
 
 
 
                       
 

Departamento	
  de	
  Bioquímica	
  y	
  Biología	
  Molecular	
  
Biotecnología	
  de	
  la	
  Reproducción	
  Humana	
  Asistida	
  

	
  

TESIS	
  DOCTORAL	
  

Prostaglandin	
  E2	
  and	
  prostaglandin	
  F2	
  alpha	
  as	
  
endometrial	
  receptivity	
  biomarkers	
  in	
  successful	
  embryo	
  

implantation	
  
 

Autora:	
  

Leslie	
  B.	
  Ramírez	
  Lima	
  

Licenciada	
  en	
  Biotecnología	
  

	
  

Directores:	
  

Prof.	
  Carlos	
  Antonio	
  Simón	
  Vallés	
  

Dr.	
  Felipe	
  Vilella	
  Mitjana	
  
	
  

Valencia,	
  2013



 
 
ii 

	
  

	
  



 

 
 

iii 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 
 
Prof. Carlos Antonio Simón Vallés, Catedrático de Pediatría, 

Obstetricia y Ginecología de la Universidad de Valencia y Director 

Científico del Instituto Valenciano de Infertilidad (IVI). 

 

CERTIFICA:  

 

Que el trabajo de investigación titulado: “Prostaglandin E2 and 
prostaglandin F2 alpha as endometrial receptivity biomarkers in 
successful embryo implantation” ha sido realizado íntegramente 

por Dña. Leslie B. Ramírez Lima	
   bajo mi dirección. Dicha memoria 

está concluida y reúne todos los requisitos para su presentación y 

defensa como TESIS DOCTORAL ante un tribunal.	
  

 

Y para que así conste a los efectos oportunos, firmo la 

presente certificación en Valencia a 10 de Septiembre de 2013. 
 

 
 

 
Fdo. Prof. Carlos Antonio Simón Valles 



 
 
iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

v 

 
 
 
 
	
  

	
  

	
  

	
  

Dr. Felipe Vilella Mitjana, Doctor en Biología por la Facultad 

de Medicina en Lleida y Coordinador de Laboratorio e Investigador de 

la Fundación IVI. 

 

CERTIFICA:  

 

Que el trabajo de investigación titulado: “Prostaglandin E2 and 
prostaglandin F2 alpha as endometrial receptivity biomarkers in 
successful embryo implantation” ha sido realizado íntegramente 

por Dña. Leslie B. Ramírez Lima	
   bajo mi dirección. Dicha memoria 

está concluida y reúne todos los requisitos para su presentación y 

defensa como TESIS DOCTORAL ante un tribunal.	
  

 

Y para que así conste a los efectos oportunos, firmo la 

presente certificación en Valencia a 10 de Septiembre de 2013. 
 

 
 
 

Fdo. Dr. Felipe Vilella Mitjana 
 
 



 
 
vi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 



 

 
 

vii 

 
ACKNOWLEDGMENTS 

 
First of all, I would like to thank my advisor, Prof. Carlos Simón, for accepting 
me into his group and for introducing me to the wonderful field of the human 
reproduction: his expertise and knowledge inspired me to pursue some of 
the most interesting topics in fertility. I would also like to express my 
gratitude to my co-advisor, Dr. Felip Vilella, for guiding me and trusting me 
throughout the years of my PhD research.   Thanks for your patience and for 
helping me to learn how to face research differently and progress on the 
way.  I am also indebted to Oscar Berlanga for giving me the initial basis of 
my formation in the laboratory. I am also grateful to Dr. Antonio Pellicer and 
Dr. José Remohí for allowing me to do my thesis in the laboratories of the 
Fundación IVI.  
 
I would also like to express my gratitude to Prof. Nick Macklon for giving me 
the opportunity to spend three very productive and enjoyable months at the 
University of Southampton under his supervision. I am also thankful to Prof. 
Phillip Calder for hosting me at his laboratory, and the whole group for 
helping me with everything, and in particular with the kind support for my 
experiments. Thank you all for your hospitality at Southampton. I learned 
many things there and it was a great experience. 
 
I am also thankful to the Grisolia Foundation for their financial support 
(predoctoral fellowship and Merk Serono and GFI for their support in the 
project that lead to this thesis. 
 
A large part of this thesis was possible thanks of the continuous work and 
encouragement of a special person, my colleague and friend Sebastian 
Martinez, with whom I shared not only this project but also many of my 
thoughts, concerns, and feelings. Thank you Sebas for being by my side 
during this hard journey. I have no words to express my gratitude for your 
tremendous support and work.  
 
I would like to thank all the people with whom I had the chance to share the 
laboratory over the years of my PhD. I specially would like to express my 
deepest appreciation to Juan Ma for being not only my buddy but also such 
a wonderful person. One day you told me that a friend is the one that always 
support you, and that is what you have done for me during these years. True 
friends are the ones who will stand by your side in your darkest moments to 



 
 
viii 

help you to brave the shadows, and in your best moments because they 
want you to shine. I will be always grateful to your companion and remember 
you as a great friend. 
 
Also at the lab, Isa, Amparo, and Mar provided me everyday with a friendly 
and cooperative atmosphere at work, and their smiles made my days 
happier, even the difficult ones. Mar, it is a shame that we spent so little time 
together; you are an amazing person. Ali, thanks for helping me in the 
laboratory and for your advices. Tamara, thanks for sharing your life and for 
listening to mine when I needed it. I am also grateful to Horten, Aymara, and 
Claudia, who were always available to share their time and made each day a 
new experience. The other members of the laboratory, Ana, Carmen, Paco, 
José, and Irene were also part of these experiences and gave me useful 
feedback and insightful comments on my work. Thank you all. 
 
I am also most grateful to all the IVI and IVIOMICS members with whom I 
had the chance to interact during all those years. In particular, I would like to 
express my gratitude to Marcos for helping me with all the bureaucratic stuff 
and for always being ready to give good advices; Leo for his patience in 
solving every computer problem,  sabel, Tere, and Jaime for their support in 
every personal and academic stuff, and Sandra and Maria for being such a 
wonderful human beings.  
 
I am also very grateful to my friends: Sara  ییککیی اازز ببههتترریینن ددووسستتاانن ممنن. ممنن
 ;تتححسسیینن ششمماا ببهه ععننوواانن ییکک ززنن وو ببهه ععننوواانن ییکک ففرردد. ممنن خخییللیی ددووسستتتت ددااررمم , 
Lourdes, who shared some of the most important moments with me in 
Valencia; Maria, Vivi, Alejandra, and Eni for their support and friendship. You 
were my family in Spain, and even though I was living far away from my 
country you made me feel at home here.  
 
A special acknowledgement goes also to my best friends in Mexico: Corbal, 
Alejandro, Lucy, Sofi, Jime, Dany, and Maryel: you taught me that true 
friendship always grows, even over the longest distance. Thank you all for 
being by my side during all of these years; I am really lucky to have friends 
like you. I would also like to specially thank one of my best friends, Nancy. 
You were always by my side, having our adventures and remembering our 
trips to Cancún. Whenever I feel sad because I miss you I remind myself 
how lucky I am to have someone so special to miss. You will be always in 
my heart.   
 
My most heartfelt thanks go to my lovely family, for their unconditional 
support during these years. Despite the distance, you were very close to me 



 

 
 

ix 

every day. Words will fail to express my gratitude to my father and mother 
whom have always worked so hard to give to my sister and to me the best 
they could. Thanks dad for believing in me and give me all your love: you 
have one of greatest hearts I have ever known and I am so lucky to have 
you as my dad. My little sister has always been my best friend. Thank you 
for giving so much love to me and to our parents, and for taking care of them 
when they need it in my absence. Even though it was really hard for us to be 
separated these years, you showed me how a strong girl you are, and I am 
very proud of you. I love you so much!! Finally I have to express all my love 
and thanks to the women who always have unconditional trust in me, and 
that gave me the opportunity to follow my dreams; my mother. There are no 
words to thank you for all the things you have ever done for me in all my life. 
During those four years you were always supporting me and giving me 
strength to face life. I truly admire you for what you are and for what you 
have taught me during all my life. I know how fortunate I am to have not only 
the best mom but also the best woman I have ever known. 
 
Last, but not least, during the last years of my thesis I had the greatest 
surprise that twisted my life and in a short time filled it with lots of happiness 
and love: I would like to thank my love, Urbano.  Palavras não podem 
descrever como eu tenho sorte por tê-lo em minha vida. Ele 
desinteressadamente tem dado pra mim mais do que eu jamais poderia ter 
pedido.  I will always be grateful for you being my strength even when I was 
weak in the most difficult times. You encouraged, supported, understood, 
and loved me at every moment. Durante estes anos eu fui abençoada por 
ser amada por você. Obrigado por tudo meu amor! 

 

 

 

 

 

 

 

 

 

 



 
 
x 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

xi 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

The work presented in this doctoral thesis has been carried out in the 

laboratories of Fundación IVI thanks to the facilities of the Fundacion 

IVI (FIVI) and the financial support of the Grant for Fertility Innovation 

(GFI 2010-4). LR has been supported by the Santiago Grisolia 

Program, Generalitat Valenciana. This doctoral thesis has generated 

the patent 1002-C-069-OB.  

 
 
 



 
 
xii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 

xiii 

ABSTRACT 

 
Failure in the adhesion of the human blastocyst to the endometrium has 
been described as an important cause of infertility. Establishing the period of 
the so-called window of implantation and understanding the molecular 
mechanisms associated with embryo implantation has clinical and scientific 
implications. While over the last decades histological evaluation has been 
used to determine the phase of the menstrual cycle of the endometrium, the 
poor information obtained has made the case of using new technologies to 
identify specific markers, understand and characterize the receptive stage. 
This doctoral thesis investigates the existence, function and clinical impact of 
two specific lipids, the prostaglandins E(2) and F(2α), which are abundant in 
human endometrial fluid (EF) during the window of implantation  in natural, 
IVF, and ovum recipient cycles, which is abrogated with the insertion of an 
IUD.  Developments in endometrial receptivity diagnosis using lipidomics 
demonstrate the correlation between those PGs and the receptive stage of 
the endometrium. The mechanisms that influence the production of these 
individual PGs in the endometrium were studied with a clinical approach that 
sheds light on the sequence of events that leads to the development of 
endometrial receptivity. Our results indicate that PG synthases required for 
the production of PGE2 and PGF2α are located in the endometrial epithelium 
and EF for the regulation of PGs concentrations during the window of 
implantation. Most of the accumulated evidence, using an in vitro model of 
embryonic adhesion, indicates that inhibition of PGE2 and PGF2α or the PG 
receptors EP2 and FP prevents embryo adhesion, which can be reversed by 
adding back these molecules or by using EP2 and FP agonists. Finally, our 
pilot study demonstrates that PGE2 and PGF2α concentrations in EF 
aspirated 24 hours prior to embryo transfer showed to be predictive of a 
successful pregnancy outcome. In summary, our findings indicate that 
embryo implantation is associated with an active crosstalk of PGE2 and 
PGF2α via EP2 and FP receptors, respectively, that might serve to nurse the 
blastocyst at the time of embryo implantation. Likewise the levels of these 
PGs in EF could potentially serve as non-invasive biomarkers to define the 
receptive phase of the endometrium and, therefore, have a significant impact 
in clinical traslation. 
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RESUMEN 
 
El fallo en la adhesión embrionaria al endometrio es una de las principales 
causas de infertilidad humana. Establecer el periodo receptivo denominado 
ventana de implantación así como la comprensión de los mecanismos 
moleculares asociados a la implantación embrionaria tiene una gran 
implicación clínica y científica. En las últimas décadas, la evaluación 
histológica ha sido utilizada para determinar las etapas del ciclo menstrual 
en el endometrio humano, sin embargo la poca información clínica que 
ofrece y la limitación impuesta por la invasión de esta técnica han sido 
motivo para el uso de nuevas tecnologías para identificar marcadores 
específicos para comprender y caracterizar la fase receptiva. En esta tesis 
se analizan los resultados de la investigación lipidómica centrada en dos 
lípidos específicos, prostaglandinas E (2) y F (2α), que son abundantes en 
el fluido endometrial humano durante la ventana de implantación en 
pacientes en ciclos naturales, de fertilización in vitro y de receptoras de 
ovulos, que se suprime con la inserción de un DIU. Los avances en el 
diagnóstico de la receptividad endometrial mediante la lipidómica 
demuestran la correlación entre las prostaglandinas (PGs) y la fase 
receptiva del endometrio. Los mecanismos que influyen en la producción de 
estas PGs individuales en el endometrio se estudiaron con el fin de dar a 
conocer la secuencia de acontecimientos que conducen a una exitosa 
implantación del embrión y el impacto en área de la clínica reproductiva. Los 
resultados indican que las sintasas de las PGs tanto en el epitelio 
endometrial como en el fluido uterino son necesarias para la producción de 
PGE2 y PGF2α para la regulación en las concentraciones de PG durante la 
ventana de implantación. La mayor parte de las evidencias se llevaron a 
cabo utilizando un modelo in vitro de la adhesión embrionaria, el cual indica 
que la inhibición de PGE2 y PGF2α o sus receptores EP2 y FP, evitan la 
adhesión del embrión, que puede ser revertida por la adición de estas 
moléculas o mediante el uso de agonistas de EP2 y FP. Por último, las 
concentraciones de PGE2 y PGF2α en líquido endometrial se aspiraron 24 
horas antes de la transferencia de embriones mostrando que estos lípidos 
pueden ser predictores de un embarazo exitoso. En resumen, nuestros 
resultados indican que la implantación del embrión se asocia con una 
comunicación activa de la PGE2 y la PGF2α a través de sus receptores 
específicos el EP2 y el FP, respectivamente, los cuales podrían servir para 
determinar el momento de la implantación del embrión. Del mismo modo las 
PGs, podrían servir potencialmente como biomarcadores no invasivos para 
definir la fase receptiva del endometrio con un impacto significativo en el 
ámbito clínico. 
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I.- INTRODUCTION 
Embryonic implantation is one of the most important processes in human 

physiology. However, in spite of its importance, the complexity and the 

relative inefficiency of this process remain unexplained (Cha et al. 2013). It 

has been estimated that 12% of couples attempting to conceive suffer from 

infertility and, of the total pregnancies that are lost, 30% represent a failure in 

implantation (Macklon et al. 2002). For that, the implantation process has 

become an important topic of scientific investigation as the understanding of 

its process can potentially improve fertility in women. The onset of this 

process requires the communication between the endometrium and the 

embryo, and although both components are indispensable to complete the 

process, most studies have separated them in two fields, the endometrial 

receptivity and the embryo development.  

1.Endometrium 

Human endometrium, the mucous membrane that covers the uterine cavity, 

is a complex tissue that undergoes periodical, morphological, and functional 

changes. These changes are based on its proliferation, differentiation, and 

tissue breakdown that take place as a response to the fluctuating levels of 

circulating ovarian steroid hormones, estrogen and progesterone (Maruyama 

et al. 2010). These transitions are also needed in the endometrial 

preparation for its receptive state so that embryo implantation and its 

development for gestation can take place (Simon et al. 2009). 

The endometrium consists of basal and functional layers that provide an 

optimum environment for the growth of the embryo and its implantation. The 

basal layer is the deepest part of the uterine lining that houses the blind 

ends of the tubular uterine glands. This layer is not released during any 
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phase of the menstrual cycle, and the functional layer develops from it 
(Hawkins & Matzuk 2008). The functional layer is composed of spongy and 

compact layers of the endometrium that are considered as a highly 

regenerative tissue undergoing monthly cycles of growth, differentiation, and 

shedding (Gargett et al. 2012). If conception does not take place, this layer is 

shed during menstruation and subsequently regenerated from the remaining 

endometrial basalis. Both the basal and functional layers are composed by a 

combination of epithelial, stromal and vascular compartment together with 

the existence of immune resident cells. 

1.1 Endometrial epithelium (EE) 

EE contains two types of epithelial cells, the luminal epithelium (LE) and the 

glandular epithelium (GE), which are regulated by ovarian steroid hormones 

that induce morphological and functional changes in the preparation for 

implantation.  While the LE lines the lumen of the uterus that suffers plasma 

membrane and cytoskeleton changes along the menstrual cycle, the GE of 

the endometrial or uterine glands are responsible for secreting molecules 

required for the embryo implantation and development (Huang et al. 2012). 

EE is the first barrier in the interaction between embryo and endometrium in 

which the transformation of a non-adhesive endometrium to an adhesive 

phenotype occurs. It has the capacity to accept embryo adhesion at 

receptivity state or to refuse it during the pre-receptive or nonreceptive 

phase of the menstrual cycle (Nimbkar-Joshi et al. 2012).  

1.2 Stromal compartment  

This tissue is formed by an extracellular matrix and endometrial stromal cells 

(ESC) composed basically of fibroblasts that change along the menstrual 

cycle promoting a regulatory role in the epithelial development and its 
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differentiation (Simon et al. 2009). In the process of decidualization, the 

fibroblasts become decidualized by the presence of estrogens and 

progesterone 6-7 days after the appearance of progesterone generating 

biochemical and morphological changes that are essential to direct 

implantation and to the maintenance of pregnancy (Imai et al. 1992).  

1.3 Vascular compartment 

The architecture of the endometrial vascularization reaches the myometrium 

through the arcuate arteries. Those give rise to the radial arteries at the 

myometrium, leading to small branches known as basal arteries. The basal 

arteries are muscular, with little elastic and fibrous tissues, which supply the 

basal endometrial zone, and continue towards the lumen as spiral arteries. 

Each spiral arteriole passes towards the functional layer and supply blood to 

the upper endometrial zones (Knobil et al. 2006).  

Angiogenesis is the process by which new microvessels develop from 

existing ones. It is induced regularly during the development of the ovarian 

follicle until the formation of the corpus luteum and the endometrium as part 

of the rapid growth and regression that occurs in these tissues during the 

menstrual cycle (Gargett et al. 2001).  

2. Menstrual cycle 

Menstrual ciclicity begins at puberty, and last until menopause. It occurs over 

28 days as a series of physiological changes where the endometrium 

becomes receptive to the implanting blastocyst.  If implantation does not 

take place, the functional layer of the endometrium is sloughed and then 

replaced as a preparation for the next cycle (Treloar et al. 1967).     
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The menstrual phase is considered the start of a new menstrual cycle, 

corresponding to the first 4 to 5 days. After hormonal drop-out due to the 

senescence of the corpus luteum the tunica media of the spiral arteries 

contract stopping the blood supply to the tissue, inducing necrosis. Then the 

functional layer of the endometrium is sloughed translated in menstrual 

bleeding that accounts for 35ml/day of menstrual blood (Schoenwolf et al. 

2008). 

The proliferative phase. In response to follicular growth, around day 5, the 

granulosa cells of the follicle secrete estrogens that promote the proliferation 

of the luminal and glandular epithelial cells associated with the thickening of 

the endometrial lining. The proliferation causes a daily growth of the 

endometrium of approximately 0.5mm up to a maximum thickness of 8-14 

mm around the periovulatory moment, which undergoes remodelation until 

day 14, when ovulation takes place (Hawkins & Matzuk 2008). 

The secretory phase is the third phase of the menstrual cycle after 

ovulation and last about 13 days. In this phase, while the corpus luteum 

continue to secrete estrogens, the lutheal cells differentiate and secrete 

progesterone acting trough the endometrium in preparation to receive the 

embryo.  

The action of hormones induces morphological changes from proliferative to 

secretory phase that have been identified histologically and functionally 

(Cakmak & Taylor 2011).  In humans, while during the proliferative (follicular) 

phase the blastocyst is unable to implant because the endometrirum is less 

receptive for its survival, the secretory (lutheal) phase is divided into three 

stages in which one of them is receptive. The first one is the prereceptive, 

which covers the first 7 days after ovulation (day 0) when the endometrium is 
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unable to initiate implantation and the environment is hostile to blastocyst 

survival. The second one is the receptive state during the midsecretory 

phase, between days 20 to 24 of a regular 28 days menstrual cycle that is 

the optimal period for implantation (Norwitz et al. 2009). Finally, the third 

phase, known as postreceptive, is a refractory state that involves the last 

remaining days of the secretory phase, where the uterine environment is 

unfavorable to the blastocyst (Figure 1.1A).  

In the case of mice, the endometrium is prereceptive on days 1-3 of 

pregnancy or pseudopregnancy, while on day 4 the endometrium is 

receptive, accompanied with localized increase in stromal vasculature 

permeability at the site of blastocyst attachment, and by the end of day 5 it 

becomes nonreceptive (refractory) to implantation (Figure 1.1B)(Wang et al. 

2006). 
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B. 

 
 
Figure1.1 Changes in human endometrium during the menstrual cycle and in mouse at 
estrous cycle. From (Wang & Dey 2006). 
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3. Implantation 

Implantation is a crucial stage in human reproduction that involves a 

dialogue between the embryo and endometrium that leads to further post-

implantatory embryonic development. The synchronization among the 

embryonic maturation until the blastocyst stage with the uterine 

differentiation to produce the receptive state is critical for successful 

implantation, and therefore for pregnancy outcome.  Although implantation 

involves the interaction of many signalling molecules, the dialogue that 

coordinates the instructions of the embryo–endometrium are not well 

understood (Wang & Dey 2006). 

Most studies of implantation focus primarily on rodent models, in which the 

first signal of this event is determined by the increase in vascular 

permeability. However, the timing for implantation and the anatomy of the 

reproductive system differ among species (He et al. 2010). While 

implantation for some species such as human, mouse, rabbit and all 

primates except lemurus and lorises are invasive, in other species like pig, 

sheep, cow, and horse it is not invasive. As shown in Fig 1.2, in mice and 

rats the attachment of the blastocyst to the luminal epithelium leads to a 

local apoptosis in the site of adhesion, allowing the penetration of 

trophoblastic cells through the stroma. In pigs, the trophoblasts make a 

specific projection through the zona pellucida and are placed between the 

epithelial cells, embedding the embryo in the uterine stroma. In rabbits, a 

group of trophoblastic cells fuse with the luminal epithelium, whereas in 

primates the trophoblastic syncytium is formed near the inner cell mass 

which is inserted between epithelial cells, penetrating in the basal lamina 

(Wang & Dey 2006). 
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Figure 1.2 Implantation in different species. From (Wang & Dey  2006). 

 

Similarly, studies based on microarrays showed that the genetic expression 

along the menstrual cycle differs in the mechanism that regulates the pre-

implantational and implantational steps among species, including humans, 

as the global genetic expression patterns are different (He et al. 2010). 

These results support the idea that the mechanism regulating the steps 

through the menstrual cycle cannot be extrapolated among species (Clancy 

et al. 2009) 

4. Embryo development 

In humans after oocyte is fertilized in the fallopian tube, within 24 to 48 hours 

after ovulation, the zygote undergoes several mitotic cell divisions called 

cleavage, in which the zygote containing a single diploid nucleus divides to 

produce identical sets of daughter cells. About two to three days after 

fertilization, cellular division continues without an increase in size and the 

embryo remains enclosed to its zona pellucida (ZP). Around day 4 to 5, the 

embryo composed of about 16 to 32 cells leaves the oviduct and enters the 

uterine cavity under the influence of luteal progesterone that provides the 
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adequate nutrients for the development of the embryo (Lechniak, 2008). In 

this stage, cleavage changes the embryo morphology by undergoing the 

process of compaction, producing a morula: that involves maximum 

intercellular contact and transformation of the cell phenotype from radially 

symmetrical to highly polarized or epithelioid (Johnoson, 2007). The division 

of the morula continues to a minimum of 100 blastomeres suffering a 

transition to form a blastocyst (Lechniak et al. 2008). 

