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Abstract

The flavour structure of the general Two Higgs Doublet Model
(2HDM) is analysed and a detailed study of the parameter space is pre-
sented, showing that flavour mixing in the 2HDM can be parametrized
by various unitary matrices which arise from the misalignment in
flavour space between pairs of various Hermitian flavour matrices
which can be constructed within the model. This is entirely analo-
gous to the generation of the CKM matrix in the Standard Model
(SM). We construct weak basis invariants which can give insight into
the physical implications of any flavour model, written in an arbitrary
weak basis (WB) in the context of 2HDM. We apply this technique to
two special cases, models with MFV and models with NNI structures.
In both cases non-trivial CP-odd WB invariants arise in a mass power
order much smaller than what one encounters in the SM, which can
have important implications for baryogenesis in the framework of the
general 2HDM.
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1 Introduction

The two Higgs doublet model (2HDM) [1] is one of the simplest extensions
of the Standard Model (SM) and arises in many models beyond the SM,
including supersymmetric (SUSY) ones. The 2HDM was first introduced
by Lee [2] with the aim of achieving spontaneous CP violation [3] in the
context of the SM, at a time when only two incomplete fermion generations
were known. No extra symmetries are introduced in Lee’s model and, as a
result, the model has flavour-changing-neutral currents (FCNC) of arbitrary
strength at tree level. In order to avoid FCNC at tree level in the 2HDM,
a discrete Z2 symmetry can be introduced [4], which guarantees Natural
Flavour Conservation (NFC) in the scalar sector. It was pointed out that
in this case neither spontaneous [5] nor hard CP violation [6] in the Higgs
sector can be achieved, unless one introduces a third Higgs doublet. An
alternative scenario is to break this Z2 symmetry softly [7]. In this paper
we study the flavour content of the general 2HDM and construct weak basis
(WB) invariants which can give insight into the physical implications of any
flavour model written in an arbitrary WB. It should be stressed that even in
models where each charge quark sector receives mass contributions from only
one Higgs, as it is the case in SUSY models, “wrong” couplings are generated
at higher orders [8], [9], [10]. Therefore, the present analysis maybe relevant
also for models with NFC at tree level.

At this stage it is worth recalling that in the presence of a flavour sym-
metry or an Ansatz, the Yukawa couplings may contain texture zeros which
arise only in a specific basis. In another WB the Yukawa coupling matrices
change, the texture zeros may no longer be present but the physical content
of the model does not change. The great advantage of the WB invariants
stems from the fact that they can be evaluated in any WB. Furthermore,
we point out that the flavour structure in the 2HDM can be parametrized
by various unitary matrices which are entirely analogous to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix of the SM. All the unitary flavour mixing
matrices of the 2HDM arise from the misalignment in flavour space of vari-
ous Hermitian matrices constructed in the framework of the 2HDM. In order
to illustrate the usefulness of these WB invariants, we apply them to the
analysis of 2HDM which have Higgs mediated FCNC at tree level (HFCNC),
but with their structure entirely defined [11] , [12] in terms of VCKM . It
has been pointed out that some of these models satisfy the hypotheses of
Minimal Flavour Violation [13] (see also [14], [15], [16]) . The paper is orga-
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nized as follows: in the next section, we settle the notation and analyse the
flavour parameter space of the general 2HDM, explaining how the various
unitary flavour mixing matrices are generated. In section 3 we display how
the various Yukawa couplings transform under WB transformations, con-
struct various WB invariants and analyse their physical meaning. Next we
illustrate how WB invariants can be used to analyse specific flavour models,
based on 2HDM. As examples we use the class of models named BGL [11],
where there are FCNC at tree level but with their flavour structure controlled
by VCKM , and a model with nearest-neighbour-interaction (NNI) pattern for
the quark mass matrices in the framework of a 2HDM [17]. Finally in section
4 we present our Conclusions.

2 The Two Higgs Doublet Parameter Space

We consider the extension of the SM consisting of the addition of two Higgs
doublets (2HDM) with no additional symmetries. This implies that each of
the doublets Φ1, Φ2 contributes to both up and down quark mass matrices,
through the Yukawa couplings:

LY = − Q0
L Γ1Φ1d

0
R −Q0

L Γ2Φ2d
0
R −Q0

L ∆1Φ̃1u
0
R −Q0

L ∆2Φ̃2u
0
R + h.c. (1)

where we have used standard notation. The interactions of the neutral Higgs
with the quarks, obtained from Eq.(1) are given by:

LY (neutral) = −d0L
1

v
[MdH

0 +N0
dR + iN0

d I] d
0
R +

− u0
L

1

v
[MuH

0 +N0
uR− iN0

uI] u
0
R + h.c. , (2)

with v ≡
√

v21 + v22, and H0, R orthogonal combinations of the fields ρj ,

given by φ0
j = e

iθj√
2
(vj + ρj + iηj), where H0 is defined so that its couplings

are proportional to the mass matrices. In an analogous way, I is a linear
combination of ηj orthogonal to the neutral Goldstone boson. The quark
mass matrices Md and Mu and the matrices N0

d and N0
u are given by:

Md =
1√
2
(v1Γ1 + v2e

iθΓ2) , Mu =
1√
2
(v1∆1 + v2e

−iθ∆2) ,

N0
d =

v2√
2
Γ1 −

v1√
2
eiθΓ2 , N0

u =
v2√
2
∆1 −

v1√
2
e−iθ∆2 , (3)
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where θ denotes the relative phase of the vevs of the neutral components of
Φi. The four matrices of Eq.(3) are written in an arbitrary weak-basis (WB).
It is well known that one can make a WB transformation defined by:

d0L = WL d0L
′
, d0R = W d

R d0R
′
, u0

L = WL u0
L

′
, u0

R = W u
R u0

R

′
(4)

without physical implications. Under these WB transformations, the matri-
ces of Eq. (3) transform as:

