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SUMMARY 

Vibrio vulnificus es un patógeno humano emergente que es autóctono de 

ecosistemas acuáticos salobres de climas templados, tropicales y subtropicales. La 

especie se subdivide en 3 biotipos (Bt), de los cuales el Bt2 contiene un grupo de 

cepas que, además de poder infectar al hombre, pueden causar infecciones en peces. 

Este grupo es un complejo clonal serológicamente homogéneo que denominamos 

serovar E o serovar zoonótica (VvBt2SerE). Como patógeno humano, VvBt2SerE 

causa casos esporádicos de infecciones graves en heridas que pueden derivar en 

septicemia secundaria en pacientes inmunocomprometidos y como patógeno de 

peces, brotes o epizootias de una septicemia hemorrágica conocida como vibriosis 

de aguas cálidas. La presente Tesis se centra en averiguar el papel en la virulencia 

de VvB2SerE de genes seleccionados en base al conocimiento que existe sobre los 

otros biotipos de la especie, en especial el Bt1, y su patogenicidad para humanos. En 

concreto, se han seleccionado los genes rtxA13, hupA, hutR, vuuA, vep20 y fur. Los 

resultados más relevantes que se han encontrado, se discuten a continuación. 

rtxA13 codifica una toxina de la familia MARTX (Multifunctional 

Autoprocessatve Repeat in Toxin) única en la especie (tipo III) que en el Bt1 (tipo I) 

está relacionada con invasión y resistencia a la fagocitosis. Nuestro trabajo 

demuestra que la toxina tipo III ejerce la misma función que la tipo I en mamíferos 

y una función diferente en peces. Encontramos que la mutación del gen no produce 

efectos en la capacidad de colonización e invasión de VvBt2SerE pero anula su 

virulencia para anguila, lo que unido a que el patógeno causa la muerte sin alcanzar 

los tamaños poblacionales en órgano interno propios de otros vibrios, sugiere que 

la toxina produce la muerte de los animales por choque tóxico. Demostramos que el 

gen rtxA13 se expresa in vivo y que se activa sólo tras el contacto directo de la 

bacteria con células eucarióticas y lo relacionamos con citotoxicidad para distintos 

tipos celulares, incluyendo células de defensa (eritrocitos y neutrófilos) por lo que 

hipotetizamos que el choque tóxico se produce porque la toxina desencadena una 

tormenta de citoquinas como consecuencia de la interacción de la bacteria con las 

células de defensa. Asimismo, pudimos relacionar la toxina con resistencia a 

predación por amebas y ampliar su papel de factor de virulencia a factor de 

supervivencia fuera del hospedador, lo que explicaría por qué el gen rtxA13 está 

presente en todos los clones y complejos clonales del Bt2 y por duplicado, en 

plásmido y cromosoma. 
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hupA, hutR y vuuA son tres genes cromosómicos que en el Bt1 codifican para 

tres receptores relacionados con crecimiento en condiciones restrictivas en hierro. 

vep20 es un gen plasmídico, no estudiado, que presenta homología con receptores 

para hemina/hemoglobina y transferrina. Este trabajo relaciona hupA con captación 

de hemina (hutR es un gen secundario) y vuuA con captación de vulnibactina por 

VvBt2SerE y demuestra que la anulación del sistema de captación de hemina 

dependiente de HupA o del sistema de captación de vulnibactina por mutación de 

los receptores reduce la virulencia para peces y mamíferos mientras que la 

anulación de ambos sistemas atenúa aún más la virulencia para peces y elimina 

completamente la virulencia de la bacteria para mamíferos. Además, los resultados 

obtenidos con el mutante en vep20 sugieren que hay un tercer sistema de captación 

de hierro en la serovariedad zoonótica, esta vez plasmídico, que probablemente 

depende del reconocimiento de una proteína almacenadora de hierro o, lo más 

probable, del quelante transferrina, específicamente para peces. La secuenciación 

de los tres genes en una amplia colección de cepas de la especie y su posterior 

análisis filogenético demuestra que hupA y vuuA son genes antiguos que pertenecen 

al core de la especie y que presentan un grado de variación indicativo de presión de 

selección relacionada con procedencia del aislado (competencia por sideróforos, 

adaptación a hemoglobina de los peces…) mientras que vep20 es un gen de 

adquisición reciente y no presenta variación. 

Finalmente, dada la importancia que el hierro tiene en la virulencia de esta 

especie para peces y mamíferos, hemos obtenido un mutante en el gen regulador 

fur, que hemos caracterizado fenotípicamente y valorado usando un microarray 

diseñado específicamente para VvBt2SerE. Los resultados preliminares confirman 

que hay cientos de genes regulados por Fur, de forma dependiente o no de hierro, y 

regulados por hierro, y que Fur, además de un represor, puede actuar como 

activador y que, en conjunto, controlan funciones tan dispares como: movilidad, 

quimiotaxis, producción de cápsula y lípido A, resistencia a péptidos microcidas y a 

formas reactivas del oxígeno, resistencia al suero, al choque térmico, etc. Parte de 

estas funciones han sido confirmadas diseñando experimentos y comparando las 

diferencias entre cepa parental y mutante o entre condiciones de crecimiento, con y 

sin hierro.  
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En conclusión, VvBt2SerE posee un set de genes que le capacita tanto para 

sobrevivir en el medio ambiente como para infectar hospedadores tan distintos 

como peces y mamíferos, que contribuyen directamente a la colonización, invasión 

y destrucción de los tejidos/órganos del hospedador, siendo este proceso y otros 

tantos regulados por la concentración de hierro y el regulador global Fur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUMMARY 

Vibrio vulnificus is an emerging human pathogen that inhabits aquatic 

ecosystems in temperate, tropical and subtropical climates. The species is 

subdivided in three biotypes (Bt), of which the Bt2 comprises a group of strains that 

can infect both human and fish. This group is a clonal complex, serologically 

homogeneous, denominated serovar E or zoonotic serovar (VvBt2SerE). As human 

pathogen, VvBt2SerE causes sporadic cases of wound infections that can derive to 

secondary septicemia in immunocompromised patients, and as fish pathogen causes 

outbreaks of a primary septicemia known as warm-water vibriosis. The present 

Thesis is focused on find out the role in the VvBt2SerE virulence of selected genes, 

chosen in basis of the other biotypes of the species, specially the Bt1, and its 

pathogenicity for humans. Specifically, the genes rtxA13, hupA, hutR, vuuA, vep20 and 

fur were selected. The results are discussed below. 

rtxA13 codifies for a toxin of the MARTX family (Multifunctional 

Autoprocessatve Repeat in Toxin) exclusive in the species (type III) that in the Bt1 

(type I) is involved in invasion and resistance to phagocytosis. Our work 

demonstrates that type III toxin exerts the same function that type I in mammals but 

a different one in fish. We found that gene mutation did not produce effects in 

colonization and invasion of the VvBt2SerE but abolished the virulence for eels, and 

considering that the pathogen causes the animal death without rising a high number 

population common in other Vibrio species, the results suggest that the toxin 

produce the animal death by toxic shock. We demonstrated that the gene rtxA13 is 

expressed in vivo and only when the bacteria is in direct contact with eukaryotic 

cells, and that present a high cytotoxic activity towards different cellular types, 

including cells of the immune system (erythrocytes and neutrophils), so we 

hypothesized that the toxic shock is produced because the toxin triggers a cytokine 

storm as consequence of the interaction with immune cells. Moreover, we could 

relate the toxin with the resistance to amoeba predation and extend its role of 

virulence factor as a survival factor outside the host, what is according with the fact 

that the gene rtxA13 is present in all clones and clonal complexes of the Bt2 and by 

duplicated, in the plasmid and the chromosome. 

hupA, hutR and vuuA are chromosomic genes that in the Bt1 codify for three 

receptors related with growth in iron restricted conditions. Vep20 is an 
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uncharacterized plasmidic gene that present homology with hemin/hemoglobin 

and transferrin receptors. This work relates hupA with the use of hemin (hutR is a 

secondary heme-receptor) and vuuA with the use of ferric vulnibactin by VvBt2SerE 

and demonstrate that the inactivation of the HupA- or VuuA-dependent systems 

reduce the virulence degree for fish and mammals while the inactivation of both 

decreases even more the virulence degree for fish and abolishes completely the 

virulence for mammals. Moreover, the results obtained with the vep20 mutant 

suggest that there is a third iron acquisition system in the zoonotic serovar, in this 

case plasmidic, that is probably involved in the scavenge of iron from transferrin, 

specifically for fish. The sequencing of the three genes in a wide group of strains and 

the phylogenetic analysis demonstrate that hupA and vuuA belong to the core genes 

of the species and present sequence variability, while vep20 is a recently acquired 

gene without variation. 

Finally, given the importance of iron in the virulence of this species for fish 

and mammals, we obtained a mutant in the fur gene to characterize it phenotypically 

and use it in a microarray designed specifically for VvBt2SerE. The preliminary 

results confirm that there are hundreds of genes under control of Fur and iron, and 

that Fur can also work as an activator in addition to as a repressor, controlling 

phenotypes such as: motility, chemotaxis, capsule and lipid A synthesis, resistance 

to microcide peptides, plasma, heat shock, etc. Part of these functions have been 

confirmed with phenotypic assays by comparing the effects of fur mutation and the 

presence/absence of iron.  

In conclusion, VvBt2SerE possesses a set of genes that enables both survive 

in the environment and infect different hosts such as fish and mammals, 

contributing directly to the colonization, invasion and destruction of hosts 

tissues/organs, being this process and many others regulated by the iron 

concentration and the global regulator Fur. 
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HYPOTHESIS AND OBJECTIVES 

HYPOTHESIS 

 

1. rtxA13, hupA, hutR, vuuA and vep20 are virulence factors for 

V. vulnificus biotype 2 serovar E. 

2. Iron, throughout Fur and/or other regulators controls 

virulence in V. vulnificus biotype 2 serovar E. 

 

 

OBJECTIVES 

 

1. To find out the role of MARTX type III (encoded by rtxA13) in the 

virulence and survival of V. vulnificus biotype 2 serovar E. 

 
Milestone 1. To study the expression of rtxA13 and get single and 

double mutants (the gene is duplicated in chromosome II and plasmid) and 

the corresponding complemented strains. 

Milestone 2. To determine the virulence degree as well as the 

colonization and invasion degree of the mutant and complemented strains 

and compare them with that of the wild-type strain. 

Milestone 3. To determine the role of rtxA13 in the interaction 

bacteria/eukaryotic cells by using primary cultures and cell lines of epithelial 

and defensive cells from fish and mammals, and including amoeba isolated 

from fish at cellular level. 
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2.   To investigate the role of hupA, hutR, vuuA and vep20 in the 

virulence of V. vulnificus biotype 2 serovar E as well as to determine 

the phylogeny of each gene. 

 Milestone 1. To study the expression hupA, hutR, vuuA and 

vep20 and get single and multiple mutants, and the corresponding 

complemented strains. 

Milestone 2. To determine the virulence degree as well as the 

colonization and invasion degree of the mutant and complemented strains 

and compare them with that of the wild-type strain. 

Milestone 3. To determine the role of hupA, hutR, vuuA and 

vep20 in the growth of the bacterium in plasma and different iron-deficient 

media. 

Milestone 4. To sequence the genes in a wide collection of strains of 

the species and analyze phylogenetically the sequences.  

 

 

 

3. To determine the regulon Fur and iron in V. vulnificus biotype 2 

serovar E. 

Milestone 1. To design and validate a microarray platform 

containing oligoprobes for all the ORF identified in the genome of the strain 

of VvBt2SerE CECT4999. 

Milestone 2. To get a fur defective mutant and its complemented 

strain and test their phenotype with respect to the wild-type strain 

Milestone 3. To identify the whole Fur regulon and iron-regulon by 

using the microarray platform. 

Milestone 4. To test the veracity of the microarray results by 

performing a selection of specifically-designed experiments. 
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I. Vibrio vulnificus and its zoonotic variant 

 

A. Taxonomic context: biotypes and serotypes 

 

Vibrio vulnificus is a gram-negative, oxidase-positive, facultative-anaerobic 

and rod-shaped bacterium that is motile due to a polar flagellum. The species is 

considered a pathogenic aquatic bacterium, autochthonous from marine and 

estuarine ecosystems located in tropical, subtropical and temperate areas 

distributed worldwide. 

The first isolation of this species occurred in 1976 when Hollis and cols. 

(Hollis et al., 1976) identified a halophilic Vibrio in clinical samples of blood and 

spinal fluid, in the USA. Those Vibrio isolates could ferment lactose and presented a 

lower tolerance for sodium chloride than Vibrio parahaemolyticus (Hollis et al., 

1976). In the same year, Reichelt and cols. (Reichelt et al., 1976) described the 

species Beneckea vulnifica by in vitro DNA/DNA hybridizations and classified the 

clinical isolates of Hollis et al. together with a collection of environmental isolates 

into this new species. In 1979 the species was re-assigned to the genus Vibrio and 

renamed as V. vulnificus (Farmer JJ 3rd, 1979).  

Biotypes and serotypes. In 1975, vibrios phenotypically similar to the isolates 

of Hollis et al. but indole-negative were recovered from diseased eels (Anguilla 

japonica) in Japan (Muroga et al., 1976). Later, the isolates of Hollis et al. together 

with those from diseased eels were analyzed in depth by Tison and cols. who 

described two biotypes within V. vulnificus: the biotype 1 comprising the human 

isolates that are positive for indole production, ornithine descarboxylase activity, 

growth at 42ºC and acid production from mannitol and sorbitol, and the biotype 2 

clustering the eel isolates that are negative for the four previously indicated tests 

(Tison et al., 1982). According to Tison et al., the eel isolates were serologically 

identical and virulent for mice and eels. The serovar was designated serovar E by 

Biosca and cols. in 1996 who established a serotyping scheme based on outer 

membrane extraction, separation of their components by electrophoresis and 
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immunostaining with polyclonal antibodies against the O-antigen. (Biosca et al., 

1996b). The same year, an outbreak of human vibriosis among the workers of a 

tilapia-farm was registered in Israel. The new isolates were avirulent for eels, 

differed phenotypically from biotypes 1 and 2 and were grouped in a third biotype 

in 1999 (Bisharat et al., 1999). In parallel, Amaro and Biosca reported that the 

biotype 2 was potentially virulent for humans after the identification of one human 

blood isolate from the ATCC as belonging to biotype 2 (Amaro and Biosca, 1996). 

From this year, the scientific community recognized that the biotype 2 was a 

zoonotic variant of the V. vulnificus species. Later, it was reported the isolation of 

new serovars within the biotype 2 isolated from diseased eels cultured in 

freshwater-eel farms in Denmark (Fouz and Amaro, 2003). The new serovars are 

less virulent for eels than the serovar E and were avirulent for mice (animal model 

used to predict virulence for humans) (Fouz et al., 2010). Thus, the zoonotic variant 

of V. vulnificus is restricted to the serovar E of the biotype 2. 

  

B. Vibriosis 

 

1. Human vibriosis: modalities, risk factors and clinical signs 

V. vulnificus is an opportunistic pathogen that cause a disease in humans with 

multiple pathologic presentations collectively called “human vibriosis”. The human 

vibriosis can be classified in two main forms related to the disease transmission or 

the route of entry of the pathogen into the human body; skin contact or injuries 

during seawater-associated activities versus ingestion of raw or undercooked 

seafood. In both cases, the disease can lead to death by sepsis depending on a series 

of risk factors that are:  

 Chronic liver diseases: i.e. chronic hepatitis B or C, cirrhosis due to an 

excess of alcohol consumption, etc.  

 Immunodeficiency: i.e. due to acquired immunodeficiency syndrome, 

cancer or immunosuppressive chemotherapy. 

 Gastrointestinal disorders. 

 Diabetes mellitus. 
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 Renal diseases. 

 Hematological disorders that cause an increase of the iron levels on 

serum: i.e. hemochromatosis or thalassemia.  

The most dangerous of all these risk factors is the hemochromatosis; the high 

iron levels in serum provoke transferrin saturation levels higher than 70% (normal 

values are around 30%) and favor the growth of V. vulnificus in blood. Table 1 

represents the percentage of patients with risk factors that suffered V. vulnificus and 

other Vibrio infections in USA (Horseman and Surani, 2011).  

From the three biotypes, only the biotype 1 has been proved to infect by the 

oral route and cause death by primary septicemia after raw seafood consumption. 

The clinical signs are abdominal pain, cramps, nausea, vomiting, diarrhea, fever and 

chills, followed by a bacteremia produced by the invasion of the bloodstream. It is 

believed that the portal of entry in the bloodstream is the small intestine or the 

proximal colon with the ileum as the most likely site (Chen et al., 2002). This primary 

septicemia presents a mortality rate higher than 50%, and symptoms usually occur 

within 7 days after infection, although they can be delayed until 14 days in some 

cases (Haq et al., 2005).  

The three biotypes are able to cause severe wound infections that can be pre-

existent or be produced while fish-handling or fishing or doing some aquatic sports 

(Oliver J. D., 2005). In this case, the bacterium colonizes the wound (punctures, 

lacerations, scratches or abrasions) and causes a severe skin infection. Common 

clinical signs are bullae, cellulitis, ecchymosis, fever, chills, necrotizing fasciitis, 

necrotizing vasculitis and gangrene (Oliver J. D., 2005). Symptoms usually occur 

between 7 and 12 days following exposure. In patients with the mentioned 

underlying diseases, the three biotypes of V. vulnificus can invade the bloodstream 

and cause bacteremia that is known as secondary septicaemia (Figure 1) (Horseman 

and Surani, 2011). 
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Table 1. Percentage (%) of patients with risk factors by clinical syndrome and 
epidemiology study 

 

a Includes gastritis, pancreatitis, regional enteritis, peptic ulcer disease and ischemic bowel disease. 
b Includes HIV: patients receiving chemotherapy or immunosuppressive drugs (including chronic 
corticosteroid use) for cancer, organ transplantation, rheumatoid arthritis or other autoimmune 
disorders; and leukopenia or neutropenia. 

Risk factors 
 Study, year (ref.)  

Tacket et al., 
1984 

Klontz et al., 
1988 

Parik et al., 
1995 

Shapiro et al., 
1998 

Gastrointestinal  n=7  n=23 
  Liver disease    14 
  Alcoholism    14 
  Diabetes mellitus  14  5 
  Gastrointestinal 
disease/surgerya 

 28  11 

  Heart disease    10 
  Hematological disorder     
  Immunodeficiency b    5 
  Malignancy    16 
  Renal disease  14  5 
  Any chronic disease  28  35 
     
Primary septicemia n=18 n=38 n=92 n=181 
  Liver disease  66 79 80 
  Alcoholism   73 65 
  Diabetes mellitus   4 35 
  Gastrointestinal 
disease/surgerya 

   18 

  Heart disease    26 
  Hematological disorder    18 
  Immunodeficiency b    10 
  Malignancy    17 
  Renal disease    7 
  Any chronic disease 89   97 
     
Wound infection n=9 n=17  n=189 
  Liver disease  12  22 
  Alcoholism    32 
  Diabetes mellitus    20 
  Gastrointestinal 
disease/surgerya 

   10 

  Heart disease    34 
  Hematological disorder    8 
  Immunodeficiency b    9 
  Malignancy    10 
  Renal disease    7 
  Any chronic disease 56   68 
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Figure 1. Lesions from infected wounds (A) and derivates from a secondary 

septicemia (B) caused by V. vulnificus (images from J.D. Oliver). 

 

2. Eel vibriosis: Biology and “culture” of eels; Modalities and 

clinical signs; Route of transmission, portals of entry and disease 

process 

V. vulnificus biotype 2 is the aetiological agent of the warm-water vibriosis, a 

disease that affects fish cultured in brackish-water (0.3-2% NaCl) at warm 

temperatures such as tilapia and eel (Tison et al., 1982; Fouz et al., 2002; Fouz et al., 

2007). The disease is a hemorrhagic septicaemia that is triggered irrespectively of 

the immune status of the fish. The model to study this kind of disease is the eel  

Eels are catadromous fish that present a complex life-cycle with true 

metamorphoses (Tesch, 2003; Van Ginneken and Maes, 2005). The spawning area 

of American and European eels is the Sargasso Sea and that of Japanese eels is the 
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western North Pacific Ocean (Tesch, 2003; Van Ginneken and Maes, 2005). In all 

cases, it is believed that spawning takes place at a depth of hundreds meters. In the 

case of the European eel, the young larvae (leptocephali) drift towards Europe with 

the Gulf Stream and arrives approximately 1-3 years later (Bonhommeau et al., 

2010). When approaching the coast, the larvae metamorphose into the "glass eel" 

stage, enter estuaries and start migrating upstream. During this second migration, 

the glass eels metamorphose into elvers (young eels) and colonize ponds, lagoons, 

lakes, etc. The elver grows and turns yellow ("yellow eel" or adult eel) and, after 5–

20 years, some of the eels metamorphose again, become sexually mature ("silver 

eels") and migrate back to the Sargasso sea to spawn (more than 6000 km against 

the Gulf Stream) (Tesch, 2003; Van Ginneken and Maes, 2005). The European eel 

(Anguilla anguilla) currently occupies a position in the International Union for 

Conservation of Nature (IUCN) red list as a critically endangered species due to 

multiple anthropogenic factors including habitat destruction, pollution, disease and 

overfishing (http://www.iucnredlist.org). 

The life cycle of the eel is so complex and poorly understood that no 

successful methodology has been developed for its reproduction in captivity. Thus, 

production of eels is based on the capture of wild glass eels or elvers, and their 

continued growth in farms under intensive conditions (at high density in tanks) by 

using recirculation technology (Tesch, 2003). The physico-chemical parameters for 

optimal eel production are water temperature around 24 ºC, water salinity around 

1% and high density in tanks (i.e. for eels weighing 50 g, densities of 100-150 kg/m²) 

(Tesch, 2003). These conditions are favourable for V. vulnificus survival and warm-

water vibriosis transmission (Marco-Noales et al., 2001; Marco-Noales et al., 1999). 

The stressing conditions in tanks (high density, handling, periodical grading…) 

make eels more susceptible to infectious diseases such as warm-water vibriosis. 

The eel vibriosis presents two modalities depending on water salinity. The 

“brackish-water” modality (salinity 0.5-2%) occurs in farms as epizootics or 

outbreaks of high mortality and is caused by the serovar E (Biosca et al., 1991; 

Biosca et al., 1996b) (or serovar O4 according to Høi et al., 1998), while the 

freshwater (salinity 0,3-0,9%) modality occurs as outbreaks of low mortality and is 

caused by serovars A and I (Fouz et al., 2006; unpublished results) (serovar I is 
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equivalent to serovars O3 and O3/O4, according to Høi et al. [Høi et al., 1998]). In 

both cases, the external lesions appear first as petechiae on the abdomen, 

hemorrhaging of the anal fin and a reddening in the opercular region (Figure 2). 

Protrusion of the rectum is also sometimes observed. The anterior part of the belly 

is often swollen and the skin shows pathological changes which sometimes progress 

to large ulcers (2-4 cm in diameter) with central whitish-yellow necrotic tissue 

(Figure 2). Some ulcers can develop small perforations in the center. Common 

internal signs are inflammation of tissues and the intestinal canal, pale and 

hemorrhagic liver, swollen kidney and purulent ascitic fluid in the abdominal cavity. 

The specific clinical signs are ulcers on the head, in the case of the brackish water 

modality, and jaw degradation in the case of the freshwater modality (Figure 2). 

 

 

Figure 2. Clinical signs of warm water vibriosis in eels. A) Eels affected by 

vibriosis caused by serovar E with the typical clinic signs (hemorrages [b], 

protruding annus [c] and petequias [d]) as well as the specific of serovar E (ulcers 

[a]); B) eel showing the specific clinical sign of the serovar A (raw degradation) 

(image from Biosca et al., 1991). 
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Water is the prime vehicle for the transmission of both modalities of 

vibriosis, serovar E adapted to be optimally transmitted in “brackish-water” and 

serovars A and I in “fresh-water”. In addition, serovar E and non-serovar E strains 

use different portals of entry into the eel’s body: the gills, in the case of serovar E, 

and the anus, in the case of non-serovar E, which correlates with the hemorrhagic 

faeces observed in the tanks during the outbreaks caused by non-serovar E strains 

(Marco-Noales et al., 2001; Fouz et al., 2010). Examination of the survivors by 

indirect immunofluorescence and scanning electron microscopy shows that V. 

vulnificus biotype 2 forms a biofilm-like structure on the eel’s skin surface (Marco-

Noales et al., 2001) (Figure 3).  

It has been a matter of speculation if V. vulnificus also infects eels in nature. 

The most accepted hypothesis is that eels become infected with V. vulnificus in the 

coastal waters, mainly estuarine waters, and carry V. vulnificus to the aquaculture 

installations when they are captured. In fact, some mild warm-water vibriosis cases 

among wild-eels in lakes have been reported. These cases were produced by non-

serovar E strains (Amaro et al., 1995).  

Eel colonization and invasion experiments performed with serovar E 

demonstrated that this serovar multiplies on the gills following saturation 

dynamics, subsequently invades the blood stream by an unknown mechanism and 

spreads to the internal organs where it reaches population sizes that are notably 

lower than those associated with other vibriosis (Valiente et al, 2006; Valiente et al, 

2008a). 
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Figure 3. Images from Scanning Electron Microscope of the eel surface. 

Samples correspond to the covering that presented some dead eels by a V. vulnificus 

serovar E infection, after 15 days in which cohabitation between healthy and disease 

fishes was studied. In A, B and C can be observed that the covering is the eel skin, 

concretely the epidermis and the dermis. In B, both strata are randomly positioned, 

as consequence of sample preparation and in C can be observed the typical structure 

of the skin; in both images, epidermis is marked with an arrow. Groups of bacteria 

were found (D-G) adhered to the epidermis by an extracellular substance that also 

covered bacteria (D-G). In D is marked with an arrow a part of the image enlarged 

in image E. In F the arrow marks a bacterial flagella. In H, V. vulnificus serovar E in 

the surface of an infected eel visualized by a micrography of epifluorescence by 

using an antiserum anti-V. vulnificus. Bars represent 100 µm (A), 50 µm (B), 10 µm 

(C), 5 µm (D), 1 µm (E and F), 0.5 µm (G) or 2 µm (H). Image from Marco-Noales et 

al. (2001). 
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Parallel to bacterial spreading, extensive hemorrhages are produced in all the 

organs and the animal dies in less than 72 h (Valiente et al., 2008a). The observation 

with light and electronic microscopy of the internal organs of diseased animals 

shows that hemorrhages are the only evident alteration. Although hemolysis is not 

obvious, non-specific changes, such as a slight alteration of the mitochondria 

structure in the hematopoietic cells of head kidney, and mildly increased number of 

phagocytosed erythrocytes in the spleen at 24 h and 48 h after challenge, are 

observed (Figure 4). Finally, the granulocytes are the main cell type that show clear 

signs of damage, which is evidenced by the release of cytoplasmic content, including 

granules (Figure 4). Either none, or very few bacteria are observed in the tissues of 

infected eels, and they are mostly close or within the lumen of capillary vessels 

(Figure 4). The rapid death of eels without gross clinical signs after infection by 

serovar E is congruent with studies that suggest that the eels die from a peracute 

septic shock. 



INTRODUCTION 

13 
 

           Figure 4. Histological analysis of the eels infected with the wild-type 

strain CECT4999. A) Two bacteria (marked with arrows) in a renal capillary. Notice 

that one of them is closely associated to an endoteliocyte. Bar, 1 µm B) macrophage 

with damaged erythrocytes (marked with arrows) engulfed within its cytoplasm. 

Bar, 1 µm. C) Three images of headkidney showing damaged granulocytes (marked 

with arrows): a) bar, 1 µm; b) bar, 5 µm, and c) bar, 2 µm. Image from Lee et al. 

(2012). 
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C. Epidemiology, habitat and reservoirs 

 

V. vulnificus (in fact, the biotype 1) inhabits water as free living form or 

associated to the mucous surface of aquatic animals, algae and plankton (Oliver, 

2006). Filter organisms, such as oysters, clams and mussels accumulate this 

microorganism especially in warmer months and are considered as the main 

reservoir of this human pathogenic biotype. Temperature and salinity are the two 

major factors that determine the distribution of V. vulnificus biotype 1 in the aquatic 

environment. Thus, this biotype can be recovered in culturable form from water 

with a sanity between 4 and 37 0/00, with an optimum at 10-25 0/00, and at a range 

of temperatures between 7 and 36ºC with an optimum around 20 ºC (Motes, 1998). 

Out of these values of temperature and salinity, it is hypothesized that V. vulnificus 

biotype 1 can survive but in a viable but non culturable state (i.e. at temperatures 

between 0 and 4ºC and salinities between 0 and 4 0/00) (Oliver, 1995). 

An important point that influences the geographical distribution of V. 

vulnificus biotype 1 and that of most of the marine bacteria is the global climate 

change. Global changes in temperature, even only the small ones, affect the biology 

of marine bacteria and therefore their geographical distribution and abundance. In 

fact, an increment of 5ºC has been shown to play a significant role in the increase of 

incidence of Vibrio infections (Baker-Austin et al., 2010). In the last decades changes 

in water temperature has been observed in Southern Europe and in the Black Sea 

region where the increase has been around 4-5 ºC, and in Western Europe with an 

increase of 2.5 – 3.5 ºC (Baker-Austin et al., 2010). These alterations extend the areas 

in which a marine pathogen like V. vulnificus biotype 1 can be present and therefore 

increase the risk of contact and transmission to humans. In fact, about 85% of 

human vibriosis occur between May and October, when the water temperature is 

closer to the optimal (18-20ºC) (Baker-Austin et al., 2010). Similarly, low-level 

flooding associated with sea-level change leads to a decrease of the salinity of some 

areas and potentially expands the geographic distribution of V. vulnificus biotype 1, 

as well as other natural phenomena that produce the same effect, like hurricane 

Katrina in August 2005, since this Vibrio prefers low salinity levels (Baker-Austin et 

al., 2010).  
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Although human vibriosis infections are relatively rare, V. vulnificus biotype 

1 is one of the food-borne pathogens that has shown a great increase in its incidence 

in the last years. In fact, recent data estimates that between 1996 and 2005 the 

annual incidence of V. vulnificus biotype 1 has increase 41% (Baker-Austin et al., 

2010). There are several possible explanations for these data, i.e. the increase in 

consumption of seafood in the last years that is much higher than in the early 1970s, 

thus expanding the contact of V. vulnificus biotype 1 to humans with risk factors. On 

the other hand, there has been an increase of individuals with pre-disposing risk 

factors in the global population due to an expansion of HIV that alter the immune 

system and the longer expectancy of life of people with liver chronic diseases or 

serum iron disorders. In Europe and surrounding areas, cases of V. vulnificus 

infections (regardless the biotype) have been detected in Israel, Denmark, Turkey, 

Germany, Sweden, Spain, Greece and Belgium, as it can be seen in Figure 5. In most 

of the cases, there is a clear relationship with water temperature, since the infections 

were registered in the warmest months (Baker-Austin et al., 2010).  

V. vulnificus biotype 2 emerged in Japan in 1976 and arrived to Europe with 

carrier eels in the early 80´s. The European and Japanese isolates belonged to 

serovar E. These first isolates differed from biotype 1 strains in a few biochemical 

tests (see above) and in host specificity. The serovar E spread from Spain to Nordic 

countries and caused important economic losses in multiple eel farms mainly 

located in Spain, Germany, Holland and Denmark.  

In the mid 80’s, fish farms decided to change brackish water by freshwater to 

control the severity of vibriosis outbreaks in spite of the reduction in market-eel 

production. This measure was good since the incidence of outbreaks of eel vibriosis 

reduced significantly. However, the measure propitiated the emergence of new 

serological variants of biotype 2 better adapted to the new salinity conditions. The 

new serovars, called serovars A and I, differed from serovar E in that they were 

biochemically similar to biotype 1 isolates, less virulent to eels and avirulent to 

humans (the mouse was used as animal model). Serovars A and I emerged at the end 

of 80’s in Nordic countries and arrived to Spain in 2000. 
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Figure 5. Selection of reported infections of V. vulnificus in Europe, 

indicating geographical spread of reported cases. 

 

V. vulnificus biotype 2 was considered to be an obligate eel pathogen whose 

main reservoir was the farmed-eel. Marco-Noales and cols. performed a series of 

experiments of survival in natural and artificial microscosms to demonstrate that 

this biotype, and in particular, the zoonotic serotype, is also part of the natural 

aquatic microbiota (Marco-Noales et al., 1999). The authors showed that the 

zoonotic variant survived in artificial water microcosms under starvation for years 

either associated (biofilm) to hydrophilic and hydrophobic surfaces or as a free 

living form (Marco-Noales et al., 1999). They also demonstrated that the survival of 

the zoonotic variant in natural water microcosms was mainly controlled by biotic 

factors such as competence with other bacteria (including the biotype 1 of the 

species) and predation by protozoa. In any kind of microcosms, the survival of the 
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biotype 2-serovar E was controlled by water salinity and temperature as it occurs 

with the biotype 1 of the species. Later, Sanjuán and Amaro developed a two-step 

protocol for its specific isolation from aquatic samples that uses saline eel plasma 

instead of alkaline peptone water as enrichment broth (Sanjuán and Amaro, 2004). 

The protocol allowed the isolation of this biotype and serovar from water samples 

and healthy fish demonstrating that the zoonotic variant is part of the natural 

aquatic microbiota. 

In 1996, it was reported that serovar E isolates were potentially virulent for 

humans after the identification of one human blood isolate from the ATCC as 

belonging to biotype 2 and serovar E. This isolate came from a septicemic case 

registered at the USA. After this report, a few additional human isolates from 

Germany, Holland, Sweden, France and Australia (a country where eels are not 

cultivated) were also identified as belonging to biotype 2 and serovar E, confirming 

that this serovar is a zoonotic variant that constitutes a potential risk of infection. 

The correctly traced human isolates of biotype 2 came from necrotic wounds and 

secondary septicemia cases after wild or cultured fish manipulation. These 

epidemiological data lead us to conclude that the zoonotic variant can infect 

sporadically human wounds after fish manipulation that can produce a secondary 

septicemia if the patient belongs to a group of risk.  

 

D. Phylogeny 

 

To find out the evolutionary history of V. vulnificus, sequence-based analyses 

of housekeeping genes was performed by Cohen and cols. (Cohen et al., 2007). The 

phylogenetic tree was generated on basis on variability of sequences of six 

housekeeping genes and divided the species into two lineages that they called 

Clinical and Environmental, since they were apparently related to human 

pathogenic potential. The Clinical lineage grouped most of the biotype 1 isolates 

from human clinical cases and was more diverse than the Environmental one, which 

clustered most of the environmental biotype 1 isolates including all the analysed 

biotype 2 strains, all of them of serovar E and isolated from diseased eels. The strains 
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of biotype 3, as well as two strains of biotype 1, did not cluster with none of these 

lineages. Later, Sanjuán and cols. (Sanjuán et al, 2011) performed a similar study 

with the objective of clarifying the phylogeny of the biotype 2. To this end, the 

authors used more than 100 strains of the three biotypes, including biotype 2 strains 

belonging to the three serovars from both clinical (from diseased humans and 

animals) and environmental origin (water, shrimps and fish). The authors 

sequenced and analysed the variability of three virulence-associated genes and four 

housekeeping ones and performed a multilocus sequence analysis. They found that 

V. vulnificus species had a mixed population structure formed by multiple single 

sequence types from different origins together with clones and clonal complexes, all 

of them from fish-farm-related environments. The concatenated phylogenetic tree 

clearly shows that the species is divided in three lineages (Sanjuán et al, 2011) 

(Figure 6). LI, corresponding to the predefined Environmental lineage of Cohen and 

cols. (Cohen et al., 2007), groups biotype 1 and 2 strains from environmental 

samples mostly related to fish farms, biotype 2 strains from diseased animals and 

biotypes 1 and 2 strains from human cases of wound infections and secondary 

septicaemia. LII cluster all the biotype 3 isolates, which constitute a clon (Figure 6). 

Finally, LIII, corresponding to the previously described Clinical lineage by Cohen and 

cols. (Cohen et al., 2007), comprises biotype 1 isolates from the seawater and 

seafood but not cultured fish, and human isolates from blood (most of them from 

primary septicaemia) (Figure 6). Interestingly, biotype 2 isolates appeared in LI 

distributed within different subgroups related to the serovar, and in each subgroup, 

they were closer to biotype 1 isolates from fish-farms than to each other (Figure 6). 

These results strongly suggest that acquisition of new information by horizontal 

gene transfer (HGT) and further recombination could have given rise to the 

emergence of the so-called biotype 2. In fact, the authors found evidences of 

recombination affecting some of the studied genes in the biotype 2 strains. Finally, 

the authors suggested that the polyphyletic origin of so-called biotype 2 would 

support its reclassification within the species as a pathovar (pv. piscis) that would 

group the strains with pathogenic potential to infect and develop vibriosis in fish. 

The rest of the strains of the species should be classified in genogroups with 

different phylogenetic origin and potential to infect humans. This proposal needs 

more experimental support to be accepted by the scientific community. 
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The phylogenetic study of Sanjuán and cols. also evidenced that the human 

isolates of V. vulnificus of the three biotypes could be separated from the others on 

the basis of variations in the pilF gene sequence. Later, Roig and cols. (Roig et al., 

2010) demonstrated that pilF is a good genetic marker for human virulence 

potential in this species because it is correlated to human plasma resistance. The 

same authors developed a multiplex PCR methodology to identify the strains 

potentially dangerous for public health and, later, Baker-Austin and cols. (Baker-

Austin et al., 2012) a real-time PCR assay for their detection from oysters. PilF is a 

protein required for pilus type IV assembly, whose mutation in other bacterial 

pathogens is involved in attenuated virulence for mice (Chakraborty et al., 2008). 