The blastocyst, characterized by the reorganization of cells known as 

blastomeres, suffers a cellular differentiation with the appearance of a fluid in 

the inner cavity within the mass of cells.  Blastomers that are localized in the 

periphery surrounding the blastocoelic cavity containing blastocoelic fluid are 

known as trophoblast cells, and they are responsible for the formation of the 

extraembryonic structures, including the placenta. Moreover, blastomers in 

the blastocoelic cavity, localized either in the trophoblast wall or embedded 

within it, compose the inner cell mass that generate the cell lineages of the 

embryo. In this phase, the blastocoele is stimulated by growth factors EGF 

and TGF-alpha, producing its expansion (Norwitz et al.2009; (Wu, 2012).  

Within 1 to 2 days after the blastocyst enters the uterine cavity, it 

enzimatically hatches from the ZP, exposing the trophoblastic cells and 

revealing its outer covering to the endometrial epithelial cells (EECs) (Uchida 

et al. 2011).  Six days after ovulation, endometrial secretions under the 

influence of luteal progesterone, provide the necessary nutrients for embryo 

development. This last event is one of the first synchronized processes that 

mark the endometrial relationship with the blastocyst where both 

components are in crosstalk to achieve implantation. 
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Figure 1.3. Development of the Preimplantation Embryo in Humans.  
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5. Phases of Embryo Implantation 

After the human blastocyst enters the uterine cavity and hatches from the 

zona pellucida, implantation takes place, 6 or 7 days after fertilization. The 

process of blastocyst implantation involves complex synchronized 

interactions between embryonic and uterine cells that occur over a very 

narrow period of time, in a sequential manner, and that has been classified 

into three phases: apposition, adhesion and invasion. Each phase is 

connected to guarantee the establishment of pregnancy.  

5.1 Apposition 

 The first phase takes place around day 5 and 6 post-fertilization, and is 

characterized by an unstable adhesion, where a blastocyst of approximately 

300-400um is oriented to an area of the luminal epithelium and rotates so 

that the trophectoderm overlying the inner cell mass apposes to the 

endometrial surface (Wu 2012). During this phase, soluble mediators such 

as cytokines and chemokines are part of the communication between the 

blastocyst and endometrium. Those molecules act in a bidirectional manner 

to guide the blastocyst onto endometrial cells. Also hormones like 

progesterone, combined with estradiol, promote an up-regulation in the 

expression of MUC1 at the receptive endometrium that acts as an 

antiadhesive molecule, creating a barrier to the embryo attachment that must 

be locally removed at the time of the blastocyst adhesion. (Meseguer et 

al.1998). The blastocyst then comes into apposition with the endometrium 

where the contact of the microvilli on the apical surface of trophoblasts 

interdigitate with the pinopodes of the uterine epithelium, initiating the 

maternal component of the placenta. Contact with the uterine endometrium 

induces cell differentiation of the trophoblast at the embryonic pole. 
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5.2 Adhesion 

 Subsequently to apposition, the blastocyst acquires a stable adhesion onto 

the EEC layer by physical contact with the endometrium at the endometrial 

basal lamina and the stromal extracellular matrix (ECM), exposing its 

embryonic pole to the epithelium (Dey et al. 2004). This phase is mediated 

by steroid and embryonic influence of the adhesion molecules in the cellular 

surface of the luminal epithelium. Molecules responsible for the adhesion 

cell-cell and cell-ECM are essential for the adhesion of the blastocyst to the 

maternal endometrium, followed by the influence of molecules such as 

integrins, cadherins and selectins (Simon et al. 2009). The endometrium at 

this stage is integrin-dependent, which allows the blastocyst to firmly attach 

to the uterine wall where trophoblasts transmigrate across the luminal 

epithelium (Wu, 2012). 

5.3 Invasion 

Finally, implantation is completed when the embryo penetrates through the 

anatomic barriers that allowed the creation of the hemochorial placenta. The 

first barrier is endometrial epithelial cells where trophoblasts are attached. 

Below this layer a basement membrane, composed mainly of type IV 

collagen, functions as an anchor for surface epithelium and as a separating 

layer which sheaths blood vessels, muscle cells, and nervous tissue. Beyond 

the basement membrane lies the interstitial stroma, which contains vessels 

and lymphatic channels. Since the blastocyst is not able to go through the 

epithelial layer because of its size, trophoblasts that are attached induce an 

apoptotic reaction in endometrial epithelial cells by paracrine activity (Wu, 

2012). The apoptotic reaction is mediated by the ligand Fas-Fas that allows 

the blastocyst to break through the epithelial barrier, allowing it to embed into 
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the stroma (Galan et al. 2000). This process is mediated by trophoblastic 

cells differentiation, which produces highly secretory synciotrophoblasts and 

anchoring cytotrophoblasts. While the first ones are formed by the fusion of 

trophoblasts forming a syncytium without cell membranes, the 

cytotrophoblasts are cells of the trophoblast that line the wall of the 

blastocyst and retain their cell membranes. These cells are able to break 

down the extracellular matrix between the endometrial cells with proteolitic 

enzymes such as metaloproteases and other proteases like serinprotease 

colagenasas (Simon et al. 2009). Cytotrophoblasts invade in a controlled 

manner the stroma and the myometrium as well as the uterine vasculature 

that establishes the uteroplacental circulation, which places the placental 

trophoblasts in direct contact with maternal blood. After 10 days of 

fertilization, the blastocyst is completely embedded in stromal tissue of the 

endometrium with the epithelium regrown over it to cover the site of 

implantation (Wu 2012). Moreover, the expression of molecules such as 

integrins, that are hormonally regulated with progesterone, are related to 

invasion. While integrins change the invasive phenotype of the trophoblast, 

cytokines are associated with invasive proteins, and interleukines IL-1, IL-11, 

IL-15, as well as other chemokines attract different groups of lymphocyte 

cells related to invasion. Galectins are also involved in adhesion cell-cell, 

migration, quimiotaxis, and inflammation (Simon et al. 2009).  
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Fig. 1.4. Phases of embryo–emdometrium implantation relations in humans. From 
Johnson, 2007. 
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6. Endometrial Receptivity 

Endometrial receptivity is one of the most important stages of reproductive 

process, in which a temporally unique sequence of factors, as molecular and 

physiological changes, makes the endometrium adopt a receptive phenotype 

where the blastocyst can intimately be associated to maternal endometrial 

surface (Achache et al. 2006).   

This period of receptivity results from a programmed sequence of ovarian 

actions by estrogen and progesterone on the endometrium that induces 

endometrial cells to undergo cyclic developmental changes. In all mammals 

it has been determined that the hormone that directs uterine receptivity is P4 

which is essential for implantation and pregnancy maintenance, whereas the 

requirement for ovarian estrogen is species-specific. While in mice and rats 

ovarian P4 and estrogen are essential to implantation, in humans it remains 

unknown whether ovarian or embryonic estrogen is necessary for 

implantation (Wang et al. 2006).  

Phenotypic changes that the endometrium suffers from the pre-receptive to 

the receptive phase of the menstrual cycle involve the proliferation and 

differentiation of specific endometrial cell types in the luminal and glandular 

epithelium. The endometrium becomes more vascularized and edematous 

as the endometrial glands exhibit higher secretory activity with the 

appearance of protrusions known as pinopodes that develop in the luminal 

surface of the epithelium. Moreover, the basal membrane becomes more 

sinuous, and therefore the frequency of desmosomes decreases and the 

microvilli disappear. During this period, it has also been described a 

participation of molecules that are up-regulated like several endometrial 

growth factors, cytokines, and adhesion molecules (Aghajanova et al. 2008). 
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Although these changes are useful predictors for the outcomes of 

pregnancy, molecular mechanisms underlying them are largely unknown. 

(Norwitz et al. 2009). 

7. Window of implantation (WOI) 

The timing for successful implantation involves a short period when the 

uterus is receptive. Using assisted reproduction techniques (ART) in 

humans, it has been determined that the endometrium is remodeled to 

acquire a receptive state between days 19 to 21 (LH+7 to LH+9) of a regular 

28 day menstrual cycle, the so called “window of implantation” (WOI) 

(Norwitz et al. 2009).  

8.  Markers of Endometrial Receptivity 

Biological markers of endometrial receptivity are useful for the identification 

of a receptive endometrium. They must be present in the endometrium 

during the WOI, reflecting a change after this period. There are 

morphological and molecular markers used as predictors for the endometrial 

receptivity. While morphological markers focus on changes in the cells and 

structures of the endometrium, molecular markers are part of a pattern that 

aims distinguishing the stages of the endometrium.  

8.1 Morphological markers 

Histological morphology dating of the endometrium has been used for 

decades. As early as the 1950s the Noyes criteria was considered as the 

gold technique to determine the morphology of a normal and abnormal 

human endometrium, as well as to date the endometrium throughout the 

menstrual cycle (Lessey et al. 2000).  
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The Noyes criteria consist of eight histological characteristics of the 

endometrium: degree of glandular mitosis, stromal edema, pseudodecidual 

reaction, stromal mitosis, pseudostratification of nuclei, basal vacuoles, 

secretion, and leukocyte infiltration (Noyes et al. 1950,1975). According to 

these features, the phase of the endometrium can be determined: 

proliferative or secretory (pre-receptive, receptive, post-receptive). Using the 

traditional dating criteria of Noyes, Murray and col. 2004 demonstrated that 

histological dating of the endometrium is not a valid clinical diagnostic tool. 

They observed an abnormal delay in the endometrial maturation, as well as 

variations in the histological features of the secretory endometrium between 

cycles in fertile and infertile women. Moreover, they verified that the 

effectiveness of Noyes criteria using endometrial histological dating is 

subjective, with high variability between intra and interobserver, especially 

among infertile women during the window of implantation. Other studies 

support this conclusion, and demonstrate that histological dating of the 

endometrium should not be used in the routine evaluation of infertility. The 

technique adds little significant information that is not well elucidated and 

therefore is losing power in clinical evaluation. Nowadays, new and updated 

methods for the evaluation of the endometrium are replacing this technique 

(Lessey et al. 2000). 

Pinopodes 

The use of scanning electron microscopy has revealed the emergence of 

protrusions on the apical surface known as pinopodes or uterodomes, where 

their appearance depends on progesterone condition that coincides with the 

development of uterine receptivity for embryo implantation (Murphy et al. 

2000). These epithelial protrusions might control the concentration of EFs 

absorbing uterine fluids, reducing uterine volume of the cavity and so 
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bringing into close apposition the opposing epithelia, helping attachment of 

the embryo (Wafaa et al. 2005). Pinopodes have been mentioned as a 

morphological parameter to determine the timing of the window of 

implantation on the uterine luminal epithelium. Although it has been 

proposed as a useful marker to determine the receptivity state of the 

endometrium, some limitations preclude its use as a marker (Norwitz et al. 

2009). The necessity to use scanning electron microscopy in daily clinical 

work to detect the pinopodes makes it an expensive technique. Moreover, 

different studies compared that the appearance and duration of pinopodes 

during the menstrual cycle, and their results have not been reproducible. 

While in some investigations the duration of pinopodes persist for less than 

48h during the mid-luteal phase of the menstrual cycle, in others studies 

pinopodes appear after ovulation and persist to the end of the luteal phase 

(Quinn et al. 2009). 

Transvaginal ultrasonography  

This technique is an alternative method to determine the time in which the 

endometrium is receptive especially because of its non-invasive property. 

Using this technique it has been suggested that endometrial thickness and 

pattern have diagnostic value to detect receptive endometrium (Gonen et al. 

1990). However, although ultrasound is informative can not be considered as 

diagnostic (Aghajanova et al. 2008). 

8.2 Molecular markers 

The era of molecular and cellular biology and the development of new 

analytical techniques have aided the quest for more consistent predictors for 

human endometrial receptivity. Upon induction with steroid hormones, a 

large number of structural and molecular mediators have been identified as 
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potential markers of endometrial receptivity (Aghajanova et al. 2002; Lessey 

et al. 2003).  

Molecular techniques together with specific molecules have been 

investigated to detect uterine receptivity. Biomarkers like cytokines, growth 

factors, homeobox transcription factors, lipid mediators, and morphogens 

have been described to function as autocrine, paracrine and juxtacrine 

factors. These biomarkers have been determined to participate in either a 

positive or a negative way in the process of implantation and the localization 

of each one determines its possible contribution for implantation (Wang et al. 

2006). These findings on the surface of the luminal epithelium represent 

factors in the preembryo-endometrium, while the ones that have been 

described at the extracellular matrix of the endometrial stroma represent 

factors at the time of trophoblast invasion (Acosta et al. 2000). 

Cell Adhesion Molecules 

Integrins are part of adhesion molecules on the plasma membrane with two 

glycoprotein subunits: α and β. These cell surface receptors are present in 

the trophoblast and the epithelium, which play important roles during 

implantation (Wu, 2012). They have been suggested as the best of the 

immunohistochemical markers of endometrial receptivity during implantation 

window, because their pattern coincides during secretory phase (Lessey et 

al. 2000). While trophoblast integrins are involved in cell-cell and cell-matrix 

interactions in trophoblast attachment, migration, differentiation, and 

apoptosis, the integrins on endometrial surface mark the boundaries of the 

WOI. The expression of αvβ3 in the luminal epithelium on day 19 to 20 gives 

an evidence of the opening of the window of implantation while the integrin 

α4β1 only appears on day 14, in the glandular epithelium and disappears on 
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day 24, closing the window of implantation (Acosta et al. 2000). Although 

these changes are useful predictors for pregnancy outcomes, their 

expression present a high variability in different cycles with a low 

reproducibility for the mechanisms underlying them are largely unknown 

(Norwitz et al. 2009).  

Mucins (MUCs) are structural proteins, which are known to form mucus 

layers produced by epithelial cells of many tissues, including the 

endometrium. (Dekker et al. 2002). MUC1 is a cell-surface glycoprotein on 

the uterus that is abundant in the human endometrium, and plays a crucial 

role in embryo implantation, as it is thought to provide a barrier to trophoblast 

invasiveness by controlling the accessibility of integrin receptors to their 

ligands. It has been suggested that alterations in MUC1 expression levels of 

several epithelial cell surface proteins may affect the receptivity of the 

endometrium (Casado-Vela et al. 2009). Because MUC1 has anti-adhesive 

properties and in humans increases from proliferative to secretory phase of 

the endometrium and then decreases in the late secretory phase, it has been 

postulated that MUC1 may thereby hinder blastocyst attachment to the 

uterine epithelium until 3 days after entrance to the uterus. 

Cytokines 

Leukemia inhibitory factor (LIF), secreted from the endometrium, is 

considered as an important factor in embryo implantation. Among the 

cytokines, LIF is an interleukin (IL) 6-type that belongs to the family of 

epidermal growth factores (EGF), and that has been proved via LIF-null 

female mice to be essential in blastocyst implantation (Menhorst et al. 2011; 

Stewart et al. 1992). In humans, the production of LIF by uterine epithelium 

is maximal between days 19 and 25 of a normal menstrual cycle, around the 
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time of implantation (Menhorst et al. 2011). On the other hand, the oncofetal 

fibronectin trophouteronectin (TUN) mRNA, which is responsible for 

adhesion to endometrial integrins, increases its expression by LIF, 

suggesting that LIF is a regulator in human embryo implantation by 

modulating trophoblast differentiation and promoting luminal epithelial 

receptivity to attachment and the subsequent stromal decidualization (Acosta 

et al. 2000). In humans LIF levels in serum do not reveal fertility status, but 

its low concentrations in uterine flushing are predictive of unsuccessful 

implantation (Aghajanova et al. 2008). 

Interleukin-1 (IL-1) has been reported to be one of the first possible signals 

between the blastocyst and the endometrium, since in vitro IL-1 increases 

endometrial secretion of prostaglandin E2, LIF, and of integrin β3 subunit 

expression IL-1 receptor antagonist prevents implantation in the mouse 

attachment, indicating its importance in embryo implantation. It has also 

been shown that it can induce trophoblast invasion (Simon et al.1994; Staun-

Ram & Shalev 2005). 

Homeobox transcription factors   

There are two homeobox transcription factors upregulated during the 

secretory phase in the human uterus, Hoxa10 and Hoxa11. Even though 

Hoxa10 has been proved not to be essential for implantation in mice, the 

absence of LIF expression in Hoxa11-/- uterous points out to its importance 

in the uterine receptivity and in later events of implantation (Wang & Dey 

2006). 
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9. Invasive methods to diagnose endometrial receptivity 

9.1 Genomics 

Genomics studies the functions and interactions between genes in the entire 

genome with a broader reach than genetics does. In health sciences, 

genomics directs experimental access to the genome for the identification of 

genes involved in common diseases by their high penetrance (Guttmacher et 

al. 2002). The aim is to screen the genetic information of entire populations 

or specific subgroups to make a predictive medicine for individual patients, 

trying not only to prevent diseases before the appearance of symptoms but 

also to decrease the frequency of diseases in subsequent generations and 

to diagnose individual susceptibility in common disorders (Khoury et al. 

2003).  

9.1.1 Endometrial Receptivity Array 

Based on the large amount of information generated about the regulation 

and dysregulation of the genes implicated in (WOI), our group developed a 

molecular diagnostic tool that can identify a receptive endometrium  using a 

specific transcriptomic signature present in both natural and in hormonal 

replacement therapy (HRT) cycles. The endometrial receptivity array (ERA) 

consists in a customised array containing 238 genes expressed at the 

different stages of the endometrial cycle and is coupled to a computational 

predictor which is able to identify the receptivity status of an endometrial 

sample and diagnose the personalised WOI (pWOI) of a given patient 

regardless of the sample’s histological appearance (Diaz-Gimeno et al. 

2011). The accuracy of the ERA test is superior to endometrial histology and 

results are completely reproducible 29 to 40 months after the first test (Diaz-
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Gimeno et al. 2013). Compelling evidence indicates that there is an 

endometrial receptivity alteration in patients with RIF in term of WOI 

displacement (Ruiz et al. 2013). 

9.2 Proteomics 

Compared to an organism’s genome that is constant, the proteome differs 

from cell to cell, making it more complex. For that, new developments using 

protein profiling and sequencing have been implemented to elucidate the 

underlying biological processes. The study and comparison of the proteome 

in different biological situations allows the identification of the presence, 

absence or alteration of the proteins correlated with specific physiologic and 

pathologic states that can be used as diagnostic biomarkers.  

At the proteomic level, five proteins were differentially expressed in the 

endometrial transition from non-receptive to receptive stage, of which the 

glutamate NMDA receptor subunit zeta 1 precursor and FRAT1 were the 

most interesting proteins. Other studies support that seventy-eight proteins 

were differentially expressed in the receptive endometrium, of which Annexin 

A2 and Stathmin 1 were the most consistent expressed (Dominguez et al. 

2009). 

However, these approaches have not yet rendered applicable clinical results 

to the everyday-IVF practice, since no single specific factor has been 

identified to be crucial for implantation in humans (Altmäe et al. 2009; 

Domínguez et al. 2009; Strowitzki et al. 2006). Furthermore, major setbacks 

in the application of biopsy-dependent techniques lie on their invasive nature 

that disrupts the necessary endpoint of implantation, and the difficulty to 

extrapolate results obtained to the next cycle. However, the analysis of EFs 
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is a new, non-disruptive possibility for the investigation of endometrial 

receptivity.  

10.  Non-invasive methods to diagnose endometrial receptivity  

10.1 Secretomics 

Secretomics identifies factors that are secreted by cells or tissues at any 

given time under particular physiologic, pathologic, or experimental 

conditions (Berlanga et al. 2011). In the area of reproduction, the 

endometrium can be an interesting topic of research for secretomics as the 

EF is an important regulator of uterine biology.  

The fluid in the uterine cavity is a complex biological fluid, generated by 

glandular secretion and transudation from stromal blood vessels in the 

endometrium. This fluid is composed by a multitude of proteins, lipids, 

aminoacids, electrolytes, glucose, urea, cytokines, growth factors, and 

metalloproteinases secreted from the endometrium that serve as a 

protection against pathogens, signals fertility, and sperm migration. 

However, its composition varies among the menstrual cycle, specifically 

during the transition from the proliferative phase to the secretory phase in 

response to changes in ovarian steroid production. This approach provides 

reliable read-outs of individual molecules correlating with the day of cycle 

(van der Gaast et al. 2009; Simón et al. 1993) and has proven to be effective 

in combined molecule readouts using a luminex system (Boomsma et al. 

2009).  

Endometrial secretions in acquisition of endometrial receptivity has been 

investigated using animals models in which absence of endometrial glands 

leads to an impaired uteri without endometrial secretions, causing infertility in 
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animals due to the inability to support blastocyst survival. (Berlanga et al. 

2011). Since the human endometrium generates secretions during the WOI 

into the lumen that are in direct contact with the blastocyst, it has been 

suggested that human EFs have essential components to promote 

pregnancy (Casado-Vela et al.  2009).   

One of the most important advantages of secretomics analyses in the 

context of the uterus is the recovery of the biological sample in real time 

without the need of biopsy, with a minimally invasive method that might be 

relevant for the assessment of the endometrium with reproductive and 

therapeutic purposes (Berlanga et al. 2011).  More importantly, the 

aspiration of EF does not affect pregnancy rates, thus opening the field for a 

timely synchronized, non-invasive application for the investigation of 

endometrial receptivity (van der Gaast et al. 2003). On the other hand, one 

limitation of the E.F. is that the amount of material obtained by aspiration 

sometimes is not enough for its analysis. However, using the advantages of 

secretomics, a molecular profile of a receptive endometrium could be 

designed, as well as the determination of the specific molecules released by 

the endometrium that might be critical for the maturation of the blastocyst 

and its implantation (Berlanga et al. 2011). For that, depending on the type 

of molecules found in the E.F., the necessity to draw upon the other “omics” 

is necessary.  

10.2 Proteomics 

Proteomic studies have shown that defects in the expression of proteins in 

the E.F. may result in the failure of embryos to implant. Therefore, it can be 

used for the identification of biomarkers for endometrial diseases (Casado-

Vela et al. 2009). The endometrial secretion contains proteins from the 
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transudation of serum, products of apoptotic epithelial cells, and proteins 

secreted from the glandular epithelium.  These proteins are cytokines such 

as leukemia inhibitory factor (LIF), glycodelin (PP14), macrophage colony-

stimulating factor (M-CSF), epidermal growth factor (EGF), vascular 

endothelial growth factor (VEGF), insulin-like growth factor binding protein 1 

(IGFBP-1), and interleukins, as well as steroid and non-steroid hormones 

(estrogen, progesterone, prolactin, human chorionic gonadotrophin, and 

precursors). However, one of the limitations in applying proteomics in the 

study of protein patterns in E.F. is that the majority of identified proteins 

correspond to serum proteins, thus masking the identification of proteins 

present at low concentrations (Garrido et al. 2010). 

10.3 Lipidomics 

Lipidomics has emerged as a new field on the analysis of lipids and factors 

that interact with lipids, and it has become an interesting topic in EFs (Vilella 

et al. 2013). Lipidomics can be defined as the large-scale study of lipid 

species and their related networks to integrate the investigation of the role of 

genomics, transcriptomics, proteomics and metabolomics in the cell function, 

of cells or any other biological system (Quehenberger  et al. 2010). The aim 

of this ‘–omics’ is the full characterization, identification, and quantification of 

molecular lipid species and their biological roles with respect to the 

expression of proteins involved in lipid metabolism and function, including 

gene regulation (Lagarde et al. 2003). As an emerging ‘–omics’ field, 

lipidomics provides a powerful approach for the understanding of lipid 

biology (Quehenberger  et al. 2010). 