Md → M ′
d = W †

LMdW
d
R, Mu → M ′

u = W †
LMuW

u
R,

N0
d → N0

d

′
= W †

LN
0
dW

d
R, N0

u → N0
u

′
= W †

LN
0
uW

u
R (5)

In order to analyse the physical content of the above four matrices, one may
choose, without loss of generality, a weak-basis where Mu is diagonal real,
whileMd is a Hermitian matrix with only one rephasing invariant phase given
by ϕ = arg[(Md)12(Md)23(Md)31]. The six real parameters in Md, together
with ϕ and the up quark masses mu, mc, mt, total the ten parameters con-
tained in the flavour sector of the SM, seen in a weak basis. In the quark
mass eigenstate basis these appear as the six quark masses and the four pa-
rameters characterizing VCKM . In the above described WB, the matrices N0

d ,
N0

u are in general complex arbitrary 3×3 matrices, each one containing nine
physical phases. Note that we have considered the general 2HDM with no
flavour symmetries introduced.

In the presence of flavour symmetries and/or texture zeros, the number of
parameters in N0

d , N
0
u can be drastically reduced. Flavour symmetries (FS)

are introduced in a specific WB, with the choice dictated by the FS repre-
sentation assumed for the fermions and Higgs doublets. Similarly, texture
zeros imply the choice of a particular WB. In view of this freedom of choice
of WB, it is very useful to express the physical content of Md, Mu, N

0
d , N

0
u

in terms of WB invariants.
We shall construct these invariants and analyse their physical content in

section 3.
It is useful to see how the parameters ofN0

d , N
0
u appear when one parametrizes

N0
d , N

0
u through unitary matrices. It can be readily seen that, without loss

of generality, one can write:

N0
d = KL V̂ Nd

L DNd K (V̂ Nd

R )† K†
R (6)

where KL, KR are diagonal unitary matrices of the form:

KL,R = diag[1, exp(iϕ1L,R), exp(iϕ2L,R)] (7)
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while V̂ Nd

L,R are unitary matrices with one physical non factorizable phase each,
analogous to VCKM . Finally one has:

K = diag[exp(iσ1), exp(iσ2), exp(iσ3)] (8)

and DNd stands for a real diagonal matrix. The explicit counting of param-
eters is:

phases: 2(KL) + 2(KR) + 1(V̂ Nd

L ) + 1(V̂ Nd

R ) + 3(K) = 9

real parameters 3(V̂ Nd

L ) + 3(V̂ Nd

R ) + 3(DNd) = 9

for each one of the matrices N0
d , N

0
u .

3 Weak Basis Invariants

3.1 The General Case

The four matrices, Md, Mu, N
0
d , N

0
u fully characterize the flavour sector of

the 2HDM in the sense that they encode the breaking of the large flavour
symmetry present in the gauge sector of the theory. The above four flavour
matrices contain a large redundancy of parameters which results from the
fact that under a WB transformation Md, Mu, N

0
d , N

0
u change transforming

as indicated by Eq. (5) without altering their physical content. Different
Lagrangians related to each other by WB transformations describe the same
physics. In view of the above redundancy, it is of great interest to con-
struct WB invariants which can be very useful in the analysis of the physical
content of the flavour sector of a given model. For example, in the con-
text of the SM, it has been shown [18] that from the four WB invariants
tr(Hu Hd), tr(Hu H2

d), tr(H
2
u Hd), tr(H

2
u H2

d), where Hd,u ≡ (Md,uM
†
d,u), one

can construct the full VCKM , with only a two-fold ambiguity in the sign of
ImQ, where Q stands for a rephasing invariant quartet of VCKM , defined by
Qαiβj ≡ VαiVβjV

∗
αjV

∗
βi (α 6= β, i 6= j). WB invariants are also very useful

in the study of CP violation. In the context of the SM, it has been derived
from first principles [19] that the necessary and sufficient condition for CP
invariance is the vanishing of the WB invariant:

ICP
1 ≡ tr [Hu, Hd]

3 = 6i(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)×
×(m2

b −m2
s)(m

2
b −m2

d)(m
2
s −m2

d)ImQuscb (9)
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for three generations ICP
1 is proportional to det[Hu, Hd]

3, introduced in Ref. [20].
In this section we use WB invariants to analyse the flavour structure and

CP violation in the general 2HDM. We shall apply here the same technique
that was introduced in [19] to the study of CP violation in the SM. This
technique was later generalized to many different scenarios, in particular to
the study of explicit CP violation in the scalar sector of multi-HDM prior
to gauge symmetry breaking [21] as well as CP violation in the scalar sector
after this breaking [22] and also taking into account both the scalar and the
fermionic sector [23]. In Ref. [24] CP violation in the supersymmetric case is
analysed. WB invariants can also be built to study other important features
of flavour models such as alignment and the pattern of fermion masses and
mixing [25]. One can check the predictions of a flavour model by comparing
invariant quantities with their corresponding experimental values. In Ref.
[26], the authors classified all the invariants that can be built in a given
theory, using the ring of polynomials that are invariant under the action of
a group.

