W2δ(m, k) =
1

2π(1 + |α|2)

{
δm,2n1 + |α|2δm,2n2
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Figure 5. Wigner function for the superposition of two deltas located at n1 = −n2 =

4, assuming lattice spacing a = 1. The function vanishes everywhere except on three

isolated strips, colored purple in the figure.

+2|α|δm,n1+n2 cos[∆n k + φ]} , (22)

where φ is the phase of the complex coefficient α, and ∆n = n2 − n1. In this case, the

Wigner function vanishes everywhere except for three particular values of the space-like

phase space coordinate, namely m = 2n1, 2n2, n1 + n2. Figure 5 shows the particular

case of n1 = −n2 = 4, α = 1.

It is easy to see that W
(s)
2δ (m, k) = W2δ(m, k), since none of the terms changes sign

under (19). Indeed, the first two terms are non-vanishing only on even values of m,

while the last term can be supported on odd m if n1 and n2 have different parity, but

in that case, W2δ(m ± 1, k) = 0. Therefore, we can analytically compute the quantity

(18) as

η(Ψ2δ) =
∑
m

ˆ π

−π
[|W (m, k)| −W (m, k)]dk

=
|α|

π(1 + |α|2)

ˆ π

−π
dk [| cos(∆nk + φ)| − cos(∆nk + φ)]

=
4|α|

π(1 + |α|2)
, (23)

independent of the separation between the localized states, ∆n, and reaching its

maximum value, ηmax(Ψ2δ) = 2/π, for |α| = 1.

5.4. Superposition of Gaussian states

Another family of states for which the Wigner function defined above can be computed

analytically is that of superpositions of pure Gaussian states. We may consider an

arbitrary superposition of two discretized pure Gaussian states,

|Ψ2G〉 =
1

N
∑
n

{
e
− (n−n1)

2

2σ̃21 eiq1na + αe
− (n−n2)

2

2σ̃22 eiq2na

}
|n〉, (24)
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for arbitrary n1,2 ∈ Z, q1,2 ∈ [−π/a, π/a[ and α ∈ C. For such state, the Wigner function

can be expressed as a sum

W2G = W1 + |α|2W2 + αW12 + α∗W21, (25)

where W1 and W2 are (up to the normalization factor) equivalent to the Wigner function

of a single Gaussian (21), while W12 and W21 contain the crossed terms,

W12(m, k) =
1

πN 2
ei(k−q2a)me

− n21
2σ̃21 e

− (m−n2)
2

2σ̃22

× θ3

(
k − a q1+q2

2
+ i
(
m−n2

2σ̃2
2

+ n1

2σ̃2
1

)
, e
− σ̃

2
1+σ̃

2
2

2σ̃21 σ̃
2
2

)
, (26)

and W21 = W12(1↔ 2).

In the symmetric case, α = 1, n1 = −n2 ≡ n0, σ̃1 = σ̃2 ≡ σ̃, q1 = q2 = 0, the above

expression adopts the compact form

W2G(m, k) =
eikm

πN 2
e−

m2

2σ̃2

{
e−

n20
σ̃2 cosh

mn0

σ̃2
+ cos(2kn0)

}
× θ3

(
k + i

m

2σ̃2
, e−

1
σ̃2

)
, (27)

with N 2 = 2(1 + e−n
2
0/σ̃

2
)θ3(0, e−1/σ̃2

). Using the properties of the θ3 function, we can

further simplify the expression, so that, for even m = 2s,

W2G(2s, k) =
e−

s2

σ̃2

πN 2
θ3(k, e−

1
σ̃2 )

{
e−

n20
σ̃2 cosh

2sn0

σ̃2
+ cos(2kn0)

}
, (28)

and for odd m = 2s+ 1,

W2G(2s+ 1, k) =
eik

πN 2
e−

(s+1/2)2

σ̃2 e−
1

4σ̃2 θ3(k +
i

2σ̃2
, e−

1
σ̃2 )

×
{
e−

n20
σ̃2 cosh

(2s+ 1)n0

σ̃2
+ cos(2kn0)

}
. (29)

In the limit σ̃ → 0, (28) results in the expression for the superposition of two

localized states discussed in the previous section, while (29) vanishes.

Figure 6(a) shows the full Wigner function for the particular case n0 = 6, σ̃ = 1.5.

