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de Alberto Aparici, que ya estaba por aqúı. También se han ganado su
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1. INTRODUCTION (INTRODUCCIÓN).

Nowadays Quantum Chromodynamics (QCD) is without any doubt the ac-
cepted quantum field theory used to describe the behavior of the strong in-
teractions from the point of view of their fundamental constituents, quarks
and gluons, in the entire range of energies. As is well known, the running
of the strong coupling constant is such that, in the ultraviolet regime (high
energies), the theory exhibits the property of asymptotic freedom [1], al-
lowing for a perturbative treatment of the physics at this scale of energies.
However, in the infrared regime (low energies), the strong interaction be-
comes truly strong, thus invalidating any attempt to employ perturbation
theory. For this reason one is forced to appeal to nonperturbative methods.

The most widely used framework for studying in the continuum various
dynamical questions that lie beyond perturbation theory are the Schwinger-
Dyson equations (SDEs) [2, 3]. This infinite system of coupled non-linear
integral equations for all Green’s functions of the theory is inherently non-
perturbative, and captures the full content of the quantum equations of
motion. Even though these equations are derived by an expansion about the
free-field vacuum, they finally make no reference to it, or to perturbation
theory, and can be used to address problems related to chiral symmetry
breaking, dynamical mass generation, formation of bound states, and other
non-perturbative effects [4, 5].

Specifically, the generation of mass gaps in QCD is one of the most
fundamental problems in particle physics. In part the difficulty lies in the
fact that the symmetries governing the QCD Lagrangian prohibit the ap-
pearance of mass terms at tree-level for all fundamental fields and, provided
that these symmetries are not violated through the procedure of regulariza-
tion, this masslessness persists to all orders in perturbation theory. Thus,
mass generation in QCD becomes an inherently non perturbative problem,
whose tackling requires the use of rather sophisticated calculational tools
and approximation schemes.

Whereas the generation of quark masses is intimately connected with
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the breaking of chiral symmetry [6], Cornwall argued long ago [7] that an
effective gluon mass can be generated dynamically, while preserving the
SU(3)C invariance of QCD, in close analogy to what happens in QED2

(Schwinger model), where the photon acquires a mass without violating
the Abelian gauge symmetry (see Chapter 4). This is possible thanks to
the famous Schwinger mechanism, which exploits the fact that the gauge
invariance of a vector field does not necessarily imply zero mass for the
associated particle, if the current vector coupling is sufficiently strong [8].
Schwinger’s fundamental observation was that (if for some reason) the vac-
uum polarization tensor Πµν(q) acquires a pole at zero momentum transfer,
then the vector field becomes massive, even if the gauge symmetry forbids
a mass at the level of the fundamental Lagrangian [9].

Perhaps the most salient feature of the Schwinger mechanism is that the
appearance of the required massless pole may happen for purely dynamical
reasons, and, in particular, without the need to introduce fundamental
scalar fields in the Lagrangian. Therefore, in the seventies, the Schwinger
mechanism has been extensively studied, as an appealing alternative to the
Higgs mechanism [10–14], employed in the electroweak sector.

The general philosophy adopted when applying the Schwinger mecha-
nism to pure Yang-Mills theories (without matter fields), such as quarkless
QCD, is the following [15]. One assumes that, in a strongly-coupled gauge
theory, longitudinally coupled, zero-mass bound-state excitations are dy-
namically produced. To be sure, the demonstration of the existence of a
bound-state, and in particular a zero-mass bound-state, in realistic field
theories is a difficult dynamical problem usually studied by means of in-
tegral equations, known as Bethe-Salpeter (BS) equations (see, e.g., [16]).
Thus, it is clear that a vital ingredient for this scenario is strong cou-
pling, which can only come from the infrared instabilities of a non-Abelian
gauge theories. The aforementioned excitations are like dynamical Nambu-
Goldstone bosons [17–21], in the sense that they are massless, composite,
and longitudinally coupled; but at the same time, they differ from Nambu-
Goldstone bosons as far as their origin is concerned: they do not originate
from the spontaneous breaking of any global symmetry. The main role of
these excitations is to trigger the Schwinger mechanism, i.e., to provide the
required pole in the gluon self-energy Πµν(q). In addition they preserve
the form of the Ward identities (WIs) and the Slavnov-Taylor identities
(STIs) of the theory in the presence of a mass (e.g., [22]), thus furnishing
a gauge-invariant gluon mass generation mechanism.



3

To understand why such poles must be introduced in the massive theory,
we turn to the following simplified situation. Consider then the tree-level
value for the conventional three-gluon vertex (see Appendix A),

Γαµν(q, r, p) = (r − p)αgµν + (p− q)µgνα + (q − r)νgαµ. (1.1)

It is elementary to verify that this vertex satisfy the following WI

qαΓαµν(q, r, p) = d−1(p)Pµν(p) − d−1(r)Pµν(r), (1.2)

where the rhs is the difference of two inverse tree-level propagators in the
Landau gauge, since the quantity d−1(q) = q2 is the inverse of the tree-level
form factor appearing in the gluon propagator, whereas

Pµν(q) = gµν − qµqν
q2

(1.3)

is the usual transverse projector. Supposing now that the gluon propagator
develops a mass m2(q), how must one modify the three-gluon vertex in
order for the WI to continue been valid, which is tantamount to saying
that the gauge invariance remains intact? Thus, replace the d−1(q) by
d−1

m (q) = q2 − m2(q) and substitute it in the rhs of Eq. (1.2). In order
to maintain the validity of the WI one must simultaneously replace the
three-gluon vertex on the lhs by the vertex

Γ′
αµν(q, r, p) = Γαµν(q, r, p) + Vαµν(q, r, p), (1.4)

where the new part V must be such that it satisfies the following WI

qαVαµν(q, r, p) = m2(r)Pµν(r) −m2(p)Pµν(p). (1.5)

Evidently, a solution of Eq. (1.5) is given by

Vαµν(q, r, p) =
qα
q2

[m2(r)Pµν(r) −m2(p)Pµν(p)]. (1.6)

So, the new vertex V has, as mentioned above, terms with longitudinally-
coupled massless poles.

From this simple example one learns that the composite excitations
must be incorporated at the level of the Green’s functions adding a new
kind of nonperturbative vertices, denoted generically by V and referred to
as “pole vertices”. They contain massless poles and satisfy very specific
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STIs, completely determined by the requirement of preserving the gauge
invariance of the theory in the presence of a mass.

At this point, the study of the gluon mass generation mechanism in pure
Yang-Mills theories may be tackled following two rather distinct procedures.
The difference between them lies in how the V vertices are employed in or-
der to extract information about the effective gluon mass. Specifically, in
the first procedure, one assumes from the beginning that the strong interac-
tion favors the dynamical formation of the necessary massless bound-states
required for the existence of the pole vertices. Then, these special vertices
are incorporated into the SDE of the gluon propagator and one operates
at this level to derive a mass equation, which describes the evolution of
the effective momentum-dependent gluon mass. Interestingly enough, this
can be accomplished without knowledge of the explicit closed form of the
nonperturbative vertices, relying only on their general features, most no-
tably their longitudinal nature and the STIs that they satisfy. Using this
procedure we will be able to obtain the all-order equation of the effective
gluon mass, Eq. (6.68), as well as the solutions of this equation in the
entire range of momenta [section 6.5 in chapter 6]. Thus, in this approach,
the pole vertices are used in an “effective” way, i.e., without appealing to
the dynamical origin of their fundamental components.

In the second procedure we take a closer look at the “microscopic” struc-
ture and composition of these vertices, as well as their actual dynamical
formation. To that end, we introduce two crucial nonperturbative ingredi-
ents, namely, the transition amplitude Fig. 7.9, which connects the massless
bound-state with a gluon, and certain effective vertices allowing the mix-
ing between the massless bound-state and gluons or ghosts Fig. 7.4. At
this level, one needs to demonstrate that none of these new ingredients is
zero, otherwise the entire construction collapses. This is accomplished by
proving the existence of the massless bound-states through a detailed BS
analysis. Indeed, a preliminary mumerical study of the BSE is reported
in section 5.5 of chapter 5, which confirms the existence of the aforemen-
tioned massless bound-states. Finally, once this is proved, in chapter 7, the
gluon mass will be expressed through a very simple formula, Eq. (7.30),
in terms of the transition amplitude, which in turn has a clear physical
interpretation in terms of bound-state exchanges.

We conclude this introduction by presenting a roadmap of the topics
discussed in the several chapters of this thesis.

Chapter 2. We present the recent results obtained in large-volume lattice sim-
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ulations for the gluon propagator and the ghost dressing function,
signaling that both are infrared finite. These lattice results and their
possible explanation in terms of an effective gluon mass, motivate the
detailed study of the phenomenon of dynamical (gluon) mass gener-
ation in the context of pure Yang-Mills theories.

Chapter 3. The exclusively nonperturbative nature of the mass generation mech-
anism forces us to employ for its description the formalism of the
SDEs. This complicated set of integral equations will be analyzed
throughout this thesis in the framework of the PT-BFM scheme, pro-
vided by the synthesis of the Pinch Technique (PT) [23, 24] and the
Background Field Method (BFM) [25]. Here we outline the basic
features and properties that make so advantageous the use of the
PT-BFM scheme when dealing with the SDE.

Chapter 4. In this chapter we formulate the general statement of the Schwinger
mechanism and we show how this mechanism generates a mass term
for gauge bosons, without interfering with the gauge-invariance of the
theory. Specifically, we will study briefly the Schwinger model and the
Jackiw-Johnson model, where the Schwinger mechanism is applied in
Abelian gauge theories.

Chapter 5. The aim of this chapter is two-fold. Provide a preliminary analysis
on how the Schwinger mechanism is realized in a non Abelian context
and show, through a detailed numerical study, that the dynamics of
pure Yang-Mills theories support indeed the formation of the afore-
mentioned massless bound-states.

Chapter 6. This chapter contains the general derivation of the full non-perturbative
equation describing the evolution of the dynamically generated gluon
mass in the Landau gauge. The mass equation is then scrutinized
in a detailed numerical analysis, revealing the existence of mono-
tonically decreasing solutions for the effective momentum-dependent
gluon mass.

Chapter 7. The objective of this final chapter is to realize a general description
of the mass generation mechanism in the language of bound-state
excitations. After a precise definition of the required ingredients, the
effective gluon mass is expressed by means of an exact and simple
mass formula. Then, in a decisive self-consistency check, we show
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that the above mass formula reproduces the mass equation obtained
in chapter 6, thus proving that both approaches are totally equivalent.

The thesis ends with some concluding remarks in Chapter 8 about the
problem of confinement and its possible relation with the gluonic mass
generation mechanism, and two appendices where the QCD Lagrangian
and the BFM are briefly discussed.
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1. Introducción.

Actualmente, la Cromodinámica cuántica (QCD, por supuesto las si-
glas no coinciden cuando se escribe en español) es sin lugar a duda la
teoŕıa cuántica de campos aceptada para describir el comportamiento de
las interacciones fuertes desde el punto de vista de sus constituyentes fun-
damentales, quarks y gluones, en todo el rango de enerǵıas. Como es bien
conocido, la dependencia de la constante de acoplamiento fuerte con la en-
erǵıa es tal que, en el régimen ultravioleta (altas enerǵıas), la teoŕıa exhibe
la propiedad de libertad asintótica [1], permitiendo un tratamiento pertur-
bativo de la f́ısica de las interacciones fuertes en esta escala de enerǵıas. Sin
embargo, en el régimen infrarrojo (bajas enerǵıas), la interacción fuerte se
hace “verdaderamente” fuerte invalidando, por tanto, el empleo de teoŕıa de
perturbaciones. Por este motivo, uno se ve forzado a recurrir a los métodos
no perturbativos.

El esquema de trabajo comúnmente usado para estudiar en el con-
tinuo varios problemas dinámicos que escapan a la teoŕıa de perturbaciones,
recibe el nombre de ecuaciones de Schwinger-Dyson [2,3]. Este sistema in-
finito de ecuaciones integrales acopladas no lineales para todas las funciones
de Green de la teoŕıa es inherentemente no perturbativo y captura el con-
tenido completo de las ecuaciones de movimiento cuánticas. A pesar de que
estas ecuaciones se derivan realizando una expansión alrededor de un vaćıo
libre de campos, finalmente no hacen referencia a dicho vaćıo, o a la teoŕıa
de perturbaciones, y pueden utilizarse para abordar problemas relaciona-
dos con la ruptura de simetŕıa quiral, la generación dinámica de masas, la
formación de estados ligados, y otros efectos no perturbativos [4, 5].

Espećıficamente, la generación de masas en QCD es uno de los prob-
lemas más fundamentales en f́ısica de part́ıculas. En parte, la dificultad
radica en el hecho de que las simetŕıas que gobiernan el lagrangiano de
QCD proh́ıben la aparición de términos de masas para todos los campos
fundamentales que aparecen en él y, dado que dichas simetŕıas no son vi-
oladas por ningún proceso de regularización, los campos continúan siendo
no masivos a todos los órdenes en teoŕıa de perturbaciones. Por tanto, la
generación de masas en QCD se manifiesta como un fenómeno puramente
no perturbativo, cuyo estudio requiere el uso de técnicas más sofisticadas.

Mientras la generación de masas de quarks esta ı́ntimamente conec-
tada con la ruptura de simetŕıa quiral [6], Cornwall argumentó [7] que se
puede generar dinámicamente una masa efectiva para el gluon al mismo
tiempo que se preserva la invariancia SU(3)C de QCD, análogamente a lo
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que ocurre en QED2 (modelo de Schwinger), donde el fotón adquiere una
masa sin violar la simetŕıa gauge Abeliana (ver Caṕıtulo 4). Esto es posi-
ble gracias al famoso mecanismo de Schwinger, el cual explota el hecho de
que la invariancia gauge de un campo vectorial no implica necesariamente
masa cero para el campo asociado, si la corriente vectorial es suficiente-
mente fuerte [8]. La observación fundamental de Schwinger fue que, si por
alguna razón, el tensor de polarización del vaćıo Πµν(q) adquiere un polo
cuando la transferencia de momento es cero, entonces el campo vectorial se
hace masivo, aun cuando la simetŕıa gauge proh́ıba una masa a nivel del
lagrangiano [9].

Quizás, la caracteŕıstica más sobresaliente del mecanismo de Schwinger
es que la aparición del polo requerido puede ocurrir debido a motivos pu-
ramente dinámicos y, en particular, sin la necesidad de introducir campos
escalares fundamentales en el lagrangiano. Debido a ello, el mecanismo
de Schwinger fue extensivamente estudiado en los setenta como una firme
alternativa al mecanismo de Higgs [10–14], empleado en el sector electro-
débil.

La filosof́ıa general adoptada cuando se aplica el mecanismo de Schwinger
al estudio de teoŕıas puras de Yang-Mills (sin campos de materia), como es
el caso de QCD sin quarks, se puede esbozar de la siguiente manera [15].
Uno asume que, en una teoŕıa gauge con una constante de acoplamiento
fuerte, es posible la producción dinámica de estados ligados excitados de
masa cero, que se acoplan longitudinalmente. La demostración de la exis-
tencia de un estado ligado en teoŕıas de campos realistas, y en particular
un estado ligado de masa cero, es un dif́ıcil problema dinámico que se estu-
dia a través de ecuaciones integrales conocidas como ecuaciones de Bethe-
Salpeter (BSEs) (consultar, por ejemplo, [16]). Aśı pues, uno de los ingre-
dientes vitales para que se realice el escenario anterior es el acoplamiento
fuerte, que sólamente puede aparecer como consecuencia de las inestabili-
dades infrarrojas de teoŕıas gauge no Abelianas. Las mencionadas excita-
ciones actúan como bosones de Nambu-Goldstone dinámicos [17–21], en el
sentido de que son no masivas, compuestas y se acoplan longitudinalmente.
Pero al mismo tiempo, difieren de los bosones de Nambu-Goldstone debido
a que su origen no es la ruptura espontánea de ninguna simetŕıa global.
El papel principal de estas excitaciones es el de activar el mecanismo de
Schwinger, es decir, proporcionar el polo requerido en la auto-enerǵıa del
gluon. Además, dichas excitaciones preservan la forma de las identidades
de Ward (WIs) y de las identidades de Slavnov-Taylor (STIs) de la teoŕıa
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en presencia de masas (ver, por ejemplo, [22]), porporcionando por tanto
un mecanismo de generación dinámica de masa gluónica invariante gauge.

Para comprender el motivo por el cual se deben introducir tales polos
en la teoŕıa masiva analicemos la siguiente situación simplificada. Consid-
eremos el vértice de tres gluones convencional (ver Apendice A), dado por
la expresión

Γαµν(q, r, p) = (r − p)αgµν + (p− q)µgνα + (q − r)νgαµ. (1.7)

Es elemental verificar que este vértice satisface la siguiente WI

qαΓαµν(q, r, p) = d−1(p)Pµν(p) − d−1(r)Pµν(r), (1.8)

donde la parte derecha de la identidad contiene la diferencia de dos propa-
gadores inversos a nivel árbol en el gauge de Landau, dado que la cantidad
d−1(q) = q2 es el inverso del factor de forma a nivel árbol del propagador
del gluon, mientras que

Pµν(q) = gµν − qµqν
q2

(1.9)

es el proyector transversal. Suponiendo ahora que el propagador del gluon
adquiere una masa efectiva m2(q), la pregunta que debemos responder seŕıa
cuál es la manera en la que debe modificarse el vértice de tres gluones
para que la WI continue siendo válida, lo que es equivalente a decir que la
invariancia gauge permanece intacta después de la generación de la masa
efectiva. Para contestar a esta pregunta reemplacemos la cantidad d−1(q) =
q2 por d−1(q) = q2 − m2(q) y substituyámosla en la parte derecha de la
identidad Eq. (1.8). Puede verse entonces que, para mantener la validez
de la WI, uno debe reemplazar simultáneamente el vértice de tres gluones
en el miembro izquierdo por el vértice

Γ′
αµν(q, r, p) = Γαµν(q, r, p) + Vαµν(q, r, p), (1.10)

donde la nueva pieza del vértice V debe ser tal que satisfaga la siguiente
WI

qαVαµν(q, r, p) = m2(r)Pµν(r) −m2(p)Pµν(p). (1.11)

Evidentemente, un solucion de la Eq. (1.11) viene dada por

Vαµν(q, r, p) =
qα
q2

[m2(r)Pµν(r) −m2(p)Pµν(p)]. (1.12)
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Aśı pues, el nuevo vértice V tiene, como mencionamos anteriormente, términos
con polos no masivos acoplados longitudinalmente.

De este simple ejemplo se aprende que las excitaciones compuestas
deben incorporarse al nivel de las funciones de Green añadiendo un nuevo
tipo de vértices no perturbativos, designados genéricamente por V y lla-
mados “vértices polo”. Estos vértices contienen los polos no masivos y
satisfacen unas STIs muy espećıficas, completamente determinadas por el
requerimiento de que la invariancia gauge de la teoŕıa se preserve intacta
en presencia de masas.

Llegados a este punto, el estudio del mecanismo de generación de la
masa gluónica en teoŕıas puras de Yang-Mills puede ser abordado siguiendo
dos procedimientos diferentes. La diferencia entre ellos radica en la manera
en la cual se emplean los vértices V para obtener información sobre la
masa efectiva del gluon. Espećıficamente, en el primer procedimiento, se
asume desde el principio que la interacción fuerte favorece la formación
dinámica de los estados ligados no masivos necesarios para la existencia de
los vértices polo. Asumida entonces su existecia, estos vértices especiales
se introducen en la SDE del propagador del gluon y se opera a este nivel
para derivar una ecuación de masa, la cual describirá la evolución de la
dependencia de la masa gluónica efectiva con la enerǵıa. Resulta entonces
interesante observar que este procedimiento puede llevarse a cabo sin la
necesidad de conocer la forma cerrada de los vértices no perturbativos. De
hecho, notablemente, sólamente es necesario tener en cuenta su naturaleza
longitudinal y las STIs que satisfacen. Usando este procedimiento seremos
capaces de derivar, a todos los órdenes, la ecuación de la masa gluónica
efectiva [Eq. (6.68)], aśı como de obtener las soluciones de esta ecuación
en el rango completo de enerǵıas [sección 6.5 en el caṕıtulo 6]. Por tanto,
en este enfoque, los vértices polo son usados de una manera “efectiva”, es
decir, sin apelar al origen dinámico de sus componentes fundamentales.

En el segundo procedimiento se estudia la estructura “microscópica”
y la composición de estos vértices, atendiendo a su formación dinámica.
Para llevar a cabo este estudio se deben introducir dos ingredientes no
perturbativos cruciales. El primero de ellos recibe el nombre de amplitud
de transición [ver Fig. 7.9] y conecta los gluones con los estados ligados no
masivos. El segundo ingrediente es un conjunto de vértices efectivos que
permiten el acoplamiento entre el estado ligado no masivo y gluones y/o
“ghosts” [ver Fig. 7.4]. A este nivel es necesario demostrar que ninguno
de estos ingredientes es cero ya que, si aśı lo fueran, la construcción entera
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colapsaŕıa. Tal demostración se lleva a cabo probando la existencia de los
estados ligados no masivos mediante un analisis de las BSEs que satisfacen.
De hecho, en la sección 5.5 del caṕıtulo 5, se presenta un estudio numérico
preliminar de la BSE para los estados ligados no masivos que demuestra
su existencia. Finalmente, una vez se ha probado la existencia de estados
ligados no masivos, en el caṕıtulo 7, la masa gluónica se podrá relacionar
con la amplitud de transición a través de una simple formula Eq. (7.30) que,
a su vez, tiene una clara interpretación f́ısica en términos de intercambio
de estados ligados.

Vamos entonces a concluir esta introducción presentando un pequeño
resumen de los contenidos de cada caṕıtulo de la tesis.

Caṕıtulo 2. En este caṕıtulo se presentan los recientes resultados obtenidos en las
simulaciones del lattice para el propagador del gluon y la función
“vestida” del “ghost”. Dichos resultados señalan que ambas fun-
ciones de Green son finitas en el infrarrojo, lo cual puede explicarse
en términos de una masa gluónica efectiva. Este aspecto es una de los
razones que motivan el estudio del fenómeno de generación dinámica
de masas en el contexto de teoŕıas puras de Yang-Mills.

Caṕıtulo 3. La exclusiva naturaleza no perturbativa del mecanismo de generación
de masas nos obliga e emplear el formalismo de las SDEs para su
descripción. Este complicado conjunto de ecuaciones integrales será
analizado en el llamado esquema PT-BFM, el cual surge como una
śıntesis de la Técnica de Pinch (PT) [23,24] con el Método del Campo
de Fondo (BFM) [25]. Estableceremos entonces las caracteŕısticas
básicas y las propiedades que hacen del esquema PT-BFM un venta-
joso formalismo cuando se trabaja con las SDEs.

Caṕıtulo 4. En este caṕıtulo se formula el enunciado básico del mecanismo de
Schwinger y se muestra como este mecanismo genera un término
de masa para los bosones sin interferir con la invariancia gauge de
la teoŕıa. En particular, estudiaremos brevemente los modelos de
Schwinger y Jackiw-Johnson donde el mecanismo de Schwinger se
aplica a teoŕıas gauge Abelianas.

Caṕıtulo 5. El objetivo de este caṕıtulo es doble. Proporcionar un análisis prelim-
inar de cómo se realiza el mecanismo de Schwinger en el contexto de
una teoŕıa gauge no Abeliana y demostrar, a través de un detallado
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estudio numérico, que la dinámica de las teoŕıas puras de Yang-Mills
contempla la formación de estados ligados no masivos.

Caṕıtulo 6. Este caṕıtulo contiene la derivación general de la ecuación completa
(a todos los órdenes) que describe la evolución de la masa gluónica
generada dinámicamente en el gauge de Landau. La ecuación de masa

será entonces estudiada en un detallado análisis numérico que reve-
lará la existencia de soluciones monotónicamente decrecientes para la
masa gluónica efectiva.

Caṕıtulo 7. El objetivo de este caṕıtulo final es realizar una descripción general
del mecanismo de generación de masas en el lenguaje de estados lig-
ados excitados. Después de una precisa definición de los ingredientes
necesarios, la masa gluónica efectiva podrá ser expresada a través de
una simple fórmula de masa. Posteriormente, en una decisiva com-
probación de auto-consistencia, vamos a demostrar que la fórmula

de masa reproduce la ecuación de masa obtenida en el capitulo 6,
probando que ambos formalismos son totalmente equivalentes.

La tesis concluye con algunas referencias en el caṕıtulo 8 acerca del
problema de confinamiento y su (más que) posible conexión con el mecan-
ismo de generación de la masa gluónica. Además se incluyen dos apéndices
en los cuales el lagrangiano de QCD y el BFM se discuten brevemente.



2. RECENT LARGE-VOLUME LATTICE RESULTS.

The main theoretical tool for quantitative calculations in the infrared region
of QCD, aside from the SDEs, is the lattice. Thanks to the enormous
progress realized in this field during the last years, lattice simulations have
been revealed as a powerful instrument, which can be combined with the
SDEs in order to study the Green’s functions of QCD, as has been done in
a series of recent works (see, e.g., [26–28]).

In this framework, QCD is approximated by a lattice gauge theory with
a non-zero lattice spacing and a finite space-time volume. In this way, one
reduces the infinite functional integrals to a finite number of finite integra-
tions, thus allowing the computation of correlation functions by numerical
evaluations of these integrals via Monte-Carlo methods. Using these meth-
ods the gluon and ghost propagators (in various gauges) have been studied
extensively on the lattice [29–31] and a large body of recent high-quality
lattice results for these Green’s functions, both in SU(3) [32–35] and in
SU(2) [36–38], have been computed in the conventional Landau gauge.
The results obtained in these large-volume lattice simulations have firmly
established that the gluon propagator and the ghost dressing function of
pure Yang-Mills theories are infrared (IR) finite and they saturate at zero
momentum transfer (q2 = 0).

Specifically, on the left panel of Fig.2.1 are shown the lattice data for
the gluon propagator ∆(q2) obtained in [32], corresponding to a SU(3)
quenched lattice simulation renormalized at µ = 4.3 GeV. On the right
panel of the same figure are reported the quenched SU(2) lattice data
obtained in [36], renormalized at µ = 2.2 GeV. Both sets of lattice data
can be accurately fitted in terms of a IR finite gluon propagator of the form

∆−1(q2) = M2(q2) + q2
[
1 +

13CAg
2
1

96π2
ln

(
q2 + ρ1M

2(q2)

µ2

)]
, (2.1)



14 2. Recent Large-Volume Lattice results.

1E-3 0.01 0.1 1 10 100

0

1

2

3

4

5

6

7

8

 

 

Gluon propagator in SU(3)
=5.7,  = 4.3 GeV 

 V=644  
 V=724

 V=804

 fit

(q
2 ) [

G
eV

 - 
2 ] 

q2[GeV2]

1E-3 0.01 0.1 1 10 100
0

1

2

3

4

 

 

(q
2 ) [

G
eV

 - 
2 ] 

q2[GeV2]

Gluon propagator in SU(2) 
=2.2,  = 2.2 GeV 

 V=1284  
 fit

Fig. 2.1: Lattice results for the SU(3) (left) and SU(2) (right) gluon propaga-
tor, renormalized at µ = 4.3 GeV and µ = 2.2 GeV respectively. The
red continuous lines represents the best fits to the data obtained from
Eq. (2.1).

where the function M2(q2) given by

M2(q2) =
m4

g

q2 + ρ2m2
g

(2.2)

controls the value of the gluon propagator at the origin,

∆−1(0) = M2(0) = m2
g/ρ2. (2.3)

Turning next to the ghost dressing function, on the left panel of Fig.2.2,
are shown the SU(3) lattice results of [32], renormalized as before at µ = 4.3
GeV. On the right panel are plotted instead the results for the SU(2)
case [36], renormalized at µ = 2.2 GeV. These data can be fitted in terms
of the expression

F−1(q2) = 1 +
9

4

CAg
2
2

48π2
ln

(
q2 + ρ3M

2(q2)

µ2

)
, (2.4)

with M2(q2) given by Eq. (2.2), but changing the parameter ρ2 → ρ4 and
m2

g → m2. The best values for the fitting parameters in expressions Eq.
(2.1) and Eq. (2.4) can be found in various recent articles [22,39,40],

• SU(3) case: m2
g = m2 = 520 MeV, g2

1 = 5.68, g2
2 = 8.57, ρ1 = 8.55,

ρ2 = 1.91, ρ3 = 0.25, ρ4 = 0.68.
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Fig. 2.2: Lattice results for the SU(3) (left) and SU(2) (right) ghost dressing func-
tion, renormalized at µ = 4.3 GeV and µ = 2.2 GeV respectively. The
red continuous lines represent the best fits to the data obtained from
Eq. (2.4).

• SU(2) case: m2
g = 867 MeV, m2 = 523 MeV, g2

1 = 10.80, g2
2 = 15.03,

ρ1 = 1.96, ρ2 = 2.68, ρ3 = 0.21, ρ4 = 0.78.

Notice that the mass M2 appearing in this fits acts as an infrared cutoff
keeping finite the gluon propagator and the ghost dressing function.

These lattice results suggest the study of the gluon mass generation
mechanism as a possible explanation of the IR finiteness of the gluon prop-
agator and the ghost dressing function. Indeed, expressions Eq. (2.1) and
Eq. (2.4) will be extensively used in the numerical analysis of the analyti-
cal results obtained throughout this thesis. However, the reader should be
advised about the limitations of the lattice results. Principally, the effects
of the non-zero lattice spacing and the finite space-time volume used in the
simulations, are translated into numerical errors in the physical data pre-
dicted by lattice. Also, the process of fixing the gauge in the lattice is quite
subtle and involved. Thus, although these lattice results motivate physi-
cally our study, the analytical results presented in this thesis complement
and supplement the deficiencies and limitations of the lattice.
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3. A BRIEF OVERVIEW OF THE PINCH
TECHNIQUE-BACKGROUND FIELD METHOD FORMALISM.

The lattice results presented in the previous chapter indicate clearly that
the gluon propagator and the ghost dressing function are IR finite in the
conventional Landau gauge, both in SU(2) and in SU(3). These important
results have sparked a renewed interest in the important issue of dynami-
cal mass generation in non-Abelian gauge theories, and especially in QCD.
The reason is that perhaps the most physical way of explaining the ob-
served finiteness of these quantities is the generation of a non-perturbative,
momentum-dependent gluon mass [7,22,26,41–43], which acts as a natural
IR cutoff.

Given the non-perturbative nature of this mechanism, the usual starting
point in the continuum is the SDEs governing the Green’s functions under
scrutiny. In the framework provided by the synthesis of the PT [7,23,44–46]
with the BFM [25,47], known in the literature as the PT-BFM scheme, these
complicated integral equations are endowed with a variety of important
properties, which allow a much tighter control on the truncations adopted
and the approximation schemes employed. Therefore, we set up in this
chapter the necessary notation and review some of the most salient features
of the PT-BFM scheme, putting particular emphasis on the form of the
SDE for the gluon propagator, and the various field-theoretic ingredients
appearing in it.

In a general renormalizable Rξ gauge, defined through a linear gauge
fixing function of the Lorentz type (Fa = ∂µAa

µ), the all-order gluon prop-

agator ∆ab
µν(q) = δab∆µν(q) and its inverse read

i∆µν(q) = −i
[
Pµν(q)∆(q2) + ξ

qµqν
q4

]
, (3.1)

∆−1
µν (q) = i

[
Pµν(q)∆−1(q2) +

1

ξ
qµqν

]
, (3.2)
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where ξ denotes the gauge fixing parameter and

Pµν(q) = gµν − qµqν/q
2, (3.3)

is the dimensionless transverse projector. The choice ξ = 0 corresponds to
the Landau gauge giving raise to the totally transverse gluon propagator

∆µν(q) = −iPµν(q)∆(q2). (3.4)

The scalar form factor ∆(q2) appearing above is related to the all-order
gluon self-energy Πµν(q) through

∆−1(q2) = q2 + iΠ(q2) = q2J(q2), (3.5)

where we have defined the dimensionless function J(q2), which coincides
with the inverse of the gluon dressing function, frequently considered in
the literature [48]. As a direct consequence of the gauge invariance of the
theory, which after the gauge-fixing is encoded into the BRST symme-
try [49, 50], we know that the gluon self-energy is transverse to all-orders
in perturbation theory, as well as non perturbatively, at the level of the
corresponding SDE. One has then

qµΠµν(q) = 0 ; Πµν(q) = Π(q2)Pµν(q). (3.6)

The non-perturbative dynamics of the gluon propagator in the contin-
uum is governed by the corresponding SDE. It reads

∆−1(q2)Pµν(q) = q2Pµν(q) + i

5∑

i=1

(ai)µν , (3.7)

where the diagrams (ai) are shown in Fig. 3.1. The main theoretical prob-
lem one encounters when dealing with the SDE given above is the fact that
it cannot be truncated in a physically meaningful way. The most direct
manifestation of this drawback is the following: after the truncation the
fundamental Eq. (3.6) is violated and one cannot truncate Eq. (3.7) in
any obvious way without violating the transversality of the resulting gluon
self-energy. For example, keeping only graphs (a1) and (a2) is not correct
even perturbatively, since the ghost loop is crucial for the transversality of
Πµν already at one-loop; adding (a3) is still not sufficient for a SD analysis,
because (beyond one-loop) qµ[(a1) + (a2) + (a3)]µν 6= 0.
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.

+=
Q Q

(a1) (a2)

+

(a3)

++

(a4) (a5)

Fig. 3.1: SDE satisfied by the conventional gluon self-energy with two quan-
tum gluons entering. The symmetry factors of the diagrams are
S(a1, a2, a5) = 1/2, S(a3) = −1, S(a4) = 1/6. White blobs will rep-
resent connected Green’s functions while black bobs will correspond to
fully-dressed one particle irreducible (1PI) vertices.

In order to devise a truncation scheme for the SDE that preserves man-
ifestly the gauge-invariance of the answer at every step one needs to resort
to the PT. It is a particular algorithm for rearranging the perturbative se-
ries in such a way as to obtain new Green’s functions that are independent
of the gauge-fixing parameter, and satisfy to all orders ghost-free WIs, in-
stead of the usual STIs. When the PT is formulated at the SD level one
operates on a handful of classes of diagrams (each one containing an infi-
nite number of individual graphs) and the rearrangements are collectively
implemented through the systematic use of the STIs satisfied by certain
Green’s functions and kernels. Specifically, the implementation of the PT
at the level of the SDE of the gluon self-energy [51, 52] gives rise dynam-
ically to a new kind of SD series (see Fig. 3.2 and Fig. 3.3) in which we
have graphs that are made out of new vertices, but contain inside them
the same gluon propagator as before, namely ∆µν(q). The new vertices,
see Appendix B, correspond precisely to the Feynman rules of the BFM, i.
e., it is as if the external quantum gluon (Q) had been converted dynam-
ically into a background gluon (B). So, Fig. 3.2 represents the SDE of a
propagator connecting a quantum gluon with a background gluon,

∆̃−1(q2)Pµν(q) = q2Pµν(q) + i

6∑

i=1

(ai)µν , (3.8)
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while Fig. 3.3 contains the SDE of a propagator connecting two background
gluons,

∆̂−1(q2)Pµν(q) = q2Pµν(q) + i

10∑

i=1

(ai)µν . (3.9)

(a3)(a2)(a1) (a4)

+ + +

(a6)(a5)

+

=

+

A ̂
A

a

a

Fig. 3.2: SDE obeyed by the gluon self-energy with one quantum and one back-
ground gluons entering. The symmetry factors of the diagrams are
S(a1, a2, a6) = 1/2, S(a3, a4) = −1, S(a5) = 1/6. Each box encloses
a set of diagrams forming a transverse subgroup. The small gray circles
appearing on the external legs (entering from the right, only!) are used
to indicate background gluons.