From the transformation properties of the flavour matrices Md, Mu, N
0
d ,

N0
u given in Eq. (3), it is clear that one can build new WB invariants, which

do not arise in the SM, by evaluating traces of blocks of matrices involving
the up and down quark sector, like for example MγN

0†
γ or N0

γN
0†
γ . We shall

analyse the lowest WB invariants and indicate some of the physical aspects
of the 2HDM probed by each one of these invariants. For definiteness let us
consider the WB invariant tr(MdN

0†
d ) and note that its physical significance

becomes transparent in the WB where Md is diagonal, real, since in this basis
the matrix N0

d already coincides with the couplings to the physical quarks.
In this basis one has:

I1 ≡ tr(MdN
0†
d ) = md(N

∗
d )11 +ms(N

∗
d )22 +mb(N

∗
b )33 (10)

We denote Nd, the matrix N0
d in the basis where it couples to the physical

quarks. This invariant is not sensitive to Higgs-mediated FCNC, but Im(I1)
is specially important, since it probes the phases of (Nd)jj which contribute
to the electric dipole moment of down-type quarks. Obviously, one can con-
struct an analogous invariant for the up-quark sector, namely tr(MuN

0†
u ).

Let us now consider a WB invariant which is sensitive to the off-diagonal
elements of Nd, namely:

I2 ≡ tr
[

MdN
0†
d ,MdM

†
d

]2

= −2mdms(m
2
s −m2

d)
2(N∗

d )12(N
∗
d )21 −

−2mdmb(m
2
b −m2

d)
2(N∗

d )13(N
∗
d )31 − 2msmb(m

2
b −m2

s)
2(N∗

d )23(N
∗
d )32, (11)
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where we have kept the notation used in Eq. (10), having evaluated I2 in the
WB where Md is real and diagonal. It is well known that ICP

1 given in Eq. (9)
measures the strength of CP violation arising from weak charged currents
with the appearance of a non-trivial quark mixing matrix VCKM ≡ U †

uLUdL

reflecting the fact that UdL 6= UuL, i.e. the misalignment of the matrices Hd,
Hu in flavour space. In an entirely analogous way, one can construct the
invariant:

ICP
2 ≡ tr

[

Hu, HN0

d

]3

= 6i∆u∆Nd
ImQ2 (12)

where Q2 is a rephasing invariant quartet of V2 ≡ U †
uLUN0

d
L, ∆u ≡ (m2

t −
m2

c)(m
2
t −m2

u)(m
2
c −m2

u) and ∆Nd
is defined in analogy to ∆u but refering to

the eigenvalues of HN0

d
≡ N0

dN
0†
d . It is clear that V2 reflects the misalignment

of the matrices Hu, HN0

d
in flavour space. Similarly, one has the invariant :

ICP
3 ≡ tr

[

Hd, HN0

d

]3

= 6i∆d∆Nd
ImQ3 (13)

where Q3 is a rephasing invariant quartet of V3 ≡ U †
dLUN0

d
L. In an entirely

analogous way, one can also construct the invariants:

ICP
4 ≡ tr

[

Hu, HN0
u

]3
; ICP

5 ≡ tr
[

Hd, HN0
u

]3
; ICP

6 ≡ tr
[

HN0

d
, HN0

u

]3

(14)

which are proportional to the imaginary parts of the invariant quartets of
U †
uLUN0

uL
, U †

dLUN0
uL

and U †
N0

d
L
UN0

uL
respectively. So far, we have only consid-

ered invariants which are sensitive to left-handed mixings. One can construct
analogous invariants which are sensitive to right-handed mixings, like:

ICP
7 ≡ tr

[

H ′
d, H

′
N0

d

]3

= 6i∆d∆Nd
ImQ7 (15)

where H ′
d ≡ M †

dMd, H
′
N0

d

≡ N0†
d N0

d and Q7 is a rephasing invariant quartet

of UdRU
†
N0

d
R
. Obviously, one can construct analogous invariants with the up

sector, namely ICP
8 ≡ tr

[

H ′
u, H

′
N0

u

]3

.

3.2 The Minimal Flavour Violation Case

The invariants considered in the general 2HDM can obviously be applied to
any flavour model where the matrices Γ1, Γ2, ∆1 and ∆2 have specific flavour
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structures (e.g. texture zeros) resulting, for example, from a flavour symme-
try introduced in the Lagrangian. As we have seen, in the general 2HDM, the
flavour structure of N0

d , N
0
u is arbitrary, which may lead to dangerous Higgs

mediated FCNC, unless some natural suppression mechanism is found. Some
time ago a class of models was constructed by Branco, Grimus and Lavoura
(BGL) [11] where HFCNC are present at tree level with their structure en-
tirely controlled by VCKM with no other new flavour parameters. The class
of models considered in Ref. [11] are entirely natural since their remarkable
features result from a symmetry imposed on the Lagrangian. These mod-
els were generalized and their MFV character was analysed in Ref.[12]. An
extension to the leptonic sector was proposed [27], with the rôle of VCKM

replaced by the Pontecorvo-Maki-Nakagawa-Sakata matrix denoted VPMNS.
The MFV hypothesis requires that the flavour structure of physics beyond
the SM should only depend on VCKM entries, quark masses and, in the case of
2HDM, on the ratio v1/v2 of Higgs vevs, with the corresponding analogue for
the leptonic sector. The MFV as defined in [13] also requires that the break-
ing of the flavour symmetry be dominated by the top Yukawa couplings. In
the context of the 2HDM this leads to the requirement that the new physics
beyond the SM should be suppressed by the third row of VCKM in order
to comply with all the criteria introduced in the original paper where the
definition of the Minimal Flavour Violation hypothesis was introduced [13].