The central part, around k = 0, corresponds to the regular image, showing the usual

Gaussian peaks and a central interference region. This survives in the continuum limit,

giving rise to a genuine negativity. The ghost image in this case lives on the half phase-

space with larger momenta, and exhibits the characteristic sign oscillation when moving

along the space-like axis. The sign average defined in (19) transforms this image in

a copy of the genuine one, as shown in figure 6(b), so that η(Ψ2G) will be twice the

negativity of the regular image.

Although there is no closed analytical expression for the non-classicality η(Ψ2G),

even in the simplest case discussed above, we can compute it numerically, as shown in

figure 7(a) for the symmetric superposition of two Gaussian states of the same width,

centered at ±n0 and with momentum displacements, q1 = 0 and q2 ≡ q0. As shown
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Figure 6. Wigner function (left) for the symmetric superposition of two Gaussian

states with center in ±n0, for n0 = 6, and width σ̃ = 1.5, assuming lattice spacing

a = 1. The right panel shows the sign-averaged W (s), for comparison.
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Figure 7. Negativity of a superposition of two discretized Gaussian states of the same

width. The left plot shows the case σ̃ = 1.2, as a function of their half-distance, n0,

and the relative momentum displacement, q0, taking a = 1. On the right, we show the

asymptotic value reached for varying width, σ̃.

in the plot, η vanishes only for n0 = 0 and q0 = 0, π, when the situation reduces to a

single Gaussian. For small distances, 2n0, the value of η depends on n0 and q0, while for

larger separations it becomes less sensitive to q0, and soon enough it reaches its maximal

value, and stays constant. As shown in figure 7(b), this asymptotic value is sensitive to

the Gaussian width only when the latter is comparable to the lattice spacing. When σ̃

is large enough, instead, the asymptotic negativity is constant. In the limit σ̃ → 0, on

the other hand, the negativity for a superposition of two deltas is recovered.

6. Discussion

We have extended the formalism of the Wigner function to the case of a quantum

system with a discrete, infinite dimensional Hilbert space. For instance, this would be

the case for a spinless particle moving on a one dimensional lattice. The prescription

presented here appears to be the natural one for this problem, as it satisfies the defining
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mathematical properties of the phase-space representation and recovers the correct

continuum limit for vanishing lattice spacing.

The quantification of non-classicality, as signaled by the negative part of the Wigner

function in the case of continuous degrees of freedom, has to be redefined in this case

to exclude negative contributions due to the structure of the discrete phase space itself.

We have proposed a negativity measure for this case, and have illustrated it with the

explicit results for localized and Gaussian states, and for superpositions of each. Our

results support the meaningfulness of this measure to characterize the states of a particle

on a one-dimensional lattice.

As for other cases, in which the phase-space formalism can also account for the

dynamics of the system, it would be possible to formulate the evolution of such system

fully in terms of its Wigner function, and to use the proposed measure, η(ρ), to classify

quantumness in evolving states. Although the examples presented in this paper are

focused on pure states, the same concepts apply also to mixed states.

An interesting extension of this work is combining the phase space introduced here

with additional degrees of freedom, such as internal ones for the particle, or to extend

it to the case of several particles or dimensions. Wootter’s prescription [10] to construct

composite phase spaces by combining the phase-space point operators of different degrees

of freedom via their tensor product can be applied in this case.

Acknowledgments

This work was partly funded by the Spanish Grants FPA2011-23897 and Generalitat

Valenciana grant PROMETEO/2009/128, and by the DFG by Forschungsgruppe 635.

We gratefully acknowledge the support of Centro de Ciencias Pedro Pascual in

Benasque (Spain), where part of this work was developed.

Appendix A. Pure states with positive Wigner function

Analogous to the result in [28] for a conjugate pair of angle and angular momentum

variables, with the present definition the Wigner function of a pure state is non negative

if and only if it is an eigenstate of the discrete position operator, i.e. 〈n|Ψ〉 = δnn0 . The

first part of the theorem is trivial, since the Wigner function of a localized state (20) is

non negative.

To show the converse, let us assume a pure state with non-negative Wigner function,

W (m, k) ≥ 0, ∀m ∈ Z, k ∈ [−π, π[. From (10) it follows that the Wigner function can

only be non-vanishing on points of the phase space with even space-like coordinate,

m = 2n,

W (2n+ 1, k) = 0 ∀n ∈ Z. (A.1)

The rest of the demonstration follows closely that in [28], and we sketch it here

only for completeness, with the proper modifications to match the definition in (9).
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The proof relies on the following two lemmas, proven in [28], for complex periodic

functions and their (discrete) Fourier transform.

