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Abstract

Error control coding is frequently used to minimise the errors which occur naturally in

the transmission and storage of digital data. Many methods for decoding such codes

already exist. The choice falls mainly into two areas: hard-decision algebraic decod-

ing, a computationally-efficient method, and soft-decision combinatorial decoding,

which although more complex offers better error-correction.

The work presented in this Thesis is intended to provide practical decoding algo-

rithms which can be implemented in real systems.

Soft-decision maximum-likelihood decoding of Reed-Solomon codes can be ob-

tained by using the Viterbi algorithm over a suitable trellis. Two-stage decoding of

Reed-Solomon codes is presented. It is an algorithm by whichnear-optimum perfor-

mance may be achieved with a complexity lower than the Viterbi algorithm.

The soft-output Viterbi algorithm (SOVA) has been investigated as a means of

providing soft-decision information for subsequent decoders. Considerations of how

to apply SOVA to multi-level codes are given. The use of SOVA in a satellite downlink

channel is discussed. The results of a computer simulation,which showed a 1:8 dB

improvement in coding gain for only a 20% increase in decoding complexity, are

xix
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presented.

SOVA was also used to improve the decoding performance when applied to an RS

product code. Several different decoding methods were evaluated, including cascade

decoding, and a method where the row and columns were decodedalternately.

A complexity measurement was developed which allows accurate comparisons of

decoding complexity for trellis-based and algebraic decoders. With this technique the

decoding complexity of all the algorithms implemented are compared. Also included

in the comparison are the Euclidean and Berlekamp-Massey algorithms.
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Chapter 1

Introduction

The twentieth century has seen an explosion in the use and availability of commu-

nication systems. They are now placed in and on many devices which were not even

invented one hundred years ago. Such widespread use has placed high demands on

engineers. Mobile telephones are expected to operate for long periods and with clear

reception. Digital television and weather images from space are expected to be clear of

speckles. Music from compact discs must be free of clicks andpops which frequently

troubled the vinyl records which they are now quickly replacing. As the storage size of

computer memories and disks increase the access times plummet. As these technolo-

gies are reliant upon computer hardware, which is still following Moore’s ‘law’,1 the

rapid increase in technology looks set to continue. The uniting factor in all of these

diverse applications is that they use error control coding to protect valuable digital

data and enhance the service they provide.

1Moore, founder of Intel, suggested that the number of transistors on integrated circuits for comput-
ers doubles approximately every 18–24 months [Moore, 1965].

2
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In its early days error control coding could only be affordedby the ‘super-rich’—

the military and organisations such as NASA. Even so, the codes used then (often

Reed-Muller codes) are considered by today’s standards as weak and simple to decode.

Today, error control coding is widespread and cheap. Probably most popular are the

Reed-Solomon codes. They are, however, a two-edged sword; providing greater error

protection but are also many orders of magnitude more difficult to decode. Although

efficient hard-decision RS decoders exist the holy grail is an efficient soft-decision

algorithm, which will provide optimum performance with simplicity.

The twenty-first century will surely see an increase in the use of error control

coding as current technologies are miniaturised further, and new ones invented. Thus

the demand for fast and efficient decoding algorithms will only increase. This Thesis

presents new work which is aimed at both improving upon hard-decision decoding

performance while reducing complexity from the soft-decision case.

Chapter two introduces the background topics used in this work. Included are

the theory and important properties of linear and cyclic block codes. Attributes of

convolutional codes are discussed. The concept of concatenated codes and important

definitions regarding trellis diagrams and trellis decoding are introduced. The channel

models used in the computer simulations are also described.

Algebraic decoding of RS codes is examined in Chapter three.The Berlekamp-

Massey, Euclidean and high-speed step-by-step algorithmsare explained, both math-

ematically and with the aid of examples. Chapter four details trellis construction tech-

niques, for both syndrome (BCJR/Wolf) and coset trellises.The Viterbi algorithm is

described and an example decoding used to illustrate the procedure. A novel low-
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complexity, near-optimum decoding algorithm, two-stage decoding, is presented and

a worked example given.

In Chapter five concatenated decoding is used as a means of combining good er-

ror control performance with low complexity. The soft-output Viterbi algorithm is

demonstrated as a method by which the outer decoder is able toperform better by

taking advantage of soft-decision information. The Viterbi decoding example shown

in Chapter four is extended to give a clear demonstration of how SOVA operates. The

application of SOVA over non-binary trellises is discussed. Product codes may be

thought of as a form of concatenated coding. Various algorithms for decoding product

codes are described, and the application of SOVA to each is considered.

Chapter six presents results on both decoding complexity and performance. As

this Thesis includes both algebraic and combinatorial (trellis) decoders a unified prac-

tical method, by which all the decoders implemented may be compared, was sought.

How this was achieved is explained. Results of all the simulated systems are given,

including a weather satellite image distribution system. Trellis decoding complexity

for the Viterbi algorithm was analysed in a mathematical manner, applicable to all

linear codes (and also separable non-linear codes). Also, the analysis is expanded

for the soft-output Viterbi algorithm. Following this, decoding complexity for all the

simulated codes is given, using the same set of benchmarks. Decoding performance

is not forgotten, and Chapter six also includes decoding performance curves for all

the decoding algorithms demonstrated. Where possible the same channel model was

used.

Concluding remarks are made in Chapter seven. The unified approach to decod-
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ing complexity allows comparisons to be made regarding the complexity of the various

systems. Where appropriate, comparisons of the decoding performance are also made.

The improved performance of the weather satellite image distribution system is dis-

cussed, and commercial benefits of increased coding gain arehighlighted. Finally, the

References, and for the benefit of the reader, a citation index and general index are

located at the back of this work.
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Chapter 2

Background

2.1 Block Codes

2.1.1 Linear Block Codes

In a block code the message symbols are sectioned into blocksof fixed length,k,

before being passed to the encoder. The input block ordatawordcontainsk data

symbols over an alphabet of sizeq. The encoder output is acodewordcontainingn

code symbols, also over an alphabet of sizeq. For the caseq = 2 the code is described

asbinary. Block codes may be divided into two categories,linear block codes and

non-linearblock codes. Only linear block codes are considered.

For a useful code the datawordsu must form a one-to-one mapping with the set

of qk possible input sequences. For an (n; k) linear codeC the codewordsv must form

a k-dimensional subspace of then-dimensionalcodespaceover the field GF(q) [Lin

and Costello, 1983, p. 52], i.e., thedimensionof the code isk. Since the codewords

7
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are restricted to ak-dimensional subspace of the codespace the linear sum of anytwo

codewords is also restricted to thek-dimensional subspace and must therefore also be

a codeword.

The Generator Matrix

For a codeC there existsk linearly independent codewordsg0; g1; : : : ; gk�1 so that

every codewordv in C is a linear combination of these codewords, i.e.,

v = u0g0 + u1g1 + : : :+ uk�1gk�1 (2.1)

where (u0; u1; : : : ; uk�1) are symbols in the input sequenceu represented by elements

in GF(q). Thek linearly independent codewords can be arranged as rows in ak� n

matrix:

G = 26666666664
g0

g1

...

gk�1

37777777775 =
26666666664

g0;0 g0;1 : : : g0;n�1

g1;0 g1;1 : : : g1;n�1

...
...

. . .
...

gk�1;0 gk�1;1 : : : gk�1;n�1

37777777775 (2.2)
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wheregi = (gi;0; gi;1; : : : ; gi;n�1) andk = 0; 1; : : : ; k. A datawordu can be mapped

to its corresponding codewordv by [Lin and Costello, 1983, p. 53]

v = u �G
= (uo; u1; : : : ; uk�1) � 26666666664

g0

g1

...

gk�1

37777777775 (2.3)

= u0g0 + u1g1 + : : :+ uk�1gk�1

From (2.3) it can be seen that the matrixG generates codewords ofC given a data-

word, and is known as thegenerator matrix. If the encoding procedure of a linear

block code preserves the input sequenceu within the output sequence ofv the code

is systematic. Systematic codes enable simplifications to the decoding algorithm, and

are especially important for array codes. This useful property can be identified in the

generator matrix, ifk consecutive columns ofG form thek � k identity matrix the

code is systematic. By column reordering the generator matrix for systematic codes
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can always be arranged toreduced-echelonform

G =
266666666666664

1 0 0 : : : 0

0 1 0 : : : 0

0 0 1 0

...
...

...

0 0 0 1

P

377777777777775 (2.4)

whereP represents the parity checks. An important point to note is that every valid

codeword is a multiple of the generator matrix. The importance of this will become

apparent when the decoding of a received codeword which contains errors is consid-

ered.

The Parity-check Matrix

It is useful to be able to express the code in a manner which highlights the parity

checks. For ak� n generator matrixG there is an (n� k)� n parity-check matrix, H.

The relationship of the parity-check matrix to the generator matrix,G, is given by

GHT = 0 (2.5)

whereHT is the transpose ofH and0 is an all-zeros matrix. For any codeword,v in

the code the parity checks sum to zero and thus

vHT = 0 (2.6)
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2.1.2 Syndrome Vector

Consider the case of the parity checks when the received codeword, r , is in error. The

parity check values, orsyndromes, are non-zero. Thesyndrome vector, S, is defined

by

S= rH T

whereS= [S1; S2; : : : ; S2t℄ (2.7)

For the case when the received codeword is correct (i.e.,r � v) Equation 2.7 reduces

to Equation 2.6. However, when the received codeword is in error r is given byr =
v+ e, wheree is the error vector. Substituting into Equation 2.7 gives

S= rH T= (v+ e)HT= vHT + eHT= eHT

(2.8)

sincevHT = 0 (Equation 2.6). From Equation (2.8) it is clear that the syndrome is

dependent only upon the error pattern,e, and not the transmitted codeword,v.

There is a one-to-one mapping from correctable error patterns to the syndromes.

For simple codes error correction can be achieved by a table lookup of the syndromes

and a GF(q) subtraction of the corresponding error value. This methodis not practical

for useful codes as the table size is too large to store (e.g.,for RS(255; 223; 33) the

table would contain 25632� 1 = 1:16� 1077 entries!).
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2.1.3 The Singleton Bound

The Singleton bound [Singleton, 1964] provides an upper limit on the minimum dis-

tance,dmin , between codewords in a linear block code. It thus provides an important

goal good codes should attain. Codes which satisfy the Singleton bound with equality

are termedmaximum distance separable. The bound is given by

dmin � n� k+ 1 (2.9)

2.1.4 Array Codes

Array codes were introduced by Elias [Elias, 1954]. They areconstructed from lin-

ear component codes in two or more dimensions. The simplest array code is a two-

dimensional code with an (n1; k1; d1) vertical code,C1, and an (n2; k2; d2) horizontal

code,C2. The resulting code,C, is an (n1n2; k1k2; d1d2) code (Figure 2.1). The term

product codeis sometimes applied toarray codes; the two terms are interchangeable.

General Properties of Array Codes

Theorem 2.1 The minimum weight for the product of two codes is the productof the

minimum weights of the codes.

Proof 2.1 [Elias, 1954]. The minimum weights of the component codes,C1 andC2 are

d1 andd2. Each column containing a non-zero element must have at least d1 non-zero
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k1

k2

n1

n2

Information matrix Row
checks

checks
Column checks Checks on

Figure 2.1: Array code.

elements, and each row containing a non-zero element must have at leastd2 non-zero

elements. Therefore if the product codeC contains any non-zero elements it must

contain at leastd1 non-zero rows andd2 non-zero columns. The minimum number of

non-zero elements is therefored1d2 and thus the minimum weight ofC is d1d2. �
Encoding and decoding are greatly simplified when the component codes are sys-

tematic. For a two-dimensional product code with systematic component codes the

generator matrix can be shown to be the Kronecker product (denoted by
) of the

generator matrices [Slepian, 1960]. For the case when the component codes are single

parity-check codes (i.e.,k1 = n1 � 1, k2 = n2 � 1) the generator matrix reduces to

the simpler case as the Tensor product of the component codes[Wolf, 1965]. Higher



2.1. BLOCK CODES 14

dimensions are possible. As both row and column codes are linear it is not important

whether the row or column encoding is performed first, the checks-on-checks will be

identical in either case [Peterson and Weldon, 1972, p. 132]. Similarly, the decoding

order is not important.

If serial transmission of the codeword symbols is assumed (which is the normal

case) the two-dimensional codeword,v

v = 26666666664
v0;0 v0;1 : : : v0;n2�1

v1;0 v1;1 : : : v1;n2�1

...
...

. . .
...

vn1�1;0 vn1�1;1 : : : vn1�1;n2�1

37777777775 (2.10)

must be converted to a one-dimensional vector before transmission over the channel.

The mapping ofvi; j where 0� i < n1 and 0� j < k2 to vl where 0� l < n1n2 � 1

may be accomplished by a number of methods. Thecanonical orderingis achieved

by choosingi and j as the quotient and remainder whenl is divided byn2 [Berlekamp,

1968, p. 338]. Canonical ordering gives the array

v = 26666666664
v0 v1 : : : vn2�1

vn2 vn2+1 : : : v2n2�1

...
...

. . .
...

v(n1�1)n2 v(n1�1)n2+1 : : : vn�1

37777777775 (2.11)

For the case whenn1 andn2 are relatively prime there is (by the Chinese remainder

theorem) a unique integerl in the range 0� l < n1n2 � 1 for the pair (i; j ) such that
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l � i modn2 andl � j modn1 [Burton and Weldon, 1965]. This mapping ofi and j

to l is known ascyclic ordering. The reasoning behind the name is clearly seen from

the example below wheren1 = 3 andn2 = 5

v = 2666664 v0 v6 v12 v3 v9

v10 v1 v7 v13 v4

v5 v11 v2 v8 v14

3777775 (2.12)

If C1 andC2 are cyclic codes andn1 andn2 are relatively prime then the productC = C1
 C2 is also cyclic, however not all cyclic codes are array codes [MacWilliams

and Sloane, 1978, p. 570].

Decoding Array Codes

Many decoding algorithms for array codes exist, both algebraic and trellis-oriented.

The simplest method for decoding a canonically-ordered array code is tocascade de-

codethe component codes one at a time, decoding the row code,C2, and then the col-

umn codeC1. Particularly for memoryless channels, the cascade decoding algorithm

is inefficient. There exist error patterns for which the codeis capable of correcting but

the algorithm fails to correct. If the minimum distances,d1 andd2, of the component

codes are odd then there are error patterns of weight (d1 + 1)(d2 + 1)=4 which are

incorrectly decoded, although the code is capable of correcting errors up to weight

(d1d2 � 1)=2 [Berlekamp, 1968, p. 340].
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2.1.5 Generalised Array Codes

As the name suggests GACs are a generalisation of the array codes introduced by

Elias. Unlike standard array codes GACs may have different component codes along

a given dimension, with the restriction of the code length being invariant. The total

number of code symbols is given byn = n1n2, wheren1 andn2 are the number of

rows and columns, respectively. The total number of information symbols is given by

k =Pn1

i=1 kp, wherekp is the number of information symbols inp-th row [Honary and

Markarian, 1997, p. 11].

The technique provides a simple design procedure for constructing many differ-

ent block codes, BCH, Hamming, Golay, RM etc. [Honary and Markarian, 1993a,b;

Honaryet al., 1995a]. It is important as it allows minimal trellises to bedesigned in a

straightforward manner.

2.1.6 Cyclic codes

Cyclic codes are an important subclass of linear block codes, not only because many

prominent codes are cyclic e.g., BCH, RS, but also because they are used in the con-

struction of other error-correcting codes e.g., Kerdock and Preparata codes. The inher-

ent algebraic structure of cyclic codes allows the formation of many practical decod-

ing methods; Euclidean (Section 3.3), Berlekamp-Massey (Section 3.4), step-by-step

(Section 3.5) and others.
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General Properties of Cyclic Codes

A codeC is cyclic if it is linear and every cyclic shift of every codewordv is also a

codeword. i.e., if (v0; v1; : : : ; vn�1) is a codeword inC then (vn�1; v0; : : : ; vn�2)

is also a codeword inC [MacWilliams and Sloane, 1978, p. 188]. Cyclic codes are

commonly defined in terms of polynomials, where the coefficients of the polynomial

are the symbols inv. The notationv(x) will be used to denote a code polynomial. The

relationship between a codewordv and the polynomial is

v = (v0; v1; : : : ; vn�1) (2.13)

v(x) = v0 + v1x+ v2x2 + : : :+ vn�1xn�1 (2.14)

It can be seen that the maximum degree ofv(x) is n� 1. Algebraically,v(x) is defined

to be a polynomial moduloXn � 1. This leads to the important identity

xn � 1 (2.15)

From (2.15) it can be shown that a multiplication ofv(x) by x is a cyclic shift

x:v(x) == v0x+ v1x2 + v2x3 + : : : + vn�2xn�1 + vn�1xn

vn�1 + v0x+ v1x2 + v2x3 + : : : + vn�2xn�1

(2.16)

It can be shown [Wicker, 1994, p. 101; Wilson, 1996, pp. 443–444] that there

exists a unique polynomial,g(x), such that every code polynomial can be expressed as
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a product of the generator polynomial

v(x) = u(x) g(x) (2.17)

whereu(x) is a polynomial of degreek� 1 or less and is known as the message

polynomial. Equation (2.17) indicates a method by which a message polynomial,u(x),

can be encoded to its corresponding codeword polynomial. Analternative approach

is based on matrices. It is shown in equation (2.2) that a generator matrix can be

constructed fromk linearly independent codewords. Since the generator polynomial

is itself a codeword polynomial (corresponding to the caseu(x) = 1) thek codewords

can be arranged ask cyclic shifts ofg(x).

G =
26666666666664

g(x)

xg(x)

x2g(x)

...

xk�1g(x)

37777777777775 =
26666666666664

g0 g1 : : : gr 0 : : : 0 0

0 g0 g1 : : : gr 0 : : : 0

... ... ...

0 : : : 0 g0 g1 : : : gr 0

0 0 : : : 0 g0 g1 : : : gr

37777777777775 (2.18)

The encoding procedure given in (2.17) does not produce a systematic codeword.

Normally, systematic codewords are preferred as they simplify the decoding proce-

dure. The normal method by which systematic codewords are generated is [Michelson

and Levesque, 1985, p. 133]

v(x) = �xn�ku(x) modg(x)
� + xn�ku(x) (2.19)
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It can be seen that this does result in a valid codeword, the remainder whenv(x) is

divided byg(x) is zero, and the maximum degree ofv(x) is n� 1.

Syndrome Polynomial

For cyclic codes (e.g., BCH and RS) the calculation of the syndromes can be per-

formed more efficiently by using the cyclic properties of thecode. Though the syn-

drome vector can be calculated byS = rH T (2.7) this calculation can also be per-

formed as

S(x) = r(x)

g(x)= r(x) modg(x)

(2.20)

whereS(x) = S1 + S2x+ S3x
2 + : : :+ S2tx

2t�1 (2.21)

whereS(x) is thesyndrome polynomial. Thus the syndrome polynomial may be de-

fined as the remainder when an erroneous codeword is divided by the generator poly-

nomial, g(x). The proof is given in [Peterson and Weldon, 1972, p. 231]. For the

case of the received codeword being equal to the transmittedcodeword,v(x), the syn-

drome polynomial is zero since valid codewords are exactly divisible by the generator

polynomial (2.17).

It can be shown that the syndrome polynomial is dependent upon the error polyno-

mial, e(x), and not the transmitted codeword,v(x), by substitutingr(x) = v(x) + e(x)
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into (2.20)

S(x) = r(x) modg(x)= [v(x) + e(x)℄ modg(x)= v(x) modg(x) + e(x) modg(x)= e(x) modg(x)

(2.22)

sincev(x) modg(x) = 0 (from (2.17)).

2.1.7 Bose-Chaudhuri-Hocquenghem Codes

Bose-Chaudhuri-Hocquenghem codes were discovered independently by Hocqueng-

hem [Hocquenghem, 1959] in 1959 and Bose and Ray-Chaudhuri [Bose and Ray-

Chaudhuri, 1960a,b] in 1960. BCH codes are a generalisationof the cyclic Hamming

codes for correcting multiple errors. Peterson [Peterson,1960] proved that BCH codes

are cyclic. Gorenstein and Zierler [Gorenstein and Zierler, 1961] generalised the BCH

codes for non-binary alphabets of sizepm. Their wide choice of block lengths, code

rates and symbol alphabets, coupled with efficient decodingalgorithms, has made

BCH codes a popular choice for many communication systems.

General Properties of BCH Codes

When constructing an arbitrary cyclic code there is no guarantee of the minimum

distance of the code produced [Wicker, 1994, p. 176]. It is necessary to conduct a

computer search of all the non-zero codewords to find the minimum-weight codeword
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and thus the minimum distance of the code. For BCH codes this procedure is not

required, the BCH bound places lower limit on the minimum distance of the code. An

understanding of these codes requires a knowledge of finite field arithmetic [McEliece,

1987].

Theorem 2.2 The BCH Bound [Wicker, 1994]

Let C be aq-ary (n; k) cyclic code with generator polynomialg(x). Let m be the

multiplicative order ofq modn. (GF(qm) is thus the smallest extension field of GF(q)

which contains a primitiven-th root of unity.) Let� be a primitiven-th root of unity.

Selectg(x) to be a minimal-degree polynomial in GF(q)[x℄, where GF(q)[x℄ de-

notes the collection of all polynomialsa0 + a1x+ a2x2 + � � � + xn of arbitrary degree

with coefficientsfaig in the finite field GF(q) [Wicker, 1994, p. 40], such that

g(� b) = g(� b+1) = g(� b+2) = � � � = g(� b+Æ�2) = 0 (2.23)

for some integersb � 0 andÆ � 1. The roots of the generator polynomialg(x) areÆ � 1 consecutive powers of� . The codeC defined byg(x) has minimum distance

d � Æ .

Proof of Theorem 2.2 can be found in [MacWilliams and Sloane,1978; Peterson and

Weldon, 1972; Wicker, 1994]. The BCH bound can be used to produce a BCH code

with a given design distance. However, since the weight distributions of most BCH

codes are not known the actual minimum distance may be greater than the design

distance.
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Generator Polynomial

The generator polynomial for a BCH code has 2t roots, which are consecutive powers

of � (from Theorem 2.2). Therefore

g(x) = 2t�1Y
i=0

(x� � b+i ) (2.24)

For the case whenb = 1 the code is termednarrow sense[MacWilliams and Sloane,

1978, p. 203].

2.1.8 Reed-Solomon Codes

Reed-Solomon codes were discovered by Reed and Solomon in 1960 and are a spe-

cial subclass of non-binary BCH codes [Reed and Solomon, 1960]. RS codes exhibit

additional properties to BCH codes which make them very muchmore powerful than

BCH codes. Their powerful error-correcting abilities havemade them possibly the

most important codes. RS codes are multi-level, therefore log2 q binary bits are com-

monly mapped to one RS symbol. This process provides some burst-error correction.

They have many and widespread applications which include the compact disc, satellite

communications and digital video broadcasting.

General Properties of RS Codes

Reed-Solomon codes are cyclic and so profit from the many useful characteristics

cyclic codes offer. They are normally generated in systematic form using (2.19).

Theorem 2.3 An (n; k) RS code has minimum distance (n� k+ 1).
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Proof 2.2 Let C be an (n; k) RS code. The Singleton bound (Section 2.1.3) gives an

upper bound ofd � n� k+ 1 to all (n; k) codes. The BCH bound provides a lower

bound. The generator polynomialg(x) is of degreen � k, so it containsn � k =Æ � 1 consecutive powers of a primitiven-th root of unity. Therefored � n� k+ 1.

Combining these two results gives

d = n� k+ 1 (2.25)�
Theorem 2.3 and its proof are important for two reasons. Firstly it shows that RS

codes can be designed such that their designed minimum distance isalwaysthe actual

minimum distance (unlike BCH codes). Secondly, RS codes satisfy the Singleton

bound with equality, so they are maximum distance separable.

Theorem 2.4 RS codes are invertible.

A code is said to beinvertibleif any k symbols can be used as information symbols

in a systematic representation. This follows from the MDS property, proof is given

in [Wicker, 1994, p. 189].
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2.2 Convolutional Codes

2.2.1 Overview

The nameconvolutional codewas coined by Elias [Elias, 1955] to describe a code

which is the output sequence of a linear mapping of an input sequence with a discrete-

time, finite-alphabet convolution of the input and encoder’s impulse response [Wilson,

1996, p. 551]. Such codes are sometimes termed trellis codes, but this name is mis-

leading because block codes may also be represented by trellises. The concept of

encoding an input sequence without segmenting it is very different to that used by

block codes (Section 2.1).

Input bit

First code symbol

Output branch
word

Second code symbol

Figure 2.2: Encoder for (2; 1; 3) convolutional code.

2.2.2 General Properties

A convolutional code over GF(q) is usually described by the parameters (n; k;K),

wherek is the number ofq-ary symbols (simultaneously) input to the decoder andn

is the number ofq-ary symbols (simultaneously) output from the decoder. As with a
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block code, the rate is given byn=k. Theconstraint lengthof the code,K, is defined as

the number of consecutive symbols in the output stream affected by any input symbol.

It is also thememoryof the code.

2.3 Concatenated Codes

2.3.1 Overview

Concatenated coding was introduced in 1966 by Forney [Forney, 1966]. It is a pow-

erful technique for creating error-correcting codes by combining two (or more) codes

sequentially. The primary reason for using concatenated codes is to achieve a low

error rate with an overall implementation complexity whichis less than that which

would be required by a single decoding operation [Sklar, 1988, p. 365]. Figure 2.3

shows a concatenated coding scheme. The data stream is first encoded with theouter

code(in this case an RS block code). The output of the outer code isthen re-encoded

with the inner code, (here a convolutional code) before transmission. At the receiver

the decoding order must be reversed, and so the inner code is decoded first. Any errors

from the output of the inner decoder are likely to appear as bursts, hence it is usual

to include aninterleaverandde-interleaverbetween the inner and outer codes. The

purpose of the interleaver is to rearrange the symbols so that errors do not occur in

bursts but are spread through several outer codewords to allow correct decoding.

Convolutional codes are a natural choice for the inner code.With a suitable Vit-

erbi decoder SD information can be used for maximum performance. RS codes are

frequently used for the outer code. They are powerful and when combined with a
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binary convolutional code the burst-error performance of the RS code helps minimise

errors. There are, however, many possible configurations for a concatenated coding

scheme and flexibility is one of its many advantages. For example the compact disc

coding system uses a concatenated system based upon RS(32; 28; 5) and RS(28; 24; 5)

shortened RS codes.

2.3.2 General Properties of Concatenated Codes

The rate of a concatenated code is the product of the rates of its component codes.

Consider a concatenated codeC with an (n1; k1; d1) inner codeC1 and an (n2; k2; d2)

outer codeC2. An input sequence ofk1k2 symbols is passed to the outer encoder. The

output isk1n2 symbols. This new block is sent to the inner decoder which results in

n1n2 output symbols. The rate is thusk1k2

n1n2
.

The minimum distance of a concatenated code is d1d2 [Lin and Costello, 1983,

p. 279].

The proof is the same as for an array code, see Proof 2.1.

2.4 Trellises

2.4.1 Introduction

A trellis diagram (commonly called atrellis) is an acyclic edge-labelled directed

graph [Muder, 1988], with one start point (theroot) and one end point (thegoal).

The horizontal axis of a trellis diagram indicates the passage of time. The trellis can
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be viewed as a two-dimensional representation of theqk codewords through then-

dimensional codespace. To enable an accurate description of the properties of a trellis

it is first necessary to introduce some common definitions.