The exact role of pilF in virulence for mice/humans in V. vulnificus species has yet to 

be determined.  
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Figure 6. Maximum likelihood phylogenetic tree of 115 V. vulnificus 

isolates obtained from the alignment of 7 concatenated loci. Black, biotype 1 

isolates; blue, biotype 2 serovar E isolates; red, biotype 2 non-serovar E isolates; 

green, biotype 3 isolates; #, human isolates; §, diseased fish isolates. Branches where 

recombination events involving the indicated loci might have occurred are indicated 

by arrows. The numbers at the nodes represent the percentage values given by 

bootstrap analysis of 1.000 replicates. Image from Sanjuán et al. (2011). 

 

E. Genomes and plasmids 

 

Genomes 

The first genome of V. vulnificus was sequenced and published in 2003 (Chen 

et al., 2003). The sequenced strain, called YJ016, is a biotype 1 strain isolated from 

blood of a septicemic patient in Taiwan. Its genome contains a large and a small 

chromosome together with a conjugal plasmid, pYJ016, with a total of 5.028 ORFs 

(Open Reading Frames), including virulence genes such as those for cytolysins, 

proteases, and capsular polysaccharide biosynthesis as well as iron-uptake systems. 

In the same year, Kim and cols. (Kim et al., 2003a) published the genome of another 

biotype 1 strain also from blood of a septicemic patient, the strain CMCP6, in this 

case isolated in South Korea. This strain was re-sequenced and the genome was re-

annotated years later by the same research group (Kim et al., 2011). The genome is 

also formed by two chromosomes of similar size to those of the strain YJ016 and also 

presents a similar G+C content. The authors identified some genomic islands 

probably acquired by horizontal gene transfer events that confirmed the findings of 

Quirke and cols. (Quirke et al. 2006) obtained after amplification and sequencing of 

specific zones by using primers derived from YJ016 and CMCP6 strains. These 

authors hypothesized that these horizontal gene transfer (HGT) phenomena would 

have been the responsible ones for the diversification of each genome, leading to an 

increase on fitness of this species under varying environmental conditions (Quirke 

et al. 2006). The main features of the genome of the strain YJ016 are summarized in 

Table 2. 
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Since then, many V. vulnificus strains have been sequenced by diverse 

research groups; MO6-24/O (Park et al., 2011), B2 (Wang et al., 2012), E64MW 

(Morrison et al., 2012), JY1305 (Morrison et al., 2012), JY1701 (Morrison et al., 

2012), VVyb1 (Danin-Poleg et al., 2013) and ATCC27562 (Li et al., 2012), and other 

genome projects are in progress. One of these projects is the genome of one strain 

belonging to the zoonotic variant, the strain CECT4999. This strain was isolated in 

1999 from a diseased European eel. 

The main features of the genome of strain CECT4999 in comparison of that 

of strain YJ016 are summarized in Table 2. The zoonotic strain has two 

chromosomes and a plasmid higher than pYJ016 with a total of 4.533 coding DNA 

sequences or ORF. An 82% (3.698) of ORF show significant homology to previously 

identified genes and the rest corresponds to hypothetical proteins. The genome 

sizes of the two strains are comparable and both harbor a large super-integron of 

195 kb on the chromosome 1 (Table 2).  

 

Table 2. Global features of the V. vulnificus genomes (unpublished data). 

   Location YJ016 
 (Biotype 1) 

CECT4999  
(Biotype 2) 

Size (bp) 
  
  

ChrI 3.354.505 3.394.464 

ChrII 1.857.073 1.700.225 

Plasmid 48.508 68.446 

GC percentage (%) 
  
  

ChrI 46.4 46.3 

ChrII 47.2 47.1 

Plasmid 44.9 43.8 

Total number of ORFs 
  
  

ChrI 3.262 3.030 

ChrII 1.697 1.432 

Plasmid 69 71 

Number of tRNAs 
  
  

ChrI 100 103 

ChrII 12 15 

Plasmid 0 0 

Number of rRNA 
operons 
  
  

ChrI 8 (25 ORFs) 8 (25 ORFs) 

ChrII 1 (3 ORFs) 1 (3 ORFs) 

Plasmid 0 0 

Super-Integron Chr1 
1.791.850 – 1.930.850 

(138 kb) 
1.371.914 – 1.567. 221 

(195 kb) 
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The distribution of proteins in different Clusters of Orthologous Groups 

(COGs) was also similar, except for the carbohydrate transport/metabolism [G] and 

replication/recombination/repair [L], which were more abundant in YJ016 and 

CECT4999, respectively (Figure 7). Overall the profile of the two biotypes of V. 

vulnificus is very similar and differs only slightly from that of Vibrio anguillarum 775, 

presented for comparative purpouses. The distribution of COGs on the two 

chromosomes is also similar in all the three genomes with chromosome 1 encoding 

a majority of housekeeping and other essential genes and chromosome 2 encoding 

genes related to virulence and adaptations to the respective environments.  

 

Figure 7. Percentage COGs distribution of predicted ORF in the V. vulnificus 

strain CECT4999 (BT2), strain YJ016 (BT1), and fish pathogenic Vibrio anguillarum 

775 (VA) (unpublished data). 

 



INTRODUCTION 

24 
 

Out of 469 ORF uniquely present in CECT4999, 236 (50%) were annotated 

as hypothetical proteins and 94 (20%) were annotated as transposases and other 

mobile elements. Among the remaining 30% of the genes, are those involved in 

carbohydrate transport and metabolism, cell wall biogenesis, the dnd cluster, 

restriction and modification related methyltransferases and endonucleases, 

transcriptional regulators, chemotaxis related and histidine kinases involved in 

signal transduction, and toxin-antitoxin related are a few most prevalent ones. 60 

biotype 2 unique ORF were predicted as putative extracellular proteins of which 42 

(70%) were hypothetical in nature. An N-terminal signal peptide cleaved by signal 

peptidase I were found in 24 biotype 2 unique ORF confirming their secretory 

nature including a transthyretin like protein and a transferrin-binding protein A 

precursor encoded by the plasmid pR99 (described later). Other 10 proteins were 

predicted as lipoproteins based on the presence of an N-terminal signal peptide for 

the signal peptidase II, including the known eel virulence factor ‘RTX toxin and 

related Ca2+-binding protein’ encoded by the plasmid pR99. Interestingly, most of 

these ORF are located in mobile genetic elements such as genomic island and 

plasmids, corroborating the hypothesis of Quirke and cols. (Quirke et al. 2006) about 

the role of genetic mobile elements in adaptation to specific niche or environment. 

Special importance deserves the plasmid pR99 identified in the genome of the 

zoonotic strain, which will be described in depth.  

 

Plasmids 

In 2005, Lee and cols. (Lee et al., 2005) hypothesized that the virulence 

determinants for eels in V. vulnificus biotype 2 should reside in the DNA regions that 

are common to all biotype 2 strains, but are absent from biotypes 1 and 3. To identify 

these genetic regions, the authors compared the whole genome of one biotype 2-

serovar E strain with those of three biotype 1 strains by Suppression Subtractive 

Hybridization (SSH). The authors identified eight sequences, of which only three 

were present in all biotype 2 strains, regardless of its serovar, and absent in the rest 

of the biotypes. The three specific-biotype 2 sequences were plasmid-borne, which 

suggested the involvement of plasmids in virulence for eels. Related to this 
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discovery, Biosca and cols. (Biosca et al., 1996b) and later Lewin and cols. (Lewin et 

al., 2000) had previously reported that biotype 2-serovar E isolates carried a 

plasmid of 68-70 kb and that this plasmid was strongly conserved among strains 

since restriction length polymorphism and hybridization analysis did not reveal 

substantial differences. Lee and cols. (Lee et al., 2008a) sequenced the plasmid of 

the CECT4999 strain, named pR99. The main features of the pR99 plasmid are 

shown in Figure 8. 

 

 

Figure 8. Main features of the plasmid pR99 in V. vulnificus strain 

CECT4999. Some of the predicted ORFs are indicated with arrows. The ORFs 

associated with production of an RTX toxin, conjugative transfer of plasmids, and 

other functions are indicated in gray, white and black, respectively. Regions ID1 and 

ID2 are indicated with stippled bars. Image from Lee et al. (2008a).  
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Plasmid pR99 had a size of 68.5 kb and show a G+C content of 43.3%, 

containing 71 predicted open-reading frames (ORFs) (Figure 8). Plasmid pR99 

contained genes encoding RTX (repeats in toxin) toxin and those related with 

transposition and other known and unknown functions (Figure 8) and presented 

the operon mazEF encoding a toxin-antitoxin system involved in maintenance of 

plasmids. Intriguingly, the pR99 plasmid presented two homologous zones 

designated as ID1 and ID2, whose function will be described later (Figure 8). The 

presence of transposons together with the high similarity to other genes present in 

plasmids from other aquatic bacteria suggests that this plasmid, like many other 

plasmids, is a mosaic composed of regions from multiple sources that might have 

been formed via horizontal gene transfer between aquatic bacteria.  

To demonstrate that pR99 was a virulence plasmid, Lee and cols. (Lee et al., 

2008a) obtained a pR99-cured strain from CECT4999, and tested it for eel virulence 

and resistance to eel plasma. To obtain the cured strain, it was necessary to 

inactivate the operon mazEF, involved in the maintenance of the plasmid in V. 

vulnificus. The cured strain was completely avirulent for eel and sensitive to fresh 

eel plasma (Lee et al., 2008a; Valiente et al., 2008c). The introduction of pC4602-2 

plasmid, 92% identical in nucleotide sequence to pR99, into the cured strain 

restored the virulence and the ability to grow in fresh eel plasma, demonstrating 

that both pR99 and pC4602-2 are virulence plasmids (generally called pVvbt2 to 

appoint the virulence plasmid for all biotype 2 strains) (Lee et al., 2008a). Thus, 

pVvbt2 encodes a system of resistance to the bactericidal activity of eel plasma that 

allows the bacterium to invade and spread to the internal organs of the eel. None of 

the annotated ORFs show significant homology with known genes related to 

resistance to plasma killing, vep07 and vep20 are the only identified genes that are 

putatively involved in resistance to eel plasma (see later).  

To find out whether pVvbt2 also plays a role in the initial steps of infection, 

the wild-type strain and the cured strain were used in colonization experiments 

(Valiente et al., 2008c). The results demonstrated that this plasmid does not play a 

significant role in surface colonization, since both strains were equally 

chemoattracted towards and adherent to eel mucus and gills. In addition, the cured 

strain persisted in the gills of bath-infected eels for weeks post-infection (Valiente 
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et al., 2008c). The virulence plasmid was later found in all the analysed biotype 2 

strains and its high homology was confirmed by hybridization with specific probes 

(Roig and Amaro, 2009). 

Interestingly, loss of virulence plasmid does not affect either the virulence in 

mice or growth in human blood, which suggests that encodes for host-specific 

virulence system (Lee et al., 2008a). To find out if this host specificity could be 

extended to other fish species, the virulence and resistance to plasma from sea bass 

(Dicentrarchus labrax) of the cured and the wild-type strains was determined. The 

cured strain showed attenuated virulence and a significant reduction in resistance 

to sea bass plasma, suggesting that this plasmid codes for resistance to a general 

bactericidal mechanism developed by teleosts (unpublished data). The 

identification of such a mechanism would be crucial for a better understanding of 

both the pathogenesis of warm-water vibriosis and the innate immunity in teleosts.  

According to the hypothesis based on the chromosomal phylogenetic study 

of Sanjuán et al. (Sanjuán et al., 2011), biotype 2 is polyphyletic and would have 

emerged by the acquisition of new genetic information by horizontal gene transfer 

in the nutrient-enriched fish farming environment. Lee and cols. (Lee et al., 2008a) 

identified the genetic element as a virulence plasmid and the transference 

mechanism as conjugation facilitated by a conjugative plasmid. The acquisition of 

pVvbt2 could have occurred before or after the divergence of the common ancestor 

for biotype 2 strains. In the first case, avirulent fish isolates that are close to biotype 

2 isolates in the phylogenetic tree would have lost the virulence plasmid. In the 

second case, the process of plasmid acquisition would have been produced several 

times, favored by the nutrient-enriched environment of fish-farms. The second 

possibility seems to be less plausible since the virulence plasmid seems to be highly 

conserved, as little or no genetic variation has been observed in the sequences of 

some genes from a selection of biotype 2 strains belonging to three different 

serovars (Lee et al., 2008a; Roig and Amaro, 2009; unpublished results). 

Nevertheless, to clarify the origin of the so-called biotype 2, more plasmids should 

be sequenced and their phylogeny constructed and compared to that of the 

chromosomes. 
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II. Animal models to test virulence of V. vulnificus 

 

The use of animal models in the study of infectious diseases is considered as 

an essential tool for discovering their causes, treatment and prevention as well as to 

find out the role of bacterial specific factors or genes in virulence. Ideally, an animal 

selected as the model to study human or fish infections should acquire the disease 

by the natural route and manifest the same clinical signs than the natural disease.  

To perform these experiments is required to get a permit from an 

Institutional Ethical Committee. The essential question is; does the model involve 

causing significant pain to the animal? To minimize unnecessary animal pain and 

suffer, the researcher has to justify the necessity of the animal experiments. For this 

reason, it is desirable that animal experiments should be designed to test critical 

hypothesis that can provide useful information for understanding or controlling the 

bacterial disease studied; i.e. the role of a gene in virulence. The protocol to be 

approved should explain why the proposed model was chosen, ways to minimize 

the number of animals required and obtain statistically significant results, 

precedent of the use of the model by the scientific community and documentation 

of appropriate training by the laboratory personal. All the protocols with animals 

used in the present work were approved by the Ethical Committee of the University 

of Valencia. 

Two are the animal models used to study the septicemic variant of the human 

and fish vibriosis caused by V. vulnificus; the first one, the European eel (Anguilla 

anguilla), the main natural host for the warm-water vibriosis, and the second one, 

the mouse, the most commonly animal model used to emulate the human vibriosis. 

Both animal models are infected by different routes (see later) with serial ten-fold 

dilutions of a known bacterial inoculum, the course of the infection is followed for 

1-2 weeks, and death is recorded only if the bacterium is recovered in pure culture 

from internal organs of the moribund animals. Then, the virulence degree is 

calculated as fifty lethal dose (LD50) by applying the formulation of Reed and Münch 

(Reed and Münch, 1938). In the colonization and invasion experiments, external and 

internal organs are sampled at different time intervals and the number of bacteria 
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per gram of organ is expressed as colony forming units on general agar media. 

Usually, the number of CFU per gram of organs is plotted in a log. scale and the 

graphs corresponding to the wild-type strain and their mutants or to different 

isolates compared by using different statistics to test significance. 

 

A. Eels 

 
Two types of experiments are performed with eels; virulence degree 

determination and colonization/invasion assays. For both assays adult non-

immunized farmed eels are maintained in tanks containing brackish water (1.5 % of 

salt) at 25ºC with constant aeration. In both assays, eels can be infected by 

immersion, orally, intraperitoneally or anally. The intraperitoneal route is the 

preferred one to compare the virulence degree of different strains or that of the 

wild-type strain with their mutants. The bacteria are injected (0.1 ml of a known 

dilution) with a syringe directly in the peritoneal cavity. By this route, bacteria are 

able to access the bloodstream and the internal organs provoking the death of the 

host in less than 72 h (the experiment last 1 week). 

The second route of eel infection that is commonly used is the immersion 

challenge. This is the natural route of warm-water vibriosis transmission caused by 

the zoonotic strains, and for this reason, the conclusions of the experiments can be 

translated directly to the natural disease. Basically, it consists in place the eels in a 

solution of bacteria at a given concentration for a determined time (generally 1 

hour), and then, infected fishes are placed in common storage conditions recording 

deaths. Contrary to the i.p. injection, the death of the fishes is commonly slower and 

the experiment lasts 1 week. Although theoretically, death by this route of infection 

can be influenced by external factors, such as starvation, storage stress or 

interaction with other fishes, and it is not possible to know the exact inoculum of 

bacteria that enters in blood, this infection model is quite repetitive and 

reproducible. This route of infection is used for the colonization and invasion 

experiments whose objective is to determine the exact role of a gene in virulence; 

i.e. either involved in colonization or in invasion or in tissue/cell destruction. To this 

end, eels are bath infected and a sample from organs is taken from a pool of three 
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fishes (i.e. from liver, brain, blood, kidney, spleen…) at different time intervals and 

processed for bacterial counts on general media.  

 

B. Mice 

 
Mice are the commonly accepted model to study human virulence of V. 

vulnificus. These mammals are easy to handle, its breeding can be controlled without 

apparent difficulties and the results are highly reproducible. In addition, the 

researchers can buy specific strains of genetically identical mice, which minimize 

the differences among experiments. Two kinds of general murine models of 

infection are used regardless the infection route, the normal one and the iron-

overloaded model. This last model relates a decrease in LD50 with an increase of iron 

in blood, the most important risk for death among humans infected with V. 

vulnificus. Briefly, it consist in an intraperitoneal (i.p.) injection of a source of non-

toxic iron two hours before the experiment. The most common iron sources are 

hemoglobin, hemin, and ferric ammonium citrate. 

The i.p. injection in mice is the route of choice in case of the septicemic variant 

of the vibriosis caused by V. vulnificus. The procedure, the time to death and the time 

period of the experiment are the same than the used with eels differing in the 

volume of bacterial dilution inoculated per mouse, 0.2 ml. The intradermical 

injection is another route of infection where the bacterial inoculum is applied 

directly in the dermis. In this route the dose takes more time to take effect, and is 

used generally to emulate an infected open wound, one of the ways of entry of V. 

vulnificus, where the dermis is exposed and in contact with the pathogen. Although 

this route can be used by the zoonotic serovar to infect humans, the results obtained 

by different laboratories are not reproducible, which advises against its use. Finally, 

another way by which a patient can be infected with V. vulnificus is through ingestion 

of contaminated seafood. V. vulnificus is considered one of the most important 

emerging foodborne pathogens, and details of the vibriosis infection through the 

oral-contamination are interesting points to be studied. To this end, the model of 

infant mouse intragastric model is the most currently used. In brief, it consists in 

applying a bacterial inoculum directly into the stomach of the mouse with a syringe 
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and assesses different parameters like virulence degree. This animal model is 

particularly useful when studying, i.e., virulence factors that are involved in 

destruction of intestinal epithelium and invasion of the bloodstream, but it is only 

applied to biotype 1 strains.  

 

III. Virulence factors 

 

Most of the virulence studies on V. vulnificus have been performed with 

biotype 1 strains and have been focused on human virulence by using the mouse as 

animal model. Assuming that no plasmid is present in the majority of the sequenced 

biotype 1 strains from clinical origin, it can be concluded that the human virulence 

genes are located in one or the two chromosomes and the fish virulence genes are 

located both in the plasmid and in the chromosomes. 

To better understand how warm-water vibriosis of biotype 2 occurs, the 

disease can be divided into three temporal phases: gill colonization (colonization 

phase), blood invasion and spreading to the internal organs (invasion phase), and, 

finally death by a hemorrhagic septic shock (lesional phase). Since all the work has 

been performed with the zoonotic serovar, the putative role of each virulence factor 

in human vibriosis will be described and the differences between the two hosts 

(teleosts and mammals) commented on. 

 

A. Colonization and invasion factors 

 

1. Appendages: flagellum and pili.  

The flagellum is a locomotive organelle that confers bacteria the ability to 

swim in liquid and swarm on solid surfaces contributing substantially to the 

adhesion, biofilm formation and invasion of host cells and tissues (Duan et al., 2011). 

In V. vulnificus biotype 1, the flagellum has been proved to be directly involved in 
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pathogenesis since diverse flagellin gene-mutants presented a significant reduction 

in motility, adhesion and cytotoxicity concomitantly to an attenuation of virulence 

and capacity of invasiveness both in vivo and in vitro (Kim and Rhee, 2003; Lee et al., 

2004a). No similar study has been performed in the zoonotic variant of V. vulnificus. 

Adhesins are specialized surface proteins that mediate bacterial adhesion 

and are located on the bacterial surface or at the end of pili. Adhesins bind 

specifically to receptors on the surface of target host cells, determining tissue 

tropism of the pathogen and having a role in bacterial colonization of host cells 

(Klemm and Schembri, 1999). There are not many studies on adhesins in V. 

vulnificus. The pathogen possesses 2 types of type IVa pilus (MSHA and the chitin-

regulated) and one of type IVb pilus (Flp) (Aagesen and Häse, 2012), but the only 

characterized has been the chitin-regulated. In 1998 Paranjpye and cols. (Paranjpye 

et al., 1998) obtained a mutant in a clinical isolate of biotype 1 that was deficient in 

a peptidase/N-methyltransferase pilD (originally designated vvpD). This enzyme 

converts pre-pilin of a type IV pilum in mature pilin. The mutant did not form pili, 

was unable to secrete several extracellular degradative enzymes, and was 

significantly less adhesive to and cytotoxic for eukaryotic cells, as well as less 

virulent, although plasma resistance and capsule formation were not affected. The 

same research group characterized the phenotype of a second mutant deficient in 

pili, a pilA mutant deficient in the main pilin of the pilus, which showed reduced 

ability to form biofilms, lower adherence to HEp-2 epithelial cells and virulence for 

iron-overloaded mice (Paranjpye et al., 2005). Both works confirm the important 

role that adhesion proteins have in pathogenicity of V. vulnificus biotype 1 to 

humans. No study on adhesins has been performed in the zoonotic variant of V. 

vulnificus. 

 

2. Bacterial surface 

The capsule is a virulence factor for V. vulnificus biotype 1 whose putative 

function is to protect the microorganism from the bacteriolytic action of human 

plasma complement and from phagocytosis, facilitating the spread of the pathogen 

in blood and the invasion and colonization of internal organs (Simpson et al., 1987; 
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Wright et al., 1990). The encapsulated cells form opaque colonies on agar plates and 

the non-capsulated translucent ones (Simpson et al., 1987). There have been 

described various serological types of capsules in V. vulnificus biotype 1, but all of 

them seem to act in the same way in the host, protecting from the innate immunity. 

The biotype 2 cells also produce capsules and opaque and translucent isoforms can 

spontaneously revert to the opposite in the laboratory in a similar rate to that of 

biotype 1 (Biosca et al., 1993). 

Eel virulence assays demonstrate that the capsule is not essential for eel 

virulence by the i.p. route because the translucent variants are still virulent (Biosca 

et al., 1993). Nevertheless, the loss of capsule increases LD50 in 1 log unit, suggesting 

that the capsule exerts some role in the virulence for eels (Biosca et al., 1993). Hence, 

the capsule is not required for resistance to the bactericidal effect of fresh eel plasma 

and phagocytosis by eel granulocytes, although the translucent variant grows less 

efficiently in fresh eel plasma, fixes more complement and is more sensitive to the 

antimicrobial peptides than the corresponding capsulated isoform, which could 

explain the 1 log attenuation in virulence (Valiente et al., 2008d). In contrast, the 

capsule seems to be definitely required for virulence through water, the natural 

route for fish infection, since the translucent variants are completely avirulent by 

immersion challenge (Amaro et al., 1995). Related to this, experiments performed 

in vitro and in vivo demonstrate that the translucent isoform colonizes the gills in 

vivo less efficiently than the opaque isoform, resulting in a population size that could 

be even below the minimum needed for a successful infection (Amaro et al., 1995, 

Valiente et al., 2008d) (Figure 9). Thus, the capsule appears to be a factor needed for 

successful gill colonization more than to eel invasion.  

 



INTRODUCTION 

34 
 

 

Figure 9. Capsule and in vivo gill colonization. Bacteria recovered from gills 

(CFU/gr) after immersion challenge with the two variants, opaque (with capsule) 

and translucent (without capsule), of the biotype 2-serovar E strain CECT4999. 

Image from Amaro et al. (1995). 

 

The comparison between the opaque and translucent variants of the zoonotic 

serovar of biotype 2 for their virulence in mice by the i.p. route and resistance to 

human plasma demonstrates that the capsule is absolutely essential for these two 

properties (Amaro et al., 1994). In consequence, the capsule of the zoonotic strain 

seems to act as an invasion factor in mammals, as has been described for biotype 1. 

These results suggest that some differences exist in the innate immunity displayed 

by mammals and teleosts and, as a result of this, different virulence gene sets are 

used by V. vulnificus to trigger septicaemia in mammals and teleosts. 

Amaro and cols. (Amaro et al., 1994) suggested that LPS from serovar E 

strains may be involved in eel virulence and plasma resistance after testing a 

spontaneous rugose mutant in a series of in vivo and in vitro assays. A gne mutant, 

deficient in UDP-N-acetylgalactosamine (UDP- GalNAc) 4-epimerase activity, an 

enzyme that catalyzes the conversion of UDP-GalNAc to UDP-N-acetylglucosamine 

(UDP-GlcNAc), lacked O-antigen, suggesting that the O-polysaccharide chain of 

serovar E may contain GlcNAc residues in each of its repeated units (Valiente et al., 



INTRODUCTION 

35 
 

2008d). This was later confirmed by characterizing the purified LPS of a biotype 2-

serovar E strain (Knirel et al., 2009). The O-antigen deficient mutant showed 

reduced swarming and swimming on semisolid surfaces in parallel to impaired 

biofilm formation on eel mucus (Valiente et al., 2008d). In addition, the mutant 

showed deep alterations in the outer membrane architecture concomitantly to a 

noticeable increase in sensitivity to cationic peptides and fresh plasma from eels and 

humans as well as to the phagocytosis by eel phagocytes (Valiente et al., 2008d). As 

expected, the O-antigen deficient mutant was completely avirulent for eels both by 

i.p. and immersion routes, and was almost avirulent for mice by the i.p. route. These 

results confirm the multi-factorial role of the O-antigen of V. vulnificus biotype 2-

serovar E in virulence for teleosts and mammals. Thus, the O-antigen acts as 

colonization factor in fish by facilitating the attachment and biofilm formation on 

the gills, and as an invasion factor in fish and mammals by protecting the bacteria 

from common factors present in plasma and from phagocytosis. Interestingly, the O-

deficient mutant can grow efficiently in complex media and, therefore, could be a 

good candidate for the development of a live vaccine against eel vibriosis, at least 

against those caused by the zoonotic serovar of V. vulnificus biotype 2. 

 

3. Exoenzymes: metalloprotease VvpE.  

The metalloprotease, VvpE, of V. vulnificus biotype 1 is an exoenzyme that has 

been extensively studied (Miyoshi et al., 1987). This protease belongs to the 

thermolysin family (Miyoshi and Shinoda, 2000). VvpE exhibits a broad range of 

biological activities: i) it can degrade multiple host proteins, such as structural 

(laminin, elastin and collagen) and serum (transferrin) proteins, heme 

(hemoglobin) and intestinal mucus proteins (lactoferrin IgA) (Miyoshi et al., 1999; 

Kim et al., 2007; Nishina et al., 1992; Okujo et al., 1996b); ii) it can increase vascular 

permeability and cause serious hemorrhagic damage after being injected in mice 

(Miyoshi et al., 2000); iii) it can inactivate the human hemolysin (Shao and Hor, 

2000). However, the role of vvpE in human pathogenesis remains unclear, as VvpE-

deficient mutants show comparable, or higher, virulence than wild-type strains in 

mouse models (Shao and Hor, 2000). Recent studies showed the vvpE gene is highly 
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conserved among biotypes, serovars or phylogroups, suggesting a common role of 

VvpE for all biotypes (Valiente et al., 2008a). 

Valiente et al. (Valiente et al., 2008a) discovered that, in a biotype 2-serovar 

E strain, and contrary to what was expected, VvpE was involved in fish colonization, 

but not in invasion and lesion formation. This conclusion is supported mainly by the 

fact that the mutant strain was avirulent by immersion while it caused the classical 

warm-water vibriosis, with all the associated clinical signs (including the 

hemorrhages), and the same LD50 as the wild-type strain after i.p. injection. Eel 

colonization experiments highlighted the importance of the mucus that covers the 

gills in the colonization process since V. vulnificus biotype 2-serovar E was able to 

attach to the gills only when the cells or gills are covered with mucus (Figure 10). 

Additional experiments of chemotaxis and attachment to different types of fish 

mucus (skin, gill and gut mucus) showed that the wild-type strain was chemo-

attracted and attached significantly better than the mutant strain to all types of 

mucus, especially the gill mucus (Figure 10) (Valiente et al., 2008a). 
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Figure 10. Role of mucus and the protease Vvp in the attachment to gills. 

A) Electron micrographs of cultured gills incubated with the biotype 2-serovar E 

strain CECT4999 without (1) or with (2) mucus. B) Chemotaxis towards mucin (M), 

algae mucus (AM), eel skin mucus (SM), eel gill mucus (GM), eel intestine mucus (IM) 

and eel plasma (ES). CECT4999, the wild type strain; CT201, ΔvvpE mutant; CT250, 

CT201 complemented in trans with vvpE; CT218, cured strain; YJ016, a biotype 1 

strain isolated from human blood. Chemotaxis was measured as the chemotaxis 

response (CR) ratio (Valiente et al., 2008a). Asterisk: significant differences with the 

wild-type strain with p<0.05. Image from Valiente et al. (2008a). 

 

4. Iron acquisition systems 

Nutritional immunity is the most ancient system of defense against 

pathogens common to all vertebrates (Weinberg, 2009). Basically, it consists in 

metabolic adjustments in order to make iron unavailable to microorganisms, i.e. by 

increasing synthesis of the iron-binding proteins such as lactoferrin in the mucous 

tissues and transferrin (Tf) in blood. Iron is an essential element for almost all living 
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bacteria, being the high iron concentration one of the factors that contributes to the 

rapid growth in both the environment and inside the host (Hor et al., 2000). This 

trait is especially relevant in the cases of patients that present a high iron 

concentration in serum, whose are significantly more susceptible to suffer bacterial 

infections, where those caused by V. vulnificus have an outstanding role. In fact, the 

hematological disorders characterized by elevated iron levels in serum are a clear 

risk factor in case of human vibriosis caused by V. vulnificus (Strom and Paranjpye, 

2000). To overcome the iron restricted conditions imposed by hosts, bacteria have 

evolved acquiring systems that allow them to sequester iron from host proteins and 

use it for their metabolic processes.  

 

a) Siderophores 

One of the strategies is the based on siderophores, low-molecular weight 

compounds with a high binding affinity for iron that are produced by bacteria and 

fungi in iron starvation conditions. Siderophores can sequester iron in ferric form 

from iron-containing host proteins for bacterial growth (Winkelman, 2002). There 

are more than 500 types of bacterial siderophores classified into the following 

categories depending on the functional group that binds the ferric ion and the 

formed complex (Crosa and Walls, 2002): 

1. Catechols 

2. Hydroxamates 

3. Α-hydroxicarboxilic acids  

 

 



INTRODUCTION 

39 
 

Siderophores show a value of ferric ion-binding constant between 1022 and 

1055, value that is higher than that of proteins like transferrin or ferritin, allowing 

siderophore to catch Fe+3 directly from these host proteins (Neilands et al., 1995). 

This binding is specific because siderophores can discriminate iron from aluminum, 

calcium, copper and zinc. The mechanism by which the siderophores are 

internalized to the cytoplasm after scavenge iron from host proteins is detailed in 

Figure 11. 

V. vulnificus biotype 1 produces a siderophore of catechol type called 

vulnibactin (Okujo et al., 1996a). The mutants deficient in vulnibactin production 

show attenuation in virulence degree (measured as LD50) for mice around 1 and 2 

log units (Litwin et al., 1996). Some authors have described that some strains of 

biotypes 1 and 2 can produce a hydroxamate siderophore in addition to vulnibactin 

although the biosynthesis genes have not been identified (Simpson and Oliver, 1983; 

Biosca et al., 1996a). Finally, some biotype 1 strains produce a system that can bind 

and internalize exogenous hydroxamates produced by other bacteria and the 

genetic basis for such system has been identified and described (Tanabe et al., 

2005). 
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Figure 11. Mechanism of internalization of ferri-siderophore complex to 

the cytoplasm. A) The ferri-siderophore interacts specifically with the outer 

membrane receptor (it has been observed cases where the apo-form of the 

siderophore joins the receptor). B) The interaction triggers conformational changes 

in the structure of the receptor and leads to the interaction with TonB complex with 

the TonB box, a region of the receptor that contact directly with the TonB complex. 

C) The TonB complex induces conformational changes by using the protonmotive 

force in the outer membrane receptor thus releasing the ferri-siderophore to the 

periplasm (it is not clear if the ferri-siderophore passes across a channel or if it is 

translocated together with the plug domain). D) The periplasmic-binding proteins 

carry the ferri-siderophore to the ATP-binding casset (ABC) transporter of the inner 

membrane, that that finally internalizes it to the cytoplasm by an energy (ATP)-

dependent process. Once in the cytoplasm, iron is released from the siderophore 

after a reduction process of Fe+3 to Fe+2 carried out by ferric reductases, since the 

affinity of the siderophore for Fe+2 is low. Image from Faraldo-Gomez y Sansom 

(2003). 

 

 



INTRODUCTION 

41 
 

b) Heme/Hemoglobin receptors 

Other host iron-containing proteins are the hemoproteins. The heme group 

is constituted by a protoporphirin IX molecule with a central iron atom (Figure 12). 

Heme is an important cofactor that is involved in many metabolic processes such as 

oxygen transport and energy production. 

 

Figure 12. Structure of a protoporphirin IX molecule. 

These classes of hemoproteins comprise hemoglobin, haptoglobin, 

hemopexin, cytochromes, catalases, peroxidases and albumin. Hemoglobin storage 

constitutes the major part of the cell iron content (up to 65%) and is considered an 

important source of iron for bacteria (Litwin and Calderwood, 1993). 

To be able to use this iron, bacteria have developed outer membrane 

receptors that specifically recognize heme or hemoglobin, as well as low molecular 

weight compounds, hemophores, that are secreted and bound to the hemoglobin 

and carry it to the outer membrane receptor, to be posteriorly internalized to the 

cytoplasm and used as an iron source (Genco and Dixon, 2001). In Figure 13 is 

detailed the mechanism by which bacteria can acquire iron from hemoproteins.  
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  Figure 13. Mechanism of utilizarion of heme/hemoglobin as iron 

source. Hemin/hemoglobin can be released to the media by the activity of 

hemolysins against red blood cells and be internalizated by several ways. A) 

heme/hemoglobin interact with an outer membrane receptor that recognizes the 

ligand specifically. B) heme/hemoglobin binds to a hemophore that drives them to 

the outer membrane receptor. C) Extracellular or outer membrane proteases 

degrade the hemoglobin releasing heme group and leading to its binding to the outer 

membrane receptor. In all cases, the outer membrane receptor internalizes the 

heme to the periplasm and subsequently to the cytoplasm helped by the TonB 

complex and an ABC transporter in an energy-dependent manner, respectively. In 

the cytoplasm it is hypothesized that an oxigenase releases the iron from the 

protoporphirin IX. Image from Genko and Dixon (2001). 

 

This system has been described in V. vulnificus biotype 1, where the 

expression of hupA gene was under control of Fur protein and a mutation in hupA 

decreased the virulence degree for mice (Litwin et al., 1998; Oh et al., 2009). 

Moreover, a new mechanism of heme uptake has been recently identified in V. 

vulnificus, but has only been characterized in the biotype 1 (Datta and Crosa, 2012). 
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c) Transferrin receptors 

Other iron acquisition system is the one dependent on transferrin outer 

membrane receptors. The best characterized transferrin receptor is that of 

Neisseria, being considered important iron acquisition system and virulence factor 

that determine the pathogenicity of bacteria (Renauld-Mongénie et al., 2004). As 

explained in Figure 14, the receptor interacts specifically with transferrin and, since 

the receptor Fe3+ binding constant is higher than that of the transferrin, the iron is 

released from transferrin and internalized by using a similar mechanism to the 

explained for siderophores and heme receptors. In some bacteria, there can be a 

second outer membrane receptor protein that acts coordinately with the first one to 

scavenge iron from transferrin (Stokes et al., 2005). This system has not been 

described in V. vulnificus 
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Figure 14. Mechanism of utilizarion of holo-transferrin as iron source. 

The transferrin binding protein A (TbpA) is an outer membrane receptor that 

interacts specifically with holo-transferrin. In some cases, a lipoprotein (TbpB) acts 

together with TbpA and contributes to the correct binding of transferrin directing 

the transferrin to the TbpA. The TonB complex provides the energy for this 

transport, and in the periplasm, iron binds to a Fbp (ferric binding protein) that 

drives it to the cytoplasm via a FpbB/C inner membrane transporter. Image from 

Trevor Moraes web page (http://biochemistry.utoronto.ca/moraes/). 

 

5. Lesional factors 

 

a) Hemolysin VvhA 

The vvhA hemolysin of V. vulnificus is a cytolysin that has been reported to 

cause cytolysis of various eukaryotic cells including erythrocytes (Yamanaka et al., 

1990; Yamanaka et al., 1987). The role of vvhA in pathogenicity of V. vulnificus is 

http://biochemistry.utoronto.ca/moraes/
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controversial, basically because the vvhA deficient mutants obtained by different 

authors in biotype 1 strains are not attenuated in virulence degree for mice either 

by the intraperitoneal or intradermal route. However, these results contrast with 

the high toxic potency for mice of the purified VvhA; dose below 1 microgram per 

animal kill mice when are administered intraperitoneally (Lee et al., 2004b). Due to 

this toxicity, many authors still work under the hypothesis that VvhA is one of the 

virulence factors that contribute to the pathophysiological lesions observed during 

V. vulnificus infection (Lee et al., 2004b). Jeong and Satchell found that this cytotoxin 

collaborates with another one, the MARTX toxin (see later) to promote early in vivo 

growth in orally infected mice and dissemination of this pathogen from the small 

intestine to other organs (Jeong and Satchell, 2012). Using histopathological 

techniques, the authors find that both cytotoxins can cause villi disruption, epithelial 

necrosis, and inflammation in the mouse small intestine and that a double mutant, 

deficient in both cytotoxins is essentially avirulent, do not cause intestinal epithelial 

tissue damage, and is cleared from infected mice by 36 hours by an effective immune 

response (Jeong and Satchell, 2012). 