In addition, the new vertices appearing in these SDE no longer sat-
isfy the typical STIs, like for example that of the conventional three-gluon
vertex with three quantum gluon legs (Q3), given by [53]

qαΓαµν(q, r, p) = F (q2)[∆−1(p2)Pα
ν (p)Hαµ(p, q, r)

− ∆−1(r2)Pα
µ (r)Hαν(r, q, p)], (3.10)

where F (q2) corresponds to the ghost dressing function defined below and
H is an auxiliary function containing the conventional gluon-ghost kernel
shown in Fig. 3.4. Instead of these complicated identities, they will satisfy
the following Abelian-like WIs when are contracted respect to the momen-
tum of the background gluon leg:

• Vertex BQ2 (one background and two quantum gluons),

qα
1 Γ̃amn

αµν (q1, q2, q3) = gfamn[∆−1
µν (q2) − ∆−1

µν (q3)]. (3.11)
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• Vertex Bc̄c (one background gluon, one anti-ghost and one ghost),

qα
1 Γ̃amn

α (q2, q1, q3) = gfanm[D−1(q2) −D−1(q3)]. (3.12)

• Vertex BQ3 (one background and three quantum gluons),

qα
1 Γ̃amnr

αµνρ (q1, q2, q3, q4) = ig[famxΓnrx
νρµ(q3, q4, q1 + q2)

+ fanxΓrmx
ρµν (q4, q2, q1 + q3)

+ farxΓmnx
µνρ (q2, q3, q1 + q4)]. (3.13)

• Vertex BQc̄c (one background and one quantum gluons, one anti-
ghost and one ghost),

qα
1 Γ̃amnr

αµ (q1, q2, q3, q4) = −ig[famxΓrxn
µ (q4, q1 + q2, q3)

+ fanxΓrmx
µ (q4, q2, q1 + q3)

+ farxΓxmn
µ (q1 + q4, q2, q3)]. (3.14)

Âm
µ Ân

ν

q
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+=
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+

(b4)(b3)

+
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a

a

Fig. 3.3: SDE obeyed by the gluon self-energy with two background gluons en-
tering. The symmetry factors are in this case S(a1, a2, a6) = 1/2,
S(a5) = 1/6, and all the remaining diagrams have S = −1. The graphs
inside each box form a gauge invariant subgroup, furnishing and individ-
ually transverse contribution. External background legs are indicated by
the small gray circles.

Using these WIs one may show after some elementary operations that the
transversality of the SDE Eq. (3.9) is realized ”blockwise” [42], following
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the pattern shown in Fig. 3.3, i.e.,

qµ[(a1) + (a2)]µν = 0 ; qµ[(a3) + (a4)]µν = 0

qµ[(a5) + (a6)]µν = 0 ; qµ[(a7) + (a8) + (a9) + (a10)]µν = 0. (3.15)

Therefore, this new SD series has a very special structure which allows
us to separate the diagrams on the r.h.s of Eq. (3.9) into four obvious
categories: one-loop (dressed) gluonic contributions [(a1) + (a2)], one-loop
ghost contributions [(a3)+(a4)], two-loop gluonic contributions [(a5)+(a6)]
and two-loop ghost contributions [(a7) + (a8) + (a9) + (a10)]. Furthermore,
by virtue of the all-order WIs satisfied by the new fully-dressed vertices,
the contribution of each one of the four subgroups will be individually
transverse. In a similar fashion, the transversality of the SDE Eq. (3.8)
is realized according to the pattern highlighted by the boxes of Fig. 3.2,
namely,

qµ[(a1)+(a2)]µν = 0; qµ[(a3)+(a4)]µν = 0; qµ[(a5)+(a6)]µν = 0. (3.16)

Thus we observe that within the PT-BFM scheme three types of gluon
propagator make their appearance in a natural way:

• The conventional gluon propagator (two quantum gluons entering,
QQ), denoted by ∆(q2).

• The background gluon propagator (two background gluons entering,
BB), denoted by ∆̂(q2).

• The mixed quantum-background propagator (one quantum and one
background gluons entering, BQ), denoted by ∆̃(q2).

These three propagators are related among each other by a set of pow-
erful relations, known as Background-Quantum identities (BQIs) [54, 55],
obtained within the Batalin-Vilkovisky formalism [56,57]. Specifically,

∆(q2) = [1 +G(q2)]∆̃(q2) = [1 +G(q2)]2∆̂(q2). (3.17)

The function G(q2), whose role in enforcing these crucial relations is instru-
mental, is defined as the gµν form factor of a special two-point function,
given by (see Fig. 3.4)

Λµν(q) = −ig2CA

∫

k
∆σ

µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2), (3.18)
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where CA represents the Casimir eigenvalue of the adjoint representation
(N for SU(N)), d = 4 − ǫ is the space-time dimension, and we have intro-
duced the integral measure

∫

k
≡ µǫ

(2π)d

∫
ddk, (3.19)

with µ the ’t Hooft mass. In addition, Dab(q2) = δabD(q2) is the ghost
propagator, and Hνσ is the gluon-ghost kernel (see Fig. 3.4). The dressed
loop expansion of Λ and H is shown in Fig. 3.4. Notice finally that, in the
Landau gauge, an important all-order relation exists, which links the form
factors G(q2) and L(q2) to the ghost dressing function,

F (q2) = q2D(q2), (3.20)

namely [39,58–60]

F−1(q2) = 1 +G(q2) + L(q2). (3.21)

+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν H̃νµ(q, p, r) = gµν +

µ

q
ν

r

p p

r

Fig. 3.4: Diagrammatic representation of the auxiliary functions Λ, H and, for
later convenience, H̃. Gray blobs denote 1PI (with respect to vertical
cuts) Schwinger-Dyson kernels.

All of these results and special properties have far-reaching practical
consequences for the treatment of the SD series. For example, keeping
only the one-loop dressed gluonic contributions to Eq. (3.7), we obtain the
following truncated SDE for the gluon propagator

∆̂−1(q2)Pµν(q) = q2Pµν(q) + i[(a1) + (a2)]µν , (3.22)
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and from the first equation of Eq. (3.15) we now that this block of diagrams
is transverse, i.e.,

[(a1) + (a2)]µν =
[(a1) + (a2)]

α
α

d− 1
Pµν(q). (3.23)

Thus, the transverse projector Pµν(q) appears exactly on both sides of
Eq. (3.22); one may subsequently isolate the scalar cofactors on both sides
obtaining a scalar equation of the form

∆̂−1(q2) = q2 + i[(a1) + (a2)]
α
α. (3.24)

Finally, the BQI Eq. (3.17) is used to relate ∆̂(q2) with the conventional
gluon propagator ∆(q2). Of course, a truncated equation similar to Eq.
(3.22) may be written for any other of the four groups, or for sums of these
groups, without compromising the transversality of the answer.



4. THE SCHWINGER MECHANISM: PRELIMINARIES.

In this chapter we take an introductory look at the so called Schwinger
mechanism, using two Abelian toy models. The first is the famous (and ex-
actly solvable) Schwinger model [8], namely QED2 with massless fermions.
The second is the Jackiw-Johnson model [61], where the Schwinger mecha-
nism is triggered when the chiral symmetry of a four-dimensional Abelian
gauge theory is dynamically broken. Even though the non Abelian realiza-
tion of the Schwinger mechanism is far more complex, these simple exam-
ples capture the basic concepts involved, and can help us fix the underlying
ideas.

4.1 The basic statement of the Schwinger mechanism.

As Schwinger pointed out long time ago [8,9], the gauge invariance of a vec-
tor field does not necessarily imply zero mass for the associated particle,
if the current vector coupling is sufficiently strong. Schwinger’s funda-
mental observation was that if (for some reason) the vacuum polarization
Π(q2) acquires a pole at zero momentum transfer, the vector meson be-
comes massive, even if the gauge symmetry forbids a mass at the level of
the fundamental Lagrangian. The way in which the Schwinger mechanism
generates a mass for the gauge boson can be seen most directly at the level
of its inverse propagator

∆−1(q2) = q2[1 + iΠ(q2)], (4.1)

where Π(q2) = Π(q2)/q2 is the dimensionless vacuum polarization. It is
clear that if Π(q2) develops a pole at zero momentum transfer (q2 = 0)
with positive residue µ2, then the vector meson acquires a mass. Indeed, if
Π(q2) = m2/q2, then (in Euclidean space) ∆−1(q2) = q2 +m2, and so the
vector meson becomes massive, ∆−1(0) = m2, even though it is massless in
the absence of interactions (g = 0, Π = 0) [61,62].

There is no physical principle which would preclude Π(q2) from ac-
quiring a pole. Since bound states are expected to exist in most physical
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systems one may suppose that, for sufficiently strong binding, the mass of
such bound state will be reduced to zero, thus generating a mass for the
vector meson without interfering with gauge invariance. In general, the
appearance of the required pole may happen for purely dynamical reasons
and, in particular, without the need to introduce fundamental scalar fields
in the Lagrangian. In fact, the standard Higgs mechanism can be viewed
as just a very special realization of the Schwinger mechanism, where the
residue of the pole is saturated by v2, being v the vacuum expectation value
of a canonical scalar field coupled to the vector meson.

4.2 Schwinger model.

The simplest situation where the triggering of the Schwinger mechanism
can be analyzed is that of two-dimensional QED with massless electrons,
known as the Schwinger model. The Lagrangian of this model is

L = −1

4
FµνF

µν + ψ̄iγµDµψ, (4.2)

with µ, ν = 0, 1. As usual, the covariant derivative is defined as

Dµ = ∂µ − ieAµ, (4.3)

with e the (electromagnetic) coupling constant, and the field strength tensor
is given by

Fµν = ∂µAν − ∂νAµ =
i

e
[Dµ,Dν ]. (4.4)

In addition, the Dirac matrices must be chosen to satisfy the Clifford alge-
bra

{γµ, γν} = 2gµν . (4.5)

In two dimensions the fermion spinors are two-component fields and we
only have two Dirac matrices, γ0 and γ1. Using them, one can define the
product anticommuting with each of the γµ, as γ5 = γ0γ1. A representation
for the gamma matrices in two dimensions is given by the Pauli matrices,

γ0 = σ3; γ1 = iσ1; γ5 = −σ2. (4.6)

The Lagrangian is gauge invariant under local U(1) transformations,

U(1) = {U(θ) = eiθ(x) : U†U = UU† = 1}, (4.7)
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and therefore, at the level of the fundamental Lagrangian, the gauge sym-
metry forbids the appearance of a mass term for the photon of the type
m2A2

µ. However, in dimension d = 2, one can prove that the photon vac-
uum polarization acquires a pole, thus endowing the photon with an effec-
tive mass without interfering with the gauge invariance. The crucial point
is that in this model one can evaluate this quantity exactly. This happens
because all quantum corrections to the photon vacuum polarization vanish
in d = 2, as a consequence of the trace properties for the Dirac matri-
ces. Only the one-loop correction to the photon self-energy Πµν , shown in
Fig. 4.1, gives a non-zero contribution,

Πµν(q) = −e2
∫

k

Tr{γµ(6k + 6q)γν 6k}
(k + q)2k2

. (4.8)

q q

µ ν

k

k + q
.

Fig. 4.1: Feynman diagram for the one-loop contribution to the photon vacuum
polarization.

First of all, notice that using the elementary WI for the tree-level
photon-electron vertex,

qµγµ = (6q + 6k) − 6k, (4.9)

it is straightforward to check that the photon self-energy satisfies the WI

qµΠµν(q) = 0. (4.10)

This result affirms the transversality of the photon self-energy, as a direct
consequence of the underlying gauge symmetry, and forces the vacuum
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polarization to assume its characteristic form

Πµν(q) = Pµν(q)Π(q2), (4.11)

with Pµν(q) the usual dimensionless transverse projector. Then, taking the
trace of Eq. (4.11) and using Eq. (4.8), we obtain the following expression
for the photon vacuum polarization

Π(q2) =
1

d− 1
gµνΠµν(q) = − e2

d− 1

∫

k

Tr{γµ(6k + 6q)γµ 6k}
(k + q)2k2

. (4.12)

Now, introducing the Feynman parameters, evaluating the trace of the
Dirac matrices, and using the dimensional regularization integrals, Eq.
(4.12) provides the result (d = 2)

Π(q2) = i
e2

π
(4.13)

Thus, one observes that in d = 2 the photon vacuum polarization acquires
a non-zero value in the limit of zero momentum transfer, q2 = 0. Note that
in d = 2 the coupling constant is dimensionful, [e] = [m]. So, when this
value is inserted in Eq. (4.1), the photon propagator becomes (in Euclidean
space) massive-like,

∆−1(q2) = q2 +
e2

π
, (4.14)

with an effective mass m2
γ = ∆−1(0) = e2/π.

Evidently, even though the U(1) gauge symmetry prevents the appear-
ance of a tree-level mass term m2A2

µ at the level of the fundamental QED2

Lagrangian, the inclusion of one-loop corrections gives a finite contribution
to Π(q2), which can be interpreted as an effective mass term in the photon
propagator. Most notably, this effective mass does not compromise the
gauge invariance of the theory, as captured by the WI Eq. (4.10).

4.3 Jackiw-Johnson model.

The Jackiw-Johnson model constitutes a more elaborate example where
the Schwinger mechanism is used to describe the possibility that masses
of fermions and vector mesons can arise dynamically, without the presence
of canonical scalar fields in the Lagrangian (Higgs mechanism). In this
model we consider a theory with a massless fermion field ψ and an Abelian
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gauge field (photon) Aµ interacting through an axial vector current Jµ
5 =

ψ̄iγµγ5ψ, described by the Lagrangian

L = iψ̄γµ∂µψ − 1

4
FµνF

µν + gψ̄iγµγ5ψAµ, (4.15)

where the Abelian field strength tensor is given by Eq. (4.4).
Next, we introduce the various nonperturbative ingredients that we are

going to study. The all-order photon propagator reads in the Landau gauge
(ξ = 0)

∆µν(q) = −iPµν(q)∆(q2), (4.16)

with Pµν(q) the transverse projector. The scalar form factor ∆(q2) appear-
ing above is related to the all-order photon self-energy1,

Πµν(q) = iPµν(q)q2Π(q2), (4.17)

through the expression

∆−1(q2) = q2[1 − Π(q2)]. (4.18)

The SDE satisfied by the photon self-energy, shown in Fig. 4.2, can be
written as follows

Πµν(q) = −g2Tr

∫

k
Γ

µ(0)
5 S(k)S(k + q)Γν

5(−q, k + q,−k), (4.19)

where the extra minus sign and the trace comes from the fermionic loop.

In this SDE, the quantity Γ
µ(0)
5 = iγµγ5, corresponds to the tree-level value

of the proper fermion-photon interaction vertex, whose all-order Feynman
rule can be seen in Fig. 4.2.

At this point, one observes that the theory described by the Lagrangian
Eq. (4.15) is chirally invariant, and this invariance is captured by the
following all-order WI satisfied by the fermion-photon vertex,

qµΓµ
5 (q, k,−k − q) = γ5S

−1(k) + S−1(k + q)γ5. (4.20)

Finally, S(q) represents the fully-dressed fermion propagator, which can
be written in the form

S−1(q) = −iγµqµ + iΣ(q), (4.21)

1 There is an additional factor iq2 with respect to the usual definition Eq. (3.6) in
order to follow the original conventions used in [61].
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q

µ

k

k + q

= Γµ
5(q, k,−k − q)

k

q q

µ ν

k + q
.

Fig. 4.2: Schwinger-Dyson equation satisfied by the photon self-energy and Feyn-
man rule for the all-order fermion-photon proper vertex.

where Σ(q) corresponds to the fermion self-energy, satisfying the SDE

Σ(q) = g2

∫

k
Γ

µ(0)
5 ∆µν(q)S(k + q)Γν

5(−k, k + q,−q), (4.22)

whose diagrammatic representation is given in Fig. 4.3.

µ νq q

k + q
.

k

Fig. 4.3: Schwinger-Dyson equation for the fermion self-energy.

Let us next investigate under what conditions a dynamical gauge boson
mass may arise in this theory. The starting point is to observe that, if
the chiral symmetry of the theory is exact, the WI Eq. (4.20) ensures the
finiteness of the fermion-photon vertex at zero momentum transfer, q2 = 0,
through the condition

lim
q→0

qµΓµ
5 (q, k,−k − q) = i{γ5,Σ(k)} = 0, (4.23)

which, in turn, gives a constraint for the solutions of the SDE Eq. (4.22)
that preserve chiral symmetry. Now, we assume that a chiral symmetry
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breaking solution for Eq. (4.22) exists, such that {γ5,Σ(k)} 6= 0. Note
that this symmetry breaking is not due to a vacuum expectation value
of a canonical scalar field in the Lagrangian; rather, it is assumed to be
a consequence of a symmetry-breaking solution to the integral equations
of the theory. The actual existence of such solutions must be established
through a detailed Bethe-Salpeter (BS) analysis.

In fact, it is well known that this situation can occur if there is a mass-
less, bound-state excitation in the fermion-antifermion channel. Further-
more, this bound-state must be interpreted as the massless Goldstone bo-
son that appears when the chiral symmetry of the Lagrangian Eq. (4.15)
is broken, and will be described by a propagator of the type i/q2, as shown
in Fig. 4.4. Also, the fact that this bound-state appears in the fermion-
antifermion channel implies that we need to introduce a new (nonperturba-
tive) vertex in the theory to describe the interaction between the massless
bound-state and the fermion fields. The Feynman rule for this vertex, to
be denoted P (q, r, p), is also shown in Fig. 4.4.

q

= i
q2 = P (q, k,−k − q)

q

k + q

k .

Fig. 4.4: Feynman rules for the massless propagator of the bound-state and for the
effective vertex P which couples the massless excitation to the fermion
fields.

Under these circumstances, the immediate consequence for the fermion-
photon vertex is that the condition Eq. (4.23) is no longer valid, and the
WI acquires a non-zero value in the kinematical limit q2 → 0 given by

lim
q→0

qµΓµ
5 (q, k,−k − q) = i{γ5,Σ(k)} 6= 0, (4.24)

signaling that the chiral symmetry of the theory has been broken by the
presence of the massless excitation. So, Eq. (4.24) implies that the vertex
Γµ

5 has a pole at q2 = 0, with residue i{γ5,Σ(k)}. Using then the massless
propagator and the effective vertex P , we can make the nonperturbative
pole manifest, and cast the pole part of the fermion-photon vertex in the
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form of Fig. 4.5, by setting

Γµ
5 (q, p,−p− q)

∣∣
pole

= Iµ(q)

(
i

q2

)
P (q, p,−p − q), (4.25)

where we have defined the following integral

Iµ(q) = −Tr
∫

k
Γ

µ(0)
5 S(k)S(k + q)P (−q, k + q,−k), (4.26)

with the minus sign and the trace coming from the fermionic loop.

µ

q

q

p p + q

k k + q

Γµ
5(q, p,−p − q)|pole =

︸
︷︷

︸

Iµ(q)

︸
︷︷

︸

i
q2

︸
︷︷

︸

P (q, p,−p − q)

Fig. 4.5: Structure of the pole contribution to the fermion-photon vertex Γµ
5
.

Evidently, by Lorentz invariance, we can write the integral Eq. (4.26)
as Iµ(q) = qµI(q2). Using this property, and assuming that I(0) is finite,
one may combine expressions Eq. (4.24) and Eq. (4.25) to get the relation

{γ5,Σ(k)} = I(0)P (0, p,−p), (4.27)

which establishes the explicit connection between the massless excitation
and the chiral symmetry breaking solutions of Eq. (4.22). It is clear at this
point that P (0,−p, p) must be non vanishing, or else the entire construction
collapses.

Now we are in position to examine what is the effect of introducing this
pole vertex into the photon self-energy. Inserting the singular part of Eq.
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(4.25) into the SDE Eq. (4.19) one obtains

Πµν
pole(q) = −g2Tr

∫

k
Γ

µ(0)
5 S(k)S(k + q)Γν

5(−q, k + q,−k)
∣∣
pole

= g2

{
− Tr

∫

k
Γ

µ(0)
5 S(k)S(k + q)P (−q, k + q,−k)

}(
i

q2

)
Iν(−q)

= g2Iµ(q)

(
i

q2

)
Iν(−q), (4.28)

whose diagrammatic interpretation is shown in Fig. 4.6. So, using the fact

µ ν

q q q

k k

.
k + q k + q

Fig. 4.6: Pole contribution to the photon self-energy.

that Iν(−q) = −Iν(q), we obtain the following result

Πµν
pole(q) = −iq

µqν

q2
g2I2(q2). (4.29)

Therefore, Eq. (4.29) shows that Π(q2), defined in Eq. (4.17), has the pole

Πpole(q
2) = g2 I

2(q2)

q2
. (4.30)

This indicates that the above pole triggers the Schwinger mechanism and
the photon propagator Eq. (4.18) becomes massive, acquiring an effective
mass whose value at zero momentum transfer q2 = 0 is given by (Euclidean
space)

m2(0) = ∆−1(0) = g2I2(0). (4.31)
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5. THE SCHWINGER MECHANISM IN PURE YANG-MILLS
THEORIES.

The gauge-invariant generation of an effective gauge boson (gluon) mass
proceeds through the well-known Schwinger mechanism, whose key dynam-
ical ingredient is the nonperturbative formation of longitudinally coupled
massless bound-state excitations. These excitations introduce poles in the
vertices of the theory giving a non-vanishing contribution in the limit of
zero momentum transfer (q2 = 0) to the SDE of the boson self-energy and
therefore endowing the gauge boson propagator with an effective mass term,
as was explained in detail in the previous chapter for the simpler Schwinger
model and the Abelian Jackiw-Johnson model. The principal assumption
when invoking the Schwinger mechanism in Yang-Mills theories, such as
QCD, is that the required poles may be produced due to purely dynamical
reasons; specifically, one assumes that, for sufficiently strong binding, the
mass of the appropriate bound state may be reduced to zero [15,16,61–63].
In addition, to triggering the Schwinger mechanism, these massless com-
posite excitations are crucial for preserving gauge invariance. Specifically,
the presence of massless poles in the off-shell interaction vertices guarantees
that the Ward identities (WIs) and Slavnov-Taylor identities (STIs) of the
theory maintain exactly the same form before and after mass generation
(i.e., when the massless propagators appearing in them are replaced by
massive ones) [7, 22]. Thus, these excitations act like dynamical Nambu-
Goldstone scalars, displaying, in fact, all their typical characteristics, such
as masslessness, compositeness, and longitudinal coupling; note however,
that they differ from Nambu-Goldstone bosons as far as their origin is con-
cerned, since they are not associated with the spontaneous breaking of any
global symmetry [7]. Finally, every such Goldstone-like scalar, “absorbed”
by a gluon in order to acquire a mass, is expected to actually cancel out
of the S-matrix against other massless poles or due to current conserva-



36 5. The Schwinger mechanism in pure Yang-Mills theories.

tion [15,16,61–63] 1.

The main purpose of the present chapter is to scrutinize the central as-
sumption of the dynamical scenario outlined above, namely, the possibility
of actual formation of such massless excitations. The question we want
to address is whether the nonperturbative Yang-Mills dynamics are indeed
compatible with the generation of such a special bound-state. In particu-
lar, if we work within the PT-BFM scheme and we restrict ourselves to the
one-loop dressed gluonic block shown in Fig. 5.1, the entire mechanism of

(a1) (a2)

µ ν

µ νk

k + q

q k

q

Fig. 5.1: The one-loop dressed gluon contribution to the PT-BFM gluon self-
energy. White (black) circles denote fully dressed propagators (vertices);
a gray circle attached to the external legs indicates that they are back-
ground gluons. Within the PT-BFM scheme these two diagrams consti-
tute a transverse subset of the full gluon SDE.

gluon mass generation hinges on the appearance of massless poles inside the
nonperturbative BQ2 three-gluon vertex, which enters in the SDE govern-
ing the gluon propagator. These poles correspond to the propagator of the
scalar massless excitation, and interact with a pair of gluons through a very
characteristic proper vertex, which, of course, must be non-vanishing, or
else the entire construction collapses. The way to establish the existence of
this latter vertex is through the study of the homogeneous Bethe-Salpeter
equation (BSE) that it satisfies, and look for non-trivial solutions, subject
to the numerous stringent constraints imposed by gauge invariance.

This particular methodology has been adopted in various early contri-
butions on this subject [15,16,61–63]; however, only asymptotic solutions
to the corresponding equations have been considered. The detailed nu-
merical study presented here demonstrates that, under certain simplifying
assumptions for the structure of its kernel, the aforementioned integral

1 These massless bound states should not be confused with physical excitations, such
as glueballs, that may appear in the spectrum of the theory.
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equation has indeed nontrivial solutions, valid for the entire range of phys-
ical momenta [64]. This result, although approximate and not fully conclu-
sive, furnishes additional support in favor of the concrete mass generation
mechanism described earlier.

The chapter is organized as follows. In Section 5.1 we outline how the
vertices of the theory must be modified, through the inclusion of longitudi-
nally coupled massless poles, in order to maintain the WIs and the STIs of
the theory intact. In Section 5.2 we take a detailed look into the structure
of the nonperturbative vertex that contains the required massless poles,
and study its main dynamical building blocks. Specifically, the transition
amplitude between a gluon and a massless excitation, and the proper ver-
tex function (bound-state wave function), controlling the interaction of the
massless excitation with two gluons. In Section 5.3 we derive an exact
relation between these two quantities and the first derivative of the (mo-
mentum dependent) gluon mass. Then we derive a simple formula that, at
zero momentum transfer, relates the aforementioned transition amplitude
to the gluon mass. In Section 5.4 we derive the BSE that the proper vertex
function satisfies, and implement a number of simplifying assumptions and
in Section 5.5 we demonstrate through a detailed numerical study that the
resulting homogeneous integral equation indeed admits nontrivial solutions,
thus corroborating the existence of the required bound-state excitations. In
Section 5.6 we demonstrate with a specific example the general mechanism
that leads to the decoupling of all massless poles from the physical (on-
shell) amplitude. Finally, in Section 5.7 we discuss the limitations of our
results.

5.1 Gauge-invariant generation of a gluon mass.

In this section we set up the general theoretical framework related to the
gauge invariant generation of a gluon mass explaining why the dynamical
generation of a mass is inextricably connected to the presence of a special
vertex, which exactly compensates for the appearance of massive instead
of massless propagators in the corresponding WIs and STIs. If we focus
our attention on the one-loop dressed gluon contributions to the PT-BFM
gluon self-energy (see Fig. 5.1), the relevant Green’s function to consider is
the fully-dressed vertex BQ2 shown in Fig. 5.2, connecting a background
gluon with two quantum gluons, to be denoted by Γ̃αµν(q, r, p). A general
Ansatz for this vertex has been obtained in [65] by applying the so called
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q

p r

a, α

n, ν m, µ

= gf amnΓ̃αµν(q, r, p) ; q + r + p = 0

Fig. 5.2: The conventions for the momenta, color and Lorentz indices of the BQ2

vertex connecting one background gluon with two quantum gluons.

“gauge technique”, extensively used in the context of QED [66–71]. It
satisfies a WI when contracted with the momentum qα of the background
gluon leg, and two STIs when contracted with the momentum rµ or pν of
the quantum gluon legs, namely

qαΓ̃αµν(q, r, p) = p2J(p2)Pµν(p) − r2J(r2)Pµν(r),

rµΓ̃αµν(q, r, p) = F (r2)[q2J̃(q2)Pµ
α (q)Hµν(q, r, p) − p2J(p2)Pµ

ν (p)H̃µα(p, r, q)],

pνΓ̃αµν(q, r, p) = F (p2)[r2J(r2)P ν
µ (r)H̃να(r, p, q) − q2J̃(q2)P ν

α (q)Hνµ(q, p, r)].

(5.1)

In these identities the ghost-gluon kernel H̃µν is obtained from the con-
ventional Hµν by replacing the external quantum gluon by a background

gluon, as shown in Fig. 3.4. Also, the function J̃(q2) corresponds to the
inverse dressing function of the mixed QB gluon propagator and is related
to the conventional J(q2) defined in Eq. (3.5) through the BQI Eq. (3.17),
i.e.,

J̃(q2) = [1 +G(q2)]J(q2). (5.2)

The implementation of the Schwinger mechanism at this level requires
the existence of a very special type of nonperturbative vertex, referred as
the BQ2 pole vertex and denoted by Ṽαµν(q, r, p), which, when added to

the conventional Γ̃αµν(q, r, p) has a triple effect:

• The addition of this vertex makes possible that the SDE of the gluon
propagator yields ∆−1(0) 6= 0.
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• It guarantees that the WIs and the STIs of the theory remain intact,
i.e., this vertex ensures that these identities remain exactly the same
before and after mass generation.

• This vertex decouples from on-shell amplitudes.

These three properties become possible because the BQ2 pole vertex:

• Contains massless poles.

• It is completely longitudinally coupled, i.e., it satisfies the following
condition

Pαβ(q)Pµρ(r)P νσ(p)Ṽβρσ(q, r, p) = 0. (5.3)

The role of the vertex Ṽαµν(q, r, p) is indispensable for maintaining
gauge invariance, given that the massless poles that it must contain in order
to trigger the Schwinger mechanism, act, at the same time, as composite,
longitudinally coupled Nambu-Goldstone bosons. Specifically, in order to
preserve the gauge invariance of the theory in the presence of masses, the
vertex Ṽαµν(q, r, p) must be added to the conventional Γ̃αµν(q, r, p) vertex,

giving raise to the new full vertex Γ̃′
αµν(q, r, p), defined as

Γ̃′
αµν(q, r, p) = [Γ̃m(q, r, p) + Ṽ (q, r, p)]αµν , (5.4)

where the subscript “m” indicates that the vertex Γ̃m is given by the same
graphs as Γ before but now with gluon propagators replaced by massive
ones. Thus, if we describe the transition from a massless to a massive
gluon propagator by carrying out the replacement (in Minkowski space)

∆−1(q2) = q2J(q2) −→ ∆−1
m (q2) = q2Jm(q2) −m2(q2), (5.5)

where m2(q2) is the (momentum dependent) dynamically generated mass,
gauge invariance requires that this replacement be accompanied by the
simultaneous replacement

Γ̃ −→ Γ̃′ = Γ̃m + Ṽ , (5.6)

and Ṽ must be such that the new vertex Γ̃′ satisfies formally the same WIs
(or STIs) as Γ̃ before. To see how this works with an explicit example
consider the WI Eq. (5.1) satisfied by the vertex Γ̃ with the Schwinger
mechanism “turned off”. Then, gauge invariance requires that

qαṼαµν(q, r, p) = m2(r2)Pµν(r) −m2(p2)Pµν(p), (5.7)
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so that, after turning the Schwinger mechanism on, the corresponding WI
satisfied by Γ̃′ would read

qαΓ̃′
αµν(q, r, p) = qα[Γ̃m(q, r, p) + Ṽ (q, r, p)]αµν

= [p2Jm(p2) −m2(p2)]Pµν(p) − [r2Jm(r2) −m2(r2)]Pµν(r)

= ∆−1
m (p2)Pµν(p) − ∆−1

m (r2)Pµν(r), (5.8)

which is indeed the identity in Eq. (5.1), with the aforementioned replace-
ment ∆−1 → ∆−1

m enforced. The remaining STIs, triggered when contract-
ing Γ̃′ with respect to the other two legs are realized in exactly the same
fashion if we demand that the pole vertex Ṽ satisfies the following STIs

rµṼαµν(q, r, p) = F (r2)[m2(p2)Pµ
ν (p)H̃µα(p, r, q) − m̃2(q2)Pµ

α (q)Hµν(q, r, p)],

pν Ṽαµν(q, r, p) = F (p2)[m̃2(q2)P ν
α (q)Hνµ(q, p, r) −m2(r2)P ν

µ (r)H̃να(r, p, q)].

(5.9)

It must be clear at this point that the longitudinal nature of Ṽ , com-
bined with the WI and STIs that it must satisfy, lead inevitably to the
appearance of a massless pole, as required by the Schwinger mechanism.
For example, focusing only on the q-channel, the simplest toy Ansatz for
the vertex is [see also Eq. (1.6)]

Ṽαµν(q, r, p) =
qα
q2

[m2(r2)Pµν(r) −m2(p2)Pµν(p)], (5.10)

which has a pole in q2 and satisfies Eq. (5.7). Of course, poles associated
to the other channels (r and p) will also appear, given that Ṽ must also
satisfy the corresponding STIs with respect to rµ and pν .

5.2 The BQ2 pole vertex: Structure and properties.

As has been pointed out in the previous section, the main characteristic of
the vertex Ṽ , which sharply differentiates it from ordinary vertex contribu-
tions, is that it contain massless poles, originating from the contributions of
bound-state excitations. Specifically, all terms of the vertex Ṽ are propor-
tional to 1/q2, 1/r2, 1/p2, and products thereof as can be seen in expression
Eq. (5.10). Of course, such dynamically generated poles, whose origin is
purely non-perturbative, are to be clearly distinguished from poles related
to ordinary massless propagators, associated with elementary fields in the
original Lagrangian.



5.2. The BQ2 pole vertex: Structure and properties. 41

In this section we take a detailed look at the structure of the BQ2 pole
vertex Ṽ . In particular, we identify the diagrammatic origin and field-
theoretic nature of the various quantities contributing to it, and specify
the way it enters into the SDE of the full vertex Γ̃′, defined in Eq. (5.4).
When doing this, new objects will emerge in a natural way. Namely the
transition amplitude Ĩα(q) connecting a background gluon with the massless
excitation, and a series of effective vertices B mixing the massless excitation
with gluons or ghosts. Also, the general features of these quantities will be
established.

5.2.1 General structure of the vertex Ṽ .

In general, when setting up the usual SDE for any vertex, a particular
field (leg) is singled out and is connected to the various multiparticle ker-
nels through all elementary vertices of the theory involving this field (leg).
The remaining legs enter into the various diagrams through the aforemen-
tioned multiparticle kernels, or, in terms of the standard skeleton expan-
sions, through fully dressed vertices (instead of tree-level ones). For the
case of the BQ2 vertex Γ̃αµν(q, r, p) that we consider here, whose SDE is
shown in Fig. 5.3, it is convenient (but not obligatory) to identify as the

.

˜Γαµν(q, r, p) =

(a1) (a3) (a4) (a5)(a2)

α

ν µ

rp

+ . . .+ + + +

q

Fig. 5.3: The SDE for the BQ2 vertex Γ̃αµν which connects a background gluon
with two quantum gluons. Gray blobs denote the conventional 1PI (with
respect to vertical cuts) Schwinger-Dyson kernels.

special leg the background gluon, carrying momentum q. Now, with the
Schwinger mechanism turned off, the various multiparticle kernels appear-
ing in the SDE for the BQ2 vertex have a complicated skeleton expansion,
see [23, 52], but their common characteristic is that they are one-particle
irreducible with respect to cuts in the direction of the momentum q. Thus
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a diagram such as the (a) of Fig. 5.4 is explicitly excluded from the (gray)
four-gluon kernel, and the same is true for all other kernels.

(B)

(C)

(A)

(a)

.

(b2) (b3)(b1)

(b2) (c1) (c2)
.