2.4.2 Definitions

Nodes of the graph represent possible encoderstates, Si;t, wherei is the state number

andt is the time index. The nodes are decomposed into a union of disjoint subsets,

calledverticesor levels. The levels are numerated 0; 1; : : : ; Nc (Nc � n+ 1) and the

t-th level consists ofNt nodes, (S1;t ); (S2;t ); : : : ; (SNt ;t ).
Between states in adjacent levels,Si;t andSj;t+1, there may be directedbranches

(also callededges), B(Si;t ! Sj;t+1), which indicate possible changes in state. Branches

are only permitted to connect adjacent levels. The set of branches between levelt � 1

and t is called thet-th depth. In some texts the set of branches at a given depth is

termed astage[Wicker, 1994, p. 292]. To prevent confusion (e.g., with “two-stage

decoding”) such terminology is avoided in this work. Associated with every branch is

a label denoting the output (or code) symbol(s) given when that branch is taken, and

a branch metric, Bm, which indicates the likelihood of a given branch being selected.

For certain trellises an additional input (or data) label may exist. Its purpose is to allow

the same trellis structure to be used for both encoding and decoding operations. The

code label is al t-dimensional vector ofq-ary symbols, (l1; l2; : : : ; l t ). The code label

associated with the branchB(Si;t ! Sj;t+1) is denoted byL(Si;t ;Sj;t+1).

Using the notation introduced above the root can be more precisely defined asS1;0,
and the goal asS1;Nc

. A path is a continuous sequence of branches, and is denoted
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by P (Si;t ! Sj;t+1 ! Sk;t+2 ! : : : ! Sz;t+Æ ). The termpartial path is sometimes

used to denote a sequence of branches for which decoding is incomplete, thus the

sequence starts from the root but does not reach the goal. Forcertain codes (generally

convolutional codes) it is necessary totruncatethe trellis to lessen decoding delay.

Frequently these trellises are shown with multiple roots and goals (see Figure 4.7

for an example). Though this does not strictly match the definition of a trellis, the

truncated section is often considered to be a trellis in its own right.

A trellis is called acode trellisof the codeC if there is a one-to-one mapping

between the codewords of the codeC and all paths betweenS1;0 and S1;Nc
(i.e., allP (S1;0 ! : : :! S1;Nc

)).

Let N (t ) = [N0; N1; : : : ; NNc
℄ be thestate profileof the trellisT andB (t ) = [B 1;B 2; : : : ; B Nc

℄ be thebranch profile, whereN i is the number of states at thei-th level

andB j is the number of branches at thej-th depth [Forney and Trott, 1993; Honary

and Markarian, 1997, p. 161]. LetL(t ) = [L1; L2; : : : ; LNc
℄ be thelabel size profile

of the trellis whereL j is the number of symbols used for labelling thej-th depth.

Figure 2.4 shows a trellis for the (7; 4; 3) Hamming code annotated with the defi-

nitions described above. The state profile, branch profile and code label size profile of
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Figure 2.4: Trellis for RM(8; 4; 4) with definitions.
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this trellis are N (t ) = [N0;N1;N2;N3;N4℄= [1; 4; 4; 4; 1℄ (2.26)B (t ) = [B 1; B 2; B 3; B 4℄= [4; 8; 8; 4℄ (2.27)L(t ) = [L1; L2; L3; L4℄= [2; 2; 2; 1℄ (2.28)

2.4.3 Properties

Proper A trellis where all the branches (edges) leaving any state (vertex) have distinct

labels. Unless otherwise stated all references to a trelliswill imply a proper

trellis.

Observable A trellis with a one-to-one mapping between all codewords ofthe codeC
and all paths betweenS1;0 andS1;Nc

(i.e., allP (S1;0 ! : : :! S1;Nc
)).

Since an unobservable trellis contains more than one path through the trellis

for at least one codeword this may cause difficulties for encoders and for sub-

optimum decoders operating with a reduced-search Viterbi algorithm, or similar

methods.

Minimal trellis Many definitions of a minimal trellis exist due to varying interpre-

tations of minimality. The definition used within this text will be that given by
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Muder [Muder, 1988]. The trellisT is a minimal trellis of the codeC if for every

other trellisT 0 of C, N i � N 0i [Honary and Markarian, 1997, p. 61].

State-Oriented form The trellis state number is directly correlated with the encoder

state.

2.5 Channel Models

2.5.1 Discrete Memoryless Channel

A discrete memoryless channelfeatures discrete input and output alphabets. The set

of conditional probabilities relating the output to the input is given byp( j j i) wherei

(1 � i � M) is a modulatorM-ary input symbol andj (1 � j � q) is a demodulator

q-ary output symbol. Thusp( j j i) is the probability of receivingj if i was transmitted.

The output symbol depends only on the input symbol, not on theexistencre of any

previous errors (hence the channel has nomemory). For an input sequenceU = u1;
u2; : : : ; uN the conditional probability of the output sequenceZ = z1; z2; : : : ; zN

is [Sklar, 1988, p. 261]

p(Z j U) = NY
m=1

p(zm j um) (2.29)
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2.5.2 Binary Symmetric Channel

A binary symmetric channelis a special case of the discrete memoryless channel. The

input alphabet size is 2, containing the binary elements “0”and “1”. In addition, the

conditional probabilities are symmetric:

p(0 j 1) = p(1 j 0) = p (2.30)

p(0 j 0) = p(1 j 1) = 1� p (2.31)

The channeltransition probabilities(2.30, 2.31) give the probability that a trans-

mitted symbol is received incorrectly. The demodulator makes no attempt to indicate

how well a symbol is received, it merely outputs a “0” or “1”. This type of output is

termedhard decision.

p(0 j 0)

p(
0 j 1)

p(1 j 0)
p(1 j 1)

00

11

Figure 2.5: Binary symmetric channel model.

An upper bound for the probability of an incorrect decoding by a linear error-
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correcting code operating over a BSC can be obtained by considering the probability

that> t symbol errors occur [Lin and Costello, 1983]

PM � nX
i=t+1

�
n

i

�
Ps

i(1� Ps)n�i (2.32)

2.5.3 Binary Symmetric Erasure Channel

Thebinary symmetric erasure channelmay be viewed as a special case of the DMC,

or as an extension of the BSC. Like the BSC the input alphabet size is 2, containing

the binary elements. However the output alphabet size is increased to 3, and contains

“0”, “1” and an erasure(denoted by “?”). For times when the demodulator is not able

to clearly identify a “0” or “1” it may signal its uncertaintyby outputting an erasure.

The decoder is then aware that the symbol is unreliable. The symmetric conditional

probabilities are

p(0 j 1)= p(1 j 0)= p (2.33)

p(0 j ?)= p(1 j ?)= q (2.34)

p(0 j 0)= p(1 j 1)= 1� p� q (2.35)
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p(0 j 0)

p(0 j ?)p(0 j 0)
p(

1 j 0)
p(1 j ?)

p(1 j 1)

00

11

?

Figure 2.6: Binary symmetric erasure channel model.

2.5.4 Additive White Gaussian Noise Channel

In many cases channels are not discrete but feature a continuous output alphabet over

the range (�1! +1). An AWGN channel is an example of such a case. The output

is the input with broadband Gaussian noise added. The channel contains no memory

(as defined in Section 2.5.1). This type of channel is an accurate channel model of

many communication systems, such as satellite, deep-spaceand line-of-sight links.

White Gaussian noise is a random process, with a zero mean anda Gaussian PDF

with variance� 2. The power spectral density is flat over all frequencies (�1 � f �+1). The channel corrupts the transmitted signal with noise. The probability density

function,y, of the noise value,x, is Gaussian and in the frequency domain the noise is

wideband (or white).

y= 1�p2� exp

(�1

2

�
x� �� �2

)
(2.36)
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2.5.5 Quantised AWGN Channel

While channels with continuous output alphabets are a natural phenomenon they are

impossible to use with SD decoding (due to requiring infiniteprecision to store the

soft value). AWGN channels are frequently ‘approximated’ to a channel with a fixed

number of noise values. Such a channel is termed aquantised additive white Gaussian

noise channel. Like the standard AWGN channel it contains no memory. The quan-

tised AWGN channel is discussed further in Section 5.1.2, where the relative merits

(or metrics) of each quantisation level are calculated and their variation with Eb=N0 for

BPSK modulation is plotted.
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Chapter 3

Algebraic Decoding of Reed-Solomon

Codes

3.1 Introduction

While RS codes are constructed by a few well-defined methods (Section 2.1.8) a large

variety of decoding methods have been proposed. An important distinction is between

those which arealgebraicand those which arecombinatorialin origin. Algebraic de-

coders attempt to correct errors and/or erasures by (algebraically) solving an equation

to find the lowest weight error word. The fundamental method by which most RS al-

gebraic decoders operate is by attempting to solve thekey equation. However, not all

algorithms use this approach, notable exceptions being Peterson’s direct method [Pe-

terson, 1960] and Massey’s step-by-step algorithm [Massey, 1965]. In contrast to

algebraic decoders, combinatorial decoders operate on more probabilistic methods to

38
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find the codeword which most closely matches the received word. Whilst many alge-

braic decoders can be adapted for error-and-erasures decoding it is true to say that they

are unable to make maximum use of soft-decision informationin the way that combi-

natorial decoders can. Most combinatorial decoding algorithms are trellis-based (e.g.,

the Fano algorithm and the Viterbi algorithm). Combinatorial decoders are discussed

in Chapter 4.

Some important algebraic decoding algorithms include Euclidean decoding, based

on Euclid’s algorithm and the Berlekamp-Massey algorithm.In 1967 Berlekamp in-

troduced an iterative method for decoding binary BCH codes [Berlekamp, 1967]. In

Peterson’s method the decoding complexity is proportionalto the square of the errors

corrected while for Berlekamp’s algorithm the decoding complexity increases linearly

with the number of errors corrected [Wicker, 1994, p. 211]. Thus Berlekamp’s al-

gorithm is much more suited for decoding long block codes where many errors may

be corrected. In 1969 Massey described a “shift-register” synthesis of the Berlekamp

algorithm [Massey, 1969]. The algorithm is now commonly called the Berlekamp-

Massey algorithm in joint commemoration of their findings. In 1975 Sugiyamaet al.

showed how Euclid’s algorithm, for finding the greatest common divisor of two inte-

gers or polynomials, can be used to solve the key equation anddecode BCH and RS

codes [Sugiyamaet al., 1975].

This Chapter begins with a discussion of the key equation (Section 3.2). The syn-

drome, error-locator and error-evaluator polynomials aredefined. A method by which

the error values can be calculated is given, along with its proof. Euclidean decoding

is described in Section 3.3, and illustrated with an example. Section 3.4 describes the
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Berlekamp-Massey algorithm. The same decoding example is repeated for the case of

BM decoding. Finally, high-speed step-by-step decoding isshown. Again, the same

decoding example is used to illustrate the algorithm. All the algorithms are described

using the same form of the key equation, and have been generalised for the case when

the BCH sense is not narrow (Section 2.1.7).

3.2 The Key Equation

3.2.1 Syndrome Calculation

Many common algebraic decoding algorithms for parity-check block codes start by

testing if the syndromes (Section 2.1.2) of the received codeword are non-zero (i.e., if

the parity checks fail). If the syndrome vector or polynomial is non-zero the received

codeword is in error and error-correction is begun.

Let the received codeword be represented by the polynomialr(x) = r0 + r1x+: : : + rn�1xn�1. Let the error word corrupting the received word be represented by

the polynomiale(x) = e0 + e1x+ : : : + en�1xn�1. The syndrome values1 Sj, ( j = 1;
2; : : : ; 2t ) is the value of the received polynomial evaluated at the 2t roots used to

define the RS (or BCH) code [Wilson, 1996, p. 471]. Thus, for a narrow sense BCH

code (b = 1) the j-th syndrome is calculated by substituting� j for x in r(x). For the

1Note that these syndromes are not the same as the syndrome described in Section 2.1.6
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more general case

Sj = r(� j+b�1)= n�1X
i=0

(r i )(� j+b�1)i= n�1X
i=0

(vi + ei )(� j+b�1)i= n�1X
i=0

(ei )� i( j+b�1)

where j = 1; 2; : : : ; 2t

(3.1)

3.2.2 Error-locator Polynomial

Let the received codeword contain� (� � t ) correctable errors. Let the locations of

the errors be given by time indicesi1; i2; : : : ; i� . For each symbol in error define an

error-locator, Xi such that

Xi = � i (3.2)

Noting that only symbols received in error contribute to thesyndrome values it is

possible to rewrite (3.1) in terms of the error-locators

Sj = �X
l=1

ei l X
( j+b�1)
l (3.3)

Theerror-locator polynomial,�(x), is defined as a polynomial whose inverse roots

are the error locators [Wicker, 1994, p. 205] i.e., the inverses of the error locations are
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the roots of�(x). �(x)
4= �Y

i=1

(1� Xix) (3.4)

From (3.4) it can be seen that deg�(x) = � , and that for no errors (� = 0) then�(x) = 0. For binary codes it is sufficient to find the location of an error, since the

error value is always 1. However for RS and other multi-levelcodes it is necessary

to find the value of each error in addition to the location of each error. It is therefore

necessary to define an additional polynomial to find the valueof the error(s).

3.2.3 Error-evaluator Polynomial

Theerror-evaluator polynomialis a polynomial which when evaluated at an error lo-

cation gives the value of the error. It is defined as follows.2 The syndrome polynomial

is an infinite degree polynomial, however only the first 2t coefficients ofx are known

1+ S(x) = 1+ 1X
j=1

Sjxj= 1+ 1X
j=1

 �X
l=1

ei l X
( j+b�1)
l

!
xj= 1+ �X

l=1

ei l

1X
j=1

�
X( j+b�1)

l xj
� (3.5)

The summation
P1

j=1 X( j+b�1)
l xj can be simplified to a rational expression by noting it

is a geometric series of the forma+ ar1 + ar2 + : : : , for which the simplified form is

2This is similar to [Wicker, 1994, p. 221], but has been generalised for the case whenb 6= 1.
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S1 = a
1�r 1X

j=1

X( j+b�1)
l xj = 1X

j=1

Xb�1
l (Xlx) j= �Xb�1

l + 1X
j=0

Xb�1
l (Xlx) j= Xb�1

l + Xb
l x

1� Xlx
+ Xb�1

l

1� Xlx= Xb
l x

1� Xlx

(3.6)

Therefore (3.5) becomes

1+ S(x) = 1+ �X
l=1

ei l

Xb
l x

1� Xlx
(3.7)

Multiplying both sides of (3.7) by�(x) (Equation 3.4) produces the definition of

the error-evaluator polynomial�(x) [1+ S(x)℄ = �(x)

"
1+ �X

l=1

ei l X
b
l x

1� Xlx

#
= �(x) + �X

l=1

"
ei l X

b
l x

1� Xlx

�Y
i=1

(1� Xix)

#
= �(x) + �X

l=1

264ei l X
b
l x

�Y
i 6=l
i=1

(1� Xix)

3754= 
(x)

(3.8)

As the decoder is only able to calculate the first 2t coefficients ofS(x) thenS(x) is

unknown, though the decoder does know the value ofS(x) modx2t+1. Thus thekey
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equationwhich the decoder must solve is�(x) [1+ S(x)℄ � 
(x) modx2t+1 (3.9)

An alternative definition of the key equation sometimes found [Clark and Cain, 1981]

is �(x)Salt(x) � 
alt(x) modx2t+1 (3.10)

While the error-locator polynomial is defined in the same way(3.4) it is important

to note that the syndrome polynomial,Salt(x), in (3.10) is not the same as defined

in (3.5); they are related byS(x) = xSalt(x). As the error-evaluator is also defined in a

different manner the initial conditions for Euclidean and Berlekamp-Massey decoding

also differ, as does the equation for calculating the error values from�(x) and
alt(x).

After the solution to the key equation has been found the error locations and values

must still be found. Future references to the key equation will be to (3.9) only.

3.2.4 Locating the Errors

The error-locator polynomial,�(x), contains� ; (0 � � � t ) unique rootsfX�1
1 ;

X�1
2 ; : : : ; X��1g, corresponding to error locationsfi1; i2; : : : ; i�g. The roots may

be found by exhaustive substitution or Chien search [Chien,1964]. The roots must be

unique since an error can only occur in one position once. By definition of�(x) (3.4),fX�1
1 ; X�1

2 ; : : : ; X��1g 2 GF(q). This implies deg�(x) = � . If any of these con-
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ditions are not met the decoder should abort error-correction and declare adecoder

failure to indicate that the codeword contains an uncorrectable number of errors. The

reason why the decoder is able to identify a codeword containing > t errors is that

BCH and RS codes are not perfect [Wicker, 1994, p. 76] and there exist words in the

codespace which are greater thant Hamming distance from the nearest codeword.

3.2.5 Calculation of the Error Values

Theorem 3.1 The Forney algorithm.

From the Forney algorithm [Forney, 1965] the error valuesei l = fe1; e2; : : : ; e�g
are given by

ei l = �X2�b
l 
(X�1

l )�0(X�1
l )

(3.11)

whereXl = � l is the error-locator (Section 3.2.2).

Proof 3.1 The proof given here is similar to [Wicker, 1994, p. 222], buthas been ex-

tended for the caseb 6= 1. Take the formal derivative of the error-locator polynomial,�(x), noting the identity[uv℄0 = u0v+ uv0.�0(x) = " �Y
l=1

(1� Xlx)

#0
= � �X

l=1

264Xl

�Y
j 6=l
j=1

(1� Xjx)

375 (3.12)

At the error locationXl the error-locator polynomial is�(x) = 0, with the rootx= X1
l .
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Therefore substituteX�1
l for x in (3.12).�0(X�1

l ) =�0(X�1
l ) = � �X

l=1

264Xl

�Y
j 6=l
j=1

(1� XjX�1
l )

375= �Xl

�Y
j 6=l
j=1

(1� XjX
�1
l )

(3.13)

Similarly, substituteX�1
l for x in the error-evaluator polynomial (3.8).
(X�1

l ) = ei l X
b
l X�1

l

�Y
i 6=l
i=1

(1� XiX
�1
l ) (3.14)

Dividing (3.14) by (3.13) gives


(X�1
l )�0(X�1
l )

= ei l X
b
l X�1

l

�Y
i 6=l
i=1

(1� XiX�1
l )�Xl

�Y
j 6=l
j=1

(1� XjX�1
l )= �ei l X

b
l X�1

l

Xl

(3.15)

)
ei l = �X2�b

l 
(X�1
l )�0(X�1

l )
(3.16)�
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For narrow sense RS or BCH codes the error values are given by [Wicker, 1994,

p. 222]

ei l = �Xl
(X�1
l )�0(X�1

l )
(3.17)

It can be seen (3.17) is equivalent to (3.11) for the caseb= 1.

3.3 Euclidean Decoding

3.3.1 Euclid’s Algorithm

Euclid’s algorithm is a recursive method for finding the greatest common divisor of

two elements in a Euclidean domain [Wicker, 1994, p. 50]. Examples of Euclidean

domains include integer numbers and polynomials whose coefficients are elements in

the same Galois field.

1. Let a and b represent two integers or polynomials, wherea > b if they are

integers or dega� degb if they are polynomials.

2. Initialise the time-indexed variabler (i) with the valuesr (�1) = a andr (0) = b.

3. If r (i�1) 6= 0, or for polynomials if degr (�1)(x) > degb(x), then definer (i) by

r (i) = r (i�2) � q(i)r (i�1) (3.18)

Repeat untilr (i) = 0. The greatest common divisor is given byr (i�1).
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Example 3.1 Calculate the greatest common divisor fora= 93 andb = 33.

The values forr (i) andq(i) for each iterationi are given in Table 3.1. The algorithm

terminates withi = 4, therefore gcd(93; 33)= r (3) = 3.

i q(i) r (i) r (i�2) = q(i)r (i�1) + r (i)�1 — 93 —
0 — 33 —
1 2 27 93= 2� 33+ 27
2 1 6 33= 1� 27+ 6
3 4 3 27= 4� 6+ 3
4 2 0 6= 2� 3+ 0

Table 3.1: Solution to Example 3.1. �
3.3.2 Extended Version of Euclid’s Algorithm

The extended version of Euclid’s algorithm is used to find twovalues in the Euclidean

domain such that

gcd(a; b) = sa+ tb (3.19)
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Since they are linearly related the same recursive algorithm can be used to finds(i) and

t (i). That is

s(i) = s(i�2) � q(i)s(i�1) (3.20)

t (i) = t (i�2) � q(i)t (i�1) (3.21)

At each step of the algorithmr (i) = s(i)t + t (i)b. The initial conditions are found as

follows

r (�1) = a = s(�1)a+ t (�1)b (3.22))
s(�1) = 1 (3.23)

t (�1) = 0 (3.24)

r (0) = b = s(0)a+ t (0)b (3.25))
s(0) = 0 (3.26)

t (0) = 1 (3.27)
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When the algorithm terminatess andt are given bys(i�1) andt (i�1) respectively.

Example 3.2 Calculate the values ofs andt for a = 93 andb= 33.

The values forr (i), q(i), s(i) andt (i) for each iterationi are given in Table 3.2. The

algorithm terminates withi = 4, therefores= 5 andt = �14.

i q(i) r (i) s(i) t (i)�1 — 93 1 0
0 — 33 0 1
1 2 27 1 �2
2 1 6 �1 3
3 4 3 5 �14
4 2 0 �11 31

Table 3.2: Solution to Example 3.2. �
3.3.3 Euclid’s Algorithm for Solving the Key Equation

The applicability of Euclid’s algorithm for solving the keyequation can be shown

most clearly by re-expressing the key equation (3.9) as�(x) [1+ S(x)℄ � 
(x) modx2t+1 (3.28)) �(x)x2t+1 + �(x) [1+ S(x)℄ = 
(x) (3.29)
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Comparing (3.29) with (3.19) it can be seen that

a� x2t+1 (3.30)

b� [1+ S(x)℄ (3.31)

s� �(x) (3.32)

t � �(x) (3.33)

gcd(a; b) � 
(x) (3.34)

Therefore the extended form of Euclid’s algorithm can be used to solve the key

equation. As�(x) is not useful the iterations fors(i) are ignored. The Euclidean

decoding algorithm is presented below:

1. Calculate the syndrome polynomial,S(x).

2. Initialise the algorithm variables, let

r (�1)(x) = xt+1 (3.35)

r (0)(x) = 1 (3.36)

t (�1)(x) = 0 (3.37)

t (0)(x) = 1 (3.38)

3. If r (i�1)(x) 6= 0 then define

r (i)(x) = r (i�2)(x)� q(i)(x)r (i�1)(x) (3.39)
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4. Define

t (i)(x) = t (i�2)(x)� q(i)(x)r (i�1)(x) (3.40)

5. If degr (i)(x) > t go to step 3.

6. �(x) = t (i)(x) and
(x) = r (i)(x). Find the roots of�(x) and determine the error

locations.

7. Find the error magnitudes using the Forney algorithm (3.11) and correct the

errors.

Example 3.3 To correct an erroneous codeword from RS(15; 9; 7).

The code RS(15; 9; 7) is a triple error-correcting code over GF(16). Let the prim-

itive polynomial for GF(16) be 1+ � + � 4. Table 3.3 gives the elements of the field

in polynomial representation. The identity element may also be represented by� 15 = 1 (3.41)

Let the sense of the code beb = 3. The generator polynomial,g(x), of the code

is (2.24)

g(x) = (x� � 3)(x� � 4)(x� � 5)(x� � 6)(x� � 7)(x� � 8)= � 3 + � 4x+ � 14x2 + � 10x3 + � 3x4 + � 12x5 + x6

(3.42)



3.3. EUCLIDEAN DECODING 53

Element Polynomial
representation� 2 � 1 0

0 0 0 0 0
1 0 0 0 1� 0 0 1 0� 2 0 1 0 0� 3 1 0 0 0� 4 0 0 1 1� 5 0 1 1 0� 6 1 1 0 0� 7 1 0 1 1� 8 0 1 0 1� 9 1 0 1 0� 10 0 1 1 1� 11 1 1 1 0� 12 1 1 1 1� 13 1 1 0 1� 14 1 0 0 1

Table 3.3: Galois field elements for GF(16).

Let the data polynomial be

u(x) = � 3x6 (3.43)

The systematic codeword is calculated from Equation 2.19, which gives

v(x) = � 7 + � 4x+ � 12x2 + � 4x3 + � 11x4 + � 9x5 + � 3x12 (3.44)

After transmission the received codeword,r(x), is corrupted with errors,e(x), where

r(x) = v(x) + e(x) (3.45)
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Let

e(x) = � 13+ � 11x+ � 3x12 (3.46)

therefore

r(x) = � 5 + � 13x+ � 12x2 + � 4x3 + � 11x4 + � 9x5 (3.47)

The syndromes are calculated as

Sj = 1:(� j ) + � 7:(� j )2 + �:(� j )3 + � 10:(� j )4 + � 10:(� j )5 (3.48)

where j = 1; 2; : : : ; 6

and are shown in Table 3.4. From (2.21) and Table 3.4[1+ S(x)℄ = 1+ � 11x+ � 10x3 + � 3x4 + � 9x5 + � 2x6 (3.49)

The initial conditions for Euclid’s algorithm are
(�1)(x) = x2t+1 = x7, 
(0)(x) =
Sj Value
1 � 11

2 0
3 � 10

4 � 3

5 � 9

6 � 2

Table 3.4: Syndrome values.
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The error-locator polynomial,�(i)(x), the error-evaluator polynomial,
(i)(x), and the

quotient,q(i) are given in Table 3.5 for each iteration,i, of the algorithm.

The solution to the key equation is found after 3 iterations,the error-locator and

error-evaluator are �(x) = � 5 + � 11x+ � 3x3 (3.50)
(x) = � 5 + � 6x+ � 7x2 + � 14x3 (3.51)

The roots of the error-locator polynomial can be found by either exhaustive substitu-

tion or by a Chien search [Chien, 1964]. The roots are 1,� 3 and� 14, or in their inverse

form, from (3.41),� 0, ��12 and��1. ThusXl = f1; �; � 12g, corresponding to errors

located atfx0; x1; x12g.
All that remains is to calculate the value of the errors at theerror locations and

subtract the error polynomial from the received codeword. As the code is not narrow

sense the error values must be found from (3.11). The formal derivative of�(x) is�0(x) = �� 5 + � 11x+ � 3x3
�0= � 11+ 3(� 3x2)= � 11+ � 3x2

(3.52)
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i �(i)(x) 
(i)(x) q(i)(x)�1 0 x7 —
0 1 S(x) —
1 � 5 + � 13x � 5 + � 12x+ � 9x2 + x3 + � 7x5 � 5 + � 13x
2 � 9 + � 8x2 � 9 + � 5x+ � 8x2 + � 12x4 � 9 + � 5x+ � 8x2 + � 12x4

3 � 5 + � 11x+ � 3x3 � 5 + � 6x+ � 7x2 + � 14x3 � 10x

Table 3.5: Solution of the Key Equation using Euclid’s algorithm.
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The error values are calculated thus

ei l = X2�b
l 
(X�1

l )�0 �X�1
l

�= X�1
l

h� 5 + � 6
�
X�1

l

�+ � 7
�
X�1

l

�2 + � 14
�
X�1

l

�3
i� 11+ � 3(X�1

l )2

= 8>>>>>>><>>>>>>>:
� 13 for Xl = 1;� 11 for Xl = �;� 3 for Xl = � 12:

(3.53)

Therefore the error polynomial is

e(x) = � 13+ � 11x+ � 3x12 (3.54)

The transmitted codeword was

v(x) = r(x)� e(x)= � 7 + � 4x+ � 12x2 + � 4x3 + � 11x4 + � 9x5 + � 3x12
(3.55)�

3.4 Berlekamp-Massey Decoding

3.4.1 Introduction

Massey [Massey, 1969] recognised that the problem of findingthe minimum-degree

solution to the key equation is the same as finding the minimum-length feedback shift-
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register which generates the first 2t terms of the syndrome polynomial,S(x). The

Berlekamp-Massey algorithm may be used for decoding binaryand multi-level codes.