For definiteness let us consider the Yukawa couplings arising in a specific
BGL model, which realizes the MFV hypothesis with HFCNC only in the
down sector:

Γ1 =





× × ×
× × ×
0 0 0



 ; Γ2 =





0 0 0
0 0 0
× × ×



 (16)

∆1 =





× × 0
× × 0
0 0 0



 ; ∆2 =





0 0 0
0 0 0
0 0 ×



 (17)

This BGL model realizes the MFV hypothesis in a natural way. It has been
pointed out [11] that there are six BGL models which correspond to inter-
changes of rows in the matrices given above as well as choosing what sector
(up or down) has HFCNC which amounts to interchanging the matrices Γi

with the matrices ∆i. As previously emphasized, the specific texture of
Eqs. (16), (17), reflects a particular choice of WB. In the sequel, we give

7



WB-independent necessary and sufficient conditions for a set of Yukawa cou-
plings Γi, ∆i written in an arbitrary WB to be of the BGL type, implying
the existence of a WB where these matrices can be cast in the form given
above.

Necessary and Sufficient Conditions for BGL

The following relations:

∆†
1∆2 = 0; ∆1∆

†
2 = 0; Γ†

1∆2 = 0; Γ†
2∆1 = 0 (18)

are necessary and sufficient conditions for a set of Yukawa matrices Γi, ∆i to
be of the BGL type, with Higgs mediated FCNC in the down sector.

Proof

Note that the conditions of Eqs. (18) are WB independent, in the sense that
if a set of matrices Γi, ∆i satisfy Eqs. (18) in a given WB, they will satisfy
them when written in any other WB. From Eqs. (18) it follows that:

[

∆1∆
†
1,∆2∆

†
2

]

= 0;
[

∆†
1∆1,∆

†
2∆2

]

= 0 (19)

From Eq. (19) one concludes that one can choose a basis where both ∆1 and
∆2 are diagonal, real:

∆1 = d1 ≡ diag. [(d1)1, (d1)2, (d1)3] ; ∆2 = d2 ≡ diag. [(d2)1, (d2)2, (d2)3] (20)

This implies that in this case there are no FCNC in the up sector. From the
requirement that ∆1∆

†
2 = 0, which is one of the conditions of Eq. (18), one

concludes that Eq. (20) leads to the following three solutions for the diagonal
matrices d1, d2:

(up) d1 = diag.
[

0 × ×
]

; d2 =
[

× 0 0
]

(21a)

(charm) d1 = diag.
[

× 0 ×
]

; d2 =
[

0 × 0
]

(21b)

(top) d1 = diag.
[

× × 0
]

; d2 =
[

0 0 ×
]

(21c)

We have not included above, solutions corresponding to the interchange of
d1, d2. Without loss of generality, we shall concentrate on one of the models,
namely the “top model”. This is the variant of the BGL models which satis-
fies all the constraints of the MFV hypothesis. It is also the most interesting
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version, from the phenomenological point of view, with strong natural sup-
pression of FCNC in ∆S = 2 transitions. In the top model, the ∆i matrices
have the following form in any arbitrary WB:

∆1 = W †
L





(d1)1 0 0
0 (d1)2 0
0 0 0



W u
R (22)

∆2 = W †
L





0 0 0
0 0 0
0 0 (d1)3



W u
R (23)

This implies that there are indeed WBs where these matrices can be cast in
the form given by Eq. (17). This is obtained by choosing unitary matrices
WL and W u

R of the block form:

WL =

[

(WL)2×2 0
0 eiα

]

; W u
R =

[

(W u
R)2×2 0
0 eiβ

]

(24)

leading to:

∆1 = W †
L





(d1)1 0 0
0 (d1)2 0
0 0 0



W u
R =





× × 0
× × 0
0 0 0



 ; (25)

∆2 = W †
L





0 0 0
0 0 0
0 0 (d1)3



W u
R =





0 0 0
0 0 0
0 0 ×



 (26)

Let us now see how the other conditions restrict the form of Γ1 in this WB.
In the top model, the condition Γ†

1∆2 = 0, leads to:

Γ†
1∆2 =





× × a
× × b
× × c









0 0 0
0 0 0
0 0 ×



 = 0 (27)

From Eq.(27) one obtains a = b = c = 0, so Γ1 has the form

Γ1 =





× × ×
× × ×
0 0 0



 (28)
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in the basis where ∆2 has the form of Eq. (26). The other condition in
Eqs. (18) requires Γ†

2∆1 = 0 which leads to:

Γ†
2∆1 =





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3









A B 0
C D 0
0 0 0



 = 0 (29)

From this equation one obtains:

α1A+ α2C = 0

α1B + α2D = 0 (30)

Note that since, in the chosen WB, the up and charm quark only receive
mass from ∆1 the non-vanishing of mu and mc imply AD − BC 6= 0 which
together with Eqs. (30) leads to:

α1 = α2 = 0 (31)

In an entirely analogous manner, one can show that β1, β2 and γ1, γ2 vanish.
One concludes then that Γ2 has the form:

Γ2 =





0 0 0
0 0 0
× × ×



 (32)

This completes the proof that the relations of Eq. (18) are necessary and
sufficient conditions to have a BGL type model, with HFCNC in the down
quark sector.