µr

⊃ ⊃
pν

Γ′ Γ′ i
r2

= + i
q2

r µpν
r µpνr µpν

6∈

Fig. 5.4: (A) A diagram that does not belong to the standard four-gluon ker-
nel. (B) The black kernel is the resulting four-gluon kernel when the
Schwinger mechanism is turned on. It contains the lined gray kernel
corresponding to the regular part with respect to q, and the composite
massless excitation in the q-channel. (C) The lined gray kernel is made
of the original gray kernel but with massive gluon propagators, and the
R̃ part of the BQ2 pole vertex Ṽ .

When the Schwinger mechanism is turned on, the structure of the ker-
nels is modified by the presence of composite massless excitations, described
by a propagator of the type i/q2. For example, as shown in Fig. 5.4, the
gray four-gluon kernel becomes a black kernel, diagram (b1), which is the
sum of two parts:

• The term (b2) which corresponds to a “regular” kernel (lined gray)
with respect to the direction of the momentum q.

• The term (b3) which describes the exchange of the composite massless
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excitation between two gluons in the q-channel.

This modifications define in a natural way two parts inside the BQ2 pole
vertex Ṽ . The sum of the dynamical generated terms coming from all
the multiparticle kernels, like diagram (b3) in Fig. 5.4, will constitute a
characteristic part of the vertex Ṽ , to be denoted by Ũ , namely the part
that contains at least a massless propagator i/q2. The remaining parts
of the vertex Ṽ , to be denoted by R̃, contain massless excitations in the
other two channels, namely 1/r2 and 1/p2 (but not 1/q2), and originate
from graphs such as (c2) of Fig. 5.4. Indeed, note that the kernel (b2) is
composed of an infinite number of diagrams, such as (c1), containing the
full vertex Γ̃′; these graphs, in turn, will furnish terms proportional to 1/r2

and 1/p2. An explicit diagrammatic example about how these two parts of
the vertex Ṽ emerge when the Schwinger mechanism is turned on can be
seen in Fig. 5.5.

+

Fig. 5.5: Modification of diagram (a2) in Fig. 5.3 when the Schwinger mechanism

is triggered by the vertex Ṽ . The first diagram is assigned to the R̃ part
while the second diagram is one of the contributions to the Ũ part of the
vertex Ṽ .

In order to study further the structure and properties of the vertex Ṽ ,
let us first define the full vertex Ṽamn

αµν (q, r, p), given by

Ṽamn
αµν (q, r, p) = gfamnṼαµν(q, r, p), (5.11)

with Ṽαµν(q, r, p) satisfying Eq. (5.3), the WI Eq. (5.7) and the STIs Eq.
(5.9). Using a general Lorentz basis this vertex can be expanded in terms
of scalar form factors as follows

Ṽαµν(q, r, p) = Ṽ1qαgµν + Ṽ2qαqµqν + Ṽ3qαpµpν + Ṽ4qαrµqν + Ṽ5qαrµpν

+ Ṽ6rµgαν + Ṽ7rαrµrν + Ṽ8rαrµpν + Ṽ9pνgαµ + Ṽ10pαpµpν .

(5.12)
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According to the arguments presented above, Ṽ may be decomposed into
two parts

Ṽαµν(q, r, p) = Ũαµν(q, r, p) + R̃αµν(q, r, p), (5.13)

with

Ũαµν(q, r, p) = qα(Ṽ1gµν + Ṽ2qµqν + Ṽ3pµpν + Ṽ4rµqν + Ṽ5rµpν), (5.14)

and

R̃αµν(q, r, p) =

(
Ṽ6gαν + Ṽ7rαrν +

Ṽ8

2
rαpν

)
rµ

+

(
Ṽ8

2
rαrµ + Ṽ9gαµ + Ṽ10pαpµ

)
pν . (5.15)

All form factors of Ũ (namely Ṽ1 - Ṽ5) must contain a pole 1/q2, while some
of them may contain, in addition, 1/r2 and 1/p2 poles. On the other hand,
none of the form factors of R̃ (namely Ṽ6 - Ṽ10) contains 1/q2 poles, but
only 1/r2 and 1/p2 poles.

In what follows we will focus on Ũαµν(q, r, p), which contains the ex-
plicit q-channel massless excitation, since this is the relevant channel in the
SDE of the gluon propagator, where Ṽαµν(q, r, p) will be eventually inserted
[graph (a1) in Fig. 5.1]. In fact, with the two internal gluons of diagram
(a1) in the Landau gauge, we have that

Pµρ(r)P νσ(p)Ṽαρσ(q, r, p) = Pµρ(r)P νσ(p)Ũαρσ(q, r, p)

= Pµρ(r)P νσ(p)qα(Ṽ1gρσ + Ṽ2qρqσ),

(5.16)

so that the only relevant form factors are Ṽ1 and Ṽ2.

5.2.2 The transition amplitude Ĩα(q) and the effective vertices B.

The previous discussion suggest that one may cast the Ũ part of the pole
vertex Ṽ , see Fig. 5.6, in such form that the nonperturbative pole becomes
manifest, namely

Ũamn
αµν (q, r, p) = Ĩab

α (q)

(
i

q2
δbc

)
Bcmn

µν (q, r, p). (5.17)
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(A)

(B) ; a

m, µ

n, ν

q

p

r

= ifamnBµν(q, r, p)

q

α
i
q2˜Uαµν = +

Īα(q) .

+

(d1) (d2) (d3)

˜
Iα(q)

.

p

r

ν

µ

+ . . .

;
a b

q

= i
q2δ

ab

︷ ︸︸ ︷

︸ ︷︷ ︸

Fig. 5.6: (A) The vertex Ũαµν is composed of three main ingredients: the transi-

tion amplitude Ĩα, which mixes the (background) gluon with a massless
excitation, the propagator of the massless excitation, and the effective
vertex Bµν which couples the massless excitation with two gluons. (B)
The Feynman rules (with color factors included) for (i) the propagator
of the massless excitation and (ii) the effective vertex Bµν .

In this expression the nonperturbative quantity

Bcmn
µν (q, r, p) = if cmnBµν(q, r, p), (5.18)

which can be expanded in form factors using a Lorentz basis as follows

Bµν(q, r, p) = B1gµν +B2qµqν +B3pµpν +B4rµqν +B5rµpν , (5.19)

is the effective vertex (or ”proper vertex function” [62]) describing the in-
teraction between the massless excitation and two gluons. In the standard
language used in bound state physics, Bµν(q, r, p) represents the “bound-
state wave function” (or “Bethe-Salpeter wave function”) of the two-gluon
bound state shown in (b3) of Fig. 5.5. Indeed, as can be seen in the latter
figure, Bµν enters quadratically in the amplitude mediated by the massless
excitation and its behavior must be described through a (homogeneous)
BSE, as we will see in more detail in Section 5.4. In addition, i/q2 is the
propagator of the scalar massless excitation. Finally,

Ĩab
α (q) = gδab Ĩα(q), (5.20)
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is the (nonperturbative) transition amplitude introduced in Fig. 5.6, allow-
ing the mixing between a background gluon and the massless excitation.
Evidently, by Lorentz invariance,

Ĩα(q) = qαĨ(q
2), (5.21)

and the scalar cofactor, to be referred as the “transition function”, is simply
given by

Ĩ(q2) =
qα

q2
Ĩα(q). (5.22)

Thus, using all of these ingredients we can write Eq. (5.17) as

Ũαµν(q, r, p) = − 1

q2
Ĩα(q)Bµν(q, r, p) = −qα

q2
Ĩ(q2)Bµν(q, r, p), (5.23)

so that the Lorentz expansions Eq. (5.14) and Eq. (5.19) allow us to write
the form factors of the Ũ part in terms of the transition function and the
form factors of the effective vertex Bµν in the following form,

Ṽj(q, r, p) = − 1

q2
Ĩ(q2)Bj(q, r, p); j = 1, . . . , 5. (5.24)

Note that, due to the Bose symmetry (already at the level of Ṽ ) with
respect to the interchange µ↔ ν and p↔ r, we must have

B1,2(q, r, p) = −B1,2(q, p, r), (5.25)

which implies that, in the limit q → 0, these form factors are zero by
antisymmetry

B1,2(0,−p, p) = 0. (5.26)

Finally, in principle, all other elementary vertices of the theory may
also develop pole parts, which will play a role completely analogous to that
of Ṽαµν in maintaining the corresponding STIs in the presence of a gluon
mass. Specifically, in the absence of quarks, the remaining vertices are the
Bc̄c vertex, Γ̃α, the BQ3 vertex, Γ̃αµνρ, and the BQc̄c vertex, Γ̃αµ, which
is particular of the PT-BFM formulation. The parts of their pole vertices
containing the i/q2 massless excitation, denoted by Ũα, Ũαµνρ and Ũαµ,
respectively, will assume (color indices suppressed) the common form

Ũα{... }(q, . . . ) = Ĩα(q)

(
i

q2

)
B{...}(q, . . . ), (5.27)
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where the various B{...} are shown in Fig. 5.7. As a final remark, it is

important to recognize that the transition amplitude Ĩα(q) is universal, in
the sense that it enters not only in the pole part Ṽ associated with the
three-gluon vertex, but rather in all possible such pole parts associated
with all other vertices. Indeed, looking at Eq. (5.27), one observes that
the pole parts of the interaction vertices share the transition amplitude
and, what really characterizes them, is the effective vertex joined to the
transition amplitude through the propagator of the massless excitation.

.

= B ; = Bµνρ ; = Bµ

Fig. 5.7: The various effective vertices appearing in Eq. (5.27) describing the
interaction between the massless excitation and gluons or ghosts.

5.2.3 One-loop dressed approximation for the transition function.

We will next approximate the transition amplitude Ĩα(q), connecting the
gluon with the massless excitation, by considering only diagram (d1) in
Fig. 5.6, corresponding to the gluonic one-loop dressed approximation; we
will denote the resulting expression by Īα(q).

Still in a general Rξ gauge, we can write down (see Fig. 5.8) the following
expression for the one-loop dressed gluonic approximation of the transition
amplitude,

Īα(q) =
i

2
CA

∫

k
Γ̃(0)

αµν(q,−k − q, k)∆µσ(k + q)∆νρ(k)Bρσ(−q,−k, k + q).

(5.28)

In this expression Γ̃
(0)
αµν is the tree-level value of the three-gluon vertex in

the BFM, which contains a dependence ξ−1 in the gauge fixing parameter,
and therefore the projection to the Landau gauge is a subtle exercise be-
cause one cannot set directly ξ = 0. This projection is achieved [26] by

first isolating from the tree-level vertex Γ̃
(0)
αµν the pinch part according to

the decomposition

Γ̃(0)
αµν(q,−k − q, k) = Γ(0)

αµν(q,−k − q, k) − 1

ξ
ΓP

αµν(q,−k − q, k), (5.29)
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q

q

a, α

b

k + qk

.

m, µn, ν

r, ρ s, σ

Fig. 5.8: Contribution to the one-loop dressed approximation for the transition
amplitude. The diagram has a symmetry factor 1/2 and the color and
Lorentz indices, as well as the momentum routing used in the calculation,
are explicitly specified.

where Γ
(0)
αµν is the standard three-gluon vertex at tree-level,

Γ(0)
αµν(q,−k − q, k) = −(2k + q)αgµν + (k − q)µgνα + (2q + k)νgαµ, (5.30)

and ΓP
αµν is the pinch part of the three-gluon vertex given by

ΓP
αµν(q,−k − q, k) = gαµkν + gαν(k + q)µ. (5.31)

Then, using the following identity triggered by the longitudinal momenta
of the pinch part

1

ξ
kν∆νρ(k) =

kρ

k2
, (5.32)

one gets rid of the ξ−1 dependence, allowing the projection to the Landau
gauge. So, according to this procedure, and after the appropriate shifts
in the momentum as well as using the property of Eq. (5.25) in order to
interchange the arguments of Bρσ, one obtains from Eq. (5.28) the result

Īα(q) =
i

2
CA

∫

k
Γ(0)

αµν(q,−k − q, k)∆µσ(k + q)∆νρ(k)Bρσ(−q,−k, k + q)

− iCA

∫

k

kρ

k2
∆σ

α(k + q)Bρσ(−q,−k, k + q), (5.33)

where, from now on it will be understood that the gluon propagators are
written in the Landau gauge, i.e, they assume the totally transverse form
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∆µν(q) = ∆(q2)Pµν(q) [notice that we have factorized out the (−i) factor
with respect to our general definition Eq. (3.4)]. We observe then that
the extra term which appears when expression Eq. (5.28) is projected to
the Landau gauge contains the contraction of the effective vertex Bρσ with
respect to the momentum of one of its gluon legs. This in turn implies
that, in order to evaluate this integral, the knowledge of the STI satisfied
by this effective vertex is required. The details of this calculation will
be given in Chapter 7 but, anticipating results, the role of this term is
adding the scalar form factor G(q2) of the auxiliary function Eq. (3.18) in
order to complete a BQI for the transition amplitude. However, to further
simplify the discussion without compromising its essential features, we will
next set G(q2) = 0. Thus, at this point, there is no distinction between
a background and a quantum gluon. With this simplification, Eq. (5.33)
reduces to

Īα(q) =
i

2
CA

∫

k
Γ(0)

αµν(q,−k − q, k)∆µσ(k + q)∆νρ(k)Bρσ(−q,−k, k + q).

(5.34)
Now using Eq. (5.22) and the WI satisfied by the tree-level three-gluon
vertex

qαΓ(0)
αµν(q,−k − q, k) = k2Pµν(k) − (k + q)2Pµν(k + q), (5.35)

we derive, after the appropriate shifts in the momentum, the expression for
the one-loop dressed approximation of the transition function

Ī(q2) =
i

q2
CA

∫

k
k2∆µσ(k + q)∆ρ

µ(k)Bρσ(−q,−k, k + q)

=
i

q2
CA

∫

k
k2∆µσ(k + q)∆ρ

µ(k)[B1gρσ +B2qρqσ], (5.36)

where in the last step we have used Eq. (5.19) and the fact that the gluon
propagators are in the Landau gauge.

Now, we are interested in obtaining the value of this quantity in the
limit q → 0. The reason is because in the next section we will be able
to relate this particular value of the transition function with the effective
gluon mass. To that end, we will carry out the Taylor expansions of the
several form factors appearing in Eq. (5.36) in the limit q → 0. Consider
then the Taylor expansion of an arbitrary function f(q, r, p) around q = 0
(and r = −p). In general we have

f(q,−p− q, p) = f(−p, p) + [2(q · p) + q2]f ′(−p, p)
+ 2(q · p)2f ′′(−p, p) + O(q3), (5.37)
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where the prime denotes differentiation with respect to (p+ q)2 and subse-
quently taking the limit q → 0, i.e,

f ′(−p, p) ≡ lim
q→0

{
∂f(q,−p− q, p)

∂(p + q)2

}
. (5.38)

So, if the function is antisymmetric under p↔ r, as happens with the form
factors B1,2, then f(−p, p) = 0. Thus, for the case of the form factors in
question, the Taylor expansion is

Bj(q,−p− q, p) = [2(q · p) + q2]B′
j(−p, p)

+ 2(q · p)2B′′
j (−p, p) + O(q3); j = 1, 2. (5.39)

Also, the corresponding Taylor expansion for the gluon propagator will be
given by

∆(p + q) = ∆(p) + [2(q · p) + q2]∆′(p) + 2(q · p)2∆′′(p) + O(q3). (5.40)

Using these Taylor expansions, spherical coordinates to write (q · k)2 =
q2k2 cos2 θ, and the integral

∫

k
f(k2) cos2 θ =

1

d

∫

k
f(k2), (5.41)

Eq. (5.36) becomes in the limit q → 0 (in d = 4)

Ī(0) = −3iCA

{∫

k
k2∆2(k)B′

1(k) +
1

2

∫

k
k4 ∂

∂k2
[∆2(k)B′

1(k)]

}
. (5.42)

Observe that we have used the property of Eq. (5.25) in order to interchange
the arguments of B1,2 in Eq. (5.36), so that the Taylor expansion of Eq.
(5.39) may be applied directly; this accounts for the additional minus sign.
Then, partial integration yields

∫

k
k4 ∂

∂k2
[∆2(k)B′

1(k)] = −3

∫

k
k2∆2(k)B′

1(k), (5.43)

and finally one arrives at (Minkowski space)

Ī(0) =
3

2
iCA

∫

k
k2∆2(k)B′

1(k), (5.44)

which corresponds to the value at zero momentum transfer for the one-loop
dressed gluonic approximation of the transition function.
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The transition to the Euclidean space proceeds by using the standard
formulas that allow the conversion from the physical Minkowski momentum
q2 to the Euclidean q2E = −q2 > 0; specifically

∆E(q2E) = −∆(−q2E); ∂q2 = −∂q2
E
;

∫

k
= i

∫

kE

. (5.45)

Then, dropping the subscript ”E”, we obtain the Euclidean version of Eq.
(5.44),

Ī(0) = −3

2
CA

∫

k
k2∆2(k)B′

1(k). (5.46)

If we define now y ≡ k2 and writing the Euclidean integration measure in
spherical coordinates,

∫
d4kE

(2π)4
=

1

(2π)3

∫ ∞

0
dyy

∫ π

0
dθ sin2 θ, (5.47)

we arrive finally to the result

Ī(0) = − 3CA

32π2

∫ ∞

0
dyy2∆2(y)B′

1(y). (5.48)

We end this subsection with a comment on the dimensions of the various
form factors that we have introduced in our calculations. The BQ2 pole
vertex Ṽ has mass dimensions [m], and so the form factors Ṽ1, Ṽ6 and
Ṽ9 are dimensionless, while the remaining form factors of the vertex have
dimension [m]−2. The integral Ī(q) has the same dimension as B1, and as
result, in order to keep Ṽ1 dimensionless, B1 must have dimensions of [m].

5.3 Making contact with the effective gluon mass.

Once the general structure of the BQ2 pole vertex Ṽ has been established
we are going to relate in this section their main dynamical constituents,
namely the transition amplitude Ĩα and the effective vertex Bµν , with the
effective gluon mass.

5.3.1 An exact relation.

The WI of Eq. (5.7) furnishes an exact relation between the dynamical
gluon mass, the transition function at zero momentum transfer, and the



52 5. The Schwinger mechanism in pure Yang-Mills theories.

form factor B1. Specifically, contracting both sides of the WI with two
transverse projectors, one obtains,

Pµρ(r)P νσ(p)qαṼαρσ(q, r, p) = [m2(r) −m2(p)]Pµ
σ (r)P σν(p). (5.49)

On the other hand, contracting Eq. (5.16) with the momentum of the
background leg and using the relation Eq. (5.24), we get

qαPµρ(r)P νσ(p)Ṽαρσ(q, r, p) = −Ĩ(q)[B1gρσ +B2qρqσ]Pµρ(r)P νσ(p).
(5.50)

Thus, equating both results, one arrives at

Ĩ(q)B1(q, r, p) = m2(p) −m2(r); B2(q, r, p) = 0. (5.51)

The above relations, together with those of Eq. (5.24), determine exactly
the from factors Ṽ1 and Ṽ2 of the BQ2 pole vertex, namely

Ṽ1(q, r, p) =
m2(r) −m2(p)

q2
; Ṽ2(q, r, p) = 0. (5.52)

Once determined these form factors we will take the limit q → 0 of
Eq. (5.51). For this, using Eq. (5.39) as well as the corresponding Taylor
expansion (r = −q − p)

m2(r) −m2(p) = 2(q · p)[m2(p)]′ + O(q2), (5.53)

assuming that the complete transition function Ĩ(0) is finite, as indeed is the
one-loop dressed approximation Eq. (5.44), and equating the coefficients
in front of (q · p), we arrive at (Minkowski space)

[m2(p)]′ = −Ĩ(0)B′
1(p). (5.54)

We emphasize that this is an exact relation, whose derivation relies only on
the WI and Bose symmetry that the BQ2 pole vertex satisfies, as captured
by Eq. (5.7) and Eq. (5.25), respectively.

5.3.2 Relating the gluon mass with the transition amplitude.

In this subsection we show how the vertex Ṽ gives raise to a gluon mass
when inserted into the corresponding SDE. We will restrict ourselves to the
one-loop dressed gluonic block shown in Fig. 5.1, and we will finally express
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m2(0) exclusively in terms of Ī(0), which, in turn depends on the existence
of Bµν through Eq. (5.44).

In the PT-BFM scheme, after the replacements Eq. (5.5) and Eq. (5.6),
the truncated SDE Eq. (3.22) of the gluon propagator corresponding to the
one-loop dressed gluonic block assumes the form

[q2Jm(q2) −m2(q2)]Pµν(q) =
q2Pµν(q) + i[(a1) + (a2)]

′
µν

[1 +G(q2)]2
, (5.55)

where the prime indicates that the fully dressed three-gluon vertex in dia-
gram (a1) must be replaced by its primed counterpart, as in Eq. (5.6), and
the various dressed gluon propagators appearing inside the corresponding
diagrams must be replaced by their massive version Eq. (5.5). The most
straightforward way to relate the gluon mass to the transition function Ī
is to identify, on both sides of Eq. (5.55), the cofactors of the tensorial
structure qµqν/q

2 which survive the limit q → 0, and then set them equal
to each other. It is clear that the left-hand side (lhs) of Eq. (5.55) furnishes
simply

lhs
∣∣
qµqν/q2 = m2(q2). (5.56)

To obtain the right-hand side (rhs) of Eq. (5.55) one must isolate the
qµqν/q

2 component of the contribution to diagram (a1) coming from the Ṽ

vertex. Specifically, if we denote by (a
eV
1 )µν this contribution, the starting

expression is

(a
eV
1 )µν =

1

2
g2CA

∫

k
Γ̃

(0)
µαβ(q,−k−q, k)∆αρ(k+q)∆βσ(k)Ṽνσρ(−q,−k, k+q).

(5.57)
At this point, the projection to the Landau gauge cannot be done directly
because of the BQ2 tree-level vertex contains a ξ−1 dependence in the
gauge fixing parameter. As was argued in the previous section, we can
bypass this problem by setting G(q2) = 0, given that the additional piece
which appears when we project to the Landau gauge is proportional to
this form factor. With this approximation, and the two internal gluons of
diagram (a1) written in the Landau gauge, according to Eq. (5.16), we
have that

(a
eV
1 )µν =

1

2
g2CA

∫

k
Γ

(0)
µαβ(q,−k−q, k)∆ασ(k+q)∆βρ(k)Ũνρσ(−q,−k, k+q).

(5.58)
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So, if we use the one-loop dressed approximation for the transition ampli-
tude (Ĩ → Ī), applying Eq. (5.23) we obtain from Eq. (5.58) the following
result

(a
eV
1 )µν = −1

2
g2CA

∫

k
Γ

(0)
µαβ∆ασ(k + q)∆βρ(k)

[
1

q2
Īν(−q)Bρσ

]

= g2

{
i

2
CA

∫

k
Γ

(0)
µαβ∆ασ(k + q)∆βρ(k)Bρσ

}(
i

q2

)
Īν(−q)

= g2Īµ(q)

(
i

q2

)
Īν(−q), (5.59)

where in the last equality we have used Eq. (5.34). It is now relatively

µ ν

q

︸ ︷︷ ︸
Īµ(q)

︸ ︷︷ ︸
Īν(−q)

i
q2

.

Fig. 5.9: The squared diagram.

straightforward to recognize that the contribution to the rhs comes from
the “squared” diagram shown in Fig. 5.9. Finally, applying Eq. (5.21)
together with the fact that Īν(−q) = −Īν(q), we deduce the following result

(a
eV
1 )µν = −ig2Ī2(q)

qµqν
q2

. (5.60)

Therefore, the mass-related contribution coming from the rhs of Eq. (5.55)
is given by a term

rhs
∣∣
qµqν/q2 = i(a

eV
1 )µν = g2Ī2(q). (5.61)

Equating then the expressions Eq. (5.56) and Eq. (5.61) we obtain finally
the following formula, which relates the effective gluon mass with the square
of the (one-loop dressed) transition function,

m2(q2) = g2Ī2(q). (5.62)
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We next take the limit q → 0 and go to the Euclidean space using the usual
rules and the result Eq. (5.48), obtaining

m2(0) = g2Ī2(0). (5.63)

Note that the m2(0) so obtained is positive-definite. We emphasize that
this relation constitutes the one-loop dressed approximation of the com-
plete relation; indeed, both the SDE used as starting point as well as the
expression for Ī are precisely the corresponding one-loop dressed contribu-
tions, containing gluons (but not ghosts). Also, the formal projection to
the Landau gauge has been avoided and we have set G(q2) = 0.

All these deficiencies will be fixed in the next chapters. The relevant
lesson to extract here is that, effectively the Schwinger mechanism is trig-
gered by the vertex Ṽ at the level of the SDE, and that the mass relation
obtained is positive-definite in the Euclidean space.

5.4 BSE for the bound-state wave function.

As has become clear in the previous section, the gauge boson (gluon) mass
is inextricably connected to the existence of the quantity B′

1. Indeed, if
B′

1 were to vanish, then, by virtue of Eq. (5.48) so would Ī(0), and there-
fore, through Eq. (5.63) we would obtain a vanishing m2(0). Thus, the
existence of B′

1 is of paramount importance for the mass generation mech-
anism envisaged here; essentially, the question boils down to whether or
not the dynamical formation of a massless bound-state excitation of the
type postulated above is possible. As is well known, in order to establish
the existence of such a bound-state one must derive the appropriate BSE
for the corresponding bound-state wave function, Bµν , (or, in this case, its
derivative), and find nontrivial solutions for this integral equation.

To be sure, this dynamical equation will be derived under certain simpli-
fying assumptions, which will be further refined in order to obtain numer-
ical solutions. We emphasize, therefore, that the analysis presented here
is meant to provide preliminary quantitative evidence for the realization of
the dynamical scenario considered, but cannot be regarded as a conclusive
demonstration.

The starting point is the BSE, shown in Fig. 5.10, for the vertex Γ̃′
αµν(q, r, p)

defined in Eq. (5.4). Note that, unlike the corresponding SDE of Fig. 5.3,
the vertices where the background gluon is entering (carrying momentum
q) are now fully-dressed. As a consequence, the corresponding multiparticle
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Fig. 5.10: The complete BSE for the full three-gluon vertex Γ̃′

αµν(q, r, p).

kernels appearing in Fig. 5.10 are different from those of the SDE, as shown
in Fig. 5.11.

The general methodology of how to isolate from the BSE shown in
Fig. 5.10 the corresponding dynamical equation for the quantity Bµν has
been explained in [16, 62]. Specifically, one separates on both sides of the
BSE each vertex (black circle) into two parts, a “regular” part and another
containing a pole 1/q2; this separation is shown in Fig. 5.12. Then, the BSE
for Bµν(q, r, p) is obtained simply by equating the pole parts on both sides.
Of course, for the case we consider the full implementation of this general
procedure would lead to a very complicated structure, because, in principle,
all fully dressed vertices appearing on the rhs of Fig. 5.10 may contain pole
parts [i.e., not just the three-gluon vertex of (a) but also those in (b), (c),
and (d)].Thus, one would be led to an equation, whose lhs would consist of
Bµν , but whose rhs would contain the Bµν together with all other similar
vertices, denoted by B{...} in Eq. (5.27). Therefore, this equation must be
supplemented by a set of analogous equations, obtained from the BSEs of
all other vertices appearing on the rhs of Fig. 5.10 [i.e., those in (b), (c),
(d)]. So, if all the vertices involved contain a pole part, one would arrive
at a system of several coupled integral equations, containing complicated
combinations of the numerous form factors composing these vertices (see,
for example [16]).

It is clear that for practical purposes the above procedure must be
simplified to something more manageable. To that end, we will consider
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Fig. 5.11: (A) Schematic relation between the SDE and BSE kernels. (B) Example
of a diagram not contained in the corresponding BSE kernel, in order
to avoid overcounting.

graph (a) on the rhs of Fig. 5.10, thus reducing the problem to the treatment
of a single integral equation. Specifically, the BSE we are going to study
for Bµν can be seen in Fig. 5.12 and is given by

Bamn
µν =

∫

k
Babc

αβ ∆αρ
br (k + q)∆βσ

cs (k)Ksnmr
σνµρ . (5.64)

In addition, we will approximate the four-gluon BS kernel K by the
lowest-order set of diagrams shown in Fig. 5.13, where the vertices are bare,
while the internal gluon propagators are fully-dressed. To proceed further,
observe that the diagram (a1) does not contribute to the BSE, because the
color structure of the tree-level four-gluon vertex vanishes when contracted
with the color factor fabc of the Babc

αβ . Diagrams (a2) and (a3) are equal,
and are multiplied by a symmetry factor 1/2. So, in this approximation,
the BS kernel is given by

Ksnmr
σνµρ (−k, p,−p − q, k + q) = −ig2f snef emrΓ(0)

σγν∆γλ(k − p)Γ
(0)
µλρ, (5.65)

where (as usual) Γ
(0)
αµν is the tree-level value of the three-gluon vertex. So,

using this kernel and setting the gluon propagators in the Landau gauge,
the BSE becomes

Bµν = −2πiαSCA

∫

k
Bαβ∆αρ(k + q)∆βσ(k)∆γλ(k − p)Γ

(0)
µλρΓ

(0)
σγν , (5.66)
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Fig. 5.12: (A) The separation of the vertex in regular and pole parts. (B) The
BSE for the bound-state wave function Bµν .

where we have canceled out a color factor fabc from both sides.

Let us focus on the lhs of Eq. (5.66). Using the Taylor expansion in
Eq. (5.39), the fact that B2 = 0 [see Eq. (5.51)], and multiplying by a
transverse projector we obtain, in d = 4 dimensions,

Pµν(p)Bµν = 6(q · p)B′
1(p) + O(q2). (5.67)

Next, let us denote by [rhs]µν the rhs of Eq. (5.66). Inserting the bare value
for the three-gluon vertices, multiplying by the transverse projector, and
using the Taylor expansions in Eq. (5.39) and Eq. (5.40), after standard
manipulations one obtains the result (d = 4)

Pµν(p)[rhs]µν = −4πiαSCA(q · p)
∫

k
B′

1(k)∆
2(k)∆(k − p)N (p, k) + O(q2),

(5.68)
where we have defined the kernel

N (p, k) =
4(p · k)[p2k2 − (p · k)2]

p4k2(k − p)2
[8p2k2−6(pk)(p2+k2)+3(p4+k4)+(pk)2].

(5.69)
Thus, equating the lhs with the rhs, we derive the following BSE for the
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Fig. 5.13: The Feynman diagrams considered for the BS kernel. The interaction
vertices are approximated by their tree-level values, while the internal
gluon propagators are fully-dressed.

derivative of the form factor that appears in the mass relation Eq. (5.54)

B′
1(p) = −2πi

3
αSCA

∫

k
B′

1(k)∆
2(k)∆(k − p)N (p, k). (5.70)

Going to Euclidean space, we define

x ≡ p2; y ≡ k2; z ≡ (p+ k)2, (5.71)

and the Euclidean integration measure in spherical coordinates is given by
Eq. (5.47), so that the BSE becomes

B′
1(x) = −αSCA

12π2

∫ ∞

0
dyyB′

1(y)∆
2(y)

√
y

x

∫ π

0
dθ sin4 θ cos θ

×
[
z + 10(x + y) +

1

z
(x2 + y2 + 10xy)

]
∆(z). (5.72)

Then, one may determine the value of B′
1 at zero momentum transfer. In

spherical coordinates we have z = x+ y + 2
√
xy cos θ. So, around x = 0,

1

z
=

1

x+ y

[
1 − 2

√
xy

x+ y
cos θ

]
, (5.73)

and using the Taylor expansion for the gluon propagator ∆(z), the limit
x→ 0 can be taken in the BSE, giving the value

B′
1(0) = −αSCA

8π

∫ ∞

0
dyy3B′

1(y)∆
2(y)∆′(y). (5.74)
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Let us finally implement an additional simplification to Eq. (5.72),
which will allow us to carry out the angular integration exactly, thus re-
ducing the problem to the solution of a one-dimensional integral equation.
Specifically, the simplification consists in approximating the gluon propa-
gator ∆(z) appearing in the BSE of Eq. (5.72) [but not the ∆2(y)] by its
tree-level value, that is, ∆(z) = 1/z. Then, with the aid of the angular
integrals,

√
y

x

∫ π

0
dθ

sin4 θ cos θ

z
=

π

16x

[
y

x2
(y − 2x)Θ(x− y) +

x

y2
(x− 2y)Θ(y − x)

]
,

√
y

x

∫ π

0
dθ

sin4 θ cos θ

z2
= − π

4x

[
y

x2
Θ(x− y) +

x

y2
Θ(y − x)

]
, (5.75)

one brings Eq. (5.72) into the form

B′
1(x) =

αSCA

24π

{∫ x

0
dyB′

1(y)∆
2(y)

y2

x

(
3 +

25

4

y

x
− 3

4

y2

x2

)

+

∫ ∞

x
dyB′

1(y)∆
2(y)y

(
3 +

25

4

x

y
− 3

4

x2

y2

)}
. (5.76)

The limit x→ 0 of this equation is given by (the change of variable y = tx
may be found useful)

B′
1(0) =

αSCA

8π

∫ ∞

0
dyyB′

1(y)∆
2(y). (5.77)

Note that this result coincides, as it should, with that obtained from Eq.
(5.74) after setting ∆′(y) = −1/y, namely, the derivative of the tree-level
propagator.

5.5 Numerical solutions and existence of a bound state.

In this section we will carry out a detailed numerical analysis of the integral
equation obtained in the previous section, namely, Eq. (5.76). The main
objective of this study is to establish the existence of nontrivial solutions
for B′

1 and study their dependence on the value of the strong coupling αS.

First of all, let us point out that, despite appearances, the integral
equation Eq. (5.76) is not linear in the unknown function B′

1(x). The
nonlinearity enters through the propagator ∆(y), which depends on the
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dynamical mass m2(y) through Eq. (5.5); as a result, and by virtue of Eq.
(5.54), which, in Euclidean space reads

[m2(y)]′ = −Ĩ(0)B′
1(y), (5.78)

it is clear that ∆(y) depends on B′
1(y) in a complicated way. Specifically,

from the aforementioned equations we have

∆−1
m (y) = yJm(y) +m2(y), (5.79)

m2(y) = m2(0) − Ĩ(0)

∫ y

0
dzB′

1(z). (5.80)

Then, Eq. (5.76) must be solved together with the two additional relations
given in Eq. (5.79) and Eq. (5.80), as a nonlinear system.

For the purposes of the present analysis we will simplify somewhat the
procedure described above. In particular, we will study Eq. (5.76) in
isolation, using simple Ansätze for ∆(y). Specifically, in order to explore
the sensitivity of the solutions on the details of ∆(q2), we will employ three
infrared-finite forms, to be denoted by ∆1(q

2), ∆2(q
2) and ∆3(q

2), focusing
on their differences in the intermediate and asymptotic regions of momenta.

Let us start with the simplest such propagator, namely, a tree-level
massive propagator of the form

∆−1
1 (q2) = q2 +m2

0, (5.81)

where m2
0 is a hard mass, that will be treated as a free parameter. On

Fig. 5.14, the (blue) dotted curve represents ∆1(q
2) for m0 = 376 MeV.

