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Abstract

In this thesis we present bioinformatic tools and algorithms
for the analysis of genomic data such as those generated by
microarray devices or next generation sequencing techniques.
Particularly, we develop new approaches to gene set analy-
sis. The described procedures should be useful in practice to
tackle complex biological experiments, but hopefully will also
be methodologically relevant, as they introduce new ways of
conceptualizing genomic functional profiling.

Our very flexible approach allows for the inclusion of not just
one kind of genomic measurement but many. It makes possi-
ble, for instance, to analyze expression measurement and ge-
nomic variation data at a time. This multidimensional gene
set analysis approach is able to unravel genomic interactions
that coordinately regulate functional blocks.

We also indicate how to use data available in public reposito-
ries to asses gene importance within gene sets. Such impor-
tance can be included into our algorithms as a weight, im-
proving performance of the analysis. But, more interestingly,
it models functional blocks as non discrete entities, featuring
a new concept of fuzzy gene set.
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Glossary

Babelomics: An integrative platform for the analysis of transcriptomics,
proteomics and genomic data with advanced functional profiling
methods.
http://www.babelomics.org

CIPF: Centro de Investigación Príncipe Felipe. The research center in
Valencia where I developed this thesis.
http://www.cipf.es
http://bioinfo.cipf.es (The web of the Bioinformatics Department)

FatiGO: A bioinformatic tool for functional enrichment analysis. Is
currently Pratt of the Babelomics suite.

FatiScan: A bioinformatic tool for gene set analysis (GSA). Is currently
part of the Babelomics suite.

Functional Enrichment Analysis: One of the most basic functional
profiling methodologies. It is carried out in two steps, in the first
one some genes are selected according so some biological property;
in the second step, the database information is explored just in the
selected genes. The method is also called “Over-Representation
Analysis” by some authors.

Functional Profiling: The interpretation genomic experimental results
in therms of the information already available in biological databases.

Gene Set: Also referred to in this work as functional block. A group of
genes that is supposed to perform a biological function. Usually
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GLOSSARY

these genes will be tagged with the same label in some biological
database.

GEO: Gene Expression Omnibus. A public data repository for microar-
ray and sequence data hold by the NCBI.
http://www.ncbi.nlm.nih.gov/geo

GEPAS: Gene Expression Pattern Analysis Suit. As a web-based tool
for the analysis of genomic data.
http://www.gepas.org

GO: Gene Ontology. A controlled vocabulary of terms for describing
gene product characteristics.
http://www.geneontology.org

GSA: Gene Set Analysis. A general terminology to refer to functional
profiling methods that analyze all genes available in the dataset,
without any prior filtering or gene selection step.

GSEA: Gene Set Enrichment Analysis. The original gene set method
method used in Mootha et al. 2003 and fully developed in Subra-
manian et al. 2005.

Interactome: The network defined by all the known interactions be-
tween pairs of proteins.

InterPro: An integrated database of predictive protein signatures.
http://www.ebi.ac.uk/interpro

KEGG: Kyoto Encyclopedia of Genes and Genomes. A database for
molecular-level information of the biological systems such as the
cell.
http://www.genome.jp/kegg

Microarray: Devices that allow for the measurement of genomic charac-
teristics like gene expression levels, SNP variants or copy number
alterations.
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GLOSSARY

NCBI: The National (USA) Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov

NGS: Next Generation Sequencing, also known as High throughput se-
quencing. A technique for measuring genomic characteristics.

R: R is a free software environment for statistical computing and
graphics.
http://www.r-project.org

REACTOME: An open-source, open access, manually curated and
peer-reviewed pathway database.
http://www.reactome.org

SNP: Single Nucleotide Polymorphism.
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Chapter 1

Introduction

This thesis summarizes some conceptual, methodological and computa-
tional advances I developed in the field of genomic data analysis. The
main objective of my work was to improve what, in recent years, as been
known as gene set enrichment analysis, gene set analysis, functional an-
notation analysis or functional profiling. That is, procedures for the
interpretation of experimental genomic data which take advantage of the
knowledge already available in biological databases.

The work here exposed was mostly developed in three scientific pub-
lications: Montaner et al. 2006, Montaner et al. 2009 and Montaner
and Dopazo 2010. These three papers are embedded within chapters of
the thesis, presenting the motivation for the research besides the achieved
solutions. The remaining sections of the text aim to clarify the context in
which the articles where written. I hope, these intermediate chapters will
help the reader understanding the improvements introduced as a unique
and coherent piece of work.

This first introductory chapter advances the work carried out and ex-
plains the key concepts which link together the three publications above
mentioned. Section 1.1 presents general concepts in the analysis of ge-
nomic data and substantiates the need for functional profiling method-
ologies. Section 1.2 describes some of the most widely used genomic
databases and shows how the available data are modeled and concep-

1



1. INTRODUCTION

tualized in terms of gene sets. Section 1.3 introduces the general goal
of gene set analysis methodologies. Section 1.4 presents the statistical
framework of the logistic regression models; these models provide the
analytical methodologies upon which my functional profiling algorithms
rely on. Section 1.5 shows how weights can be included into the logistic
regression model. In this same section I explain how the weights can ac-
count for relevant genomic information and the advantages of introducing
them into the analysis. In section 1.6 the framework of the logistic models
is extended to several dimensions; it is explained how multidimensional
gene set tests can be carried out and why this may be suitable in some
experimental contexts.

Chapter 2 displays the article Montaner et al. 2006. This paper
presented tools and methodologies I developed for the analysis of ge-
nomic data. Chapter 4 includes a copy of the paper Montaner et al.
2009. This paper presented a novel way of conceptualizing gene sets as
non-discrete entities. It also showed how to take advantages of this new
paradigm using the weighting schema of the logistic regression models.
Chapter 5 reproduces the publication Montaner and Dopazo 2010. In
This work we developed the first methodology which can handle several
kinds of experimental genomic data and analyze them in a multidimen-
sional context.

Chapter 3 clarifies the rationale that took me from the general context
of genomic studies presented in the first publication to the more specific
algorithms developed in the two subsequent articles.

1.1 Genomic data analysis

Just in a decade, genomic scale measurement devices have completely
changed biological research and clinical practice. DNAmicroarrays (Lock-
hart et al., 1996; Schena et al., 1996), have rapidly evolved from home-
made gadgets to highly accurate biomedical instruments. Manufactured
arrays like those of Affymetrix, Agilent or Illumina have lowered down
prices and expanded the usage of their technologies to all areas of genomic
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research. Gene expression, copy number alterations or single nucleotide
polymorphism (SNP) can now be measured at a genomic scale, provid-
ing adequately reproducible results (Shi et al., 2006). But microarray
devices have not just been restricted to basic biological research. They
have been successfully used in clinical diagnosis (Glas et al., 2006), and
it has been proven that accurate and reproducible predictive models can
be built up based on genomic measurements (Shi et al., 2010).

More recently, high throughput sequencing (Church, 2006; Hall, 2007),
also known as next generation sequencing (NGS), has incredibly extended
the potentiality of genomic research. Discovering new transcripts or iso-
forms, finding not previously reported genomic variants and pointing out
novel miRNAs is now possible because the “universe” of genomic features
that can be explored by means of NGS technologies is “not closed” or
pre-defined, as it is in the context of microarrays.

Thus, in this very short period of time, we have had the chance of
addressing biological complexity to an extent that was not even dreamed
before. As a counterpart, biological research has become a discipline
highly reliant on computational and statistical methodologies. The large
amount of data generated by high throughput technologies requires not
only highly sophisticated computational infrastructures, but also, opti-
mized software and customized protocols. The variety of the information
included in such datasets has also challenged experiment designers, as
the possibility of screening samples at a genomic level induces new ways
of conceptualizing biology and establishing hypotheses. Such cutting
edge scenario entails the necessity of developing new statistical meth-
ods and analytical tools. The application of the same statistical test to
thousands of genes extremely increases the probability of false positives,
driving us to draw erroneous conclusions if care is not taken (Dopazo,
2009). Thus, specialized methods for p-value correction, such as those
developed in Benjamini and Hochberg 1995 or Carvajal-Rodriguez and
de Una-Alvarez 2011, needed to be included as a compulsory step in all
genomic analyses. Missing data, scanning artifacts or very low signals
required pre-processing and normalization routines particularly shaped
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1. INTRODUCTION

for genomic technologies; see Troyanskaya et al. 2001, Irizarry et al. 2003
and Lin et al. 2008 respectively. Noisy but highly correlated data compel
us to undertake gene selection steps before the information can be accu-
rately used in clinical class prediction. Then, estimation of classification
errors must take into account this gene selection step in order to avoid
biases that do not rise in other machine learning applications; see Medina
et al. 2007 for details.

In such novel and complex context GEPAS was developed. The
acronym stands for: Gene Expression Pattern Analysis Suit. It is a web
application mainly devised for the analysis of genomic data. It includes
several modules used for analyzing microarrays, nevertheless, most of
its tools are general purpose and may be applied in many other “omic”
contexts.

The first release of GEPAS, described in Herrero et al. 2003, was ba-
sically a compendium of unsupervised classification algorithms such as
aggregative hierarchical methods, self organizing maps, or the self orga-
nizing tree algorithm. All this clustering algorithms aimed to find gene
groups with similar expression patterns across samples. At that time,
biologists were thoroughly engaged in describing gene functionality and
gene clustering was an invaluable tool for such endeavor. That first
version of the software also contained very basic utilities for data prepro-
cessing, class comparison and class prediction, thereby establishing the
working lines we developed in subsequent years, see figure 1.1 on page 5.
Another remarkable characteristic of the Herrero et al. 2003 approach
was to point out the suitability of counting on tools for the interpreta-
tion of experimental results in the light of already established biological
knowledge. In that sense, GEPAS allowed for the redirection of the “rel-
evant” genes to a different tool called FatiGO, (Al-Shahrour et al., 2004,
2007b). FatiGO lets the user testing for the “enrichment” of Gene Ontol-
ogy (GO) terms within a list of genes previously selected. This was the
first functional profiling module included in our analysis pipeline and,
indeed, one of the most successful tools used in bioinformatics.

The two following versions of the software added new functionalities
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Figure 1.1: GEPAS pipeline in Herrero et al. 2003.

or included new methods in the already available ones. Herrero et al.
2004 included options for the normalization of spotted microarrays, see
figure 1.2 on page 5.

Figure 1.2: GEPAS pipeline in Herrero et al. 2004.

Vaquerizas et al. 2005 reinforced all the methodologies for the differential
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1. INTRODUCTION

expression analysis and added the possibility of linking some GEPAS re-
sults with the tool FatiScan, designed for carrying out gene set analysis
(GSA), see figure 1.3 on page 6. Nevertheless, up to that time, the inter-
connection between the different modules of GEPAS was limited. The
suite was really a collection of several separated web pages administered
as independent resources. GEPAS gathered tools like DNMAD (Vaquer-
izas et al., 2004) for the normalization of spotted microarrays, POMELO
(Morrissey and Diaz-Uriarte, 2009) for the analysis of differential expres-
sion or InSilicoCGH (Vaquerizas et al., 2005), for the visualization of
altered genomic regions.

Figure 1.3: GEPAS pipeline in Vaquerizas et al. 2005.

It was in the release we did in Montaner et al. 2006, when GEPAS
became a truly integrated platform. The software code was completely
rewritten to make it more efficient and robust but, more importantly,
the analysis pipeline was completely redesigned, see figure 1.4 on page 8.
The aim was to offer a web platform able to deal with all kind of ge-
nomic studies. We wanted GEPAS to be powerful enough to cover any
exhaustive analysis of microarray data; from raw data preprocessing to
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gene prioritization. We added normalization procedures for most com-
mon microarray platforms at that time, GPR, Agilent, Affymetrix . . .
In this way, any gene expression study carried out using standard mi-
croarray devices, could be handled, preprocessed and shaped in the most
convenient format to be used in all desired GEPAS analysis modules. We
included most popular differential gene expression tests available at that
time, and developed some others, like the one presented in Valls et al.
2008, for specific case studies. For the first time, GEPAS provided users
with tools not only for clustering genes, but also samples or microarrays,
thus meeting a growing demand for a change in the “direction” of such
analyses. Several new supervised classification algorithms were included
in the prediction module and methods implemented for the differential
expression analysis were reused in this utility for the gene selection steps.
In this way, every piece of the new GEPAS was a part of the same inte-
grated tool, optimized and utilized in any analysis module which required
it.

But we also wanted GEPAS to be flexible enough so that the user
could combine any set of methods desired for the overall analysis. The
only restriction we would put, of course, was that the analysis made
“biological” sense.

Achieving such goal of usability was a task not less challenging than
that of code integration and optimization. The web page, that is, our
user interface, was redesigned to allow for the sought elasticity. The
outcome of one analysis procedure could then be redirected and used
as an input for all other tools in GEPAS, provided that the operation
was meaningful. Analyses which, in previous releases of GEPAS, were
made in an apparent single step, were now split in many, resulting in
a much more operative toolkit. The clustering algorithms, for instance,
were first optimized for any data matrix. Then they were applied to
rows or columns of a file, depending on whether the user wanted to
cluster genes or conditions. Those algorithms would not produce a tree
plot straight forward, their output was a text file in newick format; a
standard for coding tree shaped structures. It would be afterward, when
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1. INTRODUCTION

Figure 1.4: GEPAS pipeline in Montaner et al. 2006.

an interactive display tool1 will draw the graph. In such way we allowed
users of GEPAS to utilize independently our clustering methods and
our drawing tools. Anyone could, for instance, calculate a tree for their
microarrays and then, use a different software to display the structure or,
simply, select a cluster and carry on an analysis we never thought about.
Reversely, someone could have computed a clustering of their genes using
a tool not included in GEPAS, and then use our displaying methods.

Thus, when GEPAS version presented in Montaner et al. 2006 was
launched, we had implicitly developed a step by step methodology for
the analysis of genomic data. A non linear pipeline which could be used
partially or in its totality by any researcher, without the requirement of
strong computational skills.

1 In Montaner et al. 2006 this tool is referred as CAAT but it was later renamed
as ETE and published as an independent tool in Huerta-Cepas et al. 2010.
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The usefulness of GEPAS as a bioinformatic tool is supported by its
wide usage in biological publications such as Montero-Conde et al. 2008,
van Heerden et al. 2009 or Jantus Lewintre et al. 2009.

But beyond the recognition of the scientific community, the major
revenue we got from developing GEPAS was, precisely, to realize the
advantages of addressing complex genomic data analyzes in a modular
way. We proved the advantage of splitting the problem in general pieces
and tackle each of them step by step, creating the necessary data objects,
the methods and the tool to handle them independently of the overall
purpose of the research. Such approach allowed us to recycle many of
the methods or tools we developed for a particular purpose, and, lately,
take advantage of them in new contexts of analysis.

With such philosophy, our tools, firstly developed for the exploration
of gene expression data, naturally grew and encompassed other areas
of genomic research. For instance, in Montaner et al. 2006, GEPAS
included methods for the analysis and exploration of Array-CGH data
(Mantripragada et al., 2004). Utilities for estimating genomic copy num-
ber alterations, and tools for the visualization of such regions were easily
inserted into our refurbished tool1. The new modularity of GEPAS al-
lowed us not only to incorporate new methods into the suite, but also,
to interact with other tools developed in our lab. An example of such
interconnection was PupaSuite (Conde et al., 2004, 2006), which, com-
bined with GEPAS, offered the possibility of analyzing polymorphisms
within genomic regions selected according to gene expression criteria. So,
for the first time, gene expression, copy number variation, and polymor-
phisms methodologies where integrated together, allowing for the setup
of experiments based upon several sources of genomic data at once. But
probably the most crucial advantage provided by GEPAS in Montaner
et al. 2006, was the broad access to functional profiling methods.

In any genomic experiment, researchers state a hypothesis and collect

1 A general overview of such methods and its interconnection with other GEPAS
modules can be found in Conde et al. 2007.
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1. INTRODUCTION

data which information, properly interpreted, should lead us to support
or reject such hypothesis. The collected data are new, in the sense that
no one else has seen its information before; otherwise the experiment
would had never been raised. But the analysis and interpretation of such
original information, should be done in the light of what is already known
and established as scientific knowledge. In the case of genomic studies,
what is “known” is not what researchers remember by heart, but what
is stored in digital databases and, evidently, the “interpretation” of the
data cannot be done without bioinformatic routines and tools.

In the past years many computer programs and algorithms have been
created in order to combine experimental data from genomic studies with
annotation information form databases. FatiGO (Al-Shahrour et al.,
2004, 2007b), makes a functional interpretation of experimental genomic
results in terms of the Gene Ontology database. SNOW (Minguez et al.,
2009), queries information about protein-protein interaction from several
databases and performs statistical tests to explore the interactome of the
samples under observation. GESBAP (Medina et al., 2009), extracts
gene functional information from databases and extends it to single nu-
cleotide polymorphisms via genomic position, allowing for the interpreta-
tion of variation data. Paintomics (Garcia-Alcalde et al., 2011), recovers
information form the KEGG Pathway database and combines it with
experimental data from transcriptomics and metabolomics experiments.

Most methods to jointly analyze experimental and database informa-
tion use algorithms such that, the steps handling the experimental data
are inseparable from those of the functional interpretation. For instance,
the well known GSEA (Mootha et al., 2003; Subramanian et al., 2005),
performs an enrichment test of Gene Ontology terms for two class dif-
ferential expression data. Nevertheless, the assessment of significance in
the “interpretative” part of the method relies up on permutations of the
expression data, that is, the experimental data. Hence, the tool cannot
be applied in experimental designs with, for instance, more than two
classes or with continuous covariates, unless the algorithm itself is modi-
fied. This rigidity is a major drawback for the generalization and further
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use of such methodologies.

In our case, our modular way to tackle genomic studies was also re-
flected in our functional profiling approach. It is remarkable that, despite
being GEPAS a tool for the explicit analysis of experimental data, a full
section of Montaner et al. 2006 is devoted to genomic functional anno-
tation. This is so because GEPAS has always been linked to Babelomics,
an independent resource for functional annotation and analysis of groups
of genes in high-throughput experiments.

At that time1, Babelomics was able to query annotation from the
Gene Ontology Data base (Ashburner et al., 2000), the Kyoto Encyclo-
pedia of Genes and Genomes (Kanehisa and Goto, 2000) and many other
annotation databases. It also included functional information generated
from text mining of biomedical literature and gene signatures compiled
in paradigmatic experimental studies.

But Babelomics was not just a major database of genomic informa-
tion, it was also outfitted with powerful tools that let the researcher take
advantage of such information. In Al-Shahrour et al. 2006, Babelomics
implemented different procedures for the functional interpretation of sets
of pre-selected of genes. The rationale behind the tool derived also from
the modular data analysis orientation: first, experimental information
from high throughput devices would be appropriately deal with using
any software tool such as GEPAS. This first step would yield, perhaps, a
group of “selected genes” that would “mean something” according to the
experiment; or it may, in other occasions, yield an “arrangement” of the
genes in the study defined by a p-value, evaluating the departure form a
biological null hypothesis. Then, a second layer of methods, those prop-
erly belonging to Babelomics, would interpret those “selected” markers
or make sense of such “arrangement” of genes.

Hence, in order to achieve an optimal communication between the
two suites, GEPAS in Montaner et al. 2006 had to format and reshape

1 See Al-Shahrour et al. 2006 for more details.
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1. INTRODUCTION

the output from every single statistical or analytical method available.
The objective was not only to provide the results of GEPAS modules
in files “readable” by Babelomics. Moreover, we had to organize and
classify the analytical methodologies in GEPAS according to the kind of
functional profiling which could be meaningfully carried out using Babe-
lomics. This took a great effort of organization of the tool and made us
spend considerable time studying the characteristics of each statistical
module in GEPAS; its input and output, its ultimate biological meaning,
the way in which users will employ the module and how they will con-
ceptualize the results form GEPAS and the redirection to Babelomics.
GEPAS outputs had to be neatly organized to be interpreted on their
own, but also to provide the intuition and clues about how to keep going
with the next natural step in Babelomics.

Thus the work done for the implementation of GEPAS in Montaner
et al. 2006 and Babelomics in Al-Shahrour et al. 2006, steeled the basis
for many of our subsequent developments. There was still one more
release of the tools as independent resources, (Al-Shahrour et al., 2008;
Tarraga et al., 2008). Finally, as it was natural, both of them converged
into a unique tool under the Babelomics “trademark”, (Medina et al.,
2010).

In what concerns this thesis, the job in GEPAS from Montaner
et al. 2006 and Babelomics from Al-Shahrour et al. 2006, highlighted the
utility of analyzing genomic data from different sources at a time, and
pointed out the lack of methodologies for the functional interpretation
of such combined studies. This motivated my later research published in
Montaner et al. 2009 and Montaner and Dopazo 2010, presented also
in this thesis.

1.2 Gene set modules

There are thousands of databases storing genomic information. The
most popular of them are open access and freely accessible to every-
one via Internet. The Gene Ontology repository (Ashburner et al., 2000)
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is probably the mos widely used. It maintains and develops a controlled
vocabulary of gene and gene product attributes. The KEGG Pathway
Database (Kanehisa et al., 2004) describes networks of molecular inter-
actions in the cell. Reactome (Joshi-Tope et al., 2005) has a navigable
map of chemical reactions, pathways and biological processes. OMIM
(McKusick-Nathans) keeps a catalog of human genes related to traits,
phenotypes and diseases. But there are also many proprietary databases
like, for instance, those provided by BIOBASE R©, or even the same KEGG
in its latest releases. And of course, every research group may have their
unpublished genomic information related to their particular needs.

These databases represent the most up to date biological knowledge
we have nowadays. It is anything but complete, as many pieces of the
puzzle are still missing, but is the best asset upon which research can be
developed. The quality of the stored information is generally quite vari-
able. Part of the information kept has been curated by experts but, most
of it, has been generated in silico using automatic routines which may
perform with different levels of accuracy. The precision and the amount
of information provided by databases is also very different from some
sources respect to the others. It can range from the very detailed descrip-
tion of the oxidative phosphorylation pathway in KEGG (see figure 1.5
on page 14), which provides the structure and relationship between the
gene products involved in the process, to the almost meaningless and
“flat” annotation of the genes under the female pregnancy GO biological
process (see figure 1.6 on page 14).

Fortunately, a great effort is made to improve and complete these
sources of genomic information as in most areas of the molecular biology
they are an invaluable tool for investigation. In any case, this database
knowledge is the starting point to conform many research hypotheses
and, more importantly, they provide the only means to draw a biological
interpretation of most experimental results. In this work we are not so
much interested in how this databases are generated or curated but in
how to take practical advantage of them. Particularly, in how to use
them to perform gene set analyses.
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Figure 1.5: KEGG pathway describing the oxidative phosphorylation process.

Figure 1.6: Graph structure showing the GO term female pregnancy and its
ancestors. All terms in the plot are represented using square boxes; there is
not any further internal organization among the genes annotated under each
term.

Each gene or biological entity is ultimately unique and has qualities
which differentiate it from the others. Nevertheless, in order to under-
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stand nature, generate theories and communicate knowledge, scholars
and researchers need to distinguish and isolate general characteristics,
properties and qualities that are shared among the biological pieces un-
der study. Genomic databases capture such information in contingency
tables where genes are linked to the labels identifying each property or
attribute. In the functional genomics jargon those tables are referred
to as functional annotations, and the groups of genes tagged under the
different labels are called gene sets.

As discussed in the previous section, current genetic experiments have
the capacity to collect information at a gene level. Hence, the straight-
forward approach to data analysis is to consider the gene as the intrinsic
unit of interest in the study. In this first instance, hypotheses are stated
over the genes and statistical tests are carried out at such observational
level. But the complexity of interpreting statistical results on thousands
of genes besides the scarce factual information provided by each of them,
immediately pushes us to call the annotation databases. Generally the
inclusion of the annotation in the study is done with two main purposes:
to ease the interpretation of the results and to increase the amount of
information included in the experiment. The advantages for the interpre-
tation are clear; it is easier to discuss and draw conclusions about terms
which are already defined to have a meaning, such as those included in
the annotation, than to think of the abstract tokens which are the genes.
Furthermore the shift in the observational unit, from the gene to the at-
tributes described in the database, usually reduces the number of units
to be considered in the study.

It is also apparent that adding the knowledge about the genes in-
creases the amount of information in the study. Despite of that, such
inclusion of the information cannot be done arbitrarily. Care should
be taken not to induce any bias which will produce misleading results.
Well designed functional profiling algorithms and gene set methodologies,
guarantee that no distortion is introduced in the procedure and assure
its statistical validity. We will discuss such issues in following sections
but, for the purpose of these thesis, it is first important to point out
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two key aspects on how gene sets are modeled when included in gene set
analysis:

Most databases internally keep extensive information on how and
why genes are linked to an attributes. The Gene Ontology data base,
for instance, includes an evidence code to indicate how the annotation
of a gene to a particular term is supported. OMIM records are justified
by different number of publications, each of which relates a gene to a
disease with different nuances. Ideally, such extra information could be
used to quantify how much we should trust each annotation and then,
that reliability could be included into the gene set analysis model. But
despite the quality of the information may be available, it is difficult to
translate it in terms of biological relevance, and much more in a general
manner which could be applied to most diverse experimental settings. In
general, the best that can be achieved when the database information is
injected into the data analysis, is to establish some filters for discarding
low quality annotations. This returns a true or false discrete inclusion of
the information into the analysis, and gives the same importance to all of
the annotations that passed the filtering cutoff. Thus, once the annota-
tion is filtered and included into the study, all of the genes tagged under
the same attribute or label, that is all the genes in a gene set, are given
the same reliability and importance. However, from the database quality
flags themselves, we can realize that such assumption of homogeneity of
the annotation is not the most accurate one.

On the other hand, some databases like for instance KEGG or Re-
actome include, not only the association of genes to certain attributes,
but the description on how those genes interact among them. Thus,
when using those databases or annotations, we soon realize that not all
genes are equally important within a gene set or functional block. Some
genes may behave as a hub1, interacting with many others, some may be
peripheral and perhaps not so biologically relevant in all experimental

1 See figure 1.15 on page 33 for an example.
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settings. That said, such asymmetry of the genes within the gene set is
not easily modeled. Thus, for practical reasons, most gene set method-
ologies do no make use of it, and handle all the genes under an annotation
tag similarly. Systems biology has always been dedicated to take advan-
tage of such topological information but, due to the incompleteness of the
databases and the lack of computational models describing the interac-
tions, its practical use has been quite limited in the experimental world,
being the gene set analysis the most popular way of merging database
information and experimental data.

Hence, up to the time we wrote Montaner et al. 2009, gene sets
where used as “flat” gene annotations, independently of the database
used for the functional profiling or the experimental context of the data
collection. In the first part of the article, we discussed this issues for the
particular context of gene expression analyses. We empirically demon-
strated that not all the Gene Ontology terms or KEGG pathways have
such “flat” behavior, and that the non homogeneity of the genes within
a functional block can be demonstrated form the different levels of coex-
pression among them.