Lipids are organic biomolecules essentially formed by carbon, hydrogen, and 

oxygen, although the latter forms have a much lower proportion of these 
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molecules. In addition, they may also contain phosphorus, nitrogen and 

sulfur. Lipids do not have a characteristic functional group that allows us to 

classify them according to specific functions. However, they share a 

common feature: they are water insoluble but are soluble in organic solvents 

like chloroform or ether. These molecules play an important role in diverse 

biological functions, constituting the main energy reserve of living beings 

(triglycerides), forming cell membranes and giving them structure (i.e. the 

phospholipids of lipid bilayers), and regulating the activity of cells and tissues 

(as steroids and other hormones). It is also important to note that most of the 

non-proteic components of membranes are lipids, which are generated and 

metabolized by enzymes, which are in turn influenced by the environment of 

a given biological system. 

The lipidomic approach is possible today due to the newly developed 

instrumentation, protocols, and bioinformatics tools that are now available 

(Brown et al. 2007). The lipidome, characterized by global changes in lipid 

metabolites, is part of the metabolome; however, the widely differing 

physicochemical properties of many lipids compared to most water soluble 

metabolites means they deserve separate analysis (Griffiths et al. 2011). 

10.3.1 Technical approaches  

The primary technology used for lipid research is mass spectrometry (MS), a 

technique that can provide the structure, molecular mass, and concentration 

of analyzed molecules (Griffiths et al. 2011; Ho et al.  2003). However, to 

study complex lipid mixtures new technologies have been developed to 

improve the measurement of diverse components whilst using only small 

sample volumes. Methods using MS, such as electrospray mass 

spectrometry, have been employed to gently ionize biological molecules, 
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and are known as electrospray ionization (ESI) techniques. These allow the 

structure of molecular species, such as polar lipids and some non-polar 

lipids, to be determined (Fortier et al., 2008). ESI has proven to be a useful 

technique for large molecular mass biological molecules, as they are not 

fragmented into particles; instead, they are ionized into small droplets using 

electrical energy to transfer ions from a solution into a gaseous phase. ESI is 

a sensitive and reliable technique which is able to determine sample 

compositions from micro-litre volumes, and identifies non-volatile and 

thermally labile bio-molecules that cannot be studied by other techniques 

(Ho et al.  2003). 

Another ionization method is the matrix-assisted laser desorption/ionization 

(MALDI), which has the advantage of having a higher tolerance for salts and 

other contaminants. This method can analyze not only proteins but also 

lipids in small sample volumes, with high sensitivity, wide mass range, and 

with little fragmentation. The MALDI technique works by dissolving the 

sample in a matrix which is able to absorb laser radiation thus causing the 

volatilized ions to flow down a tube allowing their separation according to 

mass (Jackson et al.  2009).  

Particularly for analysis of complex lipid mixtures, tandem mass 

spectrometry (MS-MS) has not only been designed for the identification of 

molecules based on their molecular weights but also to provide structural 

information of the molecule, which is achieved by combining two mass 

spectrometers. The first mass analyzer (MS1) is used to select a precursor 

ion that is specifically fragmented by collision with an inert gas, producing ion 

fragments that are then passed through a second mass analyzer (MS2) 

(Griffiths et al. 1974). These methods have been coupled with techniques 

like time-of-flight (TOF) to improve the resolution, as well as complementary 
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mass analyzers like ion traps and Fourier transform ion cyclotron resonance 

(FT-ICR) to determine the mass of ions. Those techniques are mainly 

focused on directly profiling lipids, increasing the sensitivity and the mass 

measurement accuracy (Fortier et al.  2008; Wenk  2005). However, MS is 

also limited by its poor ability to ionize, and therefore quantify, low 

abundance lipids within a complex mixture. Independent of the specific 

method used, MS gives information about the molecular weight of the 

analytes by measuring the mass to charge ratio, m/z ( Griffiths et al. 1974). 

The methods usually used for lipid analysis are gas chromatography (GC), 

thin layer chromatography (TLC), and high performance liquid 

chromatography (HPLC) (Willman et al. 2011). GC is an important technique 

generally used for the analysis of fatty acids. However, its restriction to 

volatile lipids requires the derivatization of non-volatile lipid components 

before the method can be applied, as well as requiring use of internal 

standards. On the other hand, HPLC is a simpler method in which 

derivatization is not required. It can be applied across diverse 

chromatographic conditions in which reverse phase and normal-phase 

chromatography would normally be used. HPLC is highly selective and 

efficient in detecting lipid classes, allowing it to determine and quantify 

analytes with high resolution. For lipid class separations TLC is usually used 

for lipid mixtures, and has the advantage of being cheaper and faster than 

other methods, including HPLC and GC; however, its low resolution and 

sensitivity restricts this technique (Petersson & Cummings, 2006). 

The NMR technique, designed especially for lipid membranes, uses a 

principle based on the presence of active nuclei atoms that form lipids 

(Clogston & Patri 2011). Although this method studies the physical 

properties of membrane compounds, nowadays the focus of this approach 
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has been changed towards the study of complex lipid mixture properties to 

determine their function and structure. NMR has even contributed to the 

development of other ‘–omics’ such as metabolomics and proteomics, 

although its sensitivity is a significant limiting factor. Because NMR is a 

powerful technique for structural analysis many new technologies have 

focused on improving it (Grélard et al. 2010).  

The availability of instrumentation, protocols, and bioinformatics tools such 

as LIPID MAPS, have made the characterization of changes in lipid 

metabolites, and the comprehensive analysis of the mammalian lipidome 

possible (Quehenberger  et al.2010).  

11. Role of lipids in embryo implantation: animal models. 

In recent years, several studies in animal models have shown the 

importance of lipids at the time of embryo implantation. Lipidomics studies 

have enabled the identification and characterization of these lipids at the 

time of endometrial receptivity. Furthermore, functional studies in mice have 

confirmed the important role played by these lipids in endometrial receptivity 

and implantation. Lipid molecules such as endocannabinoids, 

lysophosphatidic acid (LPA), and prostaglandins (PG) have been reported to 

be some of the most widely studied mediators of embryo implantation 

(Gawrish et al. 2002). Consistency between the results observed in different 

animal models suggests that this trend might also be found in humans, 

meaning that the receptive state of the endometrium may be characterized 

by a specific pattern of lipids. 
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11.1 Endocannabinoids  

Endocannabinoids are lipids that have been detected in different human 

tissues and reproductive fluids. The anandamides (N-

arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) have 

been described as the two principal endocannabinoids involved in mouse 

implantation events; moreover, it has been described that aberrant levels of 

these lipids lead to deferred implantation and compromised pregnancy 

outcome (Wang & Dey 2006). These studies are supported by genetic 

evidence showing that fatty acid amide hydrolase (FAAH), the major 

degrading enzyme for endocannabinoids, is linked to successful continued 

pregnancy after in vitro fertilization and subsequent embryo transfer 

(Gawrisch et al. 2002). While low FAAH levels are associated with the up-

regulation of AEA and are therefore related to non-receptivity of embryo 

implantation, down-regulation of AEA correlates with uterine receptivity 

(Maccarrone et al. 2009). These data support work that shows that 

cannabinoid AEA signaling is important in both mouse embryo and uterus 

during implantation period (Paria et al. 2002). 

11.2 Lysophosphatidic acid (LPA)  

This lipid is a water-soluble phospholipid that acts as a potent signaling 

molecule with wide-ranging effects on many different target tissues. LPA, 

acting through its receptor LPA3, is essential for normal embryo size and 

spacing in mice, which is linked to a positive effect on implantation 

(Mizugishi et al. 2007). It has also been shown that deficiency of LPA3 in 

uteri during preimplantation leads to down regulation of COX-2 and therefore 

reduces the levels of PGs, thus directly affecting the process of implantation 

and decidualization. Studies with ovine trophoectoderm, porcine and bovine 
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endometrium also demonstrated that LPA is an important mediator in the 

process of implantation. A recent study has suggested that LPA controls the 

levels of endocannabinoid and prostaglandin mediators that act via LPA3 to 

rearrange the endometrium for implantation during the receptive stage 

(Wang & Dey 2006; Downie et al. 1974). 

11.3 Prostaglandins 

Prostaglandins (PGs) are lipid mediators with important roles in reproductive 

processes, including ovulation, implantation, and menstruation (Jabbour et 

al.2004). PGs have been classified as members of the eicosanoids family 

produced by all nucleated cells of the body that act locally in a paracrine and 

autoctrine manner to hold homeostasis (Kobayashi et al. 2002). Its 

production from lipid precursors involve different enzymes that are in charge 

of its biosynthesis, such as phospholipase A2 (PLA2), cyclooxigenase 

(COX), and prostaglandin synthetases, in which each one regulates different 

phases of PG pathway (Hara et al. 2010).  In different animal models the 

importance of the correct production of the PGs and their synthases are 

essential to achieve implantation. This topic will be described below in more 

detail. 

12. Prostaglandins biosynthesis  

PG biosynthesis begins with the sequential metabolism of arachidonic acid 

(AA) from the plasma membrane phospholipids by phospholipase A2 

enzyme (PLA2). Chronological oxidation of AA by cyclooxygenases (COX-1 

and COX-2) and the action of terminal PG synthases lead to the generation 

of individual PGs, namely PGD2, PGE2, PGF2α, and PGI2. The enzymes 

cPLA2, COX-1 and 2 act as rate-limiting factors in the production of PGs, 
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and their role in the endometrium is well established in mouse and human 

models (Stavreus-Evers et al. 2005; Marions et al. 1999; Achache et al. 

2009; Wang & Dey, 2006). These proteins represent upstream common 

factors in the signaling pathway that leads to PG production. Manipulating 

their levels or activity has an effect on the synthesis of all PGs, and thus this 

approach is not informative of the production mechanisms of individual PGs. 

PG synthases (PGSs), on the other hand, represent the downstream 

terminal mediators in that pathway, and mediate the catalysis from inactive 

PGHs to the terminal active PGs.  

 

 

Figure 1.5. Prostaglandins production. 
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12.1 Upstream signalling pathway 

Phospholipase A2, especially cPLA2 and the two cyclooxygenases (COX-1 

and COX-2), represent the enzymes of the upstream signalling pathway that 

are in charge of PG production. 

12.1.1 Phospholipases A2 (PLA2) 

Arachidonic acid is a 20-carbon unsaturated fatty acid that is released by 

PLA2. PLA2 is an enzyme that hydrolyzes the ester bonds of the fatty acids 

at the sn-2 portion of phospholipids to generate bioactive lipid mediators that 

participate in several cellular functions, as well as in phospholipid 

metabolism, immune functions, and signal transduction. In mammalians four 

PLA2 subtypes have been described: cytosolic (cPLA2), secretory (sPLA2), 

Ca2+-independent (iPLA2), and platelet-activating factor (PAF) 

acetylhydrolase. The main isoforms differences are attributed in their 

substrate specificity and requirement for Ca2+. While PLA2 and sPLA2 

generates free fatty acids, iPLA2 and PAF acetylhydrolase participate in  

membrane remodelation and attenuation of PAF bioactivity. (Lister & Van 

Der Kraak 2008). 

PLA2: Among the four PLAs subtypes, cPLA2 is the most important enzyme 

for PGs biosynthesis. It is responsible for releasing bioactive lipid mediators 

that are indispensable substrates for PGs formation. In humans two 

isoforms, cPLA2ρ and cPLA2γ, have been described; unlike cPLA2α, they do 

not show substrate preference for arachidonic acid (Wang & Dey 2005). By 

in situ hybridization techniques performed in mice uterus during the first days 

of pre-implantation and implantation period it was observed that the 

expression of cPLA2α presents a parallel pattern with COX-1 (Tranguch et 

al. 2005). However, the expression throughout the stage of adhesion is more 
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similar to COX-2 in the zones of the epithelial cells that surround the 

blastocyst expression in the sites of implantation (Wang & Dey 2005). 

12.1.2 Cyclooxygenase 

Once arachidonic acid undergoes oxidation producing PGG2, it suffers a 

reduction to an unstable prostaglandin endoperoxide H synthase (PGH2) by 

cyclooxygenasein the two isoforms, COX-1 and COX-2. A COX-3 enzyme 

derived from alternative splicing of the COX-1 gene has been also 

described; however, its function is still unclear (Simmons et al., 2004). 

Although COX-1 and COX-2 have similar structural and kinetic properties, 

they are encoded by different genes with distinct cell-specific expression, 

regulation, and subcellular localization (Wang & Dey 2005). While COX-1 is 

constitutive and mediates normal physiological functions as a “house-

keeping”, COX-2 is inducible by growth factors, cytokines, oncogenes, and 

inflammatory stimuli (Achache et al. 2006). The absence of COX-2 produces 

multiple failures in female reproductive processes, including ovulation, 

fertilization, implantation, and decidualization (Zhao et al.2012). 

In mice the functional role of COX-1 and COX-2 expression has been 

described. COX-1 is expressed in uterine luminal and glandular epithelial 

cells before the embryo gets attached, but its expression disappears in the 

luminal epithelial cells by the time of attachment. Three days after adhesion 

it is expressed again in the mesometrial and anti-mesometrial secondary 

decidual. Because COX-1 has been observed during postimplantation 

period, it has been associated with the production of PGs in decidualization 

and/or continued localized endometrial vascular permeability (Tranguch et 

al. 2005; Wang & Dey 2005). COX-2 gene, on the other hand, is expressed 

in the luminal epithelium and subepithelial stromal cells surrounding the 
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blastocyst at the time of attachment. PGs produced at this site by COX-2 are 

involved not only in the phase of adhesion but also in angiogenesis and in 

the establishment of the placenta (Wang & Dey 2005). 

12.2 Downstream signalling pathway 

12.2.1 PG synthases 

Once COX enzymes form the intermediary PGH2, it is used as a substrate 

for the generation of the four PGs (PGD, PGE, PGF, and PGI) by specific 

terminal synthases, such as PGE synthases (cPGES, mPGES-1, mPGES-

2), PGF synthases (AKR1C3, AKRB1), PGD synthase (PGDS), and PGI 

synthase (PGIS) (Fortier et al. 2008). Interconversion between PGE2 and 

PGF2α is mediated by CBR1 and AKR1C1 in response to physiological 

stimulus (Colombe et al.  2007).   

PGE2 is synthesized by 3 types of PGE synthases (PGES): one cytosolic 

(cPGES) and two membrane associated PGE synthases (mPGES)-1 and -2. 

cPGES belongs to the glutathione transferase family that is ubiquitously 

expressed and preferentially coupled to COX-1, and therefore implicated in 

maintenance production of PGE2. On the other hand, mPGES-1, which 

belongs to the Membrane-Associated Proteins involved in Eicosanoid and 

Glutathione metabolism (MAPEG) superfamily is coupled with COX-2 and its 

induction is usually synchronized with COX-2 (Samuelsson et al. 2007). 

Moreover, mPGES-1 is up-regulated by proinflammatory stimuli and down-

regulated by anti-inflammatory glucocorticoids, often in coordination with 

COX-2, and its expression in vivo has been associated with various 

physiological and pathological events, such as inflammation, cancer, and 

reproduction. Finally, mPGES-2 is able to couple with both COX 

isoenzymes, and it is expressed relatively constitutively, rather than 
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induciblely, although its functional significance is still unclear (Murakami, 

2003). 

PGD2 is synthesized by two isoforms of PGD synthases (PGDS), lipocalin-

type PGD synthase (L-PGDS) and hematopoietic PGDS (H-PGDS). L-PGDS 

belongs to the lipocalin superfamily that is mostly expressed in the brain, 

especially abundant in the cerebrospinal fluid, and it is also found in the 

seminal fluid. H-PGDS is a cytosolic enzyme that isomerizes PGH2 to 

PGD2 in a glutathione-dependent manner. It is also responsible for the 

biosynthesis of PGD2 in immune and inflammatory cells such as mast cells, 

antigen-presenting cells, and Th2 cells (Kanaoka et al. 2003). However, 

PGD2 can be also metabolized by dehydration to PGJ2, delta12-PGJ2, and 

15-deoxy-delta(12,14)-PGJ2, which is a ligand for the nuclear transcription 

factor peroxisomal proliferator activated receptor (PPAR)-gamma with an 

anti-inflammatory activity (Díaz-Muñoz et al. 2008). 

Prostacyclin PGI2 is synthesized from PGH2 by PGI synthase (PGIS), a 

membrane-bound heme protein of the P450 family. In reproduction PGIS is 

produced by luminal epithelia and tubal smooth muscle of human fallopian 

tubes.  As well it is localized in the nucleus and cytoplasm of stromal cells 

around the implanting mouse blastocyst, with distinct expression in the 

stromal vasculature on day 5 of mice implantation. COX-2 protein exhibits 

similar differential subcellular pattern with PGIS in the endometrium, 

suggesting generation of COX-2-derived PGI2 (Huang et al. 2002; Lim et al. 

1999).  

In particular, PGF2α is the result of not only prostaglandin F(2α) synthase, 

(PGFS) but can also be produced from PGD in a reaction catalysed by 11-

ketoreductase (AKR1C3), or from PGE2 through the action of 9-
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ketoreductase (CBR1) and AKR1C1, illustrating how these pathways can 

converge in the production of PGs. AKR1C members regulate androgen, 

estrogen, and progesterone receptors and PPARγ (Bauman et al. 2005). 

12.2.2 Importance of PGs synthases using animal models 

Prostaglandins are lipids derived from membrane phospholipids by the 

action of phospholipase A2 (PLA2) and cyclooxygenase (COX-2). These 

enzymes are responsible for the production of PGs that become elevated in 

both the lumen and stroma over the receptive period, although only at the 

site of blastocyst implantation in murine models. In reproduction, 

cPLA2 knockout mice demonstrate a delay in the window of implantation with 

an impact in diverse reproductive aspects. Some of them have been 

described as defective postimplantational development in embryos with 

small litters due to a delayed growth with hemorrhagic placentas and 

preponderance of big trophoblastic cells. Abnormal uterine spacing of 

embryos and slow fetoplacental development has also been observed, in 

which the main contributor for the time of implantation is of maternal cPLA2α 

origin and not embrionary (Tranguch et al.  2005).  However, administration 

of PGs on day 4 can rescue the normal time of implantation in cPLA2α−/−, 

but the abnormal embryo spacing cannot be recovered (Zhao et al. 2012; 

Wang & Dey 2005). This pattern also shows up in other studies, suggesting 

that the PGs have an essential role during a specific time, in which any delay 

leads to an irreversible phenotype (Hama et al.  2007).  

Because cPLA2 is responsible for the production of arachidonic acid as a 

substrate for COX, deficiencies in COX-2 corroborate that the lack of either 

PLA2 or COX-2 leads to an absence of PG synthesis, which in mice results 

in several implantation defects, thus confirming the importance of PGs in 
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murine reproductive efficiency (Fortier et al., 2008; Lousse J-C et al. 2010).  

It has also been demonstrated that any alteration in the PG production 

pathway has a dramatic effect on the process of implantation, decreasing the 

probability of achieving pregnancy at the end of the process. For that reason 

it has been established that PGs significantly contribute to establish the 

microenvironment required during implantation and decidualization, and are 

therefore strong molecular candidates for implantation regulation in humans 

(Achache et al.  2010). 

13. Prostaglandin studies 

13.1  Animal models 

It has been demonstrated that COX-2 is indispensable for blastocyst 

implantation and decidualization. However, the candidate PG(s) that is or are 

responsible in these processes and the mechanism of its action in humans 

remain unknown. Using different animal models to understand this riddle it 

was shown that the type of PG implicated in implantation varies among 

species, hindering the search for candidate PGs responsible for implantation 

in humans. 

PGE2 and PGF2α have been revealed as the most important PGs during the 

implantation stage in mice (Pakrasi et al. 1997). This work reported that 

PGE2 was increased at implantation sites, whereas PGF2α was higher at 

inter-implantation areas. However, a more recent investigation differed from 

previous studies, showing that PGI2 levels were the highest, followed by 

PGE2, and no differences in the PGF2α levels during implantation were found 

when compared to other phases of the menstrual cycle (Stavreus-Evers et 

al. 2005). Due to the properties of PGI2 as a vasoactive agent that 
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participates in vascular permeability changes, this PG has been associated 

with localized vascular permeability in the uterus during implantation, 

indicating that PGE2 and PGI2 are important for ovulation but also for the 

initiation of implantation in mouse uteri (Marions et al. 1999). In contrast, 

studies performed with rats as a model showed that PGE2, but not PGI2, is 

an important mediator of increased vascular permeability at the implantation 

site (Catalano et al. 2011). 

In hamsters, blastocyst implantation is related with an increase of PGE2 at 

the implantation site through the co-expression of the activity enzymes: 

mPGEs-2 and COX-2 (Catalano et al. 2011). In rabbits, it was reported that 

PGE2 concentrations were higher at implantation sites (Durn et al. 2010). 

However, other studies showed that both PGE2 and PGF2α were elevated. In 

pigs, PGE2 was able to act locally through endometrial PGE2 receptors, 

especially PTGER2, and may be involved in a positive feedback loop during 

increased PGE2 synthesis in porcine uterus in the peri-implantation window  

(Waclawik  2009). 

13.2 Human model  

Despite the limited number of reports on the role of PGs in human 

implantation, it is known that in human blastocysts PGI2 stimulates embryo 

development and hatching through its cognate nuclear receptor PPARγ, 

whereas PGE2 interacts with its receptors EP1-4 stimulating the migration of 

human trophoblast by activating Rac1 and CDC42 and inducing changes in 

the cytoskeleton (Huang et al. 2007; Nicola et al., 2008; Fournier et al., 

2007). However, most of the endometrial studies have been focused on the 

role of PGs in the increase of vascular permeability and decidualization, 

leaving behind the expression and function of individual PGSs in 
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endometrium, as well as the dynamics of their production in receptive versus 

non-receptive human endometrium. A recent study has shown that defective 

endometrial PG synthesis is linked with repeated implantation failure in 

patients undergoing IVF (Achache et al. 2009). Using non-human systems, it 

has been proposed in the issue of reproduction that the ratio of 

PGE2:PGF2α  could be an important parameter to control the embryo 

implantation, thus placing PGs at the forefront of implantation events in 

humans (Zieck et al. 2008; Ghosh & Sengupta, 1998). 

14. PG Transporters  

Once PGs are synthethized they are rapidly transported outside of the cells. 
PGs predominate as charged anions that are characterized by its low 

intrinsic permeability across the plasma membrane (Schuster et al. 1998). 

Due to their lipophilic nature, their transport through plasma membranes is 

poorly understood. It has been suggested that PGs could be transported 

through different mechanisms like simple diffusion, passive transport, active 

transport, counter-current, and carrier-mediated transport (Banu et al.  

2008). 

 Although it is known that PGs can cross cell membranes by simple diffusion, 

it is very difficult to maintain a biological function by this mechanism because 

their flow rate is too low: PGs diffuse poorly across biological membranes 

and the presence of a carrier is necessary. PGT, a broadly expressed 12-

membrane-spanning domain integral membrane protein, could mediate the 

transport of PGs through the membrane in both ways of efflux and influx. It 

has also been shown that PGT has a high-affinity for PGs by uptaking and 

transporting them ((Banu et al. 2008). During the human menstrual cycle, 

PGT expression is elevated in proliferative and early-secretory phase and 
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low in the mid- to late-secretory phase. Moreover, it is immunolocalized in 

luminal, glandular epithelium and stromal cells. PGT modulation in epithelial 

cells during the menstrual cycle suggests an important role in regulation of 

PG action in the human endometrium. However, their specific role in human 

implantation is still not well defined (Achache et al. 2006). 

PGH2, a precursor of PGs inside cells, is also released into the extracellular 

compartment mainly by diffusion, whereas its influx is mediated by both 

passive diffusion and by PGT carrier. PGH2 translocation from the 

intracellular to the extracellular compartments or vice-versa is critical for the 

cellular levels. Based on the structural similarity between PGH2 and PGE2, 

PGT also transports PGH2; however, its transport has a lower affinity, but a 

higher rate, compared to PGE2. Moreover, PGT slightly prefers PGE2 over 

PGH2 in the sense that PGT balances the uptake of PGE2 into the cell 

against a concentration gradient (Chi & Schuster 2010). 