The second model is an improved version of the first, where we intro-
duce the renormalization-group logarithm next to the momentum q2, more
specifically

∆−1
2 (q2) = q2

[
1 +

13CAg
2

96π2
ln

(
q2 + ρm2

0

µ2

)]
+m2

0, (5.82)

where ρ is an adjustable parameter varying in the range ρ ∈ [2, 16]. No-
tice that the hard mass m2

0 appearing in the argument of the perturbative
logarithm acts as an infrared cutoff; so, instead of the logarithm diverging
at the Landau pole, it saturates at a finite value. The (black) dashed line
in Fig. 5.14 represents the Eq. (5.82) when ρ = 16, m0 = 376 MeV, and
µ = 4.3 GeV.
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Fig. 5.14: The three models for the gluon propagator as function of the momen-
tum q2. The (red) continuous line is the fit for the lattice gluon prop-
agator given by Eq. (5.83) when m = 520 MeV, g2

1 = 5.68, ρ1 = 8.55,
ρ2 = 1.91, and µ = 4.3 GeV; the (black) dashed line is the model of
Eq. (5.82) with ρ = 16, αs = 0.667 and m0 = 376 MeV, while the
(blue) dotted line represents the massive propagator of Eq. (5.81) when
m0 = 376 MeV.

The third model is simply a physically motivated fit for the gluon propa-
gator determined by the large-volume lattice simulations of [32]. The lattice
data presented there correspond to a SU(3) quenched lattice simulation,
where ∆(q2) is renormalized at µ = 4.3 GeV. This gluon propagator can
be accurately fitted by the expression [see also Eq. (2.1) in Chapter 2]

∆−1
3 (q2) = q2

[
1 +

13CAg
2
1

96π2
ln

(
q2 + ρ1m

2
g(q

2)

µ2

)]
+m2

g(q
2), (5.83)

where m2
g(q

2) is a running mass given by

m2
g(q

2) =
m4

q2 + ρ2m2
, (5.84)

and the values of the fitting parameters are m = 250 MeV, g2
1 = 5.68,
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ρ1 = 8.55 and ρ2 = 1.91. On Fig. 5.14, the (red) continuous line represents
the fit for the lattice gluon propagator given by Eq. (5.83). Notice that, in
all three cases, we have fixed the value of ∆−1(0) = m2

0 ≈ 0.14.

Our main findings may be summarized as follows:

• In Fig. 5.15 we show the solutions of Eq. (5.76) obtained using as
input the three gluon propagators shown on Fig. 5.14. For the simple
massive propagator of Eq. (5.81), a solution for B′

1(q) is found for
αS = 1.48; in the case of ∆2(q

2) given by Eq. (5.82), a solution is
obtained when αS = 0.667, while for the lattice propagator ∆3(q

2) of
Eq. (5.83) a nontrivial solution is found when αS = 0.492.
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 1(q), m0=376 MeV, and s=1.48
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 3(q) and s=0.492

Fig. 5.15: The corresponding solutions of Eq. (5.76) obtained with the gluon prop-
agators shown on the left panel. The solutions for B′

1(q) are obtained
when we fix the value of αs = 1.48, αs = 0.667, and αs = 0.492 for
∆1(q), ∆2(q), and ∆3(q), respectively.

• Since ∆(y) at this level is treated as an “external” object, the ho-
mogeneous Eq. (5.76) becomes linear in B′

1; as a result, given one
solution we obtain a family of such solutions [64], i.e., if B′

1(q) is a so-
lution then the function cB′

1(q) is also a solution, for any real constant
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c. Therefore, the solutions shown on Fig. 5.15 correspond to a repre-
sentative case of a family of possible solutions, where the constant c
was chosen such that B′

1(0) = 1. This arbitrariness in the value of c
may be completely eliminated if one restores the nonlinearity of Eq.
(5.76) considering also Eq. (5.79) and Eq. (5.80). As a consequence
one should be able to obtain a single expression for B′

1(q) for a unique
value of αS .

• Another interesting feature of the solutions of Eq. (5.76) is the depen-
dence of the observed peak on the support of the gluon propagator in
the intermediate region of momenta. Specifically, an increase of the
support of the gluon propagator in the approximate range (0.3 − 1)
GeV results in a more pronounced peak in B′

1(q).

• In addition, observe that due to the presence of the perturbative
logarithm in the expression of ∆2(q

2) and ∆3(q
2), the corresponding

solutions B′
1(q) fall off in the ultraviolet region much faster than those

obtained using the simple ∆1(q
2) of Eq. (5.81).

5.6 Decoupling of the massless excitation.

As we have seen throughout this chapter, the interaction vertices of the
theory must be modified adding a pole part, which introduces the required
massless excitations in order to trigger the Schwinger mechanism. These
massless excitations, in turn, modify the off-shell amplitudes appearing in
the skeleton expansions of the interaction vertices by introducing poles in
their structures. Nevertheless, it is true that the full on-shell amplitudes do
not possess such poles and, hence, the massless excitations decouple from
the theory.

In this section we give an explicit example of how the massless excitation
decouples from an on-shell amplitude. Specifically, we will show how this
is indeed what happens in the case of the four-gluon amplitude. To be
sure, a complete proof of the decoupling of the massless excitation from all
Yang-Mills amplitudes requires the treatment of kernels with an arbitrary
number of incoming gluons. However, the example consider here captures
the essence of the underlying decoupling mechanism.

The demonstration followed here is similar to that given in [61] for the
case of an Abelian model. One starts by considering the complete four-
gluon amplitude, given by graph (a) in Fig. 5.16, which consist on three
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Fig. 5.16: The complete four-gluon amplitude and the various terms composing it.

distinct pieces:

• The amplitude represented by the diagram (b), which is regular as
q2 → 0.

• The graph (c), which contains the massless excitation, coupled to the
external gluons through the proper vertex function Bµν .

• The one-particle reducible term, denoted by (d), which is excluded
from the SDE kernel in the usual skeleton expansion.

Of course, the above amplitudes are none other than (b2), (b3) and (a), in
Fig. 5.4, respectively. Since the amplitude (b) is regular by construction,
one must only demonstrate that, as q2 → 0, the divergent part of (c),
whose origin is the massless excitation, cancels exactly against an analogous
contribution contained in (d), leaving finally a regular result.

We start by considering the term (d). Within the PT-BFM frame-
work that we use, the off-shell gluon (carrying momentum q) is effectively
converted into a background gluon; thus, the gluon propagator appearing
inside (d) is given by ∆̂(q2), while the two three-gluon vertices are the Γ̃′

defined in Eq. (5.4). So,

(d) = −ig2Γ̃′
αµν(−q, p1, p2)P

αβ(q)∆̂(q2)Γ̃′
βρσ(q, p3, p4)

= −ig2Γ̃′
αµν(−q, p1, p2)∆̂(q2)Γ

′α
ρσ(q, p3, p4), (5.85)

where the factor (−i) comes from the definition of the gluon propagator,
Eq. (3.4). In the second line we have eliminated the longitudinal term
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qαqβ/q2 inside Pαβ(q) using the ”on-shellness” condition

qαΓ̃′
αµν(q, r, p)

∣∣
o.s.

= [∆−1(p)Pµν(p) − ∆−1(r)Pµν(r)]
∣∣
o.s.

= 0, (5.86)

valid for both three-gluon vertices. We emphasize that the full Γ̃′ is needed
(with the Ṽ part included) for the on-shellness condition of Eq. (5.86) to
be fulfilled. Note also that, if one had chosen a nonvanishing gauge-fixing
parameter ξ for the gluon propagator (instead of the ξ = 0 of the Landau
gauge), then the condition of Eq. (5.86) is instrumental for the cancellation
of the unphysical parameter ξ from the physical amplitude.

Next, it is clear that from the vertex Ṽ contained in Γ̃′ only the Ũ part
survives, because all longitudinal momenta contained in R̃ are annihilated
on shell, i.e., when contracted with the appropriate polarization vectors
eµ(p), due to the validity of the relation pµeµ(p) = 0. Then, we have that
(suppressing indices)

Γ̃′∆̂Γ̃′ = (Γ̃m + Ũ)∆̂(Γ̃m + Ũ) = Γ̃m∆̂Γ̃m + Γ̃′∆̂Ũ + Ũ∆̂Γ̃′ − Ũ∆̂Ũ . (5.87)

Given that the first term in Eq. (5.87) is regular, while the second and third
term vanish on-shell by virtue of Eq. (5.86) [which is triggered because Ũ
is proportional to qα, see Eq. (5.14)], we are led to the following expression
for the pole part of (d)

(d)
∣∣
pole

= ig2Ũαµν∆̂(q2)Ũα
ρσ. (5.88)

Then, using Eq. (5.23), we obtain

(d)
∣∣
pole

= −
{
Bµν

(
i

q2

)
Bρσ

}
[g2Ĩ2(q2)∆̂(q2)]. (5.89)

Now, in the limit q2 → 0, the quantity in square brackets goes to 1, precisely
by virtue of Eq. (5.63) [remember, ∆̂−1(0) = m̂2(0)]. Therefore,

lim
q2→0

(d)
∣∣
pole

= − lim
q2→0

{
Bµν

(
i

q2

)
Bρσ

}
, (5.90)

which is precisely the contribution of the term (c) in the same kinematic
limit, but with the opposite sign. Therefore, the on-shell four-gluon ampli-
tude is free from poles at q2 = 0, as announced.
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5.7 Discussion.

Some comments about the limitations of the results obtained here must be
added. First of all, the formal projection to the Landau gauge of some of the
equations we have derived in this chapter requires the knowledge of the STI
satisfied by the effective vertex Bµν . We will see that this STI gives raise
to terms proportional to the form factor G(q2) of the auxiliary function Eq.
(3.18) and this is the reason for setting G(q2) = 0. This approximation do
not interfere with the essence and the ideas presented here. Nevertheless,
a self-consistent description of the Schwinger mechanism must take into
account this aspect.

Another limitation of our results is that both, the expression Eq. (5.48)
for the transition amplitude and the formula Eq. (5.63) for the gluon mass,
have been obtained in the one-loop dressed approximation. In principle,
the analysis presented above may be extended to include the rest of the
graphs contributing to the transition amplitude and the gluon SDE, invok-
ing the corresponding pole parts of the remaining vertices. This task will
be achieved in the subsequent chapters.

In fact the extension of this analysis beyond the one-loop dressed ap-
proximation is absolutely essential to obtain a consistent description of the
effective gluon mass. To explain how one reaches the above conclusion,
consider again Eq. (5.78) relating the derivative of the effective gluon mass
with the value at q2 = 0 of the full transition amplitude,

[m2(y)]′ = −Ĩ(0)B′
1(y).

The numerical results for the BSE which describes the behavior of B′
1,

shown in Fig. 5.15, reveal that this quantity is positive definite in the
entire range of physical momenta, i.e., B′

1(y) > 0. So, if one wants to find
monotonically decreasing solutions for the effective gluon mass, the value
Ĩ(0) must be positive. When this happens, the derivative of the effective
gluon mass is negative and provides the desired kind of solutions. However,
the one-loop dressed approximation for the transition amplitude Eq. (5.48)
gives a negative value Ī(0) < 0. As a consequence, the derivative of the
effective gluon mass in this approximation is positive, [m2(y)]′ > 0, and
one arrives to the conclusion that monotonically decreasing solutions are
not compatible with these constraints. So, it is clear that something is
missing in the one-loop dressed approximation. Thus, one expects that the
addition of higher order contributions be able to reverse the sign of the
value Ī(0), providing the right sign for the derivative of the effective gluon
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mass. For this reason, the next chapters will be dedicated to obtaining the
full description (and not only the one-loop dressed approximation) of the
dynamical gluon mass generation mechanism.



6. THE ALL-ORDER EQUATION OF THE EFFECTIVE GLUON
MASS.

At the level of the SDE for the gluon propagator, the analysis of the
mass generation mechanism finally boils down to the derivation of an inte-
gral equation that determines the evolution of the dynamical gluon mass,
m2(q2), as a function of the momentum q2. The main purpose of this
chapter is to present the general derivation of the complete gluon mass
equation [72], employing the full SDE of the gluon propagator, and show
that this equation supports solutions giving raise to an infrared-finite gluon
propagator, i.e., ∆−1(0) = m2(0).

In order to address this difficult question, we consider the set of modified
SDEs obtained within the framework of the PT-BFM scheme. In particular,
one gains a considerable advantage by considering the version of the identity
Eq. (3.17) connecting the QQ with the QB propagators. The resulting
SDE (to be denoted as the ”QB version”) displays the powerful block-wise
transversality property known from the BB case and has two additional
important features: it contains fewer graphs, and the limiting procedure
necessary for projecting the result to the Landau gauge is significantly less
involved.

Even within this improved framework, one still faces the fundamental
question of how to disentangle from the SDE of the entire gluon propagator
the part that controls the evolution of the mass from the part that controls
the evolution of the “kinetic” term. In this chapter we present a new
unambiguous way for implementing this separation, which exploits to the
fullest the characteristic structure of the pole vertices V introduced in the
previous chapter.

It turns out that the very special nature of these vertices furnishes a solid
guiding principle for implementing the aforementioned separation between
mass and kinetic terms. In particular, their longitudinal structure, coupled
to the fact that we work in the Landau gauge, completely determines the
qµqν component of the mass equation; this is tantamount to knowing the
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full mass equation, given that the answer is transverse (so, the gµν part is
automatically fixed from its qµqν counterpart).

As already mentioned, in the present chapter we include all fully dressed
graphs (one and two loops) comprising the corresponding full SDE of the
QB propagator. Going beyond the “one-loop” dressed analysis is highly
nontrivial, because it requires the introduction of a new V -type vertex,
never considered before. Specifically, in addition to the V s related to the
three-gluon vertices, known from the one-loop case, the V vertex associ-
ated with the fully-dressed four gluon vertex BQ3 must be included in the
corresponding “two-loop dressed” diagram. As happens in the one-loop
case with the three-gluon V , this new four-gluon V vertex must satisfy a
very concrete Abelian-like WI, in order to ensure the transversality of the
“two-loop dressed” part of the calculation. Interestingly enough, and again
as a consequence of their longitudinal nature and the Landau gauge, the
WIs (and in some case the STI) satisfied by all V -type vertices involved in
this problem is all that one needs for calculating their effects exactly. This
fact clearly constitutes an important simplification and bypasses the need
to actually construct explicitly the corresponding vertices.

As a consequence of the novel aspects introduced to our approach, the
“one-loop” calculation presented in the first part of our derivation (Sec-
tion 6.2) proceeds in a far more concise way compared to the correspond-
ing analysis carried out in [22], rectifying, in fact, the form of the resulting
mass equation. The two-loop contribution is considerably more cumber-
some to obtain, and is expressed in terms of a kernel that, in addition to
full gluon propagators, involves also the conventional, fully dressed, three
gluon vertex (Q3). The two-loop part of the mass equation is subsequently
simplified by choosing tree-level values for a judicious combinations of its
ingredients, a fact that allows us to carry out explicitly one of the two
integrations over virtual momenta. In order to gain insight on the numer-
ical subtleties associated with this equation, we first consider its limit at
vanishing physical momenta, thus converting it into a nonlinear constraint.
Already at this level, the contribution from the two-loop part appears to
be of paramount importance, having far-reaching consequences for the be-
havior of the resulting solutions. The detailed numerical solution of the
full equation (for arbitrary values of the physical momentum) confirms this
impression, revealing the existence of positive-definite and monotonically
decreasing solutions.

The chapter is organized as follows. In Section 6.1 we outline in detail
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the methodology that allows one to extract from the corresponding SDE
two separate equations, one for the mass and one for the kinetic term, and
explain the advantage of selecting out the qµqν component. Section 6.2 is
dedicated to the concise derivation of the one-loop version of the mass equa-
tion. In addition, a brief discussion about the ghost sector (only “one-loop”
in this new SDE version) is included, explaining why the ghost graphs do
not affect the mass equation. In Section 6.3 we present the full two-loop
calculation, organizing the corresponding technical aspects into various self-
contained subsections. In Section 6.4 we present the final form of the in-
tegral equation that governs the dynamical mass, and discuss some of its
general properties. In addition, we calculate an approximate expression for
the new contribution to the kernel of this integral equation, to be used in
the ensuing numerical analysis. In Section 6.5 we solve numerically the
integral equation, we determine a family of positive-definite and monoton-
ically decreasing solutions, and study their dependence on the value of the
strong coupling constant.

6.1 Deriving the mass equation: General methodology

The starting point to derive the mass equation will be the SDE satisfied
by the QB gluon propagator ∆̃(q2) [see Eq. (3.8)] and the second rela-
tion in Eq. (3.17). Then, the corresponding version of the SDE for the
conventional gluon propagator (in the Landau gauge) reads

∆−1(q2)Pµν(q) =
q2Pµν(q) + i

∑6
i=1(ai)µν

1 +G(q2)
, (6.1)

where the diagrams (ai) are shown in Fig. 3.2. The crucial points to rec-
ognize are:

• One has a reduced set of Feynman diagrams (six instead of ten) com-
pared to those appearing in the formulation in terms of ∆̂(q2), see
Fig. 3.3.

• The quantum leg enterig from the left in diagram (a1) contains the

tree-level conventional three-gluon vertex Γ
(0)
αµν instead of the tree-

level BQ2 vertex Γ̃
(0)
αµν . This fact will allow the projection to the Lan-

dau gauge directly in the part of the calculation related to the masses
without the necessity of applying the decomposition Eq. (5.29) and
the identity Eq. (5.32).
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• The most important feature of the PT-BFM formalism for our pur-
poses, namely the block-wise transversality imposed at the level of
the SDE for the gluon self-energy, is still present. In particular, the
transversality of the gluon self-energy is realized according to the pat-
tern highlighted by the boxes of Fig. 3.2 and shown in Eq. (3.16).

As explained in the previous chapter, see Section 4.1, the special vertices
Ṽ (and V ) enforce the transversality of the rhs of Eq. (6.1) in the presence
of gluon masses. Specifically, writing the ∆−1

m (q2) on the lhs of Eq. (6.1) in
the form given in Eq. (5.5) , one has that

[q2Jm(q2) −m2(q2)]Pµν(q) =
q2Pµν(q) + i

∑6
i=1(a

′
i)µν

1 +G(q2)
, (6.2)

where the “primes” indicates that (in general) the various fully dressed
vertices appearing inside the corresponding diagrams must be replaced by
their primed counterparts, as in Eq. (5.6). Thus, in graph (a1) the BQ2

vertex will be substituted by Γ̃′, while in graph (a6) both the BQ2 and the
Q3 type of vertices must contain the corresponding Ṽ and V components,
respectively. In addition, in diagram (a5) the primed version of the vertex
BQ3 will make its appearance. These modifications have an important
effect: the blockwise transversality property of Eq. (3.16) holds also for
the “primed” graphs, i.e., when (ai) → (a′i).

The lhs of Eq. (6.2) involves two unknown quantities, Jm(q2) andm2(q2),
which will eventually satisfy two separate, but coupled, integral equations.
of the generic type

Jm(q2) = 1 +

∫

k
K1(q

2,m2,∆m),

m2(q2) =

∫

k
K2(q

2,m2,∆m). (6.3)

such that q2K1(q
2,m2,∆m) → 0, as q2 → 0, whereas K2(q

2,m2,∆m) 6= 0
in the same limit, precisely because it includes the 1/q2 terms contained
inside the various V and Ṽ terms.

In this chapter we will focus on the derivation of the closed form of the
integral equation governing m2(q2). To that end, we must identify all mass
related contributions contained in the Feynman graphs that comprise the
rhs of Eq. (6.2). Now, with the transversality of both sides of Eq. (6.2)
guaranteed, it turns out that it is far more economical to derive the mass
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equation by isolating the appropriate cofactors of qµqν/q
2 on both sides,

instead of the gµν , or instead of taking the trace. In particular, to obtain
the rhs of the mass equation, one must

• Consider the graphs that contain a vertex Ṽ .

• Isolate the qµqν/q
2 component of the contributions coming from the

Ṽ vertices.

To explain how one reaches the above conclusion, let us point out that,
clearly, were it not for the Ṽ and V terms that contain the massless poles,
no gluon mass could be generated. However, as we will see in detail in what
follows, the longitudinal nature of the vertices Ṽ [viz. Eq. (5.3)], coupled
to the fact that we work in the Landau gauge, force the corresponding
contribution to be proportional to qν [see Eqs. (6.24) and (6.42)]. The
only exception to this rule is the V that appears inside graph (a6), as part
of the Q3 vertex Γ′; however, the corresponding contribution is shown to
vanish identically in the Landau gauge (see Sec. 6.3). Thus, if we denote
by (a

eV

i )µν the Ṽ -related contributions of the corresponding diagrams, these
latter terms are proportional to qµqν/q

2 only, namely

(a
eV

i )µν =
qµqν
q2

a
eV

i (q2) (6.4)

so that

m2(q2) =
i
∑

i=1 a
eV

i (q2)

1 +G(q2)
, (6.5)

where the sum includes only the graphs i = 1, 5, 6.
Similarly, the equation for Jm(q2) may be obtained from the qµqν/q

2

component of the parts of the graphs that do not contain V components.
These graphs are identical to the original set (a1)− (a6), but now Γ̃ → Γ̃m,
∆ → ∆m, etc. To avoid notational clutter we will use the same letter as be-
fore, and the aforementioned changes are understood. These contributions
may be separated in gµν and qµqν/q

2 components,

(ai)µν = gµν Ai(q
2) +

qµqν
q2

Bi(q
2) (6.6)

Note that graphs (a2) and (a4) are proportional to gµν only; so, in the
notation introduced above, B2(q

2) = B4(q
2) = 0. Then, the corresponding

equation for Jm(q2) reads

−q2Jm(q2) =
−q2 + i

∑
i=1Bi(q

2)

1 +G(q2)
, (6.7)
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with i = 1, 3, 5, 6.
We hasten to emphasize that the fact that we focus on the qµqν/q

2

terms, instead of the gµν , in no way indicates a potential clash with the
transversality of the gluon self-energy, which is manifestly preserved through-
out. In fact, it is precisely the validity of Eq. (3.6) that allows one to choose
freely between the two tensorial structures. The point is that the transver-
sality of Eq. (6.2) should not be interpreted to mean that the algebraic
origin of the terms proportional to gµν is the same as that of the terms
proportional to qµqν/q

2. In particular, the qµqν/q
2 of Jm(q2) and m2(q2)

are easily separable, as the Eqs. (6.5) and (6.7) indicate, whereas their gµν

parts are entangled, and their separation is significantly more delicate.
As a particular example of how the gµν part requires an elaborate treat-

ment, while the qµqν/q
2 does not, let us consider the basic cancellation tak-

ing place at the “one-loop dressed” level, enforced by the so-called “seagull
identity”: the (quadratic) divergence of the “seagull” diagram (a2) is anni-
hilated exactly by a very particular contribution coming from graph (a1),
by virtue of the identity (valid in dimensional regularization) [43]

∫

k
k2 d∆m(k2)

dk2
+
d

2

∫

k
∆m(k2) = 0. (6.8)

The point is that, all terms involved in this cancellation are proportional
to gµν , and it is only after they are properly combined that their total
contribution vanishes (as q2 → 0), by virtue of Eq. (6.8); instead, their
qµqν/q

2 counterparts vanish individually, in the same limit.
In order to appreciate this last point, consider the expression

Iµν(q) ≡
∫

k
kµkνf(k, q) (6.9)

where f(k, q) is an arbitrary function that remains finite in the limit q2 → 0.
Clearly,

Iµν(q) = gµνA(q2) +
qµqν
q2

B(q2) , (6.10)

and the form factors A(q2) and B(q2) are given by

A(q2) =
1

d− 1

∫

k

[
k2 − (k · q)2

q2

]
f(k, q),

B(q2) = − 1

d− 1

∫

k

[
k2 − d

(k · q)2
q2

]
f(k, q) (6.11)
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Then, setting (q · k)2 = q2k2 cos2 θ, and using the angular integral Eq.
(5.41), we obtain from Eq. (6.11) that, as q2 → 0,

A(0) =
1

d

∫

k
k2 f(k); B(0) = 0. (6.12)

Evidently, the function f may be such that the integral defining A(0) di-
verges, while, for the same function, B(0) vanishes.

Now, in the context of the “one-loop” dressed calculation, the term
Iµν(q) originates from graph (a1), with the replacement Γ̃ → Γ̃m, ∆ → ∆m,

as mentioned above. The WI satisfied by Γ̃m is that of Eq. (5.1) with
J → Jm, and similar but more complicated STIs hold when contracting
with respect to the other momenta. Note that what appears in the WI and
STIs is Jm and not ∆m. Then, as has been shown in [65], the longitudinal
part of Γ̃m may be expressed in terms of Jm (and other Green’s functions),
and as a result, the function f(k) (at q2 = 0) is given by

f(k2) = −∆2
m(k2)

d
(
k2Jm(k2)

)

dk2
(6.13)

Now, the point is that, in order to trigger Eq. (6.8), f(k2) should be instead

f(k2) = −∆2
m(k2)

d∆−1(k2)

dk2
=

d∆m(k2)

dk2
. (6.14)

To accomplish this, one adds and subtracts m2(k2) to the f(k) of the A(0)
given in Eq. (6.12), thus obtaining

A(0) =
1

d

[∫

k
k2 d∆m(k2)

dk2
−

∫

k
k2 dm2(k2)

dk2

]
. (6.15)

At that point, the first term on the rhs of Eq. (6.15) goes to the gµν part of
the equation of Jm(q2); when added to the term (a2), which is also assigned
(in its entirety) to the gµν part of that same equation, it finally gives rise,
by virtue of Eq. (6.8), to a contribution that is free of quadratic divergences
and vanishes in the q2 = 0 limit, as it should. On the other hand, the second
term on the rhs of Eq. (6.15) is allotted to the mass equation. Thus, unlike
B(q2), which unambiguously contributes to the qµqν/q

2 part of the equation
for Jm(q2) [and satisfies automatically B(0) = 0], the A(q2) contributes to
the gµν component of both equations.

Let us finally point out that the purely longitudinal nature of the ver-
tices Ṽ (and V ) expressed through conditions such as Eq. (5.3), combined
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(a1) (a2)

µ, a ν, b

α, m

β, n σ, n′

ρ, m′

k

k + q

q Γ̃′ k

µ, a ν, b

α, m ρ, m′

Fig. 6.1: The “one-loop dressed” part of the SDE that contains only gluons. Thick
lines represent gluon propagators endowed with a momentum-dependent
mass. The fully dressed “primed” vertex, Γ̃′, enforces gauge invariance
in the presence of such a mass. The symmetry factors are 1/2 and 1
respectively; we also show for the reader’s convenience (in this and the
next figures) the color and Lorentz indices, as well as the momentum
routing used in our calculations.

with the fact that we work in the Landau gauge, allows one to obtain all
relevant contributions simply from the knowledge of the WI (or STI) that
these vertices satisfy, without the need to construct them explicitly. This is
particularly important in the case of the vertex Ṽνρστ , appearing in graph
(a5); indeed, constructing this vertex explicitly would constitute an ardu-
ous task, given the complicated STIs that it satisfies when contracted by
the momentum of any of its three quantum legs.

6.2 The “one-loop dressed” mass equation: Concise derivation

According to the methodology outlined in the previous section, the one-
loop dressed contribution to the gluon mass equation stems solely from the
Ṽ -part of graph (a′1)µν , to be denoted by (a

eV
1 )µν .

The first simplification stemming from the use of the SDE for the QB
propagator (as opposed to the BB employed in [22]) is that the Landau
gauge limit ξ = 0 may be taken directly, in the part of the calculation
related to the masses. Indeed, the only source of terms proportional to ξ−1

(which require special care) is the tree-level part of the BQ2 vertex, which
only affect the equation for J(q2) (and can be easily dealt with, following the
procedure explained in [26]). Then (see Fig. 6.1 for the Lorentz and color
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indices as well as the momenta routing used in the following calculation)

(a
eV

1 )µν =
1

2
g2CA

∫

k
Γ

(0)
µαβ(q, k,−k − q)∆αρ(k)∆βσ(k + q)Ṽνρσ(q, k,−k − q) ,

(6.16)

where Γ
(0)
µαβ is the conventional three-gluon vertex of the linear covariant

gauges,

Γ
(0)
µαβ(q, k,−k − q) = (q − k)β gµα + (2k + q)µ gαβ − (2q + k)α gβµ, (6.17)

and ∆αβ(k) is the totally transverse Landau gauge propagator, namely

∆αβ(k) = Pαβ(k)∆(k2), (6.18)

[notice the minus sign difference with respect to our general definition Eq.
(3.1)]. Finally, the trivial color factor δab has been factored out.

As explained in detail in Section 4.1 of the previous chapter, gauge
invariance requires that, when contracted by the momentum of the back-
ground leg, the vertex Ṽνρσ(q, k,−k − q) satisfies the WI of Eq. (5.7) with
r = k and p = −(k + q), namely

qν Ṽνρσ(q, k,−k − q) = m2(k)Pρσ(k) −m2(k + q)Pρσ(k + q). (6.19)

Now, it is relatively straightforward to recognize that (a
eV

i )µν is proportional

to qµqν/q
2 only. Indeed, the condition of complete longitudinality of Ṽ ,

given in Eq. (5.3), becomes

P νν′

(q)Pαρ(k)P βσ(k + q)Ṽν′ρσ(q, k,−k − q) = 0, (6.20)

from which follows immediately that

Pαρ(k)P βσ(k+q)Ṽ ν
ρσ(q, k,−k−q) =

qν

q2
(
qν′

Ṽν′ρσ

)
Pαρ(k)P βσ(k+q). (6.21)

Thus, interestingly enough, the rhs of Eq. (6.21) is completely determined
from the WI of Eq. (5.7); specifically, using (6.19), we get

Pαρ(k)P βσ(k+q)Ṽ ν
ρσ(q, k,−k−q) =

qν

q2
[
m2(k) −m2(k + q)

]
Pαρ(k)P β

ρ (k+q).

(6.22)
Then, using the elementary tree-level WI

qµΓ
(0)
µαβ(q, k,−k − q) = (k + q)2Pαβ(k + q) − k2Pαβ(k), (6.23)
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one can show, after appropriate shifts of the integration variables [i.e.,
(k + q) → k], that indeed

(a
eV

1 )µν =
qµqν
q2

g2CA

q2

∫

k
m2(k2)

[
(k + q)2 − k2

]
∆αρ(k)∆αρ(k + q), (6.24)

yielding

a
eV

1 (q2) =
g2CA

q2

∫

k
m2(k2)

[
(k + q)2 − k2

]
∆αρ(k)∆αρ(k + q). (6.25)

Thus, the “one-loop dressed” mass equation becomes

m2(q2) =
ig2CA

1 +G(q2)
a

eV

1 (q2)

=
ig2CA

1 +G(q2)

1

q2

∫

k
m2(k2)

[
(k + q)2 − k2

]
∆αρ(k)∆αρ(k + q).

(6.26)

Notice that at the one-loop dressed level the ghost diagrams (a3) and
(a4) of Fig. 3.2 should also be considered. However, their analysis can be
simplified by appealing to some basic properties of the ghost propagator in
the Landau gauge, established through detailed large-volume lattice sim-
ulations, as well as a variety of analytic studies [73–75]. Specifically, we
will take for granted that the ghost propagator D in the Landau gauge re-
mains massless, D−1(0) = 0, while its dressing function F is infrared finite,
F (0) = c > 0.

The main implications of these properties for the case at hand is that
the corresponding fully dressed ghost vertex appearing in graph (a3) does
not need to be modified by the presence of V -type of vertices. Specifically,
in the absence of a gluon mass the vertex Bc̄c appearing in (a3) satisfies

qµΓµ = iD−1(k + q) − iD−1(k)

= (k + q)2F−1(k + q) − k2F−1(k). (6.27)

If D(q) remains massless, as we assume, the only effect of the gluon mass
is to make the dressing function infrared finite, i.e., implement in (6.27)
the replacement F (q) → Fm(q). Thus, for instance, if F (q) ∼ ln q2, the
gluon mass induces the qualitative change of the type Fm(q) ∼ ln(q2 +m2),
accounting for the aforementioned infrared finiteness of the ghost dressing
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function. The point to realize is that this proceeds without the need to
modify Γ̃µ explicitly, by adding to it a V -type of vertex; Γ̃µ will change
only through its implicit dependence of the gluon propagators (as well as
all other vertices), contained inside the diagrams defining its own SDE,
which have now become “massive”. Given these considerations, the result
given in Eq. (6.26) exhausts the “one-loop dressed” case.

After these comments about the one-loop dressed diagrams containing
the ghost loops, let us return to Eq. (6.26). The transition to the Euclidean
space proceeds by using the standard formulas that allow the conversion of
the various Green’s functions from the physical Minkowski momentum q2

to the Euclidean q2E = −q2 > 0; specifically

∆E(q2E) = −∆(−q2E); m2
E(q2E) = m2(−q2E); GE(q2E) = G(−q2E);

∫

k
= i

∫

kE

.

(6.28)
Then dropping the subscript “E”, we arrive at the final result

m2(q2) = − g2CA

1 +G(q2)

1

q2

∫

k
m2(k2)∆αρ(k)∆αρ(k + q)

[
(k + q)2 − k2

]
.

(6.29)

Consider finally the q2 → 0 limit of the above equation. Using the
general Taylor expansion [with y = k2 and w = (k + q)2]

f(w) = f(y) + (w − y)f ′(y) + O(q2), (6.30)

together with Eqs. (3.21) and (5.41) as well as the fact that in d = 4 one
has L(0) = 0 [60], we find

m2(0) =
3

2
g2CAF (0)

∫

k
k2∆2(k2)[m2(k2)]′. (6.31)

Note that the result obtained for this limiting case coincides with the one
found in [22].

6.3 The “two-loop dressed” contributions

In this section we will study in detail the “two-loop dressed” diagrams
(a5) and (a6), and their respective contribution to the mass equation (see
Fig. 6.2 for the color and Lorentz indices as well as for the momentum
routing). Note that, in the alternative QB version of the SDE equation for
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q q

µ, a

γ, r

β, n

α, m

ν, b

τ, r′
k + q
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Fig. 6.2: The “two-loop dressed” diagrams. The symmetry factors are 1/6 and
1/2 respectively.

the gluon propagator that we consider here, there are no additional “two-
loop dressed” diagrams. In particular, there are no diagrams involving the
fully dressed BQc̄c vertices (the fourths subset in the usual BB version
of the SDE), simply because these vertices cannot be joined in any way
with the conventional tree-level vertices appearing on the other side of the
(would be) diagram, where the Q-type gluon enters.

6.3.1 General considerations regarding the graph (a5)

Before switching the Schwinger mechanism on, the graph (a5), for a general
values of the gauge-fixing parameter ξ, is given by

(a5)
ab
µν = − i

6
Γ

(0)amnr
µαβγ

∫

k

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+k)∆γτ (k+q)Γ̃brnm

ντσρ (−q, k+q,−ℓ−k, ℓ),
(6.32)

where the tree-level value of the conventional (Q4) four-gluon vertex is given
by

Γ
(0)amnr
µαβγ = −ig2[farxfxnm(gµβgαγ − gµαgβγ) + famxfxrn(gµγgαβ − gµβgαγ)

+ fanxfxrm(gµγgαβ − gµαgβγ)]. (6.33)

The fully dressed vertex BQ3 satisfies WI given in Eq. (3.13), where it
should be emphasized that on the rhs appear the conventional (and not the
BFM) trilinear vertices, which satisfy STIs with respect to all their legs,
like that of Eq. (3.10) and cyclic permutations.

Let us next switch the Schwinger mechanism on. Then, both sides
of the WI of Eq. (3.13) must be replaced by “primed” vertices. Now,
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the “primed” three-gluon vertices appearing on the rhs are of the type
Q3, namely Γ′

αµν(q, r, p) = Γmαµν(q, r, p) + Vαµν(q, r, p), where Γm satis-
fies (3.10) with J → Jm (and H → Hm, which however we refrain from
indicating), while V must satisfy, correspondingly,

qαVαµν(q, r, p) = F (q)[m2(r2)Pα
µ (r)Hαν(r, q, p)−m2(p2)Pα

ν (p)Hαµ(p, q, r)],
(6.34)

and cyclic permutations. Note the difference between Eq. (6.34) and the
corresponding relation satisfied by Ṽ , given in Eq. (5.7): the latter is an
Abelian WI with no reference to the ghost sector, while the former is an
STI, depending explicitly contains the ghost-related quantities F and H.