 

b) Multifunctional Autoprocessing Repeat in Toxin (MARTX) 

The RTX toxin family is a group of cytotoxins produced by Gram-negative 

bacteria with a wide variety of functions. The RTX family is defined by two common 

features: characteristic repeats in the toxin protein sequences and extracellular 

secretion by the type I secretion system (T1SS). The name RTX (repeats in toxin) 

refers to the glycine and aspartate-rich repeats located at the C-terminus of the toxin 

proteins, which facilitate export by a dedicated T1SS encoded within the rtx operon. 

RTX have been related to virulence for mammals and/or resistance to amoebal 

predation (Satchell, 2011). There is a group of RTX, named MARTX (Multifunctional 

Autoprocessing RTX) that is present in at least eight gram-negative species 

including V. vulnificus. MARTX are modular toxins much larger than RTX toxins that 

are exported by modified type 1 secretion systems containing an additional ABC-

transporter. MARTX contain external modules that are conserved at protein 

sequence level and an internal module subdivided into the functional domains that 

are the responsible of the toxic activity. The accepted model for MARTX action 
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(Satchell, 2007) consists in that the external modules interact with the membrane 

of the target eukaryotic cell, a pore is formed in the membrane and the functional 

domains of the internal module are translocated into the cytoplasm. Finally, a 

common CPD (cysteine protease) domain processes the toxin releasing active 

domains to the cytosol, which can move freely through the cell to access cellular 

targets (Figure 15). The repertoire of activities carried by these multifunctional 

toxins would ultimately be dictated by the selection of activity domains that they 

carry. 

 

 

Figure 15. Mechanism of action of MARTX toxins. It is proposed that the N- 

and C-terminal repeat regions form a structure within the eukaryotic cytosolic 

membrane that is necessary to translocate centrally located activity domains across 

the membrane. Upon transfer of the CPD into the cytosol, the toxin would be 

autoprocessed, releasing active domains to the cytosol, where they could move 

freely through the cell to access cellular targets. Image from Satchell (2007). 
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MARTX of V. vulnificus is a widely recognized virulence factor involved in 

toxic action against intestinal epitheliocytes and phagocytic cells from the innate 

immune system (Lee et al., 2007a; Kim et al., 2008). As we have previously 

discussed, this toxin seems to act additively with VvhA and both are essential for 

mice virulence of V. vulnificus biotype 1 by the oral route (Jeong and Satchell, 2012). 

V. vulnificus species produces at least three different types of MARTX (types I-III) 

that differ in the functional domains of the internal module (Roig et al., 2011; Kwak 

et al., 2011). The three types present in the virulent strains are shown in Figure 16. 

The biotype 2 strains produce MARTX type III, regardless the serotype (Roig et al., 

2011). The gene encoding this toxin, rtxA13, is present in duplicate both in the 

chromosome II and in the virulence plasmid. MARTX type III mainly differs from 

types I and II in that possesses an actin-cross-linking domain or ACD, present in 

MARTX of Vibrio cholerae but absent in the rest of MARTX of V. vulnificus (Roig et al., 

2011). 
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Figure 16. The protein structure of the MARTX types I (approx. 5200 

aa), II (approx. 4700 aa) and III (approx. 4600 aa). The external regions, the 

repeats (vertical lines) and the internal domains for each toxin are color coded as 

indicated at the bottom. The putative domains are: RID, Rho-GTPase inactivation; 

HCR, highly conserved regions; CPD, autocatalytic cysteine protease; DUF, domain 

with an unknown function; ACD, actin cross-linking; α∕ hydrolase; rtx P. 

asymbiotica, rtxA domain of Photorhabdus asymbiotica; Efa1/LifA, lymphostatin. 

Diagrams are drawn to scale. Figure adapted from Roig et al. (2011). 

 

The phylogenetic analysis performed by Roig and cols. (Roig et al., 2011) with 

the complete rtxA1 gene sequences shows that V. vulnificus forms a well-supported, 

monophyletic group with two main subgroups, one corresponding to biotype 2 and 

the other to biotypes 1 and 3. This result suggests that, at least for this gene, biotype 

2 has an evolutionary history different from that of biotypes 1 and 3, and that 

biotype 3 has emerged within the biotype 1 group. 

Efa1/LifA-like 

protein 
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According to the phylogenetic study of Sanjuán and cols. (Sanjuán et al., 

2011), biotype 2 is polyphyletic and has emerged by acquisition of a virulence 

plasmid by commensal isolates from fish-farms. Kwak and cols. (Kwak et al., 2011) 

and Roig and cols. (Roig et al., 2011) found evidences that support the hypothesis 

that the acquisition of the virulence plasmid would have favoured a recombination 

process between the chromosomal and plasmid rtx genes giving rise to a new 

variant of the mosaic gene that has probably been advantageous for the bacterium 

in the fish farming related environment. The presence of identical duplicated genes 

in the genome of the biotype 2 isolates suggests that either the acquisition has been 

recent, or a strong purifying selection is acting against mutations that modify the 

gene function. 

 

IV. Virulence regulation 

 

Coevolution between bacteria and their hosts determines characteristics of 

the interaction, the bacterial virulence genes involved, and the regulatory systems 

controlling expression of virulence genes. The association between V. vulnificus and 

their hosts appears to be a recent event since the first vibriosis cases were registered 

in the 70´s of 20th century. By this reason, the virulence-regulatory networks in V. 

vulnificus are in the first steps of an evolutive process probably from the commensal-

regulatory networks involved in the relationships of this pathogen with their 

natural animal reservoirs. In this context, a series of virulence regulators have been 

studied in V. vulnificus biotype 1 taking as reference the model V. cholerae-humans.  

 

A. Virulence transcription regulators 

 

1. SmcR 

Quorum sensing (QS) is a process of cell-cell communication that allows 

bacteria to share information about cell density and adjust gene expression 



INTRODUCTION 

50 
 

accordingly. This process enables bacteria to express energetically expensive 

processes as a collective only when the impact of those processes on the 

environment or on a host will be maximized (Xavier and Blassler, 2003). Among the 

many traits controlled by QS is the expression of virulence factors by pathogenic 

bacteria. The QS phenomenon has been poorly characterized in V. vulnificus. The 

biotype 1 harbors homologs of LuxPQ, a sensor for a borate diester autoinducer (AI-

2), and carries a luxS gene, encoding the AI-2 synthase (Kim et al., 2003b). A 

homoserine lactone autoinducer (AI-1) has been detected in some biotype 2 strains 

(Valiente et al., 2009); however, in many other well-studied strains, such as YJ016, 

CMCP6, and MO6-24/O, whose genome sequences have been completely 

determined (Chen et al., 2003; Kim et al., 2003a; Park et al., 2011), the effort to 

identify an AI-1 compound or a gene responsible for AI-1 biosynthesis has been 

unsuccessful. An analysis of the genome sequences of these three strains has 

uncovered homologs of luxU and luxO, which encode proteins responsible for the 

transduction of signals via a phosphorelay from a sensor protein (Roh et al., 2006). 

These signals are funneled to the master regulator SmcR, a homolog of LuxR in V. 

harveyi, which subsequently induces the expression of vvpE (Jeong et al., 2003)and 

represses yegD, a gene encoding a chaperone (Lee et al., 2008b). SmcR also 

represses the expression of hlyU (Shao et al., 2011) (see later), a gene encoding an 

activator that induces the expression of the virulence factors vvhA and rtxA1-1 (Kwak 

et al., 2011). Mutation of smcR gene alters multiple phenotypes in V. vulnificus 

biotype 1: biofilm formation, colony morphology, motility and survival under acidic 

or hyperosmotic stressing conditions as well as virulence to mice (Lee et al., 2007b) 

 

2. HlyU 

This protein belongs to a family of small metal-regulatory transcriptional 

repressors. The V. vulnificus HlyU of biotype 1 is a 11.9-kD protein that is very 

similar to the V. cholerae one (93% of similarity and 82% identity) (Liu and Crosa, 

2012). The in silico modeled structure of V. cholerae and V. vulnificus HlyU shows 

that it do not have the key metal-sensing residues. It is thus possible that both HlyU 

evolved from an ancestral transcriptional repressor by loss of the metal-binding 

sites and they are the only member of this family that has a positive regulatory 
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function (Liu and Crosa, 2012). HlyU of V. vulnificus biotype 1 differs from that of V. 

cholerae in that it does not act as a direct transcriptional activator but instead HlyU 

acts as a derepressor of the global repressor H-NS, which in turn repressed the 

expression of rtxA1-1 (and probably vvhA) (Liu and Crosa, 2012). Like other 

members of this family, V. vulnificus HlyU contains a helix-turn-helix motif and binds 

to DNA by forming a homodimer. According to the model of Liu and Crosa prior to 

the bacterium contacting the host cells, H-NS binds to multiple AT-rich upstream 

and downstream regions of the rtxA1-1 operon promoter. The H-NS binding causes 

the DNA molecule to bend forming a DNA:H-NS:DNA bridge that either impedes the 

movement of RNA polymerase or excludes the entry of this enzyme thus repressing 

the expression of the rtxA1-1 operon. Once the bacterium is ingested or invades open 

wounds, the bacterium contacts the host cells and somehow the expression of the 

HlyU protein is induced. HlyU binds to the upstream region of the rtxA1-1 promoter 

and replaces some of the H-NS molecules interfering and breaking the DNA:H-

NS:DNA structure, resulting in rtxA1 gene expression (Liu and Crosa, 2012).  

 

3. cAMP receptor protein (CRP) 

Bacteria have developed several mechanisms which allow the preferred 

utilization of the most efficiently metabolizable carbohydrates when these 

organisms are exposed to a mixture of carbon sources. Interestingly, the same or 

similar mechanisms are used by some pathogens to control various steps of their 

infection process. The efficient metabolism of a carbon source might serve as signal 

for proper fitness. Alternatively, the presence of a specific carbon source might 

indicate to bacterial cells that they thrive in infection-related organs, tissues or cells 

and that specific virulence genes should be turned on or switched off. The master 

regulator for this complex process is the cAMP receptor protein (CRP). The system 

works as follows: the adenylate cyclase (Cya) catalyzes the conversion of ATP into 

cAMP, which in Vibrio forms a complex with the cAMP receptor protein CRP and 

allows it to bind to operator sites in front of numerous catabolic and virulence 

operons thereby stimulating (or in a few instances inhibiting) their expression. 

Thus, V. vulnificus biotype 1 CRP activates the expression of vvhA (Choi et al., 2002), 

vvpE (Kim and Shin, 2010) and TonB3 (Alice and Crosa, 2012), a complex that 
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transduces the proton motive force of the cytoplasmic membrane to energize 

substrate transport across the outer membrane. In addition, a mutation in the V. 

vulnificus crp gene resulted in an impediment of bacterial growth and colony 

morphology was converted from opaque to translucent type, which implies a 

decrease in capsule production, besides showing significant decrease in motility and 

adhesion to host cells (Kim et al., 2013a). The role of this global regulator is extended 

not only to virulence genes, but also to other global regulators involved in virulence, 

as Lee and cols. (Lee et al., 2008c) demonstrated when detected that the cAMP-CRP 

complex bound to rpoS upstream region resulting in a repression of rpoS gene 

transcription. This regulator, RpoS, is a sigma factor involved in changes in bacterial 

physiology and structure, and has been shown to contribute for better survival 

under nutrient starvation, oxidative stress, UV irradiation and acidic conditions (Lee 

et al., 2008c). RpoS has been shown to regulate several virulence factors in V. 

vulnificus as metalloprotease vvpE (Jeong et al., 2001) as well as the transcriptional 

regulator fur (Lee et al., 2003). 

 

4. Fur 

The Ferric Uptake Regulator (Fur) is a protein that controls the expression of 

most of the genes involved in iron transport and utilization, as well as other 

important cellular processes (Hantke, 2001). It is a ubiquitous protein in 

prokaryotes formed by 128-160 aminoacids divided in two monomers. The best 

characterized Fur protein is that of E. coli (Bagg and Neilands, 1987; Saito et al., 

1991). This protein has a molecular weight of 17 KDa and two distinct domains; the 

C-terminal domain, involved in iron binding and the interactions needed for 

dimerization, and the N-terminal domain involved in DNA binding. The classical 

mechanism by which Fur exerts its regulatory activity is explained in Figure 17; in 

presence of iron, Fur dimerizes acquiring the appropriate structure to interact 

directly with a DNA region, called furbox, in the promoter region avoiding gene 

transcription; in contrast, when iron concentration in media is low, Fur cannot 

dimerize avoiding the interaction with the furbox and leading to the gene 

transcription. 
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Figure 17. Regulation mechanism of Fur protein. 

Although the classical process by which Fur controls gene expression is by 

repression in presence of exogenous iron, it has been shown that Fur may act as a 

repressor even in absence of iron (i.e. controlling iron storage molecule pfr and iron-

dependent superoxide dismutase sodB in Helicobacter pylori, fumarate hydratase 

Cj1364 and hypothetical protein Cj0859 in Campylobacter jejuni) and even as 

activator (positive regulation) combined or not with iron (bacterioferritin gene bfrB 

and other genes in Pseudomonas aeruginosa) (all data recopiled from the review of 

Carpenter et al., 2009) and controlling multiple genes in Neisseria meningitidis as 

microarray analysis suggested (Grifantini et al., 2004).  

The role of Fur as a global regulator, and not only a regulator of iron 

metabolism genes, is related with the important role that iron has in pathogenesis. 

Thus, many virulence-related genes are under Fur control, like those involved in 

toxin production, quorum sensing and biofilm formation in P. aeruginosa, opa genes 
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involved in adherence and invasion of hosts cells in N. gonorrhoeae, heat shock 

proteins in N. meningitides, hemolysin production in V. cholerae, the irgA gene, shiga 

toxins and hemolysin in E. coli, or vacuolating cytotoxin vacA in H. pylori. In fact, it 

has been demonstrated in a large number of bacteria that Fur mutation lead to a 

decrease in virulence degree. H. pylori fur mutant looses part of the colonization 

capacity on a murine model of infection due to an altered regulation of several genes 

involved in colonization. Other fur mutants in human pathogens as Staphilococcus 

aureus and Listeria monocytogenes showed reduced virulence in mammal models, 

and Campylobacter jejuni and Edwarsiella tarda fur mutants presented similar 

phenotypes in bird and fish animal models. Even in plant pathogen P. syringae the 

mutation of fur resulted in a decrease of virulence (all data recopiled from Carpenter 

et al., 2009). 

 

B. Global virulence regulation in V. vulnificus 

 
Virulence is a phenotype of a multifactorial nature, a complex feature of 

microbial pathogens that determines their survival and the interaction with their 

hosts. Virulence, in all its complexity, depends on the virulence factors, but as 

important is to possessing these factors as being able to coordinate them to develop 

the infectious diseases in the hosts in an optimal way.  

To these end, the transcription regulators controls the expression of 

determined genes, but also there are described interactions between different 

transcription regulators that lead bacteria to respond in a much fine way to each 

situation to optimize energy and resources. 

In Figure 18 are represented the main transcriptional regulators of V. 

vulnificus virulence genes and their interactions with the best characterized 

virulence factors, as well as with themselves. 
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Figure 18. Scheme of interactions between transcriptional regulators 

and virulence factors in V. vulnificus.  
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I. INTRODUCTION 

 

The hallmark for V. vulnificus biotype 2 is the virulence plasmid pVvbt2. This 

plasmid contains only five genes that show significant homology to the previously 

described virulence genes (Lee et al., 2008). These genes constitute an rtx gene 

cluster that contains two divergent operons; rtxC-A1 encodes an RTX (repeats-in-

toxin) (rtxA1) plus an enzyme for toxin modification, and rtxB-D-E encodes a toxin 

transport system (Lee et al., 2008). RTX toxins have been related to virulence for 

mammals and/or resistance to amoebal predation in multiple bacterial species 

(Satchell, 2007; Satchell, 2011). The RTX of V. vulnificus biotype 2 belongs to the 

MARTX subfamily (multifunctional autoprocessing RTX) (Lee et al., 2008). MARTX 

are proteins of high molecular weight that share a modular structure formed by two 

conserved external modules (N- and C- terminus) harboring the repeated motifs, 

and one variable internal module containing different functional domains related to 

the specific activity of the toxin (Satchell, 2011). The external regions interact with 

the membrane of eukaryotic cells allowing the translocation of effector domains to 

the cytoplasm. Upon translocation, one of the internal domains, CPD, cystein 

protease domain common to all MARTX, is activated to process the internal part of 

the protein and release the rest of the internal domains, which alter eukaryotic cell 

function (Satchell, 2007). 

As explained in the introduction section, V. vulnificus produces at least three 

different types of MARTX (that will be called types I-III) (Kwak et al., 2011; Roig et 

al., 2011) (encoded by rtxA11, rtxA12 and rtxA13). The structure of MARTX types I, II 

and III, as well as the designation of the different domains, are shown in Figure 16 

at the Introduction section. The pVvbt2-encoded MARTX corresponds to type III, 

which is structurally different to MARTX types I and II (Roig et al., 2011). MARTX 

type III differs from types I and II in that it has an ACD domain and two copies of the 

Efa1/LifA domain (equivalent to McfDUF domain described by Satchell [2007]) 

flanking the common domain. Interestingly, rtxA13 (that encodes MARTX type 

III) is present in all biotype 2 strains, regardless of their sub-phylogroup, in two 
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copies, one in pVvbt2 and the other in chromosome II (Lee et al., 2008, Roig et al., 

2011).  

The objective of the present chapter was to find out the reasons for the 

spreading of rtxA13 among the biotype 2 strains and to characterize its role in this 

biotype. To this end we obtained single- and double-knockout mutants in the 

chromosomal and plasmid rtxA13 genes, from a biotype 2-serovar E strain and used 

them in a series of in vivo and in vitro experiments with fish, freshly obtained fish 

cells and fish cell lines under the hypothesis that rtxA13 is an essential gene for the 

survival of biotype 2 in the fish farming environment. We also included mice and 

human cell lines to test the potential role of this toxin in human virulence.  

 

II. MATERIAL AND METHODS 

 

A. Bacterial strains, growth media and conditions 

 
The bacterial strains used in this study are listed in Table 1. The bacteria 

were routinely grown in LB-1/LBA-1 (Luria-Bertani broth/agar, 1% NaCl) or TSB-

1/TSA-1 (tryptic soy broth/agar, 1% NaCl). Culture purity as well as the 

homogeneity of colony morphology were routinely tested on TSA-1 plates (Biosca 

et al., 1993). In some experiments the bacteria were grown in CM9/CM9A (M9 

minimal medium broth/agar supplemented with 0.2% casamino acids [Difco] and 

0.3% yeast extract) (Sambrook and Russell, 2001), CM9-Fe (CM9 plus 100 µM 

FeCl3), CM9-Hb (CM9 plus 10 µM bovine hemoglobin [Sigma]), CM9-Tf (CM9 plus 40 

µM iron-free human apotransferrin [Sigma]) (Biosca et al., 1996), CM9-HP (CM9 

supplemented with human plasma [vol/vol], see later) and CM9-EP (CM9 

supplemented with eel plasma [vol/vol], see later). In all cases, cultures were 

inoculated with an overnight starter culture in CM9 at a ratio of 1:100 (vol/vol) in a 

final volume of 5 ml and the growth curves were constructed from 0 to 24 h post-

inoculation. V. vulnificus strains were incubated at 28ºC and E. coli strains at 37ºC 

for 18-24 h. The strains were stored in LB-1 plus glycerol (17%-20%) at -80ºC. 
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B. Exotoxins and exoenzymes 

 
The crude fraction of toxins and exoenzymes (Extra Cellular Products or 

ECPs) was obtained from 24 h-cultures on TSA-1 by the cellophane plate technique 

(Biosca and Amaro, 1996). Briefly, Trypticase soy agar plates supplemented with 

1% NaCl were overlaid with sterile cellophane sheets and inoculated with 1 ml of an 

overnight culture of isolated colonies from each strain. After incubation for 24 h at 

28ºC, cells were recovered with PBS (phosphate buffered saline, pH 7.0) and 

centrifuged at 13.000 rpm for 30 min at 4ºC. The resulting supernatants were 

sterilized by using nitrocellulose filters of 0.2 µm pore size (Millipore). Aliquots (1.5 

ml) of each ECP sample were stored at -20ºC until used. ECP protein concentrations 

were determined by the Bradford Protein Assay (BioRad), using bovine serum 

albumin (BSA) (Sigma) as the standard. 

 

C. DNA/RNA manipulation. 

 

1. Genomic DNA purification. 

DNA was extracted according to Ausubel et al. (2007) as follows: 

 Centrifuge 1 ml of culture at 13000 rpm for 5 min at 4ºC 

 Discard supernatant and resuspend pellet in 567 µl of TE buffer (10 

mM Tris, 1 mM EDTA, pH 8) 

 Add 30 µl of SDS 10% and 3 µl of proteinase K (20 mg/ml) and mix 

by inverting tubes 

 Incubate 1 h at 37ºC 

 Add 100 µl of NaCl 5M 

 Add 80 µl of CTAB (10%)/NaCl 0.7M and mix by inverting tubes 

 Incubate 10 min at 65ºC 

 Add 780 µl of chloroform/isoamyl alcohol (24:1, vol/vol), vortex 

vigorously and centrifuge 13000 rpm for 10 min at 4ºC 

 Transfer upper phase to a new tube containing 1 volume of 

phenol/chloroform/isoamyl alcohol, vortex vigorously and 

centrifuge 13000 rpm for 10 min at 4ºC 
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 Transfer upper phase to a new tube containing 0.6 volumes of ice-

cold isopropanol and incubate 30 min at -20ºC 

 Centrifuge 13000 rpm for 10 min at 4ºC 

 Wash pellet with ethanol 70% 

 Dry and resuspend pellet in MiliQ water. 

 

2. RNA extraction, DNAse treatment, cleaning and 

quantification  

RNA was extracted from tissues (in vivo experiments) or mid-log phase 

cultures (in vitro experiments) with TRI reagent (Sigma) as follows: 

 Centrifuge 1 ml of culture at 13000 rpm at 4ºC for 5 min 

 Discard the supernatant and resuspend the pellet in 500 µl of Trizol 

(Sigma) 

 Incubate with vigorous shaking at room temperature for 15 min 

  Add 200 µl of chloroform 

 Shaking briefly by vortex and incubate on ice for 5 min 

 Centrifuge at 13000 rpm at 4ºC for 15 min 

 Transfer upper phase to a new tube containing 300 µl of ice-cold 

isopropanol 

 Shaking briefly by vortex 

 Incubate on ice for 5 min and centrifuge at 13000 rpm at 4ºC for 15 

min 

 Discard the supernatant and wash the pellet with 1 ml of cold 70% 

ethanol 

 Discard the ethanol, dry the tube and resuspend the pellet in 50 µl 

of DEPC water 

 

RNA was subjected to a DNase treatment with the TURBO™ Dnase (Ambion) 

to digest and eliminate the residual DNA, following the manufacturer’s instructions 

with a slight modification; the reaction time was prolonged to 45 min and DNAse 

treatment was carried out twice to ensure the digestion of all contaminant DNA.  
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To clean the RNA from salts, enzymes and residues of DNAse treatment, 

reactions were cleaned with the Rneasy® MinEute® Cleanup Kit (Qiagen) following 

the manufacturer’s instructions.  

RNA was quantified with a Nanodrop ND-2000 and only samples with 

A260/A280 > 1.8 and A260/A230 > 2 were selected. 

 

3.       Polymerase Chain Reaction (PCR) and quantitative-RT-PCR 

(qRT-PCR) 

PCR was performed in 20 µl reaction volume that contained 0.2 µM forward 

and reverse primers, 1.5 U of Taq DNA polymerase (GoTaq; 5 U/µl; Promega), 4 µl 

of 5X Taq reaction buffer (Gotaq Green; Promega), 0.5 mM MgCl2, 0.1 mM 

deoxynucleoside triphosphate (dNTP) mix (Promega) and 2 µl of DNA. The PCR was 

performed in a Techne thermocycler (TC-412). The reaction started with 10 min of 

denaturation at 94°C and was followed by 30 cycles of 40 s of denaturation at 94°C, 

45 s of annealing at 50°C, and the extension time at 72°C depended on the amplicon 

length (generally, 1 min per kb). An additional extension at 72°C for 10 min 

completed the reaction. Amplicons were examined by agarose gel electrophoresis 

(1%) and ethidium bromide staining. 

To quantify gene expression, cDNA was obtained from total RNA (1 μg per 

reaction mixture) with the M-MLV Reverse Transcriptase kit (Invitrogen) as 

described by the manufacturer. Quantification of cDNA was performed with Power 

SYBR® Green PCR Master Mix (Applied Biosystems) by using the StepOne Plus RT-

PCR System (Applied Biosystems). Reactions were carried out in a final volume of 

20 µl with 300 nM of forward and reverse primers, 2 µl of DEPC-water, 2 µl of cDNA 

and 10 µl of 2x Master Mix. The program used was 10 min of denaturalization at 

95ºC followed by 40 cycles of 15 sec of denaturalization at 95ºC and 1 min of 

annealing and extension at 62ºC. Primers specific to recA (recA-F/recA-R: 

5’CGCCAAAGGCAGAAATCG3’ / 5’ACGAGCTTGAAGACCCATGTG3’) and rtxA13 (ACD-

F/ACD-R: 5’GAGTGATGATGGGCGCTTTAC3’ / 5’CAGCCGCGATGAGATG CT3’) were 

used to amplify DNA fragments of about 60 bp. The threshold cycle (CT) values were 

determined with StepOne Software V2.0 (Applied Biosystems) to establish the 
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relative RNA levels of the tested genes. DNA denaturing was conducted from 60 to 

95ºC to obtain the melting curve for determining the PCR amplification specificity. 

For each tested gene, three independent bacterial cultures (or animals in the case of 

in vivo experiments) were subjected to RNA extraction and cDNA obtaining, and for 

each one, three measurements of cDNA were performed. The housekeeping gene 

recA was used as standard and the fold induction (2-ΔΔCt) for each gene was 

calculated according to Livak et al. (2001). 

All primers were designed from the genome of V. vulnificus YJ016 

(chromosome 1 BA000037, chromosome 2 BA000038 and plasmid pYJ016 

AP005352) and CECT4999 (virulence plasmid pR99 AM293858 and from 

unpublished sequences of chromosomes 1 and 2) 

 

4. Southern Blot 

Southern hybridization was performed as described previously (Shao and 

Hor, 2000). Ten-microgram aliquots of the chromosomal DNA were completely 

digested with HindIII, fractionated by electrophoresis on a 1.2% agarose gel, and 

transferred to a nylon membrane (Hybond N+; Amersham Pharmacia Biotech). The 

probe was prepared and labeled with AlkPhos Direct Kit (GE Healthcare). The 

membrane was prehybridized for 30 min at 68°C, hybridized for 1.5 h at the same 

temperature, washed, and visualized by a chemiluminiscence scanner.  

 

5. Isolation of rtxA13 mutant and complemented strains 

The ΔrtxA13 mutants were isolated by in vivo allelic exchange as previously 

described (Shao and Hor, 2000). Briefly, a DNA fragment amplified from CECT4999 

with primers RTX7 (5’- CGGTAACGGCACAACCTTAG-3’) and RTX10 (5’-

CGCTTTCGCATCCACCAC-3’), was cloned into pGEMT®-easy vector (Promega). The 

region between two HindIII sites in this amplified DNA fragment was then removed 

by enzyme digestion and ligation to achieve excision of part of the Actin Cross-

linking domain (ACD) and introduction of an early stop codon (Figures 1A). This 

recombinant DNA fragment was then cloned into pCVD442, a suicide vector, 



 CHAPTER 1: MARTX OF THE ZOONOTIC SEROVAR OF Vibrio vulnificus  

75 
 

between the SphI and SacI sites. This recombinant suicide plasmid was used to 

isolate the ΔrtxA13 mutants by allelic exchange (Donnenberg and Kaper, 1991). The 

isolated mutants were checked by southern hybridization for their rtxA13 genotype, 

either wild-type or with the deletion in the chromosome and plasmid (Figure 1B). 

The single mutants, ΔprtxA13 (deletion in the plasmid, strain CT284) and ΔcrtxA13 

(deletion in the chromosome, strain CT281), and the double mutant, 

ΔprtxA13ΔcrtxA13 (strain CT285), were thus identified. To restore the wild-type 

allele, an alternative strategy to complementation was used. This consisted of 

replacing the deleted allele in mutant CT285 with the wild-type allele through 

another allelic exchange to generate the complemented strain. In this case, a DNA 

fragment containing the sequence that was deleted in the mutants and its flanking 

regions amplified from strain CECT4999 by PCR with primers RTX13 (5’-

GCGAGCTCGGTAACGGCACAACCTTAG-3’) and RTX18 (5’-GCGAGCTCATCT 

CTGAGTGGAAG-3’) was used instead. The growth of all the mutant and 

complemented strains in LB-1 was comparable to that of the wild-type strain (data 

not shown). 
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Figure 1. Confirmation of various rtxA13 mutants. A) The gene structure of 

rtxA13. The coding region is indicated by an arrow. A 1,816-bp DNA fragment 

between the two HindIII sites that contains part of the putative ACD domain (5,886-

7,269 bp) was deleted to generate the rtxA13 mutants. The probe used in southern 

hybridization is indicated below. B) Southern hybridization analysis of the mutants. 

The plasmid DNA (P) or total DNA (G) was digested with BglII, separated in a 0.8% 

agarose gel, and probed with a DNA fragment amplified from rtxA13 with primers 

RTX5 (5’-GAAACACGCAAAGCCGATGC-3’) and RTX16 (5’-CTCATCTCTGAG 

TGGAAGCC-3’). CECT4999: wild-type; CT302: ΔcrtxA13; CT284: ΔprtxA13; CT285: 

ΔcrtxA13ΔprtxA13. The bands derived from rtxA13 with and without deletions (2.6 

kb and 4.4 kb, respectively) are indicated. M: 1 kb plus DNA markers. Image from 

Lee et al. (2012). 

 

D. Phenotypic characterization of rtxA13 mutant: in vitro 

assays 

 

1.          Cell damage assays with and without cell contact   

Host cells. For these assays we used fish and mammal cell lines (EP-1 [eel 

mucus-producing epithelial cells] [Kou et al., 1995], EPC [Epithelioma papulosum 

cyprinid: this cell line was originally deposited as derived from carp, Cyprinus carpio, 

but finally identified by the ATCC –American Type Culture Collection- as derived 
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from fathead minnow, Pimephales promelas, ATCC CRL-2872] and HEp-2 [human 

laryngeal carcinoma, ATCC CCL-23]) as well as freshly obtained human and eel 

erythrocytes. The fish cell lines were cultured in L-15 medium (Sigma) without CO2 

at 28ºC while the human cell line was cultured in DMEM medium (Gibco) with 5% 

CO2 at 37ºC. Fresh eel and human erythrocytes, collected from blood by 

centrifugation (3000 rpm, 15 min, 4ºC) and washed three times with PBS were 

resuspended in L-15 at a proportion of 1% (vol/vol). 

Citotoxicity. The cytotoxicity assays were performed with bacteria or their 

ECPs in 96-well plates containing 1 × 104-5 cells/well. The monolayers were infected 

with L-15-washed bacteria (harvested from a 4-h culture in L-15) at a moi 

(multiplicity of infection) of 10 or with ECP samples (vol/vol, 100 µl). The 

supernatant was collected from each well at 90 min post-infection and the 

cytotoxicity for cell lines was estimated by measuring the absorbance at 490 nm of 

released lactate dehydrogenase (LDH) while that for erythrocytes (see later) by 

measuring the absorbance at 540 nm of the released hemoglobin (Shinoda et al., 

1985). LDH assay was performed with the CytoTox 96 Non-Radioactive Cytotoxicity 

assay kit (Promega) following manufacturer’s instructions. 

Contact assay. To test whether contact with eukaryotic cells is essential for 

the expression of rtxA13, we used Transwell® culture plates with and without 

polycarbonate filters of 0.2 µm of pore diameter in the wells (Kim et al., 2008). The 

lower chambers of the wells with filter were filled with 100 µl of a suspension of 106 

eel erythrocytes in L-15 and the upper chambers with a suspension of 108 log phase 

cells from CECT4999 from a 4-h culture in L-15 (moi=100). In parallel, the wells 

without filter were filled with eel erythrocytes and bacterial suspensions in L-15 in 

the same proportions. The plates were incubated at 28°C for 3 h and samples were 

taken for quantification of rtxA13 expression at 3 h post-infection. 

 

2. Amoeba predation assay 

To obtain amoebae, the gills of moribund farmed fish (Psetta maxima) were 

washed several times with sterile filtered seawater (0.2 µm pore size) containing 80 

mg/L of gentamicin. The branchial lamellae were then disaggregated by rubbing 
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them through a steel mesh, previously sterilized in an autoclave, into sterile 

seawater. After homogenization using a Pasteur pipette, a few drops of the mixture 

were placed onto agar plates (0.02 g of Difco Bactoagar ml–1 distilled water 

containing 20 mg of NaCl and heat-killed E. coli). The plates were then incubated at 

21°C for 10 d, and examined daily with an inverted microscope to detect amoebae. 

Amoebae were cloned by removing a small square of agar containing trophozoites 

and transferring it to a fresh agar plate. 

After amoebae culture, 3 × 104 viable trophozoites in 1 ml of marine amoeba 

medium (0.01% malt and yeast extract, 1% Difco Bactoagar in sterile filtered sea 

water) in the well of a microplate were coincubated with PBS-washed bacteria from 

an overnight culture in LB-1 at a moi of 1000. The viable amoebae were counted 

microscopically at different time intervals. 

 

3. Interference with the innate immune system 

Obtention of plasma and erythrocytes and growth in plasma. Fresh eel 

plasma was obtained as described by Esteve-Gassent and cols. (Esteve-Gassent et al. 

2004) and human plasma was purchased from Sigma. Humans were bled by vein 

puncture and eels were bled by cardiac or caudal fin puncture with a heparin-

treated (50 mg/ml in a NaCl 0.9% solution) syringe, blood was centrifuged at 3000 

rpm at 4ºC for 5 min and plasma and erythrocytes were separated in the 

supernatant and pellet, respectively. Bacterial resistance to plasma was assessed by 

mixing 100 µl of a bacterial suspension in PBS containing 103 CFU/ml with 100 µl of 

fresh plasma and the mixtures were incubated at 28ºC (for EP) or 37ºC (for HP) for 

4 h with shaking (160 rpm). Samples were taken at 0 and 4 h post-incubation and 

the viable bacteria were enumerated by drop plate method (Hoben and 

Somasegaran, 1982). 

Phagocytosis. Phagocytosis assays were performed with phagocyte-

containing peritoneal exudate cells (PECs) freshly obtained from eels and a cell line 

of murine macrophages, RAW264.7 (ATCC TIB71). PECs were obtained from eels as 

described by Miyazaki and Kurata (1987). Briefly, eels of 300 gr of weight were 

injected with 5 ml of sterile protease peptone 10% (w/vol) in the peritoneal cavity 
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and maintained for 24 h in common storage conditions. The peritoneal cavity was 

washed with 5 ml of sterile cold saline solution (0.9% NaCl) and the phagocyte-

containing peritoneal exudate cells (PECs) were collected by centrifugation at 1800 

rpm at 4ºC for 5 min. PECs were resuspended in L15 supplemented with foetal 

bovine serum (FBS) (Sigma Aldrich) 10% (vol/vol) and with 100 µg/ml of primocin 

(Sigma Aldrich). Finally, PECs were seeded in a poli-L-lisyne treated 96-well plate 

(NUNC) at a concentration of 105 cells per well. After 18-24 hours, PECs were ready 

for infection. In parallel, RAW264.7 cells were cultured in poli-L-lisyne treated 96-

well plates (NUNC) containing DMEM (Gibco) at 37ºC 5% CO2 up to obtain a 

concentration of 105 cells per well.  

The phagocytosis assay was performed as follows. Monolayers of RAW264.7 

and eel PECs were inoculated with PBS-washed bacteria from a 4-h culture in L-15 

at a moi of 10. After 0, 30, 60 and 90 min of co-incubation, two types of bacterial 

counts were performed: i) total bacteria that survived to the phagocytosis 

(externally and internally) and ii) the bacteria that were phagocyted. In the first 

case, the phagocytes were lysed with 0.1% Triton-X100 (RAW264.7) or 100µg/ml 

ice cold-saponin (PECs) with a 5 min incubation, and the bacterial number was 

determined by drop plate method. In the second case, the cells were treated with 

gentamicin (100 μg/ml, Invitrogen) for 30 min, washed with SS-1 and lysed with 

0.1% Triton-X100/saponin for 5 min, and the released intracellular bacteria were 

enumerated by drop plate method. Finally, the intracellular survival rate after 90 

min of interaction bacteria/phagocytes was determined by incubating with 

gentamicin, lysing the phagocytes after 30, 60 and 90 min of additional incubation 

and performing the corresponding bacterial counts.  

For visualizing bacteria and phagocytic cells a hemacolor staining was 

performed as follows. Each well of a 24-well plate was covered with a poli-L-lysine-

treated round coverslide and the plate was used to culture PECs as described before. 