An overview of the algorithm is given below:

1. Find the shortest FSR which will predictS2 from S1.

2. Test the FSR to see if it will also predictS3.

If the test is successful (i.e., there is adiscrepancyof 0) continue until the test

fails (or all 2t syndromes have been generated).

If the test fails use the discrepancy to modify the connections to the FSR so that

(i) the next syndrome is correctly predicted,

(ii) previous (correct) predictions are not changed,

(iii) the FSR is increased by the smallest possible amount (to find the

minimum weight error).

3. Continue until all 2t syndromes can be predicted correctly.

The connections to the FSR produce the error-locator polynomial, �(x). Since�(x)

can be found from
(x) [1+ S(x)℄ it follows that 
(i)(x) obeys the same recursive

relationship as�(i)(x). Therefore a second FSR can be simultaneously constructed

to find 
(x). Both �(x) and
(x) share the same discrepancy but need their own

correction polynomials (�(x) and! (x) respectively).
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3.4.2 The Berlekamp-Massey decoding algorithm

The steps below show the procedure for Berlekamp-Massey decoding [Berlekamp,

1967; Massey, 1969] of an arbitrary BCH or RS code. This follows from [Wicker,

1994, p. 219], but with adaptations to work for any value ofb, and to generate both

the error-locator and error-evaluator polynomials.

1. Calculate the syndrome values,S1; S2; : : : ; S2t for the received word.

2. Initialise the algorithm variables, let

i = 0 (3.56)

L = 0 (3.57)�(0)(x) = 1 (3.58)�(x) = x (3.59)
(0)(x) = 1 (3.60)! (x) = 0 (3.61)

3. Increment the iteration counter,i = i+1. Compute the discrepancy�(i) by sub-

tracting thei-th output of the FSR defined by�(i�1)(x) from thei-th syndrome.�(i) = Si � LX
j=1

�(i�1)
j Si� j (3.62)

4. Test the new discrepancy. If�(i) = 0, then go to step 8.
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5. Modify the connection polynomials to remove the discrepancy.�(i)(x) = �(i�1)(x) ��(i)�(x) (3.63)
(i)(x) = 
(i�1)(x)��(i)! (x) (3.64)

6. Test the FSR length. If 2L � i, then go to step 8.

7. Change the FSR length and update the correction polynomials.

L = i � L (3.65)�(x) = �(i�1)(x)�(i) (3.66)! (x) = 
(i�1)(x)�(i) (3.67)

8. Take into account the new length of the FSR.�(x) = x�(x) (3.68)! (x) = x! (x) (3.69)

9. Check if all the syndrome values have been used. Ifi < 2t, then go to step 3.

10. Determine the roots of�(x) = �(2t )(x).

11. If the roots are distinct and lie in GF(q) then calculate the error magnitudes

(using Equation 3.11) for each error location.v(x) = r(x)� e(x). STOP.
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12. If the roots are not distinct, or do not lie in GF(q) then the calculated error-

locator does not agree with its definition (3.4), declare a decoder failure. STOP.

Note that it is trivial to implement a decoder which can correct tc errors and detect

an extratd errors, where 2tc + td = d � 1. The syndromes are reduced in number

to 2tc and the condition in step 9 becomesi < 2tc. It is also a simple matter to add

error-and-erasure decoding to the BM algorithm [Wicker, 1994].

Example 3.4 To correct an erroneous codeword from RS(15; 9; 7).

Let the code and received codeword be as defined in Example 3.3. Recall that the

code hasb = 3, and the received codeword isr(x) = � 5 + � 13x+ � 12x2 + � 4x3 +� 11x4 + � 9x5. The values of the algorithm variables for each iterationi are given in

Table 3.6.

The values of�(x) and
(x) are identical to those found by Euclidean decoding

(within a common constant factor, as found by [Clark and Cain, 1981, pp. 207–208]).

The common constant factor is removed in the evaluation of (3.11). Hence the error

polynomial is identical to (3.54). �
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i Si �(i)(x) � L �(i)(x) 
(i)(x) ! (i)(x)
0 — 1 — 0 x 1 0
1 � 11 1+ � 11x � 11 1 � 4x 1 � 4x
2 0 1 � 7 1 � 4x2 1+ � 11x � 4x2

3 � 10 1+ � 14x2 � 10 2 � 5x 1+ � 11x+ � 14x2 � 5x+ �x2

4 � 3 1+ � 8x+ � 14x2 � 3 2 � 5x2 1+ � 7x+ � 9x2 � 5x2 + �x3

5 � 9 1+ � 8x+ � 7x2 � 11 3 � 4x+ � 12x2 + � 3x3 1+ � 7x+ � 3x2 + � 12x3 � 4x+ � 11x2 + � 13x3

6 � 2 1+ � 6x+ � 13x3 � 10 3 � 4x2 + � 12x3 + � 3x4 1+ �x+ � 2x2 + � 9x3 � 4x2 + � 11x3 + � 13x4

Table 3.6: Solution of the Key Equation using BM algorithm.
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3.5 High-speed Step-by-step Decoding

3.5.1 Introduction

The step-by-step algorithm differs considerably in its approach from that of the Eu-

clidean and Berlekamp-Massey algorithms, which both solvethe key equation to com-

pute the error values and their locations. Step-by-step decodes every possible error

location for the correct error value individually and without solving the key equa-

tion. The original step-by-step algorithm was introduced by Massey [Massey, 1965]

in 1965. However, in this section the modification proposed by Wei and Wei [Wei and

Wei, 1993] is discussed as it is more efficient than the original.

The basic algorithm is as follows. Suppose a method exists tocalculate the error

weight of a received codeword without decoding it. First theinitial error weight of the

received word is calculated. A symbol is temporarily changed and the error-weight of

the temporarily-changed word calculated. If the error-weight is increased the original

symbol is correct. If the error weight has decreased then thenew symbol is correct.

Otherwise the symbol is in error but the new symbol is incorrect, and another value

should be tried until the correct one is found. The process isrepeated for all informa-

tion symbols. It is not necessary to correct the parity symbols, though if desired they

can be corrected in the same way.

For the case where the received codeword containst � 1 or less errors, it is nec-

essary to distinguish up tot errors since it is likely a correct symbol will be replaced

with an incorrect one while searching for the first error location. However, if the full

error-correction capability of the code is to be utilised then it is necessary to correct a
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codeword containing exactlyt errors. Therefore it is necessary to distinguish between

t � 1 andt + 1 errors.

3.5.2 Calculating the Error Weight

Of great importance to the step-by-step algorithm is the ability to efficiently calculate

the error-weight of a received codeword. This can be achieved from the interdepen-

dence of the syndromes of RS codes using Theorem 9.9 of [Peterson and Weldon,

1972]. This states that for any RS code the matrix

N j = 26666666664
S1 S2 : : : Sj

S2 S3 : : : Sj+1

...
...

. . .
...

Sj Sj+1 : : : S2 j�1

37777777775 (3.70)

where j = 1; 2; : : : ; n

is singular3 if the weight ofe(x) is j � 1 or less, and is non-singular if the weight is

j. If the weight ofe(x) is greater thanj, the result is not determinable. The proof is

given in [Peterson and Weldon, 1972].

It was previously stated that an error weight of up tot + 1 must be distinguishable

by the decoder. From forming the matrixNt+1 it can be seen that the syndrome value

2t + 1 is required, which is not calculable for at error-correcting code. However,

in the calculation of det(Nt+1) the cofactor ofS2t+1 is det(Nt ). Therefore if det(Nt ) is

3A matrix is said to be singular if its determinant is zero.
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zero, then det(Nt+1) is independent ofS2t+1 and can be calculated. Thus the problem of

requiringS2t+1 can be overcome by defining a modified syndrome matrix,Nt+1 where

S2t+1 is replaced by zero. Note that the result of det(Nt+1) is only valid when det(Nt )

is zero.

For the purpose of calculating the error weight only the singularity of the syndrome

matrix is important, the actual value if non-zero is discarded. Consequently the results

may be expressed as a sequence of binary decision bits

hj = 8>>><>>>:1 if det(N j ) = 0,

0 if det(N j ) 6= 0.

(3.71)

where j = 0; 1; : : : ; t

ht+1 = 8>>><>>>:1 if det(Nt+1) = 0;
0 if det(Nt+1) 6= 0: (3.72)

As the error weight is dependent on all thet + 1 binary decision bits it is useful to

combine them into a decision vector,D.

D = (h1; h2; : : : ; ht+1) (3.73)
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From (3.70)

Weight ofe(x)

0 D 2 �0 = f(1t+1)g (3.74)

1 D 2 �1 = f(0; 1t )g (3.75)

w D 2 �w = f(Xw�1; 0; 1t�w+1)g
wherew= 2; 3; : : : ; t � 1

(3.76)

t D 2 �t = f(Xt�1; 0;X)g (3.77)

t + 1 D 2 �t+1 = f(Xt�1; 0;X); (Xt�1; 1; 0)g (3.78)

wheref(1t+1)g indicatest + 1 consecutive “1”s andX indicates “0” or “1”.

The conditions above show thatt + 1 errors are distinguishable fromt � 1 errors.

It is not possible to distinguisht andt + 1 errors in all cases. To account for this it is

necessary to make a small modification to the basic algorithmdescribed previously.

3.5.3 Calculating the Syndrome Values

Wei and Wei use a concept of updated syndrome values. Since the changes to the

received codeword are known it is possible to only fully calculate the syndrome val-

ues once and from there on keep a running total. This concept is important in re-

ducing the complexity of the algorithm. For a code with senseb = 1 the syn-

dromes for a trial codeword with a trial error value� at locationx0 can be computed



3.5. HIGH-SPEED STEP-BY-STEP DECODING 67

from [Wei and Wei, 1993]

S1
i = S0

i + �
where� = � j

j 2 f0; 1; : : : ; n� 1g (3.79)

The above equation will now be generalised for codes other than narrow sense

(b > 1), and for trial locations other thanx0. Let the received codeword be represented

by

r(x)0 = rn�1xn�1 + rn�2xn�2 + � � �+ r1x+ r0 (3.80)

The syndromes for a BCH code are given by (from 3.1)

Sj = n�1X
i=0

r i� i( j+b�1) (3.81)

The original syndrome values are

S0
1 = rn�1� (n�1)b + rn�2� (n�2)b + � � �+ r2� 2b + r1� b + r0 (3.82)

S0
2 = rn�1� (n�1)(b+1) + rn�2� (n�2)(b+1) + � � �+ r2� 2(b+1) + r1� (b+1) + r0 (3.83)

...

S0
2t = rn�1� (n�1)(b+1) + rn�2� (n�2)(b+2t ) + � � �+ r2� 2(b+2t ) + r1� (b+2t ) + r0 (3.84)

The implementation described in [Wei and Wei, 1993] cyclically shifts the codeword
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before correcting each symbol at thex0 location. As RS codes are cyclic, any cyclic

shift of a valid codeword is also a valid codeword. Hence cyclic shifts do not alter the

error weight of the received word. To calculate the error weight cyclic shifts may be

ignored, instead modifying the symbol at a variable position p. This gives

r(x)1 = r(x)0= rn�1x
n�1 + rn�2x

n�2 + � � �+ r1x+ r0 + �xp

where� = � j

j = 0; 1; : : : ; n� 2

p = 0; 1; : : : ; n� 1

(3.85)

The modified syndrome values are

S0
1 = rn�1� (n�1)b + rn�2� (n�2)b + � � �+ r2� 2b + r1� b + r0 + �� pb (3.86)

S0
2 = rn�1� (n�1)(b+1) + rn�2� (n�2)(b+1) + � � �+ r2� 2(b+1) + r1� p(b+1) + r0 (3.87)

...

S0
2t = rn�1� (n�1)(b+1) + rn�2� (n�2)(b+2t ) + � � �+ r2� 2(b+2t ) + r1� p(b+2t ) + r0 (3.88)
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Therefore the updated syndromes are generated by

S1
i = S0

i + �� p(i+b�1)

where� = � j

i = 1; 2; : : : ; 2t

j 2 f0; 1; : : : ; n� 1g
p 2 f0; 1; : : : ; n� 1g

(3.89)

For the casep = 0 (3.89) reduces to (3.79).

3.5.4 The Algorithm

The algorithm described below is a slightly modified versionof that given in [Wei

and Wei, 1993]. In particular, the received codeword is not cyclically shifted, instead

the position of the symbol under test moves. For the high-level implementation tested

(Section 6.3.2) this approach was more efficient. Annotations to the algorithm are

shownthus.

1. Calculate the initial syndrome valuesS0
i where i = 0; 1; : : : ; 2t and then

obtainD0.

2. Let p = n� k

Only the information symbols require correction; the parity symbols occupy the least significant

2t symbol positions in the received codeword.

3. Let j = 0.
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4. Let� = � j then obtainS0
i + �� ip.

Keep a running total of the temporarily-changed syndrome values.

5. If D0 2 �w andD1 2 �w+1, where 0� w < t, then go to step 10.

The number of errors has increased, therefore the original symbol value is correct.

6. If D0 2 �t andD1 2 f(Xt�1; 1; 0)g, then go to step 10.

The temporarily-changed received codeword containst + 1 errors. Therefore the original code-

word must have containedt errors. Hence the original symbol value is correct.

7. If D0 2 �w andD1 2 �w�1, where 1� w < t, then add�xp to the received word.

ReplaceS0
i by S1

i andD0 by D1. Go to step 10.

The number of errors has decreased by one. Therefore the temporary value of� is correct so

update the algorithm variables.

8. If D0 62 f�0; �1; : : : ; �t�1g andD1 2 �t�1, then add�xp to the received word.

ReplaceS0
i by S1

i andD0 by D1. Go to step 10.

The original codeword containedt errors;t � 1 errors remain.

9. If j < q� 1 then setj = j + 1 and go to step 4.

The symbol being tested may be incorrect and the correct symbol has not yet been found, try

another value. Alternatively,D1 2 fXt�1; 0;Xg, hence it is not possible to ascertain whether

the received codeword containst or t + 1 errors. For the case whenD1 2 fXt�1; 0;Xg the only

course of action is to try different symbol values until either D1 2 fXt�1; 1; 0g or D1 2 �t�1.

10. If p < n� 1 then setp = p+ 1 and go to step 3.

The current symbol has been tested, move onto the next symbol.
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11. All the k symbols have been checked and corrected. The decoded information

symbols are in the most significantk locations of the received codeword.

Example 3.5 To correct an erroneous codeword from RS(15; 7; 9).

Let the code and received codeword be as defined in Example 3.3. The code has

b= 3, and the received codeword isr(x) = � 5 + � 13x+ � 12x2 + � 4x3 + � 11x4+ � 9x5.

For the key decoding stages, Table 3.5 shows the active decoding position,p, the

trial error value,� , and the before and after error weights,D0 andD1 respectively.

Also shown is the trial codeword. In this Example errors in the parity symbols are

not corrected, so the first decoding position isp = 6, i.e.,x6. The decoder has cor-

rectly established that three symbols are in error (jD0j = 3). At locationx6 successive

elements from GF(16) are tried in turn as the possible error value. For� = � 3 the

trial codeword has increased to distance 4 from the nearest correct codeword, thus the

decoder is able to identify that the original symbol value was correct. This pattern is

repeated up top = 11. Note that forp = 9 the decoder cannot detect an increase in

the error-weight. This means for every possible error pattern at locationx9 the distance

to the nearest valid codeword is only 2t, whereas for other locations the distance is 2t

or 2t + 1. As the decoder has not detected any decrease in error weight the original

symbol must be correct, provided the original error weight was� 2t.

At locationx12 the decoder has found and corrected an error—the error valueis� 3

and is signalled by the decrease in error weight. Two more errors remain, the decoder

searches the remaining two locations but the errors are not found since they are in the

parity symbols. The algorithm required 52 attempts to correct the single error in the

information symbols. �
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Trial information symbols
p � jD0j jD1j x6 x7 x8 x9 x10 x11 x12 x13 x14

6 1 3 3 1 0 0 0 0 0 0 0 0
6 � 3 3 � 0 0 0 0 0 0 0 0
6 � 2 3 3 � 2 0 0 0 0 0 0 0 0
6 � 3 3 4 � 3 0 0 0 0 0 0 0 0
7 1 3 3 0 1 0 0 0 0 0 0 0
7 � 3 3 0 � 0 0 0 0 0 0 0
7 � � � � � � � � � � � �
7 � 4 3 3 0 � 4 0 0 0 0 0 0 0
7 � 5 3 4 0 � 5 0 0 0 0 0 0 0
8 1 3 3 0 0 1 0 0 0 0 0 0
8 � 3 3 0 0 � 0 0 0 0 0 0
8 � � � � � � � � � � � �
8 � 13 3 3 0 0 � 13 0 0 0 0 0 0
8 � 14 3 4 0 0 � 14 0 0 0 0 0 0
9 1 3 3 0 0 0 1 0 0 0 0 0
9 � 3 3 0 0 0 � 0 0 0 0 0
9 � � � � � � � � � � � �
9 � 13 3 3 0 0 0 � 13 0 0 0 0 0
9 � 14 3 3 0 0 0 � 14 0 0 0 0 0
10 1 3 3 0 0 0 0 1 0 0 0 0
10 � 3 3 0 0 0 0 � 0 0 0 0
10 � 2 3 3 0 0 0 0 � 2 0 0 0 0
10 � 3 3 3 0 0 0 0 � 3 0 0 0 0
10 � 4 3 4 0 0 0 0 � 4 0 0 0 0
11 1 3 4 0 0 0 0 0 1 0 0 0
12 1 3 3 0 0 0 0 0 0 1 0 0
12 � 3 3 0 0 0 0 0 0 � 0 0
12 � 2 3 3 0 0 0 0 0 0 � 2 0 0
12 � 3 3 2 0 0 0 0 0 0 � 3 0 0
13 1 2 3 0 0 0 0 0 0 � 3 1 0
14 1 2 3 0 0 0 0 0 0 � 3 0 1
— — 2 — 0 0 0 0 0 0 � 3 0 0

Table 3.7: High-speed step-by-step decoding of RS(15; 9; 7).
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Chapter 4

Trellis Decoding

4.1 Trellis Construction Methods

4.1.1 Introduction

Techniques for designing block code trellises have been investigated ever since they

were first proposed for error-correction in 1974 [Bahlet al., 1974]. Wolf [Wolf, 1978]

has shown that such a trellis, known as asyndrome trellis(also called aWolf or BCJR

trellis), can be used for maximum-likelihood decoding of anarbitrary linear block

code. McEliece [McEliece, 1994] proved syndrome trellisesare minimal and pro-

posed a technique to obtain an optimal reordering of the generator matrix of the code.

In 1988 Forney [Forney, 1988b] introduced the concept of acoset codeand its

coset trellis. These trellises have a regular structure, composed of a number of identi-

cal subtrellises which differ only in the labelling of the trellis branches. This impor-

tant advancement in trellis design allows a reduction in both the decoder complexity

74
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and storage requirements of a corresponding Viterbi decoder [Honaryet al., 1995b].

Muder [Muder, 1988] proved that coset trellises are minimaland that the number of

states in the trellis diagram can be minimised by an appropriate reordering of the sym-

bols in the codeword. A vast amount of literature has accumulated on the design of a

minimal trellis for a given block code [Berger and Be’ery, 1993; Honary and Markar-

ian, 1993a,b; Honaryet al., 1993; Kasamiet al., 1993a,b; Kschischang and Sorokine,

1995; Wuet al., 1994; Zyablov and Sidorenko, 1993]. Optimal reorderings have been

found for certain binary codes [Berger and Be’ery, 1993; Forney, 1988b; Honaryet

al., 1995b; Kasamiet al., 1993a,b]. The general solution to this problem, and its

extension for non-binary block codes, is however unsolved and remains a complex

analytical task.

Trellises are usually constructed in their state-orientedform (Section 2.4.3). It is

a simplification used for trellis construction, but it is nota requirement. Indeed, for

some codes (e.g., non-linear codes) state-oriented form isnot possible. Both syndrome

and coset trellises are based upon their state-oriented form.

4.1.2 Shannon Product of Trellises

Shannon [Shannon, 1956] described a product of two channelswhich “corresponds

to a situation where both channels are used each unit of time”. A similar product

exists for two (or more) trellises which are combined in sucha manner that they

share the same time indexes. This product is known as theShannon productof trel-

lises [Sidorenkoet al., 1995, 1996]. It is denoted by ‘?’.
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Proposition 4.1 Consider two codesC 0 and C 00 with the same label profile (and it

follows, the same code lengthn). Let T 0 be a trellis of the codeC 0 andT 00 be a trellis

of the codeC 00. The Shannon product

T = T 0 ? T 00 (4.1)

of these trellises is the trellis of the codeC = C 0 + C 00.
Proof 4.1 It is necessary to prove a one-to-one mapping between codewords of codeC and the paths inT.

The sum ofC 0 + C 00 produces the set of all possible sumsv0 + v00. Let v0 + v00 2 C.

Associated withv0 is a pathP 0 with labels (l 01; l 02; : : : ; l 0n), while associated withv00 is

a pathP 00 with labels (l 001 ; l 002 ; : : : ; l 00n ). By definition, inT there is a path with labels

(l 01 + l 001 ; l 02 + l 002 ; : : : ; l 0n + l 00n ) = (l 01; l 02; : : : ; l 0n) + (l 001 ; l 002 ; : : : ; l 00n )= v0 + v00 2 C 0 + C 00 (4.2)

for any pathP in the trellisT. By definition, there exists inT 0 a pathP 0 with labels

(l 01; l 02; : : : ; l 0n) which is the path for codewordv0 (v0 2 C 0). Likewise, there exists in

T 00 a pathP 00 with labels (l 001 ; l 002 ; : : : ; l 00n ) which is the path for codewordv00 (v00 2 C 00).
For trellises which are labelled with both data and code symbols the Shannon

product can be extended, and performed on each set of labels,where code labels are

summed and data labels concatenated. �
A codeC having a sum structure can be constructed from the (linear) sum of its

subcodes. There are many codes having the property of a sum structure, e.g., RS, RM
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and the Nordstrom-Robinson code. Alternatively, the trellis for any such code can be

deconstructed into the trellises of its subcodes.

4.1.3 Syndrome Trellises

In proving syndrome trellises are minimal McEliece [McEliece, 1994] showed that

the maximum number of states in a syndrome trellis can be estimated using Wolf’s

bound.

Nmax � min
�

qk; q(n�k)
	

(4.3)

The minimum number of states at thei-th level of the minimal trellis can be ob-

tained as [Forney, 1988b; Zyablov and Sidorenko, 1993]:

Ni = qk

qkpastqkfuture

i = 0; 1; : : : ; n

(4.4)

where

kpast= dim(Cpast) (4.5)

kfuture = dim(Cfuture) (4.6)Cpast= (i; kpast; d) (4.7)Cfuture = (n� i; kfuture; d) (4.8)
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Theorem 4.1 The maximum number of states in the minimal syndrome trellisof an

RS code is defined as:

Nmax = min
�

qk; qn�k
	

(4.9)

Proof 4.2 To prove Theorem 4.1 consider thei-th and (i + 1)-th vertices of the trellis

such thati = (n� 1)=2 andi + 1 = (n+ 1)=2. Consider also the two different types

of code:

(i) Low-rate RS code:n� k > k

It is easy to show since for RS codesk = n� d+ 1 (Equation (2.25))

n

2
< d� 1 (4.10)

and

n+ 1

2
< d (4.11)

hencekfuture = kpast= 0, and

Nmax = qk

q0q0
= qk (4.12)

(ii) High-rate RS code:n� k < k

Similar to (i) it follows thatNmax = qn�k. �
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To obtain a syndrome trellis for an RS(n; k; d) code over GF(q). Let u = (u1;
u2; : : : ; uk) be a vector of information symbols andv = (v1; v2; : : : ; vn) be the

encoded vector whereui 2 GF(q) andvi 2 GF(q). Let G be the generator matrix of

the RS code in cyclic form [Vardy and Be’ery, 1991].G is given in the format:

G = 26666666664
g1

g2

...

gk

37777777775 (4.13)

wheregi; (i = 1; 2; : : : ; k) is thei-th row of the generator matrixG. The desired RS

code can be constructed as a sum ofk codes:C = kX
j=1

C j (4.14)

where thej-th code,C j , is an (n; 1; d) code over GF(q) generated byG j = �gj

�
. It is

apparent thatq codewords,v j, in C j can be obtained as

v j = uj

�
gj

�
(4.15)

j = 0; 1; : : : ; q� 1 (4.16)

sinceuj is able to take any ofq values. The corresponding trellises,Tj; j = 1; 2; : : : ;
k start from the root (S1;0), and finish at the goal (S1;n+1). The trellises haven + 1
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vertices and the number of states in thet-th vertex is defined as follows [McEliece,

1994]:

N0 = Nn = 1 (4.17)

Nt = 8>>><>>>:q if gt
j 6= 0 andgt+1

j 6= 0

1 for all other cases

(4.18)

wheret = 0; 1; : : : ; n andgt
j is thet-th element ofgj.

Proposition 4.2 Let Tj be a syndrome trellis of an elementary codeC j , generated by

gj, where j = 1; 2; : : : ; k. ThenT = T1 ? T2 ? : : : ? Tk is the syndrome trellis of the

codeC, generated byG.

Proof 4.3 SinceC = kP
j=1

C j, proof follows from Proposition 4.1. The state profile of

the designed syndrome trellis can be obtained as follows:

N0 = Nn = 1

Nt = qm

(4.19)

wherem is a number of non-zero elements in thet-th column ofG followed by any

other non-zero element. �
Theorem 4.2 The designed trellis is a minimal syndrome trellis.

Proof 4.4 In order to prove Theorem 4.2 it is necessary to show the maximum number

of states in the designed trellis is given according to Theorem 4.1. Thus calculate the

parameterm for two different cases.
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Consider a row ofG. It hasd consecutive non-zero elements from which (d � 1)

elements are followed by a non-zero element.

(i) Low-rate RS code: (n� k > k)

the maximum number of non-zero elements which are followed by any

other non-zero element is given bymmax = k.

(ii) High-rate RS code: (n� k < k)

the maximum number of non-zero elements which are followed by any

other non-zero element is given bymmax = n� k.

Thus the maximum number of states in the designed trellis is defined as

Nmax
t = min

�
qk; qn�k

	
(4.20)

and from Theorem 4.1 it follows that the designed trellis is minimal. �
Example 4.1 To design the syndrome trellis for the narrow-sense RS(7; 5; 3) code

with symbols taken from GF(8).

The generator polynomial is

g(x) = (x� � )(x� � 2)= x2 + � 4x+ � 3

(4.21)
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from which the generator matrix can be obtained as follows:

G =
26666666666664

g1

g2

g3

g4

g5

37777777777775 =
26666666666664

� 3 � 4 1 0 0 0 0

0 � 3 � 4 1 0 0 0

0 0 � 3 � 4 1 0 0

0 0 0 � 3 � 4 1 0

0 0 0 0 � 3 � 4 1

37777777777775 (4.22)

The overall code,C, is represented asC = 5X
j=1

C j (4.23)

whereC j is a (7; 1; 3) code generated bygj :C1 = u1[g1℄ = (� 3u1; � 4u1; u1; 0; 0; 0; 0) (4.24)C2 = u2[g2℄ = (0; � 3u2; � 4u2; u2; 0; 0; 0) (4.25)

...C5 = u5[g5℄ = (0; 0; 0; 0; � 3u5; � 4u5; u5) (4.26)

The component trellises have a very simple structure (as shown in Figure 4.1) with the
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(a)T1

(b) T2

(c) T3

(d) T4

(e)T5

Figure 4.1: Component Syndrome Trellises for RS(7; 5; 3).
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state profiles defined according to (4.19):

N1(t ) = (1; 8; 8; 1; 1; 1; 1; 1) (4.27)

N2(t ) = (1; 1; 8; 8; 1; 1; 1; 1) (4.28)

N3(t ) = (1; 1; 1; 8; 8; 1; 1; 1) (4.29)

N4(t ) = (1; 1; 1; 1; 8; 8; 1; 1) (4.30)

N5(t ) = (1; 1; 1; 1; 1; 8; 8; 1) (4.31)

Applying the procedure outlined above, the Shannon productof the trellises,T =
T1 ? T2 ? T3 ? T4 ? T5 has the following state profile:

N(t ) = (1; 8; 64; 64; 64; 64; 64; 8; 1) (4.32)

and the overall syndrome trellis for the RS(7; 5; 3) code is shown in Figure 4.2. Simi-

lar trellises can be obtained using the techniques described in [Wolf, 1978]. However,

the technique described here allows one to label the designed trellis with both informa-

tion and encoded symbols and is easier to implement. Using the technique proposed

in [Forney, 1988b; Zyablov and Sidorenko, 1993] it is easy toshow that the minimal

trellises for RS(7; 5; 3) must have 64 states and the designed trellis is isomorphicto

the minimal trellis of the code. Therefore the designed trellis is a minimal trellis.