Similarly, using the up and charm solutions of Eqs. (21a) and (21b) one
obtains the other two BGL models with FCNC in the down sector. The nec-
essary and suffient conditions for BGL models with FCNC in the up sector
can be written like those of Eq. (18) with the rôle of the Yukawa matrices Γi

and ∆i interchanged. These conditions are WB independent and therefore
they allow one to identify BGL type models when written in an arbitrary
WB where the zero texture patterns of the WB chosen by the symmetry are
not present.

The lowest invariants in the MFV framework and CP violation
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It is instructive to evaluate the lowest non-trivial invariants in the case
of BGL models. In the general 2HDM one has:

MdN
0†
d =

1

2

[

v1v2

(

Γ1Γ
†
1 − Γ2Γ

†
2

)

+
(

v22Γ2Γ
†
1 − v21Γ1Γ

†
2

)

cos θ+

+ i
(

v22Γ2Γ
†
1 + v21Γ1Γ

†
2

)

sin θ
]

(33)

It can be readily verified that in BGL models one has:

tr
[

Γ1Γ
†
2

]

= 0 (34)

so that we obtain from Eq. (33):

I1 ≡ tr(MdN
0†
d ) =

1

2
tr
[

v1v2

(

Γ1Γ
†
1 − Γ2Γ

†
2

)]

(35)

The important point is that in BGL models MdN
0†
d is an Hermitian matrix

and thus:

Im tr(MdN
0†
d ) = 0 (36)

From Eqs. (10) and (36), it follows that in this class of models Im(Nd)jj = 0,
thus avoiding too large e.d.m. for down-type quarks.

In order to extend the discussion of BGL type models to higher order
WB invariants it is instructive to review the formulation of these models in a
more generic way. Here we present some relations which greatly simplify the
explicit computation of higher order invariants in terms of physical quantities.
In Ref. [12] the special characteristics of BGL type models were analysed
and generalized. It was pointed out that the particular BGL example given
explicitly at the beginning of this section, corresponds to a class of models
where N0

d and N0
u can be writen as:

N0
d =

v2
v1
Md −

(

v2
v1

+
v1
v2

)

Pγ
i Md (37)

N0
u =

v2
v1
Mu −

(

v2
v1

+
v1
v2

)

Pβ
j Mu (38)

where Pα
i are the projection operators defined [28] by

Pα
i = UαLPiU

†
αL (39)

(Pi)lk = δilδik (40)

11



and α, β, γ denote u (up) or d (down). BGL models have γ = β and
therefore lead to HFCNC in one sector only. In BGL models we also have
i = j. For γ = β = u there are HFCNC only in the down sector and vice
versa for γ = β = d. The example given at the beginning of this section
corresponds to γ = β = u and i = j = 3 and was presented in a particular
weak basis.That weak basis was chosen by the symmetry imposed on the
Lagrangian. Notice that the formulation presented here corresponds to the
generalization of the model to any weak basis. The choice i = 3 together
with γ = β = u insures that the HFCNC are suppressed by the third row
of VCKM . In the WB where Md is real and diagonal this particular example
corresponds to:

VCKM ≡ U †
uLUdL = U †

uL (41)

which leads to:

Md = Dd, Mu = V †
CKMDuU

†
uR (42)

N0
d ≡ Nd =

v2
v1
Dd −

(

v2
v1

+
v1
v2

)

V †
CKMP3VCKM Dd (43)

N0
u =

v2
v1
V †
CKMDuU

†
uR −

(

v2
v1

+
v1
v2

)

V †
CKMP3DuU

†
uR (44)

Eqs. (37) – (40) together with the definition of VCKM enable us to express
all WB invariants in terms of physical quantities. All six cases with γ = β
and i = j can be obtained as the result of a discrete symmetry [11].

In Ref. [12] a MFV expansion for N0
d , N

0
u with proper transformation

properties under a WB transformation, corresponding to a generalization of
Eqs. (37) and (38) is given by:

N0
d = λ1 Md + λ2i UdLPiU

†
dL Md + λ3i UuLPiU

†
uL Md + ... (45)

N0
u = τ1 Mu + τ2i UuLPiU

†
uL Mu + τ3i UdLPiU

†
dL Mu + ... (46)

In the quark mass eigenstate basis N0
d , N

0
u become:

Nd = λ1 Dd + λ2i Pi Dd + λ3i (VCKM)† Pi VCKM Dd + ... (47)

Nu = τ1 Du + τ2i Pi Du + τ3i VCKM Pi (VCKM)† Du + ... (48)

conforming explicitly with the requirement of depending only on the VCKM

matrix. This expansion contains as particular cases the six BGL models
mentioned above. Only these six models can be obtained by means of an

12



Abelian symmetry of the Lagrangian [29], [27]. The symmetry also fixes the
coefficients of the expansion in the form given by Eqs. (37) and (38). The
expansion given by Eqs. (45) and (46) differs from the usual one considered
in the literature [13] by splitting each component of MdM

†
d and MuM

†
u into

[28]:

Hα =
∑

i

m2
αiPα

i (49)

and allowing for different coefficients for each term of the expansion in Pα
i

with a different index i. In this sense the expansion given here is more general
and contains the one used in the literature by many authors as a special case.