The monolayer was infected with bacteria at a moi of 10. After 60 min of incubation, 

supernatant was discarded and coverslides were stained with hemocolor (Merc) as 

manufacturer’s instructions. Observations and photos were made in a Nickon optic 

microscope. 
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E. Phenotypic characterization of rtxA13 mutant: in vivo 

assays 

 

1. Animal maintenance 

Three populations of farmed European eel (Anguilla anguilla) of 10g, 20g and 

100 g were used for virulence assays, colonization assays and blood extraction, 

respectively. The eels were purchased from a local eel-farm that does not vaccinate 

against V. vulnificus. Fishes were placed in quarantine in 170 L-tanks (6 fish of 100 

g, 12 of 20 g or 20 of 10 g per tank, respectively) containing brackish-water (1.5% 

NaCl, pH 7.6) with aeration, filtration and feeding systems at 25 ºC for a week. After 

quarantine, healthy fish were distributed in 100 L tanks at the same ratio, were 

infected with V. vulnificus (see later) and were maintained for 1 week at the same 

maintenance conditions but without feeding. 6- to 8-week old BALB/c mice were 

purchased in Harlan Laboratory Models S.L. and maintained for 48 h in plastic cages 

of 100 L with water and feed provided by the Animal facilities of the University of 

Valencia (UV). 

 

2. Virulence/Toxicity assay 

The bacterial virulence and the toxicity of the ECPs for the eel, expressed as 

the LD50 (lethal dose to 50% of animal) or TD50 (toxic lethal dose to 50% of animal) 

value, was determined in European elvers of 8-10 g (Amaro et al., 1995; Amaro et 

al., 1994). The bacterial virulence for the mouse was determined in 6- to 8-week old 

BALB/c mice. The eels (by peritoneal injection or immersion) and the mice (by 

peritoneal injection) were infected with ten-fold serially diluted bacterial 

suspension or with different ECP dilutions. For both eels and mice, a total of six 

animals were used per control, strain and dose. In virulence assays, mortalities were 

recorded for 1 week only when the inoculated bacterium was re-isolated in pure-

culture from the moribund animal. The LD50 was calculated as described (Reed and 

Münch, 1938) and expressed as CFU/g (i.p. injection) or ml of infective bath 

(immersion challenge), and the TD50 as µg of ECP/g.  
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3. Colonization and invasion, and co-infection assay in eels 

The eels were bath infected with the wild-type strain or with the double 

mutant strain at a dose equivalent to the LD50 of the wild-type strain. In the co-

infection experiment, the eels were either injected with or immersed in a bacterial 

suspension containing equal numbers of the wild-type and the double mutant 

strains at a dose equivalent to the LD50 of the wild-type strain in each infection 

model. A total of 24 eels per strain were infected and 6 were immersed in the same 

conditions in PBS-1. 12 live eels were randomly sampled at 0, 9, 24 and 72 h, at a 

ratio of 3 animals per sampling point (Valiente and Amaro, 2006). The bacterial 

number per ml (blood) or g (gills, liver, kidney and spleen) of sample was estimated 

by the drop plate method. The bacteria recovered from the internal organs were 

checked by colony hybridization (Roig and Amaro, 2009) with two DNA probes, one 

for vvhA and the other for rtxA13, to determine their identity. The probe for vvhA was 

amplified with vvhA-F (5’CGCCACCCACTTTCGGGCC3’) and vvhA-R 

(5’CCGCGGTACAG GTTGGCGC3’); that for rtxA13 was amplified with rtxA13p-F 

(5’GCTCGATGGCGTTCAACG3’) and rtxA13p-R (5’GCATCACGATCACCACGCGA 3’).  

 

4. Histopathology of eel tissues 

The tissues of bath infected eels with the wild-type strain or with the double 

mutant strains were examined by transmission electron microscopy (TEM); 

samples were fixed in cold 1% formaldehyde plus 2% glutaraldehyde in phosphate 

buffer 0.1 M, pH 7.4, for at least 6 h, and postfixed in 2% OsO4 in the same buffer. 

After dehydration through a series of alcohol solutions (50%-100%), the tissues 

were embedded in araldite (Durcupan-Fluka). Semithin sections of 1 µm thick were 

stained with toloudine blue and observed under a light microscope to select the area 

of interest. Ultrathin sections of 0.120 µm thick obtained with an ultramicrotome 

(Leica) were stained with uranyl acetate and lead citrate, and examined by TEM 

(Jeol-1010). 
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F. Statistical analysis 

 

All the experiments were performed by triplicate and the significance of the 

differences was tested by using the unpaired Student's t-test with a P < 0.05. 

 

III. RESULTS 

 

A. Virulence and toxicity  

 
The virulence of the wild-type strain and its derivatives was assayed in the 

eel and mouse. As shown in Table 1, the single mutants showed the same virulence 

degree for eels as the wild-type strain while the double mutant was completely 

avirulent by either i.p. injection or immersion. When the strains were tested in mice, 

the LD50 of the double mutant was about two-log units higher than that of the wild-

type strain, while the LD50 of the single mutants was 3- to 8-fold higher than that of 

the wild-type strain (Table 1). As expected, the plasmid-cured strain (CT218) was 

avirulent for eels (the loss of the plasmid makes the bacterium sensitive to the eel 

innate immunity [Valiente et al., 2008]) and as virulent for mice as the wild-type 

strain while the plasmid-cured strain with ΔcrtxA13 (CT281) showed the same 

changes in virulence degree as the double mutant (Table 1). In addition, the single 

complemented CT310 (ΔprtxA13 complemented) and the double complemented 

CT316 (ΔprtxA13 and ΔcrtxA13 complemented) exhibited the wild-type level of 

virulence in both eel and mouse (Table 1). This result confirmed that attenuated 

virulence was not caused by an unexpected mutation that had occurred elsewhere. 

The ECPs from the wild-type, the cured and the double mutant strains were 

equally toxic for eels, exhibiting similar mean toxic dose (TD50) values (Table 1). 

This result suggests that MARTX type III, if present, is not active in the ECPs and that 

other Vibrio toxins could contribute to eel virulence.  
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Table 1. V. vulnificus biotype 2 strains used in this study; virulence, toxicity and resistance to the bactericidal effect of fresh  
eel plasma (EP) or fresh human plasma (HP). 
 

 

  

Strain 

 

 

Description 

 

 

Reference 

Virulence 

LD50
 a 

Toxicity 

TD50
b

 

Plasma 

Resist.c 

mice 
(i.p.) 

eel 
(i.p.) 

eel 
(imm.) 

eel 
(i.p.) 

EP HP 

CECT4999 Wild-type strain Lee et al., 2008 5.7x105 1.5x10
2
 1.5x10

6
 1.8 ++ + 

CT218 Plasmid-cured CECT4999 Lee et al., 2008 6x10
5
 >1x10

7
 >1.0x10

8
 1.7 - + 

CT281 CT218 ΔcrtxA13 This study 
ND >1x10

7
 >1.0x10

8
 NDd ND ND 

CT284 CECT4999ΔprtxA13 This study 4.7x106 1.5x10
2
 1.5x10

6
 ND ++ + 

CT285 CECT4999ΔprtxA13ΔcrtxA13 This study 5.4x107 >1.7x10
7
 >7.0x10

7
 1.8 ++ + 

CT302 CECT4999ΔcrtxA13 This study 1.7x106 1.7x10
2 2x10

6
 ND ++ + 

CT310 Complemented from CT285 (ΔprtxA13 complemented) This study 
ND 3.5x102 ND ND ++ + 

CT316 Complemented from CT285 (ΔprtxA13 and ΔcrtxA13) This study 
5x105 3x102 ND ND ++ + 

a Virulence was calculated as LD50 after intraperitoneal injection (i.p.) (CFU per animal) or bath immersion (imm.)(CFU per ml). 
b Toxicity degree is expressed as TD50 (µg of ECP per g fish). 
c Bacterial growth after 4 h of incubation in fresh eel plasma (EP) and human plasma (HP) is expressed as the ratio final vs initial counts (-, no growth; +, 
between 1 and 10; ++, between 10 and 100; +++, between 100 and 1000). 
d ND, not done. 
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B. Eel colonization and invasion 

 

To examine whether the rtxA13 gene plays a role in fish colonization and 

invasion, eels were infected by immersion with the wild-type and the double-mutant 

strains. Contrary to expected, the double-mutant was not visibly deficient in eel 

colonization and invasion capacity (Figure 2A). Thus, it was able to adhere to gills, 

establishing a Table population similar in size to that of the wild-type strain, and 

cause septicemia but without killing the eels (Figure 2A). In addition, bacterial 

population size in the internal organs did not differ significantly to that of the wild-

type strain at 9, 24 and 72 h post-infection (Figure 2A). This result strongly suggests 

that MARTX type III is a lethal factor for eels. Additional co-infection experiments 

with both the wild-type and double-mutant strains by immersion revealed that the 

former, except from gills, was recovered in higher proportions from the blood and 

head-kidney (Figure 2B), which suggests that MARTX type III could also confer some 

advantages to the bacterium during eel colonization and invasion. 
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Figure 2. Eel colonization and invasion assays. A) Infection experiments: 

eels were infected by immersion challenge with the wild-type strain (CECT4999) or 

with the double mutant in rtxA13 (CT285) and microbial counts on TSA-1 from 

external and internal organs were performed at different time intervals post-

challenge. Asterisks indicate the significant differences (p<0.05) when compared 

with the wild-type strain. B) Co-infection experiments: eels were co-infected by 

immersion with strains CT285 and CECT4999 in a ratio 1:1 (vol:vol) at a dosis of 

1.5x106 CFU/ml and the percentage of each strain recovered on the plates is 

indicated on the Y-axis.  
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C. Histopathology 

 
The external and internal organs of the infected eels were examined 

histologically. In accordance with the low bacterial counts in internal organs, either 

an absence of bacteria or very few bacteria were observed in infected eel tissues by 

electron microscopy. Clinical signs were only observed in wild-type strain, while 

double mutant strain showed no alterations. Hemorrhaging was the only evident 

alteration observed in tissues of the eel challenged with the wild-type strain. 

Although hemolysis was not obvious, nonspecific changes, such as a slight alteration 

in the mitochondrial structure in the hematopoietic cells of head kidney or a mild 

increase in the number of phagocytosed erythrocytes in the spleen at 24 h and 48 h 

after challenge were observed (Figure 3A). Finally, the granulocytes were the main 

cell type that showed clear signs of damage (Figure 3B-D). Granulocyte damage was 

observed very early in kidneys (at 1 h post-challenge) and later (from 9 h post 

infection) in the head kidney, the main hematopoietic tissue in fish, and was mainly 

evidenced by release of cytoplasmic content, including granules (Figure 3B-D).  
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Figure 3. Histological analysis of the eels infected with the wild-type 

strain CECT4999. A) Macrophage with damaged erythrocytes (marked with 

arrows) engulfed within its cytoplasm. Bar, 1 µm. B-D) Three images of head kidney 

showing damaged granulocytes (marked with an arrow): B) bar, 1 µm; C) bar, 5 µm, 

and D) bar, 2 µm. 

 

 

 

 

 

 

 



 CHAPTER 1: MARTX OF THE ZOONOTIC SEROVAR OF Vibrio vulnificus   
 

88 
 

D. Cytotoxicity for host cells  

 

We determined cytotoxicity of the wild-type strain, mutant and 

complemented strains to epithelial fish and human cell lines as to freshly isolated 

eel and human erythrocytes. The wild-type strain proved to be toxic towards the 

three cell lines tested (Figure 4). Mutants lacking one copy of rtxA1-3 exhibited wild-

type cytotoxicity levels, while mutants lacking both copies of rtxA1-3 showed 

significant reductions in cytotoxicity levels in relation to the wild-type strain (Figure 

4). No significant differences were observed in the cytopathic effects of the 

complemented strains compared with the wild-type strain (Figure 4A and B).  

Regarding eel and human erythrocytes, significant differences were found in 

hemolysis between the double mutant and the wild-type/double complemented 

strains (Figure 5A and B). Interestingly, the double mutant became immotile and 

aggregated in presence of wild-eel erythrocytes (Figure 5C). Bacterial aggregation 

was not observed when the double mutant was incubated with cultured-eel or 

human erythrocytes (data not shown).  

In all cases, significant differences in lytic activity in all the tested cell types 

between double mutant and wild-type/complemented strains were only noticeable 

up until 1.5 h of incubation (Figure 5 and data not shown) after which all strains 

underwent complete cell lysis. 
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Figure 4. Cytotoxicity of different V. vulnificus biotype 2 strains to EP-1, 

HEp-2 and EPC cells. Cytotoxicity of bacteria or ECPs was determined by the 

released LDH through measuring the absorbance of the reaction mixture at 490 nm 

for EP-1 (A), HEp-2 (B) and EPC (C) cell lines. Asterisks indicate the significant 

differences (p<0.05) when compared with the wild-type strain. The data were from 

an average of three independent experiments and were taken at time 90 min. D) 

Microscopic observation of EPC cells inoculated with V. vulnificus ECPs; a, control; b, 

ECP from CECT4999; c, ECP from CT285. Bar, 50 μm. 
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Figure 5. Cytotoxicity of different V. vulnificus biotype 2 to erythrocytes 

from eels and humans. The wild-type strain and its derivatives were incubated 

with eel (A) or human (B) erythrocytes in a 96-well plate and hemolysis was 

determined by measuring the OD520 of the supernatant at different time intervals. 

Asterisks indicate the significant differences (p<0.05) when compared with the 

wild-type strain. The data were from an average of three independent experiments. 

C) Microscopic observation of wild-eel erythrocytes infected with CECT4999 (b), 

CT285 (c), and CT316 (d) at 60 min post-infection. Control (a), non-infected wild-

eel erythrocytes. Bar, 100 μm. 

 

Finally, no significant differences were observed in the cytopathic effects 

produced by the ECP of any of the strains (Figure 4C), which confirmed the results 

obtained in the eel toxicity assays. In fact, cytopathic effects were observed within 1 

h and were manifested by rounding, shrinking, dendritic elongation and, finally, cell 

detachment, but not by cell lysis (Figure 4D).  
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E. Interaction with host innate immune system 

 

1. Growth in plasma 

Resistance to the bactericidal effect of plasma was tested by growing the 

bacteria in CM9 supplemented with fresh eel plasma (EP) or human plasma (HP) for 

4 h. No differences were found in terms of bacterial growth in plasma among the 

different strains, with the exception of the cured strain, which was sensitive to fresh 

EP (Table 1).  

 

2. Phagocytosis by professional phagocytes  

To ascertain whether MARTX type III provides protection against 

phagocytosis, the strains were incubated in presence of eel PEC as well as murine 

macrophages. PEC obtained from eels were identified as a macrophages and 

monocytes, and were isolated in a high number that allowed working with a 

monolayer. Microscopic observations of PEC preparations revealed that they were 

enriched in neutrophils (Figure 6). As shown in Figure 6A and 6E, the wild-type 

strain and the double-complemented resisted phagocytosis by eel PEC; they were 

not internalized, multiplied extracellularly (bacterial counts between approx. 1x106 

at time 0 and 1x107 CFU/well at 90 min of incubation) and destroyed the monolayer 

in less than 60 min. The double mutant also multiplied extracellularly to a similar 

extent (counts between approx. 1x106 at time 0 and 1x107 CFU/well at 90 min of 

incubation) but it was poorly phagocytosed (maximal efficiency of 1 per 104 

bacteria) (Figure 6A) and did not destroy the monolayer within 60 min of incubation 

(Figure 6E). In addition, the internalized double mutant cells did not survive 

intracellularly, since they were destroyed by eel PEC within 90 min (Figure 6C). In 

contrast, the murine macrophages phagocytosed all the analyzed strains much more 

efficiently than eel PEC, specially the double mutant, which was internalized in 

significantly higher numbers than the other two strains (Figure 6B). In all cases, the 

internalized bacteria were also killed by the mouse macrophages (Figure 6D). These 

results suggest that MARTX type III could protect from engulfment by the 

phagocytes but not from the bacterial destruction mechanisms inside the phagocyte.  
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Figure 6. Interaction of different strains of V. vulnificus with phagocytes. 

Number of intracellular bacteria after 30, 60, and 90 min of incubation of CECT4999, 

CT285 and CT316 in monolayers of fresh eel PEC (A) or murine macrophages 

(RAW264.7) at a moi of 10. (B). Data were from an average of three independent 

experiments. Asterisks indicate significant differences (p<0.05) when compared 

with the wild-type strain. Survival inside eel PEC (C) or murine macrophages (D) 

after 30, 60 and 90 min was determined as bacterial counts as described in Material 

and Methods. The data were from an average of three independent experiments. 

Asterisks indicate the significant differences (p<0.05) when compared with the 

wild-type strain. E) Lysis of eel PEC produced by CECT4999 (b) and CT316 (d) but 

not by CT285 (c) at 60 min. post-infection. Control (a), non-inoculated eel PEC.  
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directly if bacteria were phagocyted by the PEC. Results showed that, accordingly 

with the results obtained in phagocitosys assay, the wild-type and the 

complemented strain were not found inside PEC, but the double mutant strain was 

detected directly inside PEC (Figure 7). 

  

 

Figure 7. Hemacolor staining of PEC infected with V. vulnificus. A 

monolayer of PEC was infected with V. vulnificus at a moi of 10 and samples were 

stained at 60 min post-infection and stained with Hemacolor kit. A) Control. B) Wild-

type strain C) and E) Double mutant strain. D) Complemented strain CT316. 
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F. Amoeba predation  

 

To ascertain whether MARTX type III may promote biotype 2 survival in the 

environment by destroying its putative natural predator, the amoeba, we isolated 

amoeba from the gills of different cultured fish species. Amoebae were successfully 

isolated and purified from turbot (Scophthalmus maximus) gills. These amoebae 

were identified using morphological (Leiro et al., 1998) and phylogenetic criteria 

(Zhang et al., 2000) as belonging to the species Neoparamoeba pemaquidensis, a gill 

disease-causing amoebic species. The amoebae were cultured with live bacteria 

from the wild-type or the double-mutant strain. As shown in Figure 8A, N. 

pemaquidensis started to grow exponentially from day 14 in the presence of the 

double mutant; however, the amoebae grew significantly less in the presence of the 

wild-type strain. In addition, destruction of amoebae, particularly during the first 

week of incubation, was observed when they were cultured with the wild-type 

strain but not with the double mutant (Figure 8B). This destruction seemed to be by 

cellular apoptosis (Figure 8Bc). 
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Figure 8. Interaction of different strains of V. vulnificus with amoeba. A) 

Growth curve of amoeba (Neoparamoeba pemaquidensis) incubated with CECT4999 

or CT285. The data were from an average of three independent experiments. 

Asterisks indicate the significant differences (*, p<0.05: **, p<0.01). B) Differential 

interference contrast of amoeba grown with CECT4999 at time 0 (a) and 3 days (b 

and c) post incubation (notice that all amoeba are plasmolysed) or with CT285 at 

time 0 (d) and 3 days (e and f) post-incubation. Bar, 5 µm.  
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G. Gene expression analysis of rtxA13 gene  

 

To determine the environmental cues involved in rtxA13 expression, the 

transcriptional levels of rtxA13 were assayed by qRT-PCR after growth under a 

variety of culture conditions mimicking the in vivo growth. As shown in Figure 9A, 

rtxA13 expression in cultured bacteria was hardly affected by the presence (by 

adding ferric chloride, hemoglobin or hemin) or absence (by adding the iron-

depleting compound, human apotransferrin) of iron in the culture media. However, 

rtxA13 expression was increased 3- or 4-fold in the presence of either PEC or 

erythrocytes from eels or, even in the presence of amoeba (Figure 9B) but only if 

bacteria came into contact with eukaryotic cells (Figure 9C). A significant increase 

in rtxA13 expression was also observed in infected eel blood at 9 h post-infection 

(Figure 9D). The transcriptional level of rtxA13 declined to an undetectable level at 

48 h post-infection, the time by which 50% of eels had died. 
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Figure 9. rtxA13 expression in vitro and in vivo and contact experiments. 

Fold induction of rtxA13 in strain CECT4999 growing in vitro and in vivo. A) In 

culture media: RNA was extracted from 1 ml of culture at mid-log phase point, 

which is indicated for each condition in parenthesis. 1, CM9 (6 h); 2, CM9-Fe (5 h); 

3, CM9-Tf (9 h); 4, CM9-EP (8 h); 5, CM9-HP (7 h); 6, CM9-Hb (6h). B) In presence 

of eukaryotic cells: Bacteria were cultured in presence of eukaryotic cells 

maintained in L-15 (fish cells) or PBS (amoeba) at a moi of 10 and RNA was 

extracted from 1 ml of culture at different time intervals. Control L15 or PBS (1); 

L15 with eel phagocytes (EP) at 30 min (2), 60 min (3), 90 min (4) and 120 min (5) 

post-incubation; L15 with eel erythrocytes (EE) at 30 min (6), 60 min (7), 90 min 

(8) and 120 min (9); PBS with amoebae at 2h (10), 6h (11), 9h (12) and 24h post-

incubation (13). C) Contact experiments. Bacteria were incubated with or without 

contact with EE at a moi of 100 and samples were taken after 3 h of incubation. (1), 

L-15; (2), with contact; (3), without contact. D) In vivo experiments. RNA samples 

were extracted from blood of immersion-infected eels after 0h (2), 9h (3) and 24h 

(4) post-challenge. Control (1): RNA from 1 ml of culture in CM9 at mid-log phase 

point. Asterisks indicate the significant differences (p<0.05) when compared with 

bacteria grown in the respective control culture medium.  
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IV. DISCUSSION 

 

The study reported here has tested the hypothesis that MARTX type III is 

essential for V. vulnificus biotype 2 survival in the fish farming environment, in other 

words both inside and outside its main host, the eel. We selected a strain belonging 

to the zoonotic serovar with the aim of comparing the results obtained in the eel 

with those obtained in the mouse (the animal model used to predict virulence for 

humans). The results of virulence and in vivo expression assays clearly demonstrate 

that rtxA13 is a virulence gene, expressed in the internal tissues of eels during the 

infection process. In addition, rtxA13 also seems to be a virulence determinant in 

mice. However, the importance of rtxA13 in virulence is not the same in both animal 

models because inactivation of the two copies implies a complete loss of virulence 

for eels (increase in LD50 of more than 5 log. units) but only attenuated virulence for 

mice (increase in LD50 of two log. units). Another important difference is that only 

one copy of rtxA13 seems necessary for full virulence in eels while two copies are 

required for mice. Previous studies have also reported a two-log-unit attenuation in 

virulence for rtxA11 defective mutants in mice (Kim et al., 2008; Lee et al., 2007; Liu 

et al., 2007; Lo et al., 2011), suggesting that MARTX types I and III, although 

structurally different, could act similarly in a murine model of infection.  

MARTX type I is recognized as a colonization and invasion factor for mice (Lo 

et al., 2011). To ascertain whether rtxA13 mutants are avirulent because they are 

defective in eel colonization and invasion, in vivo colonization assays were 

performed by immersion. Contrary to that reported for ΔrtxA1 mutants in mice, the 

double mutant in rtxA13 was not apparently deficient in either colonization or 

invasion in the eel. This mutant was able to attach to the gills and spread to the blood 

and to the internal organs, where it survived for at least 72 h in numbers that did 

not differ significantly from those reached by the wild-type strain. Nevertheless, we 

cannot discount the possibility that the toxin increases the survival rate in blood and 

head kidney because the double mutant was recovered in a lower proportion than 

the wild-type strain in the co-infection experiments. Regarding the clinical signs, the 

double-mutant infected animals did not show any apparent external or internal sign 

and survived throughout the experimental period. In contrast, the eels infected with 
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the wild-type strain died in the expected proportion (50%) within 72 h showing 

external and internal hemorrhaging, which would suggest that MARTX acts as a 

lethal factor for fish.  

To ascertain what underlay the toxic effect caused by MARTX type III, tissues 

taken from wild-type and double mutant infected animals were microscopically 

analyzed and compared. The only cell alteration that could be clearly linked with 

MARTX type III was cell damage and release of cytoplasmic content, including 

granules of granulocytes (a class of cells that includes neutrophils), mainly from the 

hematopoietic tissues. Indirect evidence of alterations affecting erythrocytes was 

also observed.  

 To test the hypothesis that the target for MARTX type III in vivo might be the 

granulocytes and, secondarily, the erythrocytes, cytotoxicity experiments were 

performed with freshly isolated eel erythrocytes and PEC. In contrast to that 

measured in the bacteria grown in different iron-depleted culture media and 

plasma, transcription of rtxA13 was up-regulated when the bacteria were co-

cultured with both cell types. In both cases, the wild-type and the double 

complemented strains lysed a significant proportion of eel PEC and erythrocytes 

within 90 min while the double mutant was unable to do so. Consistent with this 

result, none of the wild-type bacteria was phagocytosed while the double mutant 

was phagocytosed, albeit poorly, by eel PEC, a finding that is compatible with this 

strain’s ability to colonize and invade the eel. Our results also suggest that MARTX 

type III could lyse the epithelial cells from fish and mammals, as observed with 

MARTX type I (Kim et al., 2008; Liu et al., 2007; Lo et al., 2011).  

It has been reported that MARTX type I exerts its activity only upon bacteria-

eukaryotic cell contact (Kim et al., 2008). To test whether cell contact is also 

required for MARTX type III cytotoxicity, we evaluated rtxA13 expression in 

presence of eel erythrocytes by separating them, or not, with a 0.22 µm-pore filter. 

The results indicate that expression of MARTX type III, like MARTX type I, requires 

bacterium-eukaryotic cell contact. 

Interestingly, the double mutant agglutinated in the presence of eel 

erythrocytes from wild eels. This result suggests that eel erythrocytes secrete some 
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anti-bacterial component (possibly an agglutinin) that may be involved in the 

defense against vibriosis. Recently, Morera et al. (2011) described an active role of 

salmonid erythrocytes against pathogens. According to the results of this work, an 

active role of erythrocytes against pathogens could be extended to eel erythrocytes. 

In contrast, no bacterial aggregation was observed with erythrocytes from cultured 

eels, which correlates with the general immunodepressed state that eels manifest 

under captivity (R. Barrera, personal communication). As expected, no bacterial 

aggregation was visualized in the presence of human erythrocytes, which are non-

nucleated cells.   

Contrarily to that observed in the eel, murine macrophages were able to 

phagocytose the wild-type bacteria, although less efficiently than the double mutant, 

and all internalized bacteria were killed by 90 min. Similar results were obtained by 

Lo et al. (2011) and suggest that MARTX types I and III, although structurally 

different, could act in the same way in mice by protecting the bacteria from 

phagocytosis. 

Rapid eel death without gross clinical signs after being infected with the wild-

type strain is congruent with previous studies suggesting that the eels died from 

peracute septic shock. Biosca and Amaro (1996) clearly demonstrated that LPS of V. 

vulnificus is not one of the toxic factors involved in septic shock in eels. In fact, most 

fish species lack orthologs for Toll-like receptor 4, the specific receptor for LPS in 

mammals (Iliev et al., 2005). The results obtained in this work suggest that MARTX 

type III could be the main toxic factor triggering this septic shock in fish infected 

with biotype 2. The transcriptome of immunostimulated eels has recently been 

sequenced (Callol et al., 2011) and the genome of CECT4999 is being annotated 

(unpublished results). Further studies into the host-pathogen interactions at the 

transcriptomic level are underway to validate this hypothesis.  

The presence of rtxA13 gene in duplicate was confirmed in all the analyzed 

strains of our V. vulnificus biotype 2 collection, regardless of clonal origin, serology 

or virulence degree for eels (Roig et al., MS in preparation). It is not clear why this 

gene varies in structure and is duplicated in V. vulnificus biotype 2 strains. In fact, 

possession of this gene does not provide a clear evolutionary advantage to the 

bacterium since this work shows that MARTX type III triggers overly rapid animal 
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death, without giving the bacterium time to multiply or reach similar population 

sizes to other fish pathogenic vibrios (Lamas et al., 1994). To test whether MARTX 

type III could confer survival advantages to the bacterium outside the host, we 

isolated fish amoeba from turbot gills and cultured it in the presence of the wild-

type strain or the double mutant. We observed destruction of amoebae by the wild-

type strain, but not by the double mutant, and detected up-regulation of the rtxA13 

gene in presence of fish amoeba. This indicating that MARTX type III could be 

involved in bacterial resistance to amoebal predation. Interestingly, the amoebal 

destruction microscopically resembled to that derived from cellular apoptosis, 

finding that has to be confirmed in further studies. V. vulnificus biotype 2 survives 

after antibiotic treatment in farms by forming biofilms on the fish surface, mainly on 

the gills (Marco-Noales et al., 2001). The results of the present study suggest that 

MARTX type III could be used by the bacterium in the biofilms to increase its survival 

rate in the fish farming environment.  

In conclusion, MARTX type III of V. vulnificus biotype 2 seems to be involved 

in the interaction of this organism with a wide range of eukaryotic cells, ranging 

from amoebae to professional phagocytes. In any event, after bacterium-cell contact 

this toxin seems to cause cell lysis by an unknown mechanism. While in the mouse 

MARTX type III seems to act as a colonization factor preventing the bacterial cells 

from phagocytosis, it may function as a toxin involved in the onset of septic shock in 

the eel. Furthermore, this toxin may promote V. vulnificus biotype 2 survival in the 

environment by killing the amoeba, putative predator of this organism, which is a 

plausible explanation for the wide distribution of the rtx gene cluster among 

different clones of this polyphyletic group. 
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I. INTRODUCTION 

 

Nutritional immunity, the most ancient system of defense against pathogens 

common to all vertebrates (Weinberg E. D., 2009), consists of metabolic adjustments 

in order to make iron unavailable to microorganisms. To overcome iron-starvation 

in host tissues, V. vulnificus Bt1 produces two siderophores: vulnibactin (a catechol) 

and an unnamed hydroxamate siderophore (Okujo et al., 1994; Simpson and Oliver, 

1983). The Bt1 seems to use vulnibactin as the main siderophore for scavenging iron 

from human transferrin both in vitro and in vivo. Thus, Bt1 mutants deficient in 

vulnibactin production or in the vulnibactin receptor (VuuA) grow less efficiently in 

iron-deficient media and are attenuated in mice virulence (Kim et al., 2006; Litwin 

et al., 1996; Webster et al., 2000). In addition, V. vulnificus Bt1 can utilize non-Tf-

bound iron through a heme receptor, HupA (Litwin et al., 1998) also involved in 

virulence for mice (Oh et al., 2009). Recently, a novel heme-specific receptor without 

any known role in virulence, HutR, has been described in V. vulnificus Bt1 (Datta and 

Crosa, 2012). V. vulnificus Bt2 seems to produce phenolates and hydroxamates and 

use hemin (Hm) as the sole iron source (Biosca et al., 1996; Fouz et al., 1996). The 

chemical nature of the siderophores as well as the role of iron-acquisition systems 

in virulence of the zoonotic variant is unknown. Moreover, V. vulnificus Bt2 

possesses a virulence plasmid (pVvBt2) that confers resistance to the eel innate 

immune system (Lee et al., 2008; Valiente et al., 2008a). This plasmid contains an 

ORF, Vep20, that presents similarity to a transferrin binding protein, which could be 

involved in specific virulence for fish. 

The present study is focused on the host-nonspecific and -specific iron 

acquisition systems used by the zoonotic serovar to infect humans and fish. These 

systems are usually under Fur control. As a first approach, we identified the iron-

uptake genes by using the Fur titration assay (FURTA) that enables identification of 

Fur-regulated genes (Stojiljkovic et al., 1994) and, subsequently, we obtained single 

and multiple mutants by allelic exchange in selected genes of the strain CECT4999. 

The mutants and the wild-type strain were used in a series of in vitro and in vivo 

tests including virulence for eels and mice, animals models for fish and human 

vibriosis, respectively. Finally, the evolutionary history of the identified virulence 
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genes was inferred and compared with that of the species by multilocus sequence 

analysis (MLSA).  

 

 

II. MATERIALS AND METHODS 

 

A. Bacterial strains and growth conditions 

 

1. General growth conditions 

Bacterial strains (Table 1) were routinely grown in LB-1/LBA-1 (Luria-

Bertani broth/agar, 1% NaCl) or in CM9/CM9A (Sambrook and Russel, 2001) at 

28ºC (V. vulnificus) or 37ºC (E. coli) and were stored in LB-1 plus glycerol (17%) at 

-80ºC. For FURTA (see later), the bacterial strains were grown on McConkey agar 

base (Difco) supplemented with 1% lactose and 0.04 mM FeSO4 (M+Fe). If 

necessary, ampicilin (100 µg/ml) or polymixin B (50 U/ml) were added to the 

media. 

 

2. Growth in artificial media supplemented with different 

iron sources 

Fresh eel blood, and erythrocytes and plasma from eel and human were 

obtained as described in Chapter 1, page 78. Bacteria were grown in CM9-HP (CM9 

+ fresh human plasma in proportion 1:1 [vol/vol]), CM9-EP (CM9 + fresh eel plasma 

in proportion 1:1 [vol/vol]), CM9-HP-Fe20/200 (CM9-HP + 20 or 200µM FeCl3), 

CM9-EP-Fe20/200 (CM9-EP + 20 or 200 µM FeCl3) and CM9-EE (CM9 + 1% eel 

erythrocytes in PBS + 100 µM ethylenediamine-di-[o-hydroxyphenylacetic] acid 

[EDDHA; Sigma]). Bacteria were also grown in CM9A-E (CM9 agar + 100 µM 

EDDHA), CM9-Fe (CM9 + 100 µM FeCl3), CM9-Hm-0.1/10 (0.1 or 10 µM bovine Hm 

[Sigma] + 100 µM EDDHA), CM9-Hb-10 (10 µM bovine hemoglobin [Sigma] + 100 

µM EDDHA) and CM9-Tf (40 µM iron-free human apo-Transferrin [Sigma]).  
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Table 1. Strains and plasmids used in this study. 

Designation Description Isolation source/ Reference 

V. vulnificus   

529T Biotype 1 Human blood (USA)a b 
YJ016 Biotype 1 Human blood (Taiwan)c b 
CS9133  Biotype 1 Human blood (South Korea) b 
B2  Biotype 1 Human blood (China) b 
MO24/06 Biotype 1 Human blood (South Korea) b 

CMCP6 Biotype 1 Human blood (South Korea) b 
94-8-119  Biotype 1 Human wound (Denmark) b 
E64MW Biotype 1 Human wound (USA) b 
CG100  Biotype 1 Oyster (Taiwan)  b 
JY1305   Biotype 1 Oyster (USA) b 
JY1701   Biotype 1 Oyster (USA) b  
CECT4608 Biotype 1 Healthy eel (Spain)  b 
CECT4866 Biotype 2 Serovar E Human blood (Australia)  b 
CIP8190 Biotype 2 Serovar E Human blood (France)  b 
94-8-112 Biotype 2 Serovar E Human wound (Denmark) b 
CECT5763   Biotype 2 Serovar E Eel tank water (Spain)  b 
CECT4604 Biotype 2 Serovar E Diseased eel (Spain)  b 
CECT4999 Biotype 2 Serovar E Diseased eel (Spain) b 

CECT5198 Biotype 2 Serovar A Diseased eel (Spain)  b 
CECT5768 Biotype 2 Serovar A Diseased eel (Spain)  b 
CECT5769 Biotype 2 Serovar A Diseased eel (Spain)  b 
A11  Biotype 2 Serovar A Diseased eel (Spain)  b 
A13  Biotype 2 Serovar A Diseased eel (Spain)  b 
95-8-7 Biotype 2 Serovar I Diseased eel (Denmark)  b 
95-8-6 Biotype 2 Serovar I Diseased eel (Denmark)  b 
95-8-161 Biotype 2 Serovar I Diseased eel (Denmark)  b 
95-8-162 Biotype 2 Serovar I Diseased eel (Denmark)  b 
11028  Biotype 3 Human blood (Israel)  b 
12 Biotype 3 Human blood (Israel) b 
Δvep20  CECT4999  vep20-defective mutant This study 
ΔhupA  CECT4999  hupA-defective mutant This study 
ΔvuuA CECT4999  vuuA-defective mutant This study 
ΔhutR CECT4999  hutR-defective mutant This study 
ΔhupAΔvuuA CECT4999  hupA vuuA-defective double mutant This study 
ΔhupAΔhutR CECT4999  hupA hutR-defective double mutant This study 
cvep20  Δvep20 complemented strain This study 
chupA  ΔhupA complemented strain This study 
cvuuA ΔvuuA complemented strain This study 
 
E. coli 

  

DH5α Cloning strain Invitrogen 
H1717 araD139 ΔlacU169 rpsL150 relA1 flbB5301 deoC1 ptsF25 

rbsR aroB fhuF::λ placMu 
Hantke, 1997 

s17-1λpir Strain containing the pCVD442 plasmid. thi pro hsdR 
hsdM+ recA::RP4-2-Tc::Mu λpir Kmr Nalr 

Simon et al. (1983) 

Plasmids   
pUC18 Cloning vector Ampr  Fermentas 
pCVD442 Suicide vector; sacB , bla, mobRP4 and R6k ori Donnenberg et al.(1991) 
pGemT-easy T/A Cloning vector, Ampr Promega 
pIT009 Derivative of pJRD215 with the Smr gene between two 

XmnI sites replaced by the multiple-cloning-site-
containing lacZ gene cloned from pUC19 

Lee et al. (2008) 

pΔvep20 pCVD442 with Δvep20 in the MCS This study 
pΔhupA pCVD442 with ΔhupA in the MCS This study 
pΔvuuA pCVD442 with ΔvuuA in the MCS This study 
pΔhutR pCVD442 with ΔhutR in the MCS This study 
pITvep20 pIT009 with vep20 gene and promoter in MCS This study 
pIThupA pIT009 with hupA gene and promoter in MCS This study 
pITvuuA pIT009 with vuuA gene and promoter in MCS This study 



CHAPTER 2: IRON ACQUISITION SYSTEMS OF THE ZOONOTIC SEROVAR OF Vibrio vulnificus  

110 
 

 
a Type strain of the species 
b Strains whose published sequences were used for the MLSA: sequences for vvha, rtxA1, wzz, pilF,  
glp, mdh, pyrC, and pntA were taken from Chen et al. (2003), Kim et al. (2003), Sanjuan et al. (2011), 
Morrison et al., (2012), Wang et al. (2012) and Roig et al. (2011).  
c Strain used as reference for primer design for genes vuuA, hupA and hutR. 