Then, the only possibility for maintaining the original WI of Eq. (3.13)
intact is if the quadrilinear vertex on its lhs gets also modified into a vertex
satisfying the identity

qαΓ̃′abcd
αµνρ(q, r, p, t) = qα

[
Γ̃abcd

m αµνρ(q, r, p, t) + Ṽ abcd
αµνρ(q, r, p, t)

]

= ig2
[
fabxfxcdΓ′

νρµ(p, t, q + r) + facxfxdbΓ′
ρµν(t, r, q + p)

+ fadxfxbcΓ′
µνρ(r, p, q + t)

]
, (6.35)

where Γ̃m and Ṽ satisfy separately the no-pole (Γm) and pole (V ) part of
the trilinear Q3 vertex, respectively. In particular, the Ṽ part, which we
will be of central importance in what follows, satisfies

qαṼ abcd
αµνρ(q, r, p, t) = ig2

[
fabxfxcdVνρµ(p, t, q + r) + facxfxdbVρµν(t, r, q + p)

+ fadxfxbcVµνρ(r, p, q + t)
]
. (6.36)

6.3.2 The contribution aṼ
5 (q2).

Let us now focus on the part of the diagram (a5) that contains the pole

component Ṽ of the fully-dressed BQ3 vertex Γ̃′, to be denoted by (a
eV
5 ).

The projection to the Landau gauge is straightforward, since there are no
ξ−1 terms anywhere in this diagram, and one obtains

(a
eV
5 )ab

µν =
i

6
Γ

(0)amnr
µαβγ

∫

k

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+k)∆γτ (k+q)Ṽ brnm

ντσρ (−q, k+q,−ℓ−k, ℓ),
(6.37)

where all gluon propagators assume the transverse form of Eq. (6.18).
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We can apply the totally longitudinally coupled condition satisfied by
Ṽλτσρ,

P λ
ν (q)P γτ (k + q)P βσ(ℓ+ k)Pαρ(l)Ṽλτσρ(−q, k + q,−ℓ− k, ℓ) = 0, (6.38)

to write (6.37), after splitting P λ
ν (q), as follows

(a
eV
5 )ab

µν =
i

6
Γ

(0)amnr
µαβγ

qν
q2

∫

k

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)∆γτ (k + q)

× qλṼ brnm
λτσρ (−q, k + q,−ℓ− k, ℓ). (6.39)

Using then the WI Eq. (3.13) adapted to the present kinematics, as well
as the results

f brxfxnmΓ
(0)amnr
µαβγ = i

3

2
g2C2

Aδ
ab(gµαgβγ − gµβgαγ);

f bnxfxmrΓ
(0)amnr
µαβγ = i

3

2
g2C2

Aδ
ab(gµγgαβ − gµαgβγ);

f bmxfxrnΓ
(0)amnr
µαβγ = i

3

2
g2C2

Aδ
ab(gµβgαγ − gµγgαβ); (6.40)

one finds that each one of the terms of the WI gives rise to an integral of
the form

tµj (q) = tj(q
2)qµ; j = 1, 2, 3 (6.41)

so that Eq. (6.39) can be written as

(a
eV
5 )ab

µν =
i

4
g4C2

Aδ
ab qµqν

q2

3∑

j=1

tj(q
2), (6.42)

with

t1(q
2) =

1

q2
(qβgαγ − qαgβγ)

×
∫

k

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)∆γτ (k + q)Vσρτ (−ℓ− k, ℓ, k);

t2(q
2) =

1

q2
(qαgβγ − qγgαβ)

×
∫

k

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)∆γτ (k + q)Vρτσ(ℓ, k + q,−q − ℓ− k);

t3(q
2) =

1

q2
(qγgαβ − qβgαγ)

×
∫

k

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)∆γτ (k + q)Vτσρ(k + q,−ℓ− k,−q + ℓ).

(6.43)
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Now it turns out that, after the appropriate shifts in the momenta, re-
labeling the Lorentz dummy indices, and applying the Bose symmetry of
Vαβγ , the three terms are actually equal. Then, using the totally longitudi-
nally coupled condition for the vertex V , and the fact that, in the Landau
gauge, kτ∆

γτ (k + q) = −qτ∆γτ (k + q), we get

t(q2) =

3∑

j=1

tj(q
2)

= 3
qτ
q2

(qαgβγ − qβgαγ)

∫

k
∆γτ (k + q)

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)

× kλ

k2
Vσρλ(−ℓ− k, ℓ, k). (6.44)

Then, the integral over ℓ is a function of k (but not of q), and has two free
Lorentz indices, α and β, so that

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)

kλ

k2
Vσρλ(−ℓ− k, ℓ, k) = A(k2)gαβ +B(k2)kαkβ . (6.45)

Therefore,

t(q2) = 3
qτ
q2

(qαgβγ − qβgαγ)

∫

k
∆γτ (k + q) [A(k2)gαβ +B(k2)kαkβ]. (6.46)

But this term vanishes, regardless of the closed form of A(k2) and B(k2),
because the prefactor is antisymmetric under the exchange α↔ β whereas
the integral is symmetric.

Thus, one finally arrives at the important result

a
eV
5 (q2) = 0, (6.47)

namely that the graph (a5) makes no contribution to the gluon mass equa-
tion.

6.3.3 The contributions from graph (a6)

Let us now consider the graph (a6), for a general value of the gauge-fixing
parameter ξ. This graph contains the BQ2 andQ3 fully-dressed three-gluon
vertices, namely Γ̃ and Γ. We proceed directly to the massive situation,
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where these two vertices have been replaced by their “primed” counterparts,
namely

(a6)
ab
µν =

3

4
ig4C2

Aδ
ab (gµαgβγ − gµβgαγ)

∫

k
∆γτ (k + q)∆δλ(k)

× Γ̃′
ντλ(−q, k + q,−k)

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)Γ′

σρδ(−ℓ− k, ℓ, k).

(6.48)

Evidently, Γ̃′ and Γ′ contain the pole parts Ṽ and V , respectively, satisfy-
ing the general properties mentioned earlier. We will next isolate the terms
proportional to Ṽ and V , since it is these terms that determine the corre-
sponding contribution of the entire graph (a6) to the gluon mass equation.
This amounts to writing the product Γ̃′Γ′ as

Γ̃′Γ′ = (Γ̃m + Ṽ )(Γm + V )

= Γ̃mΓm + Ṽ Γm + Γ̃mV + Ṽ V, (6.49)

and considering only the last three terms.

Vanishing of the terms proportional to V

To proceed with the demonstration, note that if we were in the Landau
gauge, i.e., if the gluon propagators in Eq. (6.48) had the fully transverse
form of Eq. (6.18), then V would vanish identically, due to its property
of complete longitudinality, given that it is an internal vertex (Q3-type).
The limit ξ = 0 may be taken directly in the part of the graph involving
the term Ṽ V , and therefore this term vanishes immediately. As for the
combination Γ̃mV , one can take directly the limit ξ = 0 everywhere, thus
making it vanish, except for the term that contains the tree-level part of
Γ̃m that is proportional to ξ−1. Specifically, the tree-level part of the BQ2

vertex is given by

Γ̃
(0)
ντλ(−q, k+q,−k) = Γ

(0)
ντλ(−q, k+q,−k)−ξ−1ΓP

ντλ(−q, k+q,−k), (6.50)

where the purely longitudinal “pinch part” ΓP is given by

ΓP
ντλ(−q, k + q,−k) = −gνλ(k + q)τ − gτνkλ. (6.51)
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The contraction of this term with the propagators ∆γτ (k+ q)∆δλ(k) (with
ξ still general) yields

ξ−1ΓP
ντλ(−q, k + q,−k)∆γτ (k + q)∆δλ(k) =

kδ

k2
∆γ

ν(k + q) +
(k + q)γ

(k + q)2
∆δ

ν(k).

(6.52)
In this way, the ξ−1 term cancels, making the limit ξ → 0 smooth. So, after
setting ξ = 0, the second term in Eq. (6.52) vanishes, because V will be
contracted by three transverse projectors; on the other hand, the first term
survives, since V is contracted only by two. However, as we will see now,
this last term finally also vanishes, due to a different reason. Specifically,
denoting this contribution by (aV

6 )µν (thus factoring out the trivial color
structure δab), we have

(aV
6 )µν =

3

4
ig4C2

A (gµαgβγ − gµβgαγ)

∫

k
∆γ

ν(k + q)

×
∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)

kδ

k2
Vσρδ(−ℓ− k, ℓ, k). (6.53)

Now, the integral
∫
ℓ contains k but no q, and has two free Lorentz indices,

α and β; therefore, it can only be proportional to A(k2)gαβ and B(k2)kαkβ.
But, since both these terms are symmetric under α↔ β, while the prefactor
is antisymmetric, this term vanishes.

The term a
eV
6 (q2)

Let us finally consider the term Ṽ Γm in Eq. (6.49), to be denoted by (a
eV
6 )µν .

It is convenient to define the quantity

Y αβ
δ (k) =

∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)Γσρδ(−ℓ− k, ℓ, k), (6.54)

corresponding to the subdiagram on the upper left corner of (a6). Then,

(a
eV
6 )µν is given by

(a
eV
6 )µν =

3

4
ig4C2

A (gµαgβγ − gµβgαγ)

×
∫

k
Y αβ

δ (k)∆γτ (k + q)∆δλ(k)Ṽντλ(−q, k + q,−k) (6.55)
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Then, using once again Eqs. (5.3), (5.7) and (6.21), we obtain

(a
eV
6 )µν =

3

4
ig4C2

A (gµαgβγ − gµβgαγ)

× qν

q2

∫

k

[
m2(k) −m2(k + q)

]
∆δ

λ(k)∆γλ(k + q)Y αβ
δ (k)

=
qµqν
q2

a
eV
6 (q2) , (6.56)

and so

a
eV
6 (q2) =

3

4
ig4C2

A (qαgβγ − qβgαγ)

× 1

q2

∫

k

[
m2(k) −m2(k + q)

]
∆δ

λ(k)∆γλ(k + q)Y αβ
δ (k).

(6.57)

At this point it is easy to show that the integral Y is antisymmetric

under the α ↔ β exchange; thus, given also the antisymmetry of the a
eV
6

prefactor under the same exchange, one can write

Y αβ
δ (k) = (kαgβ

δ −kβgα
δ )Y (k2); Y (k2) =

1

d− 1

1

k2
kαg

δ
βY

αβ
δ (k) , (6.58)

which gives us the final result

a
eV
6 (q2) =

3

4
i
g4C2

A

q2

∫

k
m2(k2)[(k + q)2 − k2][Y (k + q) + Y (k)]∆δ

λ(k)∆λ
δ (k + q)

+
3

4
i
g4C2

A

q2
(q2gδγ − 2qδqγ)

∫

k
m2(k2)[Y (k + q) − Y (k)]∆δ

λ(k)∆γλ(k + q).

(6.59)

6.3.4 Explicit check of the two-loop dressed “blockwise” transversality

The vanishing of the term a
eV
5 may appear somewhat surprising, since, in

the PT-BFM framework that we employ, it is exactly the V and Ṽ type
of vertices that allow for the appearance of a dynamically generated gluon
mass in a gauge-invariant way. Thus, one might wonder whether the re-
sult (6.47) is in any way at odds with the characteristic property of the
“blockwise” transversality, mentioned earlier.

To show that this is not the case, let us contract diagram (a5) with the
physical momentum q; after carrying out the usual splitting of the BQ3



6.3. The “two-loop dressed” contributions 87

full vertex Γ̃ → Γ̃m + Ṽ , using the result (6.47) and applying the WI Eq.
(3.13) to the remaining term, we get

qν(a
eΓ′

5 )ab
µν = qν(a

eΓm
5 )ab

µν

=
3

4
ig4C2

Aδ
ab(gµβgαγ − gµαgβγ)

×
∫

k

∫

ℓ
∆α

ρ (ℓ)∆β
σ(ℓ+ k)∆γ

τ (k + q)Γσρτ
m (−ℓ− k, ℓ, k).

(6.60)

As far as the contribution of diagram (a6) is concerned, we know that
it cannot be projected directly to the Landau gauge, because the tree-level
part of the fully-dressed BQ2 vertex contains terms proportional to 1/ξ.
However, proceeding as in subsection 6.3.3, one writes

Γ̃′
ντǫ(−q, k+ q,−k) = Γ̃′ reg

ντǫ (−q, k+ q,−k)− ξ−1ΓP
ντǫ(−q, k+ q,−k), (6.61)

where evidently the regular part Γ̃′ reg differs from the usual Γ̃′ by a tree-
level term. For the regular term, after using the identity

qνΓ̃′ reg
ντǫ (−q, k + q,−k) = ∆−1(k)Pτǫ(k) − ∆−1(k + q)Pτǫ(k + q), (6.62)

one gets

qν(a
eΓ′ reg

6 )ab
µν =

3

4
ig4C2

Aδ
ab(gµαgβγ − gµβgαγ)

∫

k

∫

ℓ
[∆(k + q) − ∆(k)]

× Pτδ(k)P
γτ (k + q)∆α

ρ (ℓ)∆β
σ(ℓ+ k)Γσρδ

m (−ℓ− k, ℓ, k).

(6.63)

For the pinch part, after using Eq. (6.52) to cancel the ξ−1 dependence,
one obtains (now in the Landau gauge)

(aΓP

6 )ab
µν =

3

4
ig4C2

Aδ
ab(gµβgαγ − gµαgβγ)

∫

k

[
kδ

k2
∆γ

ν(k + q) +
(k + q)γ

(k + q)2
∆δ

ν(k)

]

×
∫

ℓ
∆αρ(ℓ)∆βσ(ℓ+ k)Γ′

σρδ(−ℓ− k, ℓ, k). (6.64)

On the other hand, observing that

qν

[
kδ

k2
∆γ

ν(k + q) +
(k + q)γ

(k + q)2
∆δ

ν(k)

]
= ∆γδ(k) − ∆γδ(k + q)

+ [∆(k + q) − ∆(k)]P δν(k)P γ
ν (k + q),

(6.65)
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Fig. 6.3: Diagrammatic realization of the WI for the two-loop dressed diagrams
in the Landau gauge. One has the cancellations (a5)1 + (a6)12 = 0 and
(a6)11 + (a6)21 = 0, while the term (a6)22 vanishes.



6.4. The full mass equation 89

Eq. (6.64) becomes

qν(aΓP

6 )ab
µν =

3

4
ig4C2

Aδ
ab(gµβgαγ − gµαgβγ)

×
{∫

k

∫

ℓ
∆γ

δ (k)∆α
ρ (ℓ)∆β

σ(ℓ+ k)Γσρδ
m (−ℓ− k, ℓ, k)

−
∫

k

∫

ℓ
∆γδ(k + q)∆αρ(ℓ)∆βσ(ℓ+ k)Γ′

σρδ(−ℓ− k, ℓ, k)

+

∫

k

∫

l
[∆(k + q) − ∆(k)]P ν

δ (k)P γ
ν (k + q)∆α

ρ (l)∆β
σ(l + k)

× Γσρδ
m (−l − k, l, k)

}
. (6.66)

Clearly the first term integrates to zero, since, being independent of q,
it cannot saturate its free index µ, while the third term cancels exactly
against (6.63). As far as the second term is concerned, notice that it still
contains a pole part, since the total longitudinality condition of Eq. (5.3)
cannot be triggered in this case. However, after splitting the full vertex Γ′

one finds that the Γm part cancels with the term (6.60), while it is easy to
show that the pole part V vanishes along the same lines described when

dealing with graph a
eV
5 .

The realization of the two-loop dressed “blockwise” transversality in
the Landau gauge is shown diagrammatically in Fig. 6.3.

6.4 The full mass equation

After these rather technical considerations, we are now in position to write
down the all-order mass equation. Using Eq. (6.5), together with the re-
sults (6.25) and (6.59), one finds

m2(q2) =
i

1 +G(q2)

[
a

eV
1 (q2) + a

eV
6 (q2)

]

=
ig2CA

1 +G(q2)

1

q2

∫

k
m2(k2)[(k + q)2 − k2]∆αρ(k)∆αρ(k + q)

×
{

1 +
3

4
ig2CA[Y (k + q) + Y (k)]

}
− 3

4

g4C2
A

1 +G(q2)

1

q2
(q2gδγ − 2qδqγ)

×
∫

k
m2(k2)[Y (k + q) − Y (k)]∆δ

ǫ(k)∆
γǫ(k + q).

(6.67)
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m̃2(q2) =
1

q2
qµ

×




µ µ
+

ν

Ṽ
×qν




Γm

m̃2(q2)

Fig. 6.4: Diagrammatic representation of the condensed operations leading to the
all order gluon mass equation, where we have introduced the shorthand
notation m̃2(q2) = m2(q2)[1+G(q2)]. All internal propagators are in the
Landau gauge.

The transition to the Euclidean momenta can be performed by using the
standard formulas (6.28) supplemented with the relation YE(q2E) = −iY (−q2E);
then one obtains (suppressing the “E” subscript as usual)

m2(q2) = − g2CA

1 +G(q2)

1

q2

∫

k
m2(k2)[(k + q)2 − k2]∆αρ(k)∆αρ(k + q)

×
{

1 − 3

4
g2CA[Y (k + q) + Y (k)]

}
+

3

4

g4C2
A

1 +G(q2)

1

q2
(q2gδγ − 2qδqγ)

×
∫

k
m2(k2)[Y (k + q) − Y (k)]∆δ

ǫ(k)∆
γǫ(k + q). (6.68)

Interestingly enough, the full diagrammatic analysis presented in sections 6.2
and 6.3, in conjunction with the methodology developed in section 6.1, may
be pictorially summarized, in a rather concise way, as shown in Fig 6.4.

Note that the quantities entering in Eq. (6.68) are bare, and must even-
tually undergo renormalization. The renormalized version of Eq. (6.68)
will involve some of the cutoff-dependent renormalization constants Zi in-
troduced during the renormalization procedure, in a way analogous to what
happens in the case of the integral equation for the dynamical quark mass
(see, e.g., [40, 76]); however, for the purposes of the present work, we will
ignore these constants (replacing them, effectively, by unity, i.e., Zi → 1 ),
and will simply consider Eq. (6.68), assuming that the quantities appearing
there are now the renormalized ones.

As has been explained in section 6.1, the mass equation derived in
Eq. (6.68) constitutes one of the two coupled integral equations that gov-
ern simultaneously the dynamics of m2(q2) and J(q2) [see, for example,
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Eq. (6.3)]. If the corresponding all order integral equation for J(q2) were
known, then one could attempt to solve the coupled system, after carry-
ing out the additional substitution ∆(k2) = [k2J(k2) +m2(k2)]−1 [viz. Eq.
(5.5)] to all gluon propagators appearing inside the various kernels. It turns
out that the derivation of the all order integral equation for J(q2) is tech-
nically far more difficult, mainly due to the presence of the fully-dressed
four gluon vertex BQ3 [see graph (a5) in Fig. 3.2], which is a largely unex-
plored quantity, with a complicated Lorentz and color structure, and a vast
proliferation of form factors. In fact, unlike what happens in the case of
the three-gluon vertex BQ2 [65], no gauge-technique Ansatz exist for this
four gluon vertex. Thus, for the rest of this analysis [see next section] we
will study Eq. (6.68) in isolation, treating all full propagators appearing
in it as external quantities, whose form will be determined by resorting
to information beyond the SDEs, such as the large-volume lattice simu-
lations. Therefore, Eq. (6.68) is effectively converted into a homogeneous
linear integral equation for the unknown function m2(q2).

Evidently, the quantity Y αβ
δ (k) introduced in Eq. (6.54) accounts for

the bulk of the two-loop contribution, and depends explicitly on the fully
dressed three gluon vertex Γ (of the type Q3), in the Landau gauge. This
Bose-symmetric vertex satisfies the well-known STI Eq. (3.10) and its cyclic
permutations, which allow, in turn, for the reconstruction of the longitu-
dinal form factors of Γ in terms of J , F , and the various form factors of
the ghost-gluon kernel H [48]. Clearly, the inclusion of the (ten) longitu-

dinal vertex form factors into Y αβ
δ (k), and through it into Eq. (6.68), will

give rise to rather complicated expressions, whose numerical treatment lies
beyond the scope of this work.

In what follows we will simplify this preliminary analysis by consid-
ering simply the lowest order perturbative expression for Y , obtained by
substituting tree-level values for all quantities appearing in Eq. (6.54), and
using (6.58). It turns out that even so, the resulting expression for Y has
sufficient structure to effectively reverse the overall sign of the equation,
and give rise to physically meaningful solutions for m2(q2). In particular,
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one has

Y (k2) =
1

d− 1

kα

k2

∫

ℓ

1

ℓ2(ℓ+ k)2
Pαρ(ℓ)P βσ(ℓ+ k)Γ

(0)
σρβ(−ℓ− k, ℓ, k)

=
1

d− 1

kα

k2
(2gβσkρ + gσρkβ − 2gβρkσ)

×
∫

l

1

l2(l + k)2

[
gαρgβσ − 1

l2
(lαlρgβσ + lβlσgαρ)

+
1

l2(l + k)2
lαlρ(l + k)β(l + k)σ

]
, (6.69)

and a straightforward calculation yields (in dimensional regularization, Eu-
clidean space)

Y (k2) =
1

3(4π)2

[
15

4

(
2

ǫ

)
− 15

4

(
γE − log 4π + log

k2

µ2

)
+

63

12

]
, (6.70)

where µ is the ’t Hooft mass introduced at Eq. (3.19). Y (k2) may be
renormalized within the MOM scheme, by simply subtracting its value at
k2 = µ̄2, yielding

YR(k2) = − 1

(4π)2
5

4
log

k2

µ̄2
. (6.71)

6.5 Numerical analysis

In this section we carry out a rather thorough numerical analysis of the
mass equation derived in the previous sections.

To begin with, let us rewrite the equation (for the d = 4 case) in a
form that will be suited for the ensuing numerical treatment. After setting
x = q2, observing that (k+q)2 = x+y+2

√
xy cos θ, and using the measure

∫

k
=

1

(2π)3

∫ π

0
dθ sin2 θ

∫ ∞

0
dy y, (6.72)

we obtain

m2(x) = −λF (x)

x

∫ π

0
dθ sin2 θ

∫ ∞

0
dy ym2(y)∆(y)∆(x+ y + 2

√
xy cos θ)

× {A(x, y, θ)B(x, y, θ) [1 − C (Y (x+ y + 2
√
xy cos θ) + Y (y))]

− CE(x, y, θ) (Y (x+ y + 2
√
xy cos θ) − Y (y))} , (6.73)



6.5. Numerical analysis 93

where we have used the approximation [60] 1 +G(x) ≈ F−1(x), and set

A(x, y, θ) = 3 − x sin2 θ

x+ y + 2
√
xy cos θ

;

B(x, y, θ) = x+ 2
√
xy cos θ;

E(x, y, θ) =
xy + x cos2 θ(x+ 2

√
xy cos θ) + 2(x+

√
xy cos θ)2

x+ y + 2
√
xy cos θ

.

(6.74)

and we have defined (αs = g2/4π)

λ =
αsCA

2π2
, (6.75)

In addition, we have introduced the constant C, multiplying the contribu-
tion to the mass equation that is of pure two-loop origin. Of course, the
value of C corresponding to the approximate expression Eq. (6.71) that we
employ is fixed, namely

C = 3πCAαs; (6.76)

however, during a significant part of the ensuing analysis we will treat C
as a free parameter. Thus, essentially one disentangles C from the value of
αs, and studies what happens to the gluon mass equation when one varies
independently αs and C. The reason for doing this is twofold: (i ) one
has the ability to switch off completely the two-loop corrections (by setting
C = 0), and (ii ) by varying the value of C one may study, in some additional
detail, the quantitative impact of the two-loop contribution. Specifically,
the philosophy underlying point (ii ) is that, whereas the expression in
Eq. (6.71) furnishes a concrete form for the two-loop correction, by no
means does it exhaust it; thus, by varying C we basically model, in a
rather heuristic way, further correction that may be added to the “skeleton”
provided by the Y (k2) of Eq. (6.71) (for a fixed value of αs). Of course, the
case where C admits the actual value of Eq. (6.76) will emerge as a special
case of this general two-parameter study. In view of the ensuing analysis it
is convenient to measure C in units of 3πCA; to this end, we introduce the
reduced parameter Cr = C/3πCA, and drop the suffix “r” in what follows.

The integral equation to solve is a homogenous Fredholm equation of
the second kind, and can be rewritten schematically as

m2(x) = −λ
∫ π

0
dθ

∫ b

0
dy K(x, y, θ)m2(y), (6.77)
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where b = ∞, but in practice we will choose b ≫ 1 but finite. A possible
way of solving this equation is to expand the unknown function in terms
of a suitable function basis, and subsequently determine the coefficients of
this expansion. In particular [77, 78], using the Chebishev polynomials of
the first kind Tk, one can write

m2(x) =
c0
2

+
n∑

k=1

ckTk(x). (6.78)

In order to determine the n+1 coefficients characterizing the expansion,
one discretizes x ∈ [0, b] choosing the xj values that corresponds to the
extrema of the nth Chebishev polynomial in that interval, i.e.,

xj =
b

2
cos

(π
n

(n− j)
)

+
b

2
, j = 0, . . . , n. (6.79)

The problem is then reduced to finding the values of λ for which the matrix
A+ λB is singular, where

Aij = δTi

(
2xj − b

b

)
; Bij = δ

∫ π

0
dθ

∫ b

0
dy K(xj , y, θ)Ti

(
2xj − b

b

)
,

(6.80)
and δ = 1, unless i = 0, in which case it is 1/2. Specifically one is looking
for the smallest positive root λs of the generalized characteristic polynomial
of the matrices A and −B. Provided that λs exists, one can next determine
all the expansion coefficients ck by simply assigning to c0 a predetermined
value (we choose c0 = 1) and then solving the resulting reduced system;
the corresponding value of the coupling constant can then be obtained
through Eq. (6.75). The solution can be finally rescaled by an arbitrary
(positive) constant, due to the freedom allowed by the linearity of the equa-
tion.

6.5.1 The one-loop dressed case

Let us start our analysis from the one-loop dressed case, which corresponds
to setting C = 0 in Eq. (6.73). Specifically, notice that, as x → 0, this
equation reduces to the following nonlinear constraint

m2(0) = −3π

4
λF (0)

∫ ∞

0
dy m2(y)K1(y); K1(y) =

[
Z2(y)

]′
, (6.81)
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where Z(y) = y∆(y) is the gluon dressing function. Note that the con-
straint of Eq. (6.81) is identical to that derived in [22]; remember, however,
that the full one-loop equation for arbitrary momenta is different, for the
reasons explained in section 6.2.

As explained in [22], the usefulness of Eq. (6.81) lies in the fact that,
already at this level, one may recognize the difficulty in obtaining physical
solutions (i.e., positive definite in the entire momentum range), which can
be ultimately traced down to the “wrong” sign in front of the equation.
In addition, one may explore the conditions that might finally overcome
this difficulty, without having to solve the integral equation in its full com-
plexity. In particular, it is clear from Eq. (6.81) that, in order to have a
possibility of obtaining physically meaningful solutions, the kernel K1 must
display a “sufficiently deep” negative region, which might eventually coun-
terbalance the overall minus sign; indeed, we have verified that it would be
immediate to obtain positive-definite (and monotonically decreasing) solu-
tions if we could reverse the overall sign of the equation (or, equivalently,
the sign of the kernel). Thus, the existence of a negative region in the kernel
is a necessary condition for obtaining physical solutions; a positive-definite
kernel, would exclude immediately such a possibility. Of course, as we will
see shortly, this condition is far from sufficient.

Specifically, using the lattice data for ∆(q2) corresponding to a SU(3)
quenched lattice simulation [32], one can explicitly verify whether or not
(and exactly how) the necessary condition described above is satisfied.
These lattice data are plotted in Fig. 6.5 (left panel); on the same figure
we also plot a fit, whose explicit functional form may be found in various
recent articles [22,39,40]). On the right panel of Fig. 6.5 we then show the
corresponding one-loop dressed kernel K1, calculated directly from the lat-
tice data1 and then also using the aforementioned fit. One clearly observes
the zero crossing of the kernel (at q2 ∼ 0.8 GeV2) and the corresponding
negative region.

The propagator fit shown in Fig. 6.5 can be then used to construct the
full kernel appearing in Eq. (6.73), when C = 0; the corresponding full
integral equation can be then studied by means of the algorithm explained
above (for the ghost dressing function F we use a continuous interpolator

1 The kernel in this case is obtained by first calculating from the raw lattice data
(yi, ∆(yi)) the dressing function squared data (yi,Z

2(yi)); next the derivative data
are calculated as a simple first order central difference, i.e., the data plotted are

(
yi+1+yi

2
,
Z

2(yi+1)−Z
2(yi)

yi+1−yi

). Finally, errors are calculated through error propagation.
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Fig. 6.5: (Left panel.) Lattice data for the (quenched) SU(3) gluon propagator
renormalized at µ = 4.3 GeV, shown together with the log fit of [22, 39,
40]. (Right panel.) The one-loop dressed kernel derived from the lattice
data, compared to the one obtained from the propagator fit.

of the corresponding SU(3) lattice data). It turns out, however, that the
solutions obtained have oscillatory behavior, and display large negative
regions, ultimately voiding them of any physical meaning.

Evidently, the negative region furnished by the kernel is not sufficiently
deep, or it is not located in the optimum momentum region, to counteract
the effect of the overall minus sign. Clearly, if physical solutions are to be
found, the full functional form of the kernel must be modified. As we will
see in the next subsection, this type of appropriate modification is indeed
implemented dynamically, when the two-loop corrections are included.

Finally, in order to avoid any confusion related to the conclusions of
this subsection and the findings of [22], let us remind the reader that the
equation solved in [22] does not coincide with the one solved here; therefore,
the (non-monotonic) solutions found in [22], do not correspond to solutions
of the present integral equation.

6.5.2 The two-loop dressed case: finding physical solutions

Let us now turn the two-loop dressed contributions back on, by setting
C > 0. Considering again the x→ 0 limit first, one has in this case

m2(0) = −3π

4
λF (0)

∫ ∞

0
dym2(y)K2(y); K2(y) =

{
[1 − 2CY (y)]Z2(y)

}′
.

(6.82)
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Fig. 6.6: Modification of the shape of the two-loop dressed kernel K2(y) with vary-
ing C. As the latter parameter increases the kernel effectively reverses
its sign showing a deep negative well in the low momenta region.

Since, as already mentioned, C will be treated as an independent param-
eter, one can study how the shape of the kernel K2 changes as C is varied.
As can be seen in Fig. 6.6, when C = 0 one is back to the one-loop dressed
kernel K1 of the previous subsection. As C increases K2 displays a less
pronounced positive (respectively negative) peak in the small (respectively
large) momenta region. Next, for C & 0.37 a small negative region starts to
appear in the IR, which rapidly becomes a deep negative well for y . 0.6,
with K2 becoming positive for higher momenta2. Therefore, we see that
the addition of the two-loop dressed contributions counteracts the effect of
the overall minus sign of the integral equation, by effectively achieving a
sign reversal of the kernel (roughly speaking, one has K2 ≈ −K1). When
this analysis is combined with the knowledge gathered from the one-loop
dressed case, one concludes that there exists a critical value C, such that, if
C > C Eq. (6.82) will display at least one physical monotonically decreasing
solution for a suitable value of the strong coupling αs.

In order to see if the picture sketched above is confirmed when x 6= 0,

2 It is also interesting to notice that all the curves meet at a common point y∗, which
is determined by the general condition

d

dy

»

log

„

Z
2(y) log

y

µ2

«–˛

˛

˛

˛

y=y∗

= 0,

with y∗ ≃ 0.67 GeV2.
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Fig. 6.7: The curve described by the set of the pairs (C,αs) for which one finds
physical solutions to the full mass equation (6.73). The curve starts
from the critical value C ≈ 0.56 above which exactly one monotonically
decreasing solution exists (below C there are no solutions). The value
C∗ = αs(≈ 0.88) corresponds to the case in which Y is kept at its lowest
order perturbative value. Finally, the gray vertical band represents the
value for the quenched strong coupling obtained from the 4-loop MOM
calculation of [?] renormalized at µ = 4.3 GeV (αs = 0.22) with a cus-
tomary 10% error; the matching values of C are between 1.55 – 1.65.
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one can study numerically the solutions of the full mass equation (6.73)
following the algorithm described at the beginning of the section (Fig. 6.7).
Specifically, as shown in Fig. 6.7, there is a continuous curve formed by
the pairs (C,αs), for which one finds physical solutions. Indeed, for small
values of C one has that all eigenvalues λ are either negative or complex,
and no solution exists; this absence of solutions persists until the critical
value C ≈ 0.56 is reached, after which one finds exactly one monotoni-
cally decreasing solution corresponding to the smallest positive eigenvalue
λs (with bigger positive eigenvalues giving rise to oscillating non-physical
solutions). However, for values up to C ≈ 0.8 the coupling needed to get
the corresponding running mass is of O(1), while for the quenched case the
expected coupling from the 4-loop (momentum subtraction) calculation is
αs = 0.22 at µ = 4.3 GeV [?]. This latter value is obtained for C ≈ 1.55 –
1.65, whereas for C ≈ 0.88 one finds the solution to Eq. (6.73) for the lowest
order perturbative value of the coefficient (6.76). In general one observes,
as expected, that as C is increased, αs decreases, e.g., for C = 1.1, 1.3
and 1.5 one obtains solutions corresponding to the strong coupling values
αs ≈ 0.51, 0.35 and 0.26, respectively.

In Fig. 6.8 we plot the solutions for the most representative C values,
i.e., C = 0.88 and C = 1.6 (corresponding to, as already said, αs ≈ 0.88 and
0.22 respectively); notice that we have used the linearity of the equation to
normalize the solution in such a way that the mass at zero coincides with
the IR saturating value found in lattice (Landau gauge) quenched simula-
tions [34], orm2(0) = ∆−1(0) ≈ 0.141 GeV2. As can be readily appreciated,
the masses obtained display the basic qualitative features expected on gen-
eral field-theoretic considerations and employed in numerous phenomeno-
logical studies; in particular, they are monotonically decreasing functions
of the momentum, and vanish rather rapidly in the ultraviolet [7,79,80]. It
would seem, therefore, that the all-order analysis presented here, puts the
entire concept of the gluon mass, and a variety of fundamental properties
ascribed to it, on a solid first-principle basis.
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Fig. 6.8: Typical monotonically decreasing solution of the mass equation (6.73).
The case shown have been obtained for the special values C = 0.88 and
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The solutions have been normalized so that at zero they match the cor-
responding (Landau gauge) lattice value ∆−1(0) ≈ 0.141 GeV2.



7. MASSIVE GLUON PROPAGATOR IN THE MASSLESS
BOUND-STATE FORMALISM.

As has been demonstrated in the previous chapter, the dynamical equation
of the gluon mass in the Landau gauge may be derived from the SDE of
the gluon propagator by postulating the existence of the pole vertices, and
employing the WIs and STIs they satisfy, together with their totally longi-
tudinal nature. The resulting integral equation makes no reference on the
closed form of these vertices, nor on the actual dynamical ingredients com-
posing them. However, the details of the actual dynamical formation of the
bound-state poles, and subsequently of the pole vertices, as well as their
exact closed form, transcend the limited purpose of obtaining a particular
version of the gluon mass equation, and are of paramount importance for
the self-consistency of the entire gluon mass generation scenario [81]. In
fact, it would be highly desirable to establish a precise quantitative con-
nection between the fundamental ingredients composing these vertices and
the gluon mass itself.