The isomorphism of the trellis is demonstrated in Figure 4.3, which is instead

constructed from the Shannon productT = (T4 ?T2)? ((T1 ?T5)?T5) and clearly shows

the cosets of the underlying RS code. �



4.1. TRELLIS CONSTRUCTION METHODS 85

Figure 4.2: Syndrome trellis for RS(7; 5; 3).
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Figure 4.3: A trellis isomorphic to the RS(7; 5; 3) syndrome trellis.



4.1. TRELLIS CONSTRUCTION METHODS 87

4.1.4 Coset Trellises

A coset trellis contains a set of parallel subtrellises. Itshighly regular structure enables

the storage requirements to be reduced since each subtrellis is identical in structure and

only the branch labels differ. Moreover, the labels differ by a fixed offset which is the

value of the coset leader. Decoding algorithms which are able to take advantage of its

regular structure (e.g., two-stage decoding) are of lower complexity than the Viterbi

algorithm (Section 6.4.2). Alternatively, a suitable decoder can take advantage of the

parallel subtrellises to perform most of the decoding operations in parallel and thus

operate at a higher throughput than a decoder over an irregular trellis.

The Shannon product of trellises (Section 4.1.2) can be applied to the design of

minimal coset trellises of RS codes. To design a coset trellis it is first necessary to

calculate the state profile of the minimal syndrome trellis for the RS(n; k; d) code:

Nsynd= [N0; N1; : : : ; Nn℄ (4.33)

The state profile can be obtained from the calculation of the minimal number of states

for every splitting point of the trellis (4.4). From the calculatedNsynd choose splitting

points which have the same number of states and define the state and label profiles of

the desired trellis:

Ncoset= [1; N1; N2; : : : ; NNc�1; 1℄ (4.34)

Lcoset= [l1; l2; : : : ; lNc�1℄ (4.35)
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whereNc is the number of columns (vertices) in the desired coset trellis. Since all

vertices have the same number of states:

Ni = nj (4.36)

i; j = 1; 2; : : : ; Nc � 1 (4.37)

and in general

l i 6= l j (4.38)

i; j = 1; 2; : : : ; Nc � 1 (4.39)

At the next stage represent the generator matrixG in the following format:

G = 26666666664
g1

g2

...

gk

37777777775 = � G1 G2 : : : GNc�1

�
(4.40)

whereGi; i = 1; 2; : : : ; Nc � 1, hasl i columns andk rows. Each row ofG is used

to design the trellis diagram of the (n; 1; d) code over GF(q) with the label size profile

given as in (4.35), and the overall trellis diagram can be obtained as the Shannon

product ofk designed component trellises. The designed trellis is a minimal coset

trellis [Honary and Markarian, 1997].

Example 4.2 To design a coset trellis for RS(7; 3; 5) with symbols taken from GF(8).
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The generator polynomial is

g(x) = (x� � )(x� � 2)(x� � 3)(x� � 4)= � 3 + �x+ x2 + � 3x3 + x4

(4.41)

from which the generator matrix can be obtained as follows:

G = 2666664 � 3 � 1 � 3 1 0 0

0 � 3 � 1 � 3 1 0

0 0 � 3 � 1 � 3 1

3777775 (4.42)

Following the procedure outlined above, the state profile ofthe trellis is obtained as

Nsynd= [N0; N1; : : : ; N7℄, where

N0 = q3

q0q3
= 1 (4.43)

N1 = q3

q0q2
= 8 (4.44)

N2 = q3

q0q1
= 64 (4.45)

N3 = q3

q0q0
= 512 (4.46)

N4 = q3

q0q0
= 512 (4.47)

N5 = q3

q1q0
= 64 (4.48)

N6 = q3

q2q0
= 8 (4.49)

N7 = q3

q3q0
= 1 (4.50)

andNsynd = [1; 8; 64; 512; 512; 64; 8; 1℄. It is apparent that for a given RS(7; 3; 5)
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code it is possible to design a number of different (but isomorphic) minimal trellises.

Three possible solutions, each with different state and label profiles, are given below:

(i)

N = [1; 8; 8; 1℄ (4.51)

L = [1; 5; 1℄ (4.52)

(ii)

N = [1; 64; 64; 1℄ (4.53)

L = [2; 3; 2℄ (4.54)

(iii)

N = [1; 512; 512; 1℄ (4.55)

L = [3; 1; 3℄ (4.56)

Choosing solution (ii) the generator matrix of the code is:

G = � G1 G2 G3

� = 2666664 � 3 �
0 � 3

0 0

1 � 3 1� 1 � 3� 3 � 1

0 0

1 0� 3 1

3777775 (4.57)

The overall trellis diagram,T, can be obtained as the Shannon product of three trel-
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lises,T = T1 ? T2 ? T3, each one corresponding to a (7; 1; 5) code, generated by its

respective row ofG. These trellises are presented in Figure 4.4 and the overalltrellis

diagram is shown in Figure 4.5. As follows from Figure 4.5, the minimal coset trellis

for RS(7; 3; 5) consists of 8 identical, parallel subtrellises which differ only in their

labelling. Each such subtrellis has 4 vertices, and a maximum 8 states. �
4.2 Decoding Algorithms

4.2.1 Introduction

The aim of a trellis decoder is to choose thebestpath through the trellis, either by

maximizing the similarity or minimizing the difference between the received sequence

and one of the codewords. Depending upon which metrics are inusebestmay mean

the largest or smallest path metric. If the trellis is labelled with both data and code

symbols the decoding algorithm can usually be configured to output either data or

code symbols. This is true for the Viterbi and soft-output Viterbi algorithms, and two-

stage decoding (Section 4.2.3). While the dataword is normally the required output

some product code decoding algorithms may require the most likely codeword (Sec-

tion 5.3.4).

Trellises for block codes are fixed in length, while the length of a convolutional

trellis is related to the message length. Since this can result in exceedingly long trel-

lises convolutional decoding algorithms normally truncate the trellis early to reduce

the decoding delay and memory to a finite, known value. For this reason convolutional
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(a)T1

(b) T2

(c) T3

Figure 4.4: Component Coset trellises for RS(7; 3; 5).
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Figure 4.5: Coset trellis For RS(7; 3; 5).
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code trellises are frequently seen with multiple start and end points, reflecting the fact

that the decoding sequence may begin and end at any state. Heller and Jacobs have

shown that the length of the truncated trellis should be 4 or 5times the code constraint

length, by which time it can be assumed that all surviving paths have merged with the

ML path [Heller and Jacobs, 1971]. Forney’s more conservative result [Forney, 1970]

sets the minimum decoding length at 5:8K.

4.2.2 Viterbi Decoding

An asymptotically-optimum decoding algorithm was proposed by Viterbi [Viterbi,

1967] in 1967. It was later shown [Omura, 1969] that the VA provides a ML de-

coding solution for convolutional codes, and has since beenused for ML decoding of

block codes also. It reduces the computational load by taking advantage of the trellis

structure. It calculates a series ofpath metricswhich are a measure of the similarity

(or difference) between the received sequence and the possible transmitted sequences.

The VA eliminates paths which cannot possibly form part of the ML path. This is

performed when two or more branches enter a node; the partialpath having the best

metric is chosen to become thesurviving path. This continues until the end of the

trellis is reached and a surviving path selected. The VA is usually implemented in one

of two methods, eitherregister-exchange modeor trace-back mode.

The Viterbi algorithm is mostly easily explained with the aid of an example de-

coding.

Example 4.3 Viterbi decoding of a (2; 1; 3) convolutional code.

An encoder for this code is given in Figure 2.2. The trellis (see Figure 4.7) contains
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four states at each level. Suppose the uncoded data sequencewas

u = [: : : ; 0; 1; 0; 0; 1; 1; 1; 0; : : : ℄ (4.58)

and that the encoder shown in Figure 2.2 was in stateS3. The encoded sequence was

thus

v = [: : : ; 01; 00; 10; 11; 11; 01; 10; 01; : : : ℄ (4.59)

After transmission over a discrete symmetric channel as shown in Figure 4.6 the re-

ceiver assigns one of four values to each received symbol. The ‘0’ and ‘1’ indicate the

reception of a good signal, while ‘0’ and ‘1’ indicate reception of a weaker signal. For

the channel shown in Figure 4.6 log likelihood functions [Wicker, 1994, p. 294] are

used to compute the set of bit metrics used in the decoding process. The bit metrics

are given in Table 4.1. Assume that the received sequence is

r = [: : : ; 01; 10; 10; 11; 01; 01; 10; 01; : : : ℄ (4.60)

In (4.60) overlining is used to highlight which symbols are in error.

received
symbol

0 0 1 1
required 0 5 4 2 0
symbol 1 0 2 4 5

Table 4.1: Channel metrics for the Viterbi decoding example.
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Transmitted Received
symbols symbols

00

0

1

1

1

p(0 j 0)

p(0 j 0)
p(1 j 0)p(1 j 0)

p(
0 j 1)

p(0
j 1)

p(1 j 1)

p(1 j 1)

Figure 4.6: A discrete symmetric channel model.

Figure 4.7 shows the (truncated) trellis diagram for the code (2; 1; 3). At each

level there are 2K�1 = 4 states. Each state has two branches leading in and out. The

branches are labelled with their data and code symbols (data/code). The value in

parentheses is the SD metric for that particular branch. Thevalue above or below each

node is the state metric, which is a measure of the likelihoodof any state being part

of the transmitted sequence. The state metrics can be found recursively from the sum

of an input branch and its preceding state metric. In this Example the metrics are a

measure of similarity, therefore the best metric is the largest one.

Trellis decoding starts at stateS0;1, that is state 0 at timet = 1. The best path

back tot = 0 isP (S0;1 ! S2;0) and is indicated by a solid black line. The decoding

metric for stateS0;1 is 8. This process is repeated for all other states at timet = 1.

Moving onto t = 2, stateS0;2 has a choice of two paths,P (S0;2 ! S2;1 ! S3;0)
or P (S0;2 ! S0;1 ! S2;0) with metrics of 17 and 14 respectively. The best path is
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4.2. DECODING ALGORITHMS 98P (S0;2 ! S2;1 ! S3;0). The process is repeated up tot = 8. If any two paths have the

same metric one is chosen arbitrarily. Note that if each state stores its own metric it is

never necessary to trace back more than one level.

The ML path, denoted by thick, solid lines, can be seen by starting at the state at

time t = 8 with the best metric (i.e.,S2;8) and tracing back along the best path. The

data symbol output from the decoder is the data label on the earliest branch of the ML

path, i.e.,B(S2;1 ! S3;0). Therefore the decoder output is ‘0’, and is in agreement

with the first data symbol ofx. Subsequent decoding attempts will output more recent

symbols in the trellis. The trace-back can be avoided by keeping track of the output

label each state would give if it is on the ML path.

It is important that the path metrics for the states at timet = 1 are not lost. These

states will become the earliest states in the next decoding attempt. Only the relative

difference in metrics is important, a feature which can be exploited to avoid numeric

overflow. Therefore on the next decoding attempt the state metrics for S0;0, S1;0, S2;0
andS3;0 will be 1, 0, 4 and 2 respectively.

Note that the surviving path from each state at timet = 8 has merged with the ML

path byt = 1. Therefore, regardless of which node had been chosen the correct data

for t = 0 would have resulted. This indicates that the truncated trellis was (just!) long

enough so that all possible paths had merged with the ML path.In practice a trellis of

depth 8 for a code of constraint length 3 is not sufficiently long to reliably ensure all

possible paths merge with the ML path. A flowchart showing thedecoding stages is

given in Figure 4.8. �
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Figure 4.8: Flowchart of the Viterbi decoding algorithm.
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4.2.3 Two-stage Trellis Decoding

It has been shown [Omura, 1969] that SDMLD of RS codes can be achieved by use of

the Viterbi algorithm [Viterbi, 1967] over a suitable trellis. For short RS codes Viterbi

decoding provides a practical and optimum (SDMLD) error-correcting performance.

The designed coset trellises are isomorphic to the minimal trellis, and are thus them-

selves minimal (Section 4.1.4). However, for long RS codes Viterbi decoding becomes

infeasible due to its considerable decoding complexity andstorage requirements. It is

therefore necessary to use a different decoding method. Thealgebraic techniques de-

scribed in Chapter 3 are well-known but unlike trellis decoding are unable to take

advantage of any SD information the channel may provide.

The Shannon product of trellises (Section 4.1.2) indicatesa manner in which a

trellis for a code with an inherent sum structure may be decomposed into its compo-

nent trellises,T 0 andT 00. It should be noted that the technique is not constrained to a

maximum of two component trellises. If the decoding complexity of the component

trellisesT 0 andT 00 is � 0 and� 00 respectively, then the decoding complexity of the trel-

lis T is (approximately)� 0� 00. However, if the decoding operation can be performed

on the two component trellises the complexity is reduced to� � 0 + � 00. The storage

requirement is reduced in much the same way. Hence both majorhurdles to trellis

decoding for long RS codes have been reduced.

The decoding procedure consists of two major steps:

1. Identify in which subtrellis the maximum-likelihood path lies.

2. Apply the Viterbi decoding algorithm only to the subtrellis indicated at step 1.
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If the overall trellis is viewed as the Shannon product of twotrellises,T 0 andT 00,
with corresponding codesC 0 andC 00, then codewords fromC 00 can be viewed as coset

leaders which generate the cosets ofC.

Two-stage decoding is a type of reduced search Viterbi algorithm. However, un-

like most reduced search algorithms the paths to be decoded are decidedbeforetrellis

decoding (proper) begins, i.e., at the end of stage one, whenthe most likely subtrel-

lis(es) have been identified. The usual behaviour of reducedsearch algorithms (e.g.,

[Shin and Sweeney, 1994] or [Aguado and Farrell, 1998]) is toselect the candidate

paths as trellis decoding progresses.

4.2.4 Two-stage Decoding of Reed-Muller Codes

Reed-Muller codes are highly regular, a feature which can beused to good effect in

their construction [Wilson, 1996, p. 429]. Two-stage decoding of RM codes is also

able to make good use of their regular structure, and was firstemployed by Wuet al.

who found the decoding performance was only 0:2–0:5 dB away from SDMLD [Wu

et al., 1994]. For two-stage decoding of Reed-Muller codes a trellis can be used to

identify which subtrellis(es) to decode. However, RM codeshave few subtrellises and

in many instances it is more efficient to select the subtrellis(es) by algebraic means,

(using ‘soft’ Galois field algebra (Section 4.3) if soft information is available). A

simple example is presented to demonstrate the TSD technique.

Example 4.4 Two-stage decoding of the RM(8; 4; 4) code.

Consider the code generated from a generalised array code (Section 2.1.5). The

construction of the code can be found in [Honaryet al., 1995a]. The codeC is the
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linear sum of two component array codes,C1 andC2, i.e.,C = C1 + C2 where

C1 = 26666666664
u1 p1

u2 p2

u3 p3

u4 p4

37777777775 (4.61)

C2 = 26666666664
0 u4

0 u4

0 u4

0 u4

37777777775 (4.62)

C = 26666666664
u1 u1 � u4

u2 u2 � u4

u3 u3 � u4

p4 p4 � u4

37777777775 =
26666666664

v1 v2

v3 v4

v5 v6

v7 v8

37777777775 (4.63)

where pj = uj

j = f1; 2; 3g
p4 = u1 + u2 + u3

(4.64)

Addition over GF(2) is denoted by ‘�’. The trellis for this code is shown in Figure 4.9.

From 4.63 it can be seen that the cosets of the RM code are generated byC1 and the

coset leaders are generated byC2.

The first stage of the decoding process is to identify in whichsubtrellis the code-
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word lies. This is achieved by decodingC2 to find the value ofu4. At this stage the

values of the other data symbols,u1, u2 andu3 are not known. However four indepen-

dent predictions of the value ofu4 can be made from the four rows inC. If u4 = 0 then

the left and right columns of a row should have the same value,and ifu4 = 1 then the

columns should have opposite values. This can be shown by rearranging (4.63).

bu4 = 8>>>>>>>>><>>>>>>>>>:
(v1 � v2);
(v3 � v4);
(v5 � v6);
(v7 � v8)

9>>>>>>>>>=>>>>>>>>>; (4.65)

wherebu4 is the set of symbol predictors foru4. If hard-decision values of the received

symbolsv1; v2; : : : ; v8 were usedbu4 should be evaluated with a majority-vote.1 If

soft-decision information is available a better method is to use ‘soft’ Galois field arith-

metic (Section 4.3) to preserve as much information as possible. Having foundu4 the

corresponding subtrellis of Figure 4.9 (top foru4 = 0, bottom foru4 = 1) is decoded,

using the Viterbi algorithm. �
4.2.5 Two-stage Decoding of Reed-Solomon Codes

Although the coset leader is the direct output of theT 00 trellis it is not possible in the

case of RS codes to simply pass the received codeword throughT 00; the received code-

word contains encoded information fromT 0 which appears as errors toT 00. Therefore

1For a result of 2 : 2 an arbitrary decision must be made.
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an algebraic method is used to predict which subtrellis to decode. The subtrellis pre-

diction can be improved with the inclusion of SD information, such as by using ‘soft’

Galois field arithmetic (Section 4.3).

Stage 1—To Find the Most Likely Subtrellis

To decodeC 00 each information symbol,uj (where j = 1; 2; : : : ; k), in C 00 is predicted

independently by a set ofsymbol predictors, buj. In generalk symbols are required to

predictuj since there arek unknowns (thek information symbols). Anyk symbols can

be used as RS codes are invertible (Section 2.1.8).

Form a unique setS from (almost) anyk out ofn symbols. There are
�

n

k

�
sets. For

the setS= fv1; v2; : : : ; vkg take a weighted sum of every symbol in the set.

c1j
v1 + c2j

v2 + : : :+ ck j
vk = f1j

u1 + f2j
u2 + : : :+ fk j

uk (4.66)

To find the coefficientsc1j
; c2j

; : : : ; ck j
note that

fi j
= 8>>><>>>:0 for i 6= j

1 for i = j

(4.67)

From the generator matrixG form ak� k matrix,� , from thek columns which relate

to the encoded symbols in setS. That is, for symbolsfs1; s2; : : : ; skg form � from
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columns 1; 2; : : : ; k of G.26666666664
�11 �12 : : : �1k�21 �22 : : : �2k

...
. . .�k1 �k2 �kk

37777777775
26666666664

c1

c2

...

ck

37777777775 =
26666666664

f1j

f2j

...

fk j

37777777775 (4.68)

Solve (4.68) by Gaussian elimination.

Earlier it was stated that almost anyk symbols could be used. It is important

that only theminimum setof received symbols is used to predict a given information

symbol. A minimum set,Smin , is defined such that no subset ofSmin exists from which

it is possible to predictuj. The inclusion of unnecessary symbols degrades the quality

of the prediction, since for smallPs the probability of a prediction using an incorrect

symbol is proportional to bothPs and the number of symbols used. It should be noted

that the calculation of the coefficientsc1j
; c2j

; : : : ; ck j
(Equation 4.68) is a design

operation, while the evaluation of the weighted sums (4.66)is a decoding operation.

From the requirement of minimum sets it can be shown that the number of predictions,

Nuj
, available for an information symboluj, j = 1; 2; : : : ; k is given by

Nuj
= 8>>>>><>>>>>: �

n�1

k

�+ 1 where

8><>: j = 1

j = k�
n

k

� �
1� j�1Q

i=0

k�i
n�1

� k� jQ
i=0

k�i
n�i

�+ 2 wherej = 2; 3; : : : ; k� 1

(4.69)

The number of predictions ofuj is maximised whenj = (k+ 1)=2. Thus performance
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is maximised by ensuringC 00 is composed from the most central (k� 1)=2 component

codes, i.e.,

C 0 =
8>>>>>>>>>>>><>>>>>>>>>>>>:
C1 + C2 + : : :+ C k+3

4+ C 3k+5
4
+ C 3k+9

4
+ : : :+ Ck wherek+1

2
oddC1 + C2 + : : :+ C k+1

4+ C 3k+3
4
+ C 3k+7

4
+ : : :+ Ck wherek+1

2
even

(4.70)

C 00 = 8>>><>>>:C k+7
4
+ C k+11

4
+ : : :+ C 3k+1

4
wherek+1

2
is oddC k+5

4
+ C k+9

4
+ : : :+ C 3k�1

4
wherek+1

2
is even

(4.71)

Stage 2—Finding the ML Path Through a Given Subtrellis

Having identified the subtrellis to decode it can be generated, on-the-fly if necessary,

by adding the appropriate codeword fromC 00 (i.e., coset leader ofC) to the coset ofC containing the all-zeros codeword. The subtrellis is then decoded with the Viterbi

algorithm. A substantial improvement in the performance oftwo-stage decoding can

be obtained by decoding more than one subtrellis. The subtrellises decoded are chosen

on the basis of the highest confidences from the output of stage one. The final output

is the one with highest confidence from the output of stage two.

Example 4.5 Design the symbol predictors for two-stage decoding of the RS(7; 3; 5)
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code.

Let the trellis be designed according to Example 4.2. Thus the generator matrix is

G = 2666664 gT1

gT2

gT3

3777775 = 2666664 � 3 �
0 � 3

0 0

1 � 3 1� 1 � 3� 3 � 1

0 0

1 0� 3 1

3777775 (4.72)

The component trellises are shown in Figure 4.4, and the complete trellis in Figure 4.5.

From (4.70) and (4.71) it is apparent that the selection of the subtrellises should be

based upon the ‘central’ code (i.e.,C2) to maximise the number of predictions avail-

able (and thus ensure the best possible performance). Although it is possible to use

isomorphic trellises where the subtrellis decision is based uponC1 or C3 this will result

in less subtrellis predictions.

Calculation of the Symbol Predictors

The symbols ofC2 are dependent uponu2 alone, therefore only a single symbol pre-

dictor, bu2, is required. Whilst in general the minimum number of received symbols

required to predictC2 is k = 3 there exists two minimum sets requiring only 2 re-

ceived symbols,fv1; v2g andfv6; v7g.
For the minimum setS= fv1; v2g the calculation of the symbol predictor proceeds

as follows. The weighted sum of the received symbols is (fromEquation 4.66)

c1v1 + c2v2 = f1u1 + f2u2 + f3u3= u2

(4.73)
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The coefficientsc1 andc2 can be found by taking columns 1 and 2 from the generator

matrix (4.72), as in accordance with (4.68). It follows that2666664 � 3 �
0 � 3

0 0

3777775264 c1

c2

375 = 2666664 0

1

0

3777775 (4.74)

Solving (4.74) by Gaussian elimination gives

c1 = � 2 (4.75)

c2 = � 4 (4.76)

Therefore the first independent calculation for the value ofu2 is given by� 2v1+ � 4v2.

However, the transmitted symbolsfv1; v2; : : : ; vng are not known by the receiver.

Instead the received symbolsfr1; r2; : : : ; rng must be used. As they may be subject

to errors the calculation is weakened to apredictionof the value ofu2. However as 27

independent predictions are available the overall prediction is much less sensitive to

errors. The full set of 27 symbol predictors are given in Table 4.2. Having calculated

the symbol predictors all the design stages are complete. �
Example 4.6 Decode a received codeword of RS(7; 3; 5) using two-stage decoding.

Consider that the dataword,u = [ 0 0 0 ℄, was transmitted. The transmitted
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Number Symbol predictor
1 � 2r1 + � 4r2

2 r6 + � 3r7

3 � 4r1 + � 3r3 + � 5r4

4 r1 + � 2r3 + � 5r5

5 � r1 + � 4r3 + � 4r6

6 � 3r1 + � 6r3 + � 2r7

7 � 6r1 + � 2r4 + � 3r5

8 � 3r1 + � 3r4 + � r6

9 r1 + r4 + � r7

10 � 5r1 + � r5 + � 5r6

11 � r1 + � 4r5 + � 4r7

12 r2 + � 4r3 + � 6r4

13 � 5r2 + � 5r3 + � r5

14 � r2 + � 2r3 + � 2r6

15 � 2r2 + � 3r3 + � 6r7

16 � 3r2 + � 4r4 + � 5r5

17 � 2r2 + r4 + � 5r6

18 � 5r2 + � 3r4 + � 4r7

19 � 6r2 + r5 + � 4r6

20 � r2 + � 2r5 + � 2r7

21 � 6r3 + r4 + � 4r5

22 r3 + � 4r4 + � 6r6

23 � 5r3 + � 2r4 + r7

24 � 3r3 + � 3r5 + � r6

25 r3 + r5 + � r7

26 � 6r4 + � 2r5 + � 3r6

27 � 5r4 + � r5 + � 5r7

Table 4.2: Symbol predictors for Two-stage decoding of RS(7; 3; 5).
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codeword is given by

v = u:G= [ 0 0 0 ℄2666664 � 3 � 1 � 3 1 0 0

0 � 3 � 1 � 3 1 0

0 0 � 3 � 1 � 3 1

3777775= [ 0 0 0 0 0 0 0℄
(4.77)

For simplicity consider only hard-decision decoding ofC2. Let the received codeword

ber = v+ e, wheree= [ 0 � 6 0 0 0 0 0 ℄.
r = [ r1 r2 r3 r4 r5 r6 r7

℄= [ 0 � 6 0 0 0 0 0 ℄ (4.78)

The prediction of the value ofu2, and thus of which subtrellis to decode, is obtained

by substituting (4.78) into the symbol predictors (Table 4.2) and choosing the most

likely value. The results of evaluating the symbol predictors are given in Table 4.3.

It can be seen that the most likely value ofu2 is zero, and therefore the subtrellis to

decode is the one generated byu2 = 0. If multiple subtrellises are to be decoded,

then the subtrellises generated byu2 = 1, u2 = � andu2 = � 4 are the next most

likely candidates. The chosen subtrellis(es) are decoded with normal Viterbi decoding

(Section 4.2.2). �
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Value Votes cast Symbol predictor number(s)
0 17 f2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

21, 22, 23, 24, 25, 26, 27g
1 2 f14, 20g� 2 f15, 17g� 2 1 f16g� 3 1 f1g� 4 2 f13, 18g� 5 1 f19g� 6 1 f12g

Table 4.3: Symbol predictor results.

4.3 ‘Soft’ Galois Field Arithmetic

Reference has been made to ‘soft’ Galois field arithmetic. Inthis Section an explana-

tion is given as to how soft GF arithmetic may be implemented.

Traditional GF arithmetic operates on GF variables whose value must be defined

precisely. This is often accomplished by using a HD output from the demodulator. In

reaching a precise definition the useful soft information isdiscarded. By including the

soft information better error-correction can be achieved.

For the binary2 GF(q) operations�, 	 and
 all q2 combinations must be evalu-

ated. There areq different results (0; 1; �; : : : ; � q�2) and each result occursq times.

Therefore, each of theq output values has an associated probability which is the sum

of q probabilities. A similar approach can also be used for�, although there is also

an error state due to division by zero.

2i.e., taking two arguments.
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Example 4.7 The addition of two GF(4) values using soft GF arithmetic.