In the same paper, we also collected a massive dataset form gene
expression public repositories, and used it to create a general purpose
co-regulation index for all the genes in the human genome. We used
the gene to gene co-regulation score to provide a continuous estimate of
the biological relevance of genes within each gene set module. Hence,
for the first time, we included the concept non-discrete membership to a
functional module. A gene was not just in or out of the gene set but far
from or close to its core functionality.

But we did not just limit ourselves to spot the drawbacks of the, at
that time, current methodologies of gene set analysis. In the second part
of Montaner et al. 2009, we developed functional profiling methodolo-
gies which would be able to handle the novel concept of non-discrete
gene set. We introduced the weighted logistic regression models as the
natural extension of standard gene set methodologies to the context of
continuous membership to a functional class.
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1.3 Functional profiling

Functional profiling is a quite loose term coined to encompass all sta-
tistical and computational methods aiming to provide a “functional” in-
terpretation of genome scale experiments. Here, the adjective functional
should be understood as referring to the role that genes, or better, the
gene products, play within the cellular machinery and along the biological
processes.

As discussed in previous sections, once an experiment is carried out
and genomic measurements collected, the first step in the data analysis
procedure is, usually, to perform an individual gene level analysis. The
next natural step is to try to extract some general sense out of those
results, and see whether it fits with what is already known about the bi-
ological process under study. Such interpretation of results, in the light of
what is already known, passes by the superimposition of database stored
knowledge over our experimentally collected data. Functional profiling
methodologies try to ensure that, the superimposition or combination
of already established knowledge (the one extracted form the databases)
and the new information (that of the experimental data) is properly done,
without introducing any biases.

As an example, a classic bias introduced when naively incorporating
Gene Ontology information into gene expression analyses is as follows:
the researcher gets the differentially expressed genes, collects the GO
terms annotated to them, finds out that 8% of the genes are annotated
under the term cell death, and concludes that cell death is relevant to
the process under study because such percentage is “high”. The bias is
clear when we realize that 8% of the genes of the human genome is also
annotated under the cell death flag. Evidently, we need to correct for the
underlying distribution of the annotations over the reference genome.

This kind of correction is exactly what functional enrichment analy-
sis does (Dopazo, 2010). Functional enrichment analysis is perhaps the
simplest functional profiling approach. In this methodology, the interpre-
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tation is carried out in two steps: in the first one, some genes of interest
are selected. This selection can be done according to very different crite-
ria. It will depend, for sure, on the experimental context being analyzed;
differentially expressed genes, genes with copy number alterations, mu-
tated genes associated to disease status . . . But it will also rely on the
statistical test or algorithm used in the gene level analysis, and, specially,
on the cutoff chosen to finally select the genes relevant to the ongoing
study.

In the second step, the functions annotated to the selected genes are
contrasted against those annotated to a group of background or reference
genes, usually the remaining genes in the genome of the species under
survey. For each functional block or gene set annotated to the species,
its proportion of occurrences in the selected genes is compared to the
proportion of appearances in the reference list of genes, searching for an
enrichment in one of the groups compared to the other. Such compar-
ison is performed via statistical testing, usually a χ2 test or a Fisher
exact test, but many others, as the use of logistic regression models here
introduced, are possible (see section 1.4 on page 22). “This comparison
with the background is essential because an apparently high proportion of
a given functional module could easily be nothing but a reflection of a
high proportion of this particular module in the whole genome but not a
proper enrichment” (Dopazo, 2010).

Apart from the need to control for the “standard” annotation back-
ground, there are few important remarks regarding gene set profiling
approaches which can be already noticed in the simple functional en-
richment analysis. First there is a need to ensure that the detected
enrichment is not just a result of randomness. This is generally achieved
by using statistical hypothesis testing. Thus, one p-value is provided for
each gene set and then, all of them are corrected in order to control the
amount of false positives arising in the multiple testing context. There
are proposed many multiple testing methodologies, but may be the ones
published in Benjamini and Hochberg 1995 and Benjamini and Yekutieli
2001 are the most popular ones in the genomic context. An implicit
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consequence is the shift in the observational unit, from the gene, to the
gene set. At the gene level analysis, the unit of observation, the sta-
tistical variable, is the gene; the hypothesis tests are set for each gene,
and for each gene are also derived the p-values. At the gene set level,
one contrast is specified for each gene set, and a corresponding p-value is
then derived. The unit of interest, the entity we think about now, is not
any more the gene, but a block of genes acting together as a “biological
machine”.

Another relevant issue to be notice is that, despite the method is
known as enrichment analysis, it may happen that the amount of genes
annotated under certain term is lower in our group of genes than in the
reference one. Such term is hence reduced in our genes. Put in a different
way, the enrichment of a particular functional term or gene set, can occur
in the group of selected genes or in the group of background genes. In
the case where the background genes can be assumed to be the reference
genome, the biological interpretation for this situation would be that the
function is lost or deactivated in our selected genes.

The functional enrichment analysis is widely used in almost any ge-
nomic experiment as an straightforward functional profiling methodol-
ogy. Nevertheless, the two-steps paradigm which forces the user to set
a cutoff in the first stage, is far from being optimal (Dopazo, 2009). It
may happen, for instance, that no gene surpasses the threshold. Hence,
the second step of the functional interpretation cannot be done and the
method itself becomes meaningless. Besides that, even when there are
genes exceeding the threshold, generally those are a minimum part of
all genes available in the study. As the functional profiling focuses just
on those few genes, most of the functional information or annotation is
discarded, making the method highly inefficient; see figure 3.1 on page 53
and section 3.1 for more details.

Despite of that, the major drawback of the two-steps functional pro-
filing methodologies does not derive from those “statistical” limitations
but from the biological conceptualization implied by the method itself.
By focusing on just those genes surpassing a threshold, the functional
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enrichment analysis implicitly primes those genes showing the highest
biological changes. In some research contexts, this may be the accurate
model but, in general the highest changes may not be the mos relevant
ones. In the case of gene expression studies, for instance, the selected
genes would be those showing the highest statistical significance and the
biggest changes in its expression across biological conditions. Sometimes
that is what researchers are looking for and the two steps methodology
may be the suited one. In a synaptic transmission, for instance, we ex-
pect all the genes involved to greatly increase their expression levels. But
in many other biological contexts we would not expect a great change
of the genes involved under a functional term. In a metabolic process,
for example we would expect that the “biological machine” would be
activated by an mall, but coordinated increment of all the genes in the
corresponding metabolic pathway.

As a response to such considerations about functional enrichment
analysis, Mootha et al. 2003 devised an analytical procedure which will
lately concur in the first gene set analysis methodology. The ideas in-
troduced in that first paper were fully developed in Subramanian et al.
2005 under the name of Gene Set Enrichment Analysis (GSEA).

The basic idea behind GSEA is to use the gene level statistic, not
for selecting genes having high (or low) values in it according tho certain
threshold, but to rank the whole list of genes in the study according to the
biological condition accounted for in such statistic. “The goal of GSEA
is to determine whether members of a gene set S tend to occur toward
the top (or bottom) of the list, in which case the gene set is correlated
with the phenotypic class distinction” (Subramanian et al., 2005).

The rationale behind GSEA, which also characterized later gene set
analysis methods, is that, in any experiment, the statistic derived at a
gene level bears always some amount of information. That information
may not be relevant or significant at a gene level but, when considered
at gene set level, it may reflect consistent patterns providing valuable
insights of the underlying biology.
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In this section we have just presented the concept of functional pro-
filing of genomic experiments in an unpretentious manner. Chapter 3
further develops the concept of gene set analysis as a subclass of func-
tional profiling methodologies. Then chapters 4 and 5 will present the
methodological improvements proposed in this thesis for gene set analysis
algorithms. In the remaining sections of this chapter we will introduce
some statistical concepts necessary to fully understand those algorithms.

1.4 Logistic regression models

In statistics, a binary variable is that one which may take only two pos-
sible values. Tossing a coin, observing if there has been a failure in a
machine or answering to a yes-no questionnaire are “experiments” which
yield a binary variable as an outcome. Generally, the two values in a bi-
nary variable are coded numerically as 0 and 1. Despite of that, they are
considered to lay on a nominal scale, representing qualitative differences
without a prior order.

In genomic annotation studies for instance, the fact that a gene is
annotated or not under certain biological function, may be represented
using a binary variable. We can code the response for each gene as 1, if
the gene is annotated under the biological term, or 0 if the gene does not
have the biological function under consideration1.

Logistic regression models, also called logit models, are a set of gener-
alized linear models in which a binary variable is predicted as a response
to one or several other independent variables. Those independent vari-
ables may themselves be continuous, ordered, categorical with two values,
that is binary, or even categorical with more than two categories.

The logistic model relates the probability of the response variable
being 1 (as opposite to 0) to the explanatory variable using a linear

1 Alternatively we could use the 0 to represent the annotated genes and 1 the
unannotated ones. This will only be taken into account when interpreting the binary
variable itself.
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equation. If we call π to the probability that the response variable takes
value 1, and X to the independent variable, then, in the regression con-
text the probability π is considered to be a function of X. Thus we will
use the notation π(x) to represent the probability of response 1 when the
independent variable X takes the value x.

In its simplest representation, a logistic model states a relationship
between π and x that can be formulated as:

log π(x)
1− π(x) = κ+ αx (1.1)

Where κ is called intercept, α is known as slope and the log π
1−π is called

the logit transformation of the probability π.

A somehow more Bayesian formulation will state:

log P (Y = 1|X = x)
P (Y = 0|X = x) = κ+ αx (1.2)

Where Y is the binary response variable taking values 0 or 1.
π(x)

1−π(x) is called the odds of Y being 1 and the log( π(x)
1−π(x)) is called the log

odds of Y being 1. These two quantities, the odds, and the log odds, are
alternatives to the probability that also “measure” how likely it is that
the binary response variable takes value 1. Indeed there is a one to one
increasing relationship between the probability and both, the odds, and
the log odds. See figure 1.7 on page 24.

Thus, when the logistic model is fitted to our data, the slope param-
eter α, represents the increment in the log odds of Y being 1, when the
independent variable X increases a unit.

If α is estimated to be positive, then the log odds of Y being 1 increases
as X increases. Equivalently1, the probability of Y being 1 also increases
with X. Thus, the higher the value X takes, the more likely is the binary
variable Y to take value 1. See figure 1.8a on page 25.

1 Because of the one to one increasing relationship between the log odds and the
probability indicated above.
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(a) odds vs. prob (b) log odds vs. prob

Figure 1.7: Representation of the relationship between the odds and the log
odds and the probability.

On the other hand, If α is estimated to be negative, then the log odds
of Y being 1 decreases when X increases. Hence, the higher it is X the
more likely is Y to be 0 or, symmetrically, the lower it is X the more
likely is Y to be 1. See figure 1.8b on page 25.

As in any other standard regression context, the interest when fitting
the logistic regression model to our data, is to get an accurate estimate
for the linear coefficients κ and α, being the last one (α) generally of
more interest than the former one (κ). The standard approach is to fit
parameters is via maximum-likelihood estimation but other approaches
have been used: Bayesian, empirical least squares . . . Besides the pa-
rameters themselves, the different adjustment methods also yield some
estimates for their variabilities. Using those variabilities it can be statis-
tically tested whether the estimated coefficients are significantly different
form zero or not, for instance using the so called Wald statistic, Agresti
2002. But many other approaches for testing hypothesis over the esti-
mated coefficients are described: likelihood ratio test, Bayesian inference,
permutation or bootstrapping . . .

Hence, when fitting a logistic regression model, we will get estimates
for the intercept and the slope, and some index, such as p-values or
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(a) α is positive (b) α is positive

Figure 1.8: Representation of the relationship between probability of Y being
1 and the values taken by the independent variable X. Blue continuous lines
represent a relationship with an α coefficient being 1 or -1. Red dotted lines
represent a relationship with an α being 2 or -2. Green dashed lines represent
a relationship with an α being 1/2 or -1/2.

posterior probabilities, indicating how likely are those estimates to be
different form zero. If the estimates are significantly different form zero,
then we report a non random relationship between the binary variable Y
and the independent variable X. The sign and value of the coefficients
are then suitable to describe the dependence of Y on X.

Logistic regression models are widely applied in numerous statistical
contexts and used in most diverse disciplines. In what concerns this
thesis, they are the workhorse for the functional profiling algorithms
presented in Montaner et al. 2009 and Montaner and Dopazo 2010.

As argued in previous sections, the analysis of the data of most ge-
nomic experiments returns, ultimately, a numerical “index” value associ-
ated to each gene under study (see figure 1.9a on page 26). Afterwords,
researchers may decide to discretize such index, for instance, setting a
cutoff threshold and binarizing the information attached to each gene in
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a “pass” or “do not pass” the cutoff status1 (see figure 1.9b on page 26).
Such binarization is sometimes unavoidable because of the study require-
ments, but in many other cases it is unnecessary, or even inadvisable
because of the lost of information which implies. Whatever the case,
continuous or discrete, the gene level analysis ends up with a numerical
variable X associated to each gene.

ID X
gene1 1.23
gene2 2.74
gene3 -0.34
gene4 1.32
gene5 -2.02
gene6 0.45
gene7 0.93
. . . . . .

(a) Continuous index attached to
each gene.

ID X
gene1 1
gene2 1
gene3 0
gene4 1
gene5 0
gene6 1
gene7 1
. . . . . .

(b) Discretized index attached to
each gene.

Figure 1.9: Numerical indexes attached to genes as a result of some statistical
analysis.

After this analysis step, which involves just the “experimental” data,
it comes the time to interpret the results in terms of what is already
known about the genes under survey. For this purpose databases are
queried and gene annotations extracted. Independently of the format in
which we can have access to the annotation, the underlying structure of
the annotated data is that of a two column file. In the first column we
will get the gene identifiers, and in the second one, we will get identifiers
of the different blocks of information known about the genes, that is, the
gene sets. See figure 1.10 on page 27.

If we want for instance to interpret our experiment in terms of the
Gene Ontology database, our second column may contain the identifiers
for the different biological processes associated to our genes, that is,

1 As mentioned above, this status is usually coded using a 0, 1 numerical variable.
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gene1 label 1
gene2 label 1
gene4 label 1
gene1 label 2
gene2 label 2
gene3 label 3
gene4 label 3
. . . . . .

Figure 1.10: A representation of a two columns annotation file.

the different biological processes within which our gene is known to be
somehow involved in. See figure 1.11a on page 27. If we query the KEGG
Pathway database, the second column of the annotation will bear the
identifiers for each of the registered pathways, metabolic, signaling and
so on. See figure 1.11b on page 27.

gene1 GO:0055114
gene2 GO:0055114
gene3 GO:0055114
gene1 GO:0044281
gene2 GO:0044281
gene4 GO:0006120
. . . . . .

(a) A representation of a two
columns annotation file for the
Gene Ontology

gene1 01100
gene2 01100
gene1 01100
gene2 00710
gene4 00710
gene4 00540
. . . . . .

(b) A representation of a two
columns annotation file for the
KEGG pathway database

Figure 1.11: Annotation matrices describing GO and KEGG terms.

As one gene may be involved in several of the biological processes
registered in the data base, in the most general case, gene identifiers will
appear duplicated in the firs column of such annotation structure. Also
the annotation identifiers, those of the second column, should appear
repeatedly, as there will be several genes involved in any of the registered
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processes1.

All the genes tagged under one same annotation identifier correspond
to what we have been calling gene set, a group of genes that are known
to conform a higher level biological entity, interesting to be studied as
a whole. If we consider the “universe” of genes measured in the study2,
and we focus on a particular gene set or annotation tag, then, each gene
of the research universe can just be “inside” or “outside” the predefined
gene set. That is, once a gene set is fixed, belonging to it is a boolean
condition for the genes in the study. Such condition can be recorded into
a binary variable, Y , using a 0, 1 coding as explained at the beginning
of this section.

When considering the complete annotation or database, as the “uni-
verse” of genes is fixed, all 0, 1 variables for the different gene sets can
be arranged into a matrix structure, being the genes in the rows and
the annotation tags in the columns3. See figure 1.12 on page 29 as an
example of such data structure representation.

Hence, in a usual genomic experiment we end up having, for each gene

1 Annotation databases aim to abstract biological characteristics which are shared
by several genes. Hence, ideally, there should not be described in the database any
block or gene set involving a unique gene. Eventually there may be annotations
tagging just a single gene, but this generally occurs because it is expected that,
at some point, some other genes will fall under such biological classes. Generally,
biological classes having “few” genes are excluded in the functional profiling steps of
the analysis.

2 Usually the theoretical set of genes measured in an experiment is the complete
genome of the species under study. Nevertheless, many times in practice, the collec-
tion of genes effectively measured is constrained by the high throughput technology
employed. In the case of microarrays, for instance, we are restricted to the genes
spotted in the glass. When using Next Generation Sequencing methods, just genes
known for the species under observation are generally available in the preprocessed
dataset.

3 The transposed matrix, genes by columns and annotation tags in the rows, is
obviously possible too.
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label 1 label 2 label 3 . . .
gene1 1 1 0 . . .
gene2 1 1 0 . . .
gene3 0 0 1 . . .
gene4 1 0 1 . . .
. . . . . . . . . . . . . . .

Figure 1.12: A boolean matrix representing the same annotation information
than the figure 1.10 on page 27. We can see, for instance, how “gene1” is
annotated under “label 1” and “label 2” but not under “label 3”. At the same
time, “gene3” is the only one belonging to the biological class named “label 3”.

under survey, a ranking1 index X accounting for some biological property
evaluated in the experiment, and a binary variable Y , representing the
prior knowledge of whether the gene is annotated or not to certain gene
set2. See figure 1.13 on page 29.

label 1 (Y) index (X)
gene1 1 1.23
gene2 1 2.74
gene3 0 -0.34
gene4 1 1.32
. . . . . . . . .

Figure 1.13: Combined information from experimental results in figure 1.9a
(page 26) and annotation information in figure 1.12 (page 29)

The functional profiling step of the interpretation of the experimen-
tal results in terms of the annotation database is then formalized in the
statistical question of whether there is a relationship between the binary
variables Y and the ranking index X. As already mentioned, there are
many statistical frameworks proposed by the different authors in order to

1 If the data analysis step is properly done and X meaningfully derived, X should
effectively be a variable which orders all the genes in the experiment according to the
researchers interests.

2 More generally, we can say that, after the data analysis and the query of the
information in the annotation database, we will have the numerical index X, and
several binary variables Yi, one for each of the labels 1, 2, . . . N representing the gene
sets in the database, as in figure 1.12.
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estimate the strength of the dependence between Y and X. The method-
ologies proposed this thesis, particularly in Montaner et al. 2009 and
Montaner and Dopazo 2010 rely up on the usage of logistic regression
models.

Following the notation introduced in equation (1.2) on page 23, we
can state the logistic model for the dependence between Y and X as:

log P (Y = 1)
P (Y = 0) = κ+ αX (1.3)

Or, if we wanted to consider the more general context including the
multiple gene sets of the annotation, we will write:

log P (Yi = 1)
P (Yi = 0) = κi + αi X (1.4)

Where i ∈ {1, 2, . . . N} indicates that there is a logistic model fit for each
of the N gene sets or labels in the annotation1.

From the formulation in equation (1.4) is easy to interpret the αi
coefficients in the model; the interesting ones for our purpose of using
the logistic model as a gene set analysis tool. When αi is significantly
positive, equation (1.4) implies that, if X increases, so it does the prob-
ability of Y taking value of 1 (see figure 1.8a on page 25). Applied to
our gene set analysis context, it means that the greater it is the “exper-
imental” index X for a gene, the greater it is the probability of the gene
being annotated into the gene set i. If we where for instance in a differ-
ential expression analysis context, X could be a fold change accounting
for gene over-expression of cases compared to controls. The interpreta-
tion of a significantly positive αi then would be that, the genes more
“up-regulated” (those showing higher X values) would be more likely to
belong to gene set i (those having Yi = 1). Thus, the gene set, as a whole,
shows increased gene expression levels in cases compared to controls.

1 Note that the index i iterates over the gene set indicators but not over the X
variable. The continuous index is the same for all models.
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Conversely when αi is estimated to be significantly negative, the prob-
ability of Y taking value of 1 increases as X decreases (see figure 1.8b
on page 25). In our example of the differential gene expression analysis,
a negative αi value would then indicate that the gene set is consistently
more expressed in controls than in cases. That is, the gene set is “down-
regulated” in cases compared to controls.

Figure 1.14 on page 31 represents the three different possible trends
in the “distribution” of the genes of a gene set, over a ranking of genes
according to a continuous variable X measuring differential expression.

Figure 1.14: Possible gene set trends over an ordered list of genes.

In this section we have introduced the straight forward usage of lo-
gistic regression models for “standard” gene set analysis. As mentioned
above there are many alternative statistical approaches which can be
used for conventional functional profiling. The advantages of using re-
gression models relies on their flexibility and easiness of extension to
more complex settings or experimental designs. In the following sections
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we introduce some of those extensions up on which part of the work
developed in this thesis relies on.

Section 1.5 explains how weights can be introduced into the logistic
model. This is the basis for the developments we introduced in Mon-
taner et al. 2009, presented in chapter 4. Section 1.6 develops the mul-
tidimensional regression framework. This extension of the model is used
in Montaner and Dopazo 2010 to develop gene set analysis methods
which combine several sources of experimental information. This part of
the work is presented in in chapter 5.

1.5 The weighting schema

As pointed out in the previous section, in principle, functional profiling
algorithms model gene membership to a gene set as a binary variable. In
such conceptualization, for any gene, belonging to a functional block is a
discrete condition: the gene is within the biological machinery described
by the gene set, or is out of it. Nevertheless, such understanding of the
gene sets as homogeneous entities, supposes a clear simplification of the
underlying biology described in the databases. Each of the pathways
described in the KEGG database, for instance, has its own topological
structure. The genes integrating the pathway relate each other conform-
ing a network and, depending on the biological process under study, some
nodes or genes of the net are more relevant than others as can be seen in
figure 1.15 on page 33.

The internal structure of the gene sets is not so explicitly defined
in the GO database, but the underlying structure of the ontology of
terms implies substructures within each of the gene ontology gene sets.
The genes in the regulation of apoptosis term, for instance, are further
separated into the exclusive terms of positive regulation of apoptosis and
negative regulation of apoptosis (see figure 1.16 on page 34). Thus the
first functional block of “regulation of apoptosis” has clearly two main
subunits which internally structure it and disrupt its homogeneity.
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Figure 1.15: Cell cycle KEGG pathway. We can appreciate how gene p53 is
a hub in the pathway topology.

Despite the evident inhomogeneity of gene sets, very little work has
been carried out to develop analytical methods accounting for it. This
is partially due to the expectation created by some new systems biology
trends which aim to use database information more exhaustively, in a
path graph approach which will take advantage of the network structure
of the gene sets when available. But is also due to the fact that, in
order to correct for the lack of homogeneity of a gene set, its internal
“irregularity” has to be somehow estimated before it can be controlled
for. Such estimation has to be done empirically, what, considering the
state of the genomic data repositories, is a cumbersome task. Moreover,
it is ultimately dependent of the type of genomic data analyzed and the
biological “meaning” of the ongoing experiment.

But above technical difficulties, providing estimations of the internal
coherence of gene sets is an interesting goal on its own; it sheds light
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1. INTRODUCTION

Figure 1.16: Regulation of apoptosis GO term.

on the biological processes themselves, as well as in our understanding
and modeling of them through databases. Furthermore, once certain
empirical description of gene relationships within gene sets is available,
using it to improve gene sets analysis methods is an independent but
closely related duty.

This double exercise of describing internal coherence of gene sets and
providing gene sets analysis methods to take advantage of such descrip-
tion is what we did in Montaner et al. 2009 for the case of gene ex-
pression analyses. In this work we indicate how general gene expression
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studies implicitly assume a hypothesis of co-expression of the genes con-
stituting gene sets. Then we used public data from thousands of mi-
croarrays to demonstrate that the internal co-expression of GO terms
and KEGG pathways is not as coherent as firstly thought. We provided
empirical estimation of the correlation between pairs of genes and devel-
oped a correlation distance from each gene to each gene set1. Finally we
showed how such distance between genes and gene sets can be fruitfully
incorporated into gene set analysis via logistic regression methodologies
using a weighed schema.

As indicated in the preceding section, logistic regression models allow
for many different extensions and generalizations. One of them is the
possibility of weighting cases when fitting the model2. In this schema,
besides the dependent and independent variables, a weight is provided
for each case or observed individual in the dataset (see figure 1.17 on
page 36 for an example). Such weights indicate the relevance we want
to give to each of our observations or cases when estimating the model
parameters from data. Observations with high weights will be considered
to be more important and the estimated model will be prone to “explain”
the dependence between the response and independent variables for such
cases. Conversely, low weights cases will be less important to the algo-
rithm estimating the model parameters; hence, the final model will not
fit such observations as well as the highly weighted.

To give an intuition of how weights affect the model estimation in
practice, we could say that, if case A doubles the weight of case B, then,
the “importance” of A in the fitting is such as if the observations B would
appear duplicated in our dataset. The figure 1.18 on page 36 shows a
dataset that will provide a similar logistic regression fitting than the data
represented in figure 1.17 on page 36.

1 Using the Gene Ontology database and the KEGG Pathways repository as the
paradigmatic gene set databases.

2 Indeed the possibility including weighted observation is proper of the generalized
linear models, not just of the logistic regression ones.
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Response Independent Weights
1 1.23 0.1
1 2.74 0.3
0 -0.34 0.2
1 1.32 0.1
0 -2.02 0.1
0 0.45 0.1
0 0.93 0.1

Figure 1.17: A representation of a weighed dataset. Each case or row has
values for its dependent and independent variables and also, an assigned weight.
In this example, for instance, the second case is three times more important
than the first one and the third case is two times more important than the first
one. All remaining observations are given the same weight as the first one and
hence, all of them are considered to be equally important.

Response Independent Weights
1 1.23 0.1
1 2.74 0.1 ∗
1 2.74 0.1 ∗
1 2.74 0.1 ∗
0 -0.34 0.1 +
0 -0.34 0.1 +
1 1.32 0.1
0 -2.02 0.1
0 0.45 0.1
0 0.93 0.1

Figure 1.18: A representation of a dataset equivalent to the one presented in
figure 1.17 (page 36). Cases marked with ∗ are the unfold of the case weighed
with 0.3 in figure 1.17, cases marked with + are the unfold of the case weighed
with 0.2 in figure 1.17.

In the work presented in Montaner et al. 2009, we empirically de-
rived a correlation distance between genes and gene sets. In the context
of gene expression, such distance accounts for the amount of coordination
between the level of expression of the gene and the levels of expression of
the remaining genes within the gene set. Genes being “close” to the gene
set are those highly correlated with most of the genes in the block. In
practical terms it means that, across biological conditions, the gene fol-
lows the same expression level pattern than the main bulk of genes of the
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gene set, acting as one more piece of the “biological machine” described
by the annotation block. Genes having a “long” distance to the gene set
are less correlated to the main core of genes within the functional block,
indicating that the gene may be acting as part of the block just in few
biological conditions. Long distances may even derive from a negative
correlation between the gene and the gene set, which occurs for instance
when a gene is an inhibitor within a pathway.