The purpose of the present chapter is to dissect the pole vertices and
scrutinize the field-theoretic properties of their constituents, within the
context of the “massless bound-state formalism”, first introduced in some
early seminal contributions to this subject [15, 16, 61–63], and further de-
veloped in [64]. The final outcome of this analysis is an alternative, but
completely equivalent, description of the dynamical gluon mass in terms
of quantities appearing naturally in the physics of bound states, such as
the “transition amplitude” and the “bound-state wave function”. This new
description makes manifest some of the salient physical properties of the
gluon mass (e.g., positive-definiteness), and provides, in addition, a deci-
sive confirmation of the self-consistency of the concepts and methodology
employed.

Let us next present the general outline of the chapter, introducing some
of the basic concepts, and commenting on the logical connections and del-
icate interplay between the various sections. Due to the complexity of the
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concepts studied here, we will include some information about the preced-
ing chapters, in order to realize a more self-contained description.

The starting point of our considerations is a brief review of the impor-
tance of the pole vertices for obtaining massive solutions out of the SDE for
the gluon propagator, in a gauge invariant way, i.e., preserving the form of
the fundamental STIs of the theory (Section 7.1).

Within the massless bound-state formalism, the pole vertices are com-
posed of three fundamental ingredients. (i ) The nonperturbative transition
amplitude, to be denoted by I(q2), which connects a single gluon to the
massless excitation. (ii ) The scalar massless excitation, whose propagator
furnishes the pole i/q2, and (iii ) a set of “proper vertex functions” [62]
(or “bound-state wave functions”), to be generically denoted by B, (with
appropriate Lorentz and color indices), which connect the massless excita-
tion to a number of gluons and/or ghosts. The quantity I(q2) is universal,
in the sense that it appears in all possible pole vertices. Furthermore, it
admits its own diagrammatic representation, which, in turn, involves the
functions B. As a result, the dependence of the pole vertices on the Bs is
quadratic (Section 7.2).

When inserted into the SDE for the gluon propagator, and all diagrams
are kept (no truncation), the special structure of the pole vertices allows
one to obtain a very concise relation between the gluon mass and the square
of the transition amplitude, given in Eq. (7.30). This relation demonstrates
that, unless I(q2) vanishes identically, the gluon mass obtained is positive-
definite (Section 7.3).

If the above construction is repeated within the combined framework
of the pinch technique (PT) [7,23,24,44–46] and background field method
(BFM) [47] (known as the “PT-BFM scheme” [42, 51, 52]), the relevant
quantity to consider is the transition amplitude between a background gluon

and the massless excitation, to be denoted by Ĩ(q2) (all other ingredients
remain identical). The mass of the propagator connecting a background (B)
and a quantum gluon (Q) can then be expressed as the product of I(q2)
and Ĩ(q2) (an equivalent relation may be obtained from the background-
background propagator). The additional fact that the PT-BFM gluon prop-
agators are related to the conventional one by a set of powerful identities
(known as Background-Quantum identities (BQIs) [54, 55]), allows one fi-
nally to relate I(q2) and Ĩ(q2) as shown in Eq. (7.44) (Section 7.4).

Evidently, Eq. (7.44) has emerged as a self-consistency requirement be-
tween two different formulations of the SDE (conventional and PT-BFM),
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which, in their untruncated version, must furnish the same physics. It
would be very important, however, to establish the validity of Eq. (7.44)
in a more direct, explicit way, by operating at the level of the pole ver-
tices themselves, where I(q2) and Ĩ(q2) make their primary appearance.
To that end, we will carry out the explicit construction of the three-gluon
pole vertex, both in the conventional and the BFM formalism, using as
a sole input the WI and/or STIs they satisfy, and their totally longitudi-
nal nature (subsection 7.5.1). The comparison of the two, after judicious
identification of the parts that contribute to the corresponding gluon mass
equations, reproduces precisely Eq. (7.44) (subsection 7.5.2).

It turns out that an even more fundamental derivation of Eq. (7.44) may
be devised, which takes one back to the underpinnings of the PT-BFM
connection: the BQIs, which are formally obtained within the Batalin-
Vilkovisky (BV) formalism [56,57], can be alternatively derived through the
diagrammatic rearrangements implemented by the PT. In the case of the
SDE series containing regular (fully dressed) vertices, such a diagrammatic
derivation amounts finally to the demonstration of the PT-BFM equiva-
lence. From the operational point of view the standard PT construction
boils down to the judicious exploitation of the rearrangements produced
when certain longitudinal (pinching) momenta trigger the STIs satisfied by
the aforementioned vertices; the required STIs are known from the formal
machinery of the BV, or alternative formalisms. A priori, the implemena-
tion of this procedure at the level of the diagrammatic representation of the
I(q2) is thwarted by the fact that the pinching momenta will act on the B
vertices (introduced above), whose STIs, however, are not formally known.
Nonetheless, the explicit construction of the pole vertex, and the subse-
quent line of reasoning, furnish precisely the missing STI, and make the
PT-driven diagrammatic construction possible An interesting by-product
of this construction is the derivation of an integral constraint between the
B-vertex functions containing ghost legs. When combined with the re-
cent lattice findings on the infrared behavior of the ghost propagator, this
constraint strongly suggests the individual vanishing of all ghost vertex
functions (Section 7.6).

The diagrammatic evaluation of the transition amplitude furnishes Eq.
(7.119), which express this fundamental ingredient of the bound-state for-
malism in terms of a double integral containing solely the vertex Bµν . Even
though this vertex function is not known for general momenta, the power-
ful relation of Eq. (7.122), first derived in [64], relates its gµν form factor



104 7. Massive gluon propagator in the massless bound-state formalism.

to the gluon mass. This relation, in turn, allows one to recover the mass
equation derived in [72], following a completely different methodology and
formalism. The resulting exact coincidence reveals thus an impressive com-
plementarity between two formally distinct methods (Section 7.7).

7.1 Getting massive solutions from the gluon SDE

In this section we review the general principles that allow the generation
of massive solutions out of the gluon SDE, and study in detail the general
structure of the special pole vertices that trigger this effect (for a different
approach, see, e.g., [82]).

7.1.1 General principles

The full gluon propagator ∆ab
µν(q) = δab∆µν(q) in the Landau gauge is

defined as

∆µν(q) = −iPµν(q)∆(q2) , (7.1)

where

Pµν(q) = gµν − qµqν
q2

, (7.2)

is the usual transverse projector, and the scalar cofactor ∆(q2) is related
to the (all-order) gluon self-energy Πµν(q) = Pµν(q)Π(q2) through

∆−1(q2) = q2 + iΠ(q2). (7.3)

Alternatively, one may introduce the inverse of the gluon dressing function,
J(q2), defined as [48]

∆−1(q2) = q2J(q2) . (7.4)

Let us consider the SDE for the gluon propagator in the conventional for-
mulation of Yang-Mills (i.e., linear Rξ gauges)

∆−1(q2)Pµν(q) = q2Pµν(q) + iΠµν(q), (7.5)

with the self-energy given by

Πµν(q) =

5∑

i=1

(ai)µν , (7.6)
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where the diagrams (ai) are shown in Fig. 3.1. Note that the full (untrun-
cated) self-energy is transverse, namely

qµΠµν(q) =
5∑

i=1

qµ(ai)µν = 0 . (7.7)

It turns out that, with the Schwinger mechanism turned off (i.e., in the
absence of massless poles in the vertices) the SDE leads to the conclusion
that ∆−1(0) = 0, namely the absence of massive solutions.

In order to obtain massive solutions out of the above SDE, and preserve,
at the same time, the gauge invariance intact, one must carry out the crucial
substitution

Γ 7−→ Γ′ = Γm + V, (7.8)

to all fully-dressed interaction vertices appearing in Eq. (7.5). The main
characteristic of the vertices V , which sharply differentiates them from or-
dinary vertex contributions, is that they contain massless poles, originating
from the contributions of bound-state excitations. Such dynamically gen-
erated poles are to be clearly distinguished from poles related to ordinary
massless propagators, associated with elementary fields in the original La-
grangian. In addition, they are completely longitudinally coupled, i.e., they
satisfy conditions of the type (for the case of the three-gluon vertex)

Pα′α(q)Pµ′µ(r)P ν′ν(p)Vα′µ′ν′(q, r, p) = 0. (7.9)

As for the vertices Γm, they are given by the same graphs as the Γ be-
fore, but with gluon propagators replaced by massive ones (see Eq. (7.12)),
implementing simultaneously Eq. (7.8).

The new (massive) self-energy is then given by

Πµν(q) =

5∑

i=1

(a′i)µν , (7.10)

where the “prime” indicates that the various fully-dressed vertices appear-
ing inside the corresponding diagrams of the gluon self-energy have been
replaced by their primed counterparts, as in Eq. (7.8). It is important
to emphasize that, since the above replacement maintains the STIs of the
theory unaltered, the transversality of the massive self-energy persists, i.e.,

5∑

i=1

qµ(a′i)µν = 0 . (7.11)
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The appearance of massive solutions amounts effectively to the change
(in Minkowski space)

∆−1(q2) = q2J(q2) 7−→ ∆−1
m (q2) = q2Jm(q2) −m2(q2), (7.12)

with m2(0) 6= 0 (of course, in Euclidean space, one must find ∆−1
m (0) > 0).

The subscript “m” in Jm indicates that effectively one has now a mass
inside the corresponding expressions: for example, whereas perturbatively
J(q2) ∼ ln q2, after dynamical gluon mass generation has taken place, one
has Jm(q2) ∼ ln(q2 +m2).

The actual evaluation of the relevant diagrams may be carried out by
appealing to the basic global features of the V vertices, as deduced from
the STIs and their complete longitudinality [72]. The final upshot is that
the SDE may be schematically cast into the form (Minkowski space)

q2Jm(q2) −m2(q2) = q2
[
1 + K1(q

2,m2,∆m)
]
+ K2(q

2,m2,∆m), (7.13)

such that q2K1(q
2,m2,∆m) → 0, as q2 → 0, whereas K2(q

2,m2,∆m) 6= 0
in the same limit, precisely because it includes the term 1/q2 contained
inside Vαµν(q, r, p). This form, in turn, gives rise to two coupled integral
equations, an inhomogeneous equation for Jm(q2), and a homogeneous one
for m2(q2) (the latter is usually referred to as the “mass equation”), of the
generic type

Jm(q2) = 1 +

∫

k
K1(q

2,m2,∆m), (7.14)

m2(q2) = −
∫

k
K2(q

2,m2,∆m). (7.15)

Physically meaningful (i.e., positive definite and monotonically decreasing)
solutions to an approximate version of the full mass equation have been
recently presented in [72].

7.1.2 Structure of the vertices V

We will next consider the decomposition of the vertices V that emerges
in a natural way, if one employs as a criterion the effect that the various
components of V may have on the gluon SDE. For concreteness we will focus
on the case Vαµν ; however, all basic arguments may be straighforwardly
extended to any vertex of the type V .
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Since the main function of the vertex Vαµν is to generate a mass term
when inserted into the graph (a1) of Fig. 3.1, it must contain components
that do not vanish as q → 0. To study this point in more detail, we first
separate V into two distinct parts, namely

Vαµν(q, r, p) = Uαµν(q, r, p) +Rαµν(q, r, p) , (7.16)

defined as follows. U is the part of V that has its Lorentz index α saturated
by the momentum q; thus, it contains necessarily the explicit q-channel
massless excitation, namely the 1/q2 poles. It assumes the general form

Uαµν(q, r, p) =
qα
q2
Cµν(q, r, p), (7.17)

where, due to Bose symmetry under the exchange r ↔ p, µ↔ ν, Cµν(q, r, p)
must satisfy Cνµ(q, p, r) = −Cµν(q, r, p); as a result, Cµν(0,−p, p) = 0.

The term R contains everything else; in particular, the massless excita-
tions in the other two kinematic channels, namely 1/r2 and 1/p2 (but not
1/q2) are assigned to R. Thus, for example, terms of the form qαgµν and
qαrµpν are assigned to Uαµν , while terms of the type pνgαµ and rµgαν be-
long to R. Evidently, Pµ′µ(r)P ν′ν(p)Rαµ′ν′(q, r, p) = 0. In addition, again
due to Bose symmetry, we have that Rαµν(0,−p, p) = 0.

Consider now the individual effect that U and R have when inserted
into the gluon SDE, specifically the graph (a1) of Fig. 3.1. Of course, it
is expected, on general grounds, that R should not generate mass terms,
because it does not contain poles of the type 1/q2; this is indeed what
happens. If we work in the Landau gauge, any contribution from R vanishes
for a simple kinematic reason, namely the above transversality condition
satisfied by R. Away from the Landau gauge, R does not contribute to the
mass equation Eq. (7.15) either, because Rαµν(0,−p, p) = 0 and there is no
1/q2 term that could compensate this. Thus, R seems to contributes, in a
natural way, to the equation for Jm(q2).

In fact, it is relatively straighforward to establish that, in the limit
q → 0, the SDE contribution generated by R vanishes as O(q2) (or faster).
Indeed, let us set p = k, the virtual integration momentum in the SDE
diagram; given that Rαµν(0,−k, k) = 0, a Taylor expansion of R around
q2 = 0 gives (suppressing indices)

R(q,−q − k, k) = 2(qk)R′(k2) + O(q2) . (7.18)

Now, the first term is odd in k, and therefore the corresponding integral
vanishes. As a result, the term 2(qk)R′(k2) must be multiplied by another
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term proportional to (qk), coming from the rest of the terms (propagators,
vertices etc) appearing in the integrand. Thus, the resulting contribution
is of order O(q2) (or higher), as announced. The importance of this prop-
erty is related to the fact that, in order to arrive at Eq. (7.14), one must
pull out of the corresponding integral equation a factor of q2; had the inte-
grand vanished slower than O(q2), one would get a divergent contribution
for Jm(0), which would be physically unacceptable, given that Jm(0) is
inversely proportional to the infrared finite QCD effective charge.

Therefore, the only term that can contribute to the gluon mass equation
is Uαµν(q, r, p); the precise contribution will depend, of course, on the exact
form and behaviour of the cofactor Cµν(q, r, p), as q → 0. It is clear for
instance, that if Cµν(q, r, p) contains terms that behave as O(q1+c), with
c > 0, as q → 0, then these terms could not possibly trigger the Schwinger
mechanism, because the effect of the pole would be counteracted by the
positive powers of q. On the other hand, terms that vanish as O(q1−c),
would give rise to divergent results; however, this latter possibility does
not occur, again due to the Bose symmetry of V with respect to p ↔ r.
Thus, the only terms of Cµν relevant for gluon mass generation are those
that vanish as O(q) (c = 0).

These observations motivate the separation of Uαµν(q, r, p) into two
parts, one that behaves as a constant, O(q0), thus contributing to the mass
equation (to be denoted by Uαµν), and one that vanishes as O(qc), c > 0,
and can be naturally reassigned to R (to be denoted by U ′

αµν). In fact, due
to the same reason explained above, namely, the absence of divergent con-
tributions at the level of Eq. (7.14), we must have that c ≥ 1; actually, the
explicit construction presented in Section 7.5 [e.g. Eq. (7.71) and ensuing
discussion], reveals that c = 1 Thus,

Uαµν(q, r, p) = Uαµν(q, r, p)︸ ︷︷ ︸
O(q0)

+ U ′
αµν(q, r, p)

︸ ︷︷ ︸
O(q)

(7.19)

Then, setting

Rαµν(q, r, p) = Rαµν(q, r, p) + U ′
αµν(q, r, p) (7.20)

we arrive at the final separation

Vαµν(q, r, p) = Uαµν(q, r, p)︸ ︷︷ ︸
m2(q2)

+ Rαµν(q, r, p)︸ ︷︷ ︸
Jm(q2)

(7.21)

where the curly brackets below each term indicate in which equation [(7.14)
or (7.15)] each term will contribute.
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Γαµν(q, r, p) = + . . .+ + +

r

α

ν µ

q

p

Fig. 7.1: The SDE for the Q3 vertex Γαµν(q, r, p). Gray blobs denote the conven-
tional 1PI (with respect to vertical cuts) multiparticle kernels.

7.2 Massless bound-state formalism

Whereas in the SDE approach outlined in the previous section one relies
predominantly on the global properties of the vertices V , within the mass-
less bound-state formalism one takes, instead, a closer look at the field-
theoretic composition of these vertices, establishing fundamental relations
between their internal ingredients and the gluon mass. This becomes pos-
sible thanks to the key observation that, since the fully dressed vertices
appearing in the diagrams of Fig. 3.1 are themselves governed by their own
SDEs, the appearance of such massless poles must be associated with very
concrete modifications in the various structures composing them.

Let us begin by recalling that, in general, when setting up the usual SDE
for any fully-dressed vertex contained in Eq. (7.5), a particular field (leg) is
singled out, and is connected to the various multiparticle kernels through all
elementary vertices of the theory involving this field (leg). The remaining
legs enter into the various diagrams through the aforementioned multipar-
ticle kernels, or, in terms of the standard skeleton expansions, through
fully-dressed vertices (instead of tree-level ones). For example, in the case
of the Q3 three-gluon vertex Γαµν(q, r, p) we have (with a certain hindsight)
identified the special leg to be the one entering into graph (a1) of Fig. 3.1
from the right, carrying momentum q; the corresponding vertex SDE is
shown in Fig. 7.1.

Now, when the Schwinger mechanism is turned off, the various multi-
particle kernels appearing in the SDE for the Q3 vertex have a complicated
skeleton expansion, but their common characteristic is that they are one-

particle irreducible with respect to cuts in the direction of the momentum
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q. Thus, for example, diagram (a) of Fig. 7.2 is explicitly excluded from
the (gray) four-gluon kernel (b), and the same is true for all other kernels.

When the Schwinger mechanism is turned on, the structure of the ker-
nels is modified by the presence of the composite massless excitations, de-
scribed by a propagator of the type i/q2. For example, as shown in Fig. 7.2,
the gray four-gluon kernel is converted into a black kernel, diagram (b′),
which is the sum of two parts: (i ) the term (b′1), which corresponds to a
kernel (gray striated) that is “regular” with respect to the q-channel, and
(ii ) the term (b′2), which describes the exchange of the composite massless
excitation between two gluons in the q-channel.

Thus, when the replacements of Eq. (7.12) and Eq. (7.8) are carried

(B)

(A)

(a)

.

(b′1) (b′2)(b′)

= + i
q2

pν r µ pν r µ

r µpν

(b)

(C)

(b′1)

= +
Γ′ Γ′

.

+ . . .
Γ′ Γ′

6∈

Fig. 7.2: (A) A diagram not included into the standard kernel. (B) The kernel
with the Schwinger mechanism on: in addition to the “regular part” (b′1)
(gray striated), the massless excitation in the q-channel (b′2) is added.
(C) The part (b′1) is obtained from the original (gray) kernel (b) by in-
serting massive gluon propagators into its diagrams, and carrying out
the substitution Eq. (7.8) in the fully-dressed vertices of the skeleton
expansion.
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+ + + · · ·+

α

q

Γ′
αµν =

Bµν

+ + + · · ·+Γ′
αµνρ =

Bµνρ

α

q

Fig. 7.3: Schwinger-Dyson equations for the full three and four gluon vertices in
the presence of their pole parts. Note that (i) that the new SDE kernels
are modified with respect to those appearing in Fig. 7.1; (ii) the last
term in these SDEs corresponds to the U part of the pole vertices.

out, the SDE for the different interaction vertices in the presence of their
pole parts will be given by expansions such as those shown in Fig. 7.3.

These modifications in the composition of the kernels give rise precisely
to the vertices V mentioned earlier. A closer look at the structure of the
terms comprising the last term in Fig .7.3 reveals that the Lorentz index α
(of the leg carrying the momentum q) is saturated precisely by the momen-
tum q. Similarly, Bose symmetry forces the same behavior on the other
two channels, so that, in the end, we obtain a totally longitudinal struc-
ture, i.e., Eq. (7.9). At this point we can make the nonperturbative pole
manifest, and cast the last term of the three-gluon vertex in the form of
Fig. 7.3, by setting

Uαµν(q, r, p) = Iα(q)
i

q2
Bµν(q, r, p), (7.22)

where Iα(q) is the transition amplitude that mixes a quantum gluon with
the massless excitation, i/q2 corresponds to the propagator of the massless
excitation, and B is an effective vertex describing the interaction between
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q

a

Fig. 7.4: Diagrammatic representation of the transition amplitude and the Feyn-
man rules for the different effective vertices.

the massless excitation and gluons and/or ghosts. In the standard language
used in bound-state physics, B represents the “bound-state wave function”
(or “Bethe-Salpeter wave function”). Clearly, due to Lorentz invariance,

Iα(q) = qαI(q
2), (7.23)

and the scalar cofactor, to be referred as the “transition function”, is simply
given by

I(q2) =
qα

q2
Iα(q). (7.24)

Furthermore, notice that the transition amplitude Iα(q) is universal, in the



7.2. Massless bound-state formalism 113

ν

q

(B) = +

︸ ︷︷ ︸

Γm + R

(A)

=(C) K

︸ ︷︷ ︸

U

µ

= +

p

q

α

α

r

+ . . .

+ . . .K

Fig. 7.5: Steps to be performed in order to derive the BSE which governs the
dynamics of the effective B vertices.

sense that it constitutes a common ingredient of all V vertices, namely

Uα{... }(q, . . . ) = Iα(q)
i

q2
B{...}(q, . . . ); (7.25)

thus, the difference between the various Uα{... } vertices is solely encoded into
the structure of the wave functions B{... }. The diagrammatic representation
of the transition amplitude as well as the different effective vertices B are
shown in Fig. 7.4. It is important to recognize that the Uα{... } depend
quadratically on the B{... }, since Iα(q) depends linearly on them.

As has been explained in the literature, the dynamics of the B functions
may be determined, at least in principle, from a set of homogeneous (cou-
pled and nonlinear) integral equations, known as Bethe-Salpeter equations.
This particular set of equations must admit nontrivial solutions, which,
when properly adapted to the kinematic details of the problem at hand,
will furnish the momentum dependence of the wave functions B.

The way to obtain this set of equations is by first rearranging the vertex
SDE in such a way as to replace the bare vertex appearing in the original
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expansion (e.g., Fig. 7.1) by a fully dressed one (Fig. 7.5, line A). At the
same time, and as a consequence of this rearrangement, one must replace
the standard SD kernel by the corresponding Bethe-Salpeter kernel (de-
noted by K in Fig. 7.5); the two kernels are diagrammatically different,
and are formally related by a standard all-order formula [cite properly].
The next step is to separate the full vertex into the “regular” part, namely
the part that behaves as a regular function in the limit q → 0, and the
pole part, 1/q2, as shown in Fig. 7.5, line B. Note that the full regular part
is the sum of Γm and the term R coming from V , since neither of these
two terms diverges in the aforementioned limit. Then, this separation is
carried out on both sides of the equation; since the vertex on the rhs is now
fully dressed, it too posesses a pole 1/q2. The final dynamical equation for
B emerges by equating the coefficients multiplying the pole term on both
sides, as seen in Fig. 7.5, line C. In the same way, the dynamical equation
for the regular part is given by the remaining terms.

7.3 Relating the gluon mass with the transition amplitude

The aim of this section is to derive the fundamental formula that relates
the effective gluon mass with the square of the transition amplitude.

To that end, let us go back to the SDE for the gluon propagator with
the replacements given in Eqs.(7.8)-(7.12) already implemented, namely
(Landau gauge)

[q2Jm(q2) −m2(q2)]Pµν(q) = q2Pµν(q) + i

5∑

i=1

(a′i)µν , (7.26)

It turns out that the most expeditious way for deriving the gluon mass
equation, and from it the desired relation between m2(q2) and I(q2), is to
identify, on both sides of Eq. (7.26), the cofactors of the tensorial structure
qµqν/q

2 that survive the limit q2 → 0, and then set them equal to each
other. In doing so, it is clear that the left-hand side (lhs) of Eq. (7.26)
furnishes simply

[lhs]µν =
qµqν
q2

m2(q2). (7.27)

On the other hand, the corresponding contribution from the righ-hand side
(rhs) is directly related to the U part of the V vertices (see discussion in
subsection 7.1.2), which, due to their very precise definition [see Eq. (7.25)],
are all proportional to qν .
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= +
Γ′ Γm V

V

Fig. 7.6: Procedure for isolating the contribution of diagram (a′1) to the effective
gluon mass.

The procedure described above is exemplified in Fig. 7.6 for the partic-
ular case of the diagram (a′1). Specifically, in the first step one separates
the regular part Γm from the pole part V of the full Q3 vertex Γ′. In the
second step the pole part V is written as the sum of the U part (containing
the explicit q-channel massless excitation) and the R part. Finally, due
to the special structure of the U part, this contribution is proportional to
qµqν/q

2, and contributes to the rhs of the mass equation.

The next step is to carry out this procedure to the U parts of all di-
agrams, and determine the complete contribution to the rhs of the mass
equation, as shown pictorially in Fig. 7.7. It is clear that from all diagrams
containing the U parts (first line of Fig. 7.7) one may factor out the com-
mon quantity I(q2), since, as we have emphasized in the previous section,
I(q2) is universal (second line of Fig. 7.7). Then, quite interestingly, the
sum of the terms in the parenthesis is nothing else than the diagrammatic
representation of I(q2), given in Fig. 7.4 (note that all combinatorial factors
work out exactly).

So, applying this procedure for each one of the fully-dressed vertices
appearing in the SDE Eq. (7.26), one can put together the contributions of
the several U parts to the gluon self-energy, as shown in Fig. 7.7.

5∑

i=1

(aUi )µν = g2Iµ(q)

(
i

q2

)
Iν(−q) (7.28)
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Fig. 7.7: General procedure for isolating the contributions of the right-hand side of
Eq. (7.26) to the effective gluon mass. Note that the vertices appearing
in this figure correspond to the U parts of the full vertices Γ′.

Then, using Eq. (7.23), together with the fact that Iν(−q) = −Iν(q), one
obtains the following result

[rhs]µν =
qµqν
q2

g2I2(q2). (7.29)

Therefore, equating Eq. (7.27) with Eq. (7.29) we find that the effective
gluon mass is related to the transition amplitude through the simple for-
mula (Minkowski space)

m2(q2) = g2I2(q2). (7.30)

This last formula may be passed to Euclidean space, using the standard
conversion rules, together with the expression for I(q2) given in Eq. (7.121).
In particular, the transition to the Euclidean space proceeds by using the
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standard formulas that allow the conversion of the various Green’s func-
tions from the Minkowski momentum q2 to the Euclidean q2E = −q2 > 0;
specifically

∆E(q2E) = −∆(−q2E); m2
E(q2E) = m2(−q2E); GE(q2E) = G(−q2E);

∫

k
= i

∫

kE

.

(7.31)
As a consequence, we have IE(q2E) = −I(−q2E), so that

m2
E(q2E) = g2I2

E(q2E). (7.32)

An immediate important implication of this last relation is that the
gluon mass obtained is a positive-definite function for all values of the
Euclidean momenta, as expected on physicsl grounds.

Let us finally mention that the transversality of the full gluon self-energy
[ see Eq. (7.11)] guarantees that if one were to consider the part of the
mass equation proportional to gµν , one would eventually obtain exactly the
same relation given in Eq. (7.30). Note, however, that the corresponding
derivation is far more subtle and laborious, and hinges crucially on the
judicious use of a special integral identity (for a detailed treatment of this
issue, see [72]).

7.4 The BQI of the transition amplitudes: SDE derivation

We will now repeat the construction of the last section using the SDEs of the
PT-BFM formalism. Specifically, we will derive the relations analogous to
Eq. (7.30), which, in conjunction with the BQIs connecting the conventional
and PT-BFM gluon propagators, will furnish a nontrivial relation between
the corresponding transition amplitudes.

7.4.1 General considerations

In the PT-BFM formalism the natural separation of the gluonic field into
a “quantum” (Q) and a “background” (B) gives rise to an extended set
of Feynman rules, and leads to an increase in the type of possible Green’s
functions that one may consider. In the case of the gluonic two-point
function, in addition to the conventional QQ gluon propagator, ∆, two
additional quantities appear: the QB propagator, ∆̃, mixing one quantum
gluon with one background gluon, and the BB propagator, ∆̂, with two
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Λµν(q) = +
µ νµ ν

µ

ν
Hνµ(q, p, r) = gµν +

r

q

p

Fig. 7.8: Definitions and conventions of the auxiliary functions Λ and H .

background gluon legs. It turns out that these three propagators are related
by the all order identities (referred to as BQIs)

∆(q2) = [1 +G(q2)]∆̃(q2) = [1 +G(q2)]2∆̂(q2). (7.33)

The function G(q2), whose role in enforcing these crucial relations is in-
strumental, is defined as the gµν form factor of a special two-point function,
given by (see Fig. 7.8)

Λµν(q) = −ig2CA

∫

k
∆σ

µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2), (7.34)

where CA denotes the Casimir eigenvalue of the adjoint representation (N
for SU(N)), d = 4− ǫ is the space-time dimension, and we have introduced
the integral measure ∫

k
≡ µǫ

(2π)d

∫
ddk, (7.35)

with µ the ’t Hooft mass. In addition, Dab(q2) = δabD(q2) is the ghost
propagator, and Hνσ is the gluon-ghost kernel. The dressed loop expansion
of Λ and H is shown in Fig. 7.8. Notice that the standard ghost-gluon
vertex Γµ is obtained from Hνµ simply through the contraction

qνHνµ(q, p, r) = −Γµ(r, q, p). (7.36)
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Finally, in the Landau gauge only, the form factors G(q2) and L(q2) are
linked to the ghost dressing function

F (q2) = q2D(q2) (7.37)

by means of the all-order relation [39,58–60]

F−1(q2) = 1 +G(q2) + L(q2) , (7.38)

which will be extensively used in the ensuing analysis.
Returning to Eq. (7.33), it is important to recognize that the two basic

functions constituting the gluon propagators, namely Jm(q2)and m2(q2),
satisfy Eq. (7.33) individually [65]. In particular, the corresponding masses
are related by

m̂2(q2) = [1 +G(q2)]m̃2(q2) = [1 +G(q2)]2m2(q2). (7.39)

Finally, in order to obtain from the SDEs of the PT-BFM propagators
a mass formula analogous to that of Eq. (7.30), one needs to introduce the
appropriate transition amplitude connecting the background gluon with the
massless excitation. This new transition amplitude, whose diagrammatic
representation is shown in Fig. 7.9, allows us to write the Ũ part of the
corresponding pole vertices in the BFM as

Ũα{... }(q, . . . ) = Ĩα(q)
i

q2
B{...}(q, . . . ). (7.40)

Observe that only the transition amplitude is modified in this expression
with respect to Eq. (7.25) when we go to the BFM. This is so because the
only background field is the one carrying the momentum q, while all other
fields are quantum (i.e., they are common to the PT-BFM and conventional
descriptions).

7.4.2 Relating the transition amplitudes through the SDEs of the
PT-BFM

Consider the SDE for the QB propagator, connecting a quantum and a
background field, given by the expression

∆̃−1(q2)Pµν(q) = q2Pµν(q) + i

6∑

i=1

(ai)µν , (7.41)
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α

=

q

+ + +

.

(d̃1) (d̃2) (d̃3) (d̃4)

+ +

(d̃6) (d̃7)

+

(d̃8)
(d̃5)

Fig. 7.9: Diagrammatic representation of the background transition amplitude.

with the diagrams (ai) shown in Fig. 3.2. Note that the diagrams are
separated into three blocks, each of which is individually transverse; this
special property of “block-wise” transversality is particular to the PT-BFM
scheme.

Let us now apply the diagrammatic procedure shown in Fig. 7.7 to the
new set of diagrams appearing in this SDE. Evidently, the quantity to be
factored out from all diagrams comprising the Ũ -related part of the SDE is
Ĩ(q2). Then, it is easy to recognize that the (sub) diagrams composing the
other factor coincide precisely with those shown in the first line of Fig. 7.4,
thus giving rise to I(q2) again. Thus we arrive at the following expression
for the mass of the QB propagator,

m̃2(q2) = g2I(q2)Ĩ(q2). (7.42)

At this point one may use the BQI of Eq. (7.39) to replace m̃2(q2) in
favor of m2(q2) on the lhs of Eq. (7.42), namely

m2(q2) =
g2I(q2)Ĩ(q2)

1 +G(q2)
. (7.43)
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Note that this last substitution is legitimate, because the corresponding
SDEs have been considered in their full, untrancated version (all diagrams
kept); therefore the masses obtained from them are the same exact quan-
tities that satisfy the BQI.

Then, direct comparison with Eq. (7.30) furnishes the central relation

Ĩ(q2) = [1 +G(q2)]I(q2). (7.44)

Interestingly enough, this relation emerges as a self-consistency requirement
between the results obtained from two formally different, but physically
equivalent, versions of the gluon SDE.

Furthermore, due to the special structure of Eq. (7.40), where only the
transition amplitude knows if the q-leg is quantum or background, the result
Eq. (7.44) implies that the part Ũ of the pole vertices must also satisfy the
same BQI, namely (suppressing indices)

Ũ = [1 +G(q2)]U . (7.45)

Finally, let us consider for completeness the SDE for the BB propagator
connecting two background gluons, given by the expression

∆̂−1(q2)Pµν(q) = q2Pµν(q) + i
10∑

i=1

(ai)µν , (7.46)

where the diagrams (ai) appearing on the rhs of the equation are shown in
Fig. 3.3, arranged again into individually transverse blocks.

Repeating the procedure of Fig. 7.7 for this last SDE, we see that, as
in the QB case, the common quantity to be factored out from all diagrams
is again Ĩ(q2). Then, the corresponding sum of (sub) diagrams coincides
precisely with those of Fig. 7.9, thus giving rise to another Ĩ(q2). As a
result, one obtains

m̂2(q2) = g2Ĩ2(q2). (7.47)

It should be easy to verify at this point that the direct use of Eq. (7.39)
and subsequent comparison with Eq. (7.30) [or with Eq. (7.42)], furnishes
again the result of Eq. (7.44).

7.5 Three-gluon pole vertex

In the previous section the basic relations Eq. (7.44) and Eq. (7.45) have
been derived at the level of the SDEs, by appealing to the general properties
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of the massless bound state formalism and the BQIs relating the gluon
propagators in the PT-BFM formalism. In the next two subsections we
will derive the same relations from the closed form of the pole part of the
Q3 vertex and the BQ2 vertex. Specifically, in the first subsection we derive
the closed form of these vertices [83], while in the next we isolate their U
parts and carry out a direct comparison.

7.5.1 Explicit construction

As has been explained in detail in the recent literature, in order to preserve
the gauge invariance of the theory in the presence of masses, the pole part
of the BQ2 vertex must satisfy the following WI and STIs,

qαṼαµν(q, r, p) = m2(r2)Pµν(r) −m2(p2)Pµν(p),

rµṼαµν(q, r, p) = F (r2)[m2(p2)Pµ
ν (p)H̃µα(p, r, q) − m̃2(q2)Pµ

α (q)Hµν(q, r, p)],

pν Ṽαµν(q, r, p) = F (p2)[m̃2(q2)P ν
α (q)Hνµ(q, p, r) −m2(r2)P ν

µ (r)H̃να(r, p, q)].

(7.48)

The quantity H̃ is given by the same diagrammatic representation as that
of H, shown in Fig. 7.8, but with the incoming gluon field replaced by a
background one.