For the elementsf0; 1; �; � 2g let the confidences ofa bef0:75; 0:10; 0:10; 0:05g
respectively, and forbf0:25; 0:25; 0:50; 0:00g respectively. Consider the resulta�b =
0. There are four ways by which this outcome may be achieved: 0� 0, 1� 1,� � �
and� 2 � � 2. The probability thata� b= 0 is given by

p(a� b = 0)= p(a = 0; b = 0)+ p(a = 1; b = 1)+ p(a = �; b = � )+ p(a = � 2; b= � 2)= p(a = 0):p(b = 0)+ p(a = 1):p(b = 1)+ p(a = � ):p(b = � ) + p(a = � 2):p(b = � 2)

(4.79)

Table 4.4 illustrates how the output confidences for all outcomes are computed. The

sum of the output probabilities is one. �
Confidence

Element Computation Total
0 0:1875 0:0250 0:0500 0:0000 0:2625

(0� 0) (1� 1) (� � � ) (� 2 � � 2)
1 0:1875 0:0250 0:0000 0:0250 0:2375

(0� 1) (1� 0) (� � � 2) (� 2 � � )� 0:3750 0:0250 0:0000 0:0125 0:4125
(0� � ) (� � 0) (1� � 2) (� 2 � 1)� 2 0:0000 0:0125 0:0500 0:0250 0:0875
(0� � 2) (� 2 � 0) (1� � ) (� � 1)

Table 4.4: Soft GF arithmetic for GF(4).
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4.4 Discussion

In this Chapter techniques for constructing minimal trellises have been demonstrated.

For low-rate codes this is served by the coset trellises, while for high-rate codes syn-

drome trellises should be used. The Shannon product of trellises is important not only

for trellis construction but also for the decomposition of trellises into simpler forms.

Two-stage decoding of RS codes is a new method which can take advantage of sim-

pler, regular trellises to provide low-complexity sub-optimum decoding. To improve

the decoding performance of TSD a new procedure for including soft information in

the evaluation of Galois field algebra was presented. The decoding performance and

complexity of both Viterbi and two-stage decoding has been measured by computer

simulation. Results are presented in Chapter 6.
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Improved Decoding of Concatenated

Codes

5.1 Concatenated Codes

5.1.1 Introduction

Concatenated codes are frequently used to implement a low-complexity, low error-rate

channel. The basic concepts of concatenated coding were introduced in Section 2.3. In

such a system the inner decoder is able to take advantage of any SD information from

the channel. For maximum performance the outer decoder requires SD information

from the inner decoder. Traditional decoders are unable to fulfill this requirement.

A number of decoding algorithms which provide soft-decision outputs exist, e.g.,

SOVA [Hagenauer and Hoeher, 1989] and MAP [Bahlet al., 1974]. SOVA was iden-

116
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tified as a useful method as it is a generalisation of the Viterbi algorithm, thede facto

trellis decoding algorithm. Only SOVA is considered in thiswork.

Massey stated that convolutional codes should be used as thefirst stage of decoding

because they can easily accept soft decisions and channel state information [Massey,

1984]. Many concatenated coding schemes exist which do justthat for the very rea-

sons stated. However, a decoding failure in a convolutionalcode normally produces a

burst of errors [Hagenaueret al., 1994, p. 243]. Reed-Solomon codes are well known

for their burst error correction capability when log2 qRS binary bits are mapped into one

RS symbol (Section 2.1.8). A concatenated system comprising a convolutional inner

code and an RS outer code with an interleaver/de-interleaver operating on RS symbols

provides very good performance and is used by NASA and ESA forspace communi-

cations [Dai, 1995; Wicker, 1994]. While the binary to multi-level mapping provides

burst error correction it is a mixed blessing, as the bit error probabilities must some-

how be transformed into symbol error probabilities. For an RS trellis decoder this can

be avoided if the trellis is labelled with binary bits.

Section 5.2 of this Chapter describes the soft output Viterbi algorithm. The Vit-

erbi decoding example (4.3) is extended to incorporate SOVA, outputting reliability

information in addition to the most likely symbol(s). Product codes can be viewed as

a type of concatenated code, with the row and column codes forming the inner and

outer codes. Section 5.3 describes various decoding algorithms for decoding product

codes constructed with RS subcodes.
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5.1.2 Calculation of the Log Likelihood Metrics

It can be shown [Gallager, 1968; Wozencraft and Jacobs, 1965] that for any channel

if all input sequences are equally likely the decoder which minimises the error prob-

ability is one which compares the conditional probabilities (or likelihood functions),

p(r j v), of the received sequence,r , and all possible transmitted sequences,v, and se-

lects the maximum,v0 [Viterbi, 1971]. Such a decoder is termedmaximum likelihood.

For

r = rt; rt+1; rt+2 (5.1)

v0 = v0t; v0t+1; v0t+2 (5.2)

the decoder must calculate the probability

p(r j v0) = p(rt j vt
0) � p(rt+1 j vt+1

0) � p(rt+2 j vt+2
0) (5.3)

For most channels the inputs to the receiver are real values and thus require infinite

precision. This is not possible and some loss of precision must be accepted by quan-

tising the received signal to a finite number of values. Simulation studies [Heller and

Jacobs, 1971] have shown that 8-level quantisation resulted in only 0:25 dB reduc-

tion in coding gain with respect to the unquantised case, much less than the gains

made possible by using SD decoding, typically 2 dB [Hagenauer et al., 1994; Marple,

1998]. See also Chapter 6.

The transition probabilities may then be computed by considering the area under
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the PDF for each quantisation level. In (5.3) it can be seen that the conditional prob-

ability that sequencer was received is dependent upon multiplication operations.For

almost all implementations summations are preferred to multiplications. This can be

achieved by using logarithms. Equation (5.3) may then be rewritten without multipli-

cation as thelog likelihood function

log p(r j v0) = log p(rt j v0t )+ log p(rt+1 j v0t+1) + log p(rt+2 j v0t+2) (5.4)

Since logp(r j v0) increases monotonically withp(r j v0) the decoder is able to max-

imise logp(r j v0) instead ofp(r j v0) with the same result. Logarithms of any base

may be used, the only difference is a scaling factor. Unless stated otherwise natural

logarithms are used.

Integer arithmetic is typically several times faster than floating point arithmetic and

is often preferred for reasons of both speed and reduced complexity of the hardware

required. The log likelihood functions can be transformed into integerlog likelihood

metrics, ` [Wicker, 1994, p. 294]` (r i j v0i ) = ha [log p(r i j v)i ) + b℄i (5.5)

wherea andb are real numbers chosen to scale the LL functions into a suitable range,

andhxi denotes the closest integer tox. Rounding errors can be minimised by choosing

appropriate values fora andb. Whena is positive the decoder should selectv0i to

maximisè (r i j v0i ) and whena is negativev0i is selected to minimisè(r i j v0i ).
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Example 5.1 Calculate the set of metrics to be used for a coherently-demodulated

BPSK system over an AWGN channel operating atEb=N0 = �3 dB with 8 quantisa-

tion levels.1

Let the received bit energy in noiseless conditions beEb and let the levels have an

equal spacing of1
2

p
Eb. For simplicity assume unity bit energy; let a “0” be represented

by�1 and a “1” by+1. Thus the 7 transition points are�1:5,�1:0,�0:5, 0:0,+0:5,+1:0 and+1:5. If “0” was transmitted it could be received in any one of the8 levels,

and the probability of each level being received is (generally) different and dependent

uponEb=N0, the signalling scheme used and the noise PDF. Figure 5.1 shows the 7

transition levels, and the signalling values with the superimposed Gaussian PDF (2.36)

at Eb=N0 = �3 dB. The area under the PDF is given by

A= Z 1�p2� exp

(�1

2

�
x� �� �2

)
dx (5.6)

Thus the probability of receiving “0” in any region is given by evaluating the integral in

(5.6) between the limits of the quantisation level. For coherently demodulated BPSK

over an AWGN channel the standard deviation,� , is given by� =s Eb

2N0

(5.7)

For Eb=N0 = �3 dB, � = 0:9988. The logarithmic transition probabilities can be

scaled into the range 0! 15 by choosingb = 5:08 anda = 15=(�1:18+ 5:08) =
1A similar example appears in [Wilson, 1996, p. 307].
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3:8642. The transition probabilities and LL metrics for “1” are computed in the same

way. The transition probabilities are given in Table 5.1, where the symmetry of the

channel is reflected in the symmetry of the LL metrics. The metrics are shown graph-

ically in Figure 5.2. In the area of indecision (received signal� 0) the metrics are ap-

proximately equal while further from zero the metrics display an increasingly strong

bias to “0” or “1”. In Figure 5.1 it can be seen that there is a disproportionately large

probability of receiving signals in the�1 ! �1:5 and+1:5! +1 regions, which

leads to the apparent discontinuities at the boundaries of Figure 5.2. This is due to

the poor SNR of the channel as the probability of receiving a high confidence value is

larger than over a good channel. �
Variation of the Log Likelihood Metrics with Eb=N0

The LL metrics are dependent uponEb=N0, but the receiver can only estimate this

ratio, its measurement is subject to error. It is therefore necessary to consider the

sensitivity of the metrics with variation inEb=N0. Figure 5.3 shows the LL metrics for

symbol “0” againstEb=N0 over the range�6 dB ! +6 dB. The metrics are scaled

to fit the range 0! 15 using the method outlined above. The dotted lines show the

metrics truncated to integer values as would be used in a hardware implementation

of SOVA. For the region where the noise dominates the signal (Eb=N0 < 0 dB) the

metrics are sensitive to changes inEb=N0. In such noisy conditions coding would not

be used because uncoded operation results in fewer errors. For Eb=N0 > 2 dB there

is very little change in the scaled LL values, indeed, for theinteger metrics there is

no change. This shows that for the area of interest the metrics are not particularly
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N
C

AT
E

N
AT

E
D

C
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D
E

S
1

2
3

level lower upper transition log of transition scaled LL LL
limit limit probability probability value metric

p(r j 0) p(r j 1) log p(r j 0) log p(r j 1) “0” “1” “0” “1”

0 �1 �1:5 0:3083 0:0062 �1:18 �5:09 15:00 0:00 15 0
1 �1:5 �1:0 0:1917 0:0165 �1:65 �4:11 13:18 3:77 13 4
2 �1:0 �0:5 0:1917 0:0440 �1:65 �3:12 13:18 7:53 13 8
3 �0:5 +0:0 0:1500 0:0918 �1:90 �2:39 12:24 10:36 12 10
4 +0:0 +0:5 0:0918 0:1500 �2:39 �1:90 10:36 12:24 10 12
5 +0:5 +1:0 0:0440 0:1917 �3:12 �1:65 7:53 13:18 8 13
6 +1:0 +1:5 0:0165 0:1917 �4:11 �1:65 3:77 13:18 4 13
7 +1:5 +1 0:0062 0:3083 �5:09 �1:18 0:00 15:00 0 15

Table 5.1: Transition probabilities and LL metrics for a coherently-demodulated BPSK channel atEb=N0 = 3 dB.
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sensitive toEb=N0 and may remain constant with no impact on performance.

5.2 Soft Output Viterbi Algorithm

5.2.1 Introduction

As its name suggests the soft output Viterbi algorithm [Hagenauer and Hoeher, 1989;

Hagenaueret al., 1994, 1996] is a modification to the ‘standard’ Viterbi algorithm [Vit-

erbi, 1967]. It can decode using soft or hard decision information and provides a

single reliability measure for its output sequence, which is the closest codeword. Al-

ternatively, if the trellis is labelled with both data and code symbols then the output

sequence can be the dataword corresponding to the closest codeword.

One of the main areas in which SOVA has been used is for iterative or turbo decod-

ing.2 An immense amount of literature has recently been written onturbo decoding,

but the work involving SOVA described in this Chapter is intended for the purpose of

concatenated decoding and therefore iterative methods have not been applied.

5.2.2 Differences Between the Standard and Soft-Output Viterbi

Algorithms

The soft output Viterbi algorithm differs from the standardmodel by keeping track

of the reliability of its decisions. However, only decisions which affect the outcome

are considered, that is decisions which lie along the surviving path. Decisions which

2Turbo decoding is also known as turbo coding, this is misleading since the ‘turbo’ (feedback)
analogy applies to the decoding, not the codes themselves [Hagenaueret al., 1996].
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affect other paths are discarded at the same time the path is discarded. Consider the

trellis segment for a binary code shown in Figure 5.4. For each trellis state,Sj;t, the

�2;1 �1;2 �2;3
�0;4S0

S1

S2

S3

t = 0 t = 1 t = 2 t = 3 t = 4

difference in path metrics

Surviving path

Discarded path

StateS2;3
Figure 5.4: Example trellis with metric differences for traceback SOVA.

Viterbi algorithm chooses the branchB(Si;t�1 ! Sj;t ) to select the best partial path

metric,Pm(Si;t�1 + Bm(Si;t�1 ! Sj;t )).
At time indext the partial pathsP = P (: : : ! Si;t�1 ! Sj;t ) andP 0 = P (: : : !

Si0;t�1 ! Sj;t ) merge, with metricsM andM0 respectively. LetP be the surviving path.

Define the metric difference as [Hagenaueret al., 1996]� j;t = M �M0 (5.8)
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The probability that the decision made at this point was correct is given by [Hage-

naueret al., 1996]

p(correct)= p(P )

p(P ) + p(P 0) (5.9)= eM

eM + eM0 (5.10)= e� j;t
1+ e� j;t (5.11)

Therefore the log likelihood ratio of this binary path decision is� j;t because

log
p(correct)

1� p(correct)
= � j;t (5.12)

This shows that when two paths merge and either would give rise to the same

output the LL reliability of the decision is1, since no mistake would be made at

that point in the trellis. If the data output would not be the same then the reliability

is given by the difference in the partial path metrics of the surviving and discarded

paths. The reliability of the output sequence is given by product of the reliabilities

for the decisions affecting the output (equivalent to the sum of log likelihood metrics).

Hagenauer shows that the sum can be approximated to the smallest log likelihood de-

cision reliability of the terms [Hagenauer, 1995]. While the channel information gives

some indication as to the most likely transmitted sequence the additional reliability

information gleaned from the decoding process is termed theextrinsic information.

It is important to note at this point that the behaviour of thealgorithm differs be-

tween convolutional and block trellises. This is due to the differing ways in which
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each are decoded. A convolutionally-encoded data stream typically imposes an intol-

erable delay in the decoding process. For this reason a truncated trellis (typically 4 to

6 times the constraint length) is decoded once perk output symbols, whereas a block

code trellis is decoded once for the entire codeword. This affects the algorithm in two

ways. Firstly, for convolutional decoding independent passes through the trellis are

made for eachk output symbols. Usuallyk = 1 and thus each symbol has a unique

metric. This cannot be done for the fixed length block code trellis. The ML sequence

is the codeword, and thus all output symbols in the codeword must share the same

reliability metric. While the MAP algorithm [Hagenaueret al., 1996] is able to pro-

vide reliability metrics for each encoded symbol this is nothelpful for concatenated

schemes where metrics for the reliability of outputdatasymbols is sought. (MAP is

also much more complex.) The second point to note is that whendecoding over a trun-

cated convolutional trellis the output is the data label(s)on the first branch, whereas

for the block code trellises described in Chapter 4 the output is the sequence of data

labels (or occasionally code labels) found on all branches forming the ML path. This

means all decisions along the ML path of a block code trellis are important since they

all will affect the outcome. Conversely, for convolutionaldecoding fewer decisions

will be important as decoding progresses—the length of the truncated convolutional

trellis is chosen with the assumption that all surviving paths have merged with the ML

path by the time decoding is terminated.

The differences between the standard and soft output Viterbi algorithms are most

easily seen with the aid of a decoding example. They are also illustrated in Figure 5.5,

where the flowchart given in Chapter 4 (Figure 4.8) is expanded to include the addi-
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START

STOP

(a)

(b)

(c)

(d)

(e) (f)

(g)

(h)

(i)

(j)

(k)

(l)

Yes

Yes

Yes

No

No

No

t = 1

=
Calculate path metric for branch 0, 1Pm = Bm(Si;t ! Sj;t�1)+ Pm(S jt� 1)

Calculate�i;t = jPm0 � Pm1j
Store best metricPm(Si;t ) If o/p data same, store1

else min(�i;t;� j;t�1)

t = 1 ?Store o/p data for

selected branch

Store o/p data
from Sj;t�1

i = i + 1

i = 2K�1� 1
?

t = Æ ?t = t + 1

i = 0

i = 0

ChoosePm(Si;Æ )

with best metric

Output data label

Figure 5.5: Flowchart of the soft output Viterbi decoding algorithm.
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tional steps for SOVA.

Example 5.2 Soft-output Viterbi decoding of a (2; 1; 3) convolutional code.

Example 4.3 will now be extended to include SD outputs. Figure 5.6 shows the

annotated trellis. Every decision-making state i.e., those for which timet > 0, is now

annotated with two values, the partial path metric to timet = 0 (as in Example 4.3 )

and the new LL reliability of the decision made at that node (in parentheses).

Trellis decoding starts at stateS0;1. The best path fromt = 0 isP (S2;0 ! S0;1) and

is indicated by a solid black line. The decoding metric for stateS0;1 is 8. Since both

paths give the same output data, “1”, it is clear that no bit error would have occurred

had the discarded path been selected. Therefore the LL reliability of this decision

is1. This process is repeated for all other states at time 1< t � 8.

At stateS0;3 the decision of which path to discard will influence the decoder output

should that node be on the ML path. The reliability metric is the difference between

the metrics of the selected path and the discarded path, i.e., 24� 19= 5. Should the

decision metric be zero this shows that the choice of best path was tied; therefore the

value of the data output was dependent upon an arbitrary decision and should not be

relied upon.

The reliability is found by tracing back along the ML path andtaking the minimum

of all the decision metrics on the ML path. Thus the data output is “0” with reliability 7

(from stateS2;3). Trace-back can be avoided if each state keeps track of the (minimum)

reliability metric.

It was noted in Example 4.3 that the trellis was just long enough for the surviving

paths to merge with the ML path. This is seen by tracing the paths back in time, and
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also by noting the reliability of all the decisions made att = 8 is1, indicating no

difference in output data. �
In Section 6.5 SOVA is used to improve the performance of a satellite link using a

standard concatenated coding system. Unlike the iterativedecoding described in [Ha-

genaueret al., 1996] where the extrinsic information is used as thea priori information

to the nextiteration, the extrinsic information is used as thea priori information to

the nextdecoder.

5.2.3 SOVA and Non-binary Trellises

SOVA considers only the weakest decision made, and thus considers only the ML

path and the best discarded path. Thus SOVA is analogous to a MAP decoder with

2 codewords [Bahlet al., 1974]. The SOVA algorithm described above has been

extended to work over non-binary convolutional code trellises (and also binary code

trellises wherek 6= 1).

At each node in the trellis the reliability of the decision isgiven by considering the

best and next-best paths, ignoring the metrics on the other discarded paths. As before,

if the output data would be identical the reliability of the decision is1, otherwise it is

the difference in metrics of the best and next-best paths; should an arbitrary decision

be made the decision metric is zero. Thus at the least reliable node on the ML path

the extended SOVA algorithm decides between two codewords.Whilst in principle it

is possible to consider multiple codewords the complexity is correspondingly higher.
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5.3 Reed-Solomon Product Codes

5.3.1 Introduction

Product codes can be considered a form of concatenated codes, where the row and

column codes form the inner and outer codes. If constructed with linear codes then

the encoding and decoding order is not important (Section 2.1.4) and may be reversed

if desired. The decoding of row and column codewords can evenbe alternated [Bate

et al., 1986; Farrellet al., 1986]. This is in contrast with a true concatenated coding

scheme (Section 2.3) where decoding order must be the reverse of the encoding order.

For optimal performance it is desirable to use soft-decision decoding. Many pos-

sible methods exist; the Fano [Fano, 1963], stack [Jelinek,1969; Zigangirov, 1966],

Chase [Chase, 1972], and Viterbi [Viterbi, 1967] algorithms, and also MAP [Bahlet

al., 1974; Hagenauer and Hoeher, 1989]. Equally desirable are soft outputs, so that

the second decoder of the concatenated system can perform optimally. It is of course

important to balance optimality with complexity, so that a realiseable solution may be

implemented, either in hardware or software. For this reason the extended SOVA de-

scribed in Section 5.2.3 was selected. The MAP algorithm with its symbol-by-symbol

reliability metrics is also applicable but the complexity of SOVA is considerably lower

for only minor degradation in performance [Hagenaueret al., 1996]. Any appropriate

block code trellis may be used. The block code trellises usedin [Hagenaueret al.,

1996] are based upon the parity-check matrix (H) and are thus irregular in structure.

Regular trellises allow reductions in decoder complexity and storage requirements,

thus the GAC construction methods based upon the generator matrix (G) described in
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Chapter 4 are used here. RS codes were chosen as the block codes, they are MDS and

so provide the greatest possible distance for a givenn andk. This is important for a

product code as the overall distance is the product of the distances of the subcodes.

5.3.2 Creation of Systematic Trellises Using GAC Construction

For some product code decoding algorithms it is required that the subcode codewords

are systematic. One such algorithm is the alternating row/column method described

in Section 5.3.7 or other algorithms which may terminate early when all codewords

containing data symbols have been decoded. More precisely,the data symbols should

have a one-to-one correspondence withk code symbols—the actual order of the sym-

bols is not important nor do they need to be consecutive (sucha symbol reordering is

trivial) provided the data symbols are identifiable.

Consider the RS(7; 5; 3) trellis constructed in Example 4.1. The generator ma-

trix (4.22) is not systematic as it is not in reduced-echelonform, nor can it be rear-

ranged to be. Onlyu5 is unchanged after the data wordu is multiplied by the generator

matrix. Table 5.2 shows a few of the 32768 codewords from the RS(7; 5; 3) trellis. For

clarity the symbols are given in decimal form. It clearly shows the lack of a one-to-

one correspondence between the data symbols and the code symbols (u5 excepted).

RS codes are invertible (Section 2.1.8) and therefore anyk symbols can be chosen as

data symbols, the remainingn � k symbols form the parity checks. Since the trel-

lis is labelled with independent data and code labels it is possible to re-map the data

symbols on the trellis to match the firstk code symbols. Table 5.3 shows the same

datawords with the new systematic mapping.
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dataword codeword
u1 u2 u3 u4 u5 v1 v2 v3 v4 v5 v6 v7

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 4 5 1
0 0 0 0 2 0 0 0 0 5 6 2

...
...

0 0 7 7 7 0 0 6 3 2 5 7
0 1 0 0 0 4 5 0 1 0 0 0
0 1 0 0 1 4 5 0 1 4 5 1

...
...

7 7 7 5 6 3 6 6 2 7 2 6
7 7 7 5 7 3 6 6 2 4 7 7
7 7 7 6 0 3 6 3 2 1 6 0

...
...

Table 5.2: Sample data and codewords of the non-systematic RS(7; 5; 3) trellis.

dataword codeword
u1 u2 u3 u4 u5 v1 v2 v3 v4 v5 v6 v7

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 2 5
0 0 0 0 2 0 0 0 0 2 3 6

...
...

0 0 7 7 7 0 0 7 7 7 3 4
0 1 0 0 0 0 1 0 0 0 1 1
0 1 0 0 1 0 1 0 0 1 4 6

...
...

7 7 7 5 6 7 7 7 5 6 3 0
7 7 7 5 7 7 7 7 5 7 0 6
7 7 7 6 0 7 7 7 6 0 2 4

...
...

Table 5.3: Sample data and codewords of the systematic RS(7; 5; 3) trellis.
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5.3.3 Cascade Decoding

Many different methods for decoding product codes exist. Itis useful to define the

simplest as a standard against which the performance of more‘intelligent’ algorithms

are compared. For this purpose cascade decoding (Section 2.1.4, p. 15) is used as the

reference method. It is expected that the channel can supplysoft-decision information

to the row decoder, hence the first decoding stage is soft-decision. However the stan-

dard decoder does not make use of advanced techniques such asSOVA (Section 5.2),

so it is unable to supply soft information to the column decoder (second stage). The

block diagram of the decoder is shown in Figure 5.7.

5.3.4 Modification of the Channel Metrics with the SOVA Metric

The SOVA decoder detailed in Section 5.2 was configured to produce two outputs,

a codeword and a metric indicating the reliability of the chosen codeword. For non-

cascade decoding algorithms the full codeword symbols are required. For cascade

decoding only the dataword is strictly required, however this is easily obtained from

the firstk symbols of the systematic codeword. In order for the SOVA metric to influ-

ence later decodings its value must be somehow incorporatedinto the buffer storing

the received channel metrics. The method used for this was common to both prod-

uct code decoding schemes using SOVA (Sections 5.3.5 and 5.3.7) and so will be

described separately below.

Remembering that SOVA on a block code trellis outputs only one metric (Sec-

tion 5.2.2) necessitates the assumption that the metric applies equally to all symbols.



5.3.R
E

E
D

-S
O

LO
M

O
N

P
R

O
D

U
C

T
C

O
D

E
S

1
3

8

k1k1

k1

k2

k2

k2

n1n1

n2

Information matrixInformation matrix

Information matrix

Row
Row

checks

checks

Column checksColumn checks

Checks on

Column decoding

decoding

(soft decision)

(hard decision)

Figure 5.7: Cascade decoding algorithm for product code.



5.3. REED-SOLOMON PRODUCT CODES 139

Nor does SOVA indicate the next most likely value for a symbolfrom a non-binary

alphabet. Therefore it must be assumed that the discarded values for each symbol are

equally improbable. Plainly this is not the case but withoutmore information no better

assumptions can be drawn.

In all cases the received symbol metrics (channel metrics) were stored in a buffer

of the same dimensions as the transmitted codeword (n1� n2). When decoding a row/

column the corresponding row/column metrics were passed tothe SOVA decoder.

After decoding it is not desirable to completely replace thechannel information with

the SOVA metric as it applies to only a subset of all possible symbol values. SOVA

may also have incorrectly decoded the received codeword. Instead, the SOVA metric

is accumulated to theM buffered metrics for the symbol values which correspond to

those selected by SOVA (whereM = n1 for rows andM = n2 for columns). Thus the

extrinsic information derived by SOVA is accumulated to theexisting channel state

information. An example will help demonstrate the method used.

Example 5.3 Consider a (9; 4; 4) product code, whose subcodes are (3; 2; 2) parity

check codes over GF(4). Using SOVA decode the first row code and modify the

symbol metrics.
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Let the received metrics be

column

1 2 3

row 1

0 : 19

1 : 28� : 4� 2 : 13

0 : 23

1 : 28� : 8� 2 : 13

0 : 23

1 : 25� : 14� 2 : 16

2
... ... .. .

3
... ... . . .

(5.13)

SOVA indicates that the best codeword is “110”, with a reliability of 3. Therefore

add 3 to the metrics corresponding to a row 1 codeword “110”. The new metrics

(emboldened) are

column

1 2 3

row 1

0 : 19

1 : 31� : 4� 2 : 13

0 : 23

1 : 31� : 8� 2 : 13

0 : 26

1 : 25� : 14� 2 : 16

2
... ... .. .

3
... ... . . .

(5.14)

�
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It can be seen that if the reliability of the decision made by SOVA is zero, i.e., the

decision was arbitrary, then no change is made to the metrics. Conversely, a positive

decision by SOVA will result in a large modification in the LL metrics. Summing the

same value to all symbols obeys the assumption stated that all symbols are equally

reliable; not modifying the discarded symbol values maintains the second assumption

that the discarded symbol values are equally improbable. Atno point is thea priori

channel information discarded, but is modified with the extrinsic information from

each nonarbitrary decoding.

5.3.5 Cascade Decoding Algorithm with SOVA

A logical extension of the cascade decoder is to apply SOVA decoding to the first

decoding stage. The second stage is therefore able to use SD information. In other

studies [Hagenaueret al., 1994; Marple, 1998] SOVA provided a performance im-

provement of about 2 dB over an AWGN channel for a true concatenated system.