Also inMontaner et al. 2009 we used the inverse1 of such correlation
distance as a weight to indicate the importance a gene has when analyzing
each gene set. For the analysis of each gene set, a logistic regression
model was applied as described in section 1.4, but this time, the weights
empirically derived from the correlation distances would be provided to
the algorithm. Thus, the estimated model would reflect the real biological
influence that the genes have over gene sets, and the global interpretation
of the gene set analysis results would be biologically more consistent, as
we demonstrated in the paper.

It should be noticed here that the same gene will have different as-
signed weights when considering different gene sets. This is so because
the different gene sets are constituted by different groups of genes and
hence, the estimated correlations between one gene and several functional
blocks will differ among them.

Some other authors have considered “reducing a gene set to its core
members that chiefly contribute to the statistical significance of the differ-
ential expression of the initial gene set” (Dinu et al., 2009). The relevance
of our approach comes first from its versatility due to the flexibility of
the logistic regression models. Any weighting schema other than the one
we proposed for gene expression studies, may be straightforward applied
using our gene set methodology. Thus, we keep on with our philosophy of
tackling complex analyses following a “modular approach” (see previous

1 The inverse of a distance D is the quantity 1/D. Using such transformation to
define the weight we obtain high weights for the genes that are “close” to the gene
set and low weights for the genes that have “long” distance the gene set.
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section 1.1 on page 2). Also our gene set analysis approach is not just
restricted to gene expression studies. It may be easily applied to any
kind of genomic data as the gene level analysis and the gene set level
analysis are separated; in section 3.4 (page 58) we further consider this
issue.

But the most outstanding improvement derived from our methodol-
ogy is that, for the first time, we consider a non discrete membership of
a gene to a gene set. We showed how, for any gene, the simplistic “flat”
boolean state of being in or out of a gene set registered in databases,
may be modulated in a meaningful continuous way when extra empir-
ical information is available, yielding in more robust gene set analysis
results.

1.6 The multidimensional context

Hitherto we have been approaching gene sets analysis from a unidimen-
sional perspective. This means that, so far, we have been considering
the simplest context in which a unique genomic measurement needs to
be interpreted. Such simple analytical scenario rises in biological experi-
ments where a single genomic characteristic is measured. Most biological
experiments are such. They record gene expression measurements, ge-
nomic variants, methylation status and so on; but in an isolated way.
Generally this is enough for testing concise hypotheses, focused on pre-
cise cellular mechanisms. Nevertheless, a growing amount of experiments
are currently collecting several of those genomic measurements at a time.
Improvement of the technologies besides their lowering of prices are mak-
ing complex experiments more appealing to researchers.

As explained in section 1.4 (page 22), most genomic experiments end
up yielding a ranking index which organizes the genes according so some
biological condition: differential expression, methylation status or copy
number are some of the possibilities given by modern technologies. When
such index is put together with the binary variable indicating gene mem-
bership to a gene set (see figure 1.13 on page 29), gene set analysis
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methods can be applied in order to make a functional interpretation of
the experimental data. Particularly, in this thesis, we have described
how to use logistic regression models in order to carry out such gene set
analysis.

When not one but several genomic measurements are taken in the
same experiment, each of them is finally summarized by a different rank-
ing statistic. We can imagine, for instance, an experiment in which re-
searchers collect gene expression data and genomic variation data in a
diseased versus control design. In such setup, the primary data analysis
will return, for each gene1, a first measurement of differential expression
and a second indicator of genomic variant association to disease. When
performing the functional interpretation of such results, for each gene set
considered, a third binary variable indicating gene membership to the
gene set will be added. Thus, the data table of figure 1.13 (page 29)
would be extended as in figure 1.19.

Response var. Independent var. 1 Independent var. 2
1 1.23 -2.3
1 2.74 1.4
0 -0.34 -0.1
1 1.32 1.5
0 -2.02 2.0
0 0.45 -1.9
0 0.93 0.8
. . . . . . . . .

Figure 1.19: A representation of the combined information from two ranking
indexes. The experimental information reflected in the two continuous variables
goes along with the annotation indicator.

Conventional gene set analysis methods will not be able to to deal
straightforward with such multidimensional setup. Of course, the func-
tional interpretation of the two genomic measurements can always be
done separately, but if the experiment was designed to collect both ge-

1 We are here simplifying the example by assuming that the gene would be the
feature of interest to researchers, but transcripts, for instance, could also be used.
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nomic characteristics, probably the interest remains in jointly analyzing
them, considering possible synergies between them.

In Montaner and Dopazo 2010 we demonstrated how logistic regres-
sion models can easily be extended to to handle such multidimensional
scenario. The basic idea in the paper can be formulated extending equa-
tion 1.1 on page 23 as follows

log π

1− π = κ+ α x1 + β x2 (1.5)

As in equation 1.1, in this formula, the parameter π represents the
probability that a gene is annotated under the gene set being tested. Its
logit transformation, log π

1−π , is modeled as a function of, not one variable
x, as in equation 1.1, but two: x1 and x1, each of them representing one
of the two genomic indices under consideration. The parameters α and β
are the slopes and their fitted value describes how the analyzed gene set
is related to both genomic characteristics. The parameter κ, the intercept
is generally not useful for the interpretation of the model.

Hence again, our modular approach to data analysis immediately let
us take advantage of the flexibility of the regression models. Thus we can
straightforward incorporate two1 genomic characteristics into the gene set
analysis. But, as indicated in Montaner and Dopazo 2010, the gene set
analysis results derived from equation 1.5 will not be substantially differ-
ent from those carried out applying conventional methods independently
to each of the genomic measurements. Because of that, the actual model
proposed in Montaner and Dopazo 2010 for the combined functional
profiling of two genomic measurements, incorporates an interaction term
as follows:

log π

1− π = κ+ α x1 + β x2 + γ x1x2 (1.6)

1 Indeed, theoretically, the model can be extended to as many genomic charac-
teristics as desired.
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In this equation, the interaction term γ represents the departure form
the additive model stated in equation 1.5. For any gene set, the fitted
value of γ reflects how much of the probability of genes being annotated
under the functional term, is explained by the “combined” effect of the
two genomic conditions x1 and x2.

The inclusion of the interaction term in the model is what supposes
a real advantage over the utilization of conventional gene set methods
applied independently over the two conditions. In biological sense, the
interaction accounts for the combined effect of the two genomic charac-
teristics in modulating the biological function described by the gene set.
Our new approach lets the researchers discover relationships which will
go unnoticed in the independent analysis of each of the genomic char-
acteristics at a time. We can for instance explore gene expression and
genomic variation measurements over the same individuals, and discover
gene sets which are only activated when their genes are differentially ex-
pressed and mutated. As highlighted in our work, the relevance of such
gene sets will be dismissed in the conventional analysis of the expression
and the variation separately.

Our paperMontaner and Dopazo 2010 is fully reproduced in chapter
5 on page 77.
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Chapter 2

Genomic Data and Analysis
Tools

2.1 Montaner 2006 overview

This chapter presents the first publication from those appointed to out-
line this thesis: Montaner et al. 2006. The paper described the fourth
version of GEPAS, a web tool devised for the analysis of microarray data.

Experience form previous releases of the tool had proved the ad-
vantages of integrating diverse analytical methods into the same suit.
GEPAS users could, at that point, easily perform complex statistical
analyses covering most general transcriptomic experiments. Keeping this
spirit, GEPAS 2006 hold important technological improvements in its
programming together with an enlarged collection of statistical method-
ologies addressing each analysis step.

But there where two aspects of the new version that became remark-
able in the subsequent development of our concept of genomics: The first
main change was to include tools for the analysis of other than transcrip-
tomic data. Genomic copy number, for instance, could be since then
analyzed using GEPAS. The second most relevant characteristic was the
extension of the options available for functional profiling. Since 2006,
results form any analysis ran by GEPAS could be further functionally
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2. GENOMIC DATA AND ANALYSIS TOOLS

explored using Babelomics modules (see chapter 1).
Thus we became aware that, following the analysis of any genome

scale experimental data, a functional profiling step is almost compulsory.
We also showed how the functional interpretation of a genomic analysis
can be done independently of the methods or algorithms firstly used to
explore the experimental data. Using GEPAS and Babelomics we had,
for instance, the possibility of using many statistical algorithms to test for
differential expression, and still, apply a unique functional interpretation
approach . . . provided that it was flexible enough.

This acknowledgments settled down the requirements to be made to
the GSA algorithms we developed later: Being able to deal with several
genomic measurements at a time. And being general enough not to
depend of the kind of genomic data, nor the statistics employed in the
gene level analysis.

2.2 Paper

Montaner et al. 2006 paper is printed in this section.

GEPAS website may still be accessed at:
http://www.gepas.org

A link to Babelomics, the web tool within which GEPAS is now embed-
ded, can be found at:
http://www.babelomics.org

The online version of the paper can be found at
http://nar.oxfordjournals.org/content/34/suppl_2/W486.full
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ABSTRACT

The Gene Expression Profile Analysis Suite (GEPAS)
has been running for more than four years. During
this time it has evolved to keep pace with the new
interests and trends in the still changing world of
microarray data analysis. GEPAS has been designed
to provide an intuitive although powerful web-based
interface that offers diverse analysis options from
the early step of preprocessing (normalization of
Affymetrix and two-colour microarray experiments
and other preprocessing options), to the final step
of the functional annotation of the experiment
(using Gene Ontology, pathways, PubMed abstracts
etc.), and include different possibilities for cluster-
ing, gene selection, class prediction and array-
comparative genomic hybridization management.
GEPAS is extensively used by researchers of many
countries and its records indicate an average usage
rate of 400 experiments per day. The web-based pipe-
line for microarray gene expression data, GEPAS, is
available at http://www.gepas.org.

INTRODUCTION

It is quite common that the introduction of a new technology is
accompanied by claims and promises which on many occa-
sions cannot be fulfilled. This hype is then followed by a wave
of disappointment against the technology. Fortunately, as it
is reaching a certain degree of maturity, DNA microarray

technologies do not seem to have followed this fate. During
an initial period, DNA microarray publications were dealing
with issues such as reproducibility and sensitivity. Many clas-
sical microarray papers dating from the late nineties were mere
proof-of-principle experiments (1,2), in which only cluster
analysis was applied. Later, sensitivity became a main concern
as a natural reaction against quite liberal interpretations of
microarray experiments made by some researchers, such as
the fold criteria to select differentially expressed genes. It was
soon obvious that genome-scale experiments should be care-
fully analysed because many apparent associations happened
merely by chance (3). In this context, different methods for the
adjustment of P-values, which are considered standard today,
started to be extensively used (4,5). More recently the use of
microarrays as predictors of clinical outcomes (6), despite not
being free of criticisms (7), fuelled the use of the methodology
because of its practical implications. There are still some
concerns with the cross-platform coherence of results but it
seems clear that intra-platform reproducibility is high (8) and,
despite the fact that gene-by-gene results are not always the
same, the biological themes emerging from the different plat-
forms are increasingly consistent (9). That points to the
importance of the interpretation of experiments in terms of
their biological implications instead of a mere comparison of
lists of genes (10,11).

Keeping a pace with the trends mentioned above, Gene
Expression Profile Analysis Suite (GEPAS) has been growing
during the last 4 years. In the first release it was more oriented
towards clustering and data preprocessing (12). Successive
releases showed a package more oriented towards gene selec-
tion, class prediction and the functional annotation of experi-
ments (13,14). The version presented here include several new
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modules, some of which are new while other ones constitute
already available tools completely rewritten including new
functionalities. GEPAS is not a simple web server, but it con-
stitutes one of the largest resources for integrated microarray
data available over the web. It has been working for more than
four years having by the end of year 2005 an average of 400
experiments analysed per day summing up over all of their
modules. GEPAS is used by researches worldwide as can be
seen in the usage map, where all the sessions are mapped to its
geographic location (http://bioinfo.cipf.es/access_map/map.
html). It also offers on-line tutorials that can be used in
courses. In the new version (3.0) we present new modules
for the normalization of Affymetrix experiments, for differ-
ential gene expression, for the evaluation of cluster quality and
another module for array-comparative genomic hybridization
(Array-CGH) data management. Also, another conceptual
novelty is the connection of GEPAS to the PupaSuite tools
(15–17), which offers the possibility of analysing polymorph-
isms at the light of the results of the gene expression analysis.

GENERAL OVERVIEW

GEPAS aims to tackle the most common problems in micro-
array data analysis in a simple but rigorous way. Thus, after an
essential step of normalization, there are different ‘work-
flows’, or sequences of steps, that can be followed, depending
on the aim of the experiment: class discovery, differential gene
expression, class prediction or genomic copy number estima-
tion, just to cite the most common objectives of microarray
experiments. Class discovery, either in genes or in experi-
ments, is achieved by using clustering methods. GEPAS
includes some commonly used clustering methods such as
hierarchical clustering (18), SOTA (19,20), SOM (21),
K-means (22) and SOM-Tree (23). The evaluation of cluster
quality, a scarcely addressed issue, has been implemented here
in the Cluster Accuracy Analysis Tool (CAAT) module (see
below). Differential gene expression implies finding genes
with significant differences in expression between two or
more classes, related to a continuous experimental factor
(e.g. the concentration of a metabolite) or to survival data.
A new, more complete module for differential gene expression
is presented in this new version of GEPAS (see below). The
module Tnasas for class prediction implements different
classifiers, such as diagonal linear discriminant analysis
(DLDA) (24), nearest neighbour (NN) (25), support vector
machines (SVM) (26), random forest (27) and shrunken
centroids (PAM) (28) of known efficiency as class predictors
using microarray data (24). Cross-validation error is calculated
in a way to avoid the well-known selection bias problem
(29,30). See Tnasas help (http://tnasas.bioinfo.cipf.es/cgi-
bin/docs/tnasashelp) for a more detailed description of the
methods and error estimation strategy. Array-CGH (31) can
be analysed through the module ISACGH that allows predict-
ing copy number, relating these values to gene expression and
performing functional annotation through the babelomics (11)
suite. Finally, functional annotation is carried out with the
babelomics suite which can be used either as an independent
suite or as an integrated part of the GEPAS. Figure 1 illus-
trates, following the metaphor of a subway line, the intercon-
nections of the different tools in the GEPAS environment.

NORMALIZATION AND PREPROCESSING

GEPAS now implements normalization facilities for both two-
colours and Affymetrix arrays. DNMAD (32) module performs
normalization in two-colour arrays using print-tip loess (33)
with a number of different options. DNMAD can input
Genepix (Axon instruments) GPR files. The module expresso
normalizes Affymetrix CEL files using standard Bioconductor
(34) tools; in particular the package affy (35). Besides its
friendly web interface we provide the user with the speed
and above all the physical memory available in our server.

More information can be found in the corresponding tutorial
web pages (http://bioinfo.cipf.es/docus/courses/on-line.html).

In addition, the preprocessor (36) module performs some
preprocessing of the data (log-transformations, standardiza-
tions, imputation of missing values and so on).

CLUSTERING AND CLUSTER QUALITY
ESTIMATION

Despite the fact that clustering is one of the most popular—
albeit often improperly used (30)—methodologies in the ana-
lysis of microarray data there are very few alternatives for the
estimation of the quality of the results found. We have
included a module, CAAT, which provides many options for
the visualization and intuitive manipulation of hierarchical and
non-hierarchical clustering results. Many visualization modes,
browsing options and cluster extraction possibilities are cur-
rently available. Moreover, CAAT provides some descriptive
measures about each partition (average profiles, standard devi-
ation profiles, inter and intra-cluster distances) as well as a
global estimation of cluster quality by the silhouette method
(37), which performs well, in noisy situations, such as micro-
array analysis (38). CAAT submits data to other tools such as
the Babelomics (11) functional annotation suite or to ISACGH
(Figure 1).

There is more detailed information in the CAAT documenta-
tion (http://bioinfo.cipf.es/docus/courses/on-line.html).

DIFFERENTIAL GENE EXPRESSION

This version of GEPAS includes new methods for differential
gene expression analysis under different conditions. The old
module pomelo has been replaced by the new module T-rex
(Tools for RElevant gene seleXion) which is much faster and
offers new tests for different situations. T-rex distinguishes
among four conceptually different testing cases:

� Finding genes differentially expressed between two discrete
classes (e.g. case/control and so on). A number of authors
(39,40) have found that the classical t-statistic, which was
widely used in early work on the analysis of differential
expression, can be highly unreliable for microarray data.
Problems arise mainly as a consequence of statistical issues
relating to the SD term in the denominator of the t-statistic.
For example, many non-differentially expressed genes may
by chance have small observed SDs, which may cause these
genes to be erroneously selected. GEPAS now also imple-
ments different new tests:

� The t-test, which is still available.
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� An empirical Bayes methodology that allows fitting hier-
archical mixture models to identify differentially
expressed genes (41). One of the advantages of this meth-
odology is that it fits a global model taking into account
all genes in the dataset.

� A novel test for the analysis of microarray data by com-
bining inference for differential expression and variabil-
ity (CLEAR-test) (J. Valls, M. Grau, X. Sole,
P. Hernandez, D. Montaner, J. Dopazo, M. A. Peinado,
G. Capella, M. A. G. Pujana and V. Moreno, manuscript
submitted). Most tests evaluate differential expression by
using estimated variability, but no inference is made in
terms of the variability itself. CLEAR-test evaluates both
whether genes show large fold changes and whether their
variability is high.

� A data-adaptive approach to the analysis of differential
expression, in which an effective test statistic is learned
directly from microarray data. This approach has been
shown to ameliorate many of the problems associated
with both the t-statistic and simple moderated statistics
like SAM (42), and to produce good results under a range
of conditions (43).

� Finding genes differentially expressed between more than
two classes (e.g. different types of cancers and so on)
Together with the classical ANOVA methodology we
make available the same CLEAR test mentioned above
(41). While the mathematical treatment of this kind of
data is similar to that of two classes, in our tools, we separate

the case when more than two classes are available because
of its different conceptual implications.

� Finding genes whose expression is correlated to a contin-
uous variable (e.g. the level of a metabolite). Regression
analysis of gene expression on any numerical independent
variable has been implemented. C routines have been com-
piled for the particular architecture of our computers in
order to achieve the maximal speed. Estimates of Pearson’s
and Spearman’s correlation coefficients as well as P-values
for testing the null hypothesis of no correlation can also be
obtained with T-rex.

� Finding genes whose expression is related to survival times.
GEPAS uses C routines to estimate a Cox proportional
hazards regression model (44). Right censored data are
allowed as well as replicates in the survival times. Censoring
variables should be provided by the researcher together with
survival times that may be replicated.

When appropriate, P-values adjusted for multiple testing are
provided. Three methodologies are implemented. One of them
controls the FWER (family-wise error rate) (45) while the
others control the FDR (false discovery rate) (46). Our imple-
mentations make use of the p.adjust function in the stats
R package and the qvalues package (47) from Bioconductor.

FUNCTIONAL ANNOTATION

Functional annotation of the experiments gives clues to the
researcher for the interpretation of the experiment. There are a

Figure 1. Map of GEPAS functionalities as a subway line. Data (Affimetrix, two-colour or raw) are introduced from the left side and pass through the preprocessor.
Then different types of analyses can be performed: gene selection (T-rex) in different situations (two or more classes, correlation or survival; see text for details) or
class discovery (Tnasas) are two types of supervised analyses. Array-CGH data can be analysed through the red line ISACGH. Unsupervised analysis can also be
performed using different methods. CAAT allows to map co-expressed genes on their chromosomal coordinates allowing the study of RIDGES (54). All the tools end
up in Babelomics (11), that allows for two different types of analysis: comparison of two sets of genes of analysis or blocks of functionally related genes.
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number of tools that make use of gene functional annotations
to try to understand the global changes in gene expression in
microarray experiments (48), but probably one of the most
complete packages in this respect is the Babelomics suite
(11,49). This suite of programs for functional annotation of
genome-scale experiments has undergone a deep modification
described in detail elsewhere (49). In brief, Babelomics can
now compare two groups of genes and test simultaneously for
the significant over-abundance of diverse biological themes
such as GO terms, KEGG pathways, Interpro motifs, Swis-
sprot keywords, Transfac� motifs, CisRed motifs, relative
abundance in tissues and bioentities extracted from PubMed,
with the proper multiple testing adjustment. This is carried out
by the FatiGO+ module, the evolution of the FatiGO program
(50). Additionally there are two modules designed to search
for functionally related blocks of genes that are co-ordinately
over- or under-expressed using both the FatiScan (51) or the
GSEA (52) algorithms.

Despite its general scope (Babelomics is not restricted to
microarrays but applicable to any type of large-scale experi-
ment), and the possibility of being used alone as an independ-
ent resource, the Babelomics suite has been fully integrated
into GEPAS. Modules of gene selection (T-rex) or class pre-
diction (tnasas) can submit the genes selected as relevant to the
FatiGO+ module for testing against the rest of genes. Like-
whise, the modules for clustering (hierarchical, k-means,
SOM, SOTA) through their cluster’ viewers or through
CAAT, can submit the genes within the selected cluster to
be tested against the rest of genes. Similar operation can be
performed from within ISACGH, with the genes contained in
the selected chromosomal region. Moreover, arrangements of
genes can be sent from T-rex to the FatiScan to test blocks of
functionally related genes tha are co-ordinately over- or under-
expressed. Sets of arrays can also be submitted to GSEA with
the same purpose.

ARRAY-CGH

Genetic aberrations, which are the molecular basis of many
diseases, have classically been studied through CGH. The
introduction of microarray-based CGH methods (array-CGH)
has revolutionized this methodology in terms of resolution and
throughput (31,53) but, at the same time, has generated a need
for new algorithms and software for dealing with this type of
data. We have included in GEPAS a new module, ISACGH,
which completely replaces the old viewer InSilicoCGH (14).
ISACGH includes two new and efficient methods for accurate
estimation of genomic copy number from array-CGH hybrid-
ization data, integrated into a web-based system that allows,
for the first time, the combined study of gene expression and
genomic copy number. Several visualization options offer a
convenient representation of the results. Moreover, the link to
the Babelomics (11,49) tools allows, for the first time in a tool
of this type, the production of functional annotations (using
different relevant biological information such as gene onto-
logy, pathways, etc.) for the detected chromosomal regions of
interest (amplified or deleted). We use the DAS technology
(Distributed Annotation System; see http://www.biodas.org/),
that allows a remote mapping of information (our predictions)
from a server (our server) to a client (Ensembl), to represent

the ISACGH predictions and data onto the Ensembl
chromosomal coordinates.

ISACGH generically maps data onto their chromosomal
coordinates. So, beyond to map genomic hybridisations any
other data can be mapped. Thus CAAT can send to ISACGH
groups of co-expressing genes, which might be useful for
defining regions of increased gene expression, also known
as RIDGES (54).

Polymorphisms affecting gene expression

Although the study of regulatory polymorphisms is not new,
there has been a recent revival of interest in them mainly
because of the availability of high-throughput data and meth-
odologies that allows their characterisation (55). The corres-
ponding GEPAS modules (CAAT, tnasas and T-rex) have a
unique feature in this regard: the possibility of connecting the
genes found to be regulated in a microarray experiment to
possible regulatory SNPs in such genes. In particular,
clustering and gene selection methods can be connected to
the PupaSuite (15–17).

DISCUSSION

GEPAS is a long-term project that aims to provide the scient-
ific community with an advanced set of tools for microarray
data analysis, without renouncing to an easy and intuitive use.
It has been running uninterruptedly for more than four years
and has grown to include more tools as new algorithms were
introduced in the microarray data analysis arena (12–14). The
GEPAS team has intended to deliver a coherent set of state-of-
the-art and widely established algorithms, running away from
building a simple collection of as-much-as-possible tools.
Actually, any new tool included is the response to a new or
emerging requirement requested by our users. As the Func-
tional Genomics node of the Spanish Institute of Bioinform-
atics (INB; http://www.inab.org) and being part of the Spanish
Network of Cancer Centers (RTICCC; http://www.rticcc.org)
we have a direct contact with researchers from which we get
much of the feedback necessary to build up a useful tool.
GEPAS, integrated with the Babelomics suite (11,49), pro-
vides the tools for performing the most common analyses
of microarray data. Moreover, it has been conceived as a
workflow that helps the user to carry out a series of consec-
utive steps of analysis with simple mouse clicks. GEPAS has
been designed to take full advantage of the properties of the
web: connectivity, cross-platform functionality and remote
usage. Its modular architecture allows easy implementation
of new tools and facilitates the connectivity of GEPAS
from and to other web-based tools.

The user of GEPAS ranges from the experimentalist with
not much experience in bioinformatics and no deep statistical
skills, interested only in data analysis, to the bioinformatician
that invokes some of the tools remotely for different purposes.

GEPAS is running in a high-end cluster (with 20 dedicated
AMD Opteron CPUs at 2.4 GHz) with a large amount of RAM
(6 GB). This allows to use tools (e.g. normalization tools are
highly RAM-consuming) that usually are beyond the capab-
ilities of the hardware available to many end users.

In addition, there is a teaching programme related to
GEPAS (see http://bioinfo.cipf.es/docus/courses/courses.
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html) with on-line tutorials that can be freely used (http://
bioinfo.cipf.es/docus/courses/on-line.html).

Although other alternatives are available for microarray
data analysis, there is no other similar resource over the
web with the number of possibilities offered by GEPAS.
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Chapter 3

Gene Set Methods Rationale

This chapter advances some ideas and concepts that may help reading
the next two articles presented for the thesis: Montaner et al. 2009
and Montaner and Dopazo 2010. Hopefully, it will also clarify the link
between GEPAS, reported in the previous chapter, and the other two
works. Some parts of the text are taken form a previous report we fist
published as a book chapter, Montaner et al. 2008. The original writing
(available in Appendix A) was entitled “New trends in the analysis of
functional genomic data.” Sometime later I am glad to see that those
“trends” derived into robust analytical methods.

3.1 Replications of the same statistical test

Most analyses carried out using high throughput data (analyzed using
GEPAS, for instance) consist of the repetition of the same statistical test
for all genes in the dataset. As a result of such replicated analysis we
get, for each gene, several estimates of statistical parameters: statistics,
fold changes, p-values or confidence intervals. Thus, a huge amounts of
numbers is yield by the analysis itself.

As in all biological experiments, after getting the results, researchers
have to interpret them to answer those questions addressed by their re-
hearsal. To interpret results means facing what is already known with
the new information provided by the experimental outcome. If there are
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few variables in the game, recalling what is already known is straight for-
ward and so it is to face it with the new information carried by the data.
On the other hand, in genome scale experiments, what is already known
is what is stored in databases, and to face it with the high through-
put results is a cumbersome task, unfeasible without the application of
automatic procedures for functional profiling.