The members of the multidrug resistance protein (MRP)/ABCC subfamily of 

ATP-binding cassette transporters, MRP4 (ABCC4) are organic anion 

transporters. They have, however, the outstanding ability to mediate the 

effux of prostaglandins (Ritter et al. 2005).  

Recently, a new mechanism of PGs transportation has been proposed. 

Exosomes appear to be involved in additional intercellular signaling by 

interacting with cell peripheral receptors such as G protein coupled receptor 

(GPCR).  Although the participation of exosomes in lipid metabolism is not 

yet known, the presence of arachidonic acid, as well as either COX-1 or 

COX-2 and terminal prostaglandin synthases in exosomes has been found. 

However, no specific peripheral receptors or mechanisms of entry have been 

identified for this prostaglandin. It has been suggested that exosomes may 
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function as a vehicle allowing the plasma membrane with PGs to be 

bypassed where they would be released into the cytosol after fusion 

between exosome and endosome membranes (Subra et al. 2010).  

15. PG Receptors  

 Once PGs are biosynthesized, they are quickly transported outside the cell, 

acting in an autocrine or paracrine manner that might bind to specific plasma 

membrane receptors to produce a diverse range of biological responses.  

These receptors are surface G-protein coupled receptors (GPCRs) with 

seven trasmembrane domains that activate an associated G-protein (Gα , 

Gi, Gq) (Narumiya et al.  1999).  

 Different prostaglandins (PGE2, PGF2α, PGI, PGD) exert their biological 

function through interaction with their corresponding receptor EP, FP, IP and 

DP (Blesson et al. 2012), which have been classified according to their 

response to agonists/antagonists (Myatt et al. 2004). Among PGs, the only 

one that possesses four receptors subtypes is EP receptor, termed EP1, 

EP2, EP3, EP4 (EP1-4) (Lim & Dey 1997). Because EP subtypes have 

different structures, ligand bindings, and signal properties between them, 

PGE has a multiplicity of biological responses (Tsuboi et al. 2002). In 

addition to that, the EP3 receptor also possesses isoforms in bovine, mouse, 

rabbit, and human, that are produced by the alternative RNA splicing with 

different carboxyl terminal sequences associated to different G protein, and 

those subsequently activate different second messenger systems (Okuda-

Ashitaka et al. 1996).  

Moreover, pharmacologic studies have identified two contractile receptors 

EP1and EP3 and two relaxing EP2 and EP4 (Myatt & Lye 2004). Despite the 
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conserved sequences, homology between PGs receptors is relatively limited 

to 20-30% even among the four subtypes of PGE2 receptors. However, the 

homology of a type or subtype of receptors among various species is 

considerably higher: between human and mouse, for instance, the homology 

of IP, EP1, EP3, EP4, and FP receptors goes to around 85% (Narumiya et 

al. 1999). 

Signal intracellular pathways of these receptors have been determined by 

changes of the second messengers such as cAMP, intracellular calcium 

release, and inositol phosphates via their G protein. EP1 receptor is coupled 

to Gq protein and activates phospholipase C, which results in the generation 

of two second messengers: inositol triphosphate, that liberates intracellular 

calcium (Ca2+), and diacylglycerol, which activates protein kinase C (Banu et 

al. 2009). While EP2 and EP4 are coupled to Gαs with the activation of 

adenylate cyclase, EP3 is coupled to Gi via the inhibition of adenylate 

cyclase. On the other hand, FP is coupled to the stimulation of 

phospholipase C–inositol (IP3) pathway and Ca2+ mobilization by 

Gαq (Wanggren et al. 2006) 

PGs, PGE2 and PGF2α have been determined to be implicated in many 

reproductive functions in which their receptors are expressed. However, their 

distribution in the human endometrium and/or embryo during the menstrual 

cycle state remains unknown. Using animal models in mice it has been 

shown that deficiencies in EP1, EP3, EP4, and IP do not alter female 

reproduction, the same being true for FP. However, although PGF2α seems 

not to be part of the indispensables PGs for implantation in mice, its action 

varies among species, raising the question of what role each PG receptor 

plays in human implantation (Narumiya et al. 1999). 
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There are different agonists for the EP-receptors, but only a few are 

selective for each EPs subtypes. Among the existing EP1 receptor agonists 

the most commonly used is 17-phenyl-omega-trinor PGE2 (17-Ph-PGE2) 

principally in studies of the nervous system (Oka et al. 1997). However, 

although this agonist specially activates EP1, it also has low affinity for EP3. 

Butaprost is the most potent agonist for EP2-receptor as it shows high 

selectivity for this receptor subtype, with little or no activity for the other 

receptors (Senior et al. 1991). It has demonstrated that the activation of EP2 

receptor leads to intracellular accumulation of cAMP as it also increases 

CXCR4 expression with a rapid phosphorylation of ERK1/2. CXCR4 is 

regulated in the endometrium by embryonic signals and its expression is 

synchronized with EP2 expression in endometrial tissues during the mid-

secretory phase of the cycle, suggesting a potential crosstalk between these 

two receptors (Sales et al. 2011; Abera et al. 2010). 

Sulprostone, a stable acyl sulphonamide analogue of PGE2, shows 

selectivity for both EP1 and EP3 receptors, although it has the highest 

affinity with EP3. Sulprostone produces potent contractile responses, 

supporting the presence of contractile EP3-receptors in the non-pregnant 

human myometrium in vitro, and it confirms PGE signaling pathway leading 

to ERK activation (Senior et al. 1991; Chuang et al. 2006). The last PGE 

receptor, EP4 agonist 16S-9-Deoxy-9β-chloro-15-deoxy-16-hydroxy-17,17-

propano-19,20-didehydro PGE-2 (ONO-AE1-329) has been widely used in 

studies of inflammation, possibly via induction of VEGF-C and VEGF-D 

(Hosono et al. 2011). On the other hand, fluprostenol is an analog of 

PGF2α with potent FP receptor agonist activity, which can only bind to this 

receptor. It activates phospholipase C and Ca2+ mobilization in human 
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myomentrial cell and induces contractions in rabbit uterus (Chen et al. 1998; 

Carrasco et al. 1996). 

On the other hand, there are limited antagonists available for EP receptors. 

Selective EP1 antagonists such as SC51089, or SC53122 have been 

described as nonsteroidal anti-inflammatory drugs (Breyer 2001). Also 

recently, a selective EP2 receptor antagonist, PF-04418948, has been 

discovered as an important tool for investigating the biological activity of 

PGE2 and the role of EP2 receptors in health and disease (Birrell et al. 

2013).  

The EP3 antagonist N-[(5-Bromo-2-methoxyphenyl)sulfonyl]-3-[2-(2-

naphthalenylmethyl)phenyl]-2-propenamide (L-798,106) has been used in 

different species for being a potent and highly selective antagonist by its 

inhibitory action on sulprostone  (Bassil et al. 2008). As well as N-[[4'-[[3-

Butyl-1,5-dihydro-5-oxo-1-[2-(trifluoromethyl)phenyl]-4H-1,2,4-triazol-4-yl-

]methyl][1,1'-biphenyl]-2-yl]sulfonyl]-3-methyl-2-thiophenecarboxamide (L-

161,982), EP4 receptor antagonist has a selective antagonism over all other 

prostanoid receptors. 

From the variety of FP receptor antagonists that have been reported in the 

past AL-3138 and AL-8810, both PGF2α analogues, have received  

acceptance as FP antagonists (Jones et al. 2009). 
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II.- HYPOTHESIS 

 

 

Endometrial receptivity, a crucial stage in the human endometrium is 

governed by endocrine, paracrine and autocrine regulators. Different 

approaches have been used to identify biomarkers to diagnose the 

endometrial receptive period but none of them are non-invasive. 

 

Based on our preliminary data, our hypothesis relies in lipidomics and 

specifically on the quantification of PGE2 and PGF2α lipids in endometrial 

fluid as biomarkers that can diagnose the endometrial receptivity status 

during the window of implantation. 
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III.- OBJECTIVES 
 
 
General Objectives 
 

• To identify the lipidomic profile in human endometrial secretions 
throught the menstrual cycle, with special attention to the WOI. 
 

• To understand the production mechanism/s of these lipids by human 
endometrial epithelial cells and their putative effects on the  
blastocysts. 

 
• To prove the diagnostic sensitivity and specificity of PGE2, PGF2α 

levels in endometrial fluid obtained 24 hours before embryo transfer, 
by correlating with cycle outcome. 

 
 Specific Objectives 

 
• To compare lipidomic profiles in endometrial fluid among optimal, 

suboptimal and refractory endometrial cycles. 
• To determine the expression and localization of PGE2 and PGF2α 

synthases in the human endometrium 
• To describe specific enzymes involved in the production pathway of 

PGE2 and PGF2α in the endometrium and endometrial fluid 
• To demonstrate the functionality of PG synthases 
• To determine the expression and localization of PGE2 and PGF2α 

receptors in the human endometrium and mouse embryos 
• To proof the relevance of these molecules in embryo adhesion using 

an in vitro model  
• To determine the sensitivity and specificity of PGE2 and PGF2α 

concentrations in endometrial fluid predicting IVF cycle outcome. 
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IV. MATERIAL AND METHODS 

1. Lipidomic Profile 

1.1 Chemicals. HPLC grade water, methanol, and acetonitrile used for mass 

spectrometric studies were purchased from VWR International (Plainview, 

NY, USA). Mass spectrometry/HPLC grade acetic acid, formic acid, and 

ammonium acetate were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). 

1.2 Patient recruitment and endometrial fluid collection. This study was 

approved by our IRB 1002-C-069-OB (27/07/13) and all patients involved 

signed informed consent. EF was extracted with the woman lying in 

lithotomy position; the cervix was cleansed after inserting the speculum and 

an empty flexible catheter (Wallace, Smith Medical International) was gently 

introduced 6 cm transcervically into the uterine cavity guided by abdominal 

ultrasound, and suction gradually applied with a 10 ml syringe. To prevent 

contamination by cervical mucus during catheter removal, suction was 

dropped at the entrance of internal cervical oss (ICO), and cervical mucus 

was also aspirated prior to EF aspiration. Approximately 20-40 µl of EF was 

obtained per patient and was snap-frozen and stored at -80 °C until analysis. 

This study was approved by our IRB 1002-C-069-OB (27/07/13) and all 

patients involved signed informed consent. In studies I and II were ovum 

donors aged between 18 and 35, were healthy with regular menstrual cycles, 

normal karyotype, and a BMI of 19-29 Kg/m2. 

1.3 Lipidomics profiles across the natural cycle. Endometrial fluids were 

obtained throughout the natural cycle from 51 patients with regular cycles 
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and classified as: group I (days 0-8; n=10), group II (days 9-14; n=15), group 

III (days 15-18; n=9), group IV (19-23; n=9), and group V (days 24-28; n=8).   

1.4 Lipidomics profiles in HRT, COS and HRT+IUD. This study aimed to 

investigate endometrial lipidomic profile in different assisted reproductive 

technologies (ARTs) such as ovum donation in which hormonal replacement 

therapy (HRT) is used, and IVF in which controlled ovarian stimulation 

(COS) is performed, as well as to understand the lipidomic profile in the 

refractory endometrium induced by the insertion of an IUD. We analyzed the 

lipidomic profile in the EF of 30 ovum donors undergoing first an HRT cycle, 

then a COS cycle, and finally an IUD was inserted and an HRT cycle was 

performed again (HRT/IUD) to induce a refractory endometrium in the same 

patients. EF was obtained and analyzed at the following days in HRT: P+0, 

P+1, P+3, P+5, P+7, and P+9 (WOI corresponded to days P+5 and P+7), 

COS: hGC+0, hCG+3, hCG+5, hCG+7, hCG+9, and hCG+11 (WOI 

corresponded to days hCG+7 and hCG+9) and HRT with the insertion of an 

IUD: P+0/ IUD, P+1/IUD, P+3/IUD, P+5/ IUD, and P+7/IUD (no WOI is 

present in the refractory endometrium induced by an IUD even during HRT). 

1.4.1 HRT protocol. A baseline transvaginal scan was carried out prior to 

downregulation to ensure that the endometrium and ovaries were in basal 

conditions. For all patients who were still cycling, down-regulation was 

performed using an IM dose of 3.75 mg of triptorelin (decapeptyl; Ipsen 

Pharma; Barcelona, Spain) in the mid-luteal phase of the previous cycle. 

HRT was initiated on day 1–3 of the following cycle, and doses of estradiol 

valerate (progynova; Schering Spain, Madrid, Spain) were increased as 

follows: 2 mg/day for the first 8 days of treatment, 4 mg/day for the following 

3 days and then 6 mg/day. On day 15, ultrasound was performed to evaluate 

endometrial growth and when endometrial lining reached 7 mm with a typical 
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triple layer pattern, 800 mg/day of micronized intravaginal progesterone 

(Progeffikw; Effik Laboratories, Madrid, Spain) was administered. The day of 

initial progesterone administration was considered as P0. 

1.4.2 COS protocol This protocol was carried out by following a GnRH 

agonist long protocol, with a combination of 200 IU recombinant FSH (Gonal 

F; Merck-Serono). When six or more follicles were more than 17 mm in 

diameter, recombinant Chorionic Gonadotrophin (rCG; Ovitrelle; Merck-

Serono) was administered to trigger ovulation. Doses were adjusted 

according to ovarian response as judged by serum estradiol concentrations 

and ultrasound scans every 3 days. 

An inert IUD (Lippes Loop Intrauterine Double-S; Ortho Pharmaceutical 

Corp., Raritan, NJ) was used in this study. It was inserted at the time of 

menstruation and HRT was initiated in the next cycle as indicated above. 

After EF was obtained IUD was removed. 

1.5 Lipidomics profiles in EF collected 24-hours prior to embryo 

transfer in IVF patients and ovum recipients. For the pilot study, EF was 

obtained 24 hours prior to the day of elective embryo transfer in IVF patients 

undergoing day-3 embryo transfer (n=20), and in ovum recipients 

undergoing day-5 embryo transfer (n=17). IVF patients eligible for this trial 

were women between 20-38 years of age with regular menstrual cycles,a 

BMI 19-29 Kg/m2 undergoing COS for their first IVF attempt and who gave 

informed consent. Oocytes were fertilized either by ICSI or IVF, and an 

elective single or double embryo transfer to rule out poor embryo quality was 

performed at day-3 of embryo development corresponding to hCG+5. 

Inclusion criteria for ovum recipients were women between 20-50 years of 

age (both inclusive) undergoing routine HRT treatment, with a BMI 19-29 
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Kg/m2 who were having blastocyst(s) transferred from ovum donation, and 

who gave informed consent. Oocytes were fertilized either by ICSI or IVF, 

and an elective single or double embryo transfer to rule out poor embryo 

quality was performed at day-5 of embryo development, corresponding to 

P+5.  

1.6 Sample analysis. Lipids from endometrial-fluid extracts were identified 

by liquid chromatography combined with tandem mass-spectrometry. 

Tandem mass-spectrometers include triple quadrupole, ion trap, and 

quadrupole/time-of-flight instruments, among others. These instruments 

typically use quadrupole technology to isolate a compound based upon its 

molecular weight prior to collision activation (fragmentation) and mass 

analysis of fragmented components. This means that the mixture must be 

purified only to the point that the sample applied to the mass spectrometer is 

free of other compounds with the same mass. This can often be 

accomplished with a liquid-liquid extraction from the tissue followed by solid 

phase extraction methods. Quadrupole technology provides approximately 1 

amu resolution; improved isolation within the mass spectrometer is 

accomplished using TOF/TOF instruments, which permit much finer 

resolution.  

1.7 Quantification and analysis of prostaglandins using LC/MS/MS. 

Samples of EF were recovered in 5 ml total volume of HPLC-grade methanol 

in the presence of 1 µM N-arachidonoyl glycine-d8 (d8NAGly) that served as 

an internal standard to determine the recovery of the compounds of interest. 

Samples were then centrifuged at 19,000xG at 24ºC for 20 minutes. The 

supernatants were then collected with HPLC-grade water to make a final 

solution of 25% of supernatant in water. To isolate the compounds of 

interest, partial purification was achieved through extraction on C18 solid-
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phase extraction columns. The columns were then washed with 2.5 mL 

HPLC grade water and 1.5 mL of 40% methanol. Elutions of 1.5 mL of 60%, 

75%, 85%, and 100% methanol were collected in individual auto sampler 

vials. The vials were stored at -80ºC until mass spectrometry analysis. 

LC/MS/MS analysis was performed following the protocol described by 

Walker and co-workers (Walker et al. 1999). The amount of analyte in each 

sample was calculated by using a combination of calibration curves of the 

synthetic standards obtained from the Analyst Software and isotope dilution 

methods. The standards provided a reference for retention times by which 

the analytes could be compared. They also helped identify the specific 

precursor ion and fragment ion for each analyte, which enabled their 

isolation. These processes guaranteed that the compounds measures were, 

in fact, the compound of interest. The amount of each compound in each 

tissue was then converted to moles per gram of fluid. 

2. Biological recovery and processing  

2.1 Endometrial biopsies. Endometrial biopsies from natural cycle or 

progesterone-treated ovum donors were taken using pipelle catheters 

(Genetics, Belgium) under sterile conditions. Samples were rinsed with PBS 

and processed immediately or frozen at –80°C. A portion of each specimen 

was histologically examined for dating using the Noyes criteria (Noyes et al. 

1950). Patients diagnosed with endometriosis and/or endometritis were 

excluded. All patients gave informed consent prior to entering the study. 

Endometrial biopsies were processed to separate epithelial and stromal 

fractions, and epithelial cells. For some experiments whole endometrial 

tissue was used instead. For in vitro experiments, endometrial biopsies from 

ovum donors were regularly obtained and the epithelial fraction purified and 
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cultured for up to one week in appropriate tissue culture media (Dominguez 

et al. 2010). 

2.2 Separation of epithelial and stromal fractions The process was made 

in sterile conditions to avoid contamination using laminar flow in aseptic cell 

culture areas. Processing of human endometrial biopsies took place within a 

day of their extraction, when they were aseptically removed, immediately 

placed in individual Eppendor tubes of 15ml, and stored at 4°C until its 

processing. Endometrial biopsies were cleansed of blood and mucous in a 

60 mm Petri dishes containing 1.0ml of DMSO. By mechanical 

disaggregation the tissue was rapidly minced with blades to fragments less 

than 1mm3, and were then transferred to eppendor tubes of 15ml. The tissue 

minced was digested enzymatically using type IA-collagenase (Sigma-

Aldrich Madrid, Spain) diluted in DMEM at 10mg/ml and then stored at 4°C 

for 24h. Collagenase is an endopeptidase that digests native collagen in the 

triple helix region releasing small fragments of tissue and cells. After 

digestion, the tissue was allowed to settle and the supernatant was removed. 

The tissue was washed three times with 10 ml DMEM for 10 min each one, 

and the supernatant removed. They were collected, pooled together, and 

filtered with a pore of 30 um to obtain the estromal cells. The sample was 

then centrifugated at 2000 rpm for 5min and resuspended in DMEM/F12 

(Dulbecoco’s Modified Eagle Medium: Nutrient mixture F12).  

Cell suspension was diluted with 5ml of DMEM and added to a flask of 

25cm2 for 20 min at 37°C. Supernatant was then collected, with a 

subsequent repetition of the process. Incubations eliminated the total stromal 

cells in the epithelial fraction, and the last fraction of the suspension was 

centrifugated at 2000rpm for 5 minutes. Finally, the pellet containing the 
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epithelial cells was resuspended in EEC medium (75% DMEM, 25%MCDB-

105, 10%FBS, 220ul Insulin, 0,1% fungizone and gentamizine). 

2.3 Primary Endometrial Epithelial Cell Cultures. Primary culture of 

human epithelial cells were prepared from endometrial biopsies. Endometrial 

epithelial cells were isolated from stromal cells and seeded on 24-well 

plaques with EECs. The culture medium was changed 24h after seeding and 

every other day thereafter. Cells were cultured in a sterile incubator at 37C, 

95% relative humidity and 5% CO2 until they reached confluent EEC 

monolayer 

3. Cell Lines 

RL95-2 derived from a moderately differentiated adenosquamous carcinoma 

of the endometrium were used as a model for receptive endometrium. Cell 

line HEC-1A derived from human endometrial carcinoma served as a model 

for non-receptive state, and JAR cells derived from human endometrial 

choriocarcinoma used as an in vitro model for trophoblast cells.  

3.1 Cell Lines Culture HEC-1A cells were cultured in Meckoy 5A medium 

(Ha’Emek, Israel) containing 10% fetal calf serum (FCS), penicillin and 

streptomycin. RL95-2 cells were cultured in DMEM F:12 medium containing 

FCS, penicillin, streptomycin, and 2.5 mM glutamine. Cell cultures were 

maintained in a humidified atmosphere containing 5% CO2 at 37°C. RL95-2 

cells (1–2 × 106) and HEC-1-A cells (1–2 × 106) were seeded in 24-well 

culture plates for 10 days, and the growth medium was renewed every 2–3 

days.  
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4. Gene expression analysis  

4.1 PCR primers design Appropriate primers for PCR were designed to 

span exon-exon boundaries to the PCR template sequence. Initially, the 

primer melting temperature (Tm), where the double strand become single 

stranded, was calculated. Primers were constructed based on the length 

between 18 and 25 bases (optimal 20-22 bases) and on the melting 

temperature in the range of 60 oC. The Tm was calculated according to the 

formula: Tm = 4(G+C) + 2(A+T). To avoid regions of homology, primers 

sequences were tested using NCBI Primer Blast software to improve 

specificity by not amplifying other sequences. Before the use of primers a 

primer efficiency test was made. Three concentrations of primers (200µM, 

400µM, 800µM) were tested with 2µl of a cDNA control containing the 

expression of the sequence that we are interested in. The following primers 

were designed for further gene expression experiments: 
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Table 4.1:  

β-actina (F): GCCATGTACGTAGCCATCC 
(R): CTCTCAGCTGTGGTGGTGAA 

cPGES (F): TTTCCGCGCGGTGCATTCT 
(R): AGGGGGACGGGCGAACTG 

mPGEs-
1 

(F): CATCATCACGGGCCAAGTGA 
(R): GTAGATGGTCTCCATGTCGT 

mPGEs-
2 

(F): TCGGCAATAAGTACTGGCTCA  
(R): AGTCGCTTGCTGATGAGGTA 

AKR1C1 (F): CCATCGACCAGAGTTGGTC  
(R): TTGGGATCACTTCCTCACCT 

AKR1C3 (F): ATGATGGCCACTTCATGCCT  
(R): TGCAATCTTGCTTCGGATGG 

AKR1B1 (F): AAGTCTGTGACACCAGAACG  
(R): GTAATCCTTGTGGGAGGTAC 

CBR1 (F): GCTGGACATCGACGATCTG 
(R): TGAATATGAAAGGGTGTGGGA 

COX-1 (F): AGGAACATGGACCACCACAT 
(R): GGTAGAACTCCAACGCATCA 

COX-2 (F): TACGGTGAAACTCTGGCTAG 
(R): CAGCAAACCGTAGATGCTCA 

EP1 (F): GGTATCATGGTGGTGTCGT 
(R): GGCCTCTGGTTGTGCTTAG 

EP2 (F): ATTTCGGTCCCTCCCCTTT 
(R): GCGTCTCGCAGTCCTCAGA 

EP3 (F): CGTGTCGCCCAGCTACCGGCG 
(R): CGGGCCACTGGACGGTGTACT 

EP4 (F): ACCATCGCCACGTACATGAA 
(R): CCAATCGCTTGTCCACGTAGT 

FR (F): GCAGCTGCGCTTCTTTCAA 
(R): CGATGCCTTGGACTTCTGT 

GAPDH (F): GAAGGTGAAGGTCGGAGTC; 
(R): GAAGATGGTGATGGGATTTC 
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4.2 RNA extraction and quantification. The total RNA was extracted from 

hEEC and whole endometrial tissue using TRIzol reagent according to the 

manufacturer’s protocol (Life Technologies, U.K.). Cells grown in monolayer 

were lysed directly in the culture dish. The amount of TRIzol was added 

based on the area of the culture dish (1ml per 10 cm2) and not on the 

number of cells present. Three steps were followed to extract the total RNA 

from EEC. 