The received symbol metrics are stored in a buffer of the samedimensions as the

transmitted codeword (n1 � n2). The rows are decoded using the extended SOVA al-

gorithm detailed in Section 5.2.3, taking the soft information from the buffer. After

decoding each row the SOVA metric is used to modify the metrics stored in the buffer

(Section 5.3.4). The second stage, decoding columns, then follows. The Viterbi de-

coder is able to make use of SD information from the first stage, along with thea

priori channel information which preceded the first decoding stage.
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5.3.6 Alternative Decoding Strategies

Alternative decoding strategies exist which aim to minimise the number of errors.

Bateet al.considered various methods based upon decoding rows and columns alter-

natively [Bateet al., 1986]. The row/column subcodes were decoded in decreasing

order of confidence. The algorithms investigated for subcode decoding were hard de-

cision decoding, soft decision decoding using successive erasures decoding [Chase,

1972] and combined soft/hard decision decoding. In [Bateet al., 1986] the method

used to compute the row/column confidences was

C = M log2 qX
i=1

����log
p(r i j 0)

p(r i j 1)

���� (5.15)

where

M = 8>>><>>>:n1 for rows

n2 for columns

By rearranging (5.15) it can be shown how LL metrics can be used instead of

conditional probabilities.

C = M log2 qX
i=1

log p(r i j 0)� log p(r i j 1) (5.16)

C0 = M log2 qX
i=1

j`0i
� `1i

j (5.17)

where`0i
is the LL metric for symbol “0” for thei-th bit and`1i

is the metric for symbol
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“1” for the i-th bit. In other words, the confidences can be computed by summing the

difference between the LL metrics for “0” and “1”. In the caseof LL ratios which

have been mapped to integer valuesC0 will be related toC by C0 ' aC (allowing for

rounding errors) wherea is a scaling factor (Equation 5.5).

5.3.7 Alternating Row-Column Decoding Using SOVA

The alternating row-column decoder in [Bateet al., 1986] was adapted to use SOVA.

The channel modelled was binary, though only symbol metricswere available to the

decoders (Section 6.6.1). This required a small change to the method used for cal-

culating the received codeword confidence. The symbols represented by the best and

worst LL metrics are bit inverses of each other. Therefore (5.17) may be rewritten as

C0 = MX
i=1

j`besti � `worsti j (5.18)

where`besti is the metric corresponding to the most likely value for thei-th symbol and`worsti is the least likely.

The received symbol metrics are stored in a buffer of the samedimensions as the

transmitted codeword (n1 by n2). From these buffered values the row and column

codeword confidences are computed with (5.18) and sorted into order of decreasing

confidence. The row codeword with the highest probability ofbeing correct is decoded

first.

After decoding one row codeword the next most likely column codeword is de-

coded. This process is repeated until all row and column codewords containing data
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symbols are decoded. By this method each data symbol is decoded twice, once with a

row decoding and once with a column decoding. The decodings may occur in either

order. However after both decodings the data symbol’s metrics cannot be changed.

Therefore after the second decoding the value of the symbol (as decided by the SOVA

decoder) is transferred to the output buffer.

Decoding may terminate early if the remaining row and columncodewords do

not contain data symbols, their decoding will not affect theoutput data. With this

procedure the average decoding delay and computation are reduced. If the product

code is not approximately square, i.e.,n1 � n2 or n1 � n2, it may be desirable to

decode row and column codewords in some ratio other than 1 : 1 so that the row and

column decodings complete in approximately the same numberof cycles.

Bateet al.[Bateet al., 1986] recomputed the row and column subcode confidences

after each row and column iteration. Re-sorting the confidences can be numerically ex-

pensive, even the best sorting algorithms require of the order of several timesN log2 N

operations [Presset al., 1992, p. 329]. The performance of the algorithm described

above was tested with and without the re-sorting of codewordconfidences.

Example 5.4 The decoding of an arbitrary product code with the alternating row/

algorithm.

Figure 5.8 shows the initial decoding stages. Hatching denotes codewords which

have been decoded, whilst shading indicates information symbols which have been

copied to the output buffer. Each step is explained below.

(a) In this case the best row codeword is within the information section of
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Information matrix Row

checks

checks

Column checks Checks on

(a) 1st row decoding. (b) 1st column decoding.

(c) 2nd row decoding. (d) 2nd column decoding.

(e) 3rd row decoding.

Figure 5.8: Alternating row/column decoding example.
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the product code, but no symbols have been decoded twice.

(b) The best column decoding is also within the information section of the

product code. One data symbol has been decoded twice and is copied to

the output buffer.

(c) The second best row decoding does not affect any data symbols of

the product code. However by modifying the confidence metrics of the

remaining column codewords it may still affect the final result.

(d) The second best column decoding intersects two completed row de-

codings. Only the intersecting data symbol is copied to the output buffer.

(e) The third row decoding intersects two previously decoded columns.

Two data symbols are copied to the output buffer.

This process continues until all data symbols have been decoded twice and copied into

the output buffer. �
5.3.8 Iterative Decoding of Product Codes

Although it was stated earlier that SOVA was applied for concatenated coding tech-

niques it was noticed how readily iterative decoding may be applied to the decoder

described in Section 5.3.7. After decoding the channel metric buffer contains the

channel metrics plus the extrinsic information from SOVA, ready to be thea priori in-

formation for the next iteration. Hence repeated decodingson the same channel metric

buffer results in an iterative decoding process.
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Research is a product of an inquisitive mind (andvice versa); given the ease

with which iterative decoding may be applied and the additional increase in coding

gain possible (> 1:5 dB for just 4 iterations with a BCH(64; 51; 6)� BCH(64; 51; 6)

code [Pyndiah, 1998]) the temptation to test this decoder inan iterative fashion could

not be resisted. Some encouraging introductory results aregiven in Section 6.6.4.
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Results and Computer Simulations

6.1 Decoding Complexity Measurements

6.1.1 Implementation Overview

All the decoders discussed in detail in this Thesis were implemented in C++ [Strous-

trup, 1997], a high-level, object-oriented programming language. C++ classes allowed

rapid development and code reuse of important components such as GF and polyno-

mial arithmetic, channel models and trellis decoders. The trellises themselves were

constructed at run-time from a net list contained in aTrellis Description Language

file. The trellis diagrams in this Thesis were computer-generated from the trellis de-

scription files. A high-level implementation allowed a great degree of flexibility in the

number and type of codes which could be implemented.

It should be noted that all the simulations described in thisChapter have been

performed in full, using random data and random errors. For trellis decoding full

149
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implementations of the trellis were used. This is importantsince it allows real im-

plementations of the decoders described. Simulations which consist of transmitting

the all-zeros codeword and/or matched-filters over a limited subset of codewords are

useful performance tools but cannot be used in real systems where the full set of

codewords may be transmitted, for which the trellis diagramis used to exploit the

redundancy in the tree diagram.

6.1.2 Algebraic Decoding Complexity Measurements

Various measurements of complexity exist. One method is to count the number of

codewords decoded in a given time. This is only accurate if all the decoders in

the trial are implemented equally well. Subsequent comparisons can only be made

by using the same hardware, which may not be appropriate for all algorithms, and

which may not always be available. A more formal method is theuse ofO-notation.1

While O-notation is a helpful tool for algorithm designers its use is not without prob-

lems [Sedgewick, 1988, pp. 71–76]. It is a worst-case bound,the constantsc0 andN0

are unknown and may be large. Without knowledge of the constantsc0 andN0 only

the asymptotic performance may be compared.

A more practical method was chosen instead, that of countingthe number of im-

portant mathematical operations. For high-level simulations this is a comparatively

easy task. The relative execution time of algebraic operations is dependent upon the

hardware selected, but, by choosing the appropriate parameters the method can be ap-

1A functiong(N) is said to beO( f (n)) if there exist constantsc0 andN0 such thatg(N) < c0 f (N)
for all N > N0 [Sedgewick, 1988, p. 72].
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plied to any implementation. To enable valid comparisons itwas assumed that each

decoder could be implemented on an AT & T DSP32C digital signal processor. Each

mathematical operation (add (+), subtract (�), multiply (�), divide (�) and com-

pare (=)) was assigned a cost in terms of the number of CPU cycles required for

its execution. Table 6.1 shows the cost of integer, floating-point (real) and Galois

field arithmetic, taken from a DSP32C implementation of a minimum-weight RS de-

coder.2 The DSP32C does not contain instructions for integer multiply, integer divide

or floating-point divide. However, these instructions werenot needed by any of the

decoders implemented.

It was assumed that the GF arithmetic would be implemented using the same poly-

nomial basis as used by the minimum-weight decoder. For fields of characteristic 2

addition and subtraction are identical and can be performedwith an exclusive-OR

logical operation. For the polynomial basis multiplication and division are most eas-

ily implemented by table look-up, which is the method used inTable 6.1. To enable

comparisons between different codes the decoding complexity is converted to abit

complexity, �bit, which is the total decoding complexity divided by the number of bits

output from one decoding.

2From I. Martin, private communication.
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data Operation
type + � � � =
int 1 1 n/a n/a 3

float 2 2 2 n/a 6
GF 1 1 5 5 3

Table 6.1: Relative complexity of algebraic operations (for a DSP32C).

6.2 Trellis Decoding Complexity

6.2.1 Introduction

The complexity of a trellis has previously been measured by various means, number

of states [Muder, 1988], number of vertices [Kasamiet al., 1993a,b] and number of

edges [McEliece, 1996]. However, none of these methods allow trellis decoding com-

plexity to be compared against algebraic decoding complexity. To do so, one method

is to calculate the number of arithmetic operations required [Honary, Markarian, and

Marple, 1995c, 1996, 1997]. Therefore, the trellis decoding complexity can be com-

pared directly with algebraic decoding using the method described in Section 6.1.2.

It should be noted that for integer and floating-point numbers the termcomparison

includes the tests>, <,� and� in addition to equality (=) and their logical inverses.

For compactness comparison is denoted by simply “=”.

It is first assumed that trellis decoding will be performed with the Viterbi algo-

rithm, and then later extended to include SOVA. In the analysis presented here it

is also assumed that log likelihood metrics are used to avoidmultiplication opera-

tions (p. 119); a similar analysis is possible for Euclideandistance metrics, which

were used in [Honary, Markarian, and Marple, 1995c, 1996, 1997]. Following these
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assumptions the complexity can be calculated with the stepsshown below. Note that

only algebraic operations involving the log likelihood metrics are counted, other oper-

ations are designatedoverheads. The overheads, which are very dependent on the ac-

tual hardware or software implementation, are not usually included in considerations

of complexity. One important consequence is that memory accesses to the stored met-

rics can be made for free. However, no assumption as to the type of the log likelihood

metric (i.e., integer or floating-point) is made.

6.2.2 Complexity of the Viterbi Algorithm

Branch Labels

Consider a trellis with a state profileN (t ) = [N0; N1; : : : ; NNc
℄, branch profileB (t ) = [B 1; B 2; : : : ; B Nc

℄ and a (code) label profileL(t ) = [L1; L2; : : : ; LNc
℄.

To calculate the metric associated with one branch at depthj requires the addition ofL j log likelihood metrics, a process which needsL j �1 additions. This is repeated for

all branches at depthj, and for all depthsj = 1; 2; : : : ; Nc. Therefore, in calculating

the branch metrics the total number of additions,N+, is given by

N+ = NcX
j=1

B j (L j � 1) (6.1)

Note that trellises for simpler codes, such as RM and single error-correcting Ham-

ming codes, may ‘share’ branch labels. At a given depth,j, more than one branch

may be labelled with the same code symbols, i.e.,L(Si;t;Sj;t+1) = L(Si0 ;t;Sj0;t+1) whereLt > 1 and at least one of the inequalitiesi 6= i 0; j 6= j 0 holds (i.e., the start and/or end
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vertices must differ). An example of such a trellis is Figure2.4, where for instance

L(S1;1;S1;2) = L(S2;1;S2;2) = [0; 0℄. The branch metrics associated with such branches

will always be identical so it is possible to optimise decoding by saving the tempo-

rary result to memory after the first calculation. Note that this saving is irrelevant for

branches with a code label size of 1; from (6.1) the complexity of evaluating such a

branch is zero. This optimisation is not possible with RS codes and so will not be

considered further.

State metrics

The state metric is the metric for the best partial path from the root to the state in

question. Consider the trellis section given in Figure 6.1.Let the number of branches

entering stateSj;t beNb. The first partial path metric can be calculated as the sum of

the state metric from the preceding level,Si;t�1, and the metric of the branch linking

the two states. This requires one addition. The process is repeated for the remaining

Nb � 1 branches. The best metric is stored as the state metric, finding the best metrics

requiresNb� 1 comparisons. For a linear trellis the number of branches entering each

stateSj;t is the same for allj = 1; 2; : : : ; N t states at deptht. ThereforeNb is given

by

Nb = B tN t

(6.2)
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Si;t�1

Sj;t

branchB(Si;t�1 ! Sj;t )

Figure 6.1: Calculating the state metric.
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The total number of comparisons for all states is given by

N= = NcX
t=1

(Nb � 1)N t= NcX
t=1

�B tN t

� 1

�N t= NcX
t=1

(B t � N t )

(6.3)

For rectangular non-linear codes the same technique can be applied, except thatNb

may not be constant over all vertices at a given depth, requiring an extra summation

over all vertices at deptht.

In some cases it is possible to optimise the state metric calculation. For trellises

which are never truncated the state metric of the root is always zero, therefore no

addition is required in the calculation of the state metric at depth 1. Generally this is

not true for convolutional code trellises (see Example 4.3)since the first states in the

trellis will not have a zero metric. The number of additions required to calculate the

state metrics is given by

N+ = NcX
t=ts

NbN t= NcX
t=ts

B t

(6.4)

wherets = 2 for block code trellises andts = 1 for truncated (convolutional) trellises.
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Total Complexity

The total complexity for trellis decoding using the VA is obtained by combining (6.1),

(6.3) and (6.4).

N+VA = NcX
j=1

B j (L j � 1)+ NcX
t=ts

B t (6.5)

N=VA = NcX
t=1

(B t � N t ) (6.6)

6.2.3 Complexity of SOVA

Using the same technique as above it is possible to calculatethe additional complexity

for SOVA decoding. The calculation of the branch metrics is unchanged. During the

calculation of the state metric the reliability metric mustalso be determined. After

finding the best partial path from theNb possible choices the next best path must be

found, i.e., the best out of the remainingNb � 1 possibilities. However, by arranging

the selection as a binary tree, less thandlog2 Nbe comparisons are needed [Knuth, 1973,

pp. 142–143]. RestrictingNb to be an integer power of 2, only log2 Nb � 1 additional

comparisons are needed at each decision-making state.3 A decision-making state is

defined byNb > 1.

Finally, SOVA must store the difference between the best andnext best paths,

requiring one subtraction per decision-making state. SOVAmust also test if the output

data from the best and next best paths is the same. If not, the difference between the

3For linear codes whereq is an integer power of 2,Nb is always an integer power of 2. This
restriction is met for the majority of all useful codes.



6.2. TRELLIS DECODING COMPLEXITY 158

best and next best paths must be calculated and stored, whichrequires one subtraction

per decision-making state. For the case that both paths would result in the same output1 is stored. The comparison of output data is declared to be part of the overheads for

two reasons. Firstly, it is an integer comparison, not necessarily the same type of

comparison as may be used for comparing two log likelihood metrics. Secondly, for

block code trellises the output data is always different, thus the comparison always

fails and can be eliminated. Therefore the additional number of comparisons and

subtractions is given by

N= = NcX
t=1

8>>><>>>:0 if N t = B tN t

�
log2 Nb � 1

�
otherwise= NcX

t=1

8>>><>>>:0 if N t = B tN t

�
log2

B tN t

� 1

�
otherwise

(6.7)

N� = NcX
t=1

8>>><>>>:0 if N t = B tN t otherwise

(6.8)

The total complexity of decoding a trellis using SOVA is therefore given by combining
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(6.5), (6.6), (6.7) and (6.8)

N+SOVA = NcX
j=1

B j (L j � 1)+ NcX
t=ts

B t (6.9)

N=SOVA = NcX
t=1

8>>><>>>:0 if N t = B tB t + N t

�
log2

B tN t

� 2

�
otherwise

(6.10)

N�
SOVA = NcX

t=1

8>>><>>>:0 if N t = B tN t otherwise

(6.11)

Example 6.1 The RS(7; 3; 5) trellis decoding complexity using VA and SOVA are

compared for the case of an AT & T DSP32C digital signal processor.

The trellis (Figure 4.5) is decoded using integer LL metrics. Properties of the

trellis are as below:

Nc = 3 (6.12)N (t ) = [1; 64; 64; 1℄ (6.13)B (t ) = [64; 512; 64℄ (6.14)L(t ) = [2; 3; 2℄ (6.15)

ts = 2 (6.16)

Using the operation cost as given in Table 6.1 the relative complexities are shown

in Table 6.2. �
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algorithm + � � � = total
complexity

bit
complexity

VA 1728 0 0 0 511 3261 362:33
SOVA 1728 65 0 0 644 3725 413:89

Table 6.2: Comparison of VA and SOVA decoding complexity forRS(7; 3; 5).

Example 6.2 Similar to Example 6.1, calculate the VA and SOVA decoding complex-

ity for the RS(7; 5; 3) trellis (Figure 4.2). Properties of the trellis are as below:

Nc = 7 (6.17)N (t ) = [1; 8; 64; 64; 64; 64; 8; 1℄ (6.18)B (t ) = [8; 64; 512; 512; 512; 64; 8℄ (6.19)L(t ) = [1; 1; 1; 1; 1; 1; 1℄ (6.20)

ts = 2 (6.21)

The decoding complexities are shown in Table 6.3.

algorithm + � � � = total
complexity

bit
complexity

VA 1672 0 0 0 1407 5893 392:87
SOVA 1672 201 0 0 1809 7300 486:67

Table 6.3: Comparison of VA and SOVA decoding complexity forRS(7; 5; 3). �
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6.3 A Comparison of Algebraic Decoders

6.3.1 Error-correction Performance

The algebraic decoders implemented were Euclidean, Berlekamp-Massey and high-

speed step-by-step. All are HDMLD, their performance is therefore upper-bounded

by (2.32). The probability of bit error can be converted fromthe probability of sym-

bol error over anM-ary orthogonal signal set by (adapted from [Sklar, 1988, Equa-

tion 3.127, p. 180])

Pb = M

2(M � 1)
Ps (6.22)

Figure 6.2 compares the error-correction performance of the algebraic decoders

for the RS(7; 5; 3) code over a coherently-demodulated BPSK channel. The BM BER

is about half the bound. (The bound assumes that an incorrectdecoding will result

in all bits erroneous, whereas on average half are correct.)The Euclidean decoding

implementation behaved slightly differently to that of Berlekamp-Massey and HSSBS

in the case of decoder failures. The performance is slightlyworse but still within the

HDMLD bound.

6.3.2 Decoding Complexity

The decoder complexity was measured by using the C++ Galois field class to count the

number of+,�,�,� and= (compare) operations. The decoders were presented with

the samet + 1 sets of codewords, where each set contained 0; 1; : : : ; t errors. The
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average decoding complexity for one codeword is shown for RS(7; 3; 5) (Table 6.4),

RS(7; 5; 3) (Table 6.5), RS(63; 55; 9) (Table 6.6) and RS(255; 223; 33) (Table 6.7).4

For the case of no errors there is no difference in complexity. This is to be expected

since they are all syndrome-based algorithms where the firststep is the syndrome

calculation, for which they share a common method (3.1). On finding no errors no

further work is necessary.

It can be seen that HSSBS decoding is the least efficient of thethree algebraic de-

coders implemented. For codes over small alphabets (Tables6.4 and 6.5) the perfor-

mance is tolerable. With the chosen complexity criteria HSSBS is particularly heavily

penalised for its high use of multiplications. With a different choice of basis for the

GF arithmetic (e.g., logarithmic), where GF multiplications can be implemented more

simply than a table look-up, its complexity performance would improve. Whatever

basis is chosen, the implementation complexity of additionand subtraction are likely

to be approximately equal to each other,5 as are multiplication and division. How-

ever, combining the number of additions with subtractions and multiplications with

divisions reveals that HSSBS will always be more complex than either Euclidean or

Berlekamp-Massey decoding.

For codes over large alphabets the situation worsens dramatically (see Table 6.6);

there are an exponentially increasing number of possible error values for a trial-and-

error method to search. It was not possible to include complexity results for HSSBS

in Table 6.7. Though HSSBS is an improvement over the original step-by-step algo-

4In the tables the values are printed with limited precision,but the complexity is based upon the full
numerical precision.

5Exactly equal for fields of characteristic 2.
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number
of errors

+ � � � = total
complexity

bit
complexity

0 24.53 0.00 21.03 0.00 0.00 129.69 14.41
1 33.21 9.69 28.66 5.00 8.41 236.44 26.27
2 58.87 21.46 49.12 12.21 25.66 463.91 51.55

(a) Berlekamp-Massey.

number
of errors

+ � � � = total
complexity

bit
complexity

0 24.53 0.00 21.03 0.00 0.01 129.72 14.41
1 40.52 23.00 48.13 8.00 14.89 388.84 43.20
2 72.21 42.87 73.91 16.14 51.03 718.42 79.82

(b) Euclidean.

number
of errors

+ � � � = total
complexity

bit
complexity

0 24.53 0.00 21.03 0.00 0.01 129.72 14.41
1 50.44 19.60 90.64 0.00 15.11 568.57 63.17
2 92.14 47.32 194.38 0.00 51.32 1265.33 140.59

(c) High-speed step-by-step.

Table 6.4: Complexity for decoding RS(7; 3; 5).
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number
of errors

+ � � � = total
complexity

bit
complexity

0 12.22 0.00 10.48 0.00 0.00 64.61 4.31
1 18.84 7.73 16.10 5.00 8.47 157.47 10.50

(a) Berlekamp-Massey.

number
of errors

+ � � � = total
complexity

bit
complexity

0 12.22 0.00 10.48 0.00 0.00 64.61 4.31
1 22.11 15.00 25.51 8.00 8.88 231.28 15.42

(b) Euclidean.

number
of errors

+ � � � = total
complexity

bit
complexity

0 12.22 0.00 10.48 0.00 0.00 64.61 4.31
1 41.28 15.21 69.34 0.00 31.05 496.34 33.09

(c) High-speed step-by-step.

Table 6.5: Complexity for decoding RS(7; 5; 3).
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number
of errors

+ � � � = total
complexity

bit
complexity

0 498 0 490 0 6 2962 8.98
1 506 14 498 5 13 3072 9.31
2 609 26 572 13 62 3743 11.34
3 685 45 634 24 142 4445 13.47
4 866 70 774 38 287 5855 17.74

(a) Berlekamp-Massey.

number
of errors

+ � � � = total
complexity

bit
complexity

0 498 0 490 0 6 2962 8.98
1 522 39 537 8 32 3385 10.26
2 653 87 639 17 132 4414 13.38
3 759 132 732 27 292 5562 16.85
4 961 173 893 38 536 7393 22.40

(b) Euclidean.

number
of errors

+ � � � = total
complexity

bit
complexity

0 498 0 490 0 6 2962 8.98
1 2912 4204 11474 0 276 65314 197.92
2 4467 6895 18513 0 719 106084 321.47
3 6219 9929 26449 0 1358 152470 462.03
4 20149 34070 89589 0 3546 512802 1553.95

(c) High-speed step-by-step.

Table 6.6: Complexity for decoding RS(63; 55; 9).
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number
of errors

+ � � � = total
complexity

bit
complexity

0 8115 0 8086 0 50 48696 27.30
1 8159 38 8126 5 58 49022 27.48
2 8475 51 8354 13 166 50858 28.51
3 8875 70 8653 24 394 53508 29.99
4 9417 95 9074 38 766 57368 32.16
5 10303 126 9782 55 1344 63647 35.68
6 11096 163 10441 75 2088 70103 39.30
7 12260 205 11425 98 3049 79227 44.41
8 12912 254 12005 124 4127 86189 48.31
9 13740 309 12728 153 5358 94526 52.99

10 13877 369 12879 184 6626 99441 55.74
11 16338 435 15012 218 8279 117763 66.01
12 17019 509 15657 257 10033 127199 71.30
13 18689 585 17150 296 12029 142591 79.93
14 19479 670 17872 341 14164 153709 86.16
15 21750 760 19934 387 16587 173877 97.46
16 23987 855 21966 435 19294 194727 109.15

(a) Berlekamp-Massey.

Table 6.7: Complexity for decoding RS(255; 223; 33).
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number
of errors

+ � � � = total
complexity

bit
complexity

0 8115 0 8086 0 50 48696 27.30
1 8222 135 8285 8 149 50265 28.18
2 8687 328 8663 17 524 53985 30.26
3 9234 492 9110 27 1190 58979 33.06
4 9920 655 9674 38 2165 65632 36.79
5 10937 810 10514 50 3496 75054 42.07
6 11857 966 11302 63 5139 85064 47.68
7 13148 1126 12413 77 7143 98154 55.02
8 13915 1279 13108 92 9393 109375 61.31
9 14851 1427 13940 108 11915 122260 68.53

10 15097 1580 14200 125 14594 132083 74.04
11 17656 1722 16429 143 17762 155523 87.18
12 18403 1850 17144 161 21104 170090 95.34
13 20184 2011 18747 181 24804 191251 107.20
14 21064 2157 19559 203 28736 208238 116.73
15 23401 2291 21689 224 33021 234320 131.35
16 25699 2417 23781 247 37649 261204 146.41

(b) Euclidean.

Table 6.7: Complexity for decoding RS(255; 223; 33).
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rithm [Massey, 1965] it is not well suited to decoding multi-level codes over large

alphabets. For these reasons further work on HSSBS was not pursued.

The average decoding complexity is a function of the probability of symbol errors,

which in turn is dependent on the modulation scheme, the typeof noise and the ra-

tio Eb=N0. Figure 6.3 compares the decoding complexities as a function of Eb=N0 for

the RS(7; 5; 3) code over a coherently-demodulated BPSK channel in the presence of

AWGN. At high values ofEb=N0, where received symbol errors are uncommon, the

complexity is almost constant and is dominated by the cost ofthe syndrome calcula-

tion.

6.4 Two-Stage Decoding

6.4.1 Decoder Performance

The decoding performance of TSD has been evaluated by computer simulation for

RS(7; 3; 5) and RS(7; 5; 3) codes. For each case the performance of both HD and

SD subtrellis prediction was measured. The simulated modulation scheme was non-

coherently demodulated 8FSK, over an AWGN channel. Unlike the other simulations

Euclidean distance metrics were used, represented by floating-point values.

Figure 6.4 shows the performance of RS(7; 3; 5) with HD choice of subtrellis. The

goal of this near-optimal decoder is to improve upon the performance of HDMLD,

but with a complexity lower than SDMLD. To obtain an appreciable coding gain the

majority of the subtrellises must be decoded (� 6) so that the complexity saving is

reduced. (It should be noted however that a less noisy channel is required for HDMLD
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to give any coding gain.) Figure 6.5 shows the performance when SD information

is incorporated into the subtrellis selection, by using “soft GF” algebra. The error-

correction performance is much improved, solely as a resultof more reliable subtrellis

predictions. Decoding just 3 of the 8 subtrellises results in a performance very close

to optimum.

Similarly Figures 6.6 and 6.7 show the performance of RS(7; 5; 3) for HD and

SD choice of subtrellis respectively. For this code subsetsof the trellis are selected

based on the prediction of two information symbols, so it is of little surprise that> q symbols are required for good performance. (With� q symbols there may not

be the opportunity to try a second symbol value for the more confident prediction.)

Again, evaluation of the subtrellis predictors with soft GFarithmetic considerably

improves the result.