 

 

B. DNA/RNA manipulation 

 

1. General technics 

The general techniques of acid nucleic manipulation, PCR and qRT-PCR are 

detailed in Chapter 1, pages 71-74. All primers were designed from the sequences 

of V. vulnificus YJ016 and CECT4999 (Table 2). 

 

2. Fur Titration Assay (FURTA) 

FURTA is based on multiple plasmid-encoded Fur boxes derepressing 

chromosomal Fur-regulated genes by titrating the Fur protein (Stojiljkovic et al., 

1994). FURTA was performed according to Osorio et al. (Osorio et al., 2004). Total 

DNA from V. vulnificus CECT4999 strain was extracted and partially digested by 

using the frequent cut restriction enzyme Sau3AI, and the 0.5-6 kb fragments were 

cloned in the BamHI site of the multicopy plasmid pT7-7. The obtained library was 

transformed into in E. coli H1717 by electroporation on M+Fe. This strain carries a 

Fur-regulated fhuF::lacZ gene fusion. When a multicopy plasmid containing a Fur-

regulated promoter is introduced in this strain, cause the de-repression of the fusion 

by titrating the Fur protein, thus leading to transcription of the lacZ gene and the 

expression of a Lac+ phenotype, that in M+Fe were identified as red transformants. 

3. Isolation of mutant and complemented strains 

Single and multiple in-frame mutants were obtained by allelic exchange 

(Shao and Hor, 2000). Briefly, a series of plasmids were created in pCVD442 (a 

suicide vector that allows negative selection by sucrose) (Donnenberg and Kaper, 
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1991) by cloning fragments that contained the up-stream and downstream region 

of each gene with an in-frame deletion of the major part of the coding sequence 

(Table 1). The plasmids pΔvep20, pΔhupA, pΔvuuA or pΔhutR, containing the up- and 

downstream regions of vep20, hupA, vuuA and hutR, respectively, were transferred 

by conjugation from Escherichia coli S17-1λpir (Table 1) to strain wild-type 

CECT4999 to get single mutants. To obtain double mutants, the corresponding 

plasmids were transferred by conjugation to the corresponding single mutants 

(Table 1). Transconjugants were subsequently selected with 10% sucrose from 

those that have lost pCVD442 via second homologous recombination event. 

Complemented strains cvep20, chupA and cvuuA were generated by conjugal 

transfer of the wild-type genes, obtained with primers vep20-cF/vep20-cR, hupA-

cF/hupA-cR or vuuA-cF/vuuA-cR (Table 2), cloned in pIT009 (Lee et al., 2008) 

(pITvep20, pIThupA and pITvuuA) (Table 1).  
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Primer 
Restriction 
site 

Sequence 
Product 
size (bp) Utilization 

vep20-1 SacI GTGAGCTCTACTGGTCAAAG 1302 Mutant construction 

vep20-2 HindIII GGAAGCTTCCCAAAGAAGTACCTCGAAC  Mutant construction 

vep20-3 HindIII CGAAGCTTGCGACCCTGTCCTGTTCG 1278 Mutant construction 

vep20-4 XbaI CGTCTAGACCTCTGGCTGTAATTGC  Mutant construction 

hupA-1 SphI CGGCATGCCAGTAAGAATCCATTAGAGG 1401 Mutant construction 

hupA-2 KpnI CGGGTACCCGTGATTTAACTCAAGCAG  Mutant construction 

hupA-3 KpnI CGGGTACCATCTTGAGCTTGTACTGG 1407 Mutant construction 

hupA-4 SphI CGGCATGCGTCCTGATGAATAAGATC  Mutant construction 

vuuA-1 SalI CGGTCGACATTCCTACACTTAGCCGC 1404 Mutant construction 

vuuA-2 KpnI CGGGTACCCTAAAACAGCAACCACGT  Mutant construction 

vuuA-3 KpnI CGGGTACCCCCCATCACTACCGCAGAC 1401 Mutant construction 

vuuA-4 SacI CGGAGCTCTCCGTGATGATATTGCTAAG  Mutant construction 
 

hutR-1 SalI GCGTCGACTATGCCGCCAGTGATGCAAA 1435 Mutant construction 

hutR-2 PstI GCCTGCAGGTTGGCAGCGAGTACCGAC  Mutant construction 

hutR-3 PstI GCCTGCAGACTTATTCCACAGAGCCGGGG 1423 Mutant construction 

hutR-4 SphI GCGCATGCCCATACATACCTTGCAAAACG  Mutant construction 

vep20-cF XbaI CTTCTAGACGAGCAAATATGCCATGC 3180 Mutant complementation 

vep20-cR XbaI GGTCTAGAGCATCTTCAATCGCTAACGG  Mutant complementation 

hupA-cF BamHI TTAGAAGTTGTATTTCACAC 2366 Mutant complementation 

hupA-cR BamHI TTTAACTCCTTTGGTGATC  Mutant complementation 

vuuA-cF XbaI CTAGAAGTTCAACTGCAATG 2407 Mutant complementation 

vuuA-cR XbaI AGGCATCTCATGCGGTGAG  Mutant complementation 

vep20-seq1F  GTGACACTAGAGTGCCTGAA 718 Sequencing 

vep20-seq1R  AGGATCTTGCTTGGTCGGT  Sequencing 

vep20-seq2F  ATCATACCATGGGTTAGGC 679 Sequencing 

vep20-seq2R  ATACGACCGTTCTCAAGACC  Sequencing 

vep20-seq3F  AATCAATGTTTGCGTAAACG 707 Sequencing 

vep20-seq3R  CTGTCAATATTAACAAAGGG  Sequencing 

vep20-seq4F  CACTCGCCTCTTTGGTTTCG 585 Sequencing 

vep20-seq4R  GTTTGATATAATCCGTACG  Sequencing 

hupA-seq1  GAATGAGACTTAAAAAGCC 1001 Sequencing 

hupA-seq2  CCTGATGCGAAGGAAATGA  Sequencing 

hupA-seq3  TCATAACGAACACCAGGAG 964 Sequencing 

hupA-seq4  CAGCCAGGCGTGTTTGAT  Sequencing 

hupA-seq5  CATATCCGGATCAACCGTGA 500 Sequencing 

hupA-seq6  GGAACGACATAAGAGCCAT  Sequencing 

vuuA-seq1  CTCTGGTCAACATCAGAGGC 1122 Sequencing 

vuuA-seq2  ATGATCGATACACTAATCCG  Sequencing 

vuuA-seq3  AACTCTTTACCTTCAGTGG 1101 Sequencing 

vuuA-seq4  CATCCTGAATGCAATCAG  Sequencing 

hutR seq-1  GGACAGGCGTAAAGGATTGG 1229 Sequencing 

hutR seq-2  GACGCTCAGACGTTCTCGAA  Sequencing 

Table 2. Primers used in this study. 
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C. Phenotypic characterization of mutants 

 

1. Outer membrane proteins (OMPs) 

To relate the genes vep20, vuuA, hupA and hutR with its corresponding OMP, 

the wild-type strain and its single mutants were grown in CM9-Fe and CM9-Tf for 

12 h, and then OMP were extracted as described previously (Biosca et al., 1993). 

OMP samples were fractionated by sodium dodecyl sulfathe-polyacrilamide gel 

electrophoresis (SDS-PAGE) (Laemmli, 1970) by using a separation gel of 10 % 

acrylamide. The protein bands were stained with Coomassie brilliant blue. 

 

2. Siderophore detection 

The Chrome azurol S (CAS) assay was used to detect the siderophore 

production in iron-restricted growth cultures (Schwyn and Neilands, 1987). The 

Arnow phenolic acid assay and the Csàky hydroxylamine hidroxamic acid assay 

were carried out to detect catechol- and hydroxamic-type siderophores, 

respectively, as previously described (Arnow, 1937; Andrus et al., 1983). The strains 

V. anguillarum RV22 and Photobacterium damselae ssp damselae CECT626T, were 

hutR seq-3  TGCTGATATGACCAAGGCG 1231 Sequencing 

hutR seq-4  TGCTGTACTTGCTCGACGC  Sequencing 

recA-F  CGCCAAAGGCAGAAATCG 59 qRT-PCR 

recA-R  ACGAGCTTGAAGACCCATGTG  qRT-PCR 

vep20-qF  CACTCGCCTCTTTGGTTTCG 72 qRT-PCR 

vep20-qR  GGGACTGATTCTCTCTTC  qRT-PCR 

hutR-qF  CATGGCGGATGTTGAAGATATC 76 qRT-PCR 

hutR-qR  AACTGCGTTTTTGCTCCGTAA  qRT-PCR 

hupA-qF  AAGCTAGATGCTGCGCCTTT 60 qRT-PCR 

hupA-qR  CACGGTTGATCCGGATATGC  qRT-PCR 

vuuA-qF  GGACCACGGGAATCCATATG 56 qRT-PCR 

vuuA-qR  TGCGTTGGCGGGTTTTA  qRT-PCR 

Plug-F  ATGAAAAGTTTATTATTTAT 441 Recombinant protein 

Plug-R  TGCACCACCTAAACTACCGG  Recombinant protein 

TonB-F  GTGTCTTACGAAACCAAAGAGG 1782 Recombinant protein 

TonB-R  CTATAACTTAACTTCAAGTCC  Recombinant protein 
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used as positive controls for Arnow and Csàky tests, respectively (Biosca et al., 

1996). 

 

3. Growth in hemin and transferrin 

The ability of the wild-type and ΔhupA, chupA, ΔhutR and ΔhupAΔhutR strains 

to use Hm as the sole iron source was tested by measuring bacterial growth (OD600) 

in CM9-Hm at 1-h intervals during 10 h (Mouriño et al., 2004). 96-well plates were 

inoculated with an overnight culture in CM9 (1:100, vol/vol) and were incubated at 

28ºC with shaking (200 rpm). 

The ability of the wild type, Δvep20, ΔvuuA and cvuuA strains to use iron from 

iron-saturated human Tf (holo-Tf, Sigma) was assayed as Simpson and Oliver 

(Simpson and Oliver, 1987) by measuring the growth halo around Tf-discs (soaked 

in a solution of holo-Tf 1mM) placed on CM9A-E plates previously inoculated with 

100 µl of an overnight culture in CM9, and by inoculating the CM9-Tf medium with 

an overnight culture in CM9 (1:100, vol/vol). 

 

4. Growth in plasma and blood 

To simulate the in vivo growth in host bloodstream, bacteria were grown as 

described in Chapter 1, page 78, in whole blood or plasma. The bactericidal 

(complement) or bacteriostatic (Tf) activity of plasma was abolished by heating it at 

56ºC for 30 min (Amaro et al., 1997) or supplementing it with 100 µM of FeCl3, 

respectively. 

 

5. Phagocytosis  

The ability of bacteria to escape from the phagocytic activity of phagocytes 

was assayed as described in chapter 1 page 78. If necessary, bacteria were 

opsonized as described by Valiente and cols. (Valiente et al., 2008b); briefly, 900 µl 

of a bacterial suspension on HBSS containing 109 CFU/ml was mixed with 100 of 
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previously heat-inactivated eel plasma, incubated 1 h at room temperature and 

washed with HBSS. 

 

6. Cell damage (erythrocytes) 

Eel erythrocytes were collected from blood by centrifugation (3000 rpm, 15 

min, 4°C), washed three times with HBSS (Hank’s balanced salt solution), 

resuspended in L-15 and distributed in a 96-well plate in a concentration of 105 cells 

per well. The plate was centrifuged to spin down cells. The monolayer of 

erythrocytes was infected with L15-washed bacteria (harvested from a 4 h culture 

in L-15) at a moi of 10, and microscopic observations were made at 60-90 min post-

infection with a Nickon optic microscope.  

 

7. Bacterial attachment 

To determine the ability of the wild-type strain and its mutants to attach to 

dry blood, 96-well plates coated with air-dried eel-blood were inoculated with 100 

µl of a bacterial suspension of 109 CFU/ml in PBS-1 from 1 ml of overnight culture 

in CM9-Tf, and were incubated at room temperature for 24 h. Bacterial DNA was 

obtained at 0, 3, 9 and 24 h post-incubation after washing wells twice with PBS and 

lysing bacteria by adding Mili-Q water. DNA was quantified by quantitative PCR 

(qPCR) by using primers specific for recA housekeeping gene (recA-F/recA-R) 

(Table 2). 

 

8. Virulence and colonization  

Animals were maintained as described in Chapter 1, page 80. The virulence 

degree for eels and mice was determined as explained in Chapter 1, page 80. In the 

case of mice, the animals were pre-injected with iron (Hm [2.8 µg/gr of mouse], 

FeCl3, [9 µg/gr of mouse] or Hm+FeCl3 [1.4 µg of Hm/gr of mouse + 4.5 µg of FeCl3/gr 

of mouse]) 2 h before challenge. For colonization and invasion assays, eels were bath 

infected as detailed in Chapter 1, page 81, with either the wild-type strain or each 
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one of the single mutant and expressed as CFU/ml (blood) or CFU/g (gills, liver, 

kidney and spleen). 

 

D. Sequence analysis 

 

1. DNA sequencing 

Amplicons were examined by agarose gel electrophoresis (1%) and ethidium 

bromide staining. PCR products of the predicted size were purified from agarose gel 

by using the High Pure PCR purification Kit (Roche) following manufacturer’s 

instructions and sequenced in an ABI 3730 sequencer (Applied Biosystems).  

 

2. Phylogenetic analysis 

The evolutionary scenario of vuuA and hupA was evaluated from the whole 

sequence of each gene and was compared with a MLSA reconstruction (Didelot and 

Falush, 2007) from the partial sequences (254 nt by gene) of four virulence-

associated (vvha, rtxA1, wzz, and pilF) and four housekeeping (glp, mdh, pyrC, and 

pntA) genes taken from the Genebank (Chen et al., 2003; Morrison et al., 2012; Kim 

et al., 2003; Roig et al., 2011; Sanjuán et al., 2011; Wang et al., 2012). Phylogenetic 

trees for each single gene and for the concatenaded-MLSA were obtained using the 

maximum-likelihood method with PhyML software (Guindon et al., 2009). The best 

evolutionary model for the sequences according to jModelTest (Posada, 2008) and 

considering the Akaike information criterion (AIC) (Akaike, 1974) turned out to be 

the Tamura 3-parameter model (Tamura, 1992) (T92) for the vuuA and hupA genes 

and for the MLSA-concatenate alignment. The model was applied with a gamma 

distribution and invariant sites accounting for heterogeneity in evolutionary rates 

among sites. Support for the groupings derived in these reconstructions was 

evaluated by bootstrapping using 1.000 replicates. No outgroups were used for the 

analysis of both genes due the enormous differences among species. The congruence 

among phylogenetic reconstructions obtained with the different alignments was 

checked using Shimodaira-Hasegawa (SH) (Shimodaira and Hasegawa, 1999) and 
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expected-likelihood weight (ELW) tests as implemented in TreePuzzle, version 5.2 

(Schmidt et al., 2002; Strimmer and Rambaut, 2002). 

 

3. Molecular clock estimation of hupA and vuuA 

The following equation was used to roughly determine the age of divergence 

for each pairwise comparison: number of synonymous SNPs (sSNPs)/(number of 

sSNP sites X mutation rate X number of generations per year) (Foster et al., 2009; 

Galloway-Peña et al., 2012). The sSNPs were selected because supposedly they are 

neutral or nearly neutral in terms of selection and therefore allow for a relatively 

unbiased estimation of SNP accumulation (Foster et al., 2009). The number of 

potential sSNP sites for each codon was calculated from a lookup table of codon 

possibilities and added together to give the number of potential synonymous SNP 

sites for all the codons in the sequence. Since the synonymous mutation rate of V. 

vulnificus is not known, we selected a value of 1.4×10−10 mutations per base pair per 

generation based on mutation rates data from Escherichia coli (Lenski et al., 2003). 

The generation time in vitro for V. vulnificus biotypes 1, 2 and 3 is 4.0, 2.9, and 2.4 

generations h−1, respectively (Chase and Harwood, 2011). However, there are no 

data on the generation time in the environment. On the basis of the estimations 

performed for E.coli (Ochman et al., 1999) (100 to 300 generations/year), Bacillus 

anthracis (Van Ert et al., 2007) (43 generations per year) and Vibrio 

parahaemolyticus (García et al., 2012) (100 generations per year), we choosen a 

value of 365 generations per year for V. vulnificus. 

 

 

E. Analysis of Vep20 protein 

 

1. Bioinformatic analysis 

Bioinformatic approaches were carried out to study the protein sequence 

and functionality of Vep20. Online programs PsortB (Yu et al., 2010) for cellular 

location, SecretomeP (Dyrløv Bendtsen et al., 2005) for signals of peptide secretion 

and pFam (Punta et al., 2012) for functional domains were used. 
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2. Purification and expression of recombinant Vep20 

The DNA regions corresponding to the plug domain (aminoacids nº 1 to 147) 

and the TonB-dependent receptor (TonB-dr) domain (aminoacids nº 148 to 741) of 

Vep20 protein were amplified by PCR with primers Plug-F/R and TonB-F/R, 

respectively. Amplicons were cloned in the vector pQE-30 (Qiagen) transformed in 

the expression strain E. coli M15 and His6-tagged Plug and TonB-dr domains were 

induced with Isopropyl β-D-1-thiogalactopyranoside (IPTG) and purified by using a 

nickel affinity column (NiNTA) as instructed by the manufacturer (Qiagen). A 20 ml 

bacterial culture, in which recombinant plug and TonB-dr were induced, was 

pelleted, resuspended in a lysis buffer (100 mM NaH2PO4, 10 mM Tris-HCl, pH8), 

sonicated (6 pulses of 10 seconds at 100V) and centrifuged at 13000 rpm for 30 min 

at 4ºC. The supernatant was recovered and used as the soluble protein fraction, and 

for insoluble protein fraction obtention the protocol was the same but adding Urea 

8M to the lysis buffer. 

 

3. Immunization and antibody titer 

Policlonal antibodies against Plug and TonB-dr domains were obtained in 

AntibodyBCN by immunization of eight-week-old specific pathogen-free BALB/c 

female mice (Antibody BCN, Spain). The dose was 50 µg of pure antigen combined 

with complete Freund’s adjuvant and the rest of dosis were 50 µg combined with 

incomplete Freund’s adjuvant in a total of 5 dosis every 15 days. Sera were collected 

before every intramuscular immunization for measurement of anti-Plug and anti-

TonB-dr antibody titers, that were measured from immunized and control mice by 

ELISA as follows; V. vulnificus overnight cultures in CM9-Tf were pelleted and 

resuspended in PBS plus 1% dithiothreitol (DTT) and 1% sodium dodecyl sulfate 

(SDS), and incubated at 100ºC for 5 min. After centrifuge at 13000 rpm for 5 min, 

pellet was discarded and the supernatant was quantified by the Pierce BCA Protein 

Assay Kit (Thermo Scientific). The ELISA plates were coated with 5 μg of antigen-

containing supernatant in 50 µl of Coating buffer (sodium carbonate 60 mM, pH 9.6) 

and incubated overnight at 4ºC. Wells were washed with wash buffer (PBS plus 

0,05% Tween20 [Sigma]) and blocked with 100 µl of Blocking buffer (PBS plus 1% 
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bovine serum albumin [BSA][Sigma]) for 1 h at RT. Wells were washed three times 

and mice sera, diluted in Assay buffer (eBioscience), was used as a primary antibody 

with an incubation of 2 h at 37ºC. Wells were washed three times and the 

peroxidase-conjugated goat anti-mouse IgG was diluted in Assay buffer and used as 

the secondary antibody by incubating 1 h at RT. Finally, after seven washing steps, 

the antibody titers were determined by measuring the Abs450 after addition of TMB 

(3,3’, 5,5’-tetramethylbenzidine, eBioscience) with a plate Multiskan EX.  

 

4. Western blot 

For each tested condition, 5 µg of protein, quantified with the Pierce BCA 

Protein Assay Kit (Thermo Scientific), were separated by Laemmli sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970) in 

discontinuous gels (4% stacking gel, 10% separating gel). Proteins were transferred 

from gel to a polyvinylidene difluoride (PVDF) membrane (0.2 µm, Bio-Rad) at 100V 

for 1 h in Tris-glycine-methanol transfer buffer (25 mM Tris, 192 mM glycine [pH 

8.3], 20% [vol/vol] methanol) as described by Towbin and cols. (Towbin et al., 

1979). Immunostaining was performed with mice Vep20-specific primary antibody 

diluted at 1:3000 and anti-rabbit IgG HRP-conjugated diluted at 1:5000 (Sigma), and 

revealed with Immobilon Western Chemiluminescent HRP Substrate (Millipore) in 

an Agfa Curix 60 revelator. 

 

F. Statistical analysis 

 

All the experiments were performed by triplicate and the significance of the 

differences was tested by using the unpaired Student's t-test with a P < 0.05. 
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III. RESULTS 

 

A. FURTA and preliminar characterization of selected 

genes 

 

1. FURTA 

The assay was performed as a first approximation to the identification of the 

Fur-regulated genes in the selected zoonotic strain CECT4999. The ORFs with 

significant homology to V. vulnificus Bt1 genes identified by FURTA are shown in 

Table 3. The set includes chromosomal genes such as the genes for the receptors 

HupA (clone DP006) and VuuA (clone DP009) (but not for the receptor HutR), for 

vulnibactin and heme transport and for vulnibactin biosynthesis as well as a plasmid 

gene that presents low homology to a putative transferrin-receptor (clone DP020) 

(lee et al. 2008). No gene related to hydroxamate-type siderophore biosynthesis 

could be identified although a cluster of genes for exogenous aerobactin utilization 

was found (Table 3). Accordingly, the strain was positive in the CAS assay, a 

universal assay for siderophore detection, positive in the test for phenolates and 

negative in the test for hydroxamates (Table 3).  
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Table 3. ORF’s contained in FURTA positive clones of V. vulnificus CECT4999 with homology to ORF’s of sequenced strains of V. vulnificus. 

1 Percentage of identity in aminoacid sequence obtained by BLAST-P algorithm.  

Clone Features Strain GI number % Indentity1 

DP002 ABC-type hydroxamate-dependent iron transport system, ATPase YJ016 37201709 95 

DP004 NRPS MO6-24O 319934358 95 

 3-deoxy-7-phosphoheptulonate synthase  319934359  

DP006 Heme receptor HupA precursor (hupA) MO6-24O 319933927 99 

DP009 Ferric vulnibactin outer membrane receptor (vuuA) YJ016 37201513 97 

 Vulnibactin synthetase, amide synthase subunit  37201514  

DP010 Phosphomannomutase YJ016 37201320 97 

DP015 Vulnibactin 2,3-dihydroxybenzoate-2,3-dehydrogenase CMCP6 27358808 97 

DP020 Transferrin-binding protein A precursor pR99 152955030 100 

DP021 Hypothetical protein VV2_1010 MO6-24O 319934562 97 

DP023 Ferritin-like protein 2 CMCP6 27360656 99 

DP025 Ferric aerobactin receptor (iutA) CMCP6 319999718 97 

DP027 Flp pilus assembly protein CpaB YJ016 37198942 88 

DP033 Methionine aminopeptidase YJ016 37199491 95 

 PII uridylyl-transferase  37199492  

DP055 Vulnibactin-specific 2,3-dihydroxybenzoate-AMP ligase MO6-24O 319934367 96 

 Aryl carrier domain  319934368  

DP073 Aryl carrier domain MO6-24O 319934368 97 

 Catechol siderophore ABC transporter, substrate-binding protein  319934369  
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2. Furboxes and gene sequencing 

hupA and vuuA, together with hutR (selected despite not being identified by 

FURTA) were sequenced in the strain CECT4999 (Table 1) using primers from the 

genome sequence of the Bt1 strain YJ016 (Table 2). The sequences were deposited 

in the Genbank (KC741503, KC741545, KF056337). The genes hupA, vuuA and hutR 

showed 97%, 95% and 97% similarity values (in the amino acid sequence) with 

respect to the homologous ones in the Bt1 strain YJ016, respectively. vep20 was re-

sequenced in the strain CECT4999 using primers (Table 2) from the plasmid pR99 

(Lee et al., 2008) and the sequence obtained was identical to that previously 

published (Lee et al., 2008). 

Three furboxes in clones DP006, DP009 and DP020, containing a part of 

hupA, vuuA and vep20 genes, were identified, GCTAATGATAATTACTATC, 

GCAAAGCATTCTCATTTGC and AATAATGATTATCATTATC, respectively, 

immediately upstream each one of the genes. The two first were highly similar to 

those reported by Litwin and Byrne (Litwin and Byrne, 1998) in hupA (identical) 

and Webster and Litwin (Webster and Litwin, 2000) in vuuA (18/19) while the third 

one was identical to that previously reported for this gene in the plasmid pR99 (Lee 

et al., 2008). 

 

3. Transcription versus iron starvation 

To relate each selected gene with iron-regulation, transcription level was 

assayed by growing the wild-type strain in presence and absence of iron. A positive 

fold-induction for the four genes was observed when bacteria were subjected to the 

iron-restricted conditions imposed by apo-Tf (Figure 1). In the case of genes for Hm 

receptors, the transcription of hupA was significantly higher than that of hutR 

(Figure 1). A positive fold induction of vuuA, hupA and vep20 was also detected when 

fresh plasma from either humans or eels was added to CM9 (Figure 1). vuuA and 

vep20 over-transcription were abolished when FeCl3 was added to plasma at a 

concentration of 20 µM, while 200 µM were needed to abolish hupA over-

transcription, which suggests that transcription of vuuA and vep20 are more 

sensitive to iron concentration.  
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              Figure 1. Analysis of gene transcription in vitro by qRT-PCR. Levels of 

mRNA were quantified in the mid-log phase of several conditions and expressed as fold 

induction. Asterisks indicate significant overexpression of each gene with respect to 

the expression level in CM9 (p<0.05). 

 

To relate growth rate and gene expression, the fold induction of vep20, hupA 

and vuuA vs growth of the wild-type strain in iron restriction conditions (apo-Tf or 

fresh eel plasma) was studied. As Figure 2 shows, the transcription of all genes was 

induced just before the early log-phase and was maintained for 10 h, indicating that 

the three genes are expressed before the utilization of Vep20, HupA and VuuA as 

iron receptors for active growth.  
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Figure 2. Time course analysis. Expression at transcription level of hupA (A, 

B), vuuA (C, D) and vep20 (E, F) in CM9-Tf (A, C, E) and CM9-EP (B, D, F) measured 

by qRT-PCR (continuous line) vs bacterial growth (discontinuous line). 
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B. Phenotypic characterization of mutants 

 

1. OMPs and siderophore production 

According to Litwin and Byrne (Litwin and Byrne, 1998) and Webster and 

Litwin (Webster and Litwin, 2000) the OMP profiles of ΔhupA and ΔvuuA strains lack 

proteins of 77 and 72 KDa, respectively, which were present in the OMP profiles of 

the wild-type strain and the complemented strains (Figure 3). No difference in 

protein profile was apparent when OMP of ΔhutR and Δvep20 were compared with 

those of the wild-type and the complemented strains (data not shown). As expected, 

none of the mutations affected the ability to produce siderophores (Table 4).  

 

 

Figure 3. OMP profiles obtained by SDS-PAGE. Lane 1, CECT4999 in CM9-

Fe. Lane 2, CECT4999 in CM9-Tf. Lane 3, ΔvuuA in CM9-Tf. Lane 4, cvuuA in CM9-Tf. 

Lane 5, ΔhupA in CM9-Tf. Lane 6, chupA in CM9-Tf. Arrows indicate bands of 72 and 

77 KDa. 
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2. Growth in hemin and transferrin 

 ΔvuuA strain was unable to use iron from holo-Tf (Table 4) and was the only 

strain that did not grow in CM9-Tf after 24 h of incubation, while the other strains 

grew as well as the wild-type strain. ΔhupA and ΔhutR strains grew with Hm as the 

sole iron source but with different growth patterns (Figure 4). Thus, ΔhupA strain 

grew significantly less than the wild-type strain and showed a time-retarded log 

phase while ΔhutR strain grew as efficiently as the wild-type strain (Figure 4). A 

double mutant in hupA and hutR was constructed as described in Material and 

Methods. The double mutant was unable to grow with Hm as the only iron source 

(Figure 4). In all cases, the complemented strains presented the wild-type 

phenotype (Table 4 and Figure 4). 

 

 

Figure 4. Growth of V. vulnificus strains with hemin as sole iron source. 

Overnight cultures of wild-type strain and its derivative strains were used to 

inoculate a CM9 supplemented with 100 µM EDDHA and the minimum stimulatory 

concentration of hemin (0.1 µM). OD600 was measured in intervals of 1 hour during 

10 hours. 
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3. Virulence 

The single mutants in hupA and vuuA showed a similar increase in the LD50 

values in both animal models (between 1 and 2 log. units) (Table 4). The mutant on 

vep20 displayed an increase of only 3-fold higher than wild-type strain in virulence 

for mice but 4 log units higher in virulence for i.p.-injected eels. Surprisingly, the 

three mutants were completely avirulent when they were administered to eels 

through water, which is the natural route of vibriosis transmission (Table 4). In 

contrast, the single mutant in hutR was as virulent as the wild-type strain in both 

animal models (Table 4) and, in consequence, it was excluded for subsequent 

experiments.  

A double mutant in hupA and vuuA was found to be completely avirulent for 

mice and almost avirulent for i.p.-injected eels (Table 4). As expected, the double 

mutant was avirulent for eels infected through water. Finally, the complemented 

strains, exhibited the wild-type level of virulence for eels and mice (Table 4).  
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Table 4. Virulence degree, siderophore production, growth in plasma and with holo-Tf as the sole iron source. 

 

 

Strains 

Virulence (LD50)1  

Siderophore production2 

 

Growth in fresh plasma 
from3 

 

Growth with 

Holo-Tf 4 
 

Mice 

Eels 

i.p. bath Arnow Csàky CAS Humans Eels 

CECT4999 3.16x102 2.1x102 4.4x106 + - + 151.3 141.26 17.3 ± 2.8 

Δvep20 8.6x102 4x106 >108 + - + 157.48 0.93 18.3 ± 2.3 

ΔvuuA 4.01x103 1.0x104 >108 + - + 5.68 9.55 0 

ΔhupA 8.97x103 1.7x104 >108 + - + 4.02 3.23 ND 

ΔhutR 3.2x102 2.0x102 5x106 + - + ND ND ND 

cvep20 2.6x102 3 x102 3.6x106 + - + 114.10 113.07 ND 

cvuuA ND 6.2x102 4.1x106 + - + 180.2 165.5 16.3 ± 2.8 

chupA ND 5.7x102 5.6x106 + - + 178.1 108.6 ND 

ΔvuuAΔhupA >107 7.4x105 >108 + - + 3.73 4.8 ND 

1LD50 for mice was determined by using the iron-overloaded model (Amaro et al., 1994). LD50 is expressed as CFU per fish or mouse in case of i.p. injection and CFU 
per ml in case of bath infection of eels (Amaro et al., 1995). 
2 The criterium for positive or negative result for each test was that of Biosca et al. (Biosca et al., 1996). 
3  Ratio between final and initial bacterial counts on TSA-1 plates after 4 hous of incubation in fresh plasma. 
4 Diameter of growth halo in mm around Tf-discs (soaked in a solution of holo-Tf 1mM) placed on CM9A-E plates previously inoculated with 100 µl of an overnight 
culture in CM9. 
ND, non done. 
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4. Eel colonization and invasion 

To discover whether vep20, vuuA and/or hupA play a role in host colonization 

and/or invasion (spreading and colonization of the internal organs), the well-

established eel model was selected as described in material and methods. In this 

model, eels are infected by the natural route of disease transmission and the 

colonization and invasion process is followed by sampling external (gills; the portal 

of entry into the eel body) and internal (blood, liver, head-kidney and spleen) organs 

for bacterial counting and quantification of gene expression at different intervals of 

time post-challenge. The three single mutants were able to colonize the gills and 

establish a population of similar size to that of the wild-type strain (Figure 5). From 

this location, the single mutants spread to the internal organs where they survived 

less than 72 h post-challenge (Figure 5). No significant difference in internal organs 

colonization degree was detected between ΔhupA and ΔvuuA, although ΔhupA was 

faster in blood spreading. In contrast, Δvep20 presented the lowest invasion capacity 

since it was not found in blood and spleen at any sampling time (Figure 5). Finally, 

the double mutant in ΔhupA and ΔvuuA was able to colonize the gills but failed to 

spread to internal organs (data not shown).  
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Figure 5. Eel colonization and invasion assays. Eels were bath-infected with 

the wild type strain (CECT4999) or with each one of their single mutants (Δvep20, 

ΔhupA or ΔvuuA) at a dose of 106 CFU/ml for 1 hour. Then, bacterial colonization 

degree of external (gills) and internal (blood, liver, head kidney and spleen) organs 

was measured as bacterial counts (CFU per gr) at 0, 9, 24 and 72 h post-challenge. 

Asterisks indicate significant differences in bacteria recovered from mutant-strain- 

and wild-type- strain-infected eels (p<0.05). 

 

In parallel, samples of internal and external organs from eels infected with 

the wild-type strain were processed to find out whether vep20, vuuA and hupA were 

overexpressed during the infection process. As observed in Figure 6, overexpression 

of genes was not induced in gills at any of the assayed times, but was significantly 
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induced in blood at 9 h and in all the internal organs sampled at 24 h (except vuuA, 

and vep20 which was not induced in head-kidney), but became undetectable at 72 h 

post-challenge.  

 

Figure 6. Analysis of gene expression in vivo by qRT-PCR. Eels were bath-

infected with the wild type strain (CECT4999) at a dose of 106 CFU/ml for 1 hour, 

and gene expression level of vep20, vuuA and hupA were determined in external 

(gills) and internal (blood, liver, head kidney and spleen) organs by qRT-PCR at 0, 9, 

24 and 72 h post-challenge. Asterisks indicate significant overexpression of each 

gene with respect to the expression level in CM9 (p<0.05). 
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a superficial wound, eel blood was dried on polyestirene plates and then the 

attached cells of the wild-type strain and Δvep20, ΔhupA and ΔvuuA mutants were 

measured as bacterial DNA by quantitative PCR (qPCR) by measuring the 

transcriptional level of the housekeeping gene recA as reference. No differences in 

DNA amounts were detected at 0, 3, 9 and 24 h (data not shown), suggesting that 

the lack of these genes did not affect the cell attachment on wounds in the assayed 

conditions. 

 

6. Growth in plasma and blood 

Single and double mutants in hupA and vuuA were able to survive and grow 

in fresh eel and human plasma, although at significantly lower rates than the wild-

type and the complemented strains (Table 4 and Figure 7). Eel plasma was the 

condition selected to demonstrate that the reduction in growth rate was due to the 

bacteriostatic effect of transferrin and not to the bacteriolytic action of complement. 

As expected, significant differences in bacterial growth between each mutant and 

the wild-type strain were still found after complement inactivation but not after iron 

supplementation (Figure 7). Finally, the complemented strains showed a similar 

growth rate to the wild-type strain in all the assayed conditions (data not shown). 

With regard to Δvep20, the mutant did not grow in eel plasma but did present a wild-

type growth in human plasma.  
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Figure 7. Growth in plasma and blood. Bacterial growth of V. vulnificus 

strains presented as increase of CFU/ml, expressed as log10 units, after 4 hours of 

incubation. A) fresh eel plasma; B) fresh eel plasma + FeCl3; C) inactivated eel 

plasma; D) inactivated eel plasma + FeCl3; E) fresh human plasma; F) fresh human 

plasma + FeCl3 and G) eel blood. Asteriks indicate significant differences in growth 

between the mutant and the wild-type strain (p<0.05). 
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7. Phagocytosis and destruction of phagocytes and 

erythrocytes 

To discover if Vep20 has some role in resistance to phagocytosis, a 

phagocytosis assay was performed with the wild-type strain and its mutant. The 

bacterial survival of both strains both inside and outside the PEC was similar at all 

sampled times and was independent of previous opsonization (Figure 8A and B). 

Thus, both strains were not observed inside phagocytes unless they were previously 

opsonized, and, in this case, without significant differences in internalized bacterial 

numbers (Figure 8C).  
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Figure 8. Phagocytosis assay. 
Number of total (extra- and 
intracellular) bacteria after 30 
and 90 min of incubation of 
CECT4999 and Δvep20 strains in 
monolayers of fresh eel PEC at a 
moi of 10, where bacteria where 
opsonized (B) or not (A). (C) 
Number of intracellular 
opsonized bacteria, incubated 
with PEC as described for A and 
B. 
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Finally, microscopic observations of PEC incubated with wild-type and 

Δvep20 mutant strain also showed that both strains were able to lyse all the cells in 

less than 90 min (Figure 9A), and that no bacteria were located inside the 

phagocytes stained with Hemacolor in all tested strains (Figure 9B). 