4.2.1 Phase separation. The samples were incubated for 5 min at 15 to 

30ºC to allow complete dissociation of nucleoproteins complexes. 0.2ml of 

chloroform was added per 1ml of TRIzol reagent. Then tubes were shaken 

vigorously for 15 seconds and incubated at 15-30ºC for 2 to 3 minutes. This 

was followed by centrifugation at no more than 12,000 g for 15 min at 2 to 

8ºC, and the mixture was separated into a lower red, phenol-chloroform 

phase, interphase, and a colorless upper aqueous phase. The RNA 

remained exclusively in the aqueous phase. 

4.2.2 RNA precipitation. Following the separation of phases, the aqueous 

phase was transfered to a fresh tube. Cold isopropanol was then added in a 

volume of 1/2 per ml of Trizol. The samples were incubated at 15 to 30ºC for 

10 min or 4ºC overnight. Total RNA was condensed by centrifugation at 

12000g for 15 min -4ºC. 

4.2.3 RNA wash. Supernatant was removed and rinsed with 1ml of 70% 

ethanol, then centrifugated at no more than 7500g for 5min-4ºC. 

Supernatant was eliminated and the dry pellet was reconstituted in 

RNasefree water (Invitrogen) according to the size of the pellet.  RNA was 

diluted 50-fold in RNase-free water and quantified at an absorbance of 260 
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nm using a NanoDrop 8000 spectrophotometer (Thermo Scientific, Waltham, 

MA).  All samples had an A260/280 ratio between 1.8 and 2.2.   

4.3. Retrotranscription. Reverse transcription RNA strand was reverse 

transcribed into its DNA complement (complementary DNA, or cDNA).  RNA 

was diluted in RNase-free water to a concentration of 1µg/µl, and 1µg was 

used in the reaction. Each sample was treated with 1 µl of oligoT with a 

concentration of 20 µM. The samples were incubated in a thermoblock at 

70ºC for 2 minutes. Then a cocktail consisting of 4ul per sample of 5X RT 

buffer (50 mM Tris–HCl, 75 mM KCl, 3 mM MgCl2, Invitrogen), dNTPs (0.5 

mM, Roche Molecular Biochemicals, Laval, QC, Canada), Recombinant 

RNase inhibitor (10 mM, Invitrogen), and M-MLV reverse transcriptase (200 

U, Invitrogen) was added to each sample to obtain a final volume of 25 µl.  

The reverse transcription reactions were completed in an Eppendorf 

Mastercycler Gradient thermocycler (Eppendorf, Hamburg, Germany) for 1h 

at 37ºC followed by 5 min at 90ºC, then diluted 5-fold and stored at -20ºC 

until qPCR amplification. 

4.4 Semiquantitative PCR. Semiquantitative PCR studies were used to 

assess the transcriptional expression. PCR was composed by a mixture 

containing < 250ng cDNA template derived from total RNA, PCR Master Mix 

1X (Taq DNA polymerase, dNTPs, MgCl), upstream and downstream 

primers, (0.1–1.0µM) in a total volume of 25 µl. PCR was performed using a 

Biometra Thermocycle T3000 with the following conditions: 95  °C for 1 min 

and then 40 cycles at 94  °C for 45 s, 60  °C for 1 min, and 72  °C for 1min 

followed by 72  °C for 8 min. Samples were applied on 2% agarose gel 

prestained with 0.5 µg/ml ethidium bromide. 
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4.5 Quantitative Real Time RT-PCR. Real time RT-PCR is a variant of the 

polymerase chain reaction (PCR) that enables reliable detection and 

absolute quantification of the products generated during each cycle of the 

PCR process. For qPCR analysis, RNA was extracted from human epithelial 

cells and the whole endometrium tissue and reverse transcribed to cDNA 

using Superscript III (Stratagene). PCR reactions were carried out with a 

LightCycler 480 Real-Time PCR System (Roche Diagnostics, GmbH 

Mannheim, Germany) using SYBR Green PCR reagents.  

PCR consisted of a series of 40 repeated temperature changes, called 

cycles, each one with 3 temperature steps. The first step is denaturation at 

95 °C for 20–30 seconds that causes the disruption of the hydrogen bonds 

between complementary bases yielding single-stranded DNA molecules. 

This is followed by the annealing step at 59 °C for 20–seconds that allows 

the primers to anneal to the single-stranded DNA template.  The last step is 

the extension/elongation at 72 °C, where the DNA polymerase synthesizes a 

new DNA strand complementary to the DNA template strand by adding 

dNTPs (deoxynucleotide triphosphate) that are complementary to the 

template. The amount of DNA target is exponentially amplified. 

Quantification data was analyzed with the Lightcycler analysis software 

version 3.5. GAPDH (Glyceraldehyde 3-phosphate dehydrogenase ) was 

used as the housekeeping gene control. This gene is involved in basic 

functions in cell survival with a constitutive expression. Primers are 

described in Table 4.1. 

5. Protein quantification and localization techniques  

5.1 Protein Extraction. Whole-cell proteins, usually between1-5x106 cells, 

were extracted with 1ml RIPA buffer (25mM Tris-HCl (pH 7.6), 150mM NaCl, 
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1% NP-40, 1% sodium deoxycholate, 0.1% SDS) that lyses and extracts 

membrane, nuclear and cytoplasmic proteins. Adherent cells, for instance 

hEEC monolayers, were washed with cold PBS that was added straight into 

the plate and collected mechanically with a cell scratcher; however, for cells 

in suspension, the medium was removed. After samples were centrifuged at 

2000 rpm for 10 min at RT, RIPA buffer was added and incubated for 30 min 

at 4°C. The samples were then centrifuged at 12000 rpm 4°C for 15 min and 

supernatants were collected for protein measurement using Bradford.  

5.2 Protein Quantification. Bradford method, a colorimetric protein assay, 

is based on the deprotonation of Coomassie Brilliant Blue G-250 dye. The 

protonated form of the dye is stable in solution under acidic conditions and 

absorbs at 470 nm. Formation of the complex between dye and protein 

generates the deprotonization form of the dye and the amount of protein 

concentration is detected as an increase of absorbance at 595 nm.  

Standards were prepared based on BSA stock solution (see Table 4.2).  

Bradford reagent (Bio-Rad) was diluted 2.5-fold in de-ionized water. A total 

volume of 200 µl of the diluted Bradford reagent was added to each well. 

Color reagent was mixed with 5ul of standards, incubated for 5 min for the 

reaction, and read on a Victor Machine with an absorbance at 595 nm. At the 

same time, samples of interest were prepared as above and their 

absorbance was measured after measuring the standards. The calibration 

graph was prepared by dividing the net absorbance values at 590 nm and at 

450 nm. Then the concentration of the unknown sample was calculated 

based on the linear equation of the calibration curve. 
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Table 4.2: Values upon which the standard curve was prepared. 

mg/mL H2O in µl BSA 2mg/ml 
in µl 

Load in 
every well in 
µl 

BioRad 
Protein 
assay (µL)  

2 --- 200 5 200 
1.75 14.28 100 5 200 
1.5 16.6 100 5 200 
1.25 20 100 5 200 
1 25 100 5 200 
0.75 33.3 100 5 200 
0.5 50 100 5 200 
0.25 100 100 5 200 
0 100 ---- 5 200 
 

5.3 Western blot. An appropriate volume of 5x non-reducing Laemmli buffer 

was added to samples and proteins denatured for 5 min at 95°C. Equal 

amounts of approximate 20-30 µg of total protein (depending of the quantity 

of protein in the sample) were loaded into the wells of the SDS-PAGE in 

12% polyacrylamide gels, along with molecular weight markers. The gel ran 

for 1 to 2 hours at 120 V and transferred onto polyvinylidene fluoride (PVDF) 

membranes by wet electroblotting using Tris/Glycine Transfer Buffer (Biorad, 

Munich, Germany). Membranes were blocked with 5% milk in TBST (50 mM 

Tris pH 7.4, 150 mM NaCl, 0.1% Tween-20) at RT for 1 hour, and incubated 

with appropriate primary antibodies overnight at 4°C. Primary antibodies 

were rabbit polyclonal for AKR1C1, AKR1C3, and mPGES-1 (Abcam Inc, 

Cambridge, Ma, USA); mPGES-2, cPGES, and PGDS (hematopoietic- and 

lipocalin-type) (Cayman Chemical, Ann Arbor, MI); and PGIS (Sta. Cruz 

Biotechnology, CA, USA). Rat polyclonal for PGDS (lipocalin-type) was from 

Cayman Chemical (Ann Arbor, MI); COX-2 and goat polyclonal for CBR1, as 

well as Mouse monoclonal for COX-1, were from Abcam Inc (Cambridge, 

MA, USA).  
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The membrane was washed three times with TBST for 5 min, followed by 

incubation with the recommended dilution of labeled secondary antibody in 

5% blocking buffer in TBST at RT for 1 hour. Then it was washed again 

three times with TBST for 5 min, and protein bands were visualised with ECL 

SuperSignal Kit (Thermo Scientific, Rockford, USA) and photographed using 

Fujifilm LAS-300. Membranes were stripped and re-blotted with a mouse 

monoclonal antihuman GAPDH or Actin (Abcam Inc, Cambridge, MA, USA) 

for loading control. Densitometric analyses were carried out using Fujifilm 

Multi Gauge V3.0 software.  

 5.4 Immunohistochemistry. This technique was used to localize and verify 

the presence of COX-(1,2) enzymes, PGs synthases, and EP1-4 and FP 

receptors in human endometrial samples. Formalin-fixed and paraffin-

embedded endometrial biopsies were sectioned with a thickness of 5 

microns and mounted on glass slides coated with Vectabond TM (Vector 

Lab, Burlingame, CA, USA). After deparaffinization with three passes of 

xylene (5min), samples were dehydrated by triplicate with ethanol 100% 

(5min). Samples were limited with PAP PEN and then were rehydrated in 

decreasing concentrations of alcohols 95% (5min), 85% (5min), and 70% 

(5min), followed by a washing in distilled water (1min) and 1X phosphate-

buffered saline (PBS) (1min). Immunohistochemistry was performed on 

endometrial sections using the LSAB Peroxidase Kit (DAKO, CA, USA). 

Primary antibodies were the same as above, except for mPGEs-1 (PGE 

synthase (A3), Sta. Cruz Biotechnology, CA, USA). For PGs receptors 

studies were conducted using polyclonal antibodies that recognize specific 

EP 1-4 and FP receptors. Rabbit IgGs recognizing EP2 and EP4 (Cayman 

Chemical, Ann Arbor, MI, USA) and EP3 (Abcam Inc, Cambridge, MA, USA), 

and goat IgGs for EP1 (Abcam Inc, Cambridge, MA, USA) and FP (Sigma-
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Aldrich, Irvine, UK). Antibodies were diluted at the appropriate concentration 

in 1% BSA in PBS. Slides were placed in a wet chamber and 20ul of the 

antibody-containing solution were added to the sample. The chamber was 

covered and placed in an incubator at 37ºC for 60 minutes. Slides were then 

washed twice with PBS for 10 minutes at room temperature (RT) with gentle 

movement. Secondary antibodies were included in LSAB Peroxidase Kit 

(DAKO, CA, USA), valid for rabbit, mouse, and goat origin primary 

antibodies. Immunostaining was then visualized with 200ul of 3,30-

diaminobenzidine (DAB) chromogen. After counterstaining with hematoxylin 

and washing with distilled water, slides were mounted with entellan (Merck, 

Darmstadt, Germany) and analyzed with a Nikon Eclipse 80i microscope. 

For negative controls, primary antibodies were omitted and samples were 

incubated in DAKO Antibody Diluent. 

5.5 Immunofluorescence. For immunofluorescence microscopy, 

blastocysts and hEEC monolayers were fixed at room temperature for 25 

min in 4% paraformaldehyde buffer in PBS. Following fixation, they were 

washed through 2 drops of BSA, and permeabilized with 1% TritonX-100 

(Sigma) for 1 hour at room temperature. Thereafter, they were incubated 

overnight at 4°C with the same primary antibodies of EP 1-4 and FP 

receptors that were mentioned in the immunohistochemistry. Blastocysts and 

hEEC monolayers were washed through 3 drops of BSA to remove any 

unbound primary antibodies. Secondary antibodies Alexa 568 conjugated 

goat anti-rabbit (A11079, Invitrogen Corporation, Stockholm, Sweden) was 

diluted in blocking buffer and added to the embryos and hEEC monolayers, 

and subsequently incubated at 37°C for 1h. This was followed by incubation 

with DAPI [40,6-diamidino-2-phenylindole]), and the sample was mounted on 

a slide and stored at 4°C until its use. Stained embryos and hEEC 
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monolayers were analyzed in a confocal laser microscope (Zeiss, Germany) 

equipped with fluorescence optics and appropriate filters. 

6. Enzyme immunoassay (EIA) 

6.1 Prostaglandin-synthase activity in EECs. EECs were grown to 

confluence in 96-well plates. PG synthase inhibitors were added and cells 

grown for up to 48 h, with a fresh-medium+inhibitors change after the first 

24h. The following inhibitors were used: DRB (5,6-dichloro-1-b-D-

ribofuranosylbenzimidazole) (Cayman Chemical), a CK-II inhibitor that 

affects cPGES activity; MK886 (3-[3-tert-Butylthio-1-(4-chlorobenzyl)-5-

isopropyl-1H-indol-2-yl]-2,2 dimethylpropionic acid) (Cayman Chemical) for 

mPGEs-1; bimatoprost (Cayman Chemical) for AKR1C3; 1-phenyl-1-

cyclopentanecarboxylic acid (Sigma) for AKR1C1; and CAY10607 (4-chloro-

6-[5-[2-(4-morpholinyl)ethyl]amino]-1,2-benzisoxazol-3-yl]-1,3-benzenediol) 

(Cayman Chemical) for CBR1. All inhibitors were prepared in DMSO, and 

control cells were treated with the same volume of DMSO (vehicle). 

Conditioned media was collected after 24h and 48h and stored at -80°C. 

PGE2, PGF2α and 11β-PGF2α concentration was measured in conditioned-

media from inhibitor-treated EECs using appropriate ELISA kits and 

following the manufacturer´s instructions (Cayman Chemical). All samples 

were measured in duplicates.  

6.2 Kinetics of prostaglandin-release recovery after PGS inhibition in 

EECs. EECs were grown to confluence in 96-well plates as described 

above, adding 50 µM of indomethacin during 48h. Then the medium was 

collected after 1h, 2h and 4h. Using ELISA technique (Cayman Chemical) 

the concentrations of PGE2 and PGF2α were measured after they were 

released into the environment at the different times mentioned above. 
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7. Analysis of PGs synthases in EF  

7.1 Albumin/IgG purification of PGs synthases in EF. Endometrial fluid 

was resuspended in 200 ul RIPA buffer and purified using the Vivapure Anti-

HAS/IgG Kit (Vivascience AG, Hannover, Germany) to specifically 

immunodeplete serum albumin and class G immunoglobulins (Ig). Proteins 

were precipitated with 15% w/v trichloroacetic acid for 1h at 48C followed by 

centrifugation (10 min, 16,000g, 48C), and pellets were washed with 1 ml of 

prechilled acetone and centrifuged again. Supernatants were discarded, and 

pellets air dried at room temperature and resuspended with RIPA buffer. 

Protein content was determined with Bradford colorimetric assay and the 

sample was subjected to western blot analysis to detect the relative protein 

amounts of CBR1 and AKR1C, which mediate the inter-conversion between 

PGE2 and PGF2α. 

7.2 Immunoprecipitation 

7.2.1 Washing Beads. Before purifying the enzymes of EF, beads must be 

washed (50µl beads/20µl EF). They were centrifuged 1 min at 12000 rpm 

and supernatant was removed. Then 250 ul of PBS was added and 

centrifuged at 12000 rpm for 1 min and the supernatant was removed. The 

process was repeated 3 to 4 times. After the last step, 500 ul of PBS was 

added to the beads and stored at 4ºC overnight. Before the beads were 

used, they were centrifuged and the supernatant was removed and washed 

with 100 ul IP buffer. 

7.2.2 Pre-washing cell lysate. This step will reduce non-specific binding of 

proteins to the agarose when it is used later on in the assay. For each 20µl 

of EF, 100µl of washed beads that were prepared in the previous step was 



 
 

 
 

77 

added. The sample was incubated at 4ºC for 2 hours in a cold room under 

constant agitation. Then it was centrifuged for 15 min at 4ºC at maximum 

speed to remove supernatant. The supernatant was transferred to a clean 

tube and for each 1 ml of supernatant, 10 ul of antibody was added. The 

sample was incubated at 4ºC in the cold room under constant stirring 

overnight. 

7.2.3. Antibody incubation with beads. New beads were used in this step 

(100 µl). Beads were centrifuged 1 min at 12000 rpm and the supernatant 

was removed. Then 100µl IP buffer was added and again centrifugated 

(repeated 3-4 times). After the supernantant was removed 100µl IP buffer 

with protease inhibitors was added. For each 1ml of supernatant incubated 

with the antibody (previous step) 100 ul of beads was used and incubated at 

4ºC in the cold room under constant agitation for 2 to 3 h. After the 

incubation, the sample was centrifuged at maximum speed for 2 min and the 

supernatant was removed. Then 1 ml of IP buffer was added and incubated 

them for 20 minutes on ice. The sample was centriguated and the 

supernatant was removed carefully adding back IP buffer (protease 

inhibitors). 

7.3 Enzymatic Activity.  CBR1 which directly converts PGE2 into PGF2α 

was used for this experiment. The enzyme was purified by 

immunoprecipitation and incubated with different concentrations of a 

synthetic PGE2 substrate (5nM, 10nM and 50nM). The production of its 

PGF2α product was quantified at 15, 30, 60, 90, 120, 150 and 190 min with 

an EIA kit. 
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8. Adhesion Assay  

8.1 Embryo Recovery.  B6C3F1 mice of 6–8 weeks of age were housed 

under controlled temperature and lighting 16:8-hour light:dark schedule at 

the University of Valencia School of Medicine and they were provided food 

and water ad libitum.  Mice were primed to ovulate by intraperitoneal 

treatment with 10 IU equine chorionic (eCG; Sigma-Aldrich, Irvine, UK) to 

stimulate follicular development. Forty-eight hours later (designated hour 0), 

mice were injected with human chorionic gonadotropin (hCG, 10 IU; Sigma-

Aldrich) to stimulate ovulation and luteinization.  Females were housed with 

a stud male immediately after hCG administration, paired (1:1) for overnight, 

and checked the next morning for the presence of a vaginal plug on day 1 of 

pregnancy. Pregnant females were killed by cervical dislocation at day 3 of 

pregnancy (48h post hCG), and the embryos in the oviducts were collected 

using a 30-gauge needle attached to a 2-ml syringe. Embryos were cultured 

for 3 days in CCM-30 medium (Vitrolife, Lübeck, Germany) to achieve 

blastocyst stage.  Embryo development and morphological change were 

checked and only blastocysts with normal morphology at the stage of 

hatching were used. 

8.2 In vitro adhesion assay. Mouse embryos were cultured with CCM until 

blastocyst stage.  Only blastocysts without zona pellucida and multicellular 

spheroids were used in the study. Simultaneously, confluent monolayers of 

human endometrial cells in 24-well plates were treated with 50 µM of 

indomethacin PGs inhibitor for 48h. After indomethacin treatment the 

medium was restored with fresh medium containing mouse blastocysts or (5-

10 per well), and a specific treatment in the case of the experiments 

discussed in the following subsections. Control cells were treated with 

DMSO as vehicle instead of indomethacin. The number of mouse embryos 
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adhered to EEC were recorded at 1h, 2h, 4h, 24h and 32h by movement 

along a 3-cm diameter circular path at a speed of one rotation per second for 

about 10 sec under the microscope. Embryos floating in the medium were 

considered as non-attached, while embryos not floating were assumed to be 

attached. Embryos were examined under an inverted microscope (Nikon 

Diaphot 300, Nikon Corporation, Tokyo, Japan). Every condition was made 

by triplicate. 

8.3 Role of PGs on adhesion assay. Mouse blastocysts were used in our 

adhesion assay to study the functional relevance of PGs on embryo 

adhesion.  After inhibition of PGs using indomethacin, no specific treatment 

was supplemented; only blastocyst were added to prove the importance of 

the presence (Control group) and absence of PGs (Indomethacin). Adhesion 

of blastocysts was counted as mentioned above. 

8.4 Effect of PGE2 and PGF2α on embryo adhesion. To determine the 

effect of PGE2 and PGF2α in our in vitro adhesion model using mouse 

embryos, the restored medium was administered in the presence of 

increasing concentrations of PGE2 (10nM, 100nM, 1µM, 10µM) or PGF2α 

(1nM, 10nM, 100nM, 1µM) (Cayman Chemical). To determine the effect of 

both PGs a combination of the lowest concentration of PGE2 (10nM) with 

PGF2α (1nM) and the highest PGE2 (1µM) with PGF2α (10µM) were used. 

The same steps of the adhesion assay were followed.  

9. PGE2 and PGF2α receptors experiments  

9.1 PGE2 and PGF2α receptor agonists. Agonist for EP2: Butaprost 

(Sigma) at doses 20 µM, 15 µM, 10 µM, 8 µM, 5 µM (n = 6), and AS701931 

(Merk-Serono) at doses 20 µM, 15 µM, 10 µM, 8 µM, 5 µM (n = 6); 
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Sulprostone agonist (Sigma) for EP3 with 40µM, 20 µM, 15 µM, 10 µM, 5 µM 

(n = 6);  Fluprostenol (Sigma) for FP receptor agonist at doses 4 µM, 8 µM , 

10 µM ,18 µM and antagonist AS604872 (MERK-Serono) for FP at doses  

9.2 PGE2 and PGF2α receptor agonist and antagonists on embryo 

adhesion. To determine the effect of each PGE2 and PGF2α receptors on 

embryo adhesion, specific receptor agonists were added to the medium after 

inhibitory treatment of PGs.  Moreover, we used Butaprost (Sigma) and 

AS701931 (Merk-Serono) as EP2 receptor agonist, Sulprostone (Sigma) as 

EP3 receptor agonist, and Fluprostenol (Sigma) for FP receptor agonist. 

Finally, antagonist AS604872 (MERK-Serono) for FP receptor was added 

after pretreatment with PGF2α. Control cells were treated with DMSO as 

vehicle instead of indomethacin. 

9.3 Effect of PGE2 and PGF2α receptor agonists on the embryo 

development. Mouse blastocysts development were observed after 

agonists were added to the culture . 
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V. RESULTS 

1. Lipidomic profile of the human EF throughout the menstrual cycle 

In our initial experiments, we investigated the lipidomic profile of human EFs 

throughout the menstrual cycle. This study was carried out in healthy female 

donors. All samples were collected during a natural cycle with no 

pharmacological interventions and the lipid extracts of EF were identified by 

a non-invasive technique with LC/MS/MS analysis. A total of 51 EF samples 

were obtained throughout the menstrual cycle and classified as: group I 

(days 0-8) (n = 10), group II (days 9-14) (n = 15), group III (days 15 - 18) (n = 

9), group IV (19-23) (n = 9), and group V (days 24-30) (n = 8). The samples 

were analyzed blinded in two independent experiments.  