Trying to simplify things and being aware that most statistical meth-
ods were developed to test for a single hypothesis, researchers will usually
correct p-values for multiple testing1 before choosing a cut-off that will
indicate the rejection of the null hypotheses, whichever it is.

Once chosen the genes with alternative pattern (meaning different
form the one stated in the null hypothesis) the next step is to biolog-
ically interpret such departure from hypothesis. Different repositories
of functionally relevant biological information such as Gene Ontology
(Ashburner et al., 2000), KEGG (Kanehisa and Goto, 2000), InterPro,
(Mulder et al., 2007) or Reactome (Vastrik et al., 2007) are available and
can be used for the functional annotation of genome-scale experiments.
Thus the functional properties of the selected genes can be analyzed.

Using the tools we developed at the CIPF, you could, for instance,
carry out a differential expression using GEPAS, select the differentially
expressed genes and send them to Babelomics to be functionally inter-
preted with the FatiGO module (Al-Shahrour et al., 2004, 2007b).

Such cut-off based approach has been recently referred to as “Over-
Representation Analysis” by Khatri et al. 2012; in section 1.3 (page 18)
we have referred to it as functional enrichment analysis. In this methods
we can appreciate an interesting change in the philosophy of the analysis.
The focus of attention is not anymore a single gene but a block of genes

1 Classical p-value correction methods widely used in genomics are those proposed
by Benjamini and Hochberg 1995 and Benjamini and Yekutieli 2001 Still there is a lot
of ongoing work on this topic; see for instance Carvajal-Rodriguez and de Una-Alvarez
2011.
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with a common biological meaning. This new way of looking at data pro-
vides, among others, obvious advantages for the biological interpretation
of results as well as for the p-value adjustment. We just need to correct
by the number of blocks, usually smaller than the number of genes.

But the “Over-Representation Analysis” carries its own drawbacks.
Dopazo 2009 provides a detailed discussion of them, being the most detri-
mental the fact that, by discarding genes with p-values above the cut-off,
we loose most of our information. Not only we loose the measurements
taken over the discarded genes but also, the functional annotation that
could be linked to them from repositories, making more difficult the bi-
ological interpretation of results (see figure 3.1 on page 53).

Figure 3.1: Over-Representation Methods. The horizontal lines represent the
cut-off points. Just the information in the extremes of the ranking is used for
the functional interpretation; all the other information is dismissed.

Also, in biological sense, calling most relevant to those genes overtak-
ing certain threshold is, somehow, a biased approximation. It is generally
accepted that genes showing biggest changes between experimental con-
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ditions may play a key roll in biology. Nevertheless, as Khatri et al.
2012 indicates, it is likely as well that, small but coordinated changes in
functionally related genes, that is, in gene sets, have decisive biological
implications.

3.2 Whole-genome methods: Gene Set Anal-
ysis

Aiming to prevent such waste of information, some authors proposed
to directly analyze the behavior of blocks of functionally related genes
in a whole-genome context. In this new approach, the cut-off steep is
skipped and all genes available in the experiment are considered. Hence,
experimental and annotated information enter complete in the analysis
which becomes, therefore, more powerful.

The Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003), the
FatiScan (Al-Shahrour et al., 2007a) or the Global Test (Goeman et al.,
2004), constitute examples of this type of approach inspired from systems
biology. Khatri et al. 2012 refer to this second generation of algorithms
as “Functional Class Scoring (FCS) Approaches”, but the term “Gene
Set Analysis” (GSA) is probably the most broadly used in publications.

All this methodologies address the general issue of whether the gen-
eral expression pattern of a group of genes, for example a GO term or
a KEGG pathway, changes across biological conditions. They study the
relationship between the expression of the genes of the block of interest
and a characteristic associated to each biological sample. Such charac-
teristic may be a categorical condition, like the class of the microarray in
the context of differential gene expression, or a continuous variable such
as a level of a metabolite.

In a wonderful paper, Goeman and Buhlmann 2007 classify GSA
methodologies as “competitive” or “self-contained”:

A competitive test compares differential expression of the
gene set to a standard defined by the complement of that gene
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set. A self-contained test, in contrast, compares the gene
set to a fixed standard that does not depend on the measure-
ments of genes outside the gene set.

After this publication there has been an extensive debate on the advan-
tages and disadvantages of each of the two approaches. Goeman et al.
2004, Mansmann and Meister 2005 or Dinu et al. 2007 advocate self-
contained while Subramanian et al. 2005, Al-Shahrour et al. 2007a or
Sartor et al. 2009 prefer the competitive.

The methods presented in this thesis, Montaner et al. 2009 and
Montaner and Dopazo 2010, refine the ideas behind Al-Shahrour et al.
2007a and share underlying statistical models with Sartor et al. 2009;
they also fall into the competitive methodologies classification.

Ultimately, to choose one or the other approach depends on the ex-
perimental context and on how researchers understand the enrichment
or over/under expression of a gene set. As Dinu et al. 2009 states:

This fundamental disagreement on the concept of, not the
methods for identifying, differentially expressed gene sets [. . . ]
is a key point in the debate between the self-contained versus
competitive methods.

In general, the self-contained view implies a stronger statement (Goeman
and Buhlmann, 2007) meaning a more restrictive contour of the statistical
hypothesis tested or a more ambitious description of the experimental
reality. Hence, self-contained algorithms need to be more customized for
each experimental design. They also need to be more exhaustive in the
usage of the experimental information.

Usually this requirements are fulfilled via “subject sampling” p-value
computation (Goeman and Buhlmann, 2007) and require the gene level
analysis and the set level analysis be embedded within the same al-
gorithm. But, the gene level analysis, which is always conditioned by
the design of the experiment, cannot easily be modified, making these
methodologies quite inflexible.
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The approach in Goeman et al. 2004 for instance, was designed to
handle a class comparison design; it required complete amendment of
the methods and re-programing of the software before it could be used
to analyze survival data (Goeman et al., 2005). On the contrary, this
two experimental frames, class comparison and survival analysis, were
easily tackled using our competitive approach: A first step will con-
duct differential expression or survival analysis using standard gene level
methodologies.1 In a second step FatiScan or a logistic model like those
in Sartor et al. 2009, Montaner et al. 2009 or Montaner and Dopazo
2010 would be applied to carry out the GSA part of the job.

Finally, in the self-contained algorithms, the blending of the gene
and gene set levels of analysis besides the imperative subject sampling
approach, transport the potential shortcomings of the original expression
data, to the final results of the analysis. If the dataset has small sample
size, for instance, some methods are not applicable; if the expression
data are not available p-values cannot be directly obtained (Fridley et al.,
2010).

3.3 Competing over a ranking index

The block of genes is also the unit of interest of the competitive methods.
The GSEA, FatiScan or the logistic model based methods2 are similar
to the Global Test and other self-contained approaches in that they are
also used to discover groups of genes which overall expression pattern
changes across biological conditions. Nevertheless, GSEA, FatiScan and
the logistic models consider all genes in the data when analyzing each of
the blocks. They compare the pattern of the genes of one block with the
general pattern of the genes in the whole dataset, and call it significant

1 GEPAS could be used for this purpose but also any other software that the
researchers considered more suitable for their study; this exemplifies the complete
separation of gene and the gene set levels in our functional profiling approach.

2 Sartor et al. 2009, Montaner et al. 2009 and Montaner and Dopazo 2010.
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if it is a winner in that competition. GSEA was particularly designed for
the two class comparison context while FatiScan and the logistic models
may be applied in a wider range of studies.

The rationale underlying this methodologies is that, if a property of
genes can be described using a continuous index, a ranking index, then,
the statistical distribution of such index within a functional block of
genes can be compared to the general distribution of the index across all
genes in the dataset. Hence, the almost1 complete genome, provides the
background distribution towards which we can compare the gene set of
interest and compute statistical significance for it. Thus, we can asses
whether the property described by the index is related to the charac-
teristic which a priori defined the block of genes, that is, the biological
function described by the annotation.

As said before GSEA is developed for the two class comparison.
In this methodology, a signal-to-noise ratio comparing mean expression
across classes is computed for each gene in the dataset. This statistic
can be seen as a continuous index that ranks the genes according to their
differential expression, from those more expressed in one of the biologi-
cal conditions to those more expressed the second condition, and passing
through those genes not differentially expressed. Then, given a block of
genes, for instance a functional class that we may be interested in, we
can compare the distribution of the signal-to-noise ratio of the genes in
the block to the distribution of the same statistic in the remaining genes.
If the values of the signal-to-noise ratio are, for instance, systematically
higher in the genes of the block compared to the genes in the whole
dataset, we will conclude that, as a block, the genes of the functional
class of interest are over-expressed in one of the biological conditions.

GSEA uses a modification of the Kolmogorov-Smirnov test to asses
differences between the signal-to-noise ratio in the class of interest and in
the rest of the genes. Significance of the modified Kolmogorov-Smirnov

1 The genes of the gene set of interest are drawn from such background.
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statistic is computed in GSEA using permutations of the expression
data.1 The original expression data is permuted several times, the signal-
to-noise ratios are calculated over each permuted expression dataset and
the modified Kolmogorov-Smirnov statistic is computed over each new
distribution of the signal-to-noise ratio. Thus GSEA can estimate the
random variability of the Kolmogorov-Smirnov statistic and test its sig-
nificance in the original data.

3.4 Detaching concepts and algorithms

FatiScan and the logistic regression methods follow the same analytical
philosophy than GSEA but with a more general and flexible approach.
FatiScan implements a segmentation test which checks for asymmetri-
cal distributions of biological labels associated to genes ranked by any
index, just as GSEA does. But there is a major difference between FatiS-
can and GSEA. FatiScan does not implement a permutation test to asses
such asymmetry. Therefore, the algorithm that computes the index and
the algorithm that analyses the distribution of the index are completely
separated so the calculations can be done in two different steps. This
means that FatiScan can be used to study the relationship between bi-
ological labels associated to genes and any type of experiment whose
outcome is a sorted list of genes or a variable that can be used to rank
genes according to some characteristic of interest. Block of genes sorted
by differential expression between two experimental conditions can be
studied as it would be done using GSEA. But with FatiScan we can also
consider many other gene properties or characteristics.

We can easily explore the correlation between gene expression and a
clinical continuous variable such as the level of a metabolite. First, for
each gene we will compute the correlation between its expression mea-

1 It is a “subject sampling” method according to the definition of Goeman and
Buhlmann 2007. Thence derives its lower flexibility when compared to FatiScan or
the logistic methods.
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surements and the levels of the metabolite. Thus we can range the genes
from those which expression is more positively correlated to the levels
of the metabolite to those inversely correlated, passing by genes which
expression does not correlate with the clinical variable. In a second step,
FatiScan explores the distribution of such correlation measurements, test-
ing whether the distribution of correlations within a block of genes is
different from the overall distribution of correlation in the dataset.

We can fit a Cox proportional hazard model to each gene in our data
in order to study the relationship between gene expression and survival
times. The estimates of the slope coefficients may be used as an index
that ranks genes from those which increased expression is associated with
long time survival to those which increased expression is associated to an
early death. After computing this rank-index, FatiScan will find those
blocks of genes for which the distribution of the slopes differs from the
global distribution of the slopes.

Many other application examples can be found in Al-Shahrour et al.
2007a.

The complete separation of the two steps in FatiScan analysis is the
key point which provides its flexibility to the method. Such flexibility
makes possible to handle many different sources of information, not only
microarray gene expression data: Any lists of genes ranked by any other
experimental or theoretical criteria can be studied. Genes can be, for
example, arranged by physico-chemical properties, mutability, structural
parameters and so on, in order to understand whether there is some
biological feature, characterized by the blocks of genes, which is related
to the experimental parameter studied.

3.5 Avoiding the segmentation step

The GSA methodology FatiScan (Al-Shahrour et al., 2007a), evolved
from the FatiGO tool (Al-Shahrour et al., 2004, 2007b).

FatiGO is an Over-Representation method that uses a Fisher’s exact
test for 2 by 2 contingency tables as underlying statistic. Once a cutoff is
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set, and relevant genes1 are selected, the proportion of annotated genes
in the selected list is compared to the proportion of annotated genes in
the rest of the genome.

FatiScan extrapolated this paradigm by iterating the choice of the
cutoff over the ranking statistic2 provided by any gene level analysis;
scanning it over a series of equidistant points, segments or partitions.
This approach, called the segmentation test, was somehow arbitrary in
the choice of the number of partitions as well as in their distribution over
the ranking statistic. Such arbitrariness was criticized by some users of
the method which was embedded in the Babelomics suit.

Form a statistical perspective, gene membership to a functional class,
such as a GO or a KEGG, is modeled as binary variable. Being differen-
tially expressed or not is also a binary variable, and that is why 2 by 2
contingency tables are suitable in the Over-Representation context.

But the statistical generalization of the Fisher’s exact test when one of
the two variables is not binary but continuous, comes from the generalized
linear models theory. In particular, logistic regression models, are used to
study dependencies between a binary variable and a continuous variable.
See Agresti 2002 for a full description.

Hence, the natural way of extending the FatiGO methodology is not
the FatiScan but the logistic model approach.

1 Differentially expressed genes for instance if we where in a two class comparison
context.

2 See section 3.3 for clarification on the ranking index.
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Chapter 4

Gene Set Internal Coherence

4.1 Montaner 2009 overview

In this chapter, the reader can find the second paper that makes up this
thesis: Montaner et al. 2009.

At the moment of the publication it was widely accepted that the
functional modules or gene sets described in public databases such as
GO and KEGG, did not conform homogeneous classes of genes (see sec-
tion 1.5 in page 32). This fact has always been expected because, unlike
engineering, life1 does not take uniform pieces to yield standardized so-
lutions. Living beings’ parts are rather custom made.

Some previous publications like Mateos et al. 2002 or Brown et al.
2000, had already explored real data in order to asses the homogeneity of
gene sets. Nevertheless, such research efforts had always been conducted
under particular experimental conditions and using a reduced amount of
data.

The first point addressed in our publication was to thoroughly eval-
uate the general extent of such gene set inconsistency or “incoherence”.
We compiled the greatest possible dataset for the human transcriptome

1 Or we would rather say evolution.
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which could be collected at that time. More than 3000 microarrays1

where downloaded from GEO, covering a wide range of diseased but also
healthy biological conditions. Correlations among genes of this dataset
where used to develop a coherence index reflecting the biologically mea-
sured homogeneity of each GO term and each KEGG pathway.

We surprisingly found a lower than expected homogeneity within gene
sets. This fact questioned some of the biological hypotheses under which
gene set analysis (GSA) studies are set up.

The second objective of our paper was to exploit the empirical infor-
mation in our transcriptome dataset to enhance GSA methods perfor-
mance. We achieved that by means of logistic regression models. Such
statistical tools extended the methodological ideas used at the time, and
allowed for the possibility of easily handle in the model the relevance of
each gene within each gene set.

From our biological collection of data, we developed a weighting schema
that measured the agreement of each gene expression profile with the
general expression pattern of the gene sets. Then such weights where
included in the logistic model to reflect the importance of each gene in
the evaluation of each gene set.

4.2 Paper

A copy of the article, Montaner et al. 2009, follows next.

Supplementary materials provided with the paper may still be found at
http://bioinfo.cipf.es/data/coherenceindex

The online version of the paper can be found at
http://www.biomedcentral.com/1471-2164/10/197

1 In our latest update of the collection we gathered 30000
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Abstract
Background: Functional profiling methods have been extensively used in the context of high-
throughput experiments and, in particular, in microarray data analysis. Such methods use available
biological information to define different types of functional gene modules (e.g. gene ontology -GO-
, KEGG pathways, etc.) whose representation in a pre-defined list of genes is further studied. In the
most popular type of microarray experimental designs (e.g. up- or down-regulated genes, clusters
of co-expressing genes, etc.) or in other genomic experiments (e.g. Chip-on-chip, epigenomics,
etc.) these lists are composed by genes with a high degree of co-expression. Therefore, an implicit
assumption in the application of functional profiling methods within this context is that the genes
corresponding to the modules tested are effectively defining sets of co-expressing genes.
Nevertheless not all the functional modules are biologically coherent entities in terms of co-
expression, which will eventually hinder its detection with conventional methods of functional
enrichment.

Results: Using a large collection of microarray data we have carried out a detailed survey of
internal correlation in GO terms and KEGG pathways, providing a coherence index to be used for
measuring functional module co-regulation. An unexpected low level of internal correlation was
found among the modules studied. Only around 30% of the modules defined by GO terms and 57%
of the modules defined by KEGG pathways display an internal correlation higher than the expected
by chance.

This information on the internal correlation of the genes within the functional modules can be used
in the context of a logistic regression model in a simple way to improve their detection in gene
expression experiments.

Conclusion: For the first time, an exhaustive study on the internal co-expression of the most
popular functional categories has been carried out. Interestingly, the real level of coexpression
within many of them is lower than expected (or even inexistent), which will preclude its detection
by means of most conventional functional profiling methods. If the gene-to-function correlation
information is used in functional profiling methods, the results obtained improve the ones obtained
by conventional enrichment methods.
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Background
The popularisation of high-throughput technologies such
as DNA microarrays has lead to a parallel demand of
methods for data analysis. In particular, the necessity of
providing a functional interpretation at molecular level
that accounts for the macroscopic observations in high-
throughput experiments has promoted the development
of different methods for the functional profiling of this
type of experiments during the last years [1,2].

It is widely accepted that genes do not operate alone
within the cell, but they carry out their functions through
a complex interplay whose most obvious experimental
evidence is the intricate network of protein interactions
that we only just have started to decipher [3,4]. Most of
the biological functionality of the cell arises from complex
interactions between their molecular components that
define operational interacting entities or modules [5].
Functions collectively performed by such modules can
conceptually be represented in different ways, being pos-
sibly Gene ontology (GO) [6] and KEGG pathways [7] the
most popular and widely used ones. For practical pur-
poses, functional modules are defined as sets of genes
sharing GO or KEGG annotations. There are, obviously,
many other categorizations of gene modules in different
domains; for example Reactome pathways [8], Biocarta
pathways http://cgap.nci.nih.gov/Pathways/
BioCarta_Pathways, etc.

In an attempt to understand the functional basis of high-
throughput experimental results different functional pro-
filing methods have been proposed [1]. Depending on the
way the experimental data are selected and used two main
families of methods, generically known as functional
enrichment methods and gene set methods, can be distin-
guished. Functional enrichment methods have been
implemented in several programmes such as GOMiner
[9], FatiGO [10] and others. These are used to study
whether a previously selected list of genes of interest is sig-
nificantly enriched in one or more functional modules.
Typical criteria for the selection of such gene lists in micro-
array experiments are differential expression between two
classes, co-expression across experiments, etc. Thus, by
means of this simple two-step approach, a reasonable bio-
logical interpretation of a microarray experiment can be
achieved. Gene set methods were proposed more recently
and directly aim to detect sets of functionally related genes
(modules) with a coordinate and significant over- or
under-expression across a list of ranked genes. Gene lists
are ranked by differential expression between two classes,
compared in microarray experiments [11-16]. In that way,
the first step, in which genes are selected according to
thresholds that ignore its cooperative behaviour, was
avoided.

However, all these methods use functional modules as
categorical variables. This fact, in the most typical micro-
array experimental designs (e.g. up- or down-regulated
genes, clusters of co-expressing genes, etc.) or in other
types of genomic experiments (e.g. Chip-on-chip, epige-
nomics, etc.), leads to the implicit assumption that such
functional modules must be composed by sets of genes
with a strong level of co-expression (otherwise they would
never appear together in clustering or differential expres-
sion experiments or co-regulated by transcription factors,
etc.). Nevertheless this assumption might not be necessar-
ily true for all these modules. In fact, early attempts to
deduce gene functionality (that is, functional module
membership) from gene co-expression revealed that
many functional modules did not even show a detectable
degree of internal co-expression [17,18]. Therefore, if a
non-negligible number of functional modules cannot be
considered to be discrete categories there are two potential
problems that affect all the methods for functional profil-
ing: There is, on one hand, a problem of power in the sta-
tistical tests used, given that a number of functional
modules tested will never be found simultaneously acti-
vated or deactivated, but are taken into account in the p-
value adjustment procedures. On the other hand there is
a potential problem of sensitivity, because many func-
tional modules include genes with different degrees of
intra-module co-expression, while the methods are many
times applied to datasets in which the complete module is
assumed to be over- or under-expressed as a whole. Since
functional profiling methods do really produce results,
one may conjecture that the results that are being
obtained under the present unrealistic assumptions are
only an underestimation of the results that could be really
obtained if functional classes were properly tested.

Surprisingly, there are no systematic studies on the extent
of this lack of internal co-expression within the most com-
monly used functional module definitions. The aim of
this study was to produce a detailed survey on the GO and
KEGG functional module definitions so as to determine
which ones among them can be considered coherent
modules of co-expression across a wide range of repre-
sentative human samples. In principle, such coherent
functional modules will define the subset of GO and
KEGG functional modules susceptible of being detected
using common strategies for functional profiling. In order
to do so, we have derived, for each functional module as
defined in GO and in KEGG, a co-expression (or coher-
ence) index which could be used to assess the strength of
its internal correlation. This index has been further used to
filter for functional modules with a weak internal degree
of co-expression. The index was derived from a gene pair-
wise correlation matrix representing the overall correla-
tion structure of the human transcriptome as estimated
from microarray expression measurements of 3034 sam-
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ples collected under the most diverse biological condi-
tions. In addition, a second main aim of this work was to
use this information to re-define the functional modules
as non-discrete entities. Even in the case of the functional
modules with a high degree of internal coherence, these
cannot be considered as co-expression modules but rather
as entities with a core of co-expressed genes along with a
variable number of genes with lower correlation (that
probably modulate, complement or provide alternative
functionality). In other words, not all the genes need to be
expressed at the same time for the function to be activated.
Then, for each gene annotated within a functional mod-
ule, we estimate its degree of correlation with the main
bulk of genes annotated under such module. In this way
we provide an index which is useful for quantifying how
essential each gene is in the activation of the functional
module. At the same time, we introduce a framework
within which functional modules can be treated as non-
discrete entities. Under the prism of this new vision of
gene function, we propose a simple modification of the
functional profiling methodologies in order to enhance
the use of biologically relevant information as described
in the functional modules. Finally, we present some
examples about how these modifications can enhance the
detection of biologically meaningful functions which
would have remained unnoticed using currently available
techniques for functional enrichment.

Results
Coherence index applied to functional modules defined by 
GO and KEGG annotations
A coherence index that gives an idea of the internal corre-
lation of the genes belonging to a functional module has
been proposed and estimated for all the GO terms and
KEGG pathways. This coherence index may have several
interpretations but certainly the most direct one is its
understanding as the complement of a p-value. We firstly
calculate the all-against-all correlation matrix for all the
10866 transcripts across the 3034 arrays used (see mate-
rial an methods section), which is available as online sup-
plementary material http://bioinfo.cipf.es/data/
coherenceindex/. When the median correlation between
the transcripts of a functional module is compared to the
empirical distribution of correlations, estimated over ran-
domly sampled sets of genes, we are assessing how strong
the departure of our estimate from the null hypothesis of
module correlation is. In other words, we can test if the
internal correlation of such module is significantly higher
than the correlation observed in a similar number of func-
tionally unrelated genes. The coherence index proposed is
the percentile represented by the module correlation
within the random distribution. This index accounts for
the complement of the probability of observing, under
the null hypothesis, a value as extreme as the observed
median. The cut-off of 0.05 usually chosen to reject a null

hypothesis when the observed p-value is lower would be
represented, in this case, by the level 95 of our coherence
index. We would reject the null hypothesis for a func-
tional module when its estimated index is higher than
such value.

The application of the coherence index to the functional
modules as defined by KEGG pathways showed that only
57% of them presented a correlation index greater than 95
(see Figure 1A). That is, if we were performing statistical
analysis searching for KEGG pathways having internal
correlation stronger than the overall correlation of the
transcriptome, we would find no evidence of significant
strong internal correlation in 43% of the cases. Thus 43%
of the KEGG pathways do not co-express more than they
would do if they were composed of functionally unrelated
genes. Supplementary Dataset S1 contains the list of the
KEGG pathways with their corresponding coherence
index and median correlation values. Even more drastic
are the results obtained for the GO terms. Only 32% (30%
in Biological Process; 30% in Molecular Function; 46% in
Cellular Component) of the functional modules defined
by GO showed a correlation index greater than 95 (see
Figure 1B). Supplementary Datasets S2, S3 and S4 contain
the list of the GO terms corresponding to the "biological
process", "molecular function" and "cellular component"
ontologies respectively, along with their corresponding
coherence indexes and median correlation values.

It is also worth pointing out that for many functional
modules correlation indexes below 50 were observed.
This means that for those modules the internal correlation
is even lower than the overall genome correlation, which
suggests the existence of a pattern of negative correlations
among a significant amount of genes in the modules.

As expected, large functional modules (more than 100
transcripts) tend to have a strong internal correlation
whereas small modules show more variability (see Figure
2). This was also observed for the three ontologies (Bio-
logical Process, Molecular Function and Cellular Compo-
nent) of GO (see Additional file 1)

Not surprisingly it was found that, in general, when the
internal median correlation of a functional module was
low (correlation index below 50) its estimated standard
deviation was high (see Additional file 2). More interest-
ing is the finding that many functional modules with high
internal correlation had also high standard deviations.
This last observation makes it clear that, even within the
functional modules which have a strong internal co-
expression, there exist a non-negligible number of genes
which do not co-express with the main bulk of genes of
the module. We may conclude that, while a number of
GO terms or KEGG pathways are defining true functional
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Distribution of coherence indexesFigure 1
Distribution of coherence indexes. Coherence indexes for A) KEGG pathways and GO and B) the three GO Ontologies.
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modules of genes which need to be co-ordinately
expressed in order to activate their corresponding func-
tional roles, most of the currently used functional mod-
ules are not formed by sets of co-expressing genes.

Coherence index and the level of annotation in GO
In the particular case of GO, where functional terms are
related to each other following a special type of hierarchi-
cal structure called directed acyclic graph (DAG) [6], we

have studied the relationship between the proposed
coherence index and the level of annotation of each term.
Here, the level of annotation of a GO term is defined as
the maximum number of nodes that can be found in the
DAG between the term and the root of the corresponding
ontology. Under this definition, high levels in the ontol-
ogy represent more specific GO terms. Our findings show
(see Figure 3) that there is not a direct relationship
between the degree of internal correlation of a GO term

Coherence index values as a function of functional module size obtained for KEGG (left) and GO (right) categoriesFigure 2
Coherence index values as a function of functional module size obtained for KEGG (left) and GO (right) cate-
gories.
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Coherence index as a function of the level (the deeper the more specific the functional definition) in the GO hierarchy obtained for the three ontologies: Biological process (left), molecular function (center) and cellular component (right)Figure 3
Coherence index as a function of the level (the deeper the more specific the functional definition) in the GO 
hierarchy obtained for the three ontologies: Biological process (left), molecular function (center) and cellular 
component (right).
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and its level in the ontology hierarchy. It is interesting to
remark that, contrarily to what it was expected, more spe-
cificity in a GO term does not imply a tighter co-expres-
sion. This is probably a reflection of the fact that many
definitions in the ontology are not accounting for simple
cooperative processes such as the ones carried out for
example, by a complex of proteins.