 

 

 

A

B

a b

c

a b

cFigure 9. Interaction of V vulnificus 
strains with eel PEC. A) Infection of a 
monolayer (a, control; b, CECT4999; c, 
Δvep20) of PEC at a moi of 10, visualized 
at 90 min by an inverted optic microscope. 
B) Same samples that A) but stained with 
hemacolor staining at 60 min. (Merck) (a, 
control; b, CECT4999; c, Δvep20). Bar, 
5µM.  
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In parallel, the wild type strain and Δvep20 mutant were incubated in 

presence of eel erythrocytes. Direct observation of the interaction of bacteria with 

eel erythrocytes were made at 90 min post-infection. At this time both the wild-type 

and Δvep20 mutant strains destroyed all the erythrocytes without significant 

differences between them (Figure 10). 

 

 

 

C. Phylogeny of vep20, hupA and vuuA 

 
The genes vep20, vuuA and hupA were sequenced in a collection of V. 

vulnificus strains from clinical and environmental sources belonging to the three 

biotypes and the three previously defined phylogroups (Sanjuán et al., 2011). The 

gene vep20 was identical in all the strains (all of them of biotype 2), which 

demonstrates that this gene has not evolved. The variability was higher for vuuA and 

hupA. Thus, the phylogenetic reconstruction using the maximum-likelihood (ML) 

A B

C

Figure 10. Microscopic 

observation of cytopathic effect of 

V. vulnificus strains. V. vulnificus 

strains incubated with eel 

erythrocytes for 90 min. A) control. 

B) Wild-type strain. C) Δvep20 strain. 

Bar, 5µM 
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method showed that the vuuA gene has two main variants (Figure 11): vuuA(I) is 

present in 26 of the 29 studied strains, including the sequenced strain YJ016 (of Bt1 

and clinical origin) and all the Bt2 and Bt3 strains; vuuA(II) is present in a few 

environmental and clinical Bt1 strains, including the sequenced strain CMCP6 (Kim 

et al., 2003). The percentage of inter-variant identity in both DNA and protein 

sequence is around 80-85% while the intra-variant identity is between 89.7 and 

90.3% for vuuA(I) and between 97.7 and 98.1% for vuuA(II).  

 

 

 

Figure 11. Phylogenetic tree of vuuA. Maximum-likelihood tree derived 

from the vuuA gene. Bootstrap support values higher than 70% are indicated in the 

corresponding nodes. 
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The gene hupA also presents two main variants (Figure 12): hupA(I) was 

found in all strains from diseased fish and clinical cases associated to fish 

manipulation; hupA(II) also has two subforms, one defective because it lacks a 

fragment of 2035 nt in the 5´ portion of the gene [hupA(IIa)], and the other complete 

[hupA(IIb)] (Figure 12). The percentage of inter-variant identity in both DNA and 

protein sequence was between 91.6 and 95.6% while the intra-variant identity was 

from 96.1 to 95.9% for hupA(I) and 95 to 95.1% for hupA(II), being 100% for 

hupA(IIa) and between 95 and 95.1% for hupA(IIb).  

 

 

 

Figure 12. Phylogenetic tree of hupA. Maximum-likelihood tree derived 

from the hupA gene. Bootstrap support values higher than 70% are indicated in the 

corresponding nodes. 
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The sequences of both genes were compared to identify the regions where 

the mutations accumulated. As shown in Appendix I and II, variations were detected 

throughout the protein. Meanwhile vuuA presented changes in 156 amino acids 

(63.5% amino acids of different families; 36.5% amino acids of the same family) 

while hupA showed variations in 41 amino acids (68.3% amino acids of different 

families and 31.7% amino acids of the same family).  

The phylogenetic trees for each gene were compared with that obtained by 

MLSA from the selected housekeeping and virulence-related genes to discover 

whether their phylogenetic histories were congruent with one another. Figure 13 

shows the MLSA tree, which divides the population into two main clades, unrelated 

with biotype or origin of the isolate (Figure 13). The results of the Shimodaira-

Hasegawa (SH) and expected-likelihood weight (ELW) tests are summarized in 

Table 5. All the comparisons were highly significant for both tests, which would 

indicate that the phylogenetic reconstructions obtained from each gene are 

congruent with one another and with the MLSA, thus providing statistical support 

for similar evolutionary rates.  
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Figure 13. Phylogenetic tree of MLSA. MLSA tree using the T92+GI mode 

of evolution. Bootstrap support values higher than 70% are indicated in the 

corresponding nodes. 
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Table 5. Summary of Shimodaira-Hasegawa (SH) and expected likelihood 

weights (ELW) for the MLSA sequences and vuuA and hupA genes.  

 

Alignment Topology lnLa SH testb ELW testb 

MLSA MLSA -7732.85 1.000 1.000 

vuuA -6246.04 1.000 0.0056 

hupA -7757.89 1.000 0.9589 

vuuA vuuA -4970.60 1.000 0.6663 

MLSA -4347.71 1.000 0.1373 

hupA -4539.55 1.000 0.4489 

hupA hupA -4553.87 1.000 0.0289 

vuuA -4842.49 1.000 1.000 

MLSA -4717.26 1.000 0.9205 

 

 

We also estimated the time of divergence by using sSNP (Akaike, 1974). The 

number of sSNP for the hupA gene ranged from 0 to 86, with an average of 22 

sSNP/strain. In the case of vuuA type I, the average number of sSNP was 49/strain 

(ranging 0 to 119) and for type II was 21/strain (ranging 16 to 26). The potential 

sSNP sites were 2047 for hupA, 2018 and 1962 for vuuA types I and II, respectively. 

These numbers were used to calculate the molecular clock, the results of which are 

shown in Table 6. According to the model used, based on E. coli (365 generations 

per year and a mutation rate of 5.4x10-10), Bt1 strains diverged from each other an 

average of 55,000 years ago, whereas strains within the other groups diverged from 

0 (Bt3) to 13,479 (Bt2) years ago. For vuuA type I, Bt1 strains diverged from each 

other an average of 57,000 years ago, whereas strains within the other groups 

diverged between 0 (Bt3) to 42,000 (Bt2) years ago, and for type II from 20,000 to 

32,000 (Bt1 strains) years ago.  
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Table 6. Average time of divergence (years) for the hupA and vuuA genes 

based on sSNP analysis taking 365 generations per year and a mutation rate of 

5.4x10-10. Bt, biotype. 

 

hupA 

  Bt1 Bt2serE Bt2serI Bt2serA Bt3 

Bt1 55295.0 63173.2 61476.6 61786.4 74710.2 

Bt2serE 63173.2 1321.9 19828.3 6237.7 29329.4 

Bt2serI 61476.6 19828.3 20447.9 19518.5 29432.6 

Bt2serA 61786.4 6237.7 19518.5 8303.1 26768.2 

Bt3 74710.2 29329.4 29432.6 26768.2 0.0 

      

vuuA type I 

  Bt1 serE serI serA Bt3 

Bt1 56847.9 85458.0 65612.5 89392.2 931634 

Bt2serE 85458.0 13744.1 73067.7 9134.8 31007.9 

Bt2serI 65612.5 73067.7 42950.2 79195.9 7416.6 

Bt2serA 89392.2 9134.8 79195.9 4022.6 21873.2 

Bt3 93163.4 31007.9 74167.6 21873.2 0.0 

      

vuuA type II (all strains are of biotype 1) 

   CMCP6  CECT4608  E64  

 CMCP6  0 20113.2 27655.7  

 CECT4608  20113.2 0 32684.0  

 E64 27655.7 32684.0 0  

 

 

D. Analysis of Vep20 protein 

 

The analysis of the aminoacid sequence of Vep20 by various programs 

revealed relevant information. This gene was annotated as a putative Tf-receptor on 

the basis of its low similarity with a gene that encodes a putative Tf-receptor in 

Histophilus somni, one of the key bacterial pathogens involved in the multifactorial 

etiology of the Bovine Respiratory Disease Complex (Corbeila, 2008). The last BlastP 

search revealed that the highest homology for this protein is showed by a series of 

putative Tf/Hb-binding proteins of different human and fish pathogens (V. harveyi, 
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Photobacterium damselae, Neisseria meningitidis and Bordetella sp.). Pfam predicted 

that Vep20 contains 741 aminoacids and presents two conserved functional 

domains; the TonB-dependent receptor domain, a beta-barrel structure that forms 

a channel across outer membrane by which the ligand enters into the cell and the 

plug domain, which putatively acts as the gate allowing or preventing the entry of 

the ligand through the and the beta-barrel. Regarding to the cellular location, PsortB 

and Secretome revealed that Vep20 sequence matched to an outer membrane 

protein possessing a signal peptide needed to be inserted into the outer membrane. 

The protein Vep20, a protein of about 79 KDa, was detected by 

immunostaining after OMP separation by electrophoresis and transference to PVDF 

membrane (Figure 14A). This molecular weight corresponds to that predicted for 

Vep20 by the in silico analysis taking into account that proteins are modificated after 

translation and show a molecular weight slightly lower than predicted in silico, in 

this case 84 KDa. As Figure 14 shows, Vep20 was induced in artificial medium under 

the iron restricted conditions imposed by both 40 µM of purified human apo-Tf, and, 

as expected, the addition of iron to the medium abolished the production of Vep20 

(Figure 14B). Vep20 was detected in the membrane extractions, total and outer 

(Figure 14C), and eel plasma added to the medium at a minimum of 40% (vol/vol) 

also induced the expression at translation level (Figure 14D). Finally, Vep20 was 

detected in CM9-EP from 4 h of incubation (Figure 14E). The complemented strain 

gave the phenotype of the wild-type strain in all the assays. 
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Figure 14. Western blot analysis using polyclonal antibodies specific to 

Vep20 protein. A) Comparison between an iron-regulated OMP comassie-stained 

SDS PAGE (same that Figure 3) with a western blot of Vep20 protein revealed with 

specific antibodies. B) Expression in presence/absence of iron. C) Cellular location 

of Vep20 protein. D) Expression of Vep20 protein in CM9 using several percentage 

of eel plasma. E) Time course expression analysis of Vep20 protein in CM9-EP (CM9 

plus 50% EP). 
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IV. DISCUSSION 

 

The present work focused on the iron-acquisition systems that the zoonotic 

serovar of V. vulnificus employs to infect both humans and fish. To do so, mice and 

eels were chosen as animal models to test the role these mechanisms play in 

virulence. Previous studies on the iron-uptake mechanisms of V. vulnificus Bt2, and 

in particular the zoonotic variant, suggest that it is able to produce phenolate and 

hydroxamate-type siderophores and use Hm as sole iron source (Biosca et al., 1996; 

Fouz et al., 1996). On the basis of siderophore production by Bt1, it was 

hypothesized that Bt2 strains produce vulnibactin and a new hydroxamate-type 

siderophore (Biosca et al., 1996). The genes for biosynthesis and uptake of 

vulnibactin were identified by FURTA but no gene related to hydroxamate 

production was detected. This finding was further confirmed by performing specific 

tests for siderophore detection, which were only positive for phenolate production. 

Thus, the selected strain of the zoonotic serovar only produces vulnibactin, 

demonstrating that there are differences in siderophore production among strains 

of the same clonal complex. Additional identified genes were those related to 

exogenous aerobactin uptake, previously identified in the Bt1 of the species (Tanabe 

et al., 2005), as well as those related to Hm uptake, which would constitute the 

genetic basis for this previously reported ability (Fouz et al., 1996).  

The hypothesis of the present study was that the iron-uptake systems from 

vulnibactin and Hm are host-nonspecific virulence factors. The selected genes 

(vuuA, hupA and hutR) were sequenced and the corresponding proteins showed a 

similarity value of more than 95% with regard to the clinical Bt1 strain used as 

reference. The single mutants and corresponding complemented strains were 

obtained by allelic exchange and were phenotypically evaluated in terms of 

siderophore production, OMP profiles and growth in the presence of holo-Tf or Hm 

as sole carbon sources. In general terms, the phenotype obtained was the expected 

one. Thus, vulnibactin production was not affected by any of the three mutations, 

the OMP profiles from ΔvuuA and ΔhupA lacked the corresponding predicted band 

and ΔvuuA was unable to grow in the presence of holo-Tf as sole iron source. With 

respect to hutR, we did not detect differences in OMP profiles between the mutant 
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and the wild-type strain, which correlates with the results obtained by Datta and 

Crosa (Datta and Crosa, 2012), who suggest that HutR is a minority protein in the 

OM. Regarding iron-uptake from Hm, we found that hupA is the gene mainly 

involved in this system, since its disruption significantly diminished the ability to 

grow with Hm as sole iron source. However, hutR is also needed to completely 

abolish growth ability in vitro. This result is also compatible with those obtained by 

Datta and Crosa (Datta and Crosa, 2012) who suggest that hutR plays a secondary 

role in the use of Hm by V. vulnificus Bt1. In parallel, we confirmed that the three 

genes were overexpressed under iron-restriction conditions and that hupA was 

significantly more expressed than hutR, a result again in concordance with the 

hypothesis that hutR is secondary in Hm uptake. The finding that vuuA and hupA 

were maximally induced in the log. phase of growth would suggest that they are 

probably involved in active growth, both in vivo and in vitro. Finally, the 

complemented strains showed the phenotype of the wild-type strain, demonstrating 

that in each case the mutation only affected the target gene(s). 

The results obtained in the virulence assays support the hypothesis on the 

role of hupA and vuuA as host-nonspecific virulence genes. Thus, in single-gene 

(hupA or vuuA) knockout mutants, virulence was attenuated by 1-2 logs for both i.p.-

injected eels and mice, while virulence was completely abolished for eels when 

bacteria were administered by water, the natural route for vibriosis transmission. 

By contrast, hutR was found not to be a virulence gene since its mutation did not 

affect the lethal dose for either animal model. This result is compatible with those 

obtained in vitro and also supports the hypothesis posed by Datta and Crosa (Datta 

and Crosa, 2012). Interestingly, the double-gene (hupA and vuuA) knockout mutant 

was completely avirulent for mice and almost avirulent for eels, both inoculated by 

the i.p. route and bath immersion, suggesting that iron-acquisition by either ferric 

vulnibactin or heme uptake is absolutely needed for the zoonotic serovar to cause 

septicemia in mice. Regarding eels, the remaining virulence of the double mutant 

could be due to a third iron-acquisition system, in this case, host-specific. 

On the basis that vuuA and hupA are virulence genes, the next step was to 

discover their specific roles in human and fish vibriosis. To this end, we performed 

a series of in vivo and in vitro experiments under the hypothesis that this pathogen 
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needs both genes to grow in host blood and internal organs and achieve the 

population size that triggers host death by sepsis. Firstly, both genes were 

overexpressed in eels after bath infection, which demonstrates that both are 

required in vivo. This overexpression was only detected in internal organs (blood, 

spleen and liver) and from 9 (blood) to 24 h (blood, spleen and liver) post-infection, 

which suggests that VuuA and HupA are used in vivo during the first 24 h of infection. 

After this time, cellular destruction caused by the pathogen would release iron from 

cellular storage depots that could be used for bacterial growth (Valiente et al., 

2008c). This result is also compatible with the hypothesis of Lee and cols. (Lee et al., 

2012), which suggests the bacterium needs a minimum of 24 h to spread from gills 

to the internal organs and achieve the population size that triggers death by sepsis. 

Then, we analyzed the effect of single mutations in vuuA or hupA and that of the 

double mutation in both genes on surface and internal colonization of eels. We found 

that all the mutant strains, single and double, were able to colonize the gills as 

efficiently as the wild-type strain. However, each of the single mutants was deficient 

in internal colonization. In fact, the single mutants grew significantly less than the 

wild-type strain in each organ and were completely eliminated from internal organs 

at 72 h post-infection. This result explains why they were not virulent by bath 

challenge and suggests that a minimal bacterial growth inside the body is needed by 

V. vulnificus to overcome the immune defenses. In addition, the double mutant strain 

completely lost the ability to spread from the gills to the internal organs, confirming 

the importance of iron-acquisition by either system for colonization and invasion. 

Likewise, either one or the other gene was needed for efficient growth in human and 

eel blood and plasma. In fact, both genes were overexpressed by the wild-type strain 

in fresh plasma from both humans and eels, which correlates with the results 

obtained in vivo and supports the hypothesis on the role played by both iron-uptake 

systems in the ability of this zoonotic serovar to grow in blood and cause death by 

sepsis.  

According to the virulence results, the double mutant in vuuA and hupA was 

completely avirulent for mice but retained some virulence degree for eels. This 

question was quite intriguing and lead us to investigate if there was another iron-

uptake mechanism, in this case specific for fish. V. vulnificus Bt2 possesses a 
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virulence plasmid that encodes resistance to the eel innate immunity by unknown 

mechanisms. In fact, the genes that could be involved in this resistance encode 

putative proteins without similarity or with low similarity to known proteins. One 

of this ORF, vep20, is the only one that shows significant homology to a series of 

proteins with a putative role in resistance to nutritional immunity: Tf/Hb-binding 

proteins. To discover if this protein could be a receptor specific for eel Tf, we 

performed a series of additional experiments. First, we obtained the single mutant 

and tested it for virulence and eel colonization and invasion. Interestingly, the 

virulence for mice was not affected while the virulence for eels was significant 

diminished in 4 log. units. In parallel, the growth ability of the mutant in HP was not 

altered while the EP exerted a bacteriostatic effect on the mutant, which could be 

attributed to a deficient iron-uptake from eel transferrin. In accordance, the mutant 

was able to colonize the gills but was unable to grow in eel blood. The protein was 

in silico analyzed and its predicted structure corresponds to a membrane protein 

with two domains, one β-barrel and the other a plug-domain, compatible with a Tf-

receptor. We obtained the recombinant protein and immunized mice to get specific 

antibodies. The rabbit antibodies identified a protein of around 78-80 KDa in the 

outer membrane fraction. Then, the transcription and translation of vep20 was 

analyzed. The gene was induced in iron-restriction and in presence of EP and was 

maximally induced in the log. phase of growth. In addition, Vep20 was detected from 

4 h of growth in iron-restriction conditions. Additional experiments of resistance to 

the innate immunity such as resistance to phagocytosis and destruction of 

erythrocytes and phagocytes confirm that Vep20 is only involved in growth in iron-

restriction. In conclusion, all these findings support the hypothesis that Vep20 is a 

receptor specific for eel-Tf that collaborates in the resistance to the innate immunity 

conferred by the plasmid. Further experiments of specific binding to recombinant 

eel-Tf are needed to confirm this attractive hypothesis. 

Our next step was to analyze the phylogeny of vuuA and hupA and compare it 

with that of the species to discover whether both genes are part of the accessory 

genetic elements, as vep20, or part of the core genes. Interestingly, the phylogenetic 

trees for each gene were congruent with each other and with the species 

constructed from the four housekeeping and four virulence-related genes. This 
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result strongly suggests that vuuA and hupA are part of the core genes of the species 

and have not been acquired through horizontal gene transfer, as occurs with 

siderophore- and heme-related iron-uptake in other bacterial pathogens (Martínez, 

2013). The divergence time for each one of the genes, calculated by the SNP analysis, 

was also congruent with the evolutionary scenarios provided by phylogenetic trees. 

In all cases, Bt1 was found to be the more heterogeneous group, showing the highest 

theoretical divergence time. The evolutionary scenario also shows that Bt1 was the 

first to emerge, followed by Bt2-SerE, -SerA, -SerI and, finally, Bt3. Interestingly, 

vep20 was identical in all the biotype 2 strains analyzed irrespective of its clonal 

origin. This finding supports the previous hypothesis about the polyphyletic origin 

of this biotype by acquisition of the virulence plasmid by different V. vulnificus 

clones in the fish farming environment. In addition, the fact that vep20 does not 

show any variation in sequence also supports that the plasmid has been acquired 

very recently and/or the gene vep20 is under a strong selective pressure that 

precludes any change in the nucleotide sequence. This last hypothesis underlies the 

important role of vep20 in host-specific virulence and supports a scenario in which 

the host adaptation in Vibrio is driven by HGT phenomena produced in its natural 

ecosystem. 

The fact that vuuA and hupA belong to the core of the species also suggest that 

they probably play a role not only in virulence but also a general in survival outside 

the hosts of vibriosis. Accordingly, we found two main polymorphic variants for both 

genes without an apparent relationship with biotype or origin (clinical versus 

environmental) of the isolate. However, a deeper study of the origin of the isolates 

provided evidence of some kind of relationship between receptor variant and 

environment. Thus, for hupA, all the strains that produced hupA(I) came from fish 

farming-related environments (diseased fish, tank water, healthy fish and humans 

infected through fish handling), which would suggest that hupA could have diverged 

as a consequence of better adaptation to Hm-containing fish proteins. On the other 

hand, in vuuA, this adaption to the environment was mainly evident for the zoonotic 

strains. In this case, the theoretical divergence time for the gene was much longer 

than that expected for a clonal complex. The most plausible explanation would be 

that the environment acts as a strong selective force because the main source of 
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variation for this clonal complex is the multiplicity of environments from which the 

strains were isolated (water, healthy fish, diseased fish, human expectoration, 

human wound, human septicemia...). The adaptation to the environment of a 

siderophore receptor could be a consequence of changes in the siderophores, 

produced by mutations in the biosynthetic genes, due to the competence by iron in 

the natural environments of the bacteria. The same hypothesis was proposed to 

explain the variation in receptors for pyoverdin in Pseudomonas spp. (Bodilis et al., 

2009). Another interesting observation provided by the phylogenetic study was that 

some Bt1 strains from clinical and environmental sources presented a truncated 

form of the hupA gene. Interestingly, these strains possess a whole hutR gene, which 

suggests that they could use this second receptor to uptake iron from heme-

proteins. This finding provides a biological explanation for the presence of a second 

gene for heme-receptor in the genome of the species. 

In conclusion, vuuA and hupA are host-nonspecific virulence genes involved 

in the colonization and invasion of internal organs by enabling the bacterium to 

grow in the iron-restriction conditions imposed by the mammal and teleost hosts, 

while vep20 is a fish-specific gene involved in colonization and invasion of the eels 

by probably binding eel-Tf. This work also demonstrates that iron-uptake from 

hemin and/or vulnibactin is essential to cause vibriosis in mice and suggests that 

probably a third host-specific system could also be involved in sepsis in fish. The 

phylogenetic study also suggests that vuuA and hupA genes are part of the core genes 

of the V. vulnificus species and are subjected to variations, probably due to 

environmental adaptations while vep20 was acquired by HGT conferring, together 

with the rest of plasmid genes, an adaptation to a new host; the eel. This gene has 

not varied since its acquisition, which suggests that this has been very recent and 

also that the genes is under a strong selective force probably exerted by the host. 

Finally, hutR encodes a secondary heme receptor that is not relevant to virulence, 

although it could be used by the strains with a truncated form of hupA, like those we 

have found in this study. 
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I. INTRODUCTION 

 

In the previous chapter, we found evidences that iron could be one of the 

common signals that V. vulnificus “senses” in mammal and fish tissues. The main 

regulator that responds to external iron levels in bacteria is Fur (Iron uptake 

regulator). Recent studies indicate that Fur, in addition to regulate iron-uptake, 

controls multiple genes involved in a variety of cellular processes such as acid shock 

response, chemotaxis, metabolic pathways, bioluminescence, and the production of 

toxins and other virulence factors (Kim et al., 2005; Kim et al., 2013a; Septer et al., 

2013; Carpenter et al., 2009). In some bacteria, Fur can also act as a positive 

regulator in controlling gene expression (Carpenter et al., 2009).  

The regulator Fur of V. vulnificus biotype 1 (FurVvbt1) is a 149 aminoacid 

protein with a similarity of 77% and 93% with Fur of E. coli (FurEc) and V. cholerae 

(FurVc) respectively. FurVvbt1 is part of a complex network of regulation, only poorly 

characterized, where interacts with other transcriptional regulators. Thus, FurVvbt1 

is positively regulated by RpoS, as well as by itself, and represses directly the 

transcription of V. harveyi LuxR homolog, SmcR (Lee et al., 2003; Lee et al., 2007a; 

Kim et al., 2013a). This fact suggests that FurVvbt1 has an important role as a global 

regulator of gene expression at transcription level in V. vulnificus, regardless biotype 

and/or serovar. 

Whole-genome based microarrays constitute a powerful tool to study the 

global transcriptomic response in bacteria. This technology has been widely used to 

find out the role of global transcriptional regulators in gene expression, as well as 

the influence of stimuli or environmental conditions in the transcriptomic response 

(Mueller et al., 2009; Massé et al., 2005; Jittawuttipoka et al., 2010). In V. cholerae 

Mey and cols. (Mey et al., 2005) defined the FurVc regulon by identifying genes up- 

or down-regulated in a furVc mutant, and demonstrated that FurVc regulates a high 

number of genes belonging to different functional categories. Further, Alice and cols. 

(Alice et al., 2008) performed a global transcriptomic analysis of V. vulnificus biotype 

1 in response to different iron concentrations and defined condition-specific 
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transcriptomic profiles that included genes related to a wide variety of biological 

functions. 

To further define the gene repertoire that is regulated by iron and Fur in the 

zoonotic serovar of V. vulnificus, we obtained a mutant in FurVvbt2 and used DNA 

microarray technology to monitor the expression of the entire gene repertoire of the 

zoonotic serovar in response to iron. To this end, we first developed a specific 

Vvbt2serE-based microarray containing probes for all the ORF identified in the 

genome of the strain CECT4999. Global transcriptomic response was reconstructed 

by comparing the transcriptional profiles of the wild-type and furVvbt2 mutant strains 

in poor and rich iron conditions. 

 

II. MATERIAL AND METHODS 

 

A. Bacterial strains, growth media and conditions  

 

Bacterial strains (Table 1) were routinely grown in LB-1/LBA-1 or CM9/CM9A 

(Sambrook and Russell, 2001). If necessary, ampicilin (100 µg/ml), chloramphenicol 

(20 µg/ml) or polymixin B (50 U/ml) were added to the media. To analyze the effect 

of different iron sources on growth, bacteria were grown in CM9-D (CM9 plus 20 µM 

dipyridil [Sigma]), CM9-Hm (0.1 µM bovine hemin [Sigma] plus 100 µM EDDA 

[Sigma]), CM9-Tf (40 µM iron-free human apo-transferrin [Sigma]). V. vulnificus 

strains were incubated at 28ºC and E. coli strains at 37ºC for 18-24 h. All the strains 

were stored in LB-1 plus glycerol (17%) at -80ºC. 
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Table 1. Bacterial strains and plasmids used in this study. 

 

 

 

B. DNA/RNA manipulation 

 

1. General technics 

The general techniques of acid nucleic manipulation, PCR and qRT-PCR are 

detailed in Chapter 1, pages 71-74. Primers were designed from the genome of V. 

vulnificus YJ016 (Genebank: chromosome 1 BA000037, chromosome 2 BA000038 

and plasmid pYJ016 AP005352) and the virulence plasmid pR99 (AM293858) 

(Table 2). RNA concentration and integrity were measured by 2100 Bioanalizer 

(Agilent), following the manufacturer’s instructions. All samples presented a RNA 

Integrity Number (RIN) value higher than 9. 

 

Designation Description Isolation source/ Reference 

V. vulnificus   

CECT4999 Biotype 2 Serovar E Diseased eel (Spain) 

Δfur  CECT4999 fur-defective mutant This study 

cfur  Δfur complemented strain This study 

 
E. coli 

  

DH5α Cloning strain Invitrogen 

s17-1λpir Strain containing the pCVD442 plasmid. thi pro 
hsdR hsdM+ recA::RP4-2-Tc::Mu λpir Kmr Nalr 

Simon et al. (1983) 

   

Plasmids   

pGemT-
easy 

T/A Cloning vector, Ampr Promega 

pIT009 Derivative of pJRD215 with the Smr gene 
between two XmnI sites replaced by the 
multiple-cloning-site-containing lacZ gene 
cloned from pUC19 

Lee et al. (2008) 

pΔfur pGemT-easy with Δfur in the MCS This study 

pITfur pIT009 with fur gene and promoter in MCS This study 
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2. Isolation of mutant and complemented strains 

A furVvbt2 insertion mutant was obtained as previously described (Shao and 

Hor, 2000) with slight modifications. Briefly, the regions of the chromosome 

corresponding to up-(1382 nt) and downstream (1329 nt) of furVvbt2 were amplified 

using primer sets (Fur-1/Fur-2 and Fur-3/Fur-4) (Table 2) and cloned into the 

pGEMT-easy, carrying an in-frame deletion of the major part of the coding sequence. 

Chloramphenicol resistance marker was inserted at XbaI site of the cloned 

construction thus obtaining plasmid pΔfurVvbt2. Plasmid was linearized by XmnI 

digestion and introduced in V. vulnificus CECT4999 by natural transformation, as 

previously described (Meibom et al., 2005). Transformants were selected in Lb 

plates supplemented with chloramphenicol. To generate the complemented strain, 

cfurVvbt2, the entire furVvbt2 gene and its promoter region was amplified from V. 

vulnificus CECT4999 with primers Fur-5/Fur-6 with a BamHI restriction site added, 

and cloned into the BamHI site of a recombinant plasmid, pIT009 (Lee et al., 2008). 

The resultant plasmid (pIT furVvbt2) was introduced into ΔfurVvbt2 by conjugation. 
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Table 2. Primers used in this study.  
 

 
 
 
 

Mutant construction 

Primer Restriction 
site 

Sequence Product  
size(bp) 

Utilization 

fur-1  GGTAAAGCGTGTCTTCGTGC 1382 Construction 

fur-2 XbaI CCTCTAGACAAGTGTGGCGATGGCTC  Construction 

fur-3 XbaI GCTCTAGACCCGTTGATGATCTGCCG 1329 Construction 

fur-4  GTGTGGCTAGTGCTCTTCC  Construction 

fur-cF BamHI CTGGATCCGAGCGTATGGGTTACTTC 1060 Complementation 

fur-cR BamHI CTGGATCCGTTAAAGAGAAAATAC  Complementation 

Microarray validation (qRT-PCR) 
Primer Sequence Product  

size(bp) 
size (bp) 

Gene 

recA-F CGCCAAAGGCAGAAATCG 59 Recombinase A 

recA-R ACGAGCTTGAAGACCCATGTG    
V1-F AACGCCTTCCCCAATGC  54 2,3-DHBA-AMP ligase 

V1-R CAATCAAGCCTTCCGCCATA    

V2-F CACCGAGTGCTGGAGTTGTTC  59 ABCt, ATP-binding protein 

V2-R TGTATACGCCTGTTGCGGATT    

V3-F AGCAGCAACAAATGGCGATA  59 Polar flagellar sheath 
proteinA 

V3-R CCTGCAGTCGCGATCGTT    

V4-F CGCGTAGGCGAAACACTGAT  62 Carbon storage regulator 

V4-R GCCTTTAACACCCAGTACCGTTA    

V5-F AATCCGCGCACTCAGCAT  54 Transketolase 

V5-R GCCTGGATGGCCTGAGTTT    

V6-F AATCTGGGCAACAGAATCTATGG  63 Pyruvate formate-lyase 

V6-R TGAACGCGTTACTAGCGTACGA    

V7-F AAGGCATCCCAAATCTGCAA  59 
 

Bacterioferritin 

V7-R TTTCTTGGGTATCTTCGCCAAT    

V8-F TTTGCCGCCATCAAACAA  53 Catechol ABC transporter 

V8-R GATGGTGAGCGCATCCACTT    

V9-F TCGCTGGGAAGGCCATATT  55 33 kDa chaperonin 

V9-R CTTTGCCCATCATGTCGTGTA    

V10-F AGCAGCAACAAATGGCGATA  59 Polar flagellar sheath 
proteinA 

V10-R CCTGCAGTCGCGATCGTT    

V11-F CAAAACGCAAAAGTGAACAAGAA  57 DNA-directed RNApol 

V11-R CCCGGCGTATTGCTGTTG    

V12-F TCTCTTCTTTTGGCTCAACGTTT  60 TcuB 

V12-R TCCAATCCTCCCCCTTCCT    
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C. Microarray analysis 

 

1. Microarray design 

The VvBt2SerE-specific gene expression microarray (8x15K) slides were 

custom designed with eArray software (Agilent technologies), following MIAME 

guidelines for array design (Brazma et al., 2001). The predicted annotated ORF’s of 

CECT4999 strain genome (unpublished data) was used for the probes design. The 

arrays contained in total 4553 probes of 60-oligonucleotide length. These probes 

were distributed in 3 probes per target (13890) with an e-value of 0.0 and the rest 

were filled with internal control probes of Agilent. Settings used were based on the 

following: Base composition methodology, best probe methodology, and design with 

3’ bias.   

 

2. Labelling and hybridization 

General procedures to obtain labeled cRNA were performed as described in 

protocols of the kit “One-Color Microarray-Based Gene Expression Analysis: Low 

Input Quick Amp Labeling” (Agilent).  

First step consisted in preparation of One-Color Spike Mix, a mix of ten in 

vitro transcripts in predetermined ratios that are processed in parallel with the rest 

of the samples and allows researchers to efficiently monitor microarray workflow 

for linearity, sensitivity and accuracy after hybridization onto Agilent microarray 

control probes. 

To obtain cDNA, 200 µg of sample RNA (template) were mixed with 200 ng 

of T7N9 primers, a random nonamers that amplify all the RNA (Moreno-Paz and 

Parro, 2006). Resultant cDNA was subjected to a transcription reaction to finally 

obtain cRNA labeled with cyanine 3 dye (Cy3). Purification and quantification of 

labeled/amplified cRNA in Nanodrop ND-2000 was carried out as described in 

manufacturer’s protocols. 
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Cy3-labeled cRNA was hybridized with array slides as detailed in 

manufacturer’s instructions (Agilent); labeled cRNA was subjected to a 

fragmentation reaction for 30 minutes and samples were incubated on ice for 1 

minute to stop the reaction; labeled cRNA makes a better target for oligo arrays once 

it has been fragmented to an optimal size of 50–200 bases long, thus, the structures 

of the fragmented targets are less complex, which helps improve their specificity 

and raises the average feature signal intensity on the microarray.  

For hybridization incubation, samples were dispensed onto the gasket well 

on the slides and were placed in a hybridization oven with rotation at 10 rpm at 

65ºC for 17 hours. Washing steps of the slides were carried out as described in 

manufacturer’s protocol and scanning was performed with an Axon Scanner 4000B. 

 

3. Microarray validation by qRT-PCR 

To validate the microarray expression results, the same samples used in 

microarray analysis were analysed by qRT-PCR (described in Chapter 1 page 73) to 

calculate the expression of 12 selected genes at transcription level. Primers specific 

to the housekeeping gene recA and tested genes were used to amplify DNA 

fragments of about 60 bp (Table 2). The tested genes were selected on the basis of 

their transcriptional activity classified in induced (fold change ≥2), repressed (fold 

change ≤-2) and invariable expression (2>fold change>-2), in both Δ furVvbt2 and 

presence of transferrin conditions. 

 

 

D. Phenotypic characterization of furVvbt2 mutant 

 

1. Motility assay 

A volume of 5 l of a bacterial suspension in PBS-1 (109 CFU/ml) from 

exponential phase cultures (6 h) in CM9 was spotted on MA (Motility Agar; tryptone 

1%, yeast extract 0,5%, NaCl 1% and agar 0,3%), MA-Fe (MA plus 100 µM FeCl3) or 
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MA-D (MA plus 20 µM dipyridil) plates and diameter of halos was measured by 

triplicate. Microscopic observations of bacterial suspension were made in a Nikon 

Phase-Contrast Microscope. 

 

2. Chemotaxis assay 

Chemotaxis assay was performed as described previously (Larsen et al., 

2001). Capillary tubes (5-µl pre-calibrated pipettes; Vitrex) were filled with EM (eel 

mucus) or ChB (chemotaxis buffer; PBS + 0.01 mM EDTA) and were introduced up 

to 1 cm in eppendorfs containing 0.5 ml of a bacterial suspension in ChB (108 

CFU/ml) from exponential-phase-growth cultures (6h) in CM9 or CM9-D. 

Eppendorfs plus fixed capillary tubes were incubated for 30 min at 28ºC and 

bacterial numbers both inside and outside the capillary tubes were estimated by 

drop plating on TSA-1 plates (Hoben and Somasegaran, 1982). The chemotactic 

response (CR) was expressed as the ratio between bacterial counts in EM-capillarity 

tubes vs ChB-capillarity tube. 

 

3. Bacterial attachment 

To determine the attachament degree to a chitin surface, a 50-ml falcon flask 

containing 10 ml of artificial sea water (ASW; KCl 0.067%, CaCl22H2O 0.136%, 

MgCl26H2O 0.466%, MgSO47H2O 0.629%, NaHCO3 0.018% and CaCl 2.47%) 

(supplemented or not with dipyridil at 20 µM) plus 0.5 gr of PBS-washed and 

autoclaved crab shell was inoculated with overnight cultures of the wild-type and 

its derivative strains in CM9 or CM9-D (ratio of 1:100, vol/vol) and incubated at 

17ºC with shaking (70 rpm). DNA was extracted at 0, 24 and 48h post-incubation 

after washing crab shells twice with PBS-1 by recovering bacteria with Mili-Q water, 

vortexing and heating at 100ºC for 10 min. DNA was quantified by quantitative PCR 

(qPCR) by using primers specific for recA housekeeping gene (recA-F/recA-R) 

(Table 2).  
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4. Growth in plasma, hemin and apo-transferrin 

Microtitter plates of 96-wells containing fresh eel and human plasma (200 

l/well) were inoculated with stationary-phase bacteria at a ratio 1:100 (vol/vol) 

and were incubated for 10 h at 28 or 37ºC (HP) with shaking (200 rpm). If necessary, 

the bactericidal (complement) or bacteriostatic (Tf) activity of plasma was 

abolished by heating it at 56ºC for 30 min (Amaro et al., 1997) or supplementing it 

with 100 µM of FeCl3, respectively. Plasma was obtained as described in Chapter 1, 

page 78. OD600 was measured at 1 h-intervals and growth curves were constructed 

and statistically compared.  