Results obtained in the first experiment with 13 EFs showed the identification 

of 9 lipids in the EF including: 2-arachidonoyl glycerol, N-arachidonoyl 

ethanolamine, N-linoleoyl ethanolamine, N-oleoyl ethanolamine, N-palmitoyl 

ethanolamine, N-stearoyl ethanolamine, prostaglandin E2 (PGE2), 

prostaglandin F2α (PGF2α), and PGF1α (Figure 5.1). 

Of the 9 lipids found in EF, only two of them PGE2 and PGF2α, were 

significantly increased and regulated during the WOI, specifically between 

days 19 to 21 (Figure 5.2). Because of those results, PGE2 and PGF2α lipids 

were analyzed in a second experiment in 38 new samples of EF, and PGE2 

and PGF2α were analyzed in the five different stages of the menstrual cycle.  

Results demonstrated that PGE2 values ranged from 0.09±0.03 nmol/g 

(group II) to 2.12±1.2 nmol/g (group III), except during the WOI (group IV), 

when the values increased to 6.10±1.88 nmol/g. However, the maximum 

increase was observed for PGF2α, as levels in the groups I, II, III and V 
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varied from 0.10±0.04 nmol/g (group II) to 3.83±1.61 nmol/g in group III, and 

in group IV it reached 21.84±6.41 nmol/g. Therefore, PGE2 and PGF2α levels 

in the WOI were significantly increased compared to any other phase of the 

menstrual cycle (p<0.01, Kruskal-Wallis test) (Figure 5.2).  

 

 
Figure 5.1. Lipids from endometrial-fluid extracts of women, during their natural menstrual 
cycle, identified by liquid chromatography combined with tandem mass-spectrometry  [A: N-
arachidonoyl ethanolamine (AEA); B: N-palmitoyl ethanolamine (PEA); C: N-oleoyl 
ethanolamine (OEA); D: 2-arachidonoyl glycerol (2- AG); E: N-stearoyl ethanolamine (SEA); 
F: N- linoleoyl ethanolamine (LEA); G: prostaglandin E2 (PGE2); H: prostaglandin F2 alpha 
(PGF2α); I: prostaglandin Fl alpha (PGFlα)] 
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Figure 5.2 Levels of prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2α) in 
endometrial-fluid samples from women obtained throughout the menstrual cycle [Group I 
(days 0-8); Group II (days 9-14); Group III (days 15-18); Group IV (days 19-23) and Group V 
(days 24-30)]. 
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1.1 Lipidomic profile of human endometrial fluid in HRT, COS and HRT 
+ IUD 

Because PGE2 and PGF2α were observed in the lipidomic profile studies in 

human endometrial fluid, we designed a series of studies to assess the 

reproducibility of this biomarker profile for the acquisition of endometrial 

receptivity under different hormonal conditions used in ART as well as in the 

induction of a refractory endometrium by inserting an intrauterine device 

(IUD). We analyzed the lipidomic secretomic profile in 30 ovum donors 

undergoing first a hormonal replacement therapy (HRT) cycle, then a 

controlled ovarian stimulated (COS) cycle, and finally a HRT cycle with the 

insertion of an IUD (HRT/IUD) inducing a refractory endometrium. 

Endometrial fluid was then analyzed during the following days, in five 

different patients, in HRT (P+0, P+1, P+3, P+5, P+7, P+9), COS (hGC+0, 

hCG+3, hCG+5, hCG+7, hCG+9, hCG+11), and HRT with the insertion of an 

IUD (P+0/ IUD, P+1/IUD, P+3/IUD, P+5/ IUD, P+7/IUD), as it is 

schematically shown in Figure 5.3. 

 

 
Figure 5.3. A schematic depiction of the treatments to obtain the EF samples used for the 
analysis of the lipidomic profile. First, a hormonal replacement therapy (HRT) cycle was 
induced, followed by a controlled ovarian stimulated (COS) cycle, and lastly an HRT cycle 
with the insertion of an IUD (HRT/IUD) inducing a refractory endometrium. 
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The analysis of their lipidomic profile further demonstrates that PGE2 values 

ranged from 0.38±0.13 to 5.94±2.06 nmol/g and PGF2α from 0.62±0.33 to 

14.21±12.27 nmol/g, among the 6 different times investigated (n=30).   

Significant differences were found between P+0 and P+5 (PGE2 p<0.01 and 

PGF2α p<0.05) (U de Mann-Whitney test) (Figure 5.4A).  

In COS cycles, we observed that PGE2 oscillated from 0.28±0.09 to 

2.09±0.99 nmol/g, and PGF2α values from 0.22±0.12 to 5.60±4.42 nmol/g 

among the 6 different days investigated (n=30). PGE2 and PGF2α were 

significantly different between hCG0 and hCG7 (p<0.05) (Figure 5.4B).  

Interestingly enough, after the insertion of an IUD in HRT cycle, the opposite 

trend was registered with a significant decrease in the secretion of both PGs 

throughout the 5 different time points investigated (n=25), ranging from 

2.69±1.07 nmol/g at P+0/ IUD to 1.94±0.46 nmol/g at P+5/ IUD for PGE2 and 

1.24±0.48 nmol/g to 0.41±0.12 nmol/g for PGF2α (n=25) (Figure 5.4C).   

In conclusion, PGE2 and PGF2α levels in endometrial fluid are compatible 

with putative biomarkers for the acquisition of endometrial receptivity in 

natural, HRT and COS cycles. 
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A. 

 
B. 

 

C 

 

Figure 5.4. Concentration of PGE2 and PGF2α in EF samples of ovum donors in (A) HRT and 
(B) COS cycle and (C) HRT/IUD. Values are expressed as mean (± SEM). The increase (A,B)  
and the decrease (C) were statistically significant (p<0.05). 
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2. Investigation of PGs biosynthesis in human endometrium 

2.1 Localization of COX enzymes  

Since PGE2 and PGF2α are differentially secreted in the EF during the WOI, 

we proceed to investigate the origin and regulation of these PGs, studying 

the enzymes responsible for their production. 

Cyclooxygenase is the rate-limiting enzyme in prostaglandin (PG) 

biosynthesis. However, studies in mice have described that COX-2 isoform 

is principally involved in normal blastocyst implantation due to its role in 

COX-2 derived PGs. Therefore, to document COX-1 and COX-2 in human 

endometrium, immunohistochemistry analyses were performed using human 

biopsies in pre-receptive (LH+2) and receptive (LH+7) stages.   

Our results indicate that COX-1 expression were present in luminal and 

glandular endometrial epithelial cells, as well as stroma, in LH+2 and LH+7 

stages with no significant intensity variations between both stages (Figure 

5.5).   

Expression of COX-2 showed a different pattern, while at LH+2 it was mostly 

localized in luminal epithelium and with lesser extent in the stroma 

compartment, at LH+7 expression increase specifically in luminal epithelium 

(Figure 5.5). 
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Figure 5.5 Immunohistochemical localization of COX-1 and COX-2 in human endometrium of 
patients in LH+2 (pre-receptive stage) and LH+7 (receptive stage). Positive staining is shown 
in brown. –ve: negative control; le: luminal epithelium; ge: glandular epithelium; str: stroma. 
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2.2 Expression and localization of endometrial PG synthases 

We also investigated the presence of terminal prostaglandin synthases that 

act downstream of COX enzyme to catalyze the conversion of PGH2 into 

PGS (a scheme of the prostaglandin synthases is presented in Figure 5.6). 

We investigated at the mRNA and protein levels the most relevant PGE2 

synthases (cPGES, mPGES-1 and mPGES-2) and PGF2α synthases 

(AKR1C3 and CBR1), as well as AKR1C1 (that catalyzes a reversible 

reaction to interconvert PGE2 to PGF2α), in human endometrial epithelium 

(hEEC) compared to the whole endometrium across the menstrual cycle.  

Moreover, to obtain a quantitative RNA transcriptional profile, we performed 

qPCRs. In the complete endometrium, we found no major variations in the 

expression levels of PGE2 synthases throughout the menstrual cycle (Figure 

5.7). It must be pointed out as well, that the level of expression of mPGES-1 

was always within the lower threshold of detection, indicating that this gene 

is expressed at very low levels in human endometrium. However, as 

expected, mRNA levels were higher when the epithelial compartment was 

analyzed separately, as it is primarily responsible for PGs production. When 

transcriptomic data was analyzed in detail, we found that enzymes leading to 

PGF2α synthesis (AKR1C3, AKR1C1 and CBR1) presented higher levels of 

expression compared to those synthesizing PGE2 (mPGES2, mPGES1 and 

cPGES). These results are consistent with the higher concentrations of 

PGF2α detected by lipidomics in EF between days 19 and 23 of the 

menstrual cycle (Figure 5.7).  
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Figure 5.6. Overview of PGE2 and PGF2α biosynthesis by their specific synthases. 
Arachidonic acid is metabolized by the cyclooxygenase (COX-1 and COX-2) and 
subsequently by specific synthases.  PGE2 is produced directly from PGH2 by three different 
prostaglandin E synthases (PGES): microsomal PGES-1 (mPGES-1); cytosolic PGES 
(cPGES); and microsomal PGES-2 (mPGES-2). PGF2α can be synthesized by three different 
enzymes: aldo-keto reductase family 1, member C3 (AKR1C3); carbonyl reductase 1 (CBR1); 
and aldo-keto reductase family 1, member C3 (AKR1C1) that catalyzes a reversible reaction 
that interconverts PGE2 to PGF2α. 
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Figure 5.7. Comparative fold change of gene expression of prostaglandin E synthases 
(mPGES-1, cPGES and mPGES-2) and prostaglandin F2α synthases (AKR1C3,CBR1, 
AKR1C1) in group II (days 9-14); group III (days 15-18); and group IV (days 19-23) between 
the whole endometrium and human endometrial epithelial cells (hEEC) obtained by using 
quantitative PCR. 
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To learn more about the regulation and location of these synthases in the 

endometrium, especially during the WOI, immunohistochemistry and western 

blot techniques were used. Immunohistochemical localization studies of the 

PG synthases in LH+2 versus LH+7 endometrium revealed that all enzymes 

tested were present at both stages. Nonetheless, cPGES staining decreased 

at LH+7 in luminal and glandular epithelium, the same was observed for 

mPGES-1, but only in luminal compartment. In contrast, both CBR1 and 

AKR1C1 enzymes were specifically increased at LH+7. However, CBR1 

increased its location in the luminal and also in the glandular epithelium. 

Interestingly, AKR1C3 location shifted from luminal and glandular epithelium 

to exclusively luminal epithelium in receptive stage. On the other hand, 

mPGES-2 was expressed in luminal, glandular and stromal cells where the 

intensity of the signal appeared to be similar at LH+2 and LH+7 (Figure 5.8). 

To determine the PG synthases protein levels in pre-receptive and receptive 

endometrium, western blot were employed using endometrial epithelium 

(EEC) from HRT cycles (P+0, the pre-receptive stage, and P+5, the 

receptive one). Results demostrated that while the enzymes responsible for 

PGE2 production (cPGES, mPGES-1, and mPGES-2) did not change 

significantly between P+0 and P+5, AKR1C1, AKR1C3 and CBR1 increased 

in the receptive endometrium (Figure 5.9A & 5.9B). Increase of AKR1C3 and 

CBR1  in receptive endometrium parallels the sharp rise of PGF2α in the E.F. 

during the implantation window. AKR1C1, as a reversible enzyme, can work 

as PGF2α and/or PGE2 synthase and is responsible for the production of 

both. 
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Figure 5.8. Immunohistochemical localization of cPGES, mPGES-1, mPGES-2, AKR1C3, 
CBR1, and AKR1C1 in pre-receptive (LH+2) versus receptive endometrium (LH+7). 
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Figure 5.9. (A) Western Blotting analyses of PG synthases: cPGES, mPGES-1, mPGES-2, 
AKR1C1, AKR1C3, and CBR1 in the endometrial epithelium in HRT cycles (n=3) of non-
receptive (P+0) versus receptive (P+5) endometrium. (B) Vertical bars represent the relative 
amounts of protein levels of the WB analysis, quantified by densitometry. Statistically 
significant increase in P+5 is expressed as  *p<0.05 (Student’s t-test).  
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2.3 Functionality of PG synthases in the endometrium 

To determine the enzymes displaying prostaglandin synthase activity in 

endometrium, we measured their ability to mediate the synthesis of PGE2 

and PGF2α in EECs in vitro using specific inhibitors. Semiquantitative PCR 

was used to confirm the expression of all enzymes in primary cultures of 

human EEC (Figure 5.10).  

Then, to verify their functionality hEECs were first treated with different 

concentrations of the following enzyme-specific inhibitors. Indomethacin, a 

COX-1 and COX-2 inhibitor that blocks the synthesis of the whole PGs 

synthesis pathway, was tested at 5µM and 50µM. To evaluate terminal 

prostaglandin synthases downstream COX enzyme for the production of 

PGE2, cPGES inhibitor DRB (1-β-D-ribofuranosylbenzimidazole) was tested 

to avoid the conversion from PGH2 to PGE2, with concentrations 1mM and 

10mM, and the same test was performed for mPGEs-1 inhibitor MK886 (3-

[3-tert-Butylthio-1-(4-chlorobenzyl)-5-isopropyl-1H-indol-2-yl]-2,2 

dimethylpropionic acid 2) with concentrations of 10µM and 100µM. 
Moreover, because PGE can also be generated from PGF2α through the 

action of AKR1C1, cyclopentane was used at 1µM and 10µm as AKR1C1 

inhibitor. On the other hand, PGF2α can also be synthesized from different 

precursors, including PGH2 and PGD2 through the action of AKR1C3, or from 

PGE2 in a reaction mediated by CBR1 and AKR1C1.  

Also, CBR1 inhibitor 4-chloro-6-[5-[2-(4-morpholinyl)ethyl]amino]-1,2-benzi-

soxazol-3-yl]-1,3-benzenediol (CAY10607) was tested at 30nM and 300nM, 

and  AKR1C3, which mediates synthesis of 11β- PGF2α, was used as a 

bimatoprost inhibitor at 50µM and  500µM. Subsequently, after 24h and 48h 
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of treatment, conditioned media was collected and assayed for the inhibitory 

effect of PGE2 and PGF2α production by ELISA technique.  

Results indicate that PGE2, PGF2α and 11β- PGF2α (a PGF2α isoform) 

concentrations in vehicle-treated cells media were 153±0.8, 76±8.23, 37.8±0 

pg/ml respectively at 24h-treatment, and 113±2, 51.5±1.7 and 30.7±2.8 

pg/ml at 48h-treatment, demonstrating that EEC are capable of producing 

PGs under basal conditions (Figure 5.11A, 5.11B & 5.11C). Treatment with 

50µM indomethacin blocked almost completely the production of PGE2, 

PGF2α, and 11β-PGF2α, which served as proof-of-principle for the 

functionality of the assay.  In addition, the results showed no differences in 

levels of PGE2 and PGF2α after adding inhibitors at 24h-treatment in most of 

them.  

Meanwhile, a different pattern was observed after 48h with a reduction in  

PGs production, especially in cPGES and mPGES-1 (Figure 5.11A). 

Likewise, AKR1C3 displayed PGF synthase activity, measured here by its 

ability to produce 11β-PGF2α (Figure 5.11C). Conversely, inhibition of 

AKR1C1 and CBR1, which interconvert PGE2 and PGF2α, had minor impact 

on PGF2α production (Figure 5.11B). Moreover, CBR1 inhibition with 30nM 

of CAY10607 led to an increase in PGF2a. However, several concentrations 

tested, reveal toxic effect on hEEC proliferation.  

 
 

Figure 5.10. Semiquantitative RT-PCR analysis of prostaglandin E synthases and 
prostaglandin F2α synthases in primary human EEC cultures. 
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A. 

 
B. 

 
C. 

 
Figure 5.11. Enzymatic activity of individual PG synthases in EECs tested using specific 
inhibitors and measuring PG concentration in conditioned media by ELISA. (A) Graphs 
represent the concentration of PGE2 measured 24h & 48h after hEEC were pre-treated with 
DRB and MK886 for the inhibiton of cPGES and mPGES-1 respectively. (B) Concentration of 
PGF2α measured after CAY and cyclopentane were used for the inhibiton of CBR1 and 
AKR1C1, respectively and (C) Concentration of 11β-PGF2α measured after bimatorprost was 
used for the inhibiton of AKR1C3. 
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The experiment was repeated using concentrations with a maximal inhibition 

on PGs in the 48h-treatment that did not cause toxicity to hEEC. A pool of 

six PG-inhibitors was employed, and results analyzed again for both PGE2 

and PGF2. 

Inhibition of mPGES-1, CBR1, and AKR1C1 using MK886, CAY10607, and 

cyclopentane, respectively, decreased the concentration of PGE2. 

Differences were not significant when compared to the basal conditions 

similarly to increased PGF2α production induced by the DRB (Figure 5.12B). 

These results suggest that since PGE2 synthesis takes place by the action of 

different enzymes, others might compensate a deficiency in any of them.  

However, different results were obtained in terms of PGF2α production. Only 

a specific CBR1 inhibitor (CAY10607) was capable to nearly block PGF2α 

synthesis, indicating that this enzyme has an important contribution in PGF2 

production from PGE2 (Figure 5.12B). Mediation of the synthesis of 11β-

PGF2α and PGF2α by AKR1C3 was demonstrated by the blockade of its 

secretion with bimatoprost, which inhibited the production of 11β-PGF2α as 

much as  indomethacin (Figure 5.12C). This points to AKR1C3 being one of 

the main responsible enzymes for PGF2α production. 

For the remaining enzymes inhibitors an opposite effect was observed. 

MK886 and DBR inhibitors that were used to avoid the conversion from 

PGH2 to PGE2 showed a significant increase in PGF2α production, similarly 

to what happens with cyclopentane, which inhibits the interconversion 

between the two PGs (Figure 5.12B), indicating that in response to acute 

inhibition of these enzymes, the influence of PGE2 and PGF2α derived 

enzymes is exaggerated, compensating the absence specific enzymes to 

maintain basal conditions. 
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To completely avoid the production of both PGs, different combination of 

PGE2 and PGF2α enzymes inhibitors were used. The results showed a 

negative effect in the survival and proliferation of EECs, indicating that both 

PGs could be implicated in pathways that regulate growth of the EECs. 
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Figure 5.12. (A) Schematic diagram of prostaglandin E synthases and prostaglandin F2α 
synthases and their specific pharmacological inhibitors. (B) Specific inhibition of individual PG 
synthases (mPGES-1, cPGES, CBR1, and AKR1C1) in EEC cultures and PGE2 and PGF2α 
concentration measured in the conditioned media. (C) Specific inhibition of AKR1C3 in EEC 
cultures using bimatoprost, and 11β-PGF2α concentrations measured in the conditioned 
media. The significant decrease is statistically expressed as   *p<0.05 and ***p<0.001 
(Student’s t-test). 
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3. Analysis of PGE2 and PGF2α receptors in the endometrial 
receptivity 

3.1 Localization of PGE2 and PGF2 receptors in human endometrium 

PGE2 and PGF2α exert their biological function through interaction with their 

corresponding receptors, EP and FP, that have been determined to be 

implicated in many reproductive functions (Blesson et al. 2012). Among the 

PGs, the only one that possesses four receptors subtypes is EP receptor: 

EP1, EP2, EP3, EP4 (EP1-4), that have been classified according to their 

response to specific agonists and antagonists of PGE2 (Figure 5.13) (Lim et 

al. 1999). However, their distribution in human endometrium and/or embryo 

during the menstrual cycle state remains unknown.    

Localization of EP1-4 and FP at the protein level was investigated using 

inmunohistochemistry analysis of endometrial epithelium in HRT cycles (at 

P+0 and P+5), and in natural cycles (at LH+2 and LH+7), representing the 

pre-recetive and receptive stages. In the endometrial epithelium, at P+0 EP1 

and EP3 receptor subtypes were moderately expressed in glandular and 

luminal epithelium, although EP1 presented major intensity in the glandular 

compartment (Figure 5.14). At P+5 expression of EP2 and FP increased. In 

comparison to other EP subtypes, they were prominently expressed in 

stroma, luminal and glandular compartment during pre-receptive as well as 

in receptive stage. However, there was no expression of EP2 in the stroma 

during the receptive stage and FP staining was more intense (Figure 5.15).  

In contrast, EP4 was only detected in vessels at P+0 and P+5 with a weak 

expression in luminal and glandular epithelium (Figure 5.14)..  

Immunohistochemistry in the endometrial epithelium  of natural cycles 

revealed that EP1 and EP3 present a weak staining in luminal and glandular 
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epithelium at LH+2. EP3 presented a consistent signal at LH+7 compared to 

LH+2 in the same compartments, EP1 was only constant in glandular 

epithelium, but not in luminal, as its expression increased in LH+7. The 

pattern of staining in EP2 was similar in LH+2 and LH+7 in stroma and 

glandular epithelium. However, compared to luminal epithelium, its 

expression was detected in both stages with stronger intensity in LH+7.  EP4 

was present in endometrial epithelium and vessels, luminal and glandular 

epithelium in both stages (Figure 5.16). In contrast, FP expression increased 

significantly in LH+7 in stroma, luminal and glandular epithelium (Figure 

5.17). These results point to EP2 and FP as the main receptors implicated in 

the receptive phase of the human menstrual cycle.  

 

 

 
 

Figure 5.13. Schematic depiction of PGE2 and PGF2α /receptors  
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Figure 5.14. Immunohistochemical detection of of PGE2 receptors (EP1, EP2, EP3 and EP4) 
and PGF2α receptor (FP) proteins in the endometrial epithelium in HRT cycles of non-
receptive (P+0) versus receptive (P+5) endometrium. 
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Figure 5.15. Localization of EP2 and FP protein in luminal and glandular epithelium in HTR 
cycles of P+0 and P+5 endometrium. Representative photomicrographs at 100X magnification 
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Figure 5.16. Immunohistochemical detection of of PGE2 receptors (EP1, EP2, EP3 and EP4) 
and PGF2α receptor (FP) proteins in endometrial epithelium in natural cycles of pre-receptive 
(LH+2) versus receptive (LH+7) endometrium. 
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Figure 5.17. Localization of EP2 and FP proteins in luminal and glandular epithelium in 
natural cycles of LH+2 and LH+7 endometrium. Representative photomicrographs at 100X 
magnification 
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3.2 Identification and localization of PGE2 and PGF2α receptors in 
human endometrial cell lines and mouse embryos 

RT-PCR was used to study whether PGE2 (EP1-4) and PGF2α (FP) 

receptors were expressed in both human endometrial cell lines (adhesive 

RL95-2 and non-adhesive HEC-1-A) and primary human epithelial cells. Cell 

lines and epithelial cells were grown in monolayers, representing in vitro the 

layer in which the embryo first interact with the endometrium during its 

adhesion process.  

After 40 cycles of PCR no PGE2 and PGF2α receptors product was 

expressed in RL95-2 cells and HEC-1-A, with the exception of FP in HEC-1-

A. These results indicate that both cell lines were not the best model to be 

used in further adhesion experiments with PGs. However, in primary hEEC 

all PGs receptors were expressed at the pre-receptive (day 15), receptive 

(day 20), and post-receptive (day 25), stages of the menstrual cycle. 