Using gene-to-function information to best detect 
functional modules
In the following examples we show how to use this gene-
to-function inter-dependence in order to incorporate the
non-discrete nature of the membership of a gene to a
functional module in the context of functional enrich-
ment analysis.

Case example 1: functional profiling of genes differentially expressed 
in patients infected with Human Papillomavirus
A study of 36 Head and Neck Squamous Cell Carcinoma
(HNSCC) tumour samples, 8 of them corresponding to
patients infected with Human Papillomavirus (HPV+)
and the remaining 28 to non infected patients (HPV-)
[19] was used to illustrate the application of the proposed
methodology. The authors assessed differential gene
expression between HPV+ and HPV- tumours using
Affymetrix 133 Plus 2.0 chips, and reported 89 genes over-
expressed in the HPV+ group of tumours. A significant
number of such genes were cell cycle regulators and tran-
scription factors. The Affymetrix IDs for these 89 genes
can be found in the supplementary material provided by
the authors. The gene expression data are available in the
GEO database [20] under the accession number GSE3292.
In this case, raw files (.CEL) were not available and conse-
quently these were not used in our estimation of the cor-
relation between genes. Therefore, weights used in the
analysis were obtained independently from the analyzed
data set. The internal correlation value of any transcript to

the rest of the transcripts in a functional module is used to
assign a weight to it (see material and methods). Tran-
scripts positively correlated to the rest of the module are
given a weight of 2 (that is, are given double importance
in the calculations), while negative correlations are penal-
ised with a weight of 0.5 (half of the importance in this
case). For the rest of genes a weight of 1 is used. A logistic
regression model, which allows the use of weights, is uti-
lised here instead the classical Fisher's test of equivalents
(see material and methods).

We have systematically explored the GO and KEGG func-
tional annotations of these 89 genes over-expressed in
HPV+, testing for differences against the whole genome,
that is, the remaining genes represented in the Affymetrix
chip. A total 733 GO Biological Process terms and 161
KEGG pathways (with sizes comprised between 10 and
500 genes) were tested as described in the methods sec-
tion.

A total of four GO terms were found as significantly over-
represented in the group of over-expressed genes by the
application of a standard, un-weighted test for functional
enrichment with the permutation correction (see Table
1). In agreement with the discussion of the authors on the
functionality of the genes differentially expressed [19], the
terms related to DNA metabolism/replication (DNA repli-
cation initiation, p < 0.001, and DNA strand elongation, p <
0.001) were found. Also SRP-dependent cotranslational pro-
tein targeting to membrane (p < 0.001), probably account-
ing for the production of viral proteins is found. Finally, a
term with no clear interpretation, regulation of smooth mus-
cle contraction, was also found.

The application of the alternative weighted analysis pro-
posed here detects a new term: negative regulation of protein
kinase activity (p < 0.001), while regulation of smooth muscle

Table 1: Gene ontology functional terms and their respective significances under the standard (unweighted) and the weighted tests 
obtained for the HPV experiment [19] with the permutation test.

Weighted Unweighted

GO name BP size Log Odds p-value Adjusted 
p-value

Log Odds p-value Adjusted 
p-value

negative regulation of protein kinase activity GO:0006469 100 3.030 <0.001 <0.001 2.548 0.006 0.083

DNA replication initiation GO:0006270 44 4.281 <0.001 <0.001 4.162 <0.001 <0.001

SRP-dependent cotranslational protein targeting 
to membrane

GO:0006614 12 4.103 <0.001 <0.001 4.032 <0.001 <0.001

DNA strand elongation GO:0006271 13 4.079 <0.001 <0.001 3.945 <0.001 <0.001

regulation of smooth muscle contraction GO:0006940 18 2.875 0.010 0.088 3.597 <0.001 <0.001
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contraction disappears. It is long known the relationship
between MAP kinase and growth factor activity, two terms
descendant of negative regulation of protein kinase activity
and HPV infection [21] (see Table 1).

In the equivalent analysis of functional modules defined
using KEGG, the pathway Heparan sulfate biosynthesis
(that remained unnoticed in the unweighted test) was
found to be significantly over-represented in the genes
over-expressed in HPV+ by the weighted test significant. It
has recently been reported that Human Papillomavirus
infection requires cell surface heparan sulfate [22]. Urea
cycle and metabolism of amino groups is significant in both
the weighted and the unweighted analysis.

Case Example 2: functional differences between two types of cancers
A second example on a matched-pair analysis of 24 breast
tumours to study the transition between in situ ductal car-
cinoma (DCIS) and invasive ductal carcinoma (IDC) [23]
was analysed. In the study Affymetrix HG U133A and HG
U133 Plus 2.0 chips were used to assess gene expression
differences between these two conditions. The authors
reported 445 Affymetix probe-sets up-regulated in IDC
and 101 down-regulated in IDC. In their analysis authors
also indicate cell-to-cell signalling and interaction as
being the more significant functions of the differentially
expressed genes. As in the previous example, Affymetrix
IDs of the differentially expressed probe-sets where pro-
vided and gene expression data are available in the GEO
database [20] under the accession number GSE3893.

We have tested for enrichment in GO and KEGG terms in
the up-regulated genes and in the down-regulated genes.
A total of 733 GO terms of Biological Process and 161
KEGG pathways of sizes comprised between 10 and 500
genes where included in this study.

Using a standard, un-weighted test for functional enrich-
ment with the permutation correction two KEGG path-
ways:, Focal adhesion (p < 0.001) and ECM-receptor
interaction (p < 0.0001), as well as two GO terms: trans-
membrane receptor protein tyrosine kinase signaling pathway
(p < 0.001) and regulation of cell shape (p < 0.001), all of
them related with the maintenance of cellular structures
and cell motility, were found as differentially expressed.
Again, the application of the alternative weighted analysis
proposed here detects a new term: proteoglycan metabolism
(p < 0.001). Proteoglycans are known to determine
mitogenic responses of breast carcinoma cells to fibrob-
last growth factors, mediated by tyrosine kinase-signaling
receptors [24].

Discussion
Functional annotations, such as GO or KEGG pathways,
have been used for the definition of modules of genes in

functional enrichment methods [1,9,10]. The detection of
such functional modules within lists of genes by means of
different tests relies upon the implicit assumption that
common functionality implies a high degree of co-expres-
sion among all the members of each module [25]. While
this assumption can be considered true as a general obser-
vation, it does not necessarily imply that the conventional
definitions of functional classes used for this purpose
(GO, KEGG, etc.) do all correspond to co-expressing sets
of genes. It was previously reported that a large number of
functional modules showed a low degree of internal co-
expression, contradicting thus the expected cooperation
among the genes to carry out their functions together
[17,18]. Despite this observation, a systematic study on
the degree of internal co-expression of the most com-
monly used functional modules and the impact of this
bias on real biological data has not been carried out to
date. Here we aimed a redefinition of functional modules,
understood as groups of genes carrying out, cooperatively,
a function in the cell. It is widely recognized that the bio-
logical circumstance of coexpression of two genes is prop-
erly defined by the coefficient of correlation among them
[26]. So, we use it here to measure gene coordinate activity
within a functional module. In this paper we present a
general methodology to quantify the strength of the inter-
nal correlation of a functional module and we propose a
simple way of using this information for functional profil-
ing purposes that allows finding functional modules acti-
vated or deactivated that would remain otherwise
unnoticed.

We have derived the correlation structure of the largest
possible fraction of the human transcriptome, estimating
its parameters from measurements from 3034 DNA
microarrays stored in public data repositories. One of the
strengths of the present study is, precisely, the big sample
size (especially large if the difficulties in finding compara-
ble microarrays in the databases are considered [27]) on
which all estimations relay on. Of not less importance is
the wide range of biological conditions considered in the
study which includes several types of normal tissues, dif-
ferent kinds of cancer cells, male and female individuals
as well as different cell lines. In order to ensure as much as
possible the compatibility of the data gathered for the
analysis, we have used one of the more extensively used
expression arrays currently available (Affymetrix HG
U133 Plus 2.0). For the same reasons, we have only col-
lected datasets for which raw data were available so we
could normalize and pre-process all of them together with
the same method. This collection of samples constitutes a
large dataset that allows us to perform a robust profiling
of a large fraction of the human transcriptome, covering
an ample spectrum of clinically and biologically relevant
conditions.
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The correlation structure of the transcriptome has been
used to derive a coherence score which measures the inter-
nal co-expression of 173 KEGG pathways and 2221 GO
terms. Our estimations indicate that only 57% of the
KEGG pathways and just 32% of the GO terms can be con-
sidered to have internal correlation stronger than random
modules of functionally unrelated genes of the same size.
We also provided separate estimates for each of the Gene
Ontologies (30% in BP; 30% in MF; 46% in CC), showing
that, in general, GO Biological Processes or Molecular
Function have a weaker internal correlation than KEGG
pathways or GO Cellular Component. Another interesting
finding was the fact that many modules have high internal
correlation but also high variability.

Different reasons may account for these observations. In
some cases there are functional modules defined in GO
that are composed by independent or even antagonistic
sub-modules and, consequently, their genes will never be
found co-expressing in any experiment. Examples are
transporters, which are composed by different independ-
ent types of sub-modules or any GO term starting by "reg-
ulation of", which usually has two antagonistic
descendants called "positive regulation of" and "negative
regulation of". In other cases, there are functional mod-
ules that require of a core of genes for properly carrying
out the function and other genes of the module are only
activated under particular physiological conditions,
stresses, etc., displaying a lower degree of correlation.
Modules composed by sub-modules can also exist, and
many other situations can be imagined. In any case, the
vision of a functional module as a discrete class, to which
genes belong or do not belong to, is definitively not sup-
ported by the observations made. Thus, it is urgent to take
a new approach that accounts for the non-discrete nature
of the functional modules as defined by the most com-
monly used functional annotations (GO and KEGG).

In addition we highlighted how the level of annotation of
a GO term in the ontology structure may not be the most
suitable indicator, at least in terms of co-regulation, of the
described function, despite being often used as a measure
of its specificity.

Under the above mentioned considerations, most cur-
rently used functional profiling methods which model
functional modules as groups of co-expressing genes,
seem clearly inappropriate. The need of new methodolo-
gies for functional profiling and, above all, the essential
requirement of a new notion of membership of a gene to
a functional module is still an open issue. The proposed
coherence score can be used in a first instance as a filtering
criterion when the aim is to relate functionality to gene
expression by discarding functional modules that will
never be found as co-expressing units. Beyond this obvi-

ous use, this index can also be used to derive a weighting
scheme that introduces the idea of non-discrete functional
modules within the context of functional profiling meth-
odologies in a straightforward manner. The proposed
weighting scheme has the desirable property of using
information on gene coexpression in the algorithm when
such information is available but not introducing any bias
when the information is missing. Relying on this new
concept and using gene expression correlation informa-
tion, we have shown with two examples how the pro-
posed weighted approach discovers GO terms and
pathways unnoticed under the equivalent standard un-
weighted functional profiling method.

The approach shown here is quite general and could easily
be extended to any other species or different platforms
just by calculating the corresponding correlation matrix in
a straightforward manner. The methodology could also be
easily extended to any other types of modules defined by
functionality, regulatory motifs, etc. Obviously, the use of
newer strategies for functional profiling such as the differ-
ent versions of gene set enrichment analysis [11-14,16],
would benefit of considering this weighted definition of
functional modules instead of using the classical categor-
ical, un-weighted definitions.

Although the weighting schema proposed is quite simple,
it proves efficient in finding functional modules in a
standard functional enrichment analysis framework
[1,10], as shown by the examples. Obviously, these exam-
ples have only an illustrative purpose of the application of
the method that uses information on gene coexpression to
improve functional module detection. However, in the
worst scenario in absence of such information, this
approach would be strictly equivalent to a conventional
functional enrichment test and, therefore, its application
would be equally valid. The use of most sophisticated
weighting schemes, in which the continuous distribution
of values of co-expression of all the genes in the module
(and possibly outside the module) were taken into
account, would probably improve even more the results.
Also, a similar philosophy could also be applied to
improve the detection of modules in gene-set enrichment
methods although it falls beyond the scope of this manu-
script.

Conclusion
The aim of the manuscript was, on one hand to show the
discrepancy between functional modules as defined in
some popular repositories (GO and KEGG pathways) and
real co-expressing modules and, on the other hand, to
propose a new vision of such modules that combines the
original definition of the function with the actual dynam-
ics of co-expression. In this more realistic scenario, func-
tional modules with a coherence index that makes them

71



BMC Genomics 2009, 10:197 http://www.biomedcentral.com/1471-2164/10/197

Page 10 of 13
(page number not for citation purposes)

undistinguishable from functionally unrelated gene mod-
ules would be excluded from a functional analysis, thus
increasing the power of any test in the process of adjust-
ment for multiple testing. In the remaining functional
modules to be tested, more importance will be given to
the core of co-expressing genes while uncorrelated genes
and negatively correlated genes (probably representing
genes that express under particular physiological condi-
tions or stress situations, or perhaps other sub-modules
with an independent dynamics of expression) will be
penalised in the analysis.

Despite functional profiling of genome-scale experiments
is an active field in which new proposals arise continu-
ously [1,2], the concept of functional modules as binary
discrete classes has remained unchanged along the last
years. With the coherence index and the weighted schema
proposed here we have introduced a conceptually new
operative definition of functional module, biologically
more meaningful, that clearly increases the sensitivity of
functional profiling methods.

Methods
Expression values
All data used in this study was downloaded from the Gene
Expression Omnibus (GEO), public repository of the
NCBI [20]. At the time of doing this study, there were 169
GEO "series" containing microarray data generated using
the Affymetrix GeneChip Human Genome U133 Plus 2.0
Array (GPL570 platform in the GEO data base). Only for
74 of those series raw data (Affymetrix .CEL files) were
available, comprising a total of 3034 array hybridized to
all kind of human samples. We downloaded the raw data
(.CEL files) for the 3034 arrays, normalized them in
batches of size 100 (because of memory size limitations)
using the function RMA in the affy library of Bioconductor
[28] and finally rescaled all batches together using the
"quantile" method implemented in the limma library of
Bioconductor [29].

The data covered an ample spectrum of biological condi-
tions including different tissues, and diseases, male and
female individuals as well as cell lines.

ID mapping
Affymetrix probe-set identifiers were linked to their corre-
sponding transcripts according to the Ensembl database,
release 44 [30]. Among the 54675 probe-set IDs in the
Affymetrix chip just 31542 had a corresponding Ensembl
Transcript ID. Such IDs where unique just for 15477
Affymetrix IDs; that is, there are 16065 of the Affymetrix
IDs that correspond to at least two different Ensembl
Transcripts. A requirement of this study was to generate
transcript expression measurements independent one of
each other. Therefore we used just the 15477 Affymetrix

IDs mapping to unique Ensembl IDs and, when several of
them mapped to the same transcript, summarize them by
its mean. In this way we manage to compute expression
levels for 10866 transcripts, corresponding to 10486
genes of 3034 human samples.

Definition of functional modules using GO and KEGG 
annotations
GO and KEGG pathways annotation for the Affymetrix
HG U133 Plus 2.0 array (the most abundant microarray
in the databases) was taken from the Bioconductor meta-
data package "hgu133plus2" (version 1.14.0, see http://
www.bioconductor.org/packages/devel/data/annotation/
) which is assembled using data from public data reposi-
tories. 2221 GO terms (1014 Biological Process; 925
Molecular Function; 282 Cellular Component, Built: 8-
Aug-2006) and 173 KEGG pathways (Release 38.1, June 1,
2006) that had annotated at least two of the 10866
selected transcripts where used in this study. While KEGG
pathways are conceptually considered as independent
entities, GO terms are related among them by a hierarchi-
cal relationship (known as directed acyclic graph, or DAG,
in which a term can have more than one parent). Terms
closer to the root define more general concepts and terms
towards the leaves define more specific terms. In the par-
ticular case of GO terms, the usual procedure is to con-
sider that each gene annotated to a given level is
automatically annotated to all its parents [1]. All the GO
terms have been used without making any distinction
among distinct evidence codes. Since an overwhelming
majority are electronic annotations (IEA), neither here,
not in the most common programs for functional profil-
ing [1] are taken into account. Functional modules are
therefore defined as sets of genes sharing GO or KEGG
annotations.

Computing correlations and assessing their strength
The main motivation in this work is the redefinition of the
essence of a functional module, understood as a group of
genes carrying out, cooperatively, a function in the cell.
Typically, the coefficient of correlation [26], which
accounts for the coexpression of genes across the experi-
mental conditions measured, is used to measure such
gene cooperation within a functional module. Figure 4
illustrates the way in which we proceed for computing the
internal correlations for all the functional modules and
estimating its significance. Thus, for all pairs of tran-
scripts, the correlation of their expression levels along the
3034 arrays was computed and stored in a 10866 by
10866 correlation matrix. Distribution of this correlation
coefficients within the functional modules considered in
this study (GO terms and KEGG pathways) was studied
and summarized by a median correlation value for each of
the terms. For each functional module (GO term or KEGG
pathway) consisting of N transcripts we randomly sam-
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pled, from the whole collection of transcripts in the study,
10000 modules of the same size N. Then, for each of the
10000 resampled modules, we computed the median
value of the correlation between its transcripts. In this way
we obtained a sampling distribution of the median corre-
lation within equivalent modules of transcripts of size N
not functionally related. In order to assess how strong the
real internal median correlation of each functional mod-
ule is, any of these values was compared to the sampling
distribution of median correlations of random (function-
ally unrelated) modules of the same size. The percentile of
the sampling distribution represented by the true median
correlation in the functional module is, finally, taken as a
measurement of the strength of its internal correlation
and provided as coherence index.

The weighted approach: using co-expression information 
to improve functional profiling analysis
The most widely used tools for functional profiling clas-
sify genes into 2 by 2 contingency tables according to their
functional annotation (functional module membership)
and to the list to which they belong to. Then some statis-
tical test, like a chi-square, Fisher or other equivalent test,
is used to find statistically significant over-representations
of any functional annotation in the lists of genes com-
pared. Here we use logistic regression models [31] to esti-
mate the log odds ratio of association between being or
not annotated within a functional module and belonging
to one or the other list of genes. When applied to binary
data, this approach is equivalent to other 2 by 2 contin-
gency table methods but has the advantage of allowing for
the use of weighted observations. It has been shown that,
when correlated genes are introduced in 2 by 2 contin-

Schematic representation of the procedure followed for obtaining the internal correlation for each functional module and its significanceFigure 4
Schematic representation of the procedure followed for obtaining the internal correlation for each functional 
module and its significance. See material and methods.
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gency tables, standard tests inflate type I error rates [2]. In
this paper we computed p-values based on the subject
sampling model (1000 permutations) described by Goe-
man [2] in order to avoid such bias.

Here, we propose a very simple modification of the use of
functional modules that can be applied within the context
of functional enrichment analysis. The rationale for this
modification is to give more importance to those genes
that, being annotated in a functional module, are posi-
tively correlated to the main bulk of genes in the module.
Likewise we seek to penalise the negative contribution to
the detection of a functional module of those genes nega-
tively correlated to this module. In order to achieve this,
we have first to determine a measure of the internal corre-
lation of genes within functional modules. Then, instead
of using a discrete definition of functional modules, the
correlations will be used to weight the membership of
each gene to the module. When using the logistic model
to test for each functional module, each gene was
weighted depending on whether it was annotated or not
within the module and whether it was positively or nega-
tively correlated with it. Genes belonging to the functional
module were given weight 2 if they were positively corre-
lated to it and weighted by 0.5 if the correlation with the
module was negative. The genes that were not in the func-
tional module were given a neutral weight of 1. As in the
classical functional enrichment test scenario, all com-
puted p-values where corrected for multiple testing using
the False Discovery Rate (FDR) method [32].
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Chapter 5

Multidimensional Gen Set
Analysis

5.1 Montaner 2010 overview

In this chapter we present the third article from those constituting this
thesis: Montaner and Dopazo 2010.

In the paper we introduced the usage of logistic regression method-
ologies to perform a multidimensional gene set analysis.

As explained before (see section 1.6 in page 38). the rationale un-
derlying conventional GSA methods is that of exploring the relationship
between certain experimental characteristic measured for the genes of a
genome and their membership to a gene set or functional block.

The experimental characteristic is reflected by a ranking index, that
is, a numerical value quantifying certain biological property measured
in the experiment. Such ranking index may be a p-value accounting
for the differential expression of each gene in the experiment, a statistic
computed to estimate SNP allele association to disease, or simply the
copy number of each gene under our experimental conditions.

Up to the time we presented our idea, GSA methods could explore just
one of such ranking indexes at a time. Therefore, just one experimental
characteristic could be explored at a time in the light of, for instance,
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Gene Ontology terms.
The novelty of our approach was to introduce the possibility of in-

cluding two (or more) ranking indexes in a combined analysis. Hence,
our method enabled the researcher carrying out combined analysis of, for
instance, differential expression and methylation, searching for gene sets
enriched in this two dimensions of the experiment.

Nevertheless, the real advantage of the methodology we proposed was
not to ease the computation of the analysis but, to allow for the explo-
ration of the cooperative effect in modulating functional block behavior
that had the two genomic characteristics under study when acting to-
gether.

5.2 Paper

A copy of the article Montaner and Dopazo 2010 is presented below.

Supplementary materials submitted besides the article can be found in
Appendix B.

Among those supplementary materials, an R package implementing the
algorithms was developed. The help manual of this package can be found
in Appendix C and the source code may still be available at:
http://bioinfo.cipf.es/supplementary/multidimensional_gsa

Some of the methods from the R package where also included in the web
tool Babelomics (Medina et al., 2010); they may still accessible at:
http://www.babelomic.org
The online version of the paper can be found at
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.
pone.0010348
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Abstract

Understanding the functional implications of changes in gene expression, mutations, etc., is the aim of most genomic
experiments. To achieve this, several functional profiling methods have been proposed. Such methods study the behaviour
of different gene modules (e.g. gene ontology terms) in response to one particular variable (e.g. differential gene
expression). In spite to the wealth of information provided by functional profiling methods, a common limitation to all of
them is their inherent unidimensional nature. In order to overcome this restriction we present a multidimensional logistic
model that allows studying the relationship of gene modules with different genome-scale measurements (e.g. differential
expression, genotyping association, methylation, copy number alterations, heterozygosity, etc.) simultaneously. Moreover,
the relationship of such functional modules with the interactions among the variables can also be studied, which produces
novel results impossible to be derived from the conventional unidimensional functional profiling methods. We report sound
results of gene sets associations that remained undetected by the conventional one-dimensional gene set analysis in several
examples. Our findings demonstrate the potential of the proposed approach for the discovery of new cell functionalities
with complex dependences on more than one variable.
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Introduction

The development of new genomic technologies, such as

microarrays of gene expression, genotyping or array-CGH, along

with the new next-generation sequencing techniques is increasing

the volume of data throughput amazingly. As a direct consequence

of this, the bottleneck in functional genomics has shifted from the

data production phase to the data analysis steps. In particular, the

necessity for providing a functional interpretation at molecular

level that accounts for the genome-scale experimental designs has

promoted the development of different methods for the functional

analysis of this type of data in the last years [1,2].

It is widely accepted that most of the biological functionality of

the cell arises from complex interactions among their molecular

components that define operational interacting entities or modules

[3]. Functions collectively performed by such modules have

conceptually been represented in different ways. Gene ontology

(GO) [4] and KEGG pathways [5] are the most popular and

widely used module definitions although many other are available

in different repositories (e.g., Reactome [6], Biocarta, etc.) For

practical purposes, functional modules are henceforth defined as

sets of genes sharing functional annotations extracted from any of

these repositories. Functional profiling methods exploit different

definitions of modules in an attempt of understanding the

functional basis of high-throughput experimental results [7].

Initially, functional enrichment methods, in different implemen-

tations [7,8], have been used for this purpose. More sensitive

approaches, generically known as gene-set analysis (GSA)

methods, pioneered by the Gene Set Enrichment Analysis (GSEA)

[9], were later proposed [1,10]. In the original formulation, GSA

methods aimed to directly detect sets of functionally related genes

(modules) with a coordinate and significant over- or under-

expression across the complete list of genes ranked according to

their differential expression [9,11,12,13,14,15]. GSA methods can

detect such modules even if their gene components are not

significantly differentially expressed when tested individually. GSA

has been successfully applied to the analysis of microarray

experiments and has contributed to the adoption of a systems-

biology perspective in distinct fields such as cancer [16]. Recent

findings, brought about by the application of GSA methods on

microarray experiments [17] are consistent with the idea that

pathways, rather than individual genes, appear to govern the

course of tumorigenesis [18]. The use of GSA has been extended

to other areas beyond transcriptomics, such as evolution [19],

QTL analysis [20] or genotyping [21].

Nevertheless, the different versions of GSA published to date

[1,2,10] are inherently one-dimensional. Its application to the analysis

of genomic datasets is at present limited to the study of a unique

variable measured for the genes. The experimental conditions

studied, even if corrected by other variables (e.g. age, gender,

treatments, etc.), are typically summarized into a unique value for

each gene (e.g., differential expression in a case-control, risk in the

case of survival analysis, etc.) which is used to rank them accordingly.

Nowadays, the extensive use of different high-throughput

methodologies allows the obtention of different measurements

for the genes such as methylation status, splicing variants, linkage
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to diseases, etc., in a straightforward manner. As an illustration of

this, a pilot study by The Cancer Genome Atlas (http://

cancergenome.nih.gov/) consortium on glioblastomas has recently

been published [22]. In it, different types of transcriptomic and

genomic profiling were obtained and analyzed in an example of

application of different genomic methodologies that would become

routine soon. In addition, different measurements of the same type

in different experimental contexts can easily be done. For instance,

gene expression measurements in case-controls of different, but

mechanistically related experimental conditions, phenotypes,

diseases, treatments, etc. can be easily obtained. In such scenario,

more than one measurement could be obtained to rank the genes

involved in the study. Under the conventional GSA paradigm the

different ranked lists of genes could be analyzed one at a time and

still a good deal of information might be obtained. Nevertheless,

by taking this approach any list of ranked genes is considered

independent from each other and, consequently, behaviour of

functional modules which are dependent on the combination of

the studied ranking variables will, most likely, remain undetected.

Here we focus on a conceptually different strategy for GSA by

extending the gene set based functional analysis to a multidimen-

sional scenario in which more than one variable or genomic

measurement is available for all genes in the study. Logistic

regression allows for fitting models that include more than one

variable. We show here, by means of several examples, how the

application of the multidimensional GSA (MD-GSA) uncovers

biological processes activated by different combinations of

parameters (measured for all the genes and derived from

microarray of other experiments) that would have remained

undetected if the parameters would have been analysed one at a

time, independently.