In the pole part of the Q3 vertex, the background leg qα becomes quan-
tum, and the Abelian-like WI [first in Eq. (7.48)] is replaced by an STI,
namely

qαVαµν(q, r, p) = F (q2)[m2(r2)Pα
µ (r)Hαν(r, q, p)−m2(p2)Pα

ν (p)Hαµ(p, q, r)].
(7.49)

The STIs with respect to the other two legs are those of Eq. (7.48), but
with the “tilded” quantities replaced by conventional ones.

The explicit closed form of the two pole vertices in question, Ṽ and
V , may be determined from the STIs they satisfy, and the requirement of
complete longitudinality, i.e., the condition Eq. (7.9). Specifically, opening
up the transverse projectors in Eq. (7.9), one can write the entire vertex in
terms of its own divergences,

Ṽαµν(q, r, p) =
qα
q2
qβṼβµν +

rµ
r2
rρṼαρν +

pν

p2
pσṼαµσ − qαrµ

q2r2
qβrρṼβρν

− qαpν

q2p2
qβpσṼβµσ − rµpν

r2p2
rρpσṼαρσ +

qαrµpν

q2r2p2
qβrρpσṼβρσ .

(7.50)
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Note that the last term will not contribute because if we apply the STI’s,

qβrρpσṼβρσ(q, r, p) = 0. (7.51)

So, using Eq. (7.48) to evaluate the various terms, and after a straightfor-
ward rearrangement, we obtain the following expression for the pole part
of the BQ2 vertex,

Ṽαµν(q, r, p) =
qα
q2

[m2(r2) −m2(p2)]P ρ
µ (r)Pρν(p)

+ D(r2)[m2(p2)P ρ
ν (p)H̃ρα(p, r, q) − m̃2(q2)P ρ

α(q)P σ
ν (p)Hρσ(q, r, p)]rµ

+ D(p2)[m̃2(q2)P ρ
α(q)Hρµ(q, p, r) −m2(r2)P ρ

µ (r)H̃ρα(r, p, q)]pν .

(7.52)

Applying the same procedure, but using now the STIs of Eq. (7.49),
together with the condition of Eq. (7.9), we derive the closed expression for
the pole part of the Q3 vertex,

Vαµν(q, r, p) = D(q2)[m2(r2)Hρσ(r, q, p) −m2(p2)Hσρ(p, q, r)]P
ρ
µ (r)P σ

ν (p)qα

+ D(r2)[m2(p2)P ρ
ν (p)Hρα(p, r, q) −m2(q2)P ρ

α(q)P σ
ν (p)Hρσ(q, r, p)]rµ

+ D(p2)[m2(q2)P ρ
α(q)Hρµ(q, p, r) −m2(r2)P ρ

µ (r)Hρα(r, p, q)]pν .

(7.53)

Let us discuss next certain issues related to the self-consistency of the
previous vertex construction. Notice that, in order to obtain expressions
Eq. (7.52) and Eq. (7.53), one must apply sequentially the WI and the
STIs. In doing so, the Bose symmetry of both vertices is no longer explicit,
and the result obtained is not manifestly symmetric under the exchange of
the quantum gluon legs. Furthermore, seemingly different expressions are
obtained, depending on which of the two momenta acts first on Ṽ or V .
However, if one imposes the simple requirement of algebraic commutativity
between the WI and the STIs satisfied by the three-gluon vertex, the Bose
symmetry becomes manifest. For example, using Eq. (7.52) we can see that
the elementary requirement

qαrµṼαµν(q, r, p) = rµqαṼαµν(q, r, p), (7.54)

gives raise to the following identity

F (r2)Pµ
ν (p)qαH̃µα(p, r, q) = −rµPµ

ν (p). (7.55)
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A similar identity is obtained by imposing the requirement of Eq. (7.54) at
the level of V , namely

F (r2)Pµ
ν (p)qαHµα(p, r, q) = −F (q2)Pµ

ν (p)rαHµα(p, q, r). (7.56)

Quite remarkably, the identities Eq. (7.55) and Eq. (7.56) are a direct
consequence of the WI and the STI that the kernels H and H̃ satisfy, when
they are contracted with the momentum of the background or quantum
gluon leg, namely [65]

qαH̃µα(p, r, q) = −pµF
−1(p2) − rµF

−1(r2),

qαHµα(p, r, q) = −F (q2)[pµF
−1(p2)C(p, q, r) + rαF−1(r2)Hµα(p, q, r)],

(7.57)

where C(q, p, r) is the auxiliary function that characterizes the four-ghost

q

p

r

C(q, p, r) = 1 +

.

Fig. 7.10: Diagrammatic representation of the auxiliary function C(q, p, r).

kernel (see Fig. 7.10). Indeed, use of Eq. (7.57) into Eq. (7.55) and Eq. (7.56),
respectively, leads to a trivial identity. Conversely, one may actually de-
rive Eq. (7.57) from Eq. (7.55) and Eq. (7.56); for example, starting with
Eq. (7.55), and using also the identities [65]

pµH̃µα(p, r, q) = rαF
−1(r2) − Γ̃α(q, p, r),

qαΓ̃α(q, p, r) = p2F−1(p2) − r2F−1(r2), (7.58)

one can easily reproduce Eq. (7.57).
Evidently, these constraints allow us to cast the pole part of the BQ2-

vertex into a manifestly Bose symmetric form with respect to the quantum
legs,

Ṽαµν(q, r, p) =
qα
q2

[m2(r2)−m2(p2)]P ρ
µ (r)Pρν(p)+S̃αµν(q, r, p)−S̃ανµ(q, p, r),

(7.59)
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with

S̃αµν(q, r, p) = D(r2)m2(p2)P ρ
ν (p)H̃ρα(p, r, q)rµ

− rµ
2
D(r2)m̃2(q2)P ρ

α(q)[gσ
ν + P σ

ν (p)]Hρσ(q, r, p).

(7.60)

Finally, for the pole part of the Q3 vertex, the Bose symmetric expression
reads

Vαµν(q, r, p) = Sαµν(q, r, p) − Sµαν(r, q, p) − Sνµα(p, r, q), (7.61)

with

Sαµν(q, r, p) =
qα
2
D(q2)m2(r2)P ρ

µ (r)[gσ
ν + P σ

ν (p)]Hρσ(r, q, p)

− qα
2
D(q2)m2(p2)P ρ

ν (p)[gσ
µ + P σ

µ (r)]Hρσ(p, q, r).

(7.62)

Note the fact that, as it should be, setting in Eqs.(7.59)-(7.61) the
tree-level values F = 1 and Hµν = gµν for the ghost dressing function
and the gluon-ghost kernel, respectively, one recovers the ansatz for the
“abelianized” three-gluon vertex employed in [84].

7.5.2 Transition BQI from the pole vertices

We next identify from the explicit expressions for the BQ2 and Q3 pole
vertices the terms Ũ and U . To that end, and in complete accordance with
the discussion presented in subsection 7.1.2, we apply a kinematic and a
dynamical criterion, namely (i ) collect all terms containing the tensorial
structure qα/q

2, and (ii ) discard all terms that, when inserted into the SDE
of the gluon self-energy, do not survive the q → 0 limit. The final objective
is to infer the validity of the BQI of Eq. (7.45), connecting Ũ and U .

Applying criterion (i ), and denoting by Ũ and U the resulting expres-
sions, it is straightforward to obtain from Eq. (7.59)

Ũαµν(q, r, p) =
qα
q2

{
m2(r2)P ρ

µ (r)Pρν(p)

− rµ
2
D(r2)m̃2(q2)[gρ

ν + P ρ
ν (p)]Γρ(p, q, r)

}
−

(
r ↔ p

µ↔ ν

)
,

(7.63)
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where Eq. (7.36) has been applied in order to relate the contractions of the
auxiliary ghost functions H with the conventional gluon-ghost vertices Γρ,
and

(r↔p
µ↔ν

)
is obtained from the term that is shown explicitly after these

exchanges. In addition, we get for the R̃ part of the vertex

R̃αµν(q, r, p) =
rµ
r2
F (r2)

{
m2(p2)P ρ

ν (p)H̃ρα(p, r, q)

− 1

2
m̃2(q2)[gρ

ν + P ρ
ν (p)]Hαρ(q, r, p)

}
−

(
r ↔ p

µ↔ ν

)
.

(7.64)

Similarly, from Eq. (7.61), and using the special STI Eq. (7.57), we obtain

Uαµν(q, r, p) =
qα
q2

{
F (q2)m2(r2)Hρσ(r, q, p)P ρ

µ (r)P σ
ν (p)

− rµ
2
D(r2)m2(q2)[gρ

ν + P ρ
ν (p)]Γρ(p, q, r)

}
−

(
r ↔ p

µ↔ ν

)
,

(7.65)

and

Rαµν(q, r, p) =
rµ
r2
F (r2)

{
m2(p2)P ρ

ν (p)Hρα(p, r, q)

− 1

2
m2(q2)[gρ

ν + P ρ
ν (p)]Hαρ(q, r, p)

}
−

(
r ↔ p

µ↔ ν

)
.

(7.66)

Let us now relax for a moment criterion (ii ), and assume that Ũ = Ũ
and U = U , as well as R̃ = R̃ and R = R. Let us further use Eq. (7.39), and
substitute m2(q2) = m̃2(q2)[1 +G(q2)]−1 into Eq. (7.65). Then, employing
Eq. (7.38) valid in the Landau gauge, dropping L(q2) since L(0) = 0 [thus
applying effectively criterion (ii)], it is relatively easy to establish that the
(would-be) Ũ and U fail to satisfy Eq. (7.45) due to the presence of a very
particular term. Specifically, if Hρσ → gρσ in the first line of Eq. (7.65),
then the BQI of Eq. (7.45) would be satisfied.

Therefore, write the Hρσ(r, q, p) in Eq. (7.65) as

Hρσ(r, q, p) = gρσ +HQ
ρσ(r, q, p), (7.67)

where the gρσ corresponds to the tree-level value of Hρσ, and HQ
ρσ contains

the all-order quantum corrections; an exactly analogous expression holds
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for Hσρ(p, q, r), with p ↔ r. Note that in both cases the momentum q is
carried by the ghost leg, see Fig. 7.11. Then, if we define the “genuine” U
part as

Uαµν(q, r, p) = Uαµν(q, r, p) − U ′
αµν(q, r, p), (7.68)

with

U ′
αµν(q, r, p) =

qα
q2
F (q2)m2(r2)P ρ

µ(r)P σ
ν (p)HQ

ρσ(r, q, p) −
(
r ↔ p

µ↔ ν

)
. (7.69)

it is clear that

Ũαµν(q, r, p) = [1 +G(q2)]Uαµν(q, r, p). (7.70)

The real justification for discarding U ′
αµν from Uαµν(q, r, p) is provided

precisely by reinstating criterion (ii ): the discarded term does not survive
the limit q → 0 when inserted into the corresponding gluon SDE.

= qλ×

=
q

r
ρ

σ p

r
ρ

σ p

k + q
q

k

︸ ︷︷ ︸

Tλρσ(q, r, p)
.

r
ρ

σ p

q

λ

Fig. 7.11: Diagrammatic equality which allows to factorize out the momentum of
the incoming ghost leg in the quantum corrections of the auxiliary ghost
function HQ.

To demonstrate that this is indeed so, note that in the Landau gauge
(k + q)λ∆λσ(k) = qλ∆λσ(k), and the momentum of the incoming ghost leg
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factorizes out of the loop integrals. This observation allows us to cast HQ

in the form
HQ

ρσ(r, q, p) = qλTλρσ(q, r, p). (7.71)

where T simply represents the rest of the diagram (see Fig. 7.11). If we
assume now that T has a finite (non-divergent) value in the limit q → 0,
then

lim
q→0

HQ
ρσ(r, q, p) = lim

q→0
qλTλρσ(q, r, p) = 0. (7.72)

So, using Eq. (7.71), the term given in Eq. (7.69) becomes

U ′
αµν(q, r, p) =

qαq
λ

q2
F (q2)m2(r2)P ρ

µ (r)P σ
ν (p)Tλρσ(q, r, p) −

(
r ↔ p

µ↔ ν

)
.

(7.73)
When U ′

αµν is written in this form, it is clear that its pole 1/q2 is actually

compensated by qαq
λ, while the remaining terms cancel themselves when

r = −p. Therefore, the entire term U ′
αµν vanishes as q → 0, and should not

be included in the U part of the Q3 pole vertex.
Finally, returning to the identification Ũ = Ũ , note that the expression

in Eq. (7.63) does not get modified by the application of criterion (ii ),
because the above argument of discarding HQ does not apply in this case.
The reason for that is simply the channeling of the momenta in Hρσ(q, r, p)
and Hρσ(q, p, r) (encoded into the gluon-ghost vertices Γρ) is different from
that of Hρσ(r, q, p); the momentum entering in the ghost leg is no longer q,
but rather r or p, and the corresponding HQs do not satisfy Eq. (7.72).

Let us now cast Uαµν(q, r, p) and Ũαµν(q, r, p) into their canonical form
of Eq. (7.25) and Eq. (7.40), respectively, namely

Uαµν(q, r, p) = −qα
q2
I(q2)Bµν(q, r, p),

Ũαµν(q, r, p) = −qα
q2
Ĩ(q2)Bµν(q, r, p); (7.74)

the minus sign comes from the extra imaginary factor appearing in the
Feynman rule of the effective vertex, see Fig.7.4. The important point to
recognize is that Bµν(q, r, p) is common to both vertices, because the legs
carrying r and p are quantum ones, and the difference induced due to the
quantum or background nature of the leg carrying momentum q is entirely
encoded into the form of the corresponding transition amplitudes, I(q2)
and Ĩ(q2), respectively. Then, Eq. (7.74) and Eq. (7.70) imply directly the
validity of Eq. (7.44).
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7.6 Diagrammatic demonstration of the BQI

It is well-known that the BQIs relating the conventional and BFM Green’s
functions are formally obtained by resorting to the powerful BV formalism.
On the other hand, the PT (or its generalized version [24]) furnishes an
equivalent diagrammatic derivation, which makes extensive use of the STIs
satisfied by the kernels appearing in the SDEs of the Green’s functions in
question. In the previous sections the BQI relating the transition ampli-
tudes I(q2) and Ĩ(q2) has been obtained as a self-consistency requirement
between two SDEs and from the corresponding BQI relating U and Ũ (sec-
tions 7.4 and 7.5, respectively). The objective of this section is to carry out
a PT-guided demonstration of this particular BQI, through the systematic
conversion of the set of Feynman diagrams defining one transition ampli-
tude into the set defining the other (shown in Figs. 7.4 and 7.9). Essentially
this conversion proceeds by allowing the longitudinal (pinching) momenta
contained in the tree-level three-gluon vertex [graph (d̃1)] to act on the ad-
jacent kernel; therefore, as we will see, a crucial ingredient for completing
this construction is the knowledge of the STI satisfied by the effective ver-
tex Bµν . In addition, the requirement that the BQI be diagrammatically
exact imposes a strong constraint on the set of ghost diagrams that con-
tribute to the transition amplitude, which may be translated (under mild
assumptions) into the vanishing of the corresponding subset of B vertices.

Let us start by considering the diagram (d̃1) of the background transi-
tion amplitude, shown in Fig. 7.12, whose contribution is given by

(d̃1)α =
i

2
CA

∫

k
Γ̃(0)

αµν∆µσ(k + q)∆νρ(k)Bρσ. (7.75)

In order to avoid notational clutter we will suppress the arguments of the
momenta in the vertices, which can be easily recovered from the figures. We

know that the tree-level vertex Γ̃
(0)
αµν contains terms which are proportional

to ξ−1, so that one cannot take directly the limit ξ = 0 to work in the
Landau gauge. Specifically, the tree-level part of the BQ2 vertex is given
by

Γ̃(0)
αµν(q,−k − q, k) = Γ(0)

αµν(q,−k − q, k) − 1

ξ
ΓP

αµν(q,−k−, k), (7.76)

where the purely longitudinal “pinch part” ΓP reads

ΓP
αµν(q,−k − q, k) = gαµkν + gαν(k + q)µ, (7.77)
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(d̃1)

q

q

k + qk

Fig. 7.12: One-loop dressed gluonic contribution to the background transition am-
plitude. The diagram has a symmetry factor 1/2 and we will factorize
out gδab.

and

Γ(0)
αµν(q,−k − q, k) = −(2k + q)αgµν + (k − q)µgαν + (2q + k)νgαµ (7.78)

is the tree-level value of the conventional three-gluon vertex. Using then
the decomposition Eq. (7.76), we obtain from Eq. (7.75)

(d̃1)α = (d1)α − i

2ξ
CA

∫

k
ΓP

αµν∆
µσ(k + q)∆νρ(k)Bρσ . (7.79)

Now, after the shifts k+q 7→ k and k 7→ −k, and applying the antisymmetry
property of the effective vertex, namely Bρσ = −Bσρ, the two contributions
coming from the pinch part of the vertex in Eq. (7.79) sum up and cancel
the symmetry factor, giving the result

(d̃1)α = (d1)α − i

ξ
CA

∫

k
kν∆

νρ(k)∆σ
α(k + q)Bρσ. (7.80)

Therefore, employing the identity

1

ξ
kν∆νρ(k) =

kρ

k2
, (7.81)

the ξ−1 term cancels, and we can project Eq. (7.80) to the Landau gauge
(ξ = 0)

(d̃1)α = (d1)α − iCA

∫

k

kρ

k2
∆σ

α(k + q)Bρσ, (7.82)
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where the gluon propagator assumes its totally transverse form, i.e., ∆µν(k) =
∆(k2)Pµν(k).

At this point, in order to evaluate the extra term which appears in
Eq. (7.82) when diagram (d̃1) is projected to the Landau gauge, the knowl-
edge of the STI satisfied by the effective vertex Bρσ is required. Observe
then that, if we compare Eq. (7.63) with Eq. (7.74), the following structure
can be identified with the effective vertex Bµν ,

Ĩ(q2)Bµν(q, r, p) = −m2(r2)P ρ
µ (r)Pρν(p)

+
rµ
2
D(r2)m̃2(q2)[gρ

ν + P ρ
ν (p)]Γρ(p, q, r) −

(
r ↔ p

µ↔ ν

)
.

(7.83)

Now, contracting Eq. (7.83) with respect to the momentum rµ, and break-
ing the transverse projector P ρ

ν (p), we get

Ĩ(q2)rµBµν(q, r, p) = F (r2)m̃2(q2)Γν(p, q, r)

− pν

2p2
m̃2(q2)[F (r2)pρΓρ(p, q, r) + F (p2)rρΓρ(r, q, p)].

(7.84)

Using then Eq. (7.36) together with the STI Eq. (7.57) satisfied by the
gluon-ghost kernel, we can evaluate

F (r2)pρΓρ(p, q, r) = −F (r2)pρqσHσρ(q, r, p)

= F (r2)F (p2)D−1(q2)C(q, p, r) − F (p2)rρΓρ(r, q, p).

(7.85)

Applying this result and relating the mass of the mixedQB propagator with
the transition amplitude through Eq. (7.42), we obtain from Eq. (7.84) the
desired STI for the effective vertex Bµν ,

rµBµν(q, r, p) = g2I(q2)F (r2)

[
Γν(p, q, r) −

1

2
D(p2)D−1(q2)C(q, p, r)pν

]
.

(7.86)
Interestingly enough we observe that, in the Landau gauge, the four ghost
kernel C(q, p, r) will not contribute to the transition amplitude because
it appears with the momentum pν , which is canceled by the transverse
projector of the gluon propagator in Eq. (7.82).
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Therefore, applying the STI Eq. (7.86) adapted to our kinematical con-
figuration, i.e., r = −k and p = k + q, expression Eq. (7.82) becomes

(d̃1)α = (d1)α + ig2CAI(q
2)

∫

k
∆σ

α(k + q)D(k)Γσ

= (d1)α − ig2CAI(q
2)qλ

∫

k
∆σ

α(k + q)D(k)Hλσ , (7.87)

where in the second line Eq. (7.36) has been used to relate the gluon-ghost
vertex with the contraction of the auxiliary ghost function. Looking at
Eq. (7.87) one may recognize the auxiliary two-point function Eq. (7.34),
and we get

(d̃1)α = (d1)α + I(q2)qλΛαλ(q) = (d1)α + [G(q2) + L(q2)]Iα(q). (7.88)

Finally, since L(0) = 0, we can drop this term and the following result is
obtained

(d̃1)α = (d1)α +G(q2)Iα(q). (7.89)

Observe then that diagrams (d3) and (d4) in Fig.7.4 containing gluon loops
can be converted automatically to background ones and be added to both
sides of Eq. (7.89) in order to complete the transition amplitude. How-
ever, diagrams containing ghost loops only can be added if they satisfy the
constraint

(d2)α = [(d̃2) + (d̃5) + (d̃8)]α. (7.90)

Note the fact that diagrams (d̃6) and (d̃7) are zero in the Landau gauge.
So, if Eq. (7.90) holds, we can complete the transition amplitudes in both
sides of Eq. (7.89) and obtain the BQI Eq. (7.44).

Let us next transform the diagrammatic constraint Eq. (7.90) into an
integral identity for the effective vertices mixing the massless bound-state
with ghosts, shown in Fig. 7.13. In the formulas that follow, color factors
are shown explicitly, while the arguments of the momenta in the vertices
are omitted as before. Consider first the diagram (d̃2), given by

(d̃2)
ab
α = −igCAδ

ab

∫

k
Γ̃(0)

α D(k)D(k + q)B. (7.91)

Now, diagram (d̃5) gives the following contribution to the background tran-
sition amplitude,

(d̃5)
ab
α = g3C2

Aδ
ab

∫

k
Γ̃(0)

αµD(k)D(k + q)B

∫

l
D(k + l)∆µν(l)Γν . (7.92)
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Fig. 7.13: Configuration for the diagrams of the BFM transition amplitude con-
taining ghost loops. Observe that diagrams (d̃6) and (d̃7) appearing in
Fig. 7.9 are zero in the Landau gauge.

Observe that in the Landau gauge, the internal gluon-ghost vertex Γν can-
not develop a pole part, since it should be longitudinally coupled and thus
cancelled by the transverse projector of the gluon propagator. Therefore,
only the regular part of this vertex survives in the diagram. So, using the
conventional SDE of the ghost propagator written in the form,

g2CAD(k)

∫

l
D(k + l)∆µν(l)Γν = ikα[D(k) −D(0)(k)], (7.93)

we obtain from Eq. (7.92) the result

(d̃5)
ab
α = igCAδ

ab

∫

k
kα[D(k) −D(0)(k)]D(k + q)B. (7.94)

The last diagram in Fig. 7.13 gives the contribution,

(d̃8)
ab
α = g2fadxfxcm

∫

k

∫

l
D(k + q)D(k + l)∆ν

α(l)Bbcmd
ν . (7.95)

Finally, diagram (d2) is obtained from the same configuration as diagram
(d̃2), but with the BFM gluon-ghost vertex replaced by a conventional one,
i.e.,

(d2)
ab
α = −igCAδ

ab

∫

k
Γ(0)

α D(k)D(k + q)B. (7.96)

Using all of these results we obtain from the constraint Eq. (7.90) the
following integral identity which relates the effective vertices mixing the
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massless excitation with ghosts,

iCAδ
ab

∫

k

kα

k2
D(k + q)B = gfadxfxcm

∫

k

∫

l
D(k + q)D(k + l)∆ν

α(l)Bbcmd
ν .

(7.97)
The formalism give us this integral identity and, to go further, one

should look at the Bethe-Salpeter equations satisfied by these effective ver-
tices. However we can argue, invoking lattice results, that these effective
vertices are zero. Consider then that we write the full BFM gluon-ghost
vertex as the sum of a regular part and a pole part, like in Eq. (7.8),

Γ̃′
α(q, r, p) = Γ̃α(q, r, p) + Ṽα(q, r, p). (7.98)

It is known that the regular part of this vertex satisfies the following
abelian-like WI,

qαΓ̃α(q, r, p) = D−1(r2) −D−1(p2). (7.99)

So, if we suppose that the pole part of this vertex triggers the Schwinger
mechanism and generates in the ghost propagator and additional term
f(q2), which is a deviation with respect to the massless ghost propaga-
tor, then the pole part must satisfy the following WI in order to preserve
gauge invariance,

qαṼα(q, r, p) = f(p2) − f(r2). (7.100)

If we solve this WI allowing the existence of a massless pole in the q-channel
and also satisfying the totally longitudinally coupled condition

P β
α (q)Ṽβ(q, r, p) = 0, (7.101)

we find the following expression for the pole part of the BFM gluon-ghost
vertex

Ṽα(q, r, p) =
qα
q2

[f(p2) − f(r2)]. (7.102)

Note that this pole vertex only contains Ũ part and has not R̃ part. So,
using the corresponding expression Eq. (7.40) for this vertex

Ṽα(q, r, p) = −qα
q2
Ĩ(q2)B(q, r, p), (7.103)

and equating with Eq. (7.102), we obtain a relation between the effective
vertex B and the mass-like term in the ghost propagator

Ĩ(q2)B(q, r, p) = f(r2) − f(p2). (7.104)
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Now, lattice results tell us that the ghost propagator in the Landau gauge
behaves like a massless propagator, which means that f = 0. Therefore,
since the transition amplitude is not zero, result Eq. (7.104) indicate us
that B = 0. This is consistent with the integral identity Eq. (7.97) if we
set Bν = 0. So, with this argument, we arrive to the conclusion that we
can put to zero the effective vertices with ghost legs.

7.7 A decisive self-consistency check.

In this section we derive the full expression for the transition amplitude.
Once obtained it, we show that the mass equation derived from the PT-
BFM formalism can be reproduced from the full expression of the transition
amplitude, providing a decisive self-consistency check and showing the com-
patibility and complementarity between the PT-BFM formalism and the
bound-state formalism.

q
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Fig. 7.14: Configuration for the diagrams of the transition amplitude containing
gluon loops. The symmetry factors for the diagrams are S(d1, d3, d4) =
(1/2, 1/6, 1/2) and we will factorize gδab.

According to the analysis of the previous section we have concluded
that diagrams with ghost loops do not contribute to the transition ampli-
tude. Furthermore, one may demonstrate that diagram (d3) in Fig. 7.14,
which contains the effective vertex Bρτβ mixing three quantum gluons with
the bound state, is also zero in the Landau gauge. Effectively, with the
configuration shown in Fig. 7.14, we can write down the contribution of
this diagram,

(d3)
ab
α =

1

6

∫

k

∫

l
Γ(0)amns

αµνσ ∆σρ
sr (k + q)∆ντ

ne(l + k)∆µβ
mc(l)B

brec
ρτβ . (7.105)
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As in the preceding sections, the arguments of the momenta in the vertices
have been suppressed. Observe that, in order to evaluate this diagram in
the Landau gauge, one should know how three transverse projectors act
over the effective vertex Bρτβ . Consider then the decomposition Eq. (7.21)
for the BQ3 pole vertex,

Ṽλρτβ(q, r, p, l) = Ũλρτβ(q, r, p, l) + R̃λρτβ(q, r, p, l), (7.106)

where, according with the discussion carry out in Section 7.1, the R̃ part
of the vertex satisfies the transversality condition

P σρ(r)P ντ (p)Pµβ(l)R̃λρτβ(q, r, p, l) = 0. (7.107)

Thus, when Eq. (7.9) is applied for the case of the BQ3 pole vertex, namely,
four transverse projectors cancelling the vertex, we obtain from Eq. (7.106)
the following result

P σρ(r)P ντ (p)Pµβ(l)Ũαρτβ(q, r, p, l) =
qα
q2
P σρ(r)P ντ (p)Pµβ(l)

× qλṼλρτβ(q, r, p, l). (7.108)

On the other hand Eq. (7.40) becomes for the Ũ part of this pole vertex,

Ũαρτβ(q, r, p, l) = ig
qα
q2
Ĩ(q2)Bρτβ(q, r, p, l). (7.109)

Therefore, applying three transverse projectors on Eq. (7.109) and equating
the result with Eq. (7.108) we can relate the effective vertex Bµνσ with the
WI satisfied by the BQ3 pole vertex,

igĨ(q2)P σρ(r)P ντ (p)Pµβ(l)Bρτβ(q, r, p, l) = P σρ(r)P ντ (p)Pµβ(l)

× qλṼλρτβ(q, r, p, l).

(7.110)

Once the connection between the effective vertex Bρτβ and the WI satisfied
by the BQ3 pole vertex has been established through Eq. (7.110), following
the same procedure outlined in Chapter 6 (see subsection 6.3.2), one arrives
to the conclussion that the diagram (d3) is zero.

So, the full transition amplitude will be given in the Landau gauge solely
by the sum of diagrams (d1) and (d4). Thus, applying the conventions of
Fig. 7.14, we obtain for diagram (d1) the expression,

(d1)α =
i

2
CA

∫

k
Γ(0)

αµν∆µσ(k + q)∆νρ(k)Bρσ. (7.111)
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One observes that the above integral has one free Lorentz index, which only
can be saturated by the external momentum q. So, using the elementary
WI for the tree-level three-gluon vertex,

qλΓ
(0)
λµν(q,−k − q, k) = k2Pµν(k) − (k + q)2Pµν(k + q), (7.112)

and after the appropriate shifts in the integrated momentum, we deduce in
the Landau gauge the result,

(d1)α =
qα
q2
qλ(d1)λ = iCA

qα
q2

∫

k
k2∆ρ

µ(k)∆µσ(k + q)Bρσ. (7.113)

Now, diagram (d4) contains the tree-level four-gluon vertex Γ
(0)
αµνβ . After

the color algebra and using the standard Feynman rule for this vertex, we
obtain for the prefactor of the diagram,

i

2
gf bcmf cxnΓ

(0)amnx
αµνβ =

3

4
g3C2

A(gανgµβ − gαβgµν)δab. (7.114)

Thus, we get in the Landau gauge the following expression,

(d4)α =
3

4
g2C2

A(gανgµβ − gαβgµν)

∫

k
∆µσ(k+ q)∆ργ(k)Y νβ

γ (k)Bρσ , (7.115)

where we have defined the integral

Y νβ
γ (k) =

∫

l
∆νλ(l)∆βτ (k + l)Γγτλ. (7.116)

Note that in the Landau gauge, the three-gluon vertex appearing in this
integral only contains the regular part, since the transverse projectors of
the gluon propagators trigger Eq. (7.9).

As before, the integral in Eq. (7.115) only can be saturated by the
external momentum q. Moreover, due to the Bose symmetry of the three-
gluon vertex is straightforward to show that the integral Eq. (7.116) is
antisymmetric under the ν ↔ β exchange, and given also the antisymmetry
of the prefactor under the same exchange, one can write

Y νβ
γ (k) = (kνgβ

γ − kβgν
γ)Y (k2) ; Y (k2) =

1

d− 1

kν

k2
gγ
βY

νβ
γ (k). (7.117)

With these observations, Eq. (7.115) can be cast in the form

(d4)α =
qα
q2
qλ(d4)λ =

3

2
g2C2

A

qα
q2

∫

k
[(kq)gµγ+qµqγ ]Y (k2)∆µσ(k+q)∆ργ(k)Bρσ .

(7.118)
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Employing now the results obtained for diagrams (d1) and (d4), we
derive the complete expression of the transition amplitude in the Landau
gauge [see Eq. (7.24)],

I(q2) =
qα

q2
[(d1) + (d4)]α =

i

q2
CA

∫

k
k2∆ρ

µ(k)∆µσ(k + q)Bρσ

+
3

2

g2C2
A

q2

∫

k
[(kq)gµγ + qµqγ ]Y (k2)∆µσ(k + q)∆ργ(k)Bρσ .

(7.119)

To proceed further, we decompose the effective vertex Bρσ in the tensor
basis

Bρσ = B1gρσ+B2qρqσ+B3(k+q)ρ(k+q)σ+B4kρqσ+B5kρ(k+q)σ. (7.120)

When this decomposition is inserted in Eq. (7.119), only the form factor B1

survives, since in [64] was shown that B2 = 0 and the rest of form factors
are cancelled in the Landau gauge by the transverse projectors. Therefore,
Eq. (7.119) becomes

I(q2) =
i

q2
CA

∫

k
k2∆ρ

µ(k)∆µ
ρ (k + q)B1

+
3

2

g2C2
A

q2

∫

k
[(kq)gµγ + qµqγ ]Y (k2)∆µ

ρ(k + q)∆ργ(k)B1,

(7.121)

which remarkably allows to express the full transition amplitude for a gen-
eral momenta only in terms of the single form factor B1. At this point we
arrive at the crucial observation which enables us to relate the mass equa-
tion obtained in the context of the PT-BFM formalism with the bound-
state formalism showing that, indeed both formalisms are consistent and
connected between them. From Eq. (7.83) one may obtain, after identify
the gµν component, a closed expression for the form factor B1 in terms of
the gluon mass, namely

Ĩ(q2)B1(q, r, p) = m2(p2) −m2(r2). (7.122)

Using this result together with the BQI Eq. (7.44), we obtain from Eq. (7.121)
and after a straightforward rearrangement, the following expression for the
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square of the transition amplitude,

I2(q2) =
iCA

1 +G(q2)

1

q2

∫

k
m2(k)[(k + q)2 − k2]∆ρ

µ(k)∆µ
ρ (k + q)

×
{

1 +
3

4
ig2CA[Y (k + q) + Y (k)]

}
− 3

4

g2CA

1 +G(q2)

1

q2
(q2gµγ − 2qµqγ)

×
∫

k
m2(k)[Y (k + q) − Y (k)]∆µ

ρ (k + q)∆ργ(k). (7.123)

Thus, using the mass formula Eq. (7.30) to relate the square of the transtion
amplitude with the gluon mass in the r.h.s of Eq. (7.123), we recover exactly
the full mass equation derived in [72], following a considerably different
methodology and formalism.

7.8 Massless bound state formalism VS SDE.

As has become clear throughout this chapter, the gluon mass generation
mechanism admits a self-consistent description in the framework of the
massless bound state formalism. The fundamental ingredients appearing
in this formalism, namely, the transition amplitude I and the B vertices,
have been related with the effective gluon mass through a very precise
equations, Eq. (7.30) and Eq. (7.122). Furthermore, it has been demon-
strated in Section 7.7 that the full mass equation satisfied by the gluon
mass may be exactly recovered from Eq. (7.121) using the aforementioned
equations. Thus, providing two equivalent formalisms for the description
of the dynamically generated gluon mass.

Although equivalents, the study of the gluon mass features in both
formalisms proceeds in a rather different form. When the mass equation
is derived from the SDE of the gluon propagator following the procedure
established in [72] and pictorially summarized in Fig. 6.4, the final answer
can be written generically as

m2(q2) =

∫

k
KSD(q, k)m2(k2). (7.124)

In this expression, the quantity KSD represents the kernel which contains
the one and two-loop dressed contributions to the mass equation. Specifi-
cally, the two-loop dressed contribution to that kernel, shown in line A of
Fig. 7.15, depends on the integral Y (k2) defined in Eq. (7.117), contain-
ing a fully-dressed three-gluon vertex and two dressed gluon propagators.
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Therefore, in this approach, the solutions of Eq. (7.124) are controlled by
the approximations realized over such structure. Particularly, in Fig. 7.15,
we also show the approximation employed in [72], where the internal gluon
propagators and the three-gluon vertex are given by their tree-level values.

Y (k2)

(A)
tree − level

(B) + +
ladder

Fig. 7.15: (A) Two-loop dressed contribution to the kernel KSD of the mass equa-
tion and the approximation used in [72]. (B) The kernel KBS of the
BSE satisfied by B′

1 and the approximation used in [64].