Neverthless, EP3 and EP4 showed lower expression in the three stages 

compared to the other receptors. JAR cells only presented expression for 

EP1 and EP2 receptors. For normalization, we used the level of the 

housekeeping GAPDH (Figure 5.18).  
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Figure 5.18. Semi-quantitative RT-PCR analysis of mRNA expressions of PGE2 (EP1-4) and 
PGF2α (FP) receptors in RL95-2 (adhesive), HEC-1-A (non-adhesive), JAR cells (throphoblast 
properties), and human endometrial epithelial cells obtained from biopsies in day 15, day 20, 
day 25. GAPDH was used as housekeeping gene. 
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Immunofluorescence on hEEC monolayers for all EP1-4 and FP was 

positive. While EP2 and FP presented the highest signal intensity, EP1 was 

almost undetectable. However, FP showed an increased intensity in cell to 

cell contact sites, compared to PGE receptors, and no staining was 

observed in control experiments (Fig.. 5.19A). On the other hand, in JAR 

cells only EP1 and (especially) FP presented positive staining (Figure 

5.19B). 

 In mouse blastocyst, all receptors were expressed in trophoectoderm and 

inner cell mass. However, their cell localization and intensity varied among 

receptors. While EP2, EP3 and FP were clearly detected in the cytoplasm 

and in the cell membrane of the trophoblast and inner cell mass of the 

embryo, EP1 was only observed in the nucleus and EP4 in the cytoplasm. 

EP2 also showed a weak signal in the nucleus, while fluorescence signal of 

EP2 and FP in blastocysts was significantly stronger than the other 

receptors, especially FP (Figure 5.20). 
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Figure 19. Immunofluorescence analysis of EP1-4 and FP receptors in hEEC and JAR cells. 
DAPI was used to stain the cell nuclei (blue). (A) Positive staining in EP1 and FP. (B) Positive 
staining in all receptors.  
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Figure 5.20. Immunofluorescence analysis of EP1-4 and FP receptors in mouse embryos. 
DAPI was used to stain the cell nuclei (blue). (A) Single confocal optical section fluorescence 
overlay on cell membrane, cytoplasm, and some (EP1& EP2) on the nucleus of inner cell 
mass (ICM) and throphoblastic cells of blastocyst stage embryo. 
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4. Functional relevance of PGE2 and PGF2α in an in vitro model of 
embryo adhesion 

To investigate the functionality of PGE2 and PGF2α in embryo adhesion, we 

tested the inhibition of these biomarkers in an established in vitro model of 

mouse embryo adhesion to primary EEC cultures.  

First, EECs were pretreated with indomethacin (50µM), CAY10607 (30nM), 

cyclopentane (1µM) or bimatoprost (50µM) during 48h in order to inhibit PGs 

production, then washed and devoid of inhibitor by addition of fresh media. 

After that, mouse embryos were added to pre-treated EEC and cultured 

together. The percentage of embryonic adhesion was assessed by counting 

under microscope the blastocysts attached after culture plates were moved 

along a 3cm diameter circular path at a speed of one rotation per second for 

about 10 seconds (Martin et al. 2002).  

EECs pre-treated with indomethacin as the strongest PGs inhibitor, induce a 

decrease of 70% PGs secretion by hEECs in a time dependent fashion. This 

treatment induced a 96% in embryo adhesion compared to the control 

vehicle after 32h. Moreover, after pretreatment with CAY10607, an 80% 

decrease was obtained, and with bimatoprost, the reduction of adhesion was 

70% approximately. However, no changes where observed with 

cyclopentane (Figure 5.21). These results show that inhibition of each 

prostaglandin F2α synthases (AKR1C3 and CBR1) in hEEC impacts embryo 

adhesion as the levels of PGE2 and PGF2α are affected. 
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Figure 5.21. Graphs represent the percentage of adhesion measured after 32 hours of cells, 
pretreated after 48h with indomethacin (IND), CAY10607 (CAY), cyclopentane (CYCL), or 
bimatoprost (BIM) that inhibits COX, CBR1, AKR1C1, or AKR1C3, respectively. The 
statistically significant decrease is expressed as *p<0.05, **p<0.01, ***p<0.001 (Student’s t-
test). 
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To further confirm the functional relevance of each PGE2 and PGF2α on 

embryo adhesion, we added-back these molecules in the same in vitro 

model of embryo adhesion used. 

EECs were pretreated for 48h with 50µM of indomethacin, and PGE2 

(0.01µM, 0.1µM, 1µM, 10µM) or PGF2α (1nM, 10nM, 100nM, 1000nM) were 

then added. The same process described before in the in vitro adhesion 

assay was used to measure the percentage of embryonic adhesion after 1h, 

2h, 4h, 24h and 32h of PGs add-back treatment, and the toxicity effect was 

tested in the EEC monolayer with all concentrations. 

Results demonstrated that adding back PGE2 and PGF2α completely 

recovered blastocyst adhesion in a dose-dependent manner. However, a 

different percentage of embryo adhesion was observed depending on the 

time and PGs added. While adding PGE2 concentrations, the percentage 

ranged from 0% (10nM, 100nM at 1h and 100NM at 2-4h ) to 54% (100nM at 

32h ), different observations were obtained with PGF2α, in which it ranged 

from 0% (1nM, 10nM, 100nM and 1µM at all hours  tested ) to 63% (10nM at 

32h) versus their controls (Figure 5.22A &5.22B). The most stricking results 

were observed at 32h after PGE2 and PGF2α were added. In the control 

group, embryo adhesion was around 45% as well as when PGs were added. 

Although embryo adhesion for most of PGE2 concentrations was similar to 

their respective controls, we observed an increment of 12% at 32h at a 

concentration of 100nM (Figure 5.22A). Meanwhile, different results were 

obtained with PGF2α, with a highest increment (25%) of 10nM at 32h (Figure 

5.22B). 
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A 

 
B 

 
Figure 5.22. Percentage of embryo adhesion in different times (1h, 2h, 3h 4h, 24h, 48h) after 
PGE2 or PGF2α were added to hEECS and pretreated for 48h with indomethacin. A. 
Concentrations tested for PGE2 (10nM, 100nM, 1µM, 10µM). (B) Concentrations tested for 
PGF2α (1nM, 10nM, 100nM, 1000nM). Statistically significant increase is expressed as 
*p<0.05, **p<0.01, ***p<0.001 (Student’s t-test). 
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This experiment was repeated (n=3) with the concentration of PGE2 and 

PGF2α at 10nM, 100nM. The percentages of embryo adhesion were 

consistent with our previous results (Figure 5.23). Adding back PGE2 at 

100nM, induce an increase of adhesion of 12% compared to the controls. 

Similarly, adding back PGF2α at 10nM or 100nM after indomethacin 

pretreatment resulted in an increase of 20% and 12%, respectively, in 

embryo adhesion versus controls (Figure 5.23). 

This in vitro model demonstrates that PGF2α and PGE2 are functionally 

relevant for embryo adhesion, and the depletion of these PGs seriously 

impairs the interaction between the embryo and EEC. 

 

 
Figure 5.23. Percentage of embryo adhesion measured 32 hours after the EECs were 
pretreated for 48 h with indomethacin (IND) and later supplemented with PGE2 or PGF2α at 
different concentrations (10nM and 100 nM). The statistically significant increase is expressed 
as **p<0.01 (Student’s t-test). 
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4.1 Agonists/ Antagonist of PGE2 and PGF2α receptors on embryonic 
adhesion assay 

With respect to our previous studies, we observed that PGE2 and PGF2α 

effect in EEC-blastocysts coculture increased adhesiveness. To explore 

which EP1-4 or FP was activated and involved in embryo adhesion we 

measured the responses of agonist molecules. For PGE2 receptors we had 

for EP2 : Butaprost (BUT) and AS701931(AS70);  for EP3 : Sulprostone 

(SLP); and for and EP4: AS701666 (AS7-A), AS701753 (AS7-B), AS701715 

(AS7-C). For PGF2α, we used an agonist for FP named Fluprostenol (FLP) 

and its antagonist AS604872 (AS6). 

Toxicity tests of agonists and antagonists were carried out to determine the 

concentration to be used for further adhesion experiments. Both blastocyts 

and hEEC from different biopsies were independently exposed to different 

concentrations. Results showed that most concentrations tested were not 

toxic either for EEC or for the blastocyst.  

Once conditions were established, two concentrations were used:  the 

maximal concentration tested and the lowest one. We then employed the 

same embryonic adhesion assay as described in previous experiments using 

agonists for EPs and FP receptors instead of the synthethic PGs, while the 

antagonist was added to mouse embryos that had been previously (6h 

before) treated with PGF2α 10nM. The percentage of mouse blastocysts 

adhesion using hEEC monolayer was determined 24h and 32h after  

treatment. A positive control was used for embryo adhesion by pretreating 

the cells with indomethacin and then adding back PGF2α (10nM), and 

indomethacin was also used as a negative control.  
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The first data was collected from three different experiments in which a total 

of 50 mouse blastocysts were examined per agonist concentration. Some 

differences were observed in blastocyst adhesiveness between EP1-4 or FP 

agonists and FP antagonist.  

The results showed that the highest percentages of blastocysts adhesion in 

EEC monolayers at 24h using EP2 agonists where Butaprost at 5 µM and 

AS70 at 150nM. Their effects on embryo adhesion were similar (24% and 

25%, respectively), and significantly higher than in control (12%). However, 

at 32h, Butaprost 5µM increased fourfold over AS70. The other 

concentrations tested for this receptor did not show a significant increase in 

embryo adhesion (Figure 5.25A). 

In cells supplemented with EP3 agonist sulprostone (10µM), it was observed 

that at 24h, adhesions were up to 11% times higher than those in control 

cells (P<0.05)(Figure 5.25B). However, different profiles were obtained for 

the three EP4 agonists: AS7-A, AS7-B, AS7-C, in which for the two 

concentrations tested for each agonist there was a decrease in blastocyst 

adhesion compared to the vehicle (Figure 5.25C). On the other hand, using 

the FP agonist, fluprostenol, at 4µM and 18µM, adhesion was increased by 

around 20% at 24h for both concentrations (Figure 5.25D). 
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A 

 
 
 
B 

 
 
 
Figure 25.  Percentage of adhesion measured 32 hours after EECs were treated with 
indomethacin (IND) and supplemented with PGF2α (10 nM) and their specific agonists. (A) 
butaprost (BUT; 5 µM, 20 µM), AS701931 (AS70; 30 nM, 150 nM, 300 nM), (B) sulprostone 
(SUL; 10 µM, 40 µM), Statistically significant increase is expressed as *p<0.05, **p<0.01,  
(Student’s t-test). 
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C 

 
 
D 

 
 
Figure 25.  Percentage of adhesion measured 32 hours after the EECs were treated with 
indomethacin (IND) and supplemented with PGF2α (10 nM) and their specific agonists. (C) 
AS701666 (AS7-A; 10 nM, 20 nM), AS701753 (AS7-B; 150 nM, 300 nM), AS701715 (AS7-C; 
5 nM, 50 nM). (D) For PGF2α, we used an agonist for FP named Fluprostenol (FLP; 4 µM, 18 
µM). Statistically significant increase is expressed as *p<0.05, **p<0.01, (Student’s t-test). 
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Using the concentration obtained for the maximal embryo adhesion for each 

agonist and for non-embryo adhesion using antagonist receptor, the same 

embryo assay was repeated (n=6), in which the results presented a pattern 

similar to the previous experiment. 

Activation of endometrial epithelial EP2 receptor with butaprost 5µM and 

AS70 10µM had an increment of 18% and 20%, respectively, in embryo 

adhesion at 24h. However, at 32h the adhesion of butaprost was 5-fold the 

AS70. For EP3 receptor, values changed when the number of experiments 

was duplicated using Sulprostone 10µM. Results showed only an increment 

of 3% of adhesion at 24h, and therefore not significant. On the other hand, 

similar results were again obtained in this second experiment using AS7-A 

10nM as agonist of EP4 receptor.  There was no increase but, on the 

contrary, a diminished embryo adhesion at both times, in agreement with the 

previous results. Likewise, fluprostenol 25nM as FP agonist showed only at 

24h a maximum increment of adhesion (23%) compared to the positive 

control PGF2α (21%). On the other hand, blockage with the AS604872 

175nM as antagonist for FP receptor showed a decrease in embryo 

adhesion similar to the one obtained with the negative control, demonstrating 

the importance of this receptor (Figure 5.26).  

These results indicate that EP2 and FP receptors are responsible for  

embryo adhesion induced by the presence of PGs. No embryo adhesion 

modifications were observed with the use of EP3 and EP4 agonists. 
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Figure 5.26. Percentage of adhesion measured 24 and 32 hours after EECs were pre-treated 
for 48 hours with indomethacin (IND) and then supplemented with: PGF2α (10 nM), butaprost 
(BUT; 5 µM), sulprostone (SUL; 10 µM), AS701666 (AS7-B; 150 nM), Fluprostenol (FLP; 18 
µM), AS604872 (AS6; 175 nM), or PGF2α (10 nM). The increase with agonists and decrease 
with the antagonist is expressed as *p<0.05, **p<0.01, ***p<0.001 (Student’s t-test). 
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4.2 Effect of PGF2α, butaprost and fluprostenol agonists on embryo 
development 

Moreover, the presence of butaprost and fluprostenol agonists, as well as 

synthethic PGF2α, showed an effect not only on embryo adhesion but also in 

its development. Most of the embryos that were in contact with synthethic 

PGF2α and butaprost got attached once they had 30-50% of their volume out 

of the zona pellucida. However, after 24h the majority of the embryos that 

were not attached did not complete hatching. On the other hand, using the 

agonist receptor of PGF2α, some differences were observed: even though 

most embryos made complete hatching faster in comparison to the other 

treatments, after 24h the majority of the embryos were not able to get 

attached Figure 5.27. 

 
       A                                   B                                      C 

  
 
Figure 5.27. Effect of synthethic PGF2α and agonists of PGE2 and PGF2α on embryo 
development. (A) PGF2α 10 nM, (B) butaprost 5 µM, (C) fluprostenol 18 µM. 
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5. Analysis of PGE2 and PGF2α synthases in the EF 

5.1 Detection of PGE2 and PGF2α enzymes in EF 

Initially, the media obtained from hEEC monolayers was analyzed and the 

presence of the PGs synthases corroborated by western blot demonstrating 

that hEEC are able to release terminal PGs synthases to the medium, 

opening an exciting new possibility for the production of the PGs in the 

uterus.  

To further confirm this observation, EF at LH+2 and LH+7 was investigated. 

To avoid experimental interferences albumin was removed from EF, since 

serum is present and 30-50% of serum is albumin. 

 Once albumin was removed, samples were subjected to western blot 

analysis to detect relative protein amounts of two enzymes, CBR1 and 

AKR1C1 that mediate the interconversion between PGE2 and PGF2α. Both 

enzymes were expressed during the pre-receptive and receptive stages 

(Figure 5.28). Therefore, results obtained indicated that these enzymes are 

not only produced in hEECs, but also released outside the cells 

 
Figure 5.28. Western Blot analysis of COX-2, mPGES-2, cPGES, CBR1, AKR1C3, and 
AKR1C1 in EF samples from women obtained in LH+2 and  LH+7.   
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5.2 Enzymatic activity of PGs synthases in EF 

Evidence presented in the previous study suggested that the PGs synthases 

in EF are capable of synthesizing PGs during the complete menstrual cycle, 

contributing to the PGs levels in the uterine environment.  To confirm the 

enzyme’s activity in EF, PG 9-ketoreductase (CBR1) was tested at days  

LH+2 and LH+7. 

The first step was to standardize a procedure to purify the specific enzyme 

(CBR1) after albumin was removed from EF. Then, because CBR1 directly 

converts PGE2 into PGF2α, three different concentrations (5nM, 10nM and 

50nM) of synthetic PGE2 were used as substrate and incubated with the 

previous purified enzyme. Finally, the final product PGF2α was measured at 

15, 30, 60, 90, 120, 150, 190 minutes by an enzyme immunoassay. 

Based on the equation of the standard curve, the concentration of each 

sample was determined by comparing the maximal binding (%B/Bo, which is 

inversely proportional to the amount of PGF2α) to the corresponding 

standard concentration (Figure 5.29).  

Results indicated that PGF2α (CBR1 product) was formed only in the 

receptive samples at LH+7, especially in the range of 60 to 90 minutes using 

PGE2 at 10nM as substrate. However, from the total number of LH+7 

samples (n=6), only four of them showed a specific concentration of PGF2α 

at 60min and only one  of them at 90min (Table 5.1). Finally, no PGF2α 

product was detected in any condition that was established in LH+2 EF 

samples tested. Therefore, CBR1 is not only present in the EF but also 

displays activity by producing PGF2α in the presence of its substrate PGE2. 
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Figure 5.29. Standard Curve. The %B/Bo represents the percentage of maximal binding, 
which is inversely proportional to the amount of PGF2α in the sample or standard. 
 
 
 
Table 5.1. PGF2α concentration (ng/ml) determined using as reference the 
standard curve in the six LH+7 (receptive) EFs. 
 

EF 
Samples 

PGF2α production ng/ml 

60 min 90 min 
LH +7   (1) 0.0011 0.0043 

LH +7   (2) 0 0 

LH +7   (3) 0.008 0 

LH +7   (4) 0.0029 0 

LH +7   (5) 0.002 0 

LH +7   (6) 0 0 
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6. PGE2 and PGF2α concentrations in EF as non-invasive 
biomarkers of endometrial receptivity  

In the light of the results above, we hypothesized that the quantification of 

these two PGs in EF could serve as a non-invasive diagnostic tool to predict 

endometrial receptivity. 

We performed a pilot study to determine the sensitivity and specificity of 

PGE2 and PGF2α concentrations in EF samples obtained 24 hours prior to 

day-3 (n=20) or day-5 (n=17) embryo transfer. The aim was to predict 

endometrial receptivity and therefore successful implantation in patients 

undergoing either IVF or ovum donation (treated with COS or HRT, 

respectively). In patients undergoing day 3-embryo transfer the mean level of 

these PGs in cycles resulting in pregnancy was 0.56 nmol/g for PGE2 and 

1.26 nmol/g for PGF2α. Interestingly, in patients in whom pregnancy was not 

achieved, the levels of PGE2 and PGF2α were almost absent concretely for 

PGE2 0.08 nmol/g and for PGF2-α 0.11 nmol/g (Figure 30A). To test 

sensitivity and specificity we measured ROC curves for both PGs, obtaining 

for PGE2 a value of 0.88 (sensitivity 80% and specificity 86.70%) and 0.973 

for PGF2α (sensitivity 100% and specificity 93.30%). 

In patients undergoing day-5 embryo transfer (n=17), similar results were 

obtained in cycles resulting in pregnancy (0.86 nmol/g and 1.47 nmol/g for 

PGE2 and PGF2α respectively), while in unsuccessful transfers the 

concentrations of PGE2 and PGF2α were significantly reduced (0.17 nmol/g 

and 0.60 nmol/g, respectively) (Figure 30B). We measured also ROC curves 

for both PGs, obtaining for PGE2 a value of 0.694 (sensitivity 75% and 

specificity 77.8%) and 0.653 for PGF2α (sensitivity 37.50% and specificity 

100%). 
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A. 

 
B. 

 
Figure 30. (A) Pilot study seeking to determine the detection sensitivity and specificity of 
PGE2 and PGF2α concentrations in EF obtained 24 hours prior to embryo transfer in IVF 
patients undergoing day-3 embryo transfer; non-pregnant (NP) versus pregnant (P). (B) In 
ovum recipients undergoing day-5 embryo transfer 24 hours prior to embryo transfer; non-
pregnant (NP) versus pregnant (P).  
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VI. DISCUSSION 

The endometrium is a dynamic tissue throughout the menstrual cycle aiming 

to acquire the receptive status at due time. Moreover, the endometrial 

environment suffers different changes to provide the necessary nutrients and 

mediators that the blastocyst will need to develop and differentiate in a 

stage-specific manner.  

Although several strategies have been proposed in order to determine the 

receptive stage of the endometrium to improve implantation rates in IVF 

treatments, the majority of them use morphological observations which 

involve not only an invasive method, but also a subjective diagnosis (Noyes 

et al. 1975). This clinical limitation together with the difficulty to obtain 

reliable samples near the implantation window has impulsed the importance 

of studying the metabolic process that governs embryo implantation using  

non-invasive methods to investigate the endometrial-embryonic 

communication. Because EFs are accessible in the intrauterine environment, 

they have been pointed out as a new tool to identify the receptive stage of 

the endometrium since the aspiration of EF does not affect pregnancy rates 

in the same cycle (van der Gaast et al. 2009).  

However, it is crucial to understand endometrial biology. It is well known that 

the endometrium contains lipid compounds with important roles in 

reproduction (Durn et al. 2010; Boomsma et al. 2009). Defective endometrial 

prostaglandin (PGs) synthesis in humans has been linked to repeated 

implantation failure in patients undergoing IVF (Achache et al. 2010), 

indicating that lipids intervene as important mediators in embryonic 

implantation. Most of these studies have focused on the role of PGs in 

endometrium, where they cause increased vascular permeability (Bogan et 



 
 
134 

al. 2008) and decidualization (Chapdelaine et al. 2006), although their 

importance in influencing embryo maturation and acquisition of receptivity 

competence has also been suggested. 

In this thesis, we investigated the human endometrial biology of 

prostaglandin secretions together with clinical studies with the goal to 

establish a non-invasive lipidomic diagnosis for endometrial receptivity.  

The lipidomic profile of human EFs was investigated to elucidate which lipids 

appeared to be present and relevant through the menstrual cycle as well as 

in different endometrial preparations in ART . To our knowledge, this is the 

first time that human lipidomic profile in EFshas been characterized. Of the 

nine lipids found, most of them belong to the N--acylethanolamines (NAEs) 

familiy, which are characterized as part of a group of lipid mediators derived 

from a fatty acid precursor linked to an ethanolamine, the most studied is the 

endocannabinoid arachidonoylethanolamide (anandamide; AEA). Moreover, 

NAEs also comprise others non-endocannabinoids that were found in our 

study, such as palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and 

stearoylethanolamide (SEA). The data obtained shows significant 

differences in the concentration of two specific lipids, namely prostaglandin 

E2 (PGE2) and prostaglandin F2α (PGF2α), compared with the rest of lipids 

found in the lipidomic profile between days 19 to 21 of the menstrual cycle 

coincident with the implantation window. 

Prostaglandins (PGs) are lipid mediators that are involved in many 

physiological and pathological processes. They have been identified as 

important molecules in physiological functions for the female reproductive 

system. In the uterus, PGs have been described to participate in processes 

such as implantation, control of cytokine release, cell growth, differentiation 
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and vascular responses (Lee & DeMayo 2004). Although extensive research 

in the past years provides a new perspective of the role of PGs, especially in 

mouse endometrium, their role in humans has not been yet elucidated.  

Our results confirmed that PGE2 and PGF2α levels fluctuate in the EF along 

the menstrual cycle, with highest levels at the receptive stage corresponding 

to the period in which the endometrium is able to receive the blastocyst.  As 

demonstrated in other animal models, this may imply that PGs are also 

importantly involved in the process of implantation in the human 

endometrium.  

As those results were obtained using the EF from patients in their natural 

cycles, a new study was designed to obtain the lipidomic profile of EFs in 

oocyte donors treated under optimal (HRT), suboptimal (COS), or refractory 

endometrial conditions (IUD). The goal was to confirm whether the 

production of those PGs was specifically dependent on the receptive stage, 

and therefore to corroborate that these lipids could potentially be used as 

endometrial biomarkers also in patients undergoing IVF or ovum donation. 

The resulting observation was a clear pattern for PGE2 and PGF2α that 

peaked during the window of implantation in HRT, which corresponds to the 

5th day of progesterone administration (equivalent to the 7th day after LH 

surge. Likewise, a similar pattern was observed in patients undergoing COS 

with a peak at hCG+7 that also matched the receptive stage of the 

endometrium. Furthermore, PGE2 and PGF2α peaks obtained at P+5 in HRT 

were not present in refractory conditions induced by the insertion of an IUD. 