It is well known that in the SM the lowest order WB invariant sensitive to
CP violation is given by Eq. (9) and has dimension twelve in powers of mass.
Obviously, this invariant is also relevant for BGL type models. However, in
BGL type models we have a richer flavour structure parametrized in terms
of the four matrices Md, Mu, N

0
d and N0

u rather than the two mass matrices
of the SM. As a result, in this case the lowest order invariant sensitive to CP
violation is of lower order, namely:

ICP
9 ≡ Im tr

[

MdN
0†
d MdM

†
dMuM

†
uMdM

†
d

]

(50)

In BGL models invariants that see CP violation must contain flavour matri-
ces both from the up and down sector. In fact the sector that has HFCNC
has couplings that are proportional to only one row of VCKM and it is always
possible to choose a parametrization where any single row of VCKM is real.
This invariant can be readily evaluated using Eqs. (42), (43), which corre-
spond to the specific BGL model given at the beginning of this section with
γ = u and i = 3, and one obtains:

ICP
9 (γ = u, i = 3) = −

(

v2
v1

+
v1
v2

)

(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)×

×(m2
c −m2

u)Im (V ∗
22V32V

∗
33V23) (51)

This result is in agreement with the MFV character of BGL models namely,
all flavour changing and CP violation are controlled by VCKM , therefore
this CP violating quantity must be proportional to the imaginary part of
rephasing invariant quartets of VCKM as in the SM [3]. Another important
result is that ICP

9 (γ = u, i = 3) is different from zero even if mt = mc

or mt = mu. In fact the discrete symmetry leading to this specific BGL

13



model singles out the top quark [11]. It is important to emphazise that this
invariant is defined in such a way that the trace involves the sum over all
quarks, therefore it can be related to the baryon asymmetry generated at the
electroweak phase transition [30], [31], [32], [33].

In the BGL model defined by γ = d, i = 1, where:

N0
d =

v2
v1
Md −

(

v2
v1

+
v1
v2

)

Pd
1 Md (52)

N0
u =

v2
v1
Mu −

(

v2
v1

+
v1
v2

)

Pd
1 Mu (53)

we can get an enhancement in the CP violating contribution to the baryon
asymmetry of the order:

ICP
9 (γ = d, i = 1)

ICP
1

E12

E8
≃

(

v2
v1

+
v1
v2

)

E4

m2
bm

2
s

(54)

where E is the scale relevant for baryogenesis at the electroweak phase tran-
sition. For E ∼ 100GeV we get an enhancement of about 1010. This en-
hancement can be traced to the fact that this model singles out the d quark
in such a way that the only mass difference involving down quarks appearing
in ICP

9 (γ = d, i = 1) is the suppression term (m2
b −m2

s) unlike in ICP
1 where

the three different down square mass differences appear, so that the ratio of
this invariant by ICP

1 is larger by a factor of the order E4/(m2
b−m2

d)(m
2
s−m2

d)

It is instructive to make use of Eqs. (42), (43) to compute I2 which is real
in this case:

I2 = −2m2
dm

2
s(m

2
s −m2

d)
2

(

v2
v1

+
v1
v2

)2

|V31|2|V32|2 −

−2m2
dm

2
b(m

2
b −m2

d)
2

(

v2
v1

+
v1
v2

)2

|V33|2|V31|2 − (55)

−2m2
sm

2
b(m

2
b −m2

s)
2

(

v2
v1

+
v1
v2

)2

|V33|2|V32|2

the dominant term is the last one.
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3.3 Two Higgs doublets with the NNI texture

Some time ago [34] it has been shown that, in the three generation SM,
starting with arbitrary Yukawa couplings, one can always make a WB trans-
formation such that the quark mass matrices Md, Mu get the form:

Md =





0 ad 0
a′d 0 bd
0 b′d cd



 ; Mu =





0 au 0
a′u 0 bu
0 b′u cu



 (56)

this form, usually denoted nearest-neighbour-interaction (NNI) basis has no
physical implications in the context of the SM with one Higgs doublet. If one
further assumes that Md, Mu are Hermitian in the NNI basis (i.e., a′d(u) =

a∗d(u), b′d(u) = b∗d(u)) then one obtains the Fritzsch Ansatz [35] which does

have physical implications, correctly predicting |Vus| but making a wrong
prediction for |Vcb|, taking into account that mt ≫ mc. This implies that
the original Fritzsch Ansatz has been ruled out. Recently, it has been shown
that one can reproduce all the current data on quark masses and mixing, by
allowing deviations of Hermiticity of about 20% in the NNI form. It was also
shown [17] that, in the context of 2HDM, one can obtain the NNI form for
the quark mass matrices, through the introduction of a Z4 symmetry in the
Lagrangian, which leads to:

v1√
2
Γ1 =





0 ad 0
a′d 0 0
0 0 cd



 ;
v2e

iθ

√
2
Γ2 =





0 0 0
0 0 bd
0 b′d 0



 (57)

v1√
2
∆1 =





0 0 0
0 0 bu
0 b′u 0



 ;
v2e

−iθ

√
2

∆2 =





0 au 0
a′u 0 0
0 0 cu



 (58)

It is clear that the couplings of Eqs. (57), (58) lead to HFCNC in both the up
and down sectors. In this section, we evaluate some of the previously defined
WB invariants, illustrating their usefulness in the analysis of HFCNC and
CP violating effects.