In what concerns to the bound state formalism, after carrying out the
appropriate Taylor expansions, Eq. (7.122) gives in the limit q → 0 the
following exact relation for the derivative of the effective gluon mass (Eu-
clidean space)

[m2(p2)]′ = −Ĩ(0)B′
1(p

2). (7.125)

Note that this relation was obtained previously in [64] using the WI sat-
isfied by the pole part of the three-gluon vertex. Now, Eq. (7.125) can be
integrated giving the result

m2(q2) = m2(0) − Ĩ(0)

∫ q2

0
dxB′

1(x). (7.126)

So, in the bound state formalism, the behaviour of the gluon mass is
characterized by Eq. (7.126), which in turn depends on the value Ĩ(0) of the
transition amplitude and the derivative B′

1(x). These latter quantities are
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Fig. 7.16: The numerical solution B′

1(q
2) obtained from Eq. (7.128) with αs =

0.492.

determined as follows. First, using the BQI Eq. (7.44) as well as Eq. (7.38)
and Eq. (7.30), one obtains

Ĩ(0) = F−1(0)I(0) = F−1(0)

√
m2(0)

g2
= F−1(0)

√
∆−1(0)

4παs
, (7.127)

which allow us to estimate Ĩ(0) using the values of the ghost dressing func-
tion and the gluon propagator at zero momentum, treating αs as a param-
eter. Finally, the derivative B′

1(q
2) satisfies its own BSE [see Fig. 7.5 and

discussion below], which can be cast in the form

B′
1(q

2) =

∫

k
KBS(q, k)B′

1(k
2). (7.128)

Here, KBS corresponds to the BS kernel, shown in line B of Fig. 7.15. Note
that, due to the fact that Eq. (7.128) is homogeneous and linear, if B′

1(q
2) is

a solution then the function cB′
1(q

2) is also a solution, for any real constant
c. The arbitrariness in the constant c is completely eliminated applying
Eq. (7.127) as a constraint for a selected value of αs. Following the above
procedure and using the ladder approximation for the BS kernel, shown
in Fig. 7.15, we represent in Fig. 7.16 the solution of Eq. (7.128) obtained
in [64].



142 7. Massive gluon propagator in the massless bound-state formalism.

Thus, one has available two different equations, Eq. (7.124) and Eq. (7.126),
and formalisms for describe the gluon mass. The fact that both are equiv-
alents and must furnish the same physical description, provides an impres-
sive framework for study the dynamical mass generation mechanism in pure
Yang-Mills theories.



8. CONCLUSIONS (CONCLUSIONES).

Throughout this thesis we have established the appropriate framework for
the study of the gluon mass generation mechanism in pure Yang-Mills the-
ories. It has been proved rigorously that the gauge-invariant generation of
a gluon mass relies on the existence of massless bound-state excitations,
which trigger the Schwinger mechanism. We have demonstrated that the
presence of these excitations in the skeleton expansions of the fully dressed
vertices of the theory induces longitudinally coupled pole structures, giv-
ing rise to purely nonperturbative components, the pole vertices V . The
fundamental and basic dynamical ingredients of these pole vertices have
been exhaustively analyzed and related with the effective gluon mass. Fur-
thermore, the special properties of these new nonperturbative vertices have
been exploited to derive the all-order equation governing the evolution of
the momentum-dependent gluon mass, which supports monotonically de-
creasing solutions for the gluon mass.

Without any doubt, the fundamental piece that makes possible the en-
tire construction, are the nonperturbative vertices V , containing the mass-
less poles necessary for triggering the Schwinger mechanism. From the point
of view of dynamical mass generation, the appearance of poles in off shell
Green’s functions is required, once the generation of a gauge-boson mass
is energetically favored. In such case (and in the absence of fundamental
scalars), these poles will assume the role of Nambu-Goldstone bosons, and
their presence is necessary for maintaining all the original STIs intact. Un-
fortunately, no such proof exists for pure Yang-Mills. A proof along these
lines would entail the minimization of an appropriate functional, such as
the Cornwall-Jackiw-Tomboulis (CJT) effective potential [4], showing that
the generation of a mass, or the formation of the related condensate, lowers
the vacuum energy. Note that this is indeed true in d = 3 [85], where it was
shown that the formation of a gluon condensate, which is interconnected
with the gluon mass, minimizes the action (see also [86]).

As has been emphasized in the literature [87, 88], the generation of a



144 8. Conclusions (Conclusiones).

gluon mass is intimately connected with a variety of other related phe-
nomena, and most importantly with the center vortex picture of confine-
ment [89–91]. Once the mass generation mechanism takes place, a possible
effective low-energy field theory which incorporates the gluon mass is the
gauged non-linear sigma model, known as “massive gauge-invariant SU(N)
Yang-Mills” [87]. The corresponding Lagrangian density is

LMY M =
1

2
G2

µν −m2Tr[Aµ − g−1U(θ)∂µU
−1(θ)]2, (8.1)

where the gauge field is given by

Aµ(x) =
1

2i

N2−1∑

a=1

λaA
a
µ(x), (8.2)

the λa are the SU(N) generators (with Tr{λaλb} = 2δab), and the N ×N
unitary matrix

U(θ) = exp

[
i

2
λaθ

a(x)

]
(8.3)

describes the scalar fields θa(x). Note that LMY M is locally gauge invariant
under the combined gauge transformation

A′
µ(x) = V (ω)Aµ(x)V −1(ω) − g−1(∂µV )V −1, U(θ′) = V (ω)U(θ), (8.4)

for any group matrix V ∈ SU(N), where ωa(x) are the group parameters.
One might think that, by employing Eq. (8.4), the fields θa can always be
continuously transform to zero, but this is not so if the fields θa contain
vortices1. To use the LMY M in Eq. (8.1), one solves the equation of motion
for U in terms of the gauge potentials and substitutes the result in the
equations for the gauge potential. One then finds that this model admits
vortex solutions [87], with a long-range pure gauge term in their potentials,
which endows them with a topological quantum number corresponding to
the center of the gauge group [ZN for SU(N)], and might, in turn, account
for quark confinement and gluon screening [88, 93]. Specifically, center
vortices of thickness ∼ m−1, where m is the induced mass of the gluon,
may form a condensate when their entropy (per unit size) becomes larger
than their action. This condensation would then furnish an area law to

1 Vortices are solitonic solutions of the equations of motion for the Lagrangian Eq.
(8.1), which contain Dirac strings that cannot be gauged away, e.g. [92].
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the fundamental representation Wilson loop, thus confining quarks [94].
On the other hand, the adjoint potential between two quarks, studied in
an extensive series of works [95–97], would show a roughly linear regime
followed by string breaking [98] when the potential energy is about 2m,
corresponding to gluon screening [7, 87].

Fianlly, must be observed that LMY M is not renormalizable, and breaks
down in the ultraviolet. This breakdown simply reflects the fact that the
gluon mass m in Eq. (8.1) is assumed to be constant, while, as has been
established in this thesis, the SDEs furnish a momentum-dependent gluon
mass, vanishing at large q2.

It would seem, therefore, that a profound, and yet largely unexplored,
connection exists between gluon mass generation and confinement.
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8. Conclusiones.

A lo largo de esta tesis se ha establecido el apropiado formalismo para
el estudio del mecanismo de generación de masa gluónica en teoŕıas puras
de Yang-Mills. Se ha probado rigurosamente que la generación de masa
gluónica de una manera invariante gauge se basa en la existencia de estados
ligados excitados no masivos, los cuales activan el mecanismo Schwinger.
También se ha demostrado que la presencia de dichas excitaciones induce
nuevas estructuras con polos, acopladas longitudinalmente en los vértices
de la teoŕıa, dando lugar a componentes puramente no perturbativas que
hemos llamado vértices polo V . Los ingredientes fundamentales y básicos de
este tipo de vértices polo han sido extensamente analizados y relacionados
con la masa gluónica efectiva. Más aún, las propiedades especiales de estos
nuevos vértices no perturbativos se han empleado para derivar la ecuación
exacta a todos órdenes que gobierna la evolución de la masa gluónica con
la enerǵıa y se ha demostrado que la ecuación resultante admite soluciones
monotónicamente decrecientes para la masa gluónica.

Sin lugar a dudas, la pieza fundamental que hace posible esta con-
strucción son los vértices no perturbativos V , que contienen los polos
necesarios para activar el mecanismo de Schwinger. Desde el punto de
vista de la generación dinámica de masa, la aparición de polos en las fun-
ciones de Green es requerida una vez que la generación de la masa del
bosón de gauge es energéticamente favorable. En tal caso, y en ausen-
cia de campos escalares fundamentales, estos polos asumen el papel de
los bosones de Nambu-Goldstone y su presencia es necesaria para man-
tener todas las STIs de la teoŕıa intactas. Desgraciadamente, hasta el
momento no existe ninguna prueba rigurosa de que la generación de masa
sea energéticamente favorable en las teoŕıas de Yang-Mills puras. Una
demostración de este fenómeno podŕıa involucrar la minimización de un
funcional apropiado, como por ejemplo el potencial efectivo de Cornwall-
Jackiw-Tomboulis (CJT) [4]. Dicha minimización debeŕıa entonces probar
que la generación de una masa, o la formación del correspondiente conden-
sado, disminuye la enerǵıa del vaćıo. De hecho, esto se cumple en dimensión
d = 3 [85] donde fue demostrado que la formación de un condensado de
gluones, que a su vez está relacionado con la masa gluónica, minimiza la
acción de la teoŕıa (consultar también [86]).

Como se ha enfatizado ampliamente en la literatura [87, 88], la gen-
eración de una masa gluónica está ı́ntimamente conectada con una gran
variedad de fenómenos no perturbativos y, en particular, con la imagen de
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confinamiento proporcionada por una clase especial de vórtices [89–91]. De
hecho, una vez que el mecanismo de generación de masa ha tenido lugar, es
posible construir una teoŕıa efectiva válida en el rango de bajas enerǵıas,
la cual incorpora de manera natural la masa gluónica. Este tipo de teoŕıas,
conocidas como modelos sigma no lineales o teoŕıas SU(N) gauge invari-
antes masivas de Yang-Mills [87], están caracterizadas por una densidad
Lagrangiana del tipo

LMY M =
1

2
G2

µν −m2Tr[Aµ − g−1U(θ)∂µU
−1(θ)]2, (8.5)

donde el campo gauge viene dado por

Aµ(x) =
1

2i

N2−1∑

a=1

λaA
a
µ(x), (8.6)

las matrices λa son los generadores del grupo SU(N), con Tr{λaλb} = 2δab,
y las matrices unitarias de tamaño N ×N

U(θ) = exp

[
i

2
λaθ

a(x)

]
(8.7)

describen los campos escalares θa(x). Se observa entonces que la densidad
Lagrangiana LMY M es localmente invariante gauge bajo las transforma-
ciones de gauge combinadas

A′
µ(x) = V (ω)Aµ(x)V −1(ω) − g−1(∂µV )V −1, U(θ′) = V (ω)U(θ), (8.8)

para cada matriz V ∈ SU(N), siendo ωa(x) los parámetros del grupo. Se
podŕıa pensar entonces que empleando Eq. (8.8), los campos θa siempre
pueden ser deformados a cero, pero esto no es posible si los campos θa

contienen vórtices2. Para emplear la densidad lagrangian LMY M dada en
Eq. (8.5), se resuelven en primer lugar las ecuaciones de movimiento de U
en función de los potenciales gauge y, seguidamente, se sustituye el resul-
tado en las propias ecuaciones de movimiento del potencial. Cuando esta
tarea se lleva a cabo, se descubre que este modelo admite soluciones de
tipo vórtice [87]. Estos vórtices son muy caracteŕısticos ya que contienen
en sus potenciales un término gauge puro de largo alcance que dota a los

2 Los vórtices son soluciones solitónicas de las ecuaciones de movimiento clásicas para
la densidad Lagrangiana Eq. (8.5). Dichas soluciones contienen cuerdas de Dirac que no
pueden hacerse desaparecer mediante transformaciones de gauge, e.g. [92].
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vórtices de un número cuántico topológico relacionado con el centro del
grupo gauge [ZN for SU(N)]. Dicho número topológico está relacionado
con el confinamiento de quarks y el apantallamiento de gluones [88,93]. Es-
pećıficamente, esta clase de vórtices de espesor ∼ m−1, siendo m la masa
gluónica inducida, pueden formar un condensado cuando su entroṕıa excede
el valor de su acción. Esta condensación debeŕıa entonces proporcionar una
ley de área para la representación fundamental del lazo de Wilson, confi-
nando por tanto a los quarks [94]. Por otra parte, el potencial adjunto
entre dos quarks, estudiado en una gran serie de trabajos [95–97], debeŕıa
mostrar en esta imagen de confinamiento un régimen lineal con la distancia
de separación entre quarks seguido de un proceso de ruptura de cuerda [98]
cuando la enerǵıa potencial ronda el valor 2m, correspondiente al apan-
tallamiento de gluones [7, 87].

Por último, debe observarse que la densidad lagrangiana LMY M no es
renormalizable y falla en el ultravioleta. Este fallo simplemente refleja
el hecho de que la masa gluónica m en Eq. (8.5) se considera constante
mientras que, como se ha establecido en esta tesis, la masa gluónica depende
de la enerǵıa y se desvanece en el régimen de altas enerǵıas.

Parece, por tanto, que existe una profunda y todav́ıa inexplorada conexión
entre el mecanismo de generación de masa gluónica y el problema de con-
finamiento.
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A. THE QCD LAGRANGIAN.

The QCD Lagrangian density is given by

L = LI + LGF + LFPG. (A.1)

LI represents the gauge invariant SU(3) Lagrangian, namely

LI = −1

4
F a

µνF
µν
a + ψ̄i

f (iγµDµ −m)ijψ
j
f , (A.2)

where a = 1, . . . , 8 (respectively i, j = 1, 2, 3) is the color index for the ad-
joint (respectively fundamental) representation, while f is the flavor index.
The field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (A.3)

and the covariant derivative is defined as

(Dµ)ij = ∂µ(I)ij − igAa
µ(ta)ij , (A.4)

with g the (strong) coupling constant. Finally, the SU(N) generators ta

satisfy the commutation relations

[ta, tb] = ifabctc, (A.5)

with fabc the totally antisymmetric SU(N) structure constants.
At the classical level, LI is invariant under the (infinitesimal) local gauge

transformations

δAa
µ = −1

g
∂µθ

a + fabcθbAc
µ; δψi

f = −iθa(ta)ijψ
j
f ; δψ̄i

f = −iθaψ̄j
f (ta)ji,

(A.6)
where θa(x) are the local infinitesimal parameters corresponding to the
SU(N) generators ta. However, in order to quantize the theory, the gauge
invariance needs to be broken; this is achieved through a gauge fixing func-
tion Fa, giving rise to the gauge fixing Lagrangian LGF and its associated
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Faddeev-Popov ghost term LFPG. The usual linear Rξ gauges, correspond
to the covariant choice

Fa
Rξ

= ∂µAa
µ. (A.7)

In this case one has

LGF =
1

2ξ
(∂µAa

µ)2,

LFPG = ∂µc̄a∂µc
a + gfabc(∂µc̄a)Ab

µc
c, (A.8)

and the Feynman rules for this choice can be seen in Fig. A.1.
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Fig. A.1: Feynman rules for QCD in the Rξ gauges. The first two columns show
the lowest order Feynman diagrams and rule respectively, while the last
one shows the corresponding all-order Green’s function.



B. THE BACKGROUND FIELD METHOD.

In the background field method (BFM) [25, 47] one splits the gauge field
appearing in the Lagrangian into a classical background field, Âa

µ, and a
fluctuating quantum field, Aa

µ, i.e.,

Aa
µ 7−→ Âa

µ +Aa
µ. (B.1)

Then, one defines the so called covariant background field derivative as

D̂ab
µ = δab∂µ + gfambÂm

µ , (B.2)

so that the (covariant) gauge fixing function in this case is given by

F̂a = (D̂µAµ)a = ∂µAa
µ + gfabcÂb

µA
µ
c . (B.3)

With this choice the gauge fixing term is given by

LBFM
GF =

1

2ξQ
(F̂a)2, (B.4)

where ξQ is the gauge fixing parameter of the quantum gauge field, whereas
the associated Faddeev-Popov term becomes

LBFM
FPG = ∂µc̄a∂µc

a + gfabc(∂µc̄a)Ab
µc

c + gfabc(∂µc̄a)Âb
µc

c

− gfabcc̄aÂb
µ(∂µcc) − g2fabef cdec̄aÂb

µ(Aµ
c + Âµ

c )cd. (B.5)

Notice the appearance of a modified ghost sector respect to the usual lin-
ear Rξ gauges. Specifically, the interaction between ghosts and background

gluons are very characteristic, consisting of a symmetric Âcc̄ ghost ver-
tex and a completely new, four particle vertex, ÂAcc̄. The corresponding
Feynman rules are listed below, in Fig. B.1. But, the crucial feature that
makes the BFM such an advantageous way of quantizing gauge theories is
the following. With the choice of the gauge fixing function Eq. (B.3), even
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after the gauge-fixing procedure, the Lagarangian is still invariant under
the following (infinitesimal) gauge transformations of the background field,

δÂa
µ = −1

g
∂µθ̂

a + fabcθ̂bÂc
µ. (B.6)

Notice that the (infinitesimal) parameter of the gauge transformation above
has been denoted by θ̂, because it is different from the one appearing in the
gauge transformations of the quantum field A.
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Fig. B.1: Feynman rules for QCD in the BFM gauge. We only include those rules
which are different from the Rξ ones to lowest order. A gray circle on a
gluon line indicates a background field.

So, the whole Lagrangian retains (background) gauge invariance with
respect to the Â field. As a consequence, the background field only appears
in external lines because the Â propagator is not defined. The gauge sym-
metry is, however, explicitly broken by the quantum field A, which enters
only in loops.



BIBLIOGRAPHY

[1] H. D. Politzer, “Asymptotic Freedom: An Approach to Strong Inter-
actions,” Phys. Rept. 14 (1974) 129.

[2] F. J. Dyson, “The S matrix in quantum electrodynamics,” Phys. Rev.
75 (1949) 1736.

[3] J. S. Schwinger, “On the Green’s functions of quantized fields. 1.,”
Proc. Nat. Acad. Sci. 37 (1951) 452.

[4] J. M. Cornwall, R. Jackiw and E. Tomboulis, “Effective Action for
Composite Operators,” Phys. Rev. D 10 (1974) 2428.

[5] W. J. Marciano and H. Pagels, “Quantum Chromodynamics: A Re-
view,” Phys. Rept. 36 (1978) 137.

[6] K. D. Lane, “Asymptotic Freedom and Goldstone Realization of Chiral
Symmetry,” Phys. Rev. D 10 (1974) 2605.

[7] J. M. Cornwall, “Dynamical Mass Generation in Continuum QCD,”
Phys. Rev. D 26 (1982) 1453.

[8] J. S. Schwinger, “Gauge Invariance and Mass,” Phys. Rev. 125 (1962)
397.

[9] J. S. Schwinger, “Gauge Invariance and Mass. 2.,” Phys. Rev. 128

(1962) 2425.

[10] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,”
Phys. Rev. Lett. 13 (1964) 508.

[11] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,”
Phys. Lett. 12 (1964) 132.

[12] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge
Vector Mesons,” Phys. Rev. Lett. 13 (1964) 321.



156 Bibliography

[13] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, “Global Conserva-
tion Laws and Massless Particles,” Phys. Rev. Lett. 13 (1964) 585.

[14] P. W. Higgs, “Spontaneous Symmetry Breakdown without Massless
Bosons,” Phys. Rev. 145 (1966) 1156.

[15] E. Eichten and F. Feinberg, “Dynamical Symmetry Breaking of Non-
abelian Gauge Symmetries,” Phys. Rev. D 10 (1974) 3254.

[16] E. C. Poggio, E. Tomboulis and S. -H. H. Tye, “Dynamical Symmetry
Breaking in Nonabelian Field Theories,” Phys. Rev. D 11 (1975) 2839.

[17] Y. Nambu, “Quasiparticles and Gauge Invariance in the Theory of
Superconductivity,” Phys. Rev. 117 (1960) 648.

[18] J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo
Cim. 19 (1961) 154.

[19] J. Goldstone, A. Salam and S. Weinberg, “Broken Symmetries,” Phys.
Rev. 127 (1962) 965.

[20] Y. Nambu and G. Jona-Lasinio, “Dynamical Model Of Elementary
Particles Based On An Analogy With Superconductivity. Ii,” Phys.
Rev. 124 (1961) 246.

[21] Y. Nambu and G. Jona-Lasinio, “Dynamical Model of Elementary
Particles Based on an Analogy with Superconductivity. 1.,” Phys. Rev.
122 (1961) 345.

[22] A. C. Aguilar, D. Binosi and J. Papavassiliou, “The dynamical equa-
tion of the effective gluon mass,” Phys. Rev. D 84 (2011) 085026
[arXiv:1107.3968 [hep-ph]].

[23] D. Binosi and J. Papavassiliou, “Pinch Technique: Theory and Appli-
cations,” Phys. Rept. 479 (2009) 1 [arXiv:0909.2536 [hep-ph]].

[24] A. Pilaftsis, “Generalized pinch technique and the background field
method in general gauges,” Nucl. Phys. B 487, 467 (1997) [hep-
ph/9607451].

[25] L. F. Abbott, “Introduction to the Background Field Method,” Acta
Phys. Polon. B 13 (1982) 33.



Bibliography 157

[26] A. C. Aguilar, D. Binosi and J. Papavassiliou, “Gluon and ghost prop-
agators in the Landau gauge: Deriving lattice results from Schwinger-
Dyson equations,” Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870
[hep-ph]].

[27] A. C. Aguilar, D. Binosi and J. Papavassiliou, “Unquenching the gluon
propagator with Schwinger-Dyson equations,” Phys. Rev. D 86 (2012)
014032 [arXiv:1204.3868 [hep-ph]].

[28] J. Skullerud and A. Kizilersu, “Quark gluon vertex from lattice QCD,”
JHEP 0209 (2002) 013 [hep-ph/0205318].

[29] C. Alexandrou, P. De Forcrand and E. Follana, “The Laplacian gauge
gluon propagator in SU(N(c)),” Phys. Rev. D 65 (2002) 117502 [hep-
lat/0203006].

[30] C. Alexandrou, P. de Forcrand and E. Follana, “The Gluon propagator
without lattice Gribov copies on a finer lattice,” Phys. Rev. D 65

(2002) 114508 [hep-lat/0112043].

[31] C. Alexandrou, P. de Forcrand and E. Follana, “The Gluon propagator
without lattice Gribov copies,” Phys. Rev. D 63 (2001) 094504 [hep-
lat/0008012].

[32] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker and A. Stern-
beck, “The Landau gauge gluon and ghost propagators in 4D SU(3)
gluodynamics in large lattice volumes,” PoS LAT 2007 (2007) 290
[arXiv:0710.1968 [hep-lat]].

[33] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly,
A. Sternbeck, L. von Smekal, A. G. Williams and J. -b. Zhang, “Scal-
ing behavior and positivity violation of the gluon propagator in full
QCD,” Phys. Rev. D 76 (2007) 094505 [hep-lat/0703022 [HEP-LAT]].

[34] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker and A. Stern-
beck, “Lattice gluodynamics computation of Landau gauge Green’s
functions in the deep infrared,” Phys. Lett. B 676 (2009) 69
[arXiv:0901.0736 [hep-lat]].

[35] O. Oliveira and P. J. Silva, “The Lattice infrared Landau gauge gluon
propagator: The Infinite volume limit,” PoS LAT 2009 (2009) 226
[arXiv:0910.2897 [hep-lat]].



158 Bibliography

[36] A. Cucchieri and T. Mendes, “What’s up with IR gluon and ghost
propagators in Landau gauge? A puzzling answer from huge lattices,”
PoS LAT 2007 (2007) 297 [arXiv:0710.0412 [hep-lat]].

[37] A. Cucchieri and T. Mendes, “Constraints on the IR behavior of the
gluon propagator in Yang-Mills theories,” Phys. Rev. Lett. 100 (2008)
241601 [arXiv:0712.3517 [hep-lat]].

[38] A. Cucchieri and T. Mendes, “Landau-gauge propagators in Yang-
Mills theories at beta = 0: Massive solution versus conformal scaling,”
Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033 [hep-lat]].

[39] A. C. Aguilar, D. Binosi and J. Papavassiliou, “QCD effective charges
from lattice data,” JHEP 1007 (2010) 002 [arXiv:1004.1105 [hep-ph]].

[40] A. C. Aguilar and J. Papavassiliou, “Chiral symmetry breaking with
lattice propagators,” Phys. Rev. D 83 (2011) 014013 [arXiv:1010.5815
[hep-ph]].

[41] A. C. Aguilar, A. A. Natale and P. S. Rodrigues da Silva, “Relating a
gluon mass scale to an infrared fixed point in pure gauge QCD,” Phys.
Rev. Lett. 90 (2003) 152001 [hep-ph/0212105].

[42] A. C. Aguilar and J. Papavassiliou, “Gluon mass generation in the
PT-BFM scheme,” JHEP 0612 (2006) 012 [hep-ph/0610040].

[43] A. C. Aguilar and J. Papavassiliou, “Gluon mass generation without
seagull divergences,” Phys. Rev. D 81 (2010) 034003 [arXiv:0910.4142
[hep-ph]].

[44] J. M. Cornwall and J. Papavassiliou, “Gauge Invariant Three Gluon
Vertex in QCD,” Phys. Rev. D 40 (1989) 3474.

[45] D. Binosi and J. Papavassiliou, “The Pinch technique to all orders,”
Phys. Rev. D 66 (2002) 111901 [hep-ph/0208189].

[46] D. Binosi and J. Papavassiliou, “Pinch technique selfenergies and ver-
tices to all orders in perturbation theory,” J. Phys. G G 30 (2004) 203
[hep-ph/0301096].

[47] L. F. Abbott, “The Background Field Method Beyond One Loop,”
Nucl. Phys. B 185 (1981) 189.



Bibliography 159

[48] J. S. Ball and T. -W. Chiu, “Analytic Properties Of The Vertex Func-
tion In Gauge Theories. 2.,” Phys. Rev. D 22 (1980) 2550 [Erratum-
ibid. D 23 (1981) 3085].

[49] C. Becchi, A. Rouet and R. Stora, “Renormalization of Gauge Theo-
ries,” Annals Phys. 98 (1976) 287.

[50] C. Becchi, A. Rouet and R. Stora, “Renormalization of the Abelian
Higgs-Kibble Model,” Commun. Math. Phys. 42 (1975) 127.

[51] D. Binosi and J. Papavassiliou, “Gauge-invariant truncation scheme
for the Schwinger-Dyson equations of QCD,” Phys. Rev. D 77 (2008)
061702 [arXiv:0712.2707 [hep-ph]].

[52] D. Binosi and J. Papavassiliou, “New Schwinger-Dyson equations for
non-Abelian gauge theories,” JHEP 0811 (2008) 063 [arXiv:0805.3994
[hep-ph]].

[53] J. S. Ball and T. -W. Chiu, “Analytic Properties of the Vertex Function
in Gauge Theories. 1.,” Phys. Rev. D 22 (1980) 2542.

[54] P. A. Grassi, T. Hurth and M. Steinhauser, “Practical algebraic renor-
malization,” Annals Phys. 288 (2001) 197 [hep-ph/9907426].

[55] D. Binosi and J. Papavassiliou, “Pinch technique and the Batalin-
Vilkovisky formalism,” Phys. Rev. D 66 (2002) 025024 [hep-
ph/0204128].

[56] I. A. Batalin and G. A. Vilkovisky, “Relativistic S Matrix of Dynam-
ical Systems with Boson and Fermion Constraints,” Phys. Lett. B 69

(1977) 309.

[57] I. A. Batalin and G. A. Vilkovisky, “Gauge Algebra and Quantization,”
Phys. Lett. B 102 (1981) 27.

[58] P. A. Grassi, T. Hurth and A. Quadri, “On the Landau background
gauge fixing and the IR properties of YM Green functions,” Phys. Rev.
D 70 (2004) 105014 [hep-th/0405104].

[59] A. C. Aguilar, D. Binosi, J. Papavassiliou and J. Rodriguez-Quintero,
“Non-perturbative comparison of QCD effective charges,” Phys. Rev.
D 80 (2009) 085018 [arXiv:0906.2633 [hep-ph]].



160 Bibliography

[60] A. C. Aguilar, D. Binosi and J. Papavassiliou, “Indirect determination
of the Kugo-Ojima function from lattice data,” JHEP 0911 (2009) 066
[arXiv:0907.0153 [hep-ph]].

[61] R. Jackiw and K. Johnson, “Dynamical Model of Spontaneously Bro-
ken Gauge Symmetries,” Phys. Rev. D 8 (1973) 2386.

[62] R. Jackiw, “Dynamical Symmetry Breaking,” In *Erice 1973, Proceed-
ings, Laws Of Hadronic Matter*, New York 1975, 225-251 and M I T
Cambridge - COO-3069-190 (73,REC.AUG 74) 23p

[63] J. M. Cornwall and R. E. Norton, “Spontaneous Symmetry Breaking
Without Scalar Mesons,” Phys. Rev. D 8 (1973) 3338.

[64] A. C. Aguilar, D. Ibanez, V. Mathieu and J. Papavassiliou, “Massless
bound-state excitations and the Schwinger mechanism in QCD,” Phys.
Rev. D 85 (2012) 014018 [arXiv:1110.2633 [hep-ph]].

[65] D. Binosi and J. Papavassiliou, “Gauge invariant Ansatz for a special
three-gluon vertex,” JHEP 1103 (2011) 121 [arXiv:1102.5662 [hep-
ph]].

[66] A. Salam, “Renormalizable electrodynamics of vector mesons,” Phys.
Rev. 130, 1287 (1963);

[67] A. Salam and R. Delbourgo, “Renormalizable electrodynamics of
scalar and vector mesons. II,” Phys. Rev. 135, B1398 (1964);

[68] R. Delbourgo and P. C. West, “A Gauge Covariant Approximation To
Quantum Electrodynamics,” J. Phys. A 10, 1049 (1977);

[69] R. Delbourgo and P. C. West, “Infrared Behavior Of A Gauge Covari-
ant Approximation,” Phys. Lett. B 72, 96 (1977).

[70] A. Kizilersu and M. R. Pennington, “Building the Full Fermion-Photon
Vertex of QED by Imposing Multiplicative Renormalizability of the
Schwinger-Dyson Equations for the Fermion and Photon Propaga-
tors,” Phys. Rev. D 79, 125020 (2009); [arXiv:0904.3483 [hep-th]].

[71] A. Bashir, A. Kizilersu and M. R. Pennington, “The non-perturbative
three-point vertex in massless quenched QED and perturbation theory
constraints,” Phys. Rev. D 57, 1242 (1998). [arXiv:hep-ph/9707421].



Bibliography 161

[72] D. Binosi, D. Ibanez and J. Papavassiliou, “The all-order equa-
tion of the effective gluon mass,” Phys. Rev. D 86 (2012) 085033
[arXiv:1208.1451 [hep-ph]].

[73] J. Rodriguez-Quintero, “The low-momentum ghost dressing function
and the gluon mass,” PoS LC 2010 (2010) 023 [arXiv:1011.1392 [hep-
ph]].

[74] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Ver-
schelde, “A Refinement of the Gribov-Zwanziger approach in the Lan-
dau gauge: Infrared propagators in harmony with the lattice results,”
Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348 [hep-th]].

[75] P. Boucaud, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene and
J. Rodriguez-Quintero, “On the IR behaviour of the Landau-gauge
ghost propagator,” JHEP 0806 (2008) 099 [arXiv:0803.2161 [hep-ph]].

[76] C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations and
their application to hadronic physics,” Prog. Part. Nucl. Phys. 33

(1994) 477 [hep-ph/9403224].

[77] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
“Numerical Recipes in FORTRAN: The Art of Scientific Computing,”
ISBN-9780521430647.

[78] J. C. R. Bloch, “Two loop improved truncation of the ghost gluon
Dyson-Schwinger equations: Multiplicatively renormalizable propaga-
tors and nonperturbative running coupling,” Few Body Syst. 33 (2003)
111 [hep-ph/0303125].

[79] M. Lavelle, Phys. Rev. D 44 (1991) 26.

[80] A. C. Aguilar and J. Papavassiliou, “Power-law running of the effective
gluon mass,” Eur. Phys. J. A 35 (2008) 189 [arXiv:0708.4320 [hep-ph]].

[81] D. Ibanez and J. Papavassiliou, “Massive gluon propagator in the
massless bound-state formalism,” In preparation.

[82] C. S. Fischer, A. Maas and J. M. Pawlowski, “On the infrared behavior
of Landau gauge Yang-Mills theory,” Annals Phys. 324, 2408 (2009).

[83] D. Ibanez, “Explicit construction of the pole part of the three-gluon
vertex,” PoS QCD -TNT-II (2011) 025 [arXiv:1112.5081 [hep-ph]].



162 Bibliography

[84] J. M. Cornwall and W. -S. Hou, “Extension Of The Gauge Technique
To Broken Symmetry And Finite Temperature,” Phys. Rev. D 34, 585
(1986).

[85] J. M. Cornwall, “Exact zero momentum sum rules in d = 3 gauge
theory,” Nucl. Phys. B 416 (1994) 335.

[86] J. Alexandre and N. E. Mavromatos, “A Lorentz-Violating Alter-
native to Higgs Mechanism?,” Phys. Rev. D 84 (2011) 105013
[arXiv:1108.3983 [hep-ph]].

[87] J. M. Cornwall, “Quark Confinement and Vortices in Massive Gauge
Invariant QCD,” Nucl. Phys. B 157 (1979) 392.

[88] J. M. Cornwall, “Center vortices and confinement versus screening,”
Phys. Rev. D 57 (1998) 7589 [hep-th/9712248].

[89] J. Greensite, “The Confinement problem in lattice gauge theory,”
Prog. Part. Nucl. Phys. 51 (2003) 1 [hep-lat/0301023].

[90] J. Greensite, K. Langfeld, S. Olejnik, H. Reinhardt and T. Tok, “Color
Screening, Casimir Scaling, and Domain Structure in G(2) and SU(N)
Gauge Theories,” Phys. Rev. D 75 (2007) 034501 [hep-lat/0609050].

[91] D. Ibanez, “Topological aspects of confinement,” Master thesis (2009),
Department of Theoretical Physics (University of Valencia).

[92] H. Reinhardt, “Topology of center vortices,” Nucl. Phys. B 628 (2002)
133 [hep-th/0112215].

[93] C. W. Bernard, “Adjoint Wilson Lines And The Effective Gluon
Mass,” Nucl. Phys. B 219 (1983) 341.

[94] K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D 10 (1974) 2445.

[95] J. Greensite, B. Lucini and A. Patella, “k-string tensions and the 1/N
expansion,” Phys. Rev. D 83 (2011) 125019 [arXiv:1101.5344 [hep-th]].

[96] J. Greensite and S. Olejnik, “Constituent Gluon Content of the Static
Quark-Antiquark State in Coulomb Gauge,” Phys. Rev. D 79 (2009)
114501 [arXiv:0901.0199 [hep-lat]].



Bibliography 163

[97] P. Gonzalez, V. Vento and V. Mathieu, “Non Perturbative
One Gluon Exchange Potential from Dyson-Schwinger Equations,”
arXiv:1207.4314 [hep-ph].

[98] J. Greensite and C. B. Thorn, “Gluon chain model of the confining
force,” JHEP 0202 (2002) 014 [hep-ph/0112326].