Results

Gene-set activation dependent on the transcription rates
and mRNA activities in yeast

Gene expression is a process that involves two steps of synthesis

which end when the appropriate level of protein required for

performing a given function is reached. Some processes in the cell

require of a quick activation and/or deactivation, while others

remain in activity for longer periods and their activation processes

do not involve any urgency. Thus, it is expectable different cell

functionalities will use different strategies of gene and protein

expression and degradation. Measurements of these parameters

can be found in a recent genome-wide analysis on common gene

expression strategies in yeast [23]. Using these data, we have

studied two relevant and opposite biological processes that account

for the steady-state mRNA level in the cell: transcription and

stability [24]. The authors used a functional enrichment strategy

[25] to test the GO terms associated to the parameters measured

and to their correlations. Essentially, they used quintiles as cut-off

values and tested for enrichments in the genes showing a high or

low correlation in rates (transcription and translation) or

abundances (mRNA and protein copy number), finding a total

of 22 GO terms significantly over-represented at different

combinations of rates and abundances. Nevertheless, other

interesting situations in which the measurements are not

correlated (e.g. transcription rate and mRNA stability) could not

be analysed with this approach that, in addition, has the

disadvantage of requiring an arbitrary threshold.

Here we analysed the dependences of GO terms on two

measurements, transcription rate (TR) and mRNA stability (RS),

as well as on the interaction between them. When the logistic

Table 1. Significant GO terms when transcription rate and mRNA stability are taken into account in the model.

Log odds ratio (model
coefficients) Adjusted p-value

GO id TR RS inter TR RS inter pattern new GO name

GO:0019953 211.87 20.82 3.29 0.04 0.01 0.02 q3i yes sexual reproduction

GO:0051704 211.98 20.69 3.23 0.04 0.02 0.02 q3i yes multi-organism process

GO:0000819 230.49 20.87 7.1 0.02 0.03 0.02 q3i yes sister chromatid segregation

GO:0006260 220.35 20.97 4.99 0 0 0.01 q3i no DNA replication

GO:0006261 225.15 21.31 6.28 0 0 0.01 q3i no DNA-dependent DNA replication

GO:0022613 24.69 21.78 1.61 0.08 0 0.03 q3i no ribonucleoprotein complex biogenesis and assembly

GO:0042254 25.05 21.91 1.75 0.09 0 0.03 q3i no ribosome biogenesis

GO:0000746 211.48 20.73 3.17 0.06 0.02 0.03 q3i yes conjugation

GO:0000747 211.39 20.74 3.16 0.06 0.02 0.03 q3i yes conjugation with cellular fusion

GO:0042221 26.65 20.12 2.05 0.02 0.6 0.01 q3i yes response to chemical stimulus

GO:0000070 230.23 20.78 7.01 0.03 0.07 0.03 q3i yes mitotic sister chromatid segregation

GO:0019725 29.13 20.38 2.71 0.02 0.15 0.01 q3i yes cellular homeostasis

GO:0042592 28.75 20.3 2.59 0.02 0.27 0.01 q3i yes homeostatic process

GO:0006325 8.01 20.47 23.09 0 0.03 0.01 q4i no establishment and/or maintenance of chromatin architecture

GO:0065004 12.12 20.49 24.6 0 0.21 0.02 q4i no protein-DNA complex assembly

GO:0006323 12.63 20.48 24.96 0 0.15 0.01 q4i no DNA packaging

GO:0006333 12.44 20.4 24.84 0 0.23 0.01 q4i no chromatin assembly or disassembly

GO:0031497 12.51 20.44 24.84 0 0.2 0.01 q4i no chromatin assembly

A total of 18 GO terms were found as significant at FDR-adjusted p,0.05, nine of them were also found by the multivariate analysis. Column new indicates if the term as
been found only because of the interaction factor (yes) or if it was found also in the univariate analysis in one or both dimensions independently.
doi:10.1371/journal.pone.0010348.t001
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model was applied to the mRNA stability and to the transcription

rate independently, we obtained 170 and 80 GO terms

significantly associated to extreme values of these variables (see

Table S1). This increase in the number of GO terms found was

due to the well known fact that GSA strategies are much more

sensitive than threshold-based functional enrichment strategies

[1,10]. Actually, similar results were obtained when other

equivalent GSA strategies were used (data not shown) [11,19].

Nevertheless, the most interesting aspect of this study is the

analysis of the interaction between both variables. Table 1 shows

18 GO terms which were significantly associated to the interaction

between transcription rate and mRNA stability. Figure S1 depicts

the GO terms within the GO hierarchy. Nine of these GO terms

could only be detected when the model takes into account

simultaneously both parameters. In most of the cases, the GO was

associated to both low transcription rate and mRNA stability

(pattern q3i, see methods for an explanation of the patterns) such

as sister chromatid segregation (Figure 1 top) in a subtle way that can

only be detected when both parameters are included in the model.

On the other hand, other processes, such as DNA packaging,

Chromatin assembly (Figure 1 bottom), Chromatin assembly or disassembly

and Establishment and/or maintenance of chromatin architecture (which are

related terms, see File S1), or protein-DNA complex assembly are

associated to high transcription rates but low mRNA stability

(pattern q4i, seemethods ). This last strategy, opposite to the first

one, suggest a transient necessity of these processes, whose genes

are produced at a fast rate but quickly discarded after their

functions have been carried out.

Different strategies of production and degradation, correspond-

ing to different biological requirements of the cell, can be thus

detected by the combined analysis of these parameters.

Gene-set dependences on differential expression and

splicing index. Recent studies have shown that more that

70% of the multi-exon genes, corresponding to about 50% of all

human genes, are predicted to be alternatively spliced [26]. It is

well known that alternative splicing participates in many pathways

and processes. Also alterations in splicing function has been

implicated in many diseases, including neuropathological

conditions such as Alzheimer disease, cystic fibrosis, defects in

growth and development, and many human cancers [27].

The magnitude of the alterations in the splicing process can be

studied through the splicing index. This index accounts for

changes at the exon level that are relative to the expression of the

gene. In particular, the intensity value of an exon’s probeset is

divided by an estimate of the expression level of the transcript

cluster to which the exon belongs to. In this way, a gene-level-

normalized intensity that can be compared across samples or

conditions is created. Changes in this value between case and

control samples provide a quantitative measure of alternative

splicing between the two conditions [28]. Thus each gene in the

data set can be studied both in terms of its differential expression

and its alternative splicing. Our multidimensional logistic model

can be used to explore this two dimensional gene space.

Here we reanalyze data obtained using Affymetrix exon arrays

[29] in which human breast cancer cell lines are compared to non

tumorigenic human breast epithelial cell lines. The parameters

studied by means of the multidimensional logistic model are:

differential gene expression estimates obtained upon the applica-

tion of a t-test for the above mentioned comparison and a splicing

index, that accounts for changes at the exon level that are relative

to the expression of the gene [30].

A total of 141 GO terms were found to be significantly associated

to high values of the differential gene expression dimension (pattern

yh, yl; see methods section). These terms are equivalent to those that

would be found by conventional one-dimensional GSA methods

and, as expected, GO definitions related to cell proliferation, cell

signalling, apoptosis, cellular adhesion, etc., were found among

them. One significant GO term, regulation of viral reproduction, was

significant in the splicing index dimension alone. The trend of the

enrichment was towards the positive values of the splicing index

(pattern xh; see methods section) meaning that genes in the GO term

are ‘‘subordinately’’ more spliced in the tumour than in the normal

tissue (see File S2A).

Another 12 terms were found by the MD-GSA (see Table 2),

whose relationships within the GO hierarchy is depicted in Figure

Figure 1. Combined analysis of transcription rates and mRNA
stability in yeast with the logistic model. RS (mRNA stability) is
represented in vertical axis and TR (transcription rate) is represented in
the horizontal axis for GO terms sister chromatid segregation (top) and
chromatin assembly (bottom). Blue lines intersect in the mean of the
distribution of all the values and red lines intersect in the mean of the
distribution of values of the genes corresponding to the GO term
analysed. Blue ellipse delimits the confidence interval for all the values
and red ellipse delimits the confidence interval for the GO term
analysed. The red ellipse marks the trend of the relationship between
both variables. MD-GSA assigns patterns q3i and q4i respectively to
these functional modules.
doi:10.1371/journal.pone.0010348.g001
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S2. The processes discovered here were related (but yet

undetected) to other processes already detected by the conven-

tional analysis of differential expression (see File S2A). For

example, positive regulation of cell adhesion and its parent regulation of

cell adhesion are descendants of cell adhesion, and two sister processes

(cell-matrix adhesion and cell-substrate adhesion) were found by the

model when the two variables were taken into account, and would

have remained undetected if a conventional, unidimensional GSA

approach would have been used. The patterns for these terms are

bimodal in the two dimensional space (pattern b24, see methods

section) indicating that the genes annotated to them behave as if

they were in two sub-modules. For example, positive regulation of cell

adhesion and its parent processes regulation of cell adhesion, which are

known to be related to cancer, show a bimodal pattern towards the

quadrants 2 and 4 (pattern b24). This means that part of the

annotated genes are more spliced but underexpressed in the

tumour samples while the other part is more spliced but

underexpressed in the control samples (see Figure 2).

An equivalent analysis for KEGG can be found in File S2B.

Gene-sets differentially activated in related diseases: a

case study with psoriasis and dermatitis. The study of gene

expression at genomic level in both psoriasis [31] and dermatitis

[32] and further functional analysis reveals a considerable number

of deregulated pathways when both diseases are compared to their

corresponding healthy samples. Thus, when the multivariate

logistic model was applied to gene lists arranged by differential

expression 172 GO terms were found to be significant only for

dermatitis (patterns xh, xl; see methods section) and 202 only for

psoriasis (patterns yh, yl). Another 77 GO terms were found to be

significant in both, dermatitis and psoriasis but did not show an

interaction effect (patterns q1f, q2f, q3f, q4f) Most of this terms will

also be found by the independent unidimensional analysis of the

dermatitis dataset and the psoriasis dataset. In the case of

dermatitis, terms related to signalling, cell proliferation, immune

system and development of epidermis were found, among others

(see Files S3A and S3B). Similar terms can be found in psoriasis

with some variations (see Files S3A and S3B). A detailed

comparative functional analysis of these diseases is beyond the

scope of this manuscript and we will only focus on the results

obtained when both diseases are simultaneously analysed.

Table 3 shows the GO terms that are significant when both

diseases are taken into account in the logistic model (column

labelled with ‘‘inter’’). Figure S3 shows the GO terms within the

GO hierarchy. The GO terms M phase of mitotic cell cycle (and their

parent terms M phase and cell cycle phase) and cell division where

associated to both diseases in their main effects and also in their

interaction effect (pattern q1i, seemethods ) reinforcing their

relevance in the biological mechanisms underlying both skin

syndromes. Some other GO terms are only significant in the

interaction effect. Their genes show a bimodal behaviour as if the

functional module was composed of two sub-units (pattern b13,

b24; see methods). For instance, GO terms phosphoinositide-mediated

signaling and response to reactive oxygen species have a positive

interaction coefficient, which means that some of the genes of

the module are being coordinately over-expressed in both diseases

while the remaining genes in the GO term are under-expressed

also in both diseases. In a symmetric way, negative regulation of

lymphocyte proliferation (and the parent process negative regulation of

mononuclear cell proliferation) shows a negative interaction. Part of the

genes in these modules increase their expression in dermatitis but

decrease it in psoriasis while the rest of them present the opposite

behaviour. The reduced cutaneous IFNalpha2 transcription which

has been described as a differential characteristic of dermatitis with

respect to psoriasis [32] could be causing this effect detectable in

the analysis when the two variables are included in the model. All

this bimodal terms highlight antagonistic effect, detectable only

trough the combined analysis of both diseases.

Combined analysis of several genomic measurements: a
case study with genotyping, gene expression and copy
number alterations in breast cancer

It is known that mutations or alteration in copy number are related

to cancer and tumour development [33,34]. Current microarray

technologies allow for the measurement of SNP variation and copy

number estimation at the same time [35,36] and have been used to

gain insights into breast cancer [37,38,39], among other diseases.

Table 2. Significant GO terms when differential expression and splicing index are taken into account in the model.

Log odds ratio (model
coefficients) Adjusted p-value

GO id splicing diff.exp inter splicing diff.exp inter pattern GO name

GO:0006767 0.15 20.15 0.14 1 0.61 0.04 b13 water-soluble vitamin metabolic process

GO:0045216 0.29 20.04 0.17 1 0.95 0.02 b13 cell-cell junction assembly and maintenance

GO:0007043 0.38 20.03 0.18 1 0.97 0.02 b13 cell-cell junction assembly

GO:0048706 0.2 0.08 0.17 1 0.89 0.03 b13 embryonic skeletal development

GO:0007034 0.32 20.18 0.17 1 0.65 0.02 b13 vacuolar transport

GO:0007041 0.32 20.1 0.18 1 0.86 0.01 b13 lysosomal transport

GO:0048704 0.23 0.12 0.19 1 0.84 0.02 b13 embryonic skeletal morphogenesis

GO:0048705 0.17 0.1 0.17 1 0.85 0.02 b13 skeletal morphogenesis

GO:0016197 0.08 0.1 0.15 1 0.79 0.02 b13 endosome transport

GO:0030155 0.01 20.16 20.15 1 0.43 0.01 b24 regulation of cell adhesion

GO:0045785 20.04 0.06 20.18 1 0.94 0.02 b24 positive regulation of cell adhesion

GO:0030032 20.16 20.17 20.18 1 0.72 0.03 b24 lamellipodium biogenesis

A total of 12 GO terms were found as significant in the interaction at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t002
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Using the multidimensional logistic model proposed we have re-

analyzed here data from several separated studies previously

collected by us in an integrative analysis of breast cancer disease

[38]. In particular we provide a combined description of GO and

KEGG relationship to different parameters such as SNP associa-

tion, copy number alteration and differential gene expression in

connection to disease outcome (all the data were taken from the

additional information of the above mentioned study, see methods).

When analyzing SNP association data and copy number in

luminal B tumours by the proposed MD-GSA, basal cell carcinoma

KEGG pathway raised up (File S4B) showing a bimodal pattern

towards quadrants 1 and 3 (b13, see methods). This indicates that

the genes in the pathway highly associated to disease are also

increased in their copy number, and that genes not associated to

disease do not have an increased copy number (they may even

have a reduced copy number what would fit with the no

association or even protection of the SNPs to disease). Most

probably, the SNPs are markers associated either to regions

undergoing copy number alterations or to other mutations that

affect the basal cell carcinoma pathway, which obviously underlies

breast cancer disease. The same analysis using the GO reported

some negative bimodal terms (Table 4 and File S4B) like L-amino

acid transport which is known to be involved proliferation processes

[40]. A similar analysis with GO terms can be found in File S4A.

Figure S4 displays the GO terms in Table 4 within the GO

hierarchy.

We also applied the MD-GSA to the variables prognosis and

differential expression in tumours. In the representation (File S5A),

high values in the differential expression dimension indicate

under-expression in tumour while low values indicate over-

expression. Conversely, high values in the prognosis dimension

indicate bad prognosis (if the gene is expressed) while low values in

the prognosis dimension indicate good prognosis (if the gene is

expressed).

Table 5 (more details in File S5A) show results obtained from

the application of the MD-GSA using modules defined with GO

terms. The relationships among them within the GO hierarchy are

depicted in Figure S5. Most of the GO terms related to cell division

and cell cycle show a q2i pattern (see methods) indicating a

significant convergence of their genes in the prognosis and

differential expression dimensions. From the relatively high

prognosis value associated to the genes annotated to this GO

terms we know that, if over expressed they indicate bad prognosis.

From the low values in the t-statistic we know these GO terms are

enriched in the tumours samples. Hence the multivariate logistic

model is pointing out those modules which are dangerous to the

patient if they are activated, and, that are certainly know to be

activated in luminal B tumours. This extended functional analysis

provides the researcher not only with a quick an easy

interpretation of the combined data but also with the additional

information of the interaction term in the model. It is worth

pointing out here that better and more detailed results are

obtained by combining both datasets under the proposed

methodology than by applying independently the univariant

methodology to any of the datasets and summing up the results

obtained. The equivalent MD-GSA for KEGG pathways can be

found in File S5B.

Advantages and limitations of the logistic regression
methodology

The major advantage of the logistic regression methodology is it

flexibility. It can be used in any genomic context in which certain

biological characteristic of a gene is measured using a numerical

scale. This numerical scale may be a continuous ‘‘ranking statistic’’

as described previously [41] or in this paper, but it may also be a

categorical variable [42].

Moreover, many modifications of the logistic model with

potential applications in biology are already statistically developed

and can be used straight forward. Here, for instance we showed

how to extend the methodology to study not one but two gene

characteristics at a time. It is also straightforward to include the

interaction in the model as we showed here. A unidimensional

binary logistic model can be used instead the conventional 262

contingency table alternative because the logistic model easily

Figure 2. Combined analysis of differential gene expression
and splicing index with the logistic model. Differential expression
is represented in vertical axis and splicing index is represented in the
horizontal axis for GO terms positive regulation of cell adhesion
(bottom) and its parent processes regulation of cell adhesion (top). Blue
lines intersect in the mean of the distribution of all the values and red
lines intersect in the mean of the distribution of values of the genes
corresponding to the GO term. Blue ellipse delimits the confidence
interval for all the values and red ellipse delimits the confidence interval
for the GO term analysed. The red ellipse marks the trend of the
relationship between both variables. MD-GSA assigns a bimodal pattern
b24 to these functional modules.
doi:10.1371/journal.pone.0010348.g002
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allows for weighting genes [42]. This simplicity of extension is not

at all intrinsic to most other GSA approaches, what makes the

logistic model worth to be explored.

Another advantage of the method is that it does not start from

the original observed data set (gene expression matrix for instance)

but from a ranking statistic that already summarizes the relevant

characteristic under study. This makes the methodology useful in

many genomic contexts beyond the microarray paradigm. One

example of ranking statistic we have discussed is the classical t-test

which, perhaps with some modification, is underneath most GSA

methodologies. For each gene, this statistic measures the biological

characteristic of ‘‘how much’’ the gene is differentially expressed in

a particular biological experiment. But we also exemplified how

the ranking statistic can be a hazard ratio form a Cox model or

other gene-wise variable[19]. In the case of the hazard ratio, the

biological characteristic measured for each gene by the statistic is

the association of expression and risk disease. The GSA for this

second example can be directly carried out using the logistic

methodology and software. On the contrary, most GSA

approaches will require major modifications of their methods

and software to be applied in a case other than differential gene

expression in a class comparison experiment.

Virtually any gene-wise variable can be explored from a GSA

perspective using the logistic regression model. In this paper we

presented examples for the analysis of transcription rates, mRNA

stabilities, splicing, SNP association to disease and copy number

estimation. The analysis of other measurements is possible,

including the evolutionary selective pressure in the human genome

or a study of gene connectivity in the interactome [19]. Other

publications also discuss on the advantage of a methodology that

starts form a single ranking statistic and not from the whole

expression data matrix [42,43].

Having said that, some remarks and warnings should be given

related mainly with the null hypothesis that underpin the method

and p-value computation.

In Sator’s logistic regression approach [41] and in the extension

we are proposing here, the distribution of the ranking statistic

within each module is compared to that of its complement. Thus,

Table 3. Significant GO terms when differential expression of dermatitis and psoriasis are taken into account in the model.

Log odds ratio (model
coefficients) Adjusted p-value

GO id dermatitis psoriasis inter dermatitis psoriasis inter pattern GO name

GO:0022403 20.13 0.36 0.11 0.11 0 0.01 q1i cell cycle phase

GO:0000279 20.06 0.37 0.12 0.55 0 0.03 q1i M phase

GO:0051301 20.1 0.25 0.15 0.36 0 0 q1i cell division

GO:0000087 20.11 0.4 0.12 0.32 0 0.05 q1i M phase of mitotic cell cycle

GO:0048015 0.08 0.07 0.16 0.72 0.68 0.05 b13 phosphoinositide-mediated signaling

GO:0000302 0.24 20.06 0.29 0.59 0.85 0 b13 response to reactive oxygen species

GO:0032945 0.43 0.33 20.79 0.26 0.39 0 b24 negative regulation of mononuclear cell proliferation

GO:0050672 0.43 0.33 20.79 0.26 0.39 0 b24 negative regulation of lymphocyte proliferation

GO:0048589 20.19 20.06 20.59 0.53 0.91 0.04 b24 developmental growth

GO:0007028 0.21 20.11 20.75 0.47 0.83 0 b24 cytoplasm organization and biogenesis

GO:0007043 0.07 20.5 20.91 0.86 0.22 0 b24 cell-cell junction assembly

GO:0045216 0.12 20.26 20.86 0.75 0.59 0 b24 cell-cell junction assembly and maintenance

A total of 12 GO terms were found as significant in the interaction at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t003

Table 4. Significant GO terms when copy number and gene association to the disease (see text) are taken into account in the
model.

Log odds ratio (model coefficients) Adjusted p-value

GO id association
copy
number inter association

copy
number inter pattern GO name

GO:0015807 20.09 20.85 20.59 0.98 0.46 0.04 b24 L-amino acid transport

GO:0032228 20.63 21.21 20.68 0.65 0.24 0.01 b24 regulation of synaptic transmission, GABAergic

GO:0050805 20.94 21.24 20.63 0.22 0.24 0.04 b24 negative regulation of synaptic transmission

GO:0051932 20.82 21.35 20.67 0.49 0.17 0.02 b24 synaptic transmission, GABAergic

GO:0042398 20.77 20.02 0.12 0.04 0.99 1 xl amino acid derivative biosynthetic process

GO:0042401 20.93 0.12 0.2 0.01 0.98 1 xl biogenic amine biosynthetic process

GO:0030216 0.2 0.41 20.03 0.8 0.03 1 yh keratinocyte differentiation

GO:0031424 0.29 0.59 20.01 0.81 0 1 yh keratinization

A total of 8 GO terms were found as significant at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t004
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following Goeman’s nomenclature they are ‘‘competitive’’ tests

[10]. Also, the way p-values are computed in the logistic model

make of this approach a ‘‘gene sampling model’’ methodology

[10].

It has been shown that, in general contexts of gene expression,

where gene measurements are correlated within modules, GSA

approaches that test ‘‘competitive’’ hypothesis based on ‘‘gene

sampling models’’ are anticonservative [10]. This undesirable

property also applies to the main effects of the bivariate logistic

model as we could confirm in simulation studies (only in the case

of internal correlation in the gene sets, which is the case of gene

expression but not of the rest of the measurements used in this

study). Interestingly, the consequence of gene correlation over the

interaction effect, which is the main contribution of the proposed

methodology, was the opposite and makes the method more

conservative (see File S6). One way to avoid the bias of the

particular context of gene expression would be to compute p-

values based on a subject sampling permutation.

Care should be taken also when interpreting p-values from the

method proposed here due to its ‘‘competitive’’ nature and the fact

that it starts from a ranking statistic instead of the original data.

Consequently, p-values test whether the distribution of the ranking

statistic within each module is different to that of the whole

genome. Therefore p-values do not extrapolate directly to the

individual level class comparison which was done in order to

compute the ranking statistic.

Discussion

Functional annotations, such as GO or KEGG pathways, have

been used for the definition of modules of genes, carrying out

common functional roles, in functional profiling methods [1,2]. All

these methods, including the most recent versions, such as the

GSA, can only deal with data that have been preselected or

arranged by a unique variable (e.g. differential gene expression

between cases and controls, etc.) The approach we are presenting

here constitutes a novel and conceptually different proposal for the

functional analysis of genomic experiments. It allows the

simultaneous analysis of several variables, which can account for

different properties of the genes. This approach can detect

interactions between these variables that account for functional

roles dependent on several genomic properties or measurements.

Table 5. Significant GO terms when differential expression and prognosis are taken into account in the model.

Log odds ratio (model coefficients) Adjusted p-value

GO id diff.exp prognosis inter diff.exp prognosis inter pattern GO name

GO:0000087 20.45 20.08 20.42 0.01 0.81 0 q2i M phase of mitotic cell cycle

GO:0000279 20.53 20.07 20.38 0.04 0.85 0 q2i M phase

GO:0000910 20.27 20.09 20.57 0.01 0.95 0 q2i cytokinesis

GO:0007067 20.47 20.07 20.4 0.04 0.9 0 q2i mitosis

GO:0022618 20.22 20.33 20.42 0.03 0.21 0 q2i ribonucleoprotein complex assembly

GO:0051301 20.38 0 20.38 0.01 0.99 0 q2i cell division

GO:0051726 20.01 0.05 20.22 0.03 0.91 0.01 q2i regulation of cell cycle

GO:0045638 0.09 20.35 20.6 0.01 0.65 0.04 q4i negative regulation of myeloid cell differentiation

GO:0000226 20.08 0.16 20.31 0.11 0.47 0.02 b24 microtubule cytoskeleton organization and biogenesis

GO:0000278 20.34 0.04 20.28 0.11 0.94 0 b24 mitotic cell cycle

GO:0007346 20.3 20.08 20.39 0.07 0.9 0 b24 regulation of mitotic cell cycle

GO:0022403 20.42 0 20.31 0.09 0.99 0 b24 cell cycle phase

GO:0042254 20.4 20.45 20.42 0.19 0.1 0.01 b24 ribosome biogenesis

GO:0006412 0.06 20.28 20.2 0.02 0.01 0.07 q4f translation

GO:0006414 0.45 21.12 20.43 0 0 0.28 q4f translational elongation

GO:0042312 0.45 0.08 20.51 0.03 0.97 0.22 xh regulation of vasodilation

GO:0000209 20.25 0.55 0.13 0.94 0.01 1 yh protein polyubiquitination

GO:0006066 0.08 0.2 20.02 0.97 0.02 1 yh alcohol metabolic process

GO:0010033 0.05 0.29 0 0.99 0.02 1 yh response to organic substance

GO:0032944 20.17 20.7 0.06 0.97 0.02 1 yl regulation of mononuclear cell proliferation

GO:0042098 20.18 20.61 0.08 0.95 0.04 1 yl T cell proliferation

GO:0042110 0.03 20.38 0.14 0.75 0.03 0.86 yl T cell activation

GO:0042129 20.33 20.74 20.02 0.99 0.05 1 yl regulation of T cell proliferation

GO:0045321 20.04 20.28 0.06 0.92 0.03 1 yl leukocyte activation

GO:0046649 20.06 20.33 0.07 0.89 0.02 1 yl lymphocyte activation

GO:0046651 20.19 20.49 20.05 0.99 0.05 1 yl lymphocyte proliferation

GO:0050670 20.17 20.7 0.06 0.97 0.02 1 yl regulation of lymphocyte proliferation

GO:0051249 20.06 20.44 0.24 0.52 0.04 0.71 yl regulation of lymphocyte activation

Terms were significant at FDR-adjusted p,0.05.
doi:10.1371/journal.pone.0010348.t005
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We have used for this purpose a logistic model. It has recently

been shown that the application of the logistic model to one single

variable (differential gene expression in this case) produces results

conceptually similar to the outcome of any conventional GSA

method [41]. The aim here is not to improve the one dimensional

detection of gene modules related to the measurement, but to look

for gene modules that have complex dependences on several

genomic variables or measurements. Thus, in the first example we

show how some functional GO categories depend on particular

combinations of their transcription rates and mRNA stabilities.