 

5. Minimal inhibitory concentration (MIC) of iron chelators, 

microcide peptides and saponin (a surfactant from 

plants) 

MICs were determined in 96-well microtitter plates containing CM9 (200 l 

per well) supplemented with different concentrations of polymyxin B sulfate (10 to 

8x103 U/ml; Sigma), lysozyme (10 to 103 µg/ml; Sigma), dipyridil (10 to 200 µM; 

Sigma), apo-transferrin (10 to 100 µM; Sigma) or saponin (100 µg/ml; Sigma). Plates 

were inoculated with overnight cultures in CM9 in a ratio 1:100 (vol/vol) and were 

incubated for 30 min (saponin) or 24 h at 28°C with shaking (160 rpm). The MIC 

endpoint was defined as the lowest substrate concentration at which there was not 

visible growth except in case of saponin-containig paltes, in which a culturable count 

on CM9A was performed (Hoben and Somasegaran, 1982) at 5, 10, 15, 20 and 30 

min post-incubation.  

 

6. Siderophore detection 

Siderophore production was determined as described in Chapter 2 page 113. 
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7. Resistance to acid, heat and cold shocks 

For cold-shock resistance determination, overnight cultures in CM9 or CM9-

D (28ºC, 160 rpm) or were maintained at 28ºC (control) or were transferred to a 

4ºC-cold chamber where were additionally incubated for 10 days with agitation 

(160 rpm). For acid- and heat-shock resistance determination, bacteria from 

overnight cultures (at 28ºC, both shocks, or 37ºC,  only heat-shock) were washed in 

PBS-1 and inoculated in tubes containing 5 ml of PBS-1 or PBS1-pH5 (only acid-

shock), both supplemented or not with dipyridil (20 µM), at a ratio of 105 CFU/ml. 

Tubes were incubated at 28ºC (both shocks) or 41ºC (only heat-shock) with shaking 

(160 rpm) for 180 min (acid-shock) or 10 h (heat-shock). In all cases, culturable 

bacteria numbers were estimated by drop plating (Hoben and Somasegaran, 1982) 

on CM9A at intervals of 1 day (cold-shock), 30 min (acid-shock) or 1 h (heat-shock).  

 

8. Proteolytic, hemolytic and chitinase activity 

The protease activity of ECPs (crude extracts of toxins and exoenzymes, also 

called extracellular products, ECP), obtained as described in Chapter 1 page 71 from 

overnight cultures on CM9A or CM9A-D, was estimated according to Miyoshi and 

cols. (Miyoshi et al., 2002). Briefly, eppendorfs containing 0.5 ml of ECP plus 0.5 ml 

of azocasein solution (2 mg/ml in 50mM Tris-HCl buffer, pH 8.0) were incubated in 

a 30ºC-thermostated bath for 15 min. Then, 0.5 ml of 5% trichloroacetic acid were 

added to stop proteolysis, precipitates were eliminated by centrifugation (13.000 

rpm, 5 min), and a volume of 0.5 ml of the supernatant was mixed with 0.5 ml of 

NaOH 0.5M and Abs440 was measured. One protease unit (PU) was defined as the 

amount of the sample hydrolyzing 1 mg of the substrate in 1 ml, and was calculated 

as follows: 

 

UP = 1000 x (A440/15) x inverse dilution 

 

Hemolytic activity against bovine erythrocytes of bacterial cells and ECP 

(from cultures in CM9 or CM9-D) was measured as detailed in chapter 1 page 77.  
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Bacterial growth from chitin as the sole carbon source was determined as an 

indirect estimation of chitinase activity. To this end, bacteria from overnight CM9 or 

CM9-D cultures (28ºC, 160 rpm) were washed twice in PBS-1 and inoculated (106 

CFU/ml) in ASW-chitin (Artificial sea water plus 1% [vol/vol] colloidal chitin 

[Sigma]), supplemented or not with dipyridil 20µM. Bacteria were incubated at 28ºC 

with shaking (160 rpm) and culturable counts were performed at 0, 3, 7 and 14 days 

post-incubation onto CM9A by drop plating (Hoben and Somasegaran, 1982).  

 

9. LPS and capsule 

Crude fractions of LPS and capsule were obtained from overnight CM9 or 

CM9-D as described by Hitchcock and Brown (1983). Briefly, bacteria from 1 ml of 

culture were washed twice with PBS-1, dispersed in 50 µl of FSB (Final Sample 

Buffer; Tris-HCl 0.065M, pH 6.8, SDS 2%, Glicerol 10%, Bromophenol Blue 0.001% 

and 2-mercaptoethanol 5%) and lysed by boiling at 100ºC during 10 min. Proteins 

were degraded with proteinase K (Sigma Aldrich), by adding 20 µl of a solution of 

2.5 mg/ml in FSB and incubating 1 h at 65ºC. The polysaccharyde concentration was 

determined with ProQ Emerald 300 staining for glycoproteins (Invitrogen) by 

following the manufacturer’s instructions. LPS and capsule antigens were separated 

by SDS-PAGE (Laemmli, 1970) in discontinuous gels (4% stacking gel, 10% 

separating gel), transferred to a PVDF membrane (0.2 µm, Bio-Rad) at 100V for 1 h 

in Tris-glycine-methanol transfer buffer (25 mM Tris, 192 mM glycine [pH 8.3], 20% 

[vol/vol] methanol) (Towbin et al., 1979), immunostained with serovar E-specific 

sera (Amaro et al., 1992) diluted 1:3000 plus anti-rabbit IgG HRP-conjugated sera 

diluted 1:5000 (Sigma Aldrich), and revealed with Immobilon Western 

Chemiluminescent HRP Substrate (Millipore) in a Image QuantTM LAS4000mini 

biomolecular imager (GE healthcare).  

 

 

10. Virulence and colonization/invasion 

Animal maintenance, virulence degree and colonization/invasion assays 

were performed as described in Chapter 1 page 80-81. 
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E. Statistical analysis 

 

All the experiments were performed by triplicate and the significance of the 

differences was tested by using the unpaired Student's t-test with a p < 0.05. 

 

III. RESULTS 

 

A. Microarray analysis 

 
A very high number of genes changed their expression level when furVvbt2 was 

mutated or when iron was sequestered from the medium by apo-transferrin (Figure 

1). Thus, 1791 genes (39.5% of the genome) were differentially expressed by the 

furVvbt2 mutant, from which 969 (54.1%) resulted to be induced and 822 (55.9%) 

repressed, and 1318 (29% of the genome) were regulated by iron, 595 (45.14%) up-

regulated and 723 (54.86%) down-regulated (Figure 1). Interestingly, a 62% of 

plasmidic genes seems to be regulated by Fur Vvbt2/Iron. 
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Figure 1. Diagrams representing the genes induced/represed by FurVvbt2 

and iron. 

 

  

To validate the microarray data, the expression level of selected genes was 

also determined by qRT-PCR. For the selection, the genes were classified in FurVvbt2- 

vs iron-regulated and within each category in up- (fold change ≥2, p-value ≤ 0.01.), 

down- (fold change ≤-2, p-value ≤ 0.01.) or “non”-regulated (2>fold change>-2, p-

value ≤ 0.01). The selected genes and their expression levels evaluated from the 

same sample by both microarray and qRT-PCR analysis are presented in Table 3. A 

good correlation was found between both kinds of data, which validated the 

microarray analysis. 
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Table 3. Comparison of mRNA levels in V. vulnificus array and qRT-PCR. 

 
 

Sample 
 

 Fold Changea 
  

Gene  
 

 

Array qRT-PCR 

Δfur in CM9 

2,3-dihydroxybenzoate-AMP ligase 21.9 (++) 13.92 (++) 

ABC transporter, ATP-binding protein 11.78 (++) 15.03 (++) 

54K polar flagellar sheath protein A - 34.17 (---) -5 (-) 

Carbon storage regulator - 24.26 (--) -2.7 (-) 

Transketolase 1.05 (=) 1.13 (=) 

Pyruvate formate-lyase 1.04 (=) 1.14 (=) 

CECT4999 in 
CM9-Tf 

Bacterioferritin 45.19 (+++) 24.33 (++) 

Catechol ABC transporter, substrate-binding 
protein 

41.18 (+++) 7.51 (+) 

33 kDa chaperonin - 17.36 (--) -2.63 (-) 

54K polar flagellar sheath protein A - 55.3 (---) -11.11 (--) 

DNA-directed RNA polymerase, beta' subunit 1.3 (=) 1.18 (=) 

TcuB 1.19 (=) 1.16 (=) 
 

a Qualitative classification: =, -2<X<2; +, 2≤X<10; ++, 10≤X<25; +++, 25≤X; -, -10<X≤-2; --, -25<X≤-

10; ---, X≤-25.  

  

 

Classically, the Fur protein has been thought to act coordinately with iron as 

a repressor, but in the last years has been proved that the global regulator Fur can 

control gene expression without interacting with iron and also acting as an activator 

(Carpenter et al., 2009). In consequence, microarray results were analyzed in depth 

and variable-expression genes were further classified into eight categories, which 

were not-equally represented (Figure 2). The differentially expressed genes 

classified by categories are listed in appendix III.  
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Figure 2. Number of genes regulated by Fur and iron. A) All genes, B) 

chromosomal genes and C) plasmidic genes. 
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We focused our research on putative virulence and transcription-related 

genes since they could be of some help in disentangling the role played by FurVvbt2 

and iron in the pathogenesis of this zoonotic pathogen. In table 4, genes induced, 

repressed or non-altered are represented with green, red and white color, 

respectively.  

 

TOXINS AND EXOENZYMES 

 

Table 4a. Selected genes under control of FurVvbt2 and/or iron: Toxins and 

exoenzymes. 

 

GENE CATEGORY AND NAME FUR IRON 
TOXINS AND EXOENZYMES   

HEMOLYSINS   

21 kDa hemolysin precursor   

Hemolysin III homolog   

Hemolysins and related proteins containing CBS domains   

Putative hemolysin   

Putative hemolysin   

Thermolabile hemolysin precursor   

   

PROTEASES   

Exported zinc metalloprotease YfgC precursor   

Membrane-associated zinc metalloprotease   

Protease II   

Protease IV   

Protease-related protein   

Putative protease   

Putative protease La homolog    

Tail-specific protease precursor   

   

CYTOLYSINS AND RTX   

Cytolysin precursor   

Cytolysin secretion protein   

Putative RTX toxin   

RTX toxins and related Ca2+-binding proteins   

RTX transporter   

RtxC   

   

CHITIN-RELATED PROTEINS   

Chitin binding protein   

Chitinase   

Chitinase    
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A few genes for toxins (putative hemolysins) and proteases seem to be under 

FurVvbt2 / iron control although none of them corresponds to the major 

cytolysin/hemolysin, RtxA13 and VvhA, and proteases, VvpE of V. vulnificus (Lee et 

al., 2012; Lee et al., 2004; Shao and Hor, 2000). Among the activated genes, it should 

be highlighted the hemolysin III, described in the biotype 1 as a virulence gene 

whose mutation causes attenuation in virulence for mice (Chen et al., 2004a), two 

chitinases and a gen related with a putative RTX toxin, homologous to a toxin 

present in E. coli and Neisseria sp., without a clear role in virulence (Forman et al., 

2003). Regarding the repressed genes, rtxC is part of the operon rtx of V. vulnificus 

and encodes an enzyme that supposedly activates post-transcriptionally the main 

virulence factor in the biotype 2, the MARTX type III, and yfgC, homolog to bepA of 

E. coli, is a gene related to OM integrity that promotes either protein inclusion or 

exclusion by proteolytic degradation when they are incorrectly assembled (Narita 

et al, 2013).  

 

IRON ACQUISITION SYSTEMS 

 

Table 4b. Selected genes under control of FurVvbt2 and/or iron: Iron 

acquisition systems. 
 

GENE CATEGORY AND NAME FUR IRON 
IRON ACQUISITION SYSTEMS   

HEMIN/HEMOGLOBIN   

Hemin receptor HupA   

Hemin receptor HutR   

Hemin transport, ABC transporter, ATPase component   

Hemin transport, ABC transporter, permease component   

Hemin transport, ABC transporter, periplasmic component   

Putative heme iron utilization protein   

Pyridoxamine 5'-phosphate oxidase (heme iron utilization protein)   

   
FERRIC/FERROUS IRON UPTAKE   

Ferric iron ABC transporter, iron-binding protein   

Ferric iron ABC transporter, permease component   

Ferrous iron transport protein A   

Ferrous iron transport protein B   

Ferrous iron transport protein C   

   
FERRIREDUCTASES   

Predicted ferric reductase   
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As expected, the genes involved in iron acquisition were putatively repressed 

by FurVvbt2 and iron with very few exceptions (Table 4b). Thus we identified:   

i) heme-uptake related genes: among them, hupA and hutR, which encode 

hemin receptors (characterized in chapter 2), a set of genes involved in hemin 

transport and two putative heme utilization genes, one of them only under iron 

control.  

 ii) siderophore- and transferrin-related iron utilization: We identified a series 

of genes for vulnibactin biosynthesis (previous steps: genes for two subunits of the 

IRON STORAGE   

Bacterioferritin   

Bacterioferritin-associated ferredoxin   

   
SIDEROPHORES BIOSYNTHESIS AND TRANSPORT   

ABC-type Fe3+-hydroxamate transport system, periplasmic component   

ABC-type metal ion transport system, periplasmic component   

Anthranilate synthase, amidotransferase component   

Anthranilate synthase, aminase component   

Catechol siderophore ABC transporter, substrate-binding protein   

Ferric aerobactin ABC transporter, ATPase component   

Ferric aerobactin ABC transporter, periplasmic component   

Ferric aerobactin ABC transporter, permease component   

Ferric aerobactin siderophore receptor IutA   

Ferric aerobactin; hypothetical protein in aerobactin cluster   

Ferric siderophore transport system, biopolymer transport protein 
ExbD/TolR 

  

Ferric siderophore transport system, biopolymer transport protein ExbD1   

Ferric siderophore transport system, biopolymer transport protein ExbB   

Ferric siderophore transport system, biopolymer transport protein ExbB   

Ferric siderophore transport system, periplasmic binding protein TonB1   

Ferric siderophore transport system, periplasmic binding protein TonB2   

Ferric siderophore transport system, periplasmic binding protein TonB3   

Ferric vibriobactin, enterobactin transport system, ATP-binding protein   

Ferric vibriobactin, enterobactin transport system, permease protein VctD   

Ferric vibriobactin, enterobactin transport system, permease protein VctG   

Ferrichrome-iron receptor   

Isochorismatase   

Isochorismate synthase   

Isochorismate pyruvate-lyase   

Non-ribosomal peptide synthetase modules   

Non-ribosomal peptide synthetase modules   

Phosphopantetheinyl transferase component   

Outer membrane receptor for ferrienterochelin   

pR99 Vep20   

Vulnibactin utilization protein VuuB    
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anthranilate synthase -one repressed by iron and the other activated by FurVvbt2- 

involved in aminoacid biosynthesis; specific steps: genes belonging to the 

vulnibactin biosynthetic operon such as those for three enzymes related to the 

metabolism of isochorismate, 2 non-ribosomal peptide synthetases…) and for 

vulnibactin transport ( exbD, exbD1, two copies of exbB and the three tonB systems, 

of which tonB3 resulted to be induced by FurVvbt2, accordingly with the results of 

Alice et al., 2008). In addition we found series of genes for the uptake of exogenous 

siderophores, such as genes for a ferrienterochelin –or ferrienterobactin- receptor, 

for two periplasmic components of ABC transporters, one for hydroxamates and the 

other for metal ions (all the three genes being up-regulated), together with the 

cluster for aerobactin utilization characterized in biotype 1 (genes for ATPase, 

periplasmic and permease components of the ABC transporter, as well as the 

aerobactin receptor iutA and a hypothetical protein), three components of a 

vibriobactin-enterobactin transport system and a ferrichrome receptor. Finally, the 

plasmid gene vep20, described in chapter 2, which encodes a putative transferrin 

binding protein was also detected. 

iii) ferric and ferrous iron transport related genes: these genes have been 

recently characterized in V. cholerae (Weaver et al., 2013) and were repressed by 

FurVvbt2 and iron (except the permease component of the ABC transporter of ferric 

iron, that was only repressed by iron). 

iv) a predicted ferri-reductase (induced by iron) and 2 bacterioferritins for 

iron storage.  
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RESISTANCES 

 

Table 4c. Selected genes under control of FurVvbt2 and/or iron: Resistances. 

 

GENE CATEGORY AND NAME FUR IRON 
RESISTANCES   

RESISTANCE TO COLD SHOCK   

Cold shock protein CspA   

Cold shock protein CspD   

Cold shock protein CspE   

Cold shock protein CspG    

Cold shock DEAD-box protein A   

   
RESISTANCE TO HEAT SHOCK   

16 kDa heat shock protein A   

Heat shock protein GrpE   

Heat shock protein Hsp33   

Heat shock protein Hsp60 (GroEL family)   

Heat shock protein Hsp60 (GroEL family)   

Heat shock protein Hsp60 (GroES family)   

Heat shock protein Hsp60 (GroES family)   

Heat shock protein HspA    

Heat shock protein YciM   

Possible protease SohB   

Probable protease HtpX homolog   

Ribosome-associated heat shock protein   

   
RESISTANCE TO OXITADIVE AND NITROSATIVE STRESS   

Alkyl hydroperoxide reductase   

Alkyl hydroperoxide reductase protein C   

Catalase   

Glutathione peroxidase   

Manganese superoxide dismutase   

OsmC/Ohr family protein   

Tiol peroxidase, Bcp-type   

YaaA protein   

   

Nitrite transporter   

Nitrite-sensitive transcriptional repressor NsrR   

Nitrogen regulatory protein   

NnrS protein involved in response to nitric oxide   

Periplasmic nitrate reductase precursor   

Periplasmic nitrite reductase NapD   

Periplasmic nitrite reductase NapE   

Periplasmic nitrite reductase NapF   

Periplasmic nitrite reductase NapH   

   
RESISTANCE TO MICROCIDE COMPOUNDS   

ABC-type multidrug transport system, ATPase component   

ABC-type multidrug transport system, permease component   

ABC-type multidrug transport system, permease component   
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Acriflavine resistance protein   

Acriflavine resistance protein    

Membrane component of multidrug resistance system   

Membrane fusion component of multidrug resistance system   

Membrane fusion protein of RND1 family multidrug efflux pump   

Membrane fusion protein of RND family multidrug efflux pump   

Multidrug resistance protein 2   

Multidrug resistance protein A   

Multidrug resistance protein D   

Multidrug resistance protein SanA   

Multiple antibiotic resistance protein MarC   

Na+-driven multidrug efflux pump   

Outer membrane protein OmpU   

Permease of the drug/metabolite transporter (DMT2) superfamily   

Permease of the drug/metabolite transporter (DMT) superfamily   

Permease of the drug/metabolite transporter (DMT) superfamily   

Permease of the drug/metabolite transporter (DMT) superfamily   

Permease of the drug/metabolite transporter (DMT) superfamily   

Permease of the drug/metabolite transporter (DMT) superfamily   

Putative multidrug resistance protein   

Tellurite resistance protein   

TldD protein, part of proposed TldE/TldD proteolytic complex    

   
RESISTANCE TO PLASMA AND OTHER STRESS CONDITIONS   

KtrA   

pR99 Vep07   

   

SOS response repressor and protease LexA   

Membrane stress response protease DegS   

Sensing protein RspA   

Starvation lipoprotein Slp   

Starvation protein A   

Survival protein SurE   

Universal stress protein A   

Universal stress protein B   

Universal stress protein family 8   

   
BIOFILM FORMATION AND RESISTANCE TO PLASMA   
LPS and Lipid A biosynthesis and transport   

Lipid A biosynthesis (KDO3) 2-(lauroyl)-lipid IVa4 acyltransferase   

Lipid A biosynthesis UDP5-2,3-diacylglucosamine hydrolase   

Lipid A core-O-antigen ligase   

Lipid A export ATP-binding/permease protein MsbA   

Lipid A-disaccharide synthase   

Lipopolysaccharide ABC transporter, ATP-binding protein LptB   

Lipopolysaccharide biosynthesis protein RffC   

LptA, protein essential for LPS transport across the periplasm   

O-antigen flippase Wzx   

Putative LPS biosynthesis protein   

Putative LPS biosynthesis protein   

   
Polysaccharide capsule   

Capsular polysaccharide biosynthesis protein CapD   

Capsular polysaccharide synthesis enzyme CpsA, sugar transferase   
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Capsular polysaccharide synthesis enzyme CpsB   

Capsular polysaccharide synthesis enzyme CpsC, polysaccharide export   

Capsular polysaccharide synthesis enzyme CpsD   

Capsular polysaccharide synthesis enzyme CpsG, Lipid A core - O-antigen 
ligase 

  

Capsular polysaccharide synthesis enzyme CpsI, glycosyltransferase   

Polysaccharide biosynthesis chain length regulator SypO   
 

1 RND: Resistance nodulation-cell division 
2 DMT: Drug metabolite transporter 
3 KDO: keto-deoxyoctulosonate 
4 IVa: distinct form of Lipid A 
5 UDP: Uridine diphosphate 

 

 
As shown in the microarray results, many genes related with stress 

conditions resulted to be regulated by FurVvbt2 and/or iron (Table 4c). The following 

functional groups were established:  

 

Cold shock-resistance genes. Most of them except one (cspD) repressed by 

FurVvbt2 and iron, three of them belong to the csp operon, previously characterized in 

V. vulnificus (Limthammahisorn et al., 2008; Wood and Arias, 2011), and the other 

is involved in the optimal cell growth at low temperature in E. coli (Jones et al., 

1996).  

Heat shock-resistance genes. All of them positively regulated by FurVvbt2 

and/or iron. Among them, hsp33, several hsp60, a gene for a 16KDa HSP A, all of them 

related with protein-protein interactions (folding, establishment of proper-protein 

conformation [shape] and prevention of unwanted protein aggregation) in several 

bacteria (Borges y Ramos, 2005), htpX, related with a zinc-dependent endoprotease, 

involved in proteolytic quality control to prevent membrane malfolding and 

misassembling in E. coli (Sakoh et al., 2005), grpE, related to DNA replication at 42ºC 

in E. coli (Wu et al., 1996), hspA related with the production of polyhydroxyalkanoic 

acid- based biopolymers in E. coli. (Tessmer et al., 2007) and sohB, involved in the 

suppression of the temperature-sensitive phenotype and in cell viability at high 

temperatures also in E. coli (Baird et al., 1991).  
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Oxidative stress-resistance genes. This group is formed by four induced and 

four repressed genes homologous to genes whose functionality has been probed in 

E. coli. Thus, the repressed genes would be related with enzymes that reduce organic 

or inorganic hydroperoxide (Chelikani et al., 2004; Bhabak and Mugesh et al., 2010; 

Seaver and Imlay, 2001) and the activated genes with a variety of proteins and 

functions such as an osmotically inducible protein (osmC), a stress-induced protein 

involved in organic hydroperoxide detoxification (Lesniak et al., 2003), a protein 

(yaaA) that reduces hydroperoxide toxicity by diminishing the amount of 

intracellular unincorporated iron (Liu et al., 2011), and, finally, a manganese-

dependent superoxide dismutase, sodA that is involved not only in the dismutation 

of superoxide (O2−) into oxygen and hydrogen peroxide, but also in resistance to acid 

stress (Kim et al., 2005). 

Microcide peptide- and bile-salts resistance genes. Most of the genes of this 

group were annotated as hypothetical proteins, belonging to a 2 superfamilies of 

proteins, the RND (resistance nodulation-cell division) and the DMT (drug 

metabolite transporter). The first one, RDN, comprises efflux pumps involved in the 

active transport of several compounds, including drugs, and the second one, DMT, is 

subdivided in a high number of subfamilies generally involved in mechanisms for 

drug resistance. Within this group are up-regulated and down-regulated genes. 

Activated genes: genes for ABC transporters (permease and ATPase), membrane 

component and membrane fusion proteins of RND superfamily, permeases of DMT 

superfamily, multidrug efflux pumps, several multidrug resistance proteins, and one 

protein of resistance to tellurite (a bile salt). Repressed genes: genes for one ABC 

transporter (permease), two membrane fusion proteins, one of them of RND 

superfamily, two proteins of resistance to acriflavine (antiseptic) and permeases of 

DMT superfamily. In addition, marC annotated as a multiple antibiotic resistance 

protein, whose real function is under discussion (McDermott et al., 2008), the 

TldE/TldD proteolytic complex, that in E. coli is involved in the processing of 

microcin B17 and CcdA (peptide antibiotics produced by E. coli) (Allali et al., 2002), 

and, finally, ompU, that has a fibronectin-binding function in V. vulnificus and an 

adhesion function in V. cholerae as well as is involved in resistance to antimicrobial 

peptides and bile-salts (Mathur and Waldor, 2004; Goo et al., 2006). 
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Plasma resistance. Two genes related with resistance to plasma were 

identified, one of them ktrA is induced by iron and encodes a potassium pump of V. 

vulnificus involved in resistance to human plasma, protamine and polymixin B (Chen 

et al., 2004b). The other gene is the plasmidic gene vep07, which encodes an OM 

lipoprotein that confers specific resistance to eel plasma and that is repressed by 

FurVvbt2 and iron (our unpublished results).  

Resistance to Nitric oxide. Several genes putatively involved in the 

detoxification process of nitric oxide are induced by FurVvbt2 and/or iron, including 

the napD, napE, napF and napH genes that codifies for periplasmic nitrite reductases, 

and two important transcriptional regulators, nsrR and nnrS (Stewart et al., 2009; 

Honisch and Zumft, 2003; Bodenmiller and Spiro, 2006). 

Resistance to other stress conditions. A series of genes putatively involved 

in other stress conditions are repressed by FurVvbt2 and/or iron, like degS, which 

encodes a membrane protease that activates a sigma factor related with restoration 

of membrane integrity (Chatterjee and Chowdhury, 2013), or surE, related to 

stationary phase survival and other stress-conditions in E. coli (Mura et al., 2003). 

Other genes were activated by FurVvbt2 and/or iron, like lexA, which encodes the SOS 

response repressor (Kimsey and Waldor, 2009), a series of genes encoding 

“universal stress proteins” related to survival in stationary phase, and other stress 

conditions (DNA damage) (Siegele, 2005), and several genes encoding starvation 

proteins (Slp, related to acid resistance [Masuda and Church, 2002] and starvation 

proteins [Groat et al., 1986]), as well as rspA, which encodes a sensing protein 

related to stress (Sakihama et al., 2012). 

External envelopes. Interestingly, genes involved on Lipid A, LPS and O-

antigen, as well as on capsular polysaccharide biosynthesis were identified being 

mainly repressed or induced, respectively, by FurVvbt2 and/or iron. As explained in 

the introductions section, the O-antigen and capsule are clearly related to resistance 

to plasma and phagocytosis (Wright et al., 1990; Valiente et al., 2008b). The fact that 

their biosynthesis is regulated so clearly by FurVvbt2 and iron is an evidence of the 

relevant role that these components have in V. vulnificus pathogenicity. 
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MOTILITY 

 

Table 4d. Selected genes under control of FurVvbt2 and/or iron: Motility. 
 

GENE CATEGORY AND NAME FUR IRON 
MOTILITY   

FLAGELLA   

Flagellar basal-body P-ring formation protein FlgA   

Flagellar basal-body rod modification protein FlgD   

Flagellar basal-body rod protein FlgB   

Flagellar basal-body rod protein FlgC   

Flagellar basal-body rod protein FlgF   

Flagellar basal-body rod protein FlgG   

Flagellar biosynthesis protein FlgN   

Flagellar hook protein FlgE   

Flagellar hook-associated protein FlgK   

Flagellar hook-associated protein FlgL   

Flagellar L-ring protein FlgH   

Flagellar protein FlgJ   

Flagellar protein FlgO   

Flagellar protein FlgP   

Negative regulator of flagellin synthesis FlgM   

   

Flagellar biosynthesis protein FlhA   

Flagellar regulator FlhF   

   

Flagellar biosynthesis protein FliL   

Flagellar biosynthesis protein FliL   

Flagellar biosynthesis protein FliS   

Flagellar hook-associated protein FliD   

Flagellar hook-basal body complex protein FliE   

Flagellar motor switch protein FliG   

Flagellar motor switch protein FliM   

Flagellar motor switch protein FliN   

Flagellar M-ring protein FliF   

Flagellar protein FliJ   

Flagellum-specific ATP synthase FliI   

   

Flagellar regulatory protein FleQ   

Flagellar synthesis regulator FleN   

   

Flagellar rod protein FlaI   

Flagellin protein FlaA   

Flagellin protein FlaB   

Flagellin protein FlaC   

Flagellin protein FlaD   

Flagellin protein FlaD   

Flagellin protein FlaE   

Flagellin protein FlaF   

Flagellin protein FlaG   
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Flagellar motor rotation protein MotA   

Flagellar motor rotation protein MotB   

Sodium-type flagellar protein MotY precursor   

Sodium-type polar flagellar protein MotX   

   

54K polar flagellar sheath protein A   

RNA polymerase sigma factor for flagellar operon   

UDP-N-acetylglucosamine 4,6-dehydratase   

   
PILLI   

Flp1 pilus assembly protein   

Flp pilus assembly protein   

Flp pilus assembly protein RcpC/CpaB   

Flp pilus assembly protein TadA   

Flp pilus assembly protein TadB   

Flp pilus assembly protein TadD   

Flp pilus assembly protein, secretin CpaC   

   

MSHA2 biogenesis protein MshE   

MSHA biogenesis protein MshF   

MSHA biogenesis protein MshG   

MSHA biogenesis protein MshL   

MSHA biogenesis protein MshM   

MSHA biogenesis protein MshO   

MSHA biogenesis protein MshP   

MSHA biogenesis protein MshQ   

MSHA pilin protein MshA   

MSHA pilin protein MshC   

MSHA pilin protein MshD   

   
CHEMOTAXIS   

Chemotactic transducer-related protein   

Chemotaxis protein CheC, inhibitor of MCP3 methylation   

Chemotaxis protein CheV   

Chemotaxis protein methyltransferase CheR   

Chemotaxis regulator, transmits chemoreceptor signals to flagellar 
motor 

  

Chemotaxis response, phosphatase CheZ   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein I (serine chemoreceptor protein)   

Methyl-accepting chemotaxis protein, hemolysin secretion protein HylB   
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Methylase of chemotaxis methyl-accepting protein   

Signal transduction histidine kinase CheA   
 

1 Flp: fimbrial low-molecular-weight protein 
2 MSHA: Mannose-sensitive haemagglutinin 
3 MCP: Methyl-accepting chemotaxis protein 

 

 

  Motility-related genes. One of the most relevant results was the high 

number of flagella-related genes that were found to be regulated by FurVvbt2 and/or 

iron. Genes belonging to different operons were identified, and in all cases both 

FurVvbt2 and iron regulated them positively. A total of fifteen genes of flg operon 

showed an altered regulation, containing genes mainly for the flagella basal body 

and hook proteins, and a chaperone, a peptidoglycan hydrolase and a negative 

regulator (Kim and Rhee, 2003); two genes of the flh operon that codify for flagellar 

regulatory and biosynthesis proteins (Kim et al., 2012); eleven genes of the fli 

operon encoding biosynthesis proteins, motor switch and hook proteins, chaperons, 

basal body proteins and a ATP synthase; two genes of the fle operon with a 

regulation function (Baraquet et al., 2012); nine genes of fla operon that codifiy for 

flagellin and rod proteins (Kim et al., 2013b); four genes of the mot operon for the 

flagellar motor rotation system (Doyle et al., 2004); and three genes that did not 

belong to any established operon, including the polar flagella sheath protein A. 

Interestingly, fliJE, fliJ and fliH were repressed by iron, both genes related to the 

flagellar export system of Salmonella, a secretion type III system (Minamino and 

Macnab, 1999), and a gene for an enzyme that is involved in the biosynthetic 

pathway of pseudaminic acid, a sialic-acid-like sugar used by H. pylori to modify its 

flagellin (Morrison et al., 2008).  

Genes for two different pili were found, type IVb (Flp/Tad) and type IVa 

(MSHA) all of them mainly repressed by iron. Pilus Flp/Tad has been recently 

proposed as a virulence factor in V. vulnificus after a comparison of whole genomes 

because the cluster is only present in clinical strains (Gulig et al., 2010) and MSHA 

pilus has been related to environment survival in V. cholerae (Chiavelli et al., 2001)  

Interestingly, many chemotaxis-related genes are up-regulated and down-

regulated by FurVvbt2 and/or iron. Most of them were subjected to a negative 
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regulation, although methyl-accepting chemotaxis proteins were under all the 

regulation types that both FurVvbt2 and iron can exert. Genes like cheC, cheV, cheR, 

CheZ and cheA, that codify for several functions of chemotaxis process, as well as a 

regulator, a signal-transductor, a chemoreceptor, and a methylase presented an 

altered regulation in microarray results (Wolfe et al., 1987). 

 

GLOBAL TRANSCRIPTIONAL REGULATORS 

 

Table 4e. Selected genes under control of FurVvbt2 and/or iron: Gobal 

transcriptional regulators. 

 

GENE CATEGORY AND NAME FUR IRON 
GLOBAL TRANSCRIPTIONAL REGULATORS   

QUORUM SENSING   

DNA-binding regulator, LuxR family   

LuxO   

LuxP   

LuxQ   

LuxT   

LuxU   

LuxZ   

Transcriptional regulator, LuxR family   

   
CYCLIC-ADENOSINE MONOPHOSPHATE (cAMP)   

Cyclic AMP receptor protein    

Predicted signal-transduction protein containing cAMP-binding domain   

   
ToxR/S SYSTEM   

Transcriptional activator ToxR   

Transcriptional activator ToxS   

   
FERRIC UPTAKE REGULATOR   

Ferric uptake regulator protein (FurVvbt2)    

   
PROTEINS CONTAINING GGDEF/EAL DOMAINS   

diguanylate cyclase (GGDEF domain) with PAS/PAC sensor   

diguanylate cyclase/phosphodiesterase (GGDEF & EAL domains)   

GGDEF and EAL domain proteins   

GGDEF domain family protein   

GGDEF domain protein   

GGDEF domain protein   

GGDEF domain protein   

GGDEF family protein   

GGDEF family protein   

GGDEF family protein   

GGDEF family protein   
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GGDEF family protein   

GGDEF family protein   

GGDEF family protein   

GGDEF family protein   

Putative diguanylate cyclase (GGDEF)/phosphodiesterase (EAL)   

Putative membrane GGDEF domain involved in signal transduction   

Sensory box/GGDEF family protein   

   

 

  Genes related with global transcriptional regulators. Finally, genes that 

codify for global transcriptional regulators related to bacterial metabolism, 

physiology and virulence were also selected. Between these regulators we identified 

components of the quorum sensing system, of the cAMP-mediated regulation, the 

ToxR/S system and multiple genes that contain GGDEF (a bacterial ubiquitous 

domain whose function is to synthesize cyclic di-GMP, used as an intracellular 

signalling molecule) and/or EAL (a domain found in diverse bacterial signalling 

proteins that may function as a diguanylate phosphodiesterase) domains, motifs 

present in proteins involved in regulation and signaling processes. Also, as 

previously described in the biotype 1 (Lee et al., 2007a), the FurVvbt2 protein resulted 

to be positively regulated by itself. 

 

 

B. Phenotypic characterization of furVvbt2 mutant 

 

The microarray data suggested that of iron and/or FurVvbt2, that presented a 

99% identity in aminoacid sequence with FurVvbt1, could control several functions 

related to virulence in V. vulnificus Bt2 SerE. To test it, several experiments were 

designed and phenotype of the wild type strain (grown or not in iron restricted 

conditions), the mutant and the complemented strain were analyzed and compared. 

 

1. Motility 

Results of this assay confirmed that iron, independently of FurVvbt2, controls 

the motility since the colony size directly depended on the quantity of free-iron in 

the medium (Table 5). In addition, motility was also dependent on FurVvbt2, since the 
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colony diameter corresponding to the wild-type strain was significantly higher than 

that of the mutant strain in all media with the exception of MA-D (Figure 3 and Table 

5). As expected, no significant differences in motility were observed between the 

wild-type and the complemented strain. Microscopic observation confirmed these 

results, since motility of furVvbt2 mutant was clearly reduced when a fresh 

preparation was observed in all tested conditions (data not shown). 

 

Table 5. Motility of V. vulnificus strains in Motility agar. 

                             Motilitya 

 CM9 CM9-Fe CM9-D 

CECT4999 4.8 ± 0.25 6.8 ± 0.34 ** 2.6 ± 0.23** 

Δfur 3.6 ± 0.52* 5.8 ± 0.11*  ** 2.1 ± 0.25** 

cfur 4 ± 0.5 6.7 ± 0.11** 2.1 ± 0.3** 
a Motility is expressed as the diameter of halo. 
** Significant differences for each strain in iron concentration with respect to CM9 (p<0.05) 
* Significant differences in furVvbt2 mutation with respect to the wild-type strain (p<0.05) 

 

 

 
 

A B

C
Figure 3. V. vulnificus 

motility on Motility agar. Plates 

were inoculated with 5 µl of a 109 

CFU/ml bacterial suspension and 

the diameter of the halo was 

measured at 24 h. (A) wild-type 

strain, (B) Δfur and (C) cfur. 
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2. Chemotaxis 

All tested strains exhibited positive chemotaxis towards eel mucus without 

significant differences between strains (wild-type vs mutant/complemented strain) 

or conditions (presence vs absence of iron) (Figure 4).  

 

 

Figure 4. Chemotactic activity of V. vulnificus strains measured as the 

chemotactic response. 