6.4.2 Decoder Complexity

Two-stage decoding has both algebraic and combinatorial operations. The first stage

uses GF arithmetic. By inspection of the subtrellis symbol predictors the number of

addition and multiplication operations is easily obtained. Since the subtrellis predic-

tors are known at design time, the prediction process can easily be optimised to remove

unnecessary multiplications when the coefficient is 1. By inspection of Table 4.2 the

first decoding stage for RS(7; 3; 5) needs 52 GF additions and 67 GF multiplications.

Thus the complexity for stage 1 is 52� 1+ 67� 5= 387 CPU cycles.

The second decoding stage is the Viterbi decoding ofNst subtrellises. It is assumed

that the trellis will be decoded using the log likelihood values, which may be expressed
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either in floating-point numbers or converted to integer metrics (Section 5.1.2). For

a coset trellis, such as Figure 4.5, the decoding implementation and calculation of its

complexity is relatively straightforward. Each subtrellis is independent of the others

so they can be decoded in isolation (in parallel even, if required).

Although the two-stage decoding simulations did not use LL metrics, the complex-

ity analysis presented below is for the case of LL metrics. This enables the complexity

measurements to be compared with the other decoders simulated in this Chapter.

Table 6.8 shows the complexity to decode the RS(7; 3; 5) coset trellis (Figure 4.5),

for the case of HD subtrellis prediction. Note that selecting the best subtrellis from the

Nst decoded subtrellises requiresNst�1 comparisons. Table 6.8 includes the additional

Nst� 1 comparisons. The bit complexity to decode the full minimalRS(7; 3; 5) trellis

is 362:33 (Table 6.2); forNst � 7 decoding is simplified.

For a syndrome trellis, such as Figure 4.2, the decoding complexity is more dif-

ficult to analyse because the trellis does not contain independent subtrellises. Prior

knowledge (or prediction) of information symbols can, however, be used to limit de-

coding to only a subset of the trellis. The trellis vertices at depth 3 can be thought of

as storing the values ofu2 andu3. From the generator matrix (4.22) it can be seen that

the branchesB(S3;i ! S4; j ) are labelled with

v4 = u2 + � 4u3 + � 3u4 (6.23)

The new information, responsible for the trellis branching, isu4, while the information

from past subcodes (u2 andu3) was effectively stored in the vertex number. When the
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Nst + � � � = stage 2
complexity

TSD
total

TSD total
per bit

1 272 0 0 0 63 461 848 94:22
2 544 0 0 0 127 925 1312 145:78
3 816 0 0 0 191 1389 1776 197:33
4 1088 0 0 0 255 1853 2240 248:89
5 1360 0 0 0 319 2317 2704 300:44
6 1632 0 0 0 383 2781 3168 352:00
7 1904 0 0 0 447 3245 3632 403:56
8 2176 0 0 0 511 3709 4096 455:11

Table 6.8: Complexity versus number of subtrellises decoded for TSD of RS(7; 3; 5).

values foru2 and u3 are known (or can be predicted) only those paths which pass

through the relevant vertex at depth 3 need be decoded. This technique is similar

to forced-state decodingor state pinning[Hagenaueret al., 1994, p. 245], though

with the aim of reducing decoder complexity instead of increasing the error-correction

performance of a feedback decoder.

Figure 6.8 shows the possible trellis paths for the caseu2 = 0 andu3 = 0, while the

possible paths for the caseu2 = 1 andu3 = 2 are shown in Figure 6.9. Some branches

are common whatever values ofu2 and u3 are selected. This is true for branches

at depths 1, 6 and 7, which require decoding only once. Figure6.10 highlights the

common branches. In the worst case, as shown, no branches at depths 2; 3; : : : ; 5

are common. The complexity of decoding depths 2; 3; : : : ; 5 for one combination of

u3; u4 has been considered as1
64

of the total complexity of decoding depths 2; 3; : : : ;
5. When 8 or more combinations ofu3; u4 are decoded some of the central branches

are guaranteed to be common, so that the worst-case analysisover-emphasizes the

complexity. The number of GF additions required for the prediction of u2 andu3 are 36
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and 40, respectively, while the number of multiplications are 39 and 44, respectively.

Table 6.9 shows the decoding complexity using the worst-case analysis for selected

values ofNst.

Nst + � � � = stage 2
complexity

TSD
total

TSD total
per bit

1 97 0 0 0 28:88 183:62 674:62 44:98
2 122 0 0 0 51:75 277:25 768:25 51:22
8 272 0 0 0 189:00 839:00 1330:00 88:67

16 472 0 0 0 372:00 1588:00 2079:00 138:60
24 672 0 0 0 555:00 2337:00 2828:00 188:53
32 872 0 0 0 738:00 3086:00 3577:00 238:47
44 1172 0 0 0 1012:50 4209:50 4700:50 313:37
56 1472 0 0 0 1287:00 5333:00 5824:00 388:27
64 1672 0 0 0 1470:00 6082:00 6573:00 438:20

Table 6.9: Complexity versus number of subtrellises decoded for TSD of RS(7; 5; 3).
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Figure 6.8: Subset of RS(7; 5; 3) trellis foru2 = 0; u3 = 0.
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Figure 6.9: Subset of RS(7; 5; 3) trellis foru2 = 1; u3 = 2.
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Trellis 1 only
Trellis 2 only
Common branches

Figure 6.10: Subsets of RS(7; 5; 3) trellis foru2 = f0; 1g, u3 = f0; 2g.
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6.5 SOVA Applied to the Meteosat II Satellite System

6.5.1 Introduction

The European Space Agency is funding a replacement series ofgeosynchronous satel-

lites, Meteosat II, which will be used for meteorological purposes. The satellites will

be responsible for transmission of weather images to a ground station. The processed

information is then transmitted back up to the satellites for retransmission to fee-

paying end users. In its simplest form the Meteosat II – Earthretransmission channel

can be viewed as a concatenated coding system, with an RS(255; 223; 33) outer code

and a (2; 1; 7) convolutional inner code as shown in Figure 2.3. An interleaver of depth

d = 4 is used between inner and outer codes. The proposed system also includes en-

cryption, compression, randomisation and synchronisation. None of these affect the

performance of the error control coding and can be ignored. This concatenated code

is also used by NASA for the Planetary Data Standard.

Potential users are spread over a wide geographical area. Users at the edges of the

defined service area are those most likely to have most difficulty in reception. There is

of course a trade-off between the cost of increasing the transmitter power, increasing

the complexity of the users’ receiving equipment and the defined geographical limits

for which satisfactory reception can be expected. If a meanscan be found to improve

the channel error-rate for users in marginal locations greater commercial benefits exist,

either by enlarging the service area or reducing the transmitter power. An investigation

was made into the benefits of applying SOVA to improve the system performance.

Replacing the inner Viterbi decoder with a soft-output Viterbi decoder allowed SD
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decoding of the outer (RS) code. The original system is denoted bySD-HDand the

modified one bySD-SD.

6.5.2 Simulated System Details

The performance of SOVA in the Meteosat II – Earth high/low rate user station link

was measured by computer simulation. An overview of the simulated system is shown

in Figure 2.3 and the specifications are given in Table 6.10. The differences between

the simulated and actual systems are discussed below.

Convolutional n 2 bits
code: k 1 bit

K 7
generator polynomial:

g1(x) 1+ x+ x2 + x3 + x6

g2(x) 1+ x2 + x3 + x5 + x6

trellis length 28, 35 or 42

RS code: n 7 symbols
k 5 symbols
d 3 symbols

g(x) 1+ � 4x+ � 3x2

GF size 8
GF primitive polynomial 1+ x

symbol width 3 bits

Block interleaver: depth 4
width 7 RS symbols (21 bits)

Modulation/ type BPSK
demodulation: channel AWGN

demodulation coherent
quantisation resolution 3 bits

Table 6.10: Specifications of simulated Meteosat II system.
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Modulation/Demodulation

The simulated system modelled the transmission of equally-likely random data over a

BSC with AWGN and coherent BPSK demodulation. The system proposed by ESA

is switchable between BPSK and QPSK modulation. However, BPSK and QPSK

have identical BER performance [Sklar, 1988, p. 172] so onlyBPSK modulation was

modelled. The simulated demodulator output was quantised into 8 levels.

Synchronisation

The simulated system assumed synchronisation. This assumption can be made since

without synchronisation no error control coding can be applied. Whilst the error con-

trol decoders are important for ensuring and maintaining synchronisation, introduction

of SOVA will not worsen the synchronisation behaviour.

Data randomisation

Data randomisation is recommended for the following reasons [Dai, 1995, p. 3.2-18]:� adequate symbol transition density in the data stream� smooth spectrum shaping� with QPSK modulation: standard I/Q demultiplexing scheme possible� does not introduce degradation� reliable demodulator/synchroniser performance
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Data randomisation was not included in the simulated systemsince synchronisa-

tion was assumed. The reasons for including data randomisation are for synchronisa-

tion purposes only, it has no effect on the error control codes.

Convolutional Code and Decoder

The convolutional code used for the computer simulation wasthe (2; 1; 7) code spec-

ified by the CCSDS. The decoder used was either a SOVA decoder,or a conventional

VA trellis decoder, both operated in the trace-back implementation. Decoding was per-

formed over trellises of depths 28 (4K), 35 (5K) and 42 (6K). A single section of the

trellis is shown in Figure 6.11. The quantisation resolution modelled was 8 levels, the

maximum resolution given by the frame synchroniser output [Dai, 1995, p. 3.2-13].

Greater resolution would provide little extra performance, simulation studies [Heller

and Jacobs, 1971] have shown that 8 level quantisation resulted in only 0:25 dB reduc-

tion in coding gain with respect to the unquantised case.

Reed-Solomon Code and Decoder

To measure the coding gain SOVA can produce it is necessary that the RS decoder used

is capable of SDMLD. Failing to use such a decoder will not produce an independent

measure of the coding gain possible by introducing SOVA, butinstead a combination

of the gain by SOVA and the loss from the sub-optimal decoder.

For the simulation the RS(255; 223; 33) code over GF(256) was replaced by the

RS(7; 5; 3) code over GF(8). This code was chosen because it is a similar rate to

RS(255; 223; 33) and readily decoded with VA over the trellis shown in Figure 4.2.
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Figure 6.11: One section of the (2; 1; 7) convolutional code trellis.
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The trellis was labelled with the binary mapping of the RS symbols (using polyno-

mial representation), thus avoiding the need to map symbolsand symbol reliabilities

from binary to GF(8). The RS Viterbi decoder operated in trace-back mode. For HD

decoding of the outer code a Berlekamp-Massey decoder was used.

Interleaver and De-interleaver

The interleaver/de-interleaver specified by the CCSDS has depthd = 4. The width

of the interleaver was reduced from 255 8-bit symbols to 7 3-bit symbols to conform

with the change of outer (RS) code. The interleaver was arranged to operate on the

RS symbols, not on individual bits, and thereby preserved the burst-error correction

capability of the RS code.

6.5.3 Simulation Results

Results from the simulated system are presented over theEb=N0 range 0–7 dB. The

CCSDS coding standard does not specify the path storage to beused for a Viterbi de-

coder (nor even the decoding method to use!). It is assumed that the trellis length will

be in the range 4K to 6K [Heller and Jacobs, 1971]. Results are given for convolutional

trellis lengths 28 (4K), 35 (5K) and 42 (6K).

The concatenated coding scheme provides extremely high error-correction capa-

bility above 4:5 dB, requiring some results to be extrapolated. On the graphs dotted

lines indicate results obtained from extrapolated data. The uncoded curve was calcu-

lated by theoretical means, and is in agreement with the simulated uncoded curve (not

shown). The probability of bit error for uncoded data transmitted with BPSK over a
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BSC containing AWGN is given by [Sklar, 1988, p. 166]

Pb = Q

 s
2Eb

N0

!
(6.24)

whereQ(x) is the complementary error function.

Additional coding gain (dB)
BER depth= 28 depth= 35 depth= 42
10�4 0:7 0:9 1:0
10�5 0:9 1:1 1:4
10�6 1:1 1:5 1:8

Table 6.11: Additional coding gain achieved through use of SOVA.

Figure 6.12 shows the performance of both SOVA and VA decoding for a con-

volutional trellis of depth 28. At a BER of 10�5 SOVA decoding provides a coding

gain increase of approximately 0:9 dB. The “break-point” at which coding becomes

beneficial is reduced fromEb=N0 = 3:6 dB to Eb=N0 = 3:1 dB. The same results

for a convolutional trellis of depth 35 are shown in Figure 6.13. At a BER of 10�5

SOVA displays a coding gain over the VA of 1:1 dB, while the break-point is reduced

from Eb=N0 = 3:4 dB to Eb=N0 = 2:8 dB. For a trellis of depth 42 (Figure 6.14),

the difference in coding gain has risen to 1:4 dB at a BER of 10�5. The break-point is

reduced fromEb=N0 = 3:3 dB toEb=N0 < 2:8 dB.

6.5.4 Decoder Complexity

The total system complexity was calculated from the sum of the complexities for each

of the component decoders. Only operations directly associated with decoding were
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included. Additional work, such as that performed by the de-interleaver, was termed

overheads because the exact complexity is very dependent onthe exact hardware or

software implementation.

The decoding complexity for the inner (2; 1; 7) convolutional code was calculated

using the procedure given in Section 6.2. Table 6.12 detailsthe VA complexity for

trellises truncated to depths 28, 35 and 42. Similarly, the decoding complexity using

SOVA is shown in Table 6.13. Each decoding operation produces just one binary bit

of information.

The complexity for VA and decoding of the outer RS(7; 5; 3) code was calculated

in Example 6.2. A BM decoder was used for HD decoding of RS(7; 5; 3), for which

the complexity is given in Figure 6.3. The complexity of the BM decoder is dependent

uponEb=N0; the results are quoted for an output BER of 10�4.

The complexity of decoding the outer RS(7; 5; 3) code with the VA can be obtained

from Table 6.3, while the complexity for the original BM decoder can be calculated

from Figures 6.2 and 6.3. At a BER of 10�4 the bit complexity of the BM decoder

is 4:52. Each outer decoding operation results in 15 binary bits of data. On average,

n2

k2
= 7

5
inner decoding operations are required for every (binary) data bit output by the

concatenated system. The total complexity, for both the original system (SD-HD) and

the improved system (SD-SD) is shown in Table 6.14.
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trellis
length

+ � � � = total
bit

complexity
28 3808 0 0 0 1792 9184 9184
35 4760 0 0 0 2240 11480 11480
42 5712 0 0 0 2688 13776 13776

Table 6.12: Complexity for VA decoding of the convolutional(2; 1; 7) code.

trellis
length

+ � � � = total
bit

complexity
28 3808 1792 0 0 1792 10976 10976
35 4760 2240 0 0 2240 13720 13720
42 5712 2688 0 0 2688 16464 16464

Table 6.13: Complexity for SOVA decoding of the convolutional (2; 1; 7) code.

trellis bit complexity
length SD-HD SD-SD

28 12862 15759
35 16077 19601
42 19291 23442

Table 6.14: Comparison of decoding complexity for the Meteosat II concatenated
coding scheme.
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6.6 RS Product Code Decoding

6.6.1 The Transmission Channel

The transmission channel used in the simulated system was a coherently-demodulated

binary phase-shift keying channel with additive white Gaussian noise, transmitting

equally-likely data. At the demodulator the soft outputs were quantised to 8 levels.

To simplify the implementation the RS(7; 5; 3)�RS(7; 5; 3) product code operated on

RS symbols, not binary bits. Unlike the SOVA system described in Section 6.5 it was

therefore not possible to use a binary-mapped RS trellis. However the same binary

mapping and combination of LL metrics which would have been performed by the

trellis was instead performed at the output of the demodulator. This mapping is shown

in Table 6.15.

GF(8) bit LL metric
value representation construction

0 000 `01 + `02 + `03

1 001 `01 + `02 + `13� 010 `01 + `12 + `03� 2 011 `01 + `12 + `13� 3 100 `11 + `02 + `03� 4 101 `11 + `02 + `13� 5 110 `11 + `12 + `03� 6 111 `11 + `12 + `13

Table 6.15: Binary to GF(8) mapping for LL metrics.

The RS decoders were presented with symbols over GF(q). For each symbol there

wereq LL metrics. Other than for the implementation changes described above this

channel is identical to that used by the SOVA system (Section6.5.2), and later, com-
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parisons between the two systems will be made. Likewise, thesimulated system as-

sumed synchronisation.

6.6.2 Comparison of Cascade Decoding Algorithms

Decoding Performance

Four different variations on the cascade decoder were implemented. The first and most

basic is HD decoding of rows, followed by HD decoding of columns (denoted bycas-

cade HD-HD). As expected this decoder performed worst. A standard improvement

is to add SD decoding to the first decoding stage (cascade SD-HD). By considering

the channel state information an improvement of approximately 1:5 dB over cascade

HD-HD was obtained (Figure 6.15).

By introducing advanced techniques such as SOVA (Section 5.2) the column de-

coding stage may also use SD information and reap the benefitsby reducing the BER

further still. Two variations of the cascade SD-SD decoder were implemented. In the

first (cascade SD-SDa), the column decoding used only the soft output from SOVA

(the extrinsic information) whilst the second used the sum of the SOVA metric and

the channel state information (i.e., extrinsic+ channel state information). As cascade

SD-SDa does not make use of all the information available it performed worse than

cascade SD-SDb, but it is shown in Figure 6.15 to indicate therelative gains due to

the extrinsic information and the channel state information.

By taking advantage of the extrinsic information availablefrom SOVA and the

channel state information the cascade SD-SDb decoder is able to perform best of all
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the cascade decoders implemented. It has a coding gain of> 1 dB over cascade SD-

HD at a BER of 10�6 (Figure 6.15), and with respect to cascade HD-HD the coding

gain is approximately 2:2 dB.

Decoding Complexity

The cascade decoding complexity was measured by combining the decoding com-

plexities of the BM, VA and SOVA decoders. The complexity values are quoted for

a BER of 10�4, because the complexity of the algebraic decoders (Section6.3.1) is a

function of the inputEb=N0 ratio. BM decoding was chosen because it is the least com-

plex HD decoder implemented in this work. Table 6.16 detailsthe complexity for the

cascade decoders described above. Only operations performed by the row or column

decoders are included in Table 6.16, other operations are deemed overheads and are

not included. The complexity of SD-SDa and SD-SDb are almostidentical, SD-SDb

is slightly more complex because it requires extra additions to sum the channel state

and extrinsic information.

Decoder Number of decodings
version BM VA SOVA total bit total
HD-HD 12 0 0 812 10:83
SD-HD 5 7 0 41589 554:53
SD-SDa 0 5 7 80565 1074:20
SD-SDb 0 5 7 80600 1074:67

Table 6.16: Comparison of complexity for cascade decoding algorithms.
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6.6.3 Comparison of Alternating Row-Column Algorithms

Decoding Performance

Two variants of the alternating row-column decoder (Section 5.3.7) were implement-

ed and evaluated. Firstly, with just an initial sort of the row and column codeword

confidences (i.e., no re-sort), and also with the row/columncodeword confidences re-

calculated and re-sorted after each row/column decoding. Both variants used SOVA,

not the successive erasures decoding used in [Bateet al., 1986]. In Figure 6.16 the

error-correction performance is compared with uncoded transmission and the ‘stan-

dard’ cascade SD-HD decoder. It can be seen that the ARC decoders provide an extra

0:8 dB coding gain relative to the standard cascade SD-HD decoder. Interestingly, no

significant difference in performance of the two variants isdiscernible. This shows

that recalculation and re-sorting of the row and column codeword confidences is not

necessary.

Decoding Complexity

The decoding complexity may be computed by considering the average number of row

and column decodings required. The average number of row andcolumn decodings

is given by n1+k1

2
and n2+k2

2
respectively. To decode a product code with RS(7; 5; 3)

row/column codes the bit complexity is 1168:00, not significantly different from that

of the cascade SD-SDb decoder (�bit = 1074:67).
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6.6.4 Results on Iterative Decoding of Product Codes

In Figure 6.17 the decoding performance of ARC decoding is compared for the cases

of one and four iterations. Again, no benefit is found from re-sorting the row and

column codeword confidences after each decoding. It can be seen that the effect of

four iterations is to provide an extra 1:1 dB coding gain. The decoding complexity

is simply i times greater, i.e., for the decoder in Figure 6.17 with 4 iterations the bit

complexity is 4672.
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Chapter 7

Conclusions and Further Work

7.1 Original Contributions

I claim the following areas of research as original contributions:� Two-stage decoding of RS codes (Section 4.2.5).� Soft Galois field arithmetic (Section 4.3).� Alternating row-column decoding of product codes using SOVA (Section 5.3.7).� Trellis decoding complexity measured by the number of additions and compar-

isons (Section 6.2).

While McEliece has also introduced a similar method [McEliece, 1996] the re-

sults of my work were first published in 1995 (initially for Euclidean metrics).

Subsequently the work was extended to LL metrics and presented in the form

of trellis parameters. This work was independent of [McEliece, 1996]. Further-

203
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more, Section 6.2 details both optimisations not given in [McEliece, 1996] and

also the decoding complexity for SOVA.� The computer simulation of the new decoding algorithms to measure both de-

coder performance and complexity. In addition, the computer simulation of the

Meteosat II – Earth retransmission channel using SOVA.

7.2 Decoding Complexity

In Section 6.1.2 a technique was introduced to measure and compare decoding com-

plexity for algebraic decoders. It was successfully applied to the Berlekamp-Massey,

Euclidean and high-speed step-by-step decoders. The difference in complexity for

the Berlekamp-Massey and Euclidean decoders was small, when correcting errors the

Berlekamp-Massey algorithm was typically 20–25% more efficient. Both [Wicker,

1994, p. 225] and [MacWilliams and Sloane, 1978, p. 369] citethe fact that the Ber-

lekamp algorithm is the slightly more efficient of the two.

Transforming trellis complexities into the number of algebraic operations required

for its computation (Section 6.2) has been a very successfulapproach for compar-

ing trellis and algebraic decoding techniques. In particular, without such a method it

would not have been possible to ascertain what complexity benefits actually existed

in two-stage decoding. Nor would the comparisons between the Meteosat II system

and the product code algorithms, as they are considerably different in their approach.

McEliece has used a similar approach to calculating trelliscomplexity [McEliece,

1996]. However, his published results apply to the BCJR trellis only while the method
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described in Section 6.2 is applicable to any linear code trellis. With trivial modifica-

tion (as suggested) the work in this Thesis can also be applied to rectangular non-linear

codes. McEliece also applies equal weighting to the operations “addition” and “taking

the minimum”, whereas it was shown (Table 6.1) that such operations are not neces-

sarily of equal complexity. Another significant differenceis the inclusion of certain

important optimisations, such as shared labels and decoding non-truncated trellises.

7.2.1 Shared Labels and Trellis Complexity

It would appear from the literature that no work has been carried out on the subject

of reducing trellis (decoding) complexity by using the concept of shared branch la-

bels (p. 153). McEliece states [McEliece, 1996, p. 1077]

It can happen that different codewords will produce common edges, i.e.,

edges with the same values of init(e), fin(e) and�(e).1 Such “shared”

edges are only counted once in the trellis. It is this sharingof edges that

makes the BCJR trellis an efficient graphical representation of the code.

This is however a feature of applying separability2 [Sidorenkoet al., 1999] to a code

(be it linear or non-linear) to produce the optimum trellis;it is not the same as the

label sharing described on p. 153, where the start and/or endnodes differ. It was

stated that codes such as RM and single error-correcting Hamming codes could share

labels (which is apparent by inspection of their trellises)but that it is not possible for

1McEliece uses the notation init(e), fin(e) and�(e) to refer to the start state, end state and labelling,
respectively, of a trellis branch (edge).

2Also termedrectangularity.
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RS codes. No proof was offered for either statement and this is an area where further

work is required.

7.3 High-speed Step-by-step Decoding

Example 3.5 highlights the tortuous route by which HSSBS decoding sometimes op-

erates, particularly when compared with the efficiency in which both Euclidean and

Berlekamp-Massey algorithms perform the same task (Examples 3.3 and 3.4 respec-

tively). HSSBS decoding is very inefficient at correcting the t-th error because of its

dependence of finding a codeword at a distance of 2t+ 1 from the received codeword.

It should be noted that if HSSBS had corrected all symbol locations only 40 attempts

would have been required to correct all errors (instead of 52). For sake of complete-

ness, further study into the trade-off between decoding allsymbols and decoding only

the information symbols, as a function ofEb=N0, could be made. However, HSSBS is

not (and probably never will be) an efficient algorithm for decoding multi-level codes

over large alphabets, as the results in Section 6.3.1 clearly show.

7.4 Two-stage Decoding

The premise of two-stage decoding was that the decoding complexity could be reduced

from � 0� 00 to � 0+� 00, with only minor loss of performance. For the case of RS codesit

was shown that a trellis-based system for the selection of second-stage subtrellises was

not possible. This unfortunately increased the complexityof the first decoding stage,

but complexity savings are still possible (Section 6.4.2).For the case of HD subtrellis
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prediction it also reduced the performance. A trellis-typemethod would seem a more

natural method to use for the selection of which subtrellis(es) to decode.

It is suggested that for two-stage decoding of RS codes future work might be di-

rected towards the use of the max-sum algorithm [Forney, 1997]. The subtrellis pre-

diction can therefore employ Tanner graphs [Tanner, 1981] as a means of preserving

SD information. Investigation should be carried out to see if such a scheme is any

more efficient that the ‘soft’ GF arithmetic implemented in Section 4.3.

An alternative direction is to consider the possibility of decoding a variable number

of subtrellises, instead of the fixed but adjustable number currently decoded. Such a

scheme would require a termination condition. Aguado and Farrell employed the Fano

metric [Fano, 1963] for their reduced search trellis decoding algorithm while Shin and

Sweeney used their own reference path metric to discard candidate paths. A third

option for deciding when to stop decoding subtrellises might be the SOVA reliability

metric. Whatever metric were to be employed the advantages of such a scheme could

be improved error control performance and reduced complexity.

7.5 Comparison of Decoders for Concatenated Codes

For the case of the modified Meteosat II system it can be seen that SOVA provides

a gain of 1:1–1:8 dB, dependent upon the depth of the trellis decoded for the convo-

lutional code (Figures 6.12–6.14). The commercial benefitsof a 1:8 dB increase in

coding gain are considerable. For example, the geostationary satellite can transmit

a signal 1:8 dB weaker, which requires less power and thus smaller solarcells and
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batteries. The weight saved translates to cheaper launch costs for the satellite. Al-

ternatively, the receiving dish be may reduced in area by 33%(so that a 0:8 m dish

can be used where a 1 m dish was previously required). Anotheroption is to increase

the defined service area and accrue greater revenue from an enlarged number of users.

For the system simulated, the increase in decoding complexity to achieve such a large

gain was very modest indeed, only 22%. An alternative comparison is that SD-SD

decoding over a convolutional trellis of length 28 has approximately the same com-

plexity as SD-HD decoding over a trellis of length 35, but performed better than the

most complex SD-HD decoder evaluated.

The simulated transmission channel for both the Meteosat IIsatellite system and

the RS product code was coherently-demodulated BPSK. Therefore their performance

may be compared directly. The best of the Meteosat II, and RS product code decoders

have been included together in Figure 7.1.

Firstly, it can be seen that the performance increase in applying SOVA to the (mod-

ified) Meteosat II system is 1:8 dB at a BER of 10�6. For cascade decoding of a prod-

uct code the increase is only just over 1 dB. This may be explained by two factors.

The inner code of the Meteosat II system is stronger (but morecomplex to decode).

Also, the outer RS(7; 5; 3) code of the modified Meteosat II system was allocated a

reliability metric for each input bit. For the cascade decoder it was necessary to make

the assumptions that the SOVA metric applied equally to all symbols, and that the

discarded values were equally unlikely (p. 137). This lead to only 7 SOVA reliability

metrics being available, which were ‘recycled’ for each of the 5 column decodings.