Different strategies can be used by the cellular machinery to

ensure, for example, a rapid activation or a long lasting of a

particular team of genes that cannot be explained with only one

variable. Thus, combinations of several variables (e.g. a rapid

transcription rate and a low mRNA stability can be useful for a

rapid release and a rapid deactivation of a transient function) are

on the root of many biological processes. The variables used can

be properties of the genes or can be also measurements of

behaviours such as their expression in a given condition. In the

second case example we have analyzed a combination of gene

property (splicing index) and gene behaviour (differential gene

expression). The MD-GSA was able of detecting biological

processes that depend on combinations of both variables and

would remain undetected if the variables were independently

analyzed. Finally, we applied the same concept to the same type of

measurement (differential gene expression) in two different but

related scenarios: a case control of dermatitis and another case-

control of psoriasis. In this example we were able of finding

common and distinctive altered functionalities of both related

diseases that remained otherwise undetected with the conventional

one-dimensional GSA. The combination of measurements that

can be studied under this framework and their biological relevance

is unimaginable. Thus the relation of biological roles to

combinations of different parameters of different types, such as

gene intrinsic properties (e.g. mRNA stability), gene behaviours

(e.g. level of expression) or gene states (e.g. methylation, SNPs,

copy number), etc., can be easily be studied using this approach.

Summarizing, MD-GSA constitutes a novel approach to the

functional profiling of genome scale experiments that paves the

way for a higher level understanding of the behaviour of functional

modules in the cell.

Materials and Methods

Datasets and data preprocessing
Transcription rates and mRNA stabilities in yeast.

Genome-wide values for the transcription rates (TR) and mRNA

stabilities (RS) of the genes of yeast used in the first sub-section of

results can be found in the supplementary material of the

manuscript by Garcia-Martinez et al. [23].

Gene expression and splicing index. Okoniewski & Miller

[44] used exon arrays to compare breast cancer cell line MCF7

(fetal calf serum) to non tumorgenic breast epithelial cell line

MCF10A (horse serum). They estimated differential gene

expression using standard t-statistics and alternative splicing

using the splicing index described in [30]. Since the splicing

index is defined for each exon, we have used here median values to

provide splicing measurements at a gene level. Thus, we have two

numerical variables recorded for each gene in the study. The first

one assesses the variation in the general expression level. The

second one quantifies the change in splicing pattern of the gene,

independently of its expression levels.

Differential expression in psoriasis and dermatitis.

Expression data from two separated case control experiments

where combined in this analysis. The first experiment consisted of

the comparison of lessional and non lessional skin samples in

atopic dermatitis patients [32] (data were obtained from the GEO

database, accession: GSE5667). The second experiment compared

affected and unaffected skin in psoriatic patients [31] (GEO

database, accession: GSE6710). Separated gene expression

analyses of these two datasets were performed using standard

methods: RMA algorithm [45] was used to normalize data within

each of the experiments. The limma package [46] from

Bioconductor [47] was used to estimate, separately for each of

the studies, differential gene expression between diseased and non-

diseased skin. Hence, two experimental measurements (limma t-

statistics) where generated for each gene and used in the analysis: a

first measurement of differential gene expression in dermatitis and

a second measurement of differential gene expression in psoriasis.

Combined analysis of several breast cancer genomic

measurements. Data used in the combined analysis of

genomic measurements, in the results section, were taken from

the supplementary material of [38]. SNP association to disease was

measured using Odds Ratio (OR) of their corresponding minor

allele frequencies. Then, the magnitude of the association of each

gene to the disease was obtained as the value of association of the

Figure 3. Surfaces described by the logistic model. The surface
described by the logistic model is a plane when the interaction term (c)
is 0 (top) and a hyperbolic paraboloid when the interaction term (c) is
not zero (bottom).
doi:10.1371/journal.pone.0010348.g003
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SNP more associated to the disease among all the SNPs mapping

in the gene (or near the gene and being in linkage disequilibrium)

[21,38]. Differences in gene expression between tumour and

normal breast tissues where estimated using t-statistics. Cox

regression models where used to correlate survival time and gene

expression, yielding a ‘‘prognosis’’ value for each gene (genes with

‘‘high’’ hazard ratios in the Cox model are associated to poor

prognosis; genes with ‘‘low’’ hazard ratios associated to good

prognosis). Another genomic measurements used was the average

copy number for each gene in luminal B tumours, obtained from

the hybridization intensity of the probesets corresponding to each

gene (taken from the additional material of our study [38]).

Annotation Data. Functional modules are defined according

the annotations of the GO [4] and the KEGG Pathway [48]

repositories. Functional modules of more than 500 genes where

considered to be too general to be informative so they where filtered

out. Functional modules having less than 10 genes annotated to them

where considered to be too small to be properly fitted by the

multivariate logistic model and where also discarded.

Multi dimensional GSA (MD-GSA) using a logistic model
that considers more than one variable

Logistic regression is a well established statistical methodology

used to model the probability of occurrence of a binary event as a

function of some other independent variables [49]. In the context

of genomic studies, univariate logistic models have been shown to

be suitable to perform gene set enrichment analysis [41].

Modelling functional class membership in terms of some

measurement, X, of differential gene expression between two

conditions as follows:

ln
P g[Fð Þ
P g6[Fð Þ

� �
~KzaX ð1Þ

we can call the gene set F enriched in one of the conditions a

significant estimate of the a coefficient is obtained [41].

In this paper we extend the use logistic models to perform a

multidimensional gene set enrichment analysis. Our model

describes the probability of a gene belonging to a functional class

as a function of not one, but several experimental measurements.

For two of those measurements the model will be as follows:

ln
P g[Fð Þ
P g6[Fð Þ

� �
~KzaXzbYzcXY ð2Þ

where a and b are the main effects and c is the interaction

effect.

In a case-control study measuring, for instance, gene expression

and genotype, we could model the probability of genes being

annotated to a GO term as a function of both, differential gene

expression (X) and allelic association to disease (Y).

Modelling not only the additive effects but also the interaction

term, we accurately describe how the genes in a gene set are

related to both measurements X and Y together, allowing for the

detection of enrichment patterns which will remain unnoticed in

two independent univariate analyses.

The model in equation (2) describes the log odds ratio of a gene

being annotated to functional module F as a function of two

variables, X and Y. The shape of this surface when embedded in a

3D space is that of a plane if the interaction coefficient c is zero

(Figure 3, top), or a hyperbolic paraboloid, also called saddle surface,

when the estimate of c is different from zero (Figure 3, bottom).

Hence, from the sign and significance of the fitted coefficients, we

can find the direction in the two dimensional space XY in which the

genes annotated to the function F are more likely to be found.

When c is zero the sign of the coefficients a and b describe the

slopes of the plane and therefore, the direction towards which the

probability of genes being annotated is greater. Figure 4 describes

the areas where genes belonging to a functional module are more

likely to be found, depending on the estimated a and b coefficients

of the logistic model (2) and provided that the estimate of c is not

significantly different from zero.

Figure 4. Location of the areas where genes are more likely to be annotated to the function F depending on the coefficients of the
fitted model. When c= 0 the fitted surface is a plane which slope grows towards the area.
doi:10.1371/journal.pone.0010348.g004
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When c is different from zero the interaction dominates the

growth of the log odds ratio while the saddle point in the surface

has the coordinates (2b/c, 2a/c). If for instance, for a particular

functional module F, all estimated coefficients are positive, then,

the saddle point of the hyperbolic paraboloid will be in the third

quadrant and the surface will grow to the infinite in the first

quadrant. As the surface represents how likely we are to find genes

annotated to module F in the plane XY, we will conclude that the

module F is located towards the firs quadrant. Moreover, as the

interaction effect is positive we know that the evidence of this

localization is greater than the one we will get from separated

analysis of each one of the dimensions X and Y on their own

(following equation 1). Then, biological interpretation can be done

recalling the meaning of the X and Y quantities. Figure 5 (top)

describes the areas where genes belonging to a functional module

are more likely to be found, depending on the estimates of a, b and

c and when c is estimated to be different from zero.

If it was the case that just the interaction coefficient c would be

different from zero, then the saddle point will be the (0, 0) and the

genes annotated to functional module F will be allocated to

opposite quadrants of the XY space; the first and the third

quadrant if c.0; the second and the fourth quadrants if c,0. In

this latest case we will call the functional module F bimodal and

the biological interpretation will be that, genes in F are effectively

spited up in two groups of opposite patterns. Figure 5 (bottom)

describes the areas where genes belonging to a functional module

are more likely to be found, if the estimates of a and b are zero.

Table 6 shows how to interpret all possible combinations of a, b
and c estimates.

Wald statistics to test the main effect coefficients and the

interaction effects [41]. Other approaches like likelihood ratio tests

could also have been used.

As one logistic regression model needs to be fit for each

functional module in the analysis, multiple testing occurs and p-

value correction must be performed. In this paper we use

Benjamini and Hochberg [50] approach to correct all p-values

of the same parameter of the model a, b or c.

Implementation
The proposed algorithm has been implemented as an R library

available at http://bioinfo.cipf.es/supplementary/multidimensional_

GSA, released under the GPL license.

Supporting Information

Figure S1 GO terms significantly associated to the interaction

between transcription rate and mRNA stability in yeast. Octagons

represent terms with p-values,0.05, after adjustment for multiple

testing using the popular FDR [48]. White squares represent non-

significant terms connecting the significant terms found. The

picture has been obtained using the GOGraphViewer option of

the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s001 (1.79 MB JPG)

Figure S2 GO terms significantly associated to the interaction

between gene expression and splicing index. Octagons represent

terms with p-values,0.05, after adjustment for multiple testing

using the popular FDR [48]. White squares represent non-

significant terms connecting the significant terms found. The

picture has been obtained using the GOGraphViewer option of

the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s002 (1.07 MB JPG)

Figure S3 GO terms significantly associated to the interaction

between differential gene expression in psoriasis and dermatitis.

Octagons represent terms with p-values,0.05, after adjustment

for multiple testing using the popular FDR [48]. White squares

represent non-significant terms connecting the significant terms

found. The picture has been obtained using the GOGraphViewer

option of the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s003 (1.66 MB JPG)

Figure S4 GO terms significantly associated to the interaction

between copy number and gene association to breast cancer (see

text). Octagons represent terms with p-values,0.05, after

adjustment for multiple testing using the popular FDR [48].

White squares represent non-significant terms connecting the

significant terms found. The picture has been obtained using the

GOGraphViewer option of the Babelomics package [49].

Found at: doi:10.1371/journal.pone.0010348.s004 (1.12 MB JPG)

Figure S5 GO terms significantly associated to the interaction

between differential expression and prognosis of breast cancer.

Octagons represent terms with p-values,0.05, after adjustment

for multiple testing using the popular FDR [48]. White squares

represent non-significant terms connecting the significant terms

found. The picture has been obtained using the GOGraphViewer

option of the Babelomics package [49].

Figure 5. Location of the areas where genes are more likely to
be annotated to the function F depending on the coefficients
of the fitted model. If c?0 the fitted surface is a hyperbolic
paraboloid, when a?0 and b?0 (top part) the most likely area to find
genes annotated to F is the quadrant opposite to the saddle point of
the surface. When a= 0 and b= 0 (bottom part) the saddle point of the
surface is in the (0,0) and the genes annotated to the function F are
more likely to be found in two opposite quadrants, reflecting the
bimodality of the function F.
doi:10.1371/journal.pone.0010348.g005
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Found at: doi:10.1371/journal.pone.0010348.s005 (0.76 MB JPG)

Table S1 Excel file containing significant GO terms obtained

upon the application of the logistic model to the mRNA stability

(RS) and to the transcription rate (TR) variables independently.

Found at: doi:10.1371/journal.pone.0010348.s006 (0.19 MB

XLS)

File S1 A) GO Biological Process terms and B) KEGG

pathways, significant for Transcription Rate (TR), RNA Stability

(RS) and their interaction, along with the corresponding graphical

representations. In the plots blue lines intersect in the mean of the

distribution of all the values and red lines intersect in the mean of

the distribution of values of the genes corresponding to the GO

term analysed. Blue ellipse delimits the confidence interval for all

the values and red ellipse delimits the confidence interval for the

GO term analysed. The red ellipse marks the trend of the

relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s007 (9.04 MB

PDF)

File S2 A) GO Biological Process terms and B) KEGG

pathways, significant for alternative splicing and differential gene

expression and their interaction, along with the corresponding

graphical representations. In the plots blue lines intersect in the

mean of the distribution of all the values and red lines intersect in

the mean of the distribution of values of the genes corresponding

to the term analysed. Blue ellipse delimits the confidence interval

for all the values and red ellipse delimits the confidence interval for

the term analysed. The red ellipse marks the trend of the

relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s008 (9.22 MB

PDF)

File S3 A) GO Biological Process terms, and B) KEGG

pathways, significant for differential gene expression in dermatitis

and psoriasis case-control studies and their interaction, along with

the corresponding graphical representations. In the plots blue lines

intersect in the mean of the distribution of all the values and red

lines intersect in the mean of the distribution of values of the genes

corresponding to the term analysed. Blue ellipse delimits the

confidence interval for all the values and red ellipse delimits the

confidence interval for the term analysed. The red ellipse marks

the trend of the relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s009 (30.60 MB

ZIP)

File S4 A) GO Biological Process terms, and B) KEGG

pathways, significant for gene association (derived from genotyp-

ing, see text) association data and genomic copy number in breast

cancer and their interaction, along with the corresponding

graphical representations. In the plots blue lines intersect in the

mean of the distribution of all the values and red lines intersect in

the mean of the distribution of values of the genes corresponding

to the term analysed. Blue ellipse delimits the confidence interval

for all the values and red ellipse delimits the confidence interval for

Table 6. Interpretation of all relevant combinations of a, b and c estimates.

a b cc pattern identifier pattern description

+ + + q1i Quadrant 1 with interaction F is allocated towards one of the quadrants
and the evidence is greater than just the
additive evidences from the univariate analysis.

+ 0 +

0 + +

2 2 + q3i Quadrant 3 with interaction

2 0 +

0 2 +

2 + 2 q2i Quadrant 2 with interaction

2 0 2

0 + 2

+ 2 2 q4i Quadrant 4 with interaction

+ 0 2

0 2 2

0 0 + b13 Bimodal + (quadrants 1 and 3) F is split in two opposite quadrants.

0 0 + b24 Bimodal 2 (quadrants 2 and 4)

+ + 0 q1f Quadrant 1 flat F is allocated towards one of the quadrants
and the evidence is similar to the additive
evidences from the univariate analysis.

2 2 0 q3f Quadrant 3 flat

2 + 0 q2f Quadrant 2 flat

+ 2 0 q4f Quadrant 4 flat

+ 0 0 xh X high (+) values F is enriched just in the first condition.

2 0 0 xl X low (2) values

0 + 0 yh Y high (+) values F is enriched just in the second condition.

0 2 0 yl Y low (2) values

doi:10.1371/journal.pone.0010348.t006
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the term analysed. The red ellipse marks the trend of the

relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s010 (0.80 MB

PDF)

File S5 A) GO Biological Process terms, and B) KEGG

pathways, significant for prognosis and differential expression in

a case-control study of breast cancer and their interaction, along

with the corresponding graphical representations. In the plots blue

lines intersect in the mean of the distribution of all the values and

red lines intersect in the mean of the distribution of values of the

genes corresponding to the term analysed. Blue ellipse delimits the

confidence interval for all the values and red ellipse delimits the

confidence interval for the term analysed. The red ellipse marks

the trend of the relationship between both variables.

Found at: doi:10.1371/journal.pone.0010348.s011 (2.22 MB

PDF)

File S6 Interaction simulation study. A simulation study of the

bias in p-value estimates for the interaction term of the bivariate

logistic model.

Found at: doi:10.1371/journal.pone.0010348.s012 (0.15 MB

DOC)
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Chapter 6

Summary and Conclusions

In this work we have introduced several bioinformatic tools and methods
for the analysis of genomic data. We have specially focused in some of
our developments relating gene set analysis algorithms. We have argued
how, despite being an already established step in most high through-
put experiments, current functional profiling methods are oversimplified
and cannot efficiently address complex experimental designs. We have
presented GEPAS, a general purpose analysis resource for the analysis
of microarray data. We have illustrated how it is closely tied to the
functional profiling suite Babelomics, up to the point that both tools
have been fused in their latest release. After the exposition of such
general pipeline for the analysis of genomic data, we have highlighted
how it lacked some desirable tools or parts of the work flow. The most
technical developments carried out in this thesis aimed to fill some of
those missing characteristics. Thus, we have contributed to this general
analysis framework with particular applications as for instance the mod-
ule for the multidimensional gene set analysis, or the utility that allows
for the weighting of genes. But we have also provided several concep-
tual advances in the field, as for instance the avoidance of cutoffs in the
methodology set up by FatiScan, the understanding of gene sets as non
discrete entities, or the depiction of the modular approach to carry out
data analysis. Finally, we have also done some additions to the biological
science as it is the empirical estimation of the internal coherence of GOs
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and KEGGs.

Thus, as a results of the accomplished research, we can particularly
conclude that:

1. Logistic regression may be successfully applied in genomic functional pro-
filing. This common statistical model behaves as previously used ap-
proaches; keeps their suitable properties while overcomes some of their
major drawbacks and extends the scope of experiments in which gene set
analysis may be applied.

2. Jointly analyzing the results of several kinds of genomic measurements
in terms of gene sets is feasible and biologically meaningful. Moreover,
to combine the different sources of genomic information within the func-
tional profiling step of the analysis, may be an effective strategy for data
integration.

3. Data base defined functional blocks are ultimately heterogeneous entities
and thus, not all genes annotated to them will show a coherent pattern
in their measurements. Despite of that, the internal homogeneity of gene
sets may be quantified from previous experiments. Such quantification
may spot the annotations that truly describe functional blocs of genes.
This may simply be used to filter out databases before a meaningful gene
set analysis is carried out but it may be as well included into the analysis
itself, taking advantage of approaches similar to our weighting schema.

4. The KEGG pathways and the Gene Ontology terms are internally less
coherent in their expression levels than expected. This is likely to occur
to most other biological databases.

5. In any experiment carried out at a genome level there is an underlying
“universe” of observed genes. This background of genomic features is
implicit in many steps of the analysis, from data normalization, to gen
set analysis, passing through p-value correction. Care should always be
taken for it not to bias our results or their interpretation.
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6. Not always the genes or genomic features showing the greatest differences
across biological conditions are the most relevant ones in an experiment.
Small but coordinated changes in genes that act together (in a gene
set for instance) may be responsible for many changes in phenotype.
Contrary to functional enrichment analysis approaches, gen set analysis
methodologies are able to detect such small but coordinated changes.
It is up to the researcher to decide which paradigm is more suitable
to interpret its experiment. In any case, logistic regression models are
general enough to encompass both analytical schemes.

7. Functional profiling methods provide more power to the analysis first
because they incorporate the extra information of the annotation. Second
because they pool and combine the information from the several genes
conforming the gene sets. And third because shifting in the observational
unit from the gene to the gene sets, implies a data reduction that results
in weaker multiple testing correction. Additionally, the data reduction
that occurs due to this shift in the unit of observation is more meaningful
than other available procedures like for instance PCA1, because the data
reduction is done attending to a predefined biological criteria and not to
a general purpose statistical considerations.

8. Taking a modular approach to investigate genomic data, separating algo-
rithmically the conceptual steps of the analysis, makes easier the biologi-
cal interpretation of results. Such a modular approach simplifies software
implementation and maintenance and facilitates the replacement or im-
provement of parts of the analytical pipeline. It also makes possible to
reuse ideas, code or software in upcoming research contexts. The modu-
lar approach is particularly useful when the analysis procedure needs to
make a transition between different levels of the biological organization
as it occurs in the gene set analysis due to the shift in the observational
unit.

1Principal Component Analysis.
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9. Interestingly from the statistical perspective, in this modular approach,
the outcome of one step of the analysis is not treated as an evidence to
accept or reject a hypothesis but as an index which accounts for some
genomic property of our biological sample, and that needs to be reana-
lyzed gain in the following milestone of the pipeline. Following some of
our examples, the p-values resulting from a differential expression test
wont be taken as the probabilities of a type I errors, but as direct in-
dices accounting for the differences in expression at genomic level. Such
p-values will constitute the new sample to be explored in the subsequent
step of the analysis pipeline.

10. Well designed presentation of results is crucial for its interpretation of
genomic experiments due to the complexity of the results themselves.
But not less important is to use the appropriated data structures during
the analysis process. This will highlight the biologically relevant charac-
teristics in our data and will help conducting the analysis.

11. When creating a software for data analysis, including several available
methods to perform the same task can be helpful for users, but more
importantly, it will help them intuitively understanding how complex
analyses work.

12. Generating web interfaces is an efficient way to bring algorithms and
methods closer to a wide range of users, from experts in the field to
casual analysts.

I hope the above summary points out our main contributions to a
research field that is anything but completed: that of the functional
profiling of genomic experiments. The growing importance of genomics,
the increasing facility to collect data and the continuous development of
databases, allows us foreseeing an increasing demand for accurate gene
set analysis methods.

Besides the always recurring need to speed up computation and algo-
rithms, the future development of the gene set methodologies will have to

96



address major challenges. Effectively dealing with more tan two genomic
dimensions at a time, will remain a hot topic as long as new experimental
techniques enter in the scene, allowing for the observation of novel biolog-
ical features. Developing set1 tests for such novel features will necessarily
require the extrapolation of information form one genomic dimension to
the newer one. GO annotation, for instance, currently predicated of
genes, will need to be somehow extended to the regulatory elements of
the genome before functional profiling can be carried out over their mea-
surements. And of course the new set methods to come will need to take
such extrapolation into account to perform unbiased analyses. Finlay, the
growing complexity of genomic knowledge stored in biological databases,
is describing the topology of the genomic feature sets increasingly better.
The smart modeling of such internal structure of the sets, besides the
consideration of the relationships among them, will surely constitute the
new paradigm of functional profiling methods, bring the field closer to
what is currently referred to as systems biology.

1 Note the disappearance of the word gene. In the immediate future we shall be
talking of genomic feature sets,
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Appendix A

New trends in the analysis of
functional genomic data.

In this appendix you can fin the original writing of my document “New
trends in the analysis of functional genomic data.” This was first pub-
lished as a chapter of the book “Progress in Industrial Mathematics at
ECMI 2006.” edited by Luis L. Bonilla (Bonilla, 2008) in Springer.
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New Trends in the Analysis of Functional
Genomic Data

David Montaner1,2, Fatima Al-Shahrour1, and Joaquin Dopazo1,2

1 Bioinformatics Department, Centro de Investigacin Prncipe Felipe (CIPF)
Autopista del Saler 16, E-46013, Valencia, Spain. dmontaner@cipf.es

2 Functional Genomics Node, INB, CIPF. Autopista del Saler 16, E-46013,
Valencia, Spain

1 Replications of the same statistical test

Most analyses carried out using high throughput data consist of the repeti-
tion of the same statistical test for all genes in the dataset. As a result of
such replicated analysis we get, for each gene, several estimates of statistical
parameters: statistics, p-values or confidence intervals. Being aware that most
statistical methods were developed to test for a single hypothesis, researchers
will usually correct p-values for multiple testing before choosing a cut-off that
will indicate the rejection of the null hypotheses, whichever it is. Once chosen
the genes with alternative pattern (meaning different form the one stated in
the null hypothesis) the next step is to biologically interpret such departure
from hypothesis. Different repositories of functionally relevant biological in-
formation such as Gene Ontology [1], KEGG [2] or Interpro [3] are available
and can be used for the functional annotation of genome-scale experiments.
Thus the functional properties of the selected genes can be analysed.

The trouble of this approach is that, by discarding genes with p-values
above the cut-off, we loose most of our information. Not only we loose the
measurements taken over the genes but also the functional annotation that
could be linked to them from repositories, making it difficult the biological
interpretation of results.

2 Blocks of functional genes

Aiming to prevent such waste of information, some authors have recently
proposed to directly analyse the behaviour of blocks of functionally related
genes in a whole-genome context. The Gene Set Enrichment Analysis (GSEA)
[4,5], the FatiScan [6,7] or the Global Test [8,9] constitute examples of this type
of approach inspired from systems biology. This three methodologies address
the issue of whether the general expression pattern of a group of genes, for
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example a GO term or a KEGG pathway, changes across biological conditions.
Here we will discus just some particular aspects of these methods but a more
general view of this and similar methods can be found in Dopazo’s revision of
2006 [10].

The Global Test uses generalised linear models to study the relationship
between the expression of the genes of the block of interest and a characteristic
associated to each biological sample. Such characteristic may be a categorical
condition, like the class of the microarray in the context of differential gene
expression, or a continuous variable such as a level of a metabolite. In this
approach we can see a change in the philosophy of the analysis. The unit of
interest is not any more a single gene but a block of genes with a common
biological meaning. This new way of looking at the data provides, among
others, obvious advantages for the biological interpretation of results and for
the p-value adjustment. We just need to correct by the number of blocks,
usually smaller than the number of genes.

3 The overall approach

The block of genes is also the unit of interest of the GSEA and the FatiScan.
These two methods are similar to the Global Test in that they are also used
to discover groups of genes which overall expression pattern changes across
biological conditions. Nevertheless, GSEA and FatiScan consider all genes in
the data when analysing each of the blocks. They compare the pattern of
the genes of one block with the general pattern of the genes in the whole
dataset. GSEA is particularly designed for the two class comparison context
while FatiScan may be applied in a wider range of studies.

The rationale underlying both methodologies is that, if a property of genes
can be described using a continuous index, then the statistical distribution of
such index within a functional block of genes can be compared to the general
distribution of the index across all genes in the data. We can therefore asses
whether the property described by the index depends on the characteristic
that defines the block of genes

As said before GSEA is developed for the two class comparison. In this
methodology, a signal-to-noise ratio comparing mean expression across classes
is computed for each gene in the dataset. This statistic can be seen as a con-
tinuous index that ranks the genes according to their differential expression,
from those more expressed in one of the biological conditions to those more
expressed the second condition, passing through those genes non differentially
expressed. Then, given a block of genes, for instance a functional class that we
may be interested in, we can compare the distribution of the signal-to-noise
ratio of the genes in the block to the distribution of the same statistic in the
remaining genes. If the values of the signal-to-noise ratio are, for instance,
systematically higher in the genes of the block compared to the genes in the
whole dataset, we will conclude that, as a block, the genes of the functional
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class of interest are overexpressed in one of the biological conditions. GSEA
uses a modification of the Kolmogorov-Smirnov test to asses differences be-
tween the signal-to-noise ratio in the class of interest and in the rest of the
genes. Significance of the modified Kolmogorov-Smirnov statistic is computed
in GSEA using permutations of the expression data. The original expres-
sion data is permuted several times, the signal-to-noise ratios are calculated
over each permuted expression dataset and the modified Kolmogorov-Smirnov
statistic is computed over each new distribution of the signal-to-noise ratio.
Thus GSEA can estimate the random variability of the Kolmogorov-Smirnov
statistic and test its significance in the original data.