 

3. Attachment to chitin 

No DNA was detected at 0 h, indicating that bacteria had not enough time to 

attach to the chitin surface, while bacteria were detected at 24 and 48 h (Figure 5). 

Interestingly, the amount of DNA was significantly higher at 48 h than at 24 h (Figure 

5). On the other hand, mutation of furVvbt2 gene or addition of dipyridil to ASW did 

not affect the bacterial attachment in the assayed conditions (Figure 5). 
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Figure 5. Bacterial attachment to crab chitin measured as quantity of 

recA gene DNA determined by qPCR.  

 

 

4. Growth in plasma, hemin and apo-transferrin 

The growth of the wild-type and its derivative strains was monitored in 

artificial media containing apo-transferrin (CM9-Tf) or hemin (CM9-Hm) as the sole 

iron sources. Although all the strains grew in CM9-Tf and CM9-Hm, the furVvbt2 

mutant entered in the log. growth phase before than the rest of the strains, with 

significant differences in counts at 7 and 8 h-post incubation in CM9-Hm, and at 7, 8 

and 9 h post-incubation in CM9-Tf (Figure 6A and B).  

 

0

10

20

30

40

CECT4999

CECT4999+D

Δfur

cfur

0 24 48

Time (h)

C
T



CHAPTER 3: MICROARRAY ANALYSIS OF THE ZOONOTIC SEROVAR OF Vibrio vulnificus 

191 
 

  

 
 
Figure 6. Bacterial growth in presence of hemin and apo-transferrin. V. 

vulnificus and its derivative strains were grown in CM9-Hm (A) and CM9-Tf (B) and 

growth was monitored in intervals of 1 h by measuring the OD600. Asteriks indicate 

significant differences in growth between the mutant and the wild-type strain 

(p<0.05). 
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Regarding the experiments of growth in plasma, all strains grew in fresh EP 

(Figure 7) and HP (Figure 8) but grew faster when plasma was inactivated and/or 

supplemented with iron (Figure 7 and 8). Interestingly, significant differences in 

growth in favor of ΔfurVvbt2 were detected at 4 h and 5 h- post incubation in 

inactivated-EP and inactivated-HP, respectively (Figure 7 and 8).  

 

 

 

Figure 7. Growth of V. vulnificus strains in eel plasma. Growth of wild-

type, furVvbt2 mutant and furVvbt2 complemented strain in EP (A), EP + FeCl3 (B), heat-

inactivated EP (C) and heat-inactivated EP + FeCl3 (D). Asteriks indicate significant 

differences in growth between the mutant and the wild-type strain (p<0.05). 
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Figure 8. Growth of V. vulnificus strains in human plasma. Growth of wild-

type, furVvbt2 mutant and furVvbt2 complemented strain in HP (A), HP + FeCl3 (B), heat-

inactivated HP (C) and heat-inactivated HP + FeCl3 (D). Asteriks indicate significant 

differences in growth between the mutant and the wild-type strain (p<0.05). 

 

5. MIC’s 

The three strains showed the same values of MIC for polymixin B, lysozyme, 

dipyridil and transferrin (Table 6) while the mutant was significantly more sensitive 

to saponin (a non-ionic surfactant as bile salts) than the wild-type and 

complemented strains (Figure 9). In this experiment, the mutant population 

decreased dramatically in the first minutes of incubation in saponin and died after 

20 min, while the wild-type and the complemented strains survived. 
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Table 6. Minimum inhibitory concentration of microcide peptides in growth 

of V. vulnificus strains. 

 

 Minimum inhibitory concentration (MIC)1 

 Polimixin B 

(U/ml) 

Lysozyme 

(µg/ml) 

Dipyridil 

(µM) 

Transferrin 

(µM) 

CECT4999 500 500 50 50 

Δfur 500 500 50 50 

cfur 500 500 50 50 
1 MIC was measured as the minimum concentration that inhibited the bacterial growth 
in CM9 broth. 

 
 
 
 
 

 

Figure 9. Growth curve of V. vulnificus strains in presence of saponin. 

Bacterial suspensions of each strain of 107 CFU/ml were prepared in PBS and 

saponin was added to a final concentration of 100 µg/ml, and viable bacterial counts 

were performed by the drop plate method at 5, 10, 15, 20 and 30 min. Asterisks 

indicate significant differences with respect to the wild-type strain (p < 0.05). 
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6. Siderophore detection 

All the strains produced siderophores of catechol-type without significant 

differences among them when they were cultured under iron-restriction conditions 

(Table 7). The mutant strain grown without iron-chelator also produced the same 

amount of siderophores than wild-type strain under iron-restriction conditions 

(data not shown). 

 

  Table 7. Siderophore production in V. vulnificus strains in CM9-Tf. 
 

 

 

Strains 

Siderophore production1 

Arnow Csàky CAS 

CECT4999 + - + 

Δfur + - + 

cfur + - + 
 

 

1 The criterium for positive or negative result for each test was that 
of Biosca and cols. (Biosca et al., 1996). 

 

7. Resistance to shocks 

 

Acid stress. All the strains survived in PBS-1 at physiological pH without 

differences in bacterial counts over the time (Figure 10A). However, the survival of 

ΔfurVvbt2 at acid pH was significantly higher than that of the wild-type and 

complemented strains, which showed decreased viability after 120 min (Figure 

10B). No differences in survival was detected with regard to the iron content of the 

medium used to grow the strain (Figure 10). 
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Figure 10. Measurement of acid tolerance of V. vulnificus. Bacteria were 

resuspended in PBS at pH 7 (A) or pH 5 (B) and viable bacteria counts were carried 

out by the drop plate method. Asterisks indicate significant differences with respect 

to the wild-type strain (p < 0.05). 

 

Heat-shock. All the strains entered directly in death phase when were 

incubated at 41ºC without significant differences among them (Figure 11). However, 

the results also show that pre-acclimatization is a key factor in the resistance to high 

temperatures (Figure 11); the D value (time required to achieve a survival of 10%) 

was between 2 and 3 h, for cells pre-acclimated at 28ºC, and around 5 h for the cells 

pre-acclimated at 37ºC (Figure 11). In all cases, presence of dipyridil did not appear 

to influence significantly the sensitivity/tolerance to the heat shock. 
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Figure 11. Heat tolerance of V. vulnificus strains. Bacteria were grown 

overnight and incubated in a bath at 41ºC, and viable bacteria counts were carried 

out by the drop plate method. Bacteria grown in CM9 at 28ºC (A) and in CM9 at 37ºC 

(B). 

 

Cold shock. In these experiments, the bacteria were maintained for 10 days 

at 28 and 4 ºC and the survival curves were compared (Figure 12). As expected, 

bacterial viability decreased gradually and slowly when cultures were held at 28ºC, 

detecting viable bacteria during more than 10 days (Figure 12A). However, when 

cultures were held at 4ºC, a faster decrease in number of cultivable bacteria was 

observed and no cultivable bacteria was obtained at 7 d post-incubation (Figure 

12B). In either cases, no difference regarding the strain used or addition of dipyridil 

were noticed.  
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Figure 12. Cold tolerance of V. vulnificus strains. Bacteria were grown 

overnight in CM9 at 28 ºC and maintained during 10 days in 28ºC (A) or 4ºC (B), and 

viable bacteria counts were carried out by the drop plate method. 

 

8. Proteolytic, hemolytic and chitinase activity 
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proteolytic, hemolysis of bovine erythrocytes and proteolysis of azocasein by the 
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their hemolytic and proteolytic activity (Figure 13 and Table 8).  

 

Table 8. Proteolytic activity of V. vulnificus strains. 

 Proteolytic activity 

in proteolytic units (PU) 

CECT4999 1094 ± 51.2 

CECT4999-D 1151 ± 78.4 

Δfur 1131 ± 60.8 

cfur 1114 ± 112.7 

 

 

Figure 13. Hemolytic activity of V. vulnificus strains. Absorbance of the 

supernatant of a suspension of 1% bovine erythrocytes incubated with bacterial 

cells (A) or ECP (B) was measured at 520 nm. 
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Chitinase activity was quantified as bacterial growth in ASW supplemented 

with chitin. All strains showed an increase on their growth with a maximum value 

at 7 days post-inoculation, and a decrease to the levels of day 0 at day 14 post-

incubation (Figure 14). No differences were noticed regarding the furVvbt2 mutation 

or the medium (with or without dipyridil) (Figure 14). 

 

 

Figure 14. Chitinase activity of V. vulnificus strains. Bacteria were grown in 

ASW plus 1% of colloidal chitin and viable bacteria counts were carried out by the 

drop plate method 

 

9. LPS and capsule 

The OM extracts from the wild-type, grown in CM9 and CM9-D, and the 

complemented strain showed the same pattern after immunostaining, which 

corresponded to a smooth LPS plus the capsule (Figure 15). In contrast, the furVvbt2 

mutant presented a different pattern that affected to the Lipid A mobility, which 

seemed to have a lower molecular weight. 
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Figure 15. LPS of V. vulnificus stained by Western blot. LPS was 

immunostained with rabbit primary antibody anti-CECT4999 and secondary anti-

rabbit HRP-conjugated. Lanes contain LPS extracted from wild-type strain grown in 

CM9 (1), wild-type strain grown in CM9-D (2), Δ furVvbt2 grown in CM9 (3) and c 

furVvbt2 grown in CM9 (4). 

 

C. Virulence and colonization/invasion 

 

The furVvbt2 mutant showed an attenuation in virulence degree for eels, 

independently the route of infection; about 1 log. unit, in the case of i.p. challenge, 

and about 6-fold in case of bath challenge (Table 9). In both cases, eel death 

presented a different time death pattern; in the first 2 days post-infection in the case 

of wild-type strain-infected eels, and in the first 1-5 days, in case of the furVvbt2 mutant 

strain-infected eels. In all cases, the complemented strain showed the same LD50 and 

death pattern than the wild-type strain (Table 9). 
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 Table 9. Virulence of V. vulnificus strains. 

 

 

Strains 

Virulence for eels 

(LD50)1 

i.p. bath 

CECT4999 2.1x102 1.2x106 

Δfur 3x103 7.2x106 

cfur 2.5x102 2.1x106 

 

1LD50 is expressed as CFU per fish in case of i.p. injection and CFU per ml in case of 
bath infection of eels (Amaro et al., 1995). 

 

Colonization and invasion experiments revealed that all the strains were able 

to colonize gills immediately, and latter to spread to the bloodstream and invade all 

internal organs (Figure 16). Interestingly, furVvbt2 mutant was recovered in numbers 

significantly lower than those of the wild-type and complemented strains at 9 

(blood) and 24 h (liver and head kidney) post-infection. In the rest of organs and 

times, no significant differences were noticed (Figure 16). 

 



CHAPTER 3: MICROARRAY ANALYSIS OF THE ZOONOTIC SEROVAR OF Vibrio vulnificus 

203 
 

 

 
 
 
 
 
 
 
 
 

0

2

4

6

8

CECT4999
Δfur
cfur

0 9 24 72

L
o

g
1

0
(C

F
U

/
m

l)

Time (days)

0

1

2

3

4

0 9 24 72

0

1

2

3

4

0 9 24 72

0

1

2

3

4

5

0 9 24 72

0

1

2

3

4

5

0 9 24 72

Time (days)

L
o

g
1

0
(C

F
U

/
m

l)

L
o

g
1

0
(C

F
U

/
m

l)

L
o

g
1

0
(C

F
U

/
m

l)

Time (days)
Time (days)

Time (days)

L
o

g
1

0
(C

F
U

/
m

l)

*

*

*

*

Gills Blood

Head kidney Liver

Spleen

Figure 16. Eel colonization and 

invasion assays. Eels were bath-infected 

with the wild type strain (CECT4999), fur 

mutant and complemented strain at a 

dose of 106 CFU/ml for 1 h. Then, bacterial 

colonization degree of external (gills) and 

internal (blood, liver, head kidney and 

spleen) organs was measured as bacterial 

counts (CFU per gr or ml) at 0, 9, 24 and 

72 h post-challenge. Asterisks indicate 

significant differences in bacteria 

recovered from mutant-strain- and wild-

type- strain-infected eels (p<0.05). 
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IV. DISCUSSION 
 

Global approaches like DNA sequencing and transcriptome analysis have led 

to the identification of novel genes involved in host–bacterial interactions as well as 

to decipher new transcriptional networks. In V. vulnificus research, the genome 

sequencing together with its further analysis by microarray constitutes an essential 

step forward, as it allows to identify new candidate genes for host–pathogen 

interaction. The genome of the zoonotic strain used in this work, CECT4999, was 

sequenced and annotated in 2013 (Prakash et al., 2013, poster communication). 

This strain is able to infect fish and mice (animal model to test human virulence) and 

cause death by sepsis. Part of the information required to cause sepsis in fish resides 

on a virulence plasmid that encodes resistance to fish innate immunity by a 

mechanism only partially understood. In contrast, the genes required to infect and 

develop vibriosis in humans are all chromosomal. 

The hypothesis of this work was that iron level in host tissues is the common 

signal to fish and mammals that triggers the expression of virulence factors in the 

zoonotic serovar of V. vulnificus. To test this hypothesis the first step was to obtain 

a furVvBt2 mutant strain since Fur is the main regulator that responds to iron in 

bacterial pathogens. FurVvBt1 has been proposed to act as a negative regulator that 

represses the transcription of fur-regulon genes in presence of iron. We compared 

the sequence of FurVvbt2 with that of FurVvBt1 and found a similarity of 99% in 

aminoacid sequence, which means that both proteins are homologous. From now, 

we will refer to this protein as FurVv. We obtained the mutant in furVv in our selected 

zoonotic strain and tested it for virulence. For these experiments, we selected the 

eel as the animal model on the basis of fishes are good animal models to disentangle 

the importance of Fur and iron in virulence (Troxell and Hassan, 2013). We infected 

eels by i.p. injection and by immersion and found that inactivation of furVv attenuated 

virulence by both routes in 1 log. unit. Interestingly, the colonization and invasion 

of internal organs after bath infection was delayed, which suggests that this deficient 

colonization and invasion of the internal medium was the reason for the attenuation 

in virulence.  
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To understand the reason for the decrease in colonization and invasion 

capabilities exhibited by the furVv mutant, our next step was to identify the whole 

iron and FurVv regulons in V. vulnificus. To this end, we designed a microarray 

containing oligoprobes for all the ORFs identified in the genome of our strain. The 

microarray was validated and used in an experiment performed with the wild-type 

and the furVv mutant strains, grown both in iron rich and iron deficient media.  

We found very interesting results. The first one was the high number of genes 

putatively regulated by iron/FurVv, around 1 out of 2, in comparison with the 

number found in other similar microarray based studies performed in Vibrio (Mey 

et al., 2005; Alice et al., 2008). These genes were equally distributed in ChrI, ChrII 

and the pVvbt2. Regarding the virulence plasmid, most genes were repressed by 

FurVv and iron. The putative iron/Fur-regulated genes in the plasmid are especially 

interesting given that they are only present in biotype 2 strains and that elimination 

of this plasmid abolishes completely the virulence for eels, concomitantly with 

survival in eel blood (Lee et al., 2008). Among them, we identified, the genes for a 

transferrin receptor, a putative complement resistant lipoprotein, an anthranilate 

synthase (required for synthesis of siderophore precursors) and a series of 

hypothetical proteins, suggesting that the specific virulence for fish attributable to 

this plasmid is strongly regulated by FurVv/iron and that bacteria senses the stimuli 

of iron concentration in fish hosts. This activation in iron-restriction would ensure 

that resistance mechanisms to the eel immunity, encoded in the plasmid, will be 

expressed in blood during the infectious process. The second interesting result was 

that FurVv protein seems to be a very versatile regulator since acts as a repressor and 

an activator both in presence or absence of iron, which would explain, in part, the 

high quantity of genes with altered expression found in the microarray experiments. 

Until now, and except the positive regulation that FurVv protein exert on furVv gene 

(Lee et al., 2007a), only a negative regulation of FurVv in presence of iron had been 

described in V. vulnificus. However, FurVc also acts as a negative and positive 

regulator, even in conditions of iron depletion, which is in agreement with our 

results (Mey et al., 2005). There have been described several mechanisms by which 

Fur can act as an activator. In vivo evidence supports the “antirrepressor” activation 

model as a major mechanism for Fur-dependent activation. In this model Fur 
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indirectly would repress a gene for a repressor, which in turn would produce an 

“activation” of the “target” gene (Troxell and Hassan, 2013). Conversely, the 

repression of several genes could be indirectly conducted by Fur through its 

interaction with other regulators. We will come back to this item when we analyze 

the regulators controlled by FurVv. 

Our next step was to design different experiments to test if the differential 

gene expression showed by the microarray corresponded to a different phenotype 

that could be related with virulence. To this end, the genes with altered expression 

were classified in different categories related not only with the infection process but 

also with survival outside the host, in the environment. In fact, bacteria sense their 

environment and alter the expression of genes that promote survival both outside 

and inside their hosts. 

V. vulnificus is an aquatic bacterium that can survive as planktonic form or 

associated to different surfaces mainly containing mucin (i.e. mucous surfaces of 

fish) or chitin (crabs and zooplankton) (Oliver, 2006). Our microarray results 

highlight that one chitin binding protein and a MSHA pilus, with a putative role in 

adherence to zooplankton in V. cholerae (Chiavelli et al., 2001), were repressed by 

FurVv and iron, suggesting that bacterial attachment to crabs or zooplankton could 

be improved in the seawater, an iron-poor environment (Wells et al., 1994). On the 

contrary, two chitinases were activated by FurVv and iron. An experiment was 

designed to test if attachment to and degradation of chitin were iron/FurVv 

depending processes. We demonstrated that the zoonotic serovar of V. vulnificus can 

grow in the lab by using chitin as the sole carbon source but we did not find   

differences in growth or attachment between strains or growth conditions. 

Nevertheless, the experimental design should be improved before to discard the role 

of FurVv/iron in metabolism and adhesion to chitin.  

Microarray results also revealed that a high number of genes involved in 

motility, such as those codifying for flagella (including genes for flagellum 

biosynthesis, flagellins, motor flagellar, etc…) and chemotaxis were up-regulated by 

FurVv and iron. V. vulnificus can colonize the mucus because is attracted by mucin, 

being the flagellum essential for this colonization process. Up-regulating the genes 

needed for motility, this bacterium ensures a successful colonization of fish mucous 
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surfaces. We corroborated this positive regulation by the results obtained in the 

experiments performed in the lab with the wild-type and the mutant strains grown 

in iron-rich and iron-deficient conditions. In addition, we also found other 

chemotaxis-related genes regulated by FurVv and iron. To test if chemotaxis to mucus 

was really controlled by FurVv and iron, we performed a series of chemotactic 

experiments. No differences were noticed in chemotactic response towards eel 

mucus indicating that either FurVv and iron do not regulate chemotaxis towards 

mucus or the phenotype is balanced given that a series of genes were positively 

regulated and another negatively. 

The survival of V. vulnificus in starvation in seawater is mainly controlled by 

temperature. In fact, V. vulnificus enters in the VBNC (Viable But Non Culturable) 

state when temperatures are below 15ºC (Wolf and Oliver, 1992). Our microarray 

results suggest that genes related to cold resistance would be repressed by FurVv and 

iron and consequently induced in the winter months in seawater, when 

temperatures are around 4-15ºC. The survival experiments performed at 4ºC 

revealed that the kinetics of entry into the VBNC state did not vary significantly 

between strains or conditions. Our next step before to discard the role of iron and 

FurVv in survival in winter will be to analyze the kinetic of resuscitation from the 

VBNC from the wild-type and the mutant strain grown in iron-rich and iron-poor 

conditions. 

Many genes involved in different iron acquisition systems were identified as 

repressed by FurVv and iron, which means that all these genes would be expressed 

both in seawater and blood from humans and eels. Among the genes, we identified 

those of heme transport and vulnibactin biosynthesis and transport, both systems 

involved in virulence for eels and mammals and expressed in vivo and ex vivo in iron-

deficiency (including fresh plasma and blood) (see Chapter 2) together with the eel-

specific iron acquisition receptor vep20 and genes for uptake and transport of 

exogenous siderophores such as aerobactin and an uncharacterized siderophore 

(identified as vibriobactin/enterobactin). This versatility in iron-acquisition 

mechanisms could be advantageous for this bacterium in the environment where it 

competes with other bacteria for iron. In addition, the components of a ferrous ion 

transport system (feoA, feoB and feoC), genes uncharacterized in V. vulnificus but 
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recently studied in V. cholerae (Weaver et al., 2013), were also found to be repressed 

by FurVv and iron. The experiments performed in vitro corroborated that iron-

acquisition mechanisms by these systems are, in fact, under control by FurVv and 

iron; i.e. the mutant entered in the log phase just before the rest of the strains when 

were grown in iron-deficient media, suggesting that the iron acquisition systems 

were constitutively expressed in the mutant.  

Apart from genes related to iron acquisition, we also found genes related to 

survival inside host that were repressed by FurVv/iron, and, in consequence, of 

predicted expression in blood and internal organs of fish and humans. One of them 

was host-specific, the plasmid gene vep07, and the other ones host-unspecific. 

Among the last ones it should be highlighted a series of genes for biosynthesis and 

transport of LPS, an OM component essential to resist the bactericidal action of 

serum (Skurnik and Bengoechea, 2009). This is the first time that a putative iron-

dependent regulation of LPS biosynthesis in Vibrio is reported. In addition, a locus 

for a Flp pilus was also found as putatively repressed by iron and FurVv. These kind 

of pili have not been studied in Vibrio but are related to host colonization and 

adherence to eukaryotic cells in other gramnegative pathogens. (Tomich et al., 

2007). On the contrary, FurVv and iron induced the transcription of genes related 

with the resistance to high temperatures, which could be useful when V. vulnificus is 

infecting an iron-overloaded human. This finding is quite interesting because fever 

is one of the first host defense mechanisms, particularly in those hosts that present 

an increase in iron concentration in fluids/tissues. In fact, iron-overloading seems 

to be the most dangerous risk factor because is related with death by sepsis in more 

than 50% of the clinical cases (Haq et al., 2005). Related to this, we found other 

genes that could be related to higher resistance to human complement and 

phagocytosis in iron overloaded humans, such as i) ktrA , encoding a K+ efflux pump 

related to human serum resistance (Chen et al., 2004b), ii) the entire operon for 

biosynthesis of polysaccharide capsular, related to resistance to human serum and 

phagocytosis (Wright et al., 1990), iii) genes related to resistance to nitrosative 

stress, and oxidative stress, needed to resist phagocytosis and, finally iv) genes for 

resistance to microcidal peptides and to tellurite, a bile salt present in the intestine. 

Again, it is the first time that a relationship of capsule biosynthesis with iron levels 
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is reported in Vibrio. Regarding stress resistance, microarray results also 

highlighted other genes involved in this phenotype but repressed by FurVv and iron, 

suggesting that this bacterium could use a different set of genes to resist these innate 

immunity mechanisms depending on iron availability. Among these genes it could 

be highlighted sodA, a gene encoding the Mg-dependent super oxide dismutase (Mg-

SOD) that contributes to overcome the stress caused by acid environment inside the 

phagocytes, as it has been demonstrated in V. vulnificus Bt1 (Kim et al., 2005). Part 

of these data were confirmed by the experiments performed in vitro such as those 

of growth in eel and human serum, inactivated or not, susceptibility to the bile-salt 

homologous, saponin, resistance to acid pH, etc... Interestingly, we confirmed that 

LPS is regulated by FurVv since we found that the LPS pattern exhibited by the wild-

type and the mutant strains were different, variation that could be also extrapolated 

to the decrease in virulence degree. 

Finally, we found a series of master regulators that seem to be regulated by 

FurVv. One of the regulators is LuxR (or SmcR in V. vulnificus), a master regulator for 

the quorum-sensing pathway that collaborates to the orchestration of the 

expression of virulence genes in V. vulnificus, including capsule, biofilm formation 

and motility (Lee et al., 2007b). We found that FurVv and iron repress luxR together 

with a series of genes involved in QS (AI-2 synthetase, sensor…). Previous studies 

using DNA microarrays to screen for iron-regulated genes in either V. vulnificus or 

V. cholerae did not identify this relationship (Mey et al., 2005; Alice et al., 2008). Very 

recently, Kim and cols. (Kim et al., 2013a) reported the link between FurVv and SmcR 

and concluded that the key is the cell growth phase from which RNA is obtained 

stationary vs logarithmic (the one used in previous works). However, we isolated 

the RNA from mid-log grown phase cells, which demonstrates that the key is the 

growth medium but not the growth phase. We used a minimal medium and a 

minimal medium supplemented with a biological iron chelator, transferrin, both 

simulating the growth in a host better than complex growth media and chemical iron 

chelators. The same authors demonstrated that smcR is effectively regulated by 

FurVv (Kim et al., 2013a). Related to this, we also found to be apparently regulated 

by FurVv/iron a series of genes for biosynthesis and sens to the secondary messanger 

nucleotide c-di GMP that activates the production of surface adhesins and biofilm 
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formation and inhibits motility by binding to and regulating transcription factors 

and or riboswitches.  

The high number of genes with an altered expression could also be explained 

by the fact that the cAMP receptor protein, CRP, was also regulated, and concretely 

repressed, by FurVv and iron. CRP is involved in both metabolism and virulence 

processes, controlling VvhA, VvpE, the TonB3 system and phenotypes such as 

capsule production, motility and adhesion (Choi et al., 2002; Kim and Shin, 2010; 

Alice and Crosa, 2012; Kim et al., 2013c), demonstrating the role of FurVv as an 

indirect regulator in many phenotypic traits. Another master regulator whose 

expression was repressed by FurVv and iron was ToxR. ToxRS genes are found in all 

Vibrio species and form part of the ancestral Vibrio genome and control the survival 

of V. cholerae in the environment together with the expression of genes involved in 

virulence, including the TC pilus (Provenzano and Klose, 2000). One of the most 

interesting genes controlled by ToxRS, ompU, was found to be activated by FurVv and 

iron in this study. OmpU is an OMP that protects V. cholerae from bile salts and 

whose transcription is stimulated by ToxR in the intestine (Provenzano and Klose, 

2000). According to this model, the apparent up-regulation by FurVv could be 

indirect through the repression of ToxR. Then, in the iron poor environment that 

constitutes the intestinal mucus, toxR could be transcribed and ompU be activated, 

thus protecting V. vulnificus from bile salts. This interesting hypothesis illustrates 

the cross-talk among regulators and how the apparent activation exceeded by FurVv 

could be indirect through repression of repressors such as LuxR and ToxR. In the 

same way, some of the genes apparently activated by FurVv and iron could be, in fact, 

under direct control of the QS master regulator and or ToxRS system. 

 

In conclusion, V. vulnificus like other pathogenic bacteria, is equipped with 

complicated signal transduction systems to sense a series of environmental factors 

that act as “micro-niche markers”. Each signal transduction pathway for a single 

environmental factor, like FurVv for iron, has to be inter-related with other signal-

pathways, like QS, CRP and ToxRS, to allow the pathogen to response rapidly with 

the expression of the adequate set of virulence/survival genes. We postulate that 

FurVv is the master regulator that directly or indirectly coordinates the expression 
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of survival and virulence genes allowing the bacterium to survive in the host and 

between hosts in the environment. 
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To understand the pathogenesis of a bacterial species it is essential to 

characterize its virulence factors and how the immune system responds against 

them during the infectious process. V. vulnificus is a zoonotic pathogen able to cause 

disease in both mammals and fish, which makes it a very interesting study object. 

Our aim in the present work was to investigate the role of selected genes in the 

virulence for mammals and fish as well as determine the genes that form the regulon 

FurVvbt2 and those that responds to iron independently of FurVvbt2. Additionally, we 

were interested in separate those host-specific genes from those that are host-

specific.  

To this end, our strategy was to generate in frame deletion mutants in the 

selected genes and compare their phenotype with the wild-type strain in a wide 

variety of in vitro and in vivo assays, to relate gene with function in the infectious 

process. In case of the regulon determination, the strategy was to use a microarray 

platform specific for the genome of the strain selected for the whole study, the 

CECT4999. This platform could be used in further works to analyze the global 

transcriptomic response to any environmental cues, concretely to those that 

emulate in vivo events to finally understand the relationship of this pathogen with 

their different hosts. 

At the beginning of this thesis, the genome of strain CECT4999 was not 

available, so we used as a first approach the technic Fur titration assay (FURTA) to 

identify the genes involved in iron acquisition in this zoonotic serovar. As expected, 

the FURTA results confirmed that this serovar possesses homologous for the Bt1-

genes involved in iron-uptake from vulnibactin (biosynthesis and transport) and 

heme from host together with genes to use exogenous aerobactin. Surprisingly a 

plasmid gene for a putative new system for iron-uptake from fish proteins 

(transferrin?) was also detected.  

So, with the aim of understand how iron acquisition systems were involved 

in the development of the vibriosis in both fish and mammals, we tested single and 

multiple mutants in vuuA, hupA hutR and vep20 genes (codifying for vulnibactin, 

heme –two- and transferrin outer membane receptors, respectively) in a series of 

assays, demonstrating that all the tested genes were induced under iron-restricted 
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conditions both in artificial growth media and fresh human or eel plasma and that 

vuuA, hupA and vep20 were induced in vivo during the eel infection. In accordance, 

vuuA, hupA and vep20 resulted to be virulence genes although vuuA and hupA are 

host non-specific and vep20 is host-specific. Transferrin receptors have been 

previously identified in some gram negative pathogenic bacteria such as Neisseria 

but never in Vibrio. hutR would be a secondary heme receptor that could be used as 

the main receptor by the strains that lack a functional hupA. The global phenotypic 

results suggest that the three genes are used by the pathogen during the first steps 

of the vibriosis to grow rapidly in bloodstream and overcoming host defenses up to 

rise a bacterial number enough high to cause the death of the host.  

It is important to highlight that vuuA- and hupA-dependent systems were 

host-nonspecific, since in both mammals and fish the mutation of the genes had a 

significant virulence decrease, although these two hosts are not closely related. The 

results of the sequence and the phylogenetic analysis of both genes showed a 

moderate variability at sequence level, higher in vuuA, and revealed that both 

belonged to the core genes of the species V. vulnificus. 

On the other hand, the vep20 gene, which codified for the Vep20 outer 

membrane receptor, resulted to be host-specific since its mutation decreased 

drastically the virulence for eels and only discretely the virulence for mice. 

Moreover, double mutant in vuuA and hupA abolished completely the virulence for 

mice, but still showed a remaining virulence for eels, indicating that this strain must 

have another iron acquisition system that was not important to virulence for mice 

but necessary for virulence for eels. Interestingly, this gene was codified in the 

virulence plasmid pVvbt2, that confers resistance to the eel (and probably teleost) 

innate immune system, so it has sense that an iron acquisition system specific for 

eels was in this plasmid acquired by horizontal transfer, highlighting the importance 

that HGT have in the adaptation of pathogens to different environmental conditions, 

including the capacity of infect new hosts. 

Thanks to iron acquisition systems V. vulnificus is able to spread and invade 

to the host organs and tissues, but this pathogen possess other virulence factors that 

cause fatal damages in host’s structures and that contribute significantly to the 
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development of the vibriosis. The most important cytolytic factor involved in lysis 

and destruction of tissues is the MARTX toxin. There are different forms of MARTX 

toxin in V. vulnificus, and that of biotype 2 is the MARTX type III (encoded by rtxA13). 

Our results were unexpected since although the double mutant in both rtxA13 copies 

(the chromosomic and the plasmidic ones) was less virulent for mice and eels (in 

this case, completely avirulent), it did not present any defect in colonization and 

invasion of internal organs of the eel. The MARTX type III showed lytic activity 

towards a wide variety of eukaryotic cells, such as murine macrophages, human 

epitelium, cyprinid epitelium, eel epitelium, eel phagocytes and erythrocytes from 

human, sheep and eel, being involved in the resistance to phagocytosis in murine 

and eel macrophages. The lytic activity of MARTX type III was also observed when 

strains were incubated in presence of amoeba, their putative natural predator, and 

the results demonstrated that this toxin is also involved in the protection from the 

amoeba predation, what strongly suggest that MARTX type III has an important role 

in the survival on the natural aquatic environment where V. vulnificus inhabits, and 

that can contribute to the first steps of the fish infection since in most cases these 

kind of amoeba are found in fish gills. 

As observed for iron acquisition systems, the rtxA13 gene was induced in 

blood of infected eels, but in vitro did not present overexpression when subjected to 

several conditions, like excess or restriction of iron, presence of hemin, etc. Only an 

induction of rtxA13 gene in vitro was observed in presence of eukaryotic cells, 

concretely eel erythrocytes and phagocytes. This results are in agreement with 

those obtained in MARTX type I of the biotype 1, and explain why this gene was 

overexpressed in vivo.  

In the present thesis we also design a microarray platform specific for the 

biotype 2 serovar E strain, CECT4999, taking as a reference the unpublished genome 

of this strain. This platform will be very useful in the future to investigate in depth 

the biology and pathogenicity of the zoonotic serovar of V. vulnificus by analyzing 

the global transcriptomic response. In our case, we use it to determine the genes 

that are under control of iron, an essential element in regulation of virulence factors 

of bacteria, and FurVvbt2 regulator, the main regulator of transcription in response to 
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iron concentration that controls iron acquisition systems and other virulence 

factors. Interestingly a high number of genes were under control of both iron and 

FurVvbt2, and most of them were genes directly or indirectly related with virulence 

processes. Virulence-related phenotypes like motility, iron acquisition, toxins, 

proteases, hemolysins, chemotaxis, LPS and capsule biosynthesis and resistance to 

stress conditions such as heat, cold, acid, bili or plasma, were strongly regulated 

(both induced or repressed) by iron and/or FurVvbt2, in addition of many 

transcriptional regulators at the same time involved in other different processes. 

This demonstrated that FurVvbt2 and iron play an essential role in the pathogenesis 

of the zoonotic serovar of V. vulnificus since they regulate the main virulence factors, 

as well as many other genes involved in virulence, fact that is a key requirement for 

any pathogen and that is needed to the correct development of the disease. 

Thus, taking together the results of the present thesis, we concluded that V. 

vulnificus possess a repertory of virulence factors that allows the correct 

development of vibriosis; in the environment, the MARTX type III might contribute 

to the survival by protecting V. vulnificus from predation of amoeba, and possibly 

other protists, what may increase the probability to contact with the main fish host 

for the zoonotic serovar, the eel. Once there, the MARTX type III and the iron 

acquisition systems act coordinately to colonize and invade the internal organs of 

the eel and destroy the eukaryotic cells and tissues, being all this process regulated 

by two important factors, the iron concentration and the FurVvbt2 protein, that 

coordinates the expression of iron acquisition systems and other many virulence-

related processes to finally allow V. vulnificus develop the vibriosis and cause the 

host death by a toxic shock. 
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 MARTX type III of the V. vulnificus biotype 2 is a key virulence factor 

that determines the virulence for both mammals and fish, independently of the 

route of administration. However, and contrary to that expected, a strain lacking 

both copies of MARTX type III did not present a defect in colonization and 

invasion capacity and did not kill the animals, showing that MARTX type III is a 

virulence factor needed to provoke the host death but does not seem to 

have a key role in colonization and invasion capacity. 

 

 MARTX type III is involved in the interaction with a wide range of 

eukaryotic cells, including red blood cells, professional phagocytes from 

human, mice and fish, being highly cytotoxic for all of them. MARTX type III is 

also involved in killing amoebae, a putative natural predator of aquatic 

bacteria, fact that might promote V. vulnificus biotype 2 survival in the 

environment. 

  

 MARTX type III needs to contact directly to the target eukaryotic cell to 

exert its lytic activity. Accordingly, our work suggest that bacteria-to-cell 

contact is also needed to the expression of rtxA13 and that this gene 

is also induced in blood of infected eels in vivo.  

 

 The three deeply studied iron acquisition systems are important 

virulence factors whose role in virulence is to promote the in vivo 

bacterial growth in the host internal tissues/organs by scavenging iron 

from host proteins to facilitate the spread to the rest of the body 

through the bloodstream, up to rise a high population number. 

 

 Two of this systems, the heme- and the siderophore (vulnibactin)-

dependent (studied taking as reference the hupA and vuuA genes, 

respectively), are host-nonspecific iron acquisition systems since their 

inactivation lead to a decrease in both mammal and fish animal models.  
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 On the contrary, the uncharacterized Vep20 outer membrane receptor, 

putatively involved in acquisition of iron from transferrin, seemed to be a fish-

specific iron acquisition system, data that is in accordance with the fact that 

Vep20 is encoded in a virulence plasmid that confers resistance to the teleost 

innate immune system. 

 

 vuuA and hupA are part of the core genes of the V. vulnificus 

species and are subjected to variations, probably due to environmental 

adaptations, while vep20 was acquired with the virulence plasmid pVvbt2 by 

HGT conferring an adaptation to the eel. This gene has not varied since its 

acquisition, which suggests that this has been very recent and also that the gene 

is under a strong selective force probably exerted by the host. 

 

 We have developed a microarray platform specific for the zoonotic 

serovar of V. vulnificus to analyze in detail the global transcriptomic 

response to any factor that could influence in genetic regulation.  

 

 A high number of genes were under control of Fur and iron, being 

both induced and repressed. Most of the genes were related with virulence, such 

as those that codifies for flagella, pili, resistance to different shocks, iron 

acquisition systems, quorum sensing, chemotaxis, exoenzymes and toxins, 

capsule and LPS. 

 

 The furVvbt2 mutant assays revealed that Fur protein is not essential in 

the development of eel vibriosis and colonization and invasion 

of internal organs, but seems to influence slightly in these traits since a small 

decrease in eel virulence and a retardation in invasion of internal organs were 

observed, possibly due to the global de-regulation result of the furVvbt2 mutation 

and the misspend of resources from the constant synthesis of de-regulated 

proteins. 