These results support the consistency that those two PGs could have in 

endometrial maturation development of the receptive state, bolstering their 

potential contribution to evaluate patients under IVF process for receiving 

and implanting an embryo.   
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The next step was to study endometrial biology to determine the dynamics of 

the production of these PGs across the menstrual cycle. Both basic and 

clinical research on these molecular processes are key to improve the 

understanding of the endometrial preparation for embryo implantation. 

Initially we investigated the existence and functionality of upstream and 

downstream enzymes involved in the synthesis of prostaglandin in the 

endometrium. It is well documented that cyclooxygenase (COX-1 and COX-

2) is coupled with upstream phospholipases and downstream synthases for 

the production of PGs (Simmons et al. 2004). COX-2, in particular, is one of 

the key enzymes in the conversion of arachidonic acid to precursors of PGs. 

In addition, they have been identified in the endometrium during receptive 

stage in a wide variety of species including mice, guinea pigs, sheep, 

horses, rhesus monkeys and baboons, with an essential role during the 

process of implantation (Lee & DeMayo 2004). It has also been identified in 

human endometrium during the receptive stage. However, in humans most 

of the attention to this enzyme has been focused on several disorderssuch 

as endometriosis and endometrial adenocarcinoma (Jabbour & Sales 2004). 

Our immunohistochemistry studies support that the expression of COX 

enzymes in human endometrium have a unique expression pattern in pre-

receptive and receptive endometrium. These results coincide with reports of 

the presence of COX-1 and COX-2 during the receptive stage (Marions & 

Dannielson 1999).  

However, COX-2, but not COX-1, was the only PGs synthase that 

significantly increased in luminal endometrial epithelial cells, which is 

basically the first contact surface for the embryo during blastocyst 

implantation. Earlier studies using mice models, have demonstrated that 
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COX-2 is essential for blastocyst implantation (Jabbour & Sales 2004; Singh 

et al. 2011), and our results seem to pinpoint COX-2 as the main enzyme 

involved also in the process of implantation in humans. 

To fully characterize human endometrial regulation of PGs, we decided to 

use two different approaches: first, we performed transcriptomic studies to 

assess the expression levels of the enzymes that act downstream of the 

pathway and are responsible for the production of PGE2 and PGF2α in the 

endometrium; and second, identify and localize the protein expression of 

these molecules in histological samples. 

Q-PCR experiments of PGE2 and PGF2α synthases in the whole 

endometrium have not showed major general variations in the expression 

profiles between receptive and pre-receptive endometrium. However, as it 

was expected, the expression of the enzymes in the epithelial cells, which 

are the main source of PGs production in the endometrium, presented a 

higher expression compared to the whole endometrium. The results in the 

epithelial cells showed a higher expression level in PGF2α synthases 

(AKR1C1, CBR1 and AKR1C3) than in PGE2 synthases (mPGES2, 

mPGES1 and cPGES). These results are consistent with the concentrations 

of PGF2α detected by lipidomics in EF during the receptive stage of the 

menstrual cycle. 

Interestingly, a possible compensatory effect was detected between 

enzymes leading to the same products. These results suggest that these 

enzymes play an overlapping role that could balance the lack of mPGES1 

and AKR1C3 during the receptive stage. Moreover, it is known that PGs 

synthases participate in other important processes within the cell, which 
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difficult the study of prostaglandin production for embryo implantation as an 

isolated event (Choi et al. 2011; Velica et al. 2009). 

The next step in our study was to elucidate their morphological localization 

The importance of determining the differential expression of the PGs 

synthases in the endometrium was to learn more about the enzymes 

responsible for the production of PGE2 and PGF2α  in human endometrium. 

Besides, as described above, histology has been considered for many years 

the accepted method to predict the endometrial receptive state, and 

therefore detecting the expression of the different PG synthases in tissue 

samples and correlating their localization with histological changes would 

work as a cross-check, by comparing a classical method with the expression 

of the synthases. For this purpose, spatio-temporal localization of those 

enzymes in the transition from pre-receptive to receptive endometrium was 

studied. It is important to highlight that all the enzymes were expressed, but 

there were differences in the pattern of intensity.  

Microsomal PGES1 is known to be coupled with inducible COX-2 to support 

deferred PGE2 generation and to regulate immediate PGE2 generation. Our 

results show that its protein expression is decreased in the luminal 

epithelium during the receptive stage, indicating a decline of mRNA 

expression in epithelial cells during the same stage in the previous studies. 

Moreover, mPGES1 is expressed at lower levels (both RNA and protein) 

during the receptive stage in the luminal epithelium in mice (Ni et al. 2002). 

Consistently, this enzyme has been associated with an important role during 

decidualization as it is highly expressed in the stroma but not in the luminal 

epithelium (Ni et al. 2002). Because this pattern of expression is similar in 

both species during the receptive stage, we suggested that, like in mouse 

models, mPGES1 is important but it is not the principal enzyme in 
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synthesizing PGE2 during the receptive stage for embryo adhesion in 

humans.  

Although it has been suggested that other two direct enzymes of PGE2 

production might compensate the mPGES1 deficiency, our results in 

humans showed that cytosolic PGES, which is constitutively expressed in 

conjunction with COX-1 to promote the immediate response, also decreases 

at the receptive stage in luminal and glandular cells. These results are 

consistent with those found in mouse uterus (Ni et al. 2003). However, even 

though cPGES also does not seem to be the main enzyme for PGE2 

production during the receptive stage, the predominant link with COX-1 

could be associated with its contribution in maintaining homeostasis of 

PGE2. Moreover, due to the similarity in the cPGES expression in humans 

and mouse during the receptive stage, it seems that in both humans and 

mice, this enzyme is involved in vascular permeability as the first stage of 

attachment and decidualization (Ni et al. 2003).  

The second microsomal PGE synthase (mPGES2), that catalyzes the 

isomerization of PGH2 to PGE2, is known to be constitutively expressed with 

both COX-1 and COX-2. Although our results showed a uniform expression 

on both pre-receptive and receptive stage, its expression is slightly different 

from the one obseved in rat uterus, as it was highly detected in the luminal 

epithelium in the receptive stage (Cong et al. 2006). These observations 

suggest that while these two enzymes are important in mice and rats, other 

enzymes could be doing this function in humans. 

In our studies, AKR1C1 and CBR1, which can modulate both PGs 

concentration presented higher protein expression during the receptive stage 

compared to those PGE2 synthases. However, AKR1C1, AKR1C3 and CBR1 
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were highly expressed in the luminal epithelium, specifically during the 

receptive stage. Those results argue for the idea that PGF2α might be 

important for embryo implantation during the receptive stage, and we 

suggest that AKR1C3, CBR1 and AKR1C1 expression could be not only 

involved in the main production of PGF2α but also in modulating the PGE2 to 

PGF2α ratio. 

Our second approach to characterize human endometrial regulation of PGs 

consisted in studying the abundance of PGE2 and PGF2α enzymes using 

western blot technique on EEC from women treated with progesterone 

representing two different situations, non-receptive (P0) and receptive (P5) 

stages. Using this method, we found that all the enzymes leading to the 

synthesis of PGF2α (AKR1C1, AKR1C3 and CBR1) were significantly more 

abundant in the receptive phase. This result is consistent with our previous 

observations in protein expression of these three enzymes in the luminal 

epithelium, suggesting their important role during the receptive stage. 

Moreover, AKR1C1 is a dual enzyme that enables the conversion of PGE2 

into PGF2α and vice versa, so high levels of PGF2α together with high levels 

of AKR1C1 could end up rising the production of PGE2, what would actually 

reflect the sharp increase of these two PGs during the implantation window. 

These results are in agreement with our previous observations and 

reinforced our hypothesis that PGE2 and PGF2α are important molecules for 

embryo implantation. As a method to demonstrate the endometrial activity of 

the PGE2 and PGF2α enzymes we measured the reduction in PG release 

after blocking physiological enzymatic activity by using specific chemical 

inhibitors in EEC obtained from biopsies in luteal phase. We also tested the 

normal production of PGs without any inhibitor, as well as the use of 

indomethacin (one of the principal drugs that inhibits COX1,2 by not leading 
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the conversion of arachidonic acid to PGH2) that leads to the inhibition for 

the production of PGE2 and PGF2α.  

From these results, we concluded that PGs synthases in EECs are capable 

of producing PGE2 and PGF2α under normal conditions, that is, when no 

inhibitor is added. On the contrary, when the pathway of PGs production is 

inhibited, there was a significant reduction of PGE2 and PGF2α after the cells 

were in contact with indomethacin. However, when specific inhibitors were 

used for each terminal enzyme of PGE2 and PGF2α, enzymes CBR1 and 

AKR1C3 were observed to play a key role in the synthesis of PGF2α in our 

model, as their inhibition with CAY10607 and Bimatoprost respectively 

showed a significant reduction in the release of PGF2α by the cells. Also, 

inhibition of the two enzymes that directly synthesize PGE2 (cPGES and 

mPGES-1) have not induced a significant decrease in the levels of PGE2; 

instead, the production of PGF2α was increased compared to normal 

conditions. This result suggests that PGE2 production can be compensated 

by the direct enzymes from PGH2 precursor and AKR1C1 that inter-convert  

PGF2α and PGE2 of the pathway. However, we suggest that high levels of 

PGF2α could be due to the fact that the absence of any of those enzymes 

will mainly increase enzymatic activity of AKR1C3 that directly produces 

PGF2α. The produced PGF2α would then be converted to PGE2 by the 

regulation of AKR1C1 to maintain natural levels. 

Inhibition of AKR1C1 caused a pattern similar to cPGES and mPGES1 in the 

levels of PGE2 and PGF2α, although the production of PGF2α was highly 

increased in this case. The idea of compensating the deficiency of AKR1C1 

by other enzymes seems to be similar to what was discussed above. The 

implication of those results is that normal levels of PGE2 must be regulated 

by their direct enzymes, as no other enzymes could be associated to its 
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production. However, the reason of the high increase levels of PGF2α 

compared to the other enzymes should be also associated to the 

accumulation of this enzyme. This suggests that because AKR1C1 is the 

only enzyme that can transform PGF2α and PGE2 and vice versa, its 

deficiency will cause the production of PGF2α by two different ways: via its 

direct enzyme (AKR1C3) and by PGE2 product that is transformed by CBR1. 

This information indicates that the production of PGF2α by two different ways 

and without the regulation between the conversions of PGF2α to PGE2 will 

cause an accumulation of PGF2α. 

These experiments highlighted the importance of the fine regulation among 

enzymes for the PGs production in the endometrium, demonstrating that the 

ones used in our study were fully functional and that all the enzymes 

described in this pathway are important but not essential for PGs synthesis. 

After studying PGs and their synthases at the molecular and cellular levels, 

we investigated their localization and activity in an in vitro model of embryo 

adhesion.  Because information regarding uterine sites of PGs actions in the 

process of human implantation is essentially non-existent currently, we 

decided to examine the expression of the four receptors subtypes (EP1-4) of 

the PGE2 and the one receptor (FP) of PGF2α during pre-receptive and 

receptive stage of the endometrium. The resulting data showed that the five 

receptors were expressed in a temporal manner with a different localization 

in the endometrium suggesting that FP and EP2 could be potential 

mediators of PGE2 and PGF2α actions in regulating the first steps for embryo 

adhesion. Both receptors are highly expressed in the luminal epithelium of 

endometrial epithelium in natural and HRT cycles, specifically during the 

receptive stage.  
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However, while our results indicate that EP2 and FP are the main receptors 

involved in the adhesion phase, this statement seems to be dependent on 

the species under discussion. In mouse and rats, for instance, the levels of 

PGI2 (that acts through the nuclear receptor PPARδ) was found to be the 

highest PGs in the uterus followed by PGE2 that acts via its receptor subtype 

EP2 (Lim et al. 1999). Nonetheless, investigations in rodent models have 

highlighted the localization and expression in the luminal epithelium of 

PGE2 (with its receptor subtype EP2) during pre-implantation and 

implantation stages, suggesting them to be the main stakeholders during 

embryo implantation (Lim & Dey 1997; Shi et al. 2005). Mice results also 

support that EP2 is a potential mediator of PGE2 actions, while FP was 

almost undetectable in rat uterus. It is important to notice that, even though 

we have observed some similarities between rodents and humans, there are 

still important differences that do not allow one to extrapolate PGs and their 

signaling from rodents to humans. This difference is mainly due to the fact 

that the process of blastocyst implantation is different among species. 

Once the terminal synthases and their specific receptors of PGE2 and PGF2α 

were observed during the pre-receptive and receptive stage in the human 

endometrium, the next step was to investigate if these PGs could mediate 

embryo adhesion. To examine the effect of those PGs in the endometrium, 

first we searched for an in vitro model for the interaction between the embryo 

and the endometrium during the process of implantation. Although some 

uterine cell lines (adhesive RL95-2 and non-adhesive HEC-1-A) were tested 

as an in vitro layer for embryo adhesion, PCR products indicated that these 

cell lines were not the best model as they did not expressed all the 

receptors. However, when human epithelial cells were tested all the 
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receptors were present. These receptors were also searched in mouse 

blastocysts.  

Interestingly, even though PG receptors are described as transmembrane G 

protein coupled receptors, we have also localized them in the cytoplasm and 

nucleus in hEEC monolayers, and observed the EPs and FP expression in 

the cytoplasm and membranes of mouse blastocyts, besides some nuclear 

staining in EP1 and EP2. These observations are consistent with the results 

obtained in different cell types of the rat uterus, where EP1 and EP4 were 

detected in the nucleus and the rest of the EPs and FP receptors were found 

in the cytoplasm and cell membranes (Blesson et al. 2012).  

There have been claims in literature of the expression of these receptors in 

the nucleus of the cells, suggesting that immediate effects are mediated via 

cell surface receptors whereas long–term responses are dependent upon 

intracellular receptor effects. Moreover, stimulation of isolated nuclei with 

PGE2 has revealed the association of these receptors with transcriptional 

regulation of major genes such as COX-2 (Zhu et al. 2006). Those results 

seem to indicate that self-directed regulation of the nuclear signaling 

networks brings a new dimension to cellular signaling, somewhat 

independent from plasma membrane and cytosolic events. The whole 

scenario could be explained if extracellular PGs can be internalized in cells 

via prostaglandin transporters that will induce their intracellular receptors in 

the nuclei, leading to an increase in the transcription of pro-inflamatory gene 

expression. That means that different signaling functions and pathways are 

activated by plasma membrane receptors and nuclear receptors. The 

plasma membrane of PGs receptors could therefore trigger immediate 

physiological actions, whereas nuclear receptors could act through gene 

regulation during the process of implantation in the endometrium. 
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We also observed that the expression and intensity of fluorescence varied 

among EPs and FP receptors, especially in hEEC and mouse blastocysts. In 

general, a strong tendency for increased signal of EP2 and (especially) FP in 

the cell membrane was observed. Collectively, the results on the lipidomic 

profile and on the expression of the receptors in the human endometrium 

and in mouse blastocysts indicate that while EP2 could be a potential 

mediator of PGE2, FP must be the mediator PGF2α during the process of 

implantation. 

Having confirmed the expression of the EPs and FP receptors, we tested the 

inhibition of these biomarkers in our model of embryo adhesion using 

primary hEEC cultures and mouse blastocysts. We observed a significant 

decrease in embryo adhesion in these experiments. Interestingly though, 

blastocyst development was unaffected by CBR1 and AKR1C3 inhibitors. 

Results showed that the exposure of the inhibitors to the mouse blastocysts 

significantly delayed the onset of maximal binding activity. In contrast, 

inhibition AKR1C1 did not affect embryo adhesion compared to CBR1 and 

AKR1C3. In accordance to previous results, while CBR1 and AKR1C3 

inhibitors decreased the level of PGF2α production, AKR1C1 inhibitor 

increases it, confirming that PGF2α may play an important role during the 

process of adhesion as its low levels are directly related to a decrease in 

embryo adhesion. 

To further understand the functional relevance of each PGE2 and PGF2α on 

embryo adhesion, we tested the addition of different concentrations of PGE2 

and PGF2α in the same in vitro model used in embryo adhesion studies. 

Using mouse blastocysts we observed that PGE2 and/or PGF2α are 

necessary for embryo implantation, as the addition of PGs to the incubation 

media during adhesion time favoured the recovery of embryo adhesion that 
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was lost when pre-treating EEC with indomethacin. The results showed that 

the increase in embryo adhesion reached 15% in comparison to the control 

for PGE2 (100nM) and a maximum of 30% of adhesion increase for 10nM of 

PGF2α. Whether these two PGs can work independently or if they regulate 

each other to reach the optimal balance to accomplish their role in embryo 

implantation is a question that we leave for future studies. 

Moreover, adhesion studies using different in vitro implantation models have 

also shown different results, especially in the times of adhesion. This data is 

consistent with the literature of adhesion studies with JAR spheres that has 

determined the adhesion over a very short time from 1-3 hours (Liu et al. 

2011). However, different results were observed when mouse embryos were 

employed: they showed little or no binding prior to 48h followed by a peak of 

binding activity at 72h (Schultz et al. 1997).  These results contrast with our 

adhesion assays, as we observed that half of the mouse blastocysts got 

attached at 32h. The differences in times of adhesion between mouse 

embryos and JAR spheres seem to indicate that both models cannot be 

compared. On the other hand, several studies show that some proteins that 

are required for adhesion (like for instance fibronectin on the apical surface 

of the trophectoderm) are translated during a period of 16 to 24 h of culture, 

(Schultz et al. 1997), what would explain the larger than 24h embryo 

attachment delay.  

We also explored which of the receptors (EP1-4 for PGE2 or FP for PGF2α) 

was activated and involved in embryo adhesion by measuring the responses 

of some of their selective agonist molecules under the same adhesion 

assay, but substituting the synthethic PGs for agonist receptors, and also 

using an antagonist for FP receptor. Our results indicated that butaprost and 

fluprostenol (agonists for EP2 and FP receptors, respectively) enhanced 
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embryonic adhesion 24h after they were administrated. Although adhesion 

using EP2 agonist showed an increment of 30% compared to the FP 

agonist, arguably the most interesting result is the fact that the FP antagonist 

reversed the effect by reducing embryo adhesion in a similar fashion to 

indomethacin.  These findings provide an important molecular framework to 

the importance of the PGE2-EP2 and PGF2α-FP pathways in human 

endometrium during the process of adhesion at implantation. 

Importantly, butaprost and fluprostenol agonists, as well as synthethic 

PGF2α and indomethacin, changed not only embryo adhesion but also 

embryo development. While indomethacin significantly inhibited mouse 

embryo hatching, different results were seen with butaprost and synthethic 

PGF2α: both increased embryo adhesion, even though they had not released 

completely the zona pellucida during the first 24h. On the other hand, in 

presence of fluprostenol, embryos completed hatching faster than with the 

other treatments. Therefore, one can conclude that the presence of PGE2 

and PGF2α in the uterine environment may also be needed to improve  

embryo hatching. A similar result has been reported elsewhere (Chida et al. 

1986), indicating the influence of PGs, in particular with PGF2α, in 

accelerating the hatching process. This information is consistent with our 

observations, as it is indirectly shown that mouse blastocysts during the pre-

implantation stage metabolize arachidonic acid and produce PG. 

The results discussed above also suggest that while EP2 could be a 

potential mediator of PGE2, FP could also act through PGF2α by regulating 

embryo adhesion and blastocyst development. Based on that, we suggest 

that both PGs could serve as a marker for uterine receptivity for implantation. 
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Before claiming that, we worked to understand whether PGs could also be 

balanced in the uterine environment by the presence of their synthases, 

CBR1 and AKR1C: they would mediate the conversion between PGE2 and 

PGF2α to maintain adequate levels of those PGs for the implantation 

process. Our results confirmed the presence of PGs synthases in the human 

EF samples in pre-receptive and receptive stages of the menstrual cycle. 

This suggests that hEECs are able to release PGs enzymes to uterine 

environment, and confirmed that CBR1 was not only present, but it also 

displayed activity, in the EF by producing PGF2α in the presence of its 

substrate PGE2. These results demonstrate that the production and balance 

of PGs take place not only in the cells but also in the EF, which opens a new 

exciting field to understand the mechanisms by which the levels of PGs are 

regulated in the endometrium during the receptive stage for embryo 

adhesion.  

Finally, we hypothesized that quantifying PGE2 and PGF2α in human EF 

could serve as a non-invasive biomarker to predict the success of embryo 

implantation. In particular, analyzing the levels of PGs in the EF obtained 24 

hours before day-3 and day-5 of the embryo transfer correlated well with the 

cycle outcome. In cycles resulting in pregnancy we found levels similar to the 

physiological conditions reported previously in lipidomic profile, while in all 

embryo transfers resulting in no pregnancy with normal embryo scores, low 

levels in PGE2 and PGF2α were observed. These results demonstrate that 

PGE2 and PGF2α can potentially be used as biomarkers in the future by 

analyzing them in the EF, allowing for a possible non-invasive tool for the 

prediction of the receptive state. 

In summary, we have demonstrated a specific PGE2 and PGF2α profile in 

the human EF which can be used to detect the WOI in natural, IVF, and 
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ovum recipient cycles, which is abrogated with the insertion of an IUD (i.e. in 

refractive endometrium). We have also shown that PG synthases required 

for the production of PGE2 and PGF2α are located in the endometrial 

epithelium and uterine fluid that are hormonally regulated during the WOI by 

PG receptors located in the embryo. Using an in vitro model of embryo 

adhesion, we demonstrated that inhibition of PGE2 and PGF2α or the PG 

receptors EP2 and FP prevents embryo adhesion, which can be reversed by 

adding back these molecules or by using EP2 and FP agonists. Finally, we 

showed that PGE2 and PGF2α concentrations in EF aspirated 24h prior to 

embryo transfer are predictors of a successful pregnancy outcome. The 

overall scientific body of evidence presented in this thesis strongly suggests 

that PGE2 and PGF2α concentrations in human EF can be used as non-

invasive biomarkers that can be used to personalize ART treatments, 

offering a new diagnostic tool to assess the endometrial factor, specifically 

endometrial receptivity, just before replacing the embryo into the uterine 

cavity. 
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VII. CONCLUSIONS 

The significant increase of PGE2 and PGF2α can be used to detect the WOI 
in natural cycles. 

This lipidomic profile is consistent in the same patients in natural, HRT and 
COS cycles in the receptive endometrium and it is completely abrogated in 
refractory cycles induced by the insertion of an IUD. These observations 
indicate that the production of PGE2 and PGF2α is dependent of the receptive 
stage of the endometrium. 

Specific PGE2 and PGF2α peaking profile in the endometrial fluid is related 
with their secretion by epithelial cells. However, due to the presence of PGs 
synthases in the endometrial fluid, these PGs production could also be 
regulated in the uterine cavity.  
 
The expression and localization of the specific PGs synthases in the human 
endometrium suggest that CBR1 and AKR1C3 are the main PG synthases 
implicated in PGE2 and PGF2α production during the receptive phase. 
    
The presence of PGs is essential for embryo adhesion. The chemical 
inhibition of this PG synthases reduces blastocyst adhesion in an in vitro 
model. These results suggest that embryonic adhesion is mediated by the 
presence of PGs secreted by hEECs. Clinical translation of this study may 
be important to understand implantation failure in IVF. 
   
PGE2 and PGF2α have an essential role on embryo adhesion, and our 
studies show that they act via their EP2 and FP receptors. Such results 
could lead to further insights into the use of these agonists/antagonists 
receptors as new targets for improving clinical reproduction.  
 
During the WOI, PGF2α production may be modulated not only by 
endometrial epithelial cells but also by enzymatic activity in the endometrial 
fluid. These findings support a role for PGF2α as a key modulator of 
endometrial receptivity. 
 
Our pilot study demonstrates that PGE2 and PGF2α levels in human EF 
obtained 24 hours before embryo transfer correlates with cycle outcome. 
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