Let us consider I1 again. It can be easily checked that this invariant is
real in the NNI case.:

I1 ≡ tr(MdN
0†
d ) =

v2
v1
(ada

∗
d + a′da

′
d
∗
)− v1

v2
(bdb

∗
d + b′db

′
d
∗
) +

v2
v1
cdc

∗
d (59)
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The same is true for I2 which in this case is given by:

I2 ≡ tr
[

MdN
0†
d ,MdM

†
d

]2

=

(

v2
v1

+
v1
v2

)2

2 cdc
∗
d

[

cdc
∗
dbdb

∗
db

′
db

′
d

∗
+

+(b′db
′
d
∗
)2ada

∗
d + (bdb

∗
d)

2a′da
′
d
∗ − a′da

′
d
∗
bdb

∗
db

′
db

′
d
∗ − ada

∗
dbdb

∗
db

′
db

′
d
∗]

(60)

In order to compare this result to the one obtained in the MFV case given
by Eq. (55) we rewrite the coefficients of the NNI mass matrices in terms of
quark masses using the approximate relations of Ref. [17]:

cdc
∗
d ∼ m2

b , |ad| ∼ |a′d| ∼
√
mdms, |bd| ∼ |b′d| ∼

√
msmb (61)

which lead to:

I2 ∼ 2

(

v2
v1

+
v1
v2

)2

m6
bm

2
s (62)

There are similarities between the dominant term in the MFV case and the
NNI case, but in the NNI case there is no suppression factor given by the
VCKM matrix elements. Therefore HFCNC are potentially more dangerous
in NNI models than in the MFV case. Another important point is the fact
that in the NNI case the lowest invariants in powers of masses, sensitive to
CP violation, are much lower than ICP

9 . One such example is:

Im tr
[

MdN
0†
d MuM

†
u

]

∼
(

v2
v1

+
v1
v2

)

m
1

2

c m
3

2

t m
1

2

s m
3

2

b sin β (63)

where the angle β is one of the two factorizable phases that cannot be re-
moved from the mass matrices by rephasing of the quark fields. Note that
in the NNI case it is possible to choose a WB where Md (or else Mu) is real
by rephasing quark fields. In this WB N0

d (or else N0
u) is also real. Further

rephasing on the righthanded side allows to remove three phases from the
other mass matrix and also, at the same time, from the corresponding N0

matrix, so that we are left with only two meaningful factorizable phases in
the other mass matrix coinciding with the two phases left in the correspond-
ing N0 matrix. In Ref. [17] these two phases are evaluated, their sine is
roughly of order one. Implications for the baryon asymmetry of the Universe
are also important in this case.
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4 Conclusions

We have presented a discussion of various flavour aspects of the general
2HDM. In particular, we have shown that flavour mixing in the 2HDM can be
parametrized by a set of unitary matrices which arise from the misalignment
in flavour space of various pairs of Hermitian matrices constructed from the
Yukawa couplings of the 2HDM. These unitary mixing matrices are entirely
analogous to the CKM matrix which arises in the SM from the misalign-
ment of Hd ≡ MdM

†
d and Hu ≡ MuM

†
u. Some of the CP violating phases

are entirely analogous to the CKM phase, reflecting the non-vanishing of
the imaginary parts of the various invariant quartets of the above unitary
flavour matrices which arise in the 2HDM. We construct various WB invari-
ants which can play a crucial rôle in the analysis of both CP violation and
FCNC. Apart from a general analysis, we also applied the WB invariants
to the study of specific flavour models, in the framework of 2HDM, such as
MFV models of BGL type and models with a NNI structure. It is likely that
the flavour structure of the 2HDM is not generic, reflecting on the contrary,
the presence of some flavour symmetry. The WB invariants which we have
constructed can be very useful in the study of new sources of CP violation
in 2HDM constrained by some flavour symmetry. In particular, these WB
invariants can be applied to the study of Higgs mediated FCNC in flavoured
2HDM. We also point out that in the 2HDM with MFV as well as in NNI
models, CP-odd WB invariants arise in terms of much lower powers of masses
than the CP-odd invariant of the SM, a feature which can have important
implications for baryogenesis. The recent discovery of a Higgs boson at the
LHC is an important step towards understanding the electroweak symmetry
breaking sector. The LHC and, in the future, a linear collider will play an
important rôle in putting further constraints on different two Higgs doublet
model scenarios [1], [36], [37] taking into account, in particular, the distin-
guishing features between models with NFC and with MFV [38], [39], [40],
[41], [42], [43].

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia
(FCT, Portugal) through the projects CERN/FP/123580/2011 PTDC/FIS/
098188/2008 and CFTP-FCT Unit 777 which are partially funded through

17



POCTI (FEDER), by Accion Complementaria Luso-Espanhola AIC-D-2011-
0809, by European FEDER, Spanish MINECO under grant FPA2011–23596,
by GVPROMETEO 2010–056 and by Marie Curie Initial Training Network
”UNILHC” PITN-GA-2009-237920. MNR is grateful to the Theory Division
of CERN where her present work was done as CERN Scientific Associate. FB
and GCB are also grateful to CERN for hospitality during their visits. The
authors visited each other’s Institutes during the preparation of this work
and each time were warmly welcomed.

References

[1] For recent reviews see: A. Djouadi, Eur. Phys. J. C 59 (2009) 389
[arXiv:0810.2439 [hep-ph]]; G. C. Branco, P. M. Ferreira, L. Lavoura,
M. N. Rebelo, M. Sher and J. P. Silva, Phys. Rept. 516 (2012)
1 [arXiv:1106.0034 [hep-ph]]. See also J. F. Gunion, H. E. Haber,
G. L. Kane and S. Dawson, “The Higgs Hunter’s Guide,” Front. Phys.
80 (2000) 1;

[2] T. D. Lee, Phys. Rev. D 8 (1973) 1226.

[3] G. C. Branco, L. Lavoura and J. P. Silva, Int. Ser. Monogr. Phys. 103
(1999) 1.