4 Detaching concepts and algorithms

FatiScan follows the same analytical philosophy than GSEA but with a more
general and flexible approach. FatiScan implements a segmentation test which
checks for asymmetrical distributions of biological labels associated to genes
ranked by any index. The main difference is that FatiScan does not imple-
ment a permutation test to asses such asymmetry. Therefore, the algorithm
that computes the index and the algorithm that analyses the distribution of
the index are completely separated so the calculations can be done in two
different steps. This means that FatiScan can be used to study the relation-
ship between biological labels associated to genes and any type of experiment
whose outcome is a sorted list of genes or a variable that can be used to rank
genes according to some characteristic of interest. Block of genes sorted by
differential expression between two experimental conditions can be studied as
it would be done using GSEA. But with FatiScan we can also consider many
other gene properties or characteristics.

We can easily explore the correlation between gene expression and a clin-
ical continuous variable such as the level of a metabolite. First, for each gene
we will compute the correlation between its expression measurements and the
levels of the metabolite. Thus we can range the genes from those which ex-
pression is more positively correlated to the levels of the metabolite to those
inversely correlated, passing by genes which expression does not correlate
with the clinical variable. In a second step, FatiScan explores the distribution
of such correlation measurements, testing whether the distribution of corre-
lations within a block of genes is different from the overall distribution of
correlation in the dataset.

We can fit a Cox proportional hazard model to each gene in our data in
order to study the relationship between gene expression and survival times.
The estimates of the slope coefficients may be used as an index that ranks
genes from those which increased expression is associated with long time sur-
vival to those which increased expression is associated to an early death. After
computing this rank-index, FatiScan will find those blocks of genes for which
the distribution of the slopes differs from the global distribution of the slopes.
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The complete separation of the two steps in FatiScan analysis is the key
point which provides its flexibility to the method. Such flexibility makes pos-
sible to handle many different sources of information, not only microarray
gene expression data. Any lists of genes ranked by any other experimental
or theoretical criteria can be studied. Genes can be for example arranged by
physico-chemical properties, mutability, structural parameters and so on. In
order to understand whether there is some biological feature, characterised by
the blocks of genes, which is related to the experimental parameter studied.

5 Coda

The three methodologies here mentioned illustrate two of the main new con-
ceptual trends in the analysis of functional genomic data.

The first one is the change of the descriptive unit used to address biological
studies, shifting from gene to functional class. Gene still remains the unit of
measured information, as what we record at the end is gene expression. But the
conceptual entity over which biological interpretation is done, is the functional
class of genes. New analytical strategies, like those above mentioned, should
consider this fact in order to use the available information in the most efficient
an meaningful way

The second one is probably more subtle but not less important. Usual
genomic studies follow the classical statistical approach in which one or sev-
eral hypotheses are stated, estimate statistics and p-values are computed from
data and finally, hypotheses are accepted or rejected depending on such es-
timated values. The analytical approach explicit in FatiScan an implicit in
GSEA shows how estimated values provided by one first statistical analysis
are not directly interpreted in terms of acceptance or rejection of hypotheses.
Instead they are treated as variables quantifying some characteristic of the
genes under study. This new variables may then be analysed using statisti-
cal methodologies. Thus, statistical results of one step of the analysis become
themselves a new dataset which needs to be explored in a second analytical
step. As we see, modular implementations of complex data analysis strategies
like FatiScan, seem to be both, conceptually useful for the analysis of biolog-
ical data and computationally advantageous, calling for the development of
the theoretical framework within which combinations of statistical methods
can be properly done.
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Appendix B

Multidimensional Gene Set
Paper Supplementary
materials.

In this appendix you can find the supplementary materials from Mon-
taner and Dopazo 2010.
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Multi Dimensional Gene Set Analysis
David Montaner and Joaquín Dopazo.

Supplementary material

A simulation study of the bias in p­value estimates 
for the interaction term of the bivariate logistic model.

Montaner et all. (2009) collected microarray data for 3034 human samples measured under the most 
diverse biological conditions. They combined all information into a huge data matrix of gene 
expressions and used it to estimate internal correlation of Gene Ontology Biological Process terms.

We use this same data set to simulate microarray case­control experiments where differentially 
expressed genes do not exist but the real biological correlation structure between genes is preserved. 
We applied our Multi Dimensional Gene Set Analysis to these simulated data sets in order to 
estimate false positive rates for the interaction term and their relationship with the internal 
correlation of the tested GO term.

500 data sets where randomly sampled (with no replacement) from the 3034 available microarrays. 
Each of this 500 datasets was constituted by:

 10 arrays randomly labeled as cases within the condition A
 10 different arrays randomly labeled as controls within the condition A
 10 different arrays randomly labeled as cases within the condition B
 10 different arrays randomly labeled as controls within the condition B

Two t­test statistics where computed for each data set, one comparing cases to controls within 
condition A and the second one comparing cases to controls within condition B. Hence, we 
simulated 500 datasets of  bidimensional ranking statistics.

As no consistent biological differences are expected in the simulated data sets, no gene is expected 
to be differentially expressed and no gene set is expected to be enriched in any of the comparisons. 
However, as the data come form real biological samples, the true correlation structure is kept in all 
500 datasets and hence should be dragged to the computed t­statistics.

Real GO Biological Process annotation of the genes in the data set was collected form Ensembl. and 
filtered by size (as represented within the 10866 transcripts available in the data) 1870 Biological 
Process of sizes between 10 and 500 where kept for this study. Internal correlation of each GO 
Biological Process term was estimated by the median correlation  between all pairs of genes within 
the GO term.

All 1870 GO terms where tested over the 500 simulated ranking statistics using our bivariate logistic 
model. Then, for each GO term p­values of the interaction where summarized using the median 
values across the 500 simulations. Therefore we obtained a median p­value estimate for each 
Biological Process.
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Median p­value of the interaction term is plotted against median internal correlation for each of the 
1870 GO terms in the following graph.

It can be appreciated in the graph first, the already described bias of p­values being smaller than it 
would be expected in a random experiment with no enriched Gene Sets. Second, and not so much 
expected, that the bias in p­values decreases as the internal correlation of the GO terms increases. 
This is just the opposite pattern described in Goeman (2007) and is most probably due to the fact 
that in general the interaction term is a correction of the estimated main effects. In general higher p­
values in the interaction term correspond to lower p­values of the main effects an those will be 
associated to higher internal correlation of the GO term, as described in Goeman (2007).
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Appendix C

Multidimensional Gene Set R
package manual.

In this appendix you can find the help pages from the R package imple-
menting the algorithms in Montaner and Dopazo 2010.
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Multi-Dimensional Gene Set Analysis

David Montaner

February 9, 2010

Lets first load the library and the data

> library(mdgsa)

> data(breast)

Now we have a couple of objects in our session:

> ls()

[1] "annot" "ranking"

For each gene, the ranking statistics according to prognosis and differential
expression

> head(ranking)

dif.exp prognosis

MKI67 -11.545 1.242

CENPE -11.451 1.036

COL10A1 -11.370 1.055

CKS2 -11.303 1.174

RACGAP1 -11.229 1.651

CD97 -10.542 1.095

and the Gene Ontology annotation of those genes for the Biological Process

> head(annot)

gene GO

1 LIG4 GO:0000726

2 MLH1 GO:0000726

3 MRE11A GO:0000726

4 NHEJ1 GO:0000726

5 PRKDC GO:0000726

6 UBE2N GO:0000726

Just 13 Gen Sets (GOs) are included in this example.

> length(unique(annot[, 2]))

[1] 13

1
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To run a Multi-Dimensional Gene Set Analysis for this data we use the function
mdGsa.

> res <- mdGsa(ranking, annot)

And generally we want to standardize the results using standardizeMdGsa.

> res <- standardizeMdGsa(res, rankstat = ranking)

We get a data.frame with the following columns:

> colnames(res)

[1] "size" "conv" "error" "LOR.dif.exp"

[5] "LOR.prognosis" "LOR.I" "sd.dif.exp" "sd.prognosis"

[9] "sd.I" "z.dif.exp" "z.prognosis" "z.I"

[13] "p.dif.exp" "p.prognosis" "p.I" "adj.dif.exp"

[17] "adj.prognosis" "adj.I"

and a row for each of the Gene Sets tested.

> round(res[, c("LOR.dif.exp", "LOR.prognosis", "LOR.I", "adj.dif.exp",

+ "adj.prognosis", "adj.I")], 3)

LOR.dif.exp LOR.prognosis LOR.I adj.dif.exp adj.prognosis adj.I

GO:0000726 -0.348 0.110 -0.097 1.000 1.000 0.997

GO:0003015 0.089 0.096 0.025 1.000 0.991 0.997

GO:0006414 0.452 -1.120 -0.435 0.000 0.000 0.019

GO:0009888 0.162 0.005 0.046 1.000 1.000 0.997

GO:0015698 -0.097 0.116 -0.028 1.000 0.991 0.997

GO:0016525 0.129 0.129 0.038 1.000 0.991 0.997

GO:0042110 0.029 -0.383 0.145 0.618 0.001 0.606

GO:0043408 0.049 0.051 0.012 1.000 1.000 0.997

GO:0046330 0.155 0.000 0.041 1.000 1.000 0.997

GO:0048729 0.121 -0.005 0.035 1.000 1.000 0.997

GO:0050821 -0.003 -0.157 0.001 1.000 0.991 0.997

GO:0051301 -0.385 -0.003 -0.382 0.000 1.000 0.000

GO:0060047 0.089 0.096 0.025 1.000 0.991 0.997

The function classifyMdGsaPattern help us to classify the pattern of each Gene
Set in the bidimensional space of differential expression and prognosis.

> pat <- classifyMdGsaPattern(res, cutoff = 0.01)

> pat

GO:0000726 GO:0003015 GO:0006414 GO:0009888 GO:0015698 GO:0016525 GO:0042110

"NS" "NS" "q4f" "NS" "NS" "NS" "yl"

GO:0043408 GO:0046330 GO:0048729 GO:0050821 GO:0051301 GO:0060047

"NS" "NS" "NS" "NS" "q2i" "NS"

So we get that:

> cbind(round(res[, c("LOR.dif.exp", "LOR.prognosis", "LOR.I",

+ "adj.dif.exp", "adj.prognosis", "adj.I")], 3), pat)

2
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LOR.dif.exp LOR.prognosis LOR.I adj.dif.exp adj.prognosis adj.I pat

GO:0000726 -0.348 0.110 -0.097 1.000 1.000 0.997 NS

GO:0003015 0.089 0.096 0.025 1.000 0.991 0.997 NS

GO:0006414 0.452 -1.120 -0.435 0.000 0.000 0.019 q4f

GO:0009888 0.162 0.005 0.046 1.000 1.000 0.997 NS

GO:0015698 -0.097 0.116 -0.028 1.000 0.991 0.997 NS

GO:0016525 0.129 0.129 0.038 1.000 0.991 0.997 NS

GO:0042110 0.029 -0.383 0.145 0.618 0.001 0.606 yl

GO:0043408 0.049 0.051 0.012 1.000 1.000 0.997 NS

GO:0046330 0.155 0.000 0.041 1.000 1.000 0.997 NS

GO:0048729 0.121 -0.005 0.035 1.000 1.000 0.997 NS

GO:0050821 -0.003 -0.157 0.001 1.000 0.991 0.997 NS

GO:0051301 -0.385 -0.003 -0.382 0.000 1.000 0.000 q2i

GO:0060047 0.089 0.096 0.025 1.000 0.991 0.997 NS

and hence, ”GO:0006414” is enriched in both, differential expression and prog-
nosis in an independent way (q4f).

We can get a graphical display using the function plotMdGsa.

> plotMdGsa("GO:0006414", ranking, annot)
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The GO term ”GO:0051301” shows a q2i pattern meaning that it is enriched
in both differential expression and prognosis but strongly than the univariate
analyses will show.

> plotMdGsa("GO:0051301", ranking, annot)
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The GO term ”GO:0042110” is just enriched in the prognosis dimension (yl).

> plotMdGsa("GO:0042110", ranking, annot)
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And ”GO:0043408” is not enriched in any of the effects (NS).

> plotMdGsa("GO:0043408", ranking, annot)
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Resumen en Castellano

Objetivos

En cualquier contexto de análisis de datos experimentales hay un primer
paso en el que los datos numéricos son procesados en sentido estadístico.
En esta etapa, la información se resume en unos pocos índices o valores
numéricos que pueden ser luego fácilmente interpretados por los investi-
gadores. Generalmente, este segundo paso de interpretación de resultados
y extracción de conclusiones no es técnicamente complicado ni requiere
de herramientas específicas para ser llevado a cabo. La interpretación de
los estadísticos, p-valores o demás índices que resultan del análisis esta-
dístico se realiza de forma casi intuitiva y la extracción de conclusiones
se realiza en función de lo que el investigador sabe (de memoria) acerca
del proceso estudiado. En los contextos de análisis de datos genómicos,
el primer paso del análisis estadístico no cambia, aunque el volumen de
datos suele ser considerablemente mayor que en un estudio biológico o ge-
nético convencional. Esto complica su manejo en términos informáticos,
pero sin embargo, conceptualmente, el análisis de los datos genómicos
experimentales es igual al de los datos genéticos1.

Como contrapartida, la segunda etapa de interpretación de los re-
sultados estadísticos cambia radicalmente en el contexto del análisis de
datos genómicos. En este nuevo paradigma no hay uno o unos pocos valo-

1 Usamos aquí el término genético para referirnos a los estudios que analizan uno
o unos pocos genes y el término genómico para los estudios que involucran medidas
de todos los genes del genoma de la especie bajo observación.
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res numéricos de resumen de la información sino, generalmente, uno para
cada gen, lo que significa miles de estadísticos, p-valores o simplemente
índices numéricos que deben ser interpretados a la hora de extraer con-
clusiones del estudio. En este nuevo escenario la intuición del investigador
no vale, y es frecuente la extracción de conclusiones sesgadas cuando la
interpretación de los resultados se se hace simplemente en función de lo
que el investigador sabe. Si se quiere evitar este tipo de sesgos, la in-
terpretación de los resultados de experimentos genómicos debe hacerse
de forma sistemática, utilizando herramientas computacionales. Además
de esto, ningún investigador puede manejar de memoria la gran canti-
dad de información que se tiene en la actualidad sobre el genoma y que
está almacenada en cientos de bases de datos dispersas en la web. Son
necesarias herramientas bioinformáticas para recopilar esta información
que representa el conocimiento biológico establecido y que debe ser su-
perpuesta a los resultados experimentales para su correcta interpretación
así como para la extracción de conclusiones.

En la jerga del análisis de datos genómicos se identifica como méto-
dos de análisis funcional a todos aquellos algoritmos encaminados a la
combinación de la información puramente experimental, y por lo tanto
nueva para el investigador, con la información ya disponible y validada
que existe en las bases de datos biológicos, es decir, el conocimiento ya
establecido por la comunidad científica.

Las ventajas de combinar la información disponible en bases de da-
tos con la información experimental son claras: por una parte el análisis
funcional permite incrementar la cantidad de información incluida en
la discusión del experimento. No sólo la información nueva se tiene en
cuenta sino que se pone en el contexto de lo ya conocido sobre el proce-
so biológico estudiado. Además, el análisis funcional facilita el resumen
sistemático de la información recogida. Las miles de medidas registradas
para los genes se agrupan en bloques de funcionalidad biológica recono-
cida a priori. Este resumen facilita directamente la interpretación de los
resultados ya que, disertar sobre funciones o procesos biológicos es, en sí
mismo, más informativo que discutir sobre genes aislados. Por último, el
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análisis funcional combina la evidencia experimental de los genes ano-
tados conjuntamente en las bases de datos, consiguiendo así un efecto
estadístico similar al que resultaría de incrementar el tamaño muestral
del experimento.

En los últimos años se han realizado esfuerzos considerables en el
campo de la bioinformática con el objetivo de establecer metodologías
apropiadas de análisis funcional. A pesar de ello, la rápida evolución de
las tecnologías de toma de medidas genómicas hace que, por el momento,
el análisis funcional sea un campo abierto de la investigación y el desarro-
llo bioinformático. En esta tesis proponemos y desarrollamos algoritmos
de análisis funcional que abordan problemas no tratados con anteriori-
dad, pero cuya resolución es indispensable para el correcto análisis de
los experimentos genómicos más avanzados. Entre otros, proponemos so-
luciones para el análisis combinado de varias características genómicas.
También desarrollamos la posibilidad de incluir pesos asociados a los ge-
nes para matizar la relevancia de cada uno de ellos en el propio análisis
funcional, haciéndolo más adecuado al contexto biológico estudiado.

La mayor parte de los algoritmos de análisis funcional se desarrolla-
ron en el contexto del análisis de expresión diferencial. Posteriormente
fueron surgiendo modificaciones metodológicas que permitían aplicarlos
en estudios de variabilidad genética, basadas por ejemplo en SNPs, datos
de alteraciones en el número de copias de los genes, etcétera. Uno de los
principales desarrollos de esta tesis es el de proponer una metodología
general que funciona independientemente del tipo de estudio genético al
que se aplica; sin importar incluso del tipo de test estadístico utilizado en
el estudio de los datos experimentales a nivel de gen. Nuestro algoritmo
puede por ejemplo aplicarse en cualquier tipo de contexto de expresión
de genes, no sólo en el caso de expresión diferencial sino también en
contextos de regresión, análisis de supervivencia, series temporales . . .
Pero además, es directamente aplicable en datos de variación genómica
medidos en SNPs, alteraciones del número de copias, metilación y casi
en cualquier otro contexto de estudios genómicos incluyendo por ejemplo
estudios evolutivos. Esta flexibilidad del método hace que sea aplicable
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en casos en los que otras metodologías de análisis funcional no pueden
ser utilizadas.

Sin embargo la mayor utilidad de nuestra metodología no viene dada
por el hecho de poder analizar cualquier tipo de experimento genómico
sino porque nos permite además analizar varios tipos de datos genómicos
a la vez. Nos permite por ejemplo analizar funcionalmente un conjunto de
datos en el que se han tomado medidas de expresión y de alteraciones en el
número de copias de los genes. Nos permite combinar en un único análisis
funcional por ejemplo datos de metilación y de variantes o SNPs. De esta
forma, nuestra nueva metodología permite encontrar bloques funcionales
o procesos biológicos que se activan o regulan por la interacción de varias
características genómicas. Podemos por ejemplo realizar comparativas
caso control y detectar rutas metabólicas alteradas como consecuencia
de cambios de expresión y alteraciones genómicas de forma combinada.
Rutas que de otra forma pasarían desapercibidas en el análisis funcional
convencional de cada una de las características genómicas por separado.

Metodología

La metodología propuesta para la consecución de los objetivos arriba
mencionados fue desarrollada en detalle en los tres artículos que se com-
pendian en esta tesis: Montaner et al. 2006, Montaner et al. 2009 y
Montaner and Dopazo 2010. La idea principal es la de utilizar métodos
de regresión logística para realizar los análisis funcionales. Estos modelos
tienen gran flexibilidad y pueden ser aplicados en contextos experimen-
tales muy diversos, permitiendo adaptar el análisis funcional a todo tipo
de estudios genómicos.

El análisis de casi cualquier conjunto de datos genómicos devuelve co-
mo resultado un índice numérico asociado a cada gen. Este índice puede
ser, por ejemplo, un p-valor que evalúa la expresión diferencial de cada
gen, un estadístico que mide la asociación de la variabilidad del gen con
cierto fenotipo, o una tasa evolutiva asociada a cada uno de los genes
estudiados. Este índice numérico es en sí un indicador o medida de la
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característica biológica estudiada. En el caso paradigmático de la expre-
sión diferencial, el p-valor nos indica cuanto aumenta la expresión del
gen en casos relativa a controles, es decir, cuanto aumenta la expresión
de los genes como respuesta, por ejemplo, a un determinado tratamiento.
Indirectamente entonces, el p-valor mide el grado de activación o sobre
expresión que el tratamiento produce en cada uno de los genes. Hasta
este punto en el que se deriva el índice asociado a cada gen, toda la in-
formación que se ha utilizado en el estudio es puramente experimental.
Es información nueva en el sentido de que probablemente nadie antes
ha observado la expresión, por ejemplo, de los genes en ese mismo es-
cenario. En caso contrario, seguramente, no sería necesario plantear la
investigación.

El siguiente paso en el proceso es el del análisis funcional. Este co-
mienza seleccionando una base de datos que aporte conocimientos rele-
vantes para el investigador y recuperando la información asociada a los
genes involucrados en el estudio. Generalmente se usa el término ano-
tación para referirse a esta información. Hay cientos de bases de datos
disponibles vía web en múltiples paginas repartidas por todo el mundo.
La del consorcio Gene Ontology, por ejemplo, es una de las más utiliza-
das para extraer la información o anotación de los procesos biológicos en
los que están involucrados los genes. La base de datos KEGG describe
las rutas de señalización y procesos metabólicos en los que los distintos
genes participan. En general la información extraída de estas bases de
datos se estructura, de forma simplificada, como etiquetas asociadas a
los genes. Un gen por ejemplo estará asociado con una determinada ruta
metabólica o con un proceso biológico concreto si se sabe por estudios
previos que el gen toma parte en el desarrollo de dicho metabolismo o
proceso. Es precisamente debido a esta estructura de datos formada por
etiquetas asociadas a los genes que, en el ámbito del análisis de datos
genómicos, nos referimos a esta información recuperada de las bases de
datos como anotación de los genes. Pero más allá de la nomenclatura, lo
que nos interesa resaltar en lo referente a la información recuperada de
las bases de datos es su carácter dicotómico o binario. Para cada proceso
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biológico descrito en las bases de datos sabemos si un gen está o no in-
volucrado en él. Para cada ruta metabólica podemos conocer qué genes
realizan el metabolismo correspondiente. Volviendo a la terminología de
los análisis genómicos, dada la etiqueta de un proceso biológico podemos
decir si un gen está o no anotado con ella. En sentido estadístico esta
información dicotómica de la anotación o no anotación de los genes ba-
jo cierta etiqueta se recoge en una variable binaria: un valor numérico
que puede ser uno o cero y que está asociado con cada gen del genoma
estudiado.

Así, después de recuperar la información disponible en las bases de
datos y combinarla con el índice numérico extraído de los datos experi-
mentales obtenemos dos valores asociados con cada gen, uno continuo y
otro binario. El siguiente paso del análisis funcional es el de explorar la
relación global que existe entre estas dos variables. Asociaciones o corre-
laciones entre las dos variables nos indicaran la existencia de una relación
entre la información ya conocida y registrada en las bases de datos, y la
información nueva, resumida en el índice resultante del análisis de los
genes. En el caso de la expresión diferencial, por ejemplo, valores bajos
del p-valor indican una mayor diferencia de expresión o, como se ha des-
crito más arriba, un mayor efecto del tratamiento sobre esos genes. Al
incorporar la información de un determinado proceso biológico tendremos
una segunda variable binaria que tomara valor uno para los genes invo-
lucrados en dicho proceso. Si al relacionar las dos variables observamos
que los genes con valor uno en la variable de anotación tienen p-valores
relativamente bajos, inferiremos que los genes del bloque tienden a es-
tar más diferencial mente expresados entre casos y controles. Podremos
entonces decir que el tratamiento no sólo provoca un incremento de la
expresión de algunos genes sino que además esos genes constituyen las
piezas de una determinada maquinaria biológica. Concluiremos entonces
que el tratamiento debe activar el proceso biológico o la ruta metabólica
correspondiente. Con esto, la interpretación de los resultados de nuestro
experimento será mucho más clara puesto que ya no hablaremos de la
activación de varios genes con consecuencias desconocidas sino que ha-
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blaremos de la activación de un proceso biológico que está bien descrito
incluso ya antes de plantear nuestro experimento.

Los métodos de regresión logística se desarrollaron precisamente para
estudiar la dependencia entre una variable binaria y otra variable con-
tinua. Por ello pueden ser directamente utilizados para llevar a cabo un
análisis análisis funcional clásico. Pero además de eso, los modelos de
regresión logística pueden incorporar no sólo una sino múltiples variables
continuas y estudiar la configuración de sus valores con respecto de la
variable discreta. Esto permite incluir en el análisis funcional no sólo los
valores numéricos resumen de una única característica genómica medida
experimentalmente, sino de varias. Podemos plantear entonces un experi-
mento en el que además de las medias de expresión de los genes se tome,
por ejemplo, datos de su metilación. Las diferencias de expresión se resu-
mirán en un p-valor o índice y las diferencias en la metilación de los genes
se resumirán en un segundo índice. La regresión logística nos permitirá
entonces ver si la anotación funcional de los genes está relacionada con
la expresión diferencial, con la metilación, o con ambas. Concluiremos
entonces que, cambios de expresión y metilación combinados son los que
activan o desactivan la maquinaria biológica correspondiente.

Por otra parte los métodos de regresión permiten la incorporación
directa de pesos que representan la importancia de los genes en cada
análisis. En este trabajo mostramos como se pueden utilizar dichos pesos
para modelizar información adicional derivada de la estructura interna de
cada uno de los bloques funcionales o anotaciones. Introducimos así un
nuevo concepto de análisis funcional en el que la estructura interna de
los bloques no es homogénea sino difusa y mostramos como este tipo
de modelización puede reflejar de forma más adecuada la la biología
subyacente.
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Conclusiones

Después del trabajo realizado podemos concluir, de forma muy resumida
que:

• Los modelos de regresión logística son una herramienta apropiada
para realizar el análisis funcional de datos genómicos.

• Es viable realizar el análisis funcional no sólo de una característica
genómica experimental sino de varias en conjunto.

• Además, este tipo de análisis nos permite descubrir características
biológicas relevantes que pasarían inadvertidas en los análisis fun-
cionales tradicionales de cada una de las dimensiones genómicas
por separado.

• La incorporación de pesos asociados a los genes en el análisis fun-
cional puede proporcionar un mejor modelado de los procesos bio-
lógicos estudiados.

• Parte de la información de la estructura interna de los bloques
funcionales descritos en las bases de datos puede incorporarse de
forma efectiva en los pasos del análisis funcional, permitiendo que
el modelo de análisis refleje mejor la realidad biológica estudiada.
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