It is interesting to note that the Meteosat II decoder performs better than the RS
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product code, for both SD-HD and SD-SD cases. Massey’s assertion (p. 117) that

convolutional codes should be used as the first stage of decoding has been shown to

be correct for the cases simulated. Such increase in performance comes at a price

of higher complexity, which must not be forgotten. The Meteosat II SD-SD decoder

shown in Figure 7.1 is� 20 times more complex than one iteration of the ARC SD-SD

decoder.

7.6 Iterative Decoding of Product Codes

The brief foray into iterative decoding (Sections 5.3.8 and6.6.4) has provided some

excellent results. Without any additional work the alternating row-column decoder

was instructed to execute four decodings instead of one. At aBER of 10�5 the coding

gain increased by> 1:1 dB. While the complexity also increased by a factor of four

the bit complexity was still less than that of the modified Meteosat II system by a

factor of� 5. Further work should be undertaken to ascertain the optimum number of

iterations.

The increase in coding gain was less than that found in [Pyndiah, 1998], where

a BCH(64; 51; 6)� BCH(64; 51; 6) code provided an increase of> 1:5 dB for just 4

iterations. There are several reasons for this, not just thechange of code or increase

in code alphabet size. Pyndiah used aweighting factor, � , to scale the amount of

extrinsic information included by each iteration,m, where� (m) = � 0:0 0:2 0:3 0:5 0:7 0:9 1:0 1:0 � (7.1)
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With such a scheme it ensures the extrinsic information is added slowly, to help the

decoding process to converge upon the correct solution. Adding a weighting factor to

the iterative decoding described in Section 5.3.8 would be atrivial extension. It should

also be remembered that the soft-output Viterbi algorithm employed is not entirely

optimum at generating its reliability metric. (However, the selection of the output

codeword is optimum.) There is neither any indication as to the next-best symbol, nor

the relative reliabilities of the decoded symbols. Nonetheless SOVA is shown to be a

very useful and efficient decoding algorithm for this purpose. Interesting further work

on this topic would be to simulate the BCH(64; 51; 6)� BCH(64; 51; 6) code used by

Pyndiah with the iterative decoder described in Section 5.3.8. This is at the limit of

what is currently possible to decode with a trellis.



References

L. E. Aguado and P. G. Farrell. On hybrid stack decoding algorithms for block codes.

IEEE Transactions on Information Theory, 44(1):398–409, January 1998.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for

minimising symbol error rate.IEEE Transactions on Information Theory, IT-20:

284–287, March 1974.

S. D. Bate, B. K. Honary, and P. G. Farrell. Soft and hard decision decoding of product

codes for communication systems. InSystems Science, volume 12, pages 79–85.

1986.

Y. Berger and Y. Be’ery. Bounds on the trellis size of linear block codes. IEEE

Transactions on Information Theory, 39(1):203–209, January 1993.

E. R. Berlekamp. Nonbinary BCH decoding. In1967 International Symposium on

Information Theory, San Remo, Italy, 1967.

E. R. Berlekamp.Algebraic Coding Theory. McGraw-Hill, New York, 1968.

R. C. Bose and D. K. Ray-Chaudhuri. Further results on error correcting binary group

codes.Information and Control, 3(3):279–290, September 1960a.

212



REFERENCES B (cont.) – F 213

R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group

codes.Information and Control, 3(1):68–79, March 1960b.

H. O. Burton and E. J. Weldon, Jr. Cyclic product codes.IEEE Transactions on

Information Theory, IT11:433–439, 1965.

D. A. Chase. A class of algorithms for decoding block codes with channel mea-

surement information.IEEE Transactions on Information Theory, IT-18:170–182,

1972.

R. T. Chien. Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes.

IEEE Transactions on Information Theory, IT-10:357–363, October 1964.

G. C. Clark, Jr. and J. B. Cain.Error-Correction Coding for Digital Communications.

Plenum Press, New York and London, 1981. ISBN 0-306-406-15-2.

Daimler-Benz Aerospace.Meteosat Second Generation: HRUS / LRUS Detailed

Design Document, 1995. Doc. MSGUS-DOR-DDD-0001, Issue 2, Rev. 0, Date

27/10/95.

P. Elias. Error-free coding.IEEE Transactions on Information Theory, IT-4:29–37,

1954.

P. Elias. Coding for noisy channels.IRE Convention Record, 3(4):37–47, 1955.

R. M. Fano. A heuristic discussion of probabilistic decoding. IEEE Transactions on

Information Theory, IT-9:64–74, April 1963.



REFERENCES F (cont.) – G 214

P. G. Farrell, B. K. Honary, and S. D. Bate. Adaptive product codes with soft/hard

decision decoding. InProceedings of the IMA Conference on Cryptography and

Coding, pages 95–111, Cirencester, UK, December 1986.

G. D. Forney, Jr. On decoding BCH codes.IEEE Transactions on Information Theory,

IT-11:549–557, October 1965.

G. D. Forney, Jr.Concatenated Codes. MIT Press, Cambridge, MA, 1966.

G. D. Forney, Jr. Convolutional codes I: Algebraic structure. IEEE Transactions on

Information Theory, IT-16:720–738, November 1970.

G. D. Forney, Jr. Coset codes—part I: Introduction and geometrical classification.

IEEE Transactions on Information Theory, 34(5):1123–1151, September 1988a.

G. D. Forney, Jr. Coset codes—part II: Binary lattices and related codes.IEEE Trans-

actions on Information Theory, 34(5):1152–1187, September 1988b.

G. D. Forney, Jr. On iterative decoding and the two-way algorithm. In International

Symposium on Turbo Codes, pages 12–25, Brest, France, 1997.

G. D. Forney, Jr. and M. D. Trott. The dynamics of group codes:State spaces, trellis

diagrams, and canonical encoders.IEEE Transactions on Information Theory, 39

(9):1491–1513, September 1993.

R. G. Gallager. Information Theory and Reliable Communication. John Wiley &

Sons, New York, London, Sydney, 1968.



REFERENCES G (cont.) – H 215

D. Gorenstein and N. Zierler. A class of cyclic linear error-correcting codes inpm

symbols.Journal of the Society of Industrial and Applied Mathematics, 9:207–214,

June 1961.

J. Hagenauer. Source-controlled channel decoding.IEEE Transactions on Communi-

cations, 43(9):2449–2457, September 1995.

J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision outputs and its

applications. InProceedings of the IEEE Globecom Conference, pages 1680–1686,

Dallas, Texas, November 1989.

J. Hagenauer, E. Offer, and L. Papke. Matching Viterbi decoders and Reed-Solomon

decoders in a concatenated system. In S. B. Wicker and V. K. Bhargava, editors,

Reed-Solomon Codes and Their Applications, pages 242–271. IEEE Press, New

York, 1994. ISBN 0-7803-1025-X.

J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and convo-

lutional codes.IEEE Transactions on Information Theory, 42(2):429–445, March

1996.

J. A. Heller and I. W. Jacobs. Viterbi decoding for satelliteand space communication.

IEEE Transactions on Communications Technology, COM-19(5):835–848, October

1971.

A. Hocquenghem. Codes correcteurs d’erreurs.Chiffres, 2:147–156, 1959.

B. Honary and G. Markarian. Low-complexity trellis decoding of Hamming codes.

Electronics Letters, 29(12):1114–1116, June 1993a.



REFERENCES H (cont.) 216

B. Honary and G. Markarian. New simple encoder and trellis decoder for Golay codes.

Electronics Letters, 29(25):2170–2171, 1993b.

B. Honary and G. Markarian.Trellis Decoding of Block Codes. Kluwer Academic

Publishers, Boston, Dordrecht, London, 1997. ISBN 0-7923-9860-2.

B. Honary, G. Markarian, and M. Darnell. Low-complexity trellis decoding of linear

block codes.IEE Proceedings on Communications, 142(4):201–209, August 1995a.

B. Honary, G. Markarian, and M. Darnell. Trellis decoding for linear block codes. In

P. G. Farrell, editor,Codes and Ciphers. IMA Press, 1995b. ISBN 0905091035.

B. Honary, G. Markarian, and S. R. Marple. Trellis decoding of the Reed-Solomon

codes: Practical approach. In3rd International Symposium on Communication

Theory and Applications, pages 12–16, Ambleside, UK, July 1995c.

B. Honary, G. Markarian, and S. R. Marple. Two-stage trellisdecoding of RS codes

based on the Shannon product. InProceedings of the 1996 International Symposium

on Information Theory and Its Applications, pages 282–285, Victoria, BC, Canada,

September 1996.

B. Honary, G. Markarian, and S. R. Marple. Trellis decoding of the Reed-Solomon

codes: A practical approach. In B. Honary, M. Darnell, and P.G. Farrell, editors,

Communications Coding and Signal Processing, Communications Systems Tech-

niques and Applications Series, pages 133–147. John Wiley & Sons, New York,

London, Sydney, 1997. ISBN 0 86380 221 4.



REFERENCES H (cont.) – M 217

B. Honary, G. S. Markarian, and P. G. Farrell. Generalised array codes and their trellis

structure.Electronics Letters, 29(6):541–542, March 1993.

F. Jelinek. A fast sequential decoding algorithm using a stack. IBM Journal of Re-

search and Development, 13(6):675–685, November 1969.

T. Kasami, T. Takata, T. Fujiwara, and S. Lin. On complexity of trellis structure of

linear block codes.IEEE Transactions on Information Theory, 39(3):1057–1064,

May 1993a.

T. Kasami, T. Takata, T. Fujiwara, and S. Lin. On the optimum bit orders with respect

to the state complexity of trellis diagrams for binary linear codes. IEEE Transac-

tions on Information Theory, 39(1):242–245, January 1993b.

D. E. Knuth.Sorting and Searching, volume 3 ofThe Art of Computer Programming.

Addison-Wesley, Reading, MA, USA, second edition, 1973. ISBN 0-201-03803-X.

F. R. Kschischang and V. Sorokine. On the trellis structure of block codes. IEEE

Transactions on Information Theory, 41(6):1924–1937, November 1995.

S. Lin and J. Costello, Jr.Error Control Coding: Fundamentals and Applications.

Prentice-Hall, Englewood Cliffs, NJ, 1983. ISBN 0-13-283796-X.

F. J. MacWilliams and N. J. A. Sloane.The Theory of Error-Correcting Codes. North

Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford, 1978. ISBN

0-444-85193-3.

S. R. Marple. Feasibility study of applying soft-output Viterbi algorithm decoding to



REFERENCES M (cont.) 218

METSAT II. Technical report, Communications Research Centre, Lancaster Uni-

versity, UK, 1998.

J. L. Massey. Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes.

IEEE Transactions on Information Theory, IT-11(4):580–585, October 1965.

J. L. Massey. Shift-register synthesis and BCH decoding.IEEE Transactions on

Information Theory, IT-15(1):122–127, January 1969.

J. L. Massey. The how and why of channel coding. InProceedings of the 1984 Zurich

Seminar on Digital Communications, number 84 CH 1998-4, pages 67–73, Zurich,

Switzerland, 1984. IEEE.

R. J. McEliece.Finite Fields for Computer Scientists and Engineers. Kluwer Aca-

demic Publishers, Boston, Dordrecht, London, 1987. ISBN 0898381916.

R. J. McEliece. The Viterbi decoding complexity of linear block codes. InProceedings

of the IEEE International Symposium on Information Theory, page 341, Trondheim,

Norway, 1994.

R. J. McEliece. On the BCJR trellis for linear block codes.IEEE Transactions on

Information Theory, 42(4):1072–1092, July 1996.

A. M. Michelson and A. H. Levesque.Error-Control Techniques for Digital Commu-

nications. John Wiley & Sons, New York, London, Sydney, 1985. ISBN 0-471-

88074-4.

G. E. Moore. Cramming more components onto integrated circuits. Electronics



REFERENCES M (cont.) – S 219

Magazine, 38(8):114–117, April 1965. See alsohttp://www.intel.om/intel/museum/25anniv/hof/moore.htm.

D. J. Muder. Minimal trellises for block codes.IEEE Transactions on Information

Theory, 34(5):1049–1053, September 1988.

J. K. Omura. On the Viterbi decoding algorithm.IEEE Transactions on Information

Theory, IT-15:177–179, January 1969.

W. W. Peterson. Encoding and error-correction procedures for the Bose-Chaudhuri

codes.IRE Transactions on Information Theory, IT-6:459–470, September 1960.

W. W. Peterson and E. J. Weldon, Jr.Error-Correcting Codes. MIT Press, Cambridge,

MA, second edition, 1972. ISBN 0-262-16-039-0.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C: The Art of Numerical Computing. Cambridge University Press, Cambridge,

UK, second edition, 1992. ISBN 0-521-43108-5.http://fatab.harvard.edu/nr/book.html.

R. M. Pyndiah. Near-optimum decoding of product codes: Block turbo codes.IEEE

Transactions on Communications, 46(8):1003–1010, August 1998.

I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.Journal of the

Society of Industrial and Applied Mathematics, 8:300–304, June 1960.

R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, USA, second edition,

1988. ISBN 0-201-06673-4.



REFERENCES S (cont.) 220

C. E. Shannon. The zero error capacity of a noisy channel.IRE Transactions on

Information Theory, 2:s8–s19, 1956.

S. K. Shin and P. Sweeney. Soft decision decoding of Reed-Solomon codes using

trellis methods. IEE Proceedings on Communications, 141(5):303–308, October

1994.

V. Sidorenko, G. Markarian, and B. Honary. Code trellises and the Shannon Product.

In Seventh Joint Swedish-Russian International Workshop on Information Theory,

pages 220–224, June 1995.

V. Sidorenko, G. Markarian, and B. Honary. Minimal trellis design for linear codes

based on the Shannon Product.IEEE Transactions on Information Theory, 42(6):

2048–2053, November 1996.

V. Sidorenko, I. Martin, and B. Honary. On the rectangularity of nonlinear block

codes.IEEE Transactions on Information Theory, 45(2):720–725, March 1999.

R. C. Singleton. Maximum distanceq-nary codes.IEEE Transactions on Information

Theory, IT-10:116–118, 1964.

B. Sklar. Digital Communications. Prentice-Hall, Englewood Cliffs, NJ, 1988. ISBN

0-13-212713-X.

D. Slepian. Some further theory of group codes.Bell Systems Technical Journal, 39:

1219–1252, September 1960.



REFERENCES S (cont.) – W 221

B. Stroustrup.The C++ Programming Language. Addison-Wesley, Reading, MA,

USA, third edition, 1997. ISBN 0-201-88954-4.

Y. Sugiyama, Y. Kasahara, S. Hirasawa, and T. Namekawa. A method for solving

key equation for decoding Goppa codes.Information and Control, 27(1):87–99,

January 1975.

R. M. Tanner. A recursive approach to low complexity codes.IEEE Transactions on

Information Theory, IT-27:533–547, September 1981.

A. Vardy and Y. Be’ery. Bit level soft decision decoding of Reed-Solomon codes.

IEEE Transactions on Information Theory, 39(3):440–444, 1991.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm.IEEE Transactions on Information Theory, IT-13:260–269,

April 1967.

A. J. Viterbi. Convolutional codes and their performance incommunication systems.

IEEE Transactions on Communications Technology, COM-19(5):751–772, October

1971.

S. W. Wei and C. H. Wei. High-speed decoder of Reed-Solomon codes.IEEE Trans-

actions on Information Theory, 41:1588–1593, November 1993.

S. Wicker.Error Control Systems for Digital Communication and Storage. Prentice-

Hall, Englewood Cliffs, NJ, 1994. ISBN 0-13-200809-2.



REFERENCES W (cont.) – Z 222

S. G. Wilson.Digital Modulation and Coding. Prentice-Hall, Englewood Cliffs, NJ,

1996. ISBN 0-13-210071-1.

J. K. Wolf. On codes derivable from the tensor product of check matrices. IEEE

Transactions on Information Theory, 11:281–284, April 1965.

J. K. Wolf. Efficient maximum likelihood decoding of linear block codes using a

trellis. IEEE Transactions on Information Theory, IT-24(1):76–80, January 1978.

J. M. Wozencraft and I. M. Jacobs.Principles of Communication Engineering. John

Wiley & Sons, New York, London, Sydney, 1965.

J. Wu, S. Lin, T. Kasami, T. Fujiwara, and T. Takata. An upper bound on the effective

error coefficient of two-stage decoding, and good two-leveldecompositions of some

Reed-Muller codes.IEEE Transactions on Communications, 42(2/3/4):813–1053,

February/March/April 1994.

K. Zigangirov. Some sequential decoding procedures.Problemi Peredachi Informatii,

2(4):13–25, 1966. (Russian).

V. Zyablov and V. Sidorenko. Bounds of complexity of trellisdecoding of linear block

codes. InProceedings of the Swedish-Russian Workshop on Information Theory,

August 1993.



Citation Index

Aguado and Farrell [1998], 101, 207

Bahl, Cocke, Jelinek, and Raviv [1974],

74, 116, 133, 134

Bate, Honary, and Farrell [1986], 134,

142–144, 198

Berger and Be’ery [1993], 75

Berlekamp [1967], 39, 59

Berlekamp [1968], 14, 15

Bose and Ray-Chaudhuri [1960a], 20

Bose and Ray-Chaudhuri [1960b], 20

Burton and Weldon [1965], 15

Chase [1972], 134, 142

Chien [1964], 44, 55

Clark and Cain [1981], 44, 61

Daimler-Benz Aerospace [1995], 117,

184, 185

Elias [1954], 12, 16

Elias [1955], 24

Fano [1963], 134, 207

Farrell, Honary, and Bate [1986], 134

Forney and Trott [1993], 29

Forney [1965], 45

Forney [1966], 25

Forney [1970], 94

Forney [1988b], 74, 75, 77, 84

Forney [1997], 207

Gallager [1968], 118

Gorenstein and Zierler [1961], 20

Hagenauer and Hoeher [1989], 116, 126,

134

Hagenauer, Offer, and Papke [1994], 117,

118, 126, 141, 173

Hagenauer, Offer, and Papke [1996], 126–

129, 133, 134

Hagenauer [1995], 128

Heller and Jacobs [1971], 94, 118, 185,

187

Hocquenghem [1959], 20

223



CITATION INDEX H (cont.) – S 224

Honary and Markarian [1993a], 16, 75

Honary and Markarian [1993b], 16, 75

Honary and Markarian [1997], 16, 29,

32, 88

Honary, Markarian, and Darnell [1995a],

16, 101

Honary, Markarian, and Darnell [1995b],

75

Honary, Markarian, and Farrell [1993],

75

Honary, Markarian, and Marple [1995c],

152

Honary, Markarian, and Marple [1996],

152

Honary, Markarian, and Marple [1997],

152

Jelinek [1969], 134

Kasami, Takata, Fujiwara, and Lin [1993a],

75, 152

Kasami, Takata, Fujiwara, and Lin [1993b],

75, 152

Knuth [1973], 157

Kschischang and Sorokine [1995], 75

Lin and Costello [1983], 7, 9, 27, 34

MacWilliams and Sloane [1978], 15, 17,

21, 22, 204

Marple [1998], 118, 141

Massey [1965], 38, 63, 169

Massey [1969], 39, 57, 59

Massey [1984], 117

McEliece [1987], 21

McEliece [1994], 74, 77, 80

McEliece [1996], 152, 203–205

Michelson and Levesque [1985], 18

Moore [1965], 2

Muder [1988], 27, 32, 75, 152

Omura [1969], 94, 100

Peterson and Weldon [1972], 14, 19,

21, 64

Peterson [1960], 20, 38

Press, Teukolsky, Vetterling, and Flan-

nery [1992], 144

Pyndiah [1998], 147, 209, 211

Reed and Solomon [1960], 22

Sedgewick [1988], 150

Shannon [1956], 75



CITATION INDEX S (cont.) – Z 225

Shin and Sweeney [1994], 101, 207

Sidorenko, Markarian, and Honary [1995],

75

Sidorenko, Markarian, and Honary [1996],

75

Sidorenko, Martin, and Honary [1999],

205

Singleton [1964], 12

Sklar [1988], 25, 32, 161, 184, 188

Slepian [1960], 13

Stroustrup [1997], 149

Sugiyama, Kasahara, Hirasawa, and Namekawa

[1975], 39

Tanner [1981], 207

Vardy and Be’ery [1991], 79

Viterbi [1967], 94, 100, 126, 134

Viterbi [1971], 118

Wei and Wei [1993], 63, 66, 67, 69

Wicker [1994], 17, 20, 21, 23, 28, 39,

41, 42, 45, 47, 59, 61, 95, 117,

119, 204

Wilson [1996], 17, 24, 40, 101, 120

Wolf [1965], 13

Wolf [1978], 74, 84

Wozencraft and Jacobs [1965], 118

Wu, Lin, Kasami, Fujiwara, and Takata

[1994], 75, 101

Zigangirov [1966], 134

Zyablov and Sidorenko [1993], 75, 77,

84



Index

A

algebraic, 38

alternating row-column decoding, 143–

146

array code, 9, 12–15,see alsoproduct

code

AWGN, 194

B

BCH bound, 20–21

BCH code, 20–22

BCH sense, 66, 67

narrow, 22, 40, 47, 55

Berlekamp-Massey decoding, 39, 63, 161

example, 61

binary code, 7

binary tree, 157

bit complexity, 151

block code, 7–23, 74

Bose-Chaudhuri-Hocquenghem,seeBCH

bound

block code decoding, 161

Wolf, 77

BPSK, 161

branch, 28

branch labels

sharing, 153, 205–206

branch metric, 28

branch profile, 153

C

C++, 149

canonical ordering, 14

cascade decoding, 137–138

channel

AWGN, 35–36

binary symmetric, 33–34

binary symmetric erasure, 34–35

discrete memoryless, 32–34

discrete symmetric channel, 96

226



INDEX C (cont.) – D 227

memoryless, 15

quantised AWGN, 36

Chase algorithm, 134

Chien search, 44, 55

Chinese remainder theorem, 14

code trellis, 29

codespace, 7, 45

codeword, 7

combinatorial, 38

compact disc, 27

complementary error function, 188

complexity measurements, 149–160

concatenated code, 25–27, 116–147

example, 26

minimum distance, 27

rate, 27

constraint length, 25

convolutional code, 24–25, 94, 131

encoder, 24

reasons for use, 117

coset, 102

coset code, 74

coset leader, 87, 101, 102

cyclic, 15, 17

cyclic code, 16–20

cyclic ordering, 15

D

data randomisation, 184

dataword, 7

de-interleaver, 25

decoder

Viterbi, 75

decoder failure, 45, 61, 161

decoding

cascade, 15

complexity

RS(7; 3; 5), 159

RS(7; 5; 3), 159

parallel, 87, 172

trellis, 74–113

two-stage

Reed-Muller, 101–103

Reed-Solomon, 103–111

decoding order, 134

design operation, 106

dimension, 7
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discrepancy, 58

DSP32C digital signal processor, 151,

152, 159

E

edge, 28

erasure, 34

error-evaluator polynomial, 42–44

error-locator, 41

error-locator polynomial, 41

Euclid’s algorithm, 39, 47–48

extended version, 48

Euclidean

decoding, 39, 63, 161

example, 52–57

domain, 47

extrinsic information, 128, 133, 139, 141,

146, 209

F

Fano algorithm, 39, 134

Fano metric, 207

floating point arithmetic

versus integer, 119

forced-state decoding, 173

formal derivative, 45, 55

Forney algorithm, 45

FSK, 169

G

Galois field, 47, 151

soft, 112–113, 171

Gaussian elimination, 106

generalised array code, 16

generator matrix, 8–10

geometric series, 42

GF, 161

basis, 163

GF(16), 53

polynomial basis, 151

goal, 27, 28, 79

Golay code, 16

H

Hamming code, 16, 153, 205

Hamming distance, 45

hard decision, 33
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I

inner code, 25, 117, 134

inner decoder, 25, 116

integer arithmetic

versus floating point, 119

interleaver, 25

invertible, 23

iterative decoding, 126, 133, 146–147

K

Kerdock code, 16

key equation, 38–47, 63

Kronecker product, 13

L

label, 28

label profile, 153

level, 28

linear block code, 7–12

linear code, 134

log likelihood

function, 119

metrics, 118–126, 142–143, 152

variation withEb=N0, 125

M

MAP, 116, 134

Massey’s assertion, 117, 209

max-sum algorithm, 207

maximum distance separable, 12, 23

maximum likelihood, 118

memory, 25, 32, 36

Meteosat II, 182–192

minimum-weight decoding, 151

Moore’s law, 2

N

narrow sense, 22

NASA Planetary Data Standard, 182

net list, 149

non-linear code, 7, 75

rectangular, 156

Nordstrom-Robinson, 77

numeric overflow, 98

O

O-notation, 144, 150

outer code, 25, 117, 134

outer decoder, 116
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overheads, 153, 158

P

parity-check, 40

parity-check matrix, 10–11

partial path, 29, 94

path, 28

partial, 29, 94

surviving, 94, 126

path metric, 94

reference, 207

Pb

conversion fromPs, 161

Peterson’s direct method, 38

Preparata code, 16

probability distribution function

for BPSK, 121

product code, 12, 134–147,see alsoar-

ray code

compared with SOVA, 207–209

Ps

conversion toPb, 161

Q

quantisation levels, 118

R

rectangularity, 205

reduced-echelon form, 10, 135

Reed-Muller, 76, 153, 205

RM(8; 4; 4) trellis, 30, 104

two-stage decoding, 101–103

Reed-Solomon, 76

code, 22–23, 100

decoders

Berlekamp-Massey, 57–61

Euclidean, 47–57

step-by-step, 63–73

decoding, 38–73

RS(7; 3; 5) trellis, 93

RS(7; 5; 3) trellis, 85, 86, 179–181

two-stage decoding, 103–111

register-exchange mode, 94

RM, seeReed-Muller

root, 27, 28, 79

RS,seeReed-Solomon
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S

separability, 205

separable codes, 205

Shannon product, 75, 84, 87, 88

shift-register, 39, 58

Singleton bound, 12, 23

singular, 64

soft-decision information, 116

sorting algorithms, 144

SOVA, 116

algorithm, 126–133

compared with product code, 207–

209

flowchart, 130

stack algorithm, 134

stage, 28

state pinning, 173

state profile, 153

step-by-step decoding, 161

example, 71

successive erasures decoding, 142, 198

surviving path, 94, 126

symbol predictor, 105

syndrome, 11, 40

method to update, 66

polynomial, 19

vector, 11, 19

systematic, 9, 13, 23, 135

T

Tanner graph, 207

Tensor product, 13

trace-back mode, 94, 98, 131, 185, 187

transition probability, 33, 118

tree diagram, 150

trellis, 27–32

BCJR, 74, 205

branch profile, 29

construction, 74

convolutional (2; 1; 7) code, 186

coset, 74, 87–91

decoding

current limit, 211

decoding algorithms, 91–113

definitions, 28–31

introduction, 27–28

label profile, 76
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label size profile, 29

minimal, 16, 31, 74, 75, 77, 87,

100

observable, 31

proper, 31

properties, 31–32

RM(8; 4; 4), 30, 104

RS(7; 3; 5), 93

component codes, 92

RS(7; 5; 3), 85, 86, 179–181

component codes, 83

Shannon product, 75–77, 100

state profile, 29, 80, 84, 87

state-oriented form, 32, 75

syndrome, 74, 77–84

truncated, 29

Wolf, 74

trellis code, 24

Trellis Description Language, 149

trellis diagram, 27, 150

truncated trellis, 29

turbo decoding,seeiterative decoding

two-stage decoding, 87, 100–111

complexity, 100, 171–174, 206

performance, 169–171

V

vertex, 28

Viterbi

algorithm, 39, 87, 100, 107, 134

flowchart, 99

reduced-search, 31

storage requirements, 100

decoder, 25

decoding, 94–98

example, 94–98

W

weighting factor, 209
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