[4] S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958.

[5] G. C. Branco, Phys. Rev. D 22 (1980) 2901.

[6] S. Weinberg, Phys. Rev. Lett. 37 (1976) 657.

[7] G. C. Branco and M. N. Rebelo, Phys. Lett. B 160 (1985) 117.

[8] C. Hamzaoui, M. Pospelov and M. Toharia, Phys. Rev. D 59 (1999)
095005 [hep-ph/9807350].

[9] K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84 (2000) 228 [hep-
ph/9909476].

[10] G. Isidori and A. Retico, JHEP 0111 (2001) 001 [hep-ph/0110121].

[11] G. C. Branco, W. Grimus and L. Lavoura, Phys. Lett. B 380 (1996)
119 [arXiv:hep-ph/9601383].

18



[12] F. J. Botella, G. C. Branco and M. N. Rebelo, Phys. Lett. B 687 (2010)
194 [arXiv:0911.1753 [hep-ph]].

[13] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys.
B 645 (2002) 155 [hep-ph/0207036].

[14] R. S. Chivukula and H. Georgi, Phys. Lett. B 188 (1987) 99.

[15] L. J. Hall and L. Randall, Phys. Rev. Lett. 65 (1990) 2939.

[16] A. J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini,
Phys. Lett. B 500 (2001) 161 [hep-ph/0007085].

[17] G. C. Branco, D. Emmanuel-Costa and C. Simoes, Phys. Lett. B 690

(2010) 62 [arXiv:1001.5065 [hep-ph]].

[18] G. C. Branco and L. Lavoura, Phys. Lett. B 208 (1988) 123.

[19] J. Bernabeu, G. C. Branco and M. Gronau, Phys. Lett. B 169 (1986)
243.

[20] C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.

[21] G. C. Branco, M. N. Rebelo and J. I. Silva-Marcos, Phys. Lett. B 614

(2005) 187 [hep-ph/0502118].

[22] L. Lavoura and J. P. Silva, Phys. Rev. D 50 (1994) 4619 [hep-
ph/9404276].

[23] F. J. Botella and J. P. Silva, Phys. Rev. D 51 (1995) 3870 [hep-
ph/9411288].

[24] H. K. Dreiner, J. S. Kim, O. Lebedev and M. Thormeier, Phys. Rev.
D 76 (2007) 015006 [hep-ph/0703074 [HEP-PH]].

[25] G. C. Branco and J. I. Silva-Marcos, arXiv:1112.1631 [hep-ph].

[26] E. E. Jenkins and A. V. Manohar, JHEP 0910 (2009) 094
[arXiv:0907.4763 [hep-ph]].

[27] F. J. Botella, G. C. Branco, M. Nebot and M. N. Rebelo, JHEP 1110

(2011) 037 [arXiv:1102.0520 [hep-ph]].

19



[28] F. J. Botella, M. Nebot and O. Vives, JHEP 0601 (2006) 106
[arXiv:hep-ph/0407349].

[29] P. M. Ferreira and J. P. Silva, Phys. Rev. D 83 (2011) 065026
[arXiv:1012.2874 [hep-ph]].

[30] M. B. Gavela, P. Hernandez, J. Orloff and O. Pene, Mod. Phys. Lett.
A 9 (1994) 795 [hep-ph/9312215, hep-ph/9312215].

[31] M. B. Gavela, M. Lozano, J. Orloff and O. Pene, Nucl. Phys. B 430

(1994) 345 [hep-ph/9406288].

[32] M. B. Gavela, P. Hernandez, J. Orloff, O. Pene and C. Quimbay, Nucl.
Phys. B 430 (1994) 382 [hep-ph/9406289].

[33] W. -S. Hou, Chin. J. Phys. 47 (2009) 134 [arXiv:0803.1234 [hep-ph]].

[34] G. C. Branco, L. Lavoura and F. Mota, Phys. Rev. D 39 (1989) 3443.

[35] H. Fritzsch, Phys. Lett. B 73 (1978) 317.

[36] M. Jung, A. Pich and P. Tuzon, JHEP 1011 (2010) 003
[arXiv:1006.0470 [hep-ph]].

[37] P. M. Ferreira, R. Santos, M. Sher and J. P. Silva, Phys. Rev. D 85

(2012) 077703 [arXiv:1112.3277 [hep-ph]].

[38] M. Krawczyk, PoS CHARGED 2008 (2008) 017.

[39] A. J. Buras, M. V. Carlucci, S. Gori and G. Isidori, JHEP 1010 (2010)
009 [arXiv:1005.5310 [hep-ph]].

[40] E. Cervero and J. -M. Gerard, Phys. Lett. B 712 (2012) 255
[arXiv:1202.1973 [hep-ph]].

[41] W. Mader, J. -h. Park, G. M. Pruna, D. Stockinger and A. Straessner,
JHEP 1209 (2012) 125 [arXiv:1205.2692 [hep-ph]].

[42] L. Basso, A. Lipniacka, F. Mahmoudi, S. Moretti, P. Osland,
G. M. Pruna and M. Purmohammadi, arXiv:1205.6569 [hep-ph].

[43] W. Altmannshofer, S. Gori and G. D. Kribs, arXiv:1210.2465 [hep-ph].

20


	1 Introduction
	2 The Two Higgs Doublet Parameter Space
	3 Weak Basis Invariants
	3.1 The General Case
	3.2 The Minimal Flavour Violation Case
	3.3 Two Higgs doublets with the NNI texture

	4 Conclusions