(i) Let g(q) be a continuous, complex, 2π−periodic function. If its Fourier transform

is non-negative, then the integration kernel g(q − q′) is non-negative.

(ii) Given a function f : Z→ C, if its inverse Fourier transform has constant modulus,

then
∑

n∈Z f(n)f ∗(n+m) = 0, ∀m 6= 0.

It is easy to see that, for a pure state, the Wigner function can be written as

W (m, k) =
1

2π

ˆ π/a

−π/a
dqeiqmaψ̃(k

a
+ q)ψ̃∗(k

a
− q) (A.2)

where ψ̃(k) = 〈k|ψ〉 are the components of the state in the quasi-momentum basis. It is

thus the Fourier transform of the function g(q) = 1
a
√

2π
ψ̃((k+ q)/a)ψ̃∗((k− q)/a). From

lemma i,
´ π
−π dq

′χ∗(q)g(q− q′)χ(q′) ≥ 0 for any χ. In particular, requiring the inequality

for all functions χ(q) = a1δ2π(q − c1) + a2δ2π(q − c2), where δ2π(q) ≡
∑

r∈Z δ(q − 2rπ),

a1,2 ∈ C, c1,2 ∈ R, implies

|ψ̃(q)|2 ≥ |ψ̃(q + ∆)||ψ̃(q −∆)|, ∀∆ ∈ R, q ∈ [−π
a
, π
a
[. (A.3)

This requires that |ψ̃(q)| is constant, so that also |g(q)| must be constant. Applying

now lemma (ii)∑
j

W (m, k)W (m+ j, k) = 0 ∀j 6= 0. (A.4)

So that, for a given value of k, there can at most be a single space-like component,

m0(k), for which the Wigner function does not vanish. Combining this with (A.1), we

obtain that such component must be even, m0(k) = 2n0(k), so that, using normalization,

W (m, k) = 1
2π
δm,2n0(k).

It only remains to be shown that this component is the same for all values of k.

This can be seen, as in [28], by making use of the expression for the Wigner function

for a product in terms of individual Wigner functions,

W%2%1(m, k) =
1

2π

∑
m1,m2

ˆ π

−π
dk1

ˆ π

−π
dk2W%1(m+m1, k + k1) (A.5)

W%2(m+m2, k + k2)ei(m2k1−m1k2).

In particular, taking ρ1 = ρ2 ≡ ρ, the pure state we are considering, for which

W (m, k) = 1
2π
δm,2n0(k), and looking at the (real) component for m = 2n0(0) ≡ 2n0,

k = 0,

4π2 =

ˆ π

−π
dk1

ˆ π

−π
dk2 cos (2k2[n0(k1)− n0]− 2k1[n0(k2)− n0]) . (A.6)

To fulfill this equality, the argument of the cosine has to be an integer multiple of 2π

for all values of k1,2, which is only possible if n0(k) = n0 ∀k, and thus

W (m, k) =
1

2π
δm,2n0 . (A.7)

Using (12) it is easy to show that the pure state corresponding to this Wigner function

is |Ψδ〉 = |n0〉.
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[22] Cecilia C. López and Juan Pablo Paz. Phase-space approach to the study of decoherence in

quantum walks. Phys. Rev. A, 68:052305, Nov 2003.

[23] Juan Pablo Paz. Discrete wigner functions and the phase-space representation of quantum

teleportation. Phys. Rev. A, 65:062311, Jun 2002.

[24] R.L. Hudson. When is the wigner quasi-probability density non-negative? Reports on

Mathematical Physics, 6(2):249 – 252, 1974.

[25] A. Mandilara, E. Karpov, and N. J. Cerf. Extending hudson’s theorem to mixed quantum states.

Phys. Rev. A, 79:062302, Jun 2009.

[26] A. Mari, K. Kieling, B. Melholt Nielsen, E. S. Polzik, and J. Eisert. Directly estimating

nonclassicality. Phys. Rev. Lett., 106:010403, Jan 2011.



Wigner function for a particle in an infinite lattice 19

[27] David Gross. Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys.,

47:122107, 2006.

[28] I. Rigas, L. L. Sánchez-Soto, A. B. Klimov, J. Řeháček, and Z. Hradil. Non-negative wigner
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