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PROLOGUE 
 
This thesis is written in a deductive form; starting from the introduction to the 

worldwide problem of emergent infectious diseases; describing in continuation the 

properties of RNA viruses and evolutionary biology terms and parameters relevant to 

addressing the aforementioned problem of virus emergence.  All topics elaborated in the 

introduction part are mutually highly interconnected, some even being synonymous. 

Viruses are the most diverse and the most abundant organisms on the planet 

(Edwards & Rohwer 2005), infecting organisms from all three domains of life.  Viruses 

can be defined as obligate intracellular parasites or symbionts that possess their own 

genomes encoding information required for virus reproduction and, hence, a degree of 

autonomy from the host genetic system, but do not encode a complete translation system 

or a complete membrane apparatus (Koonin 2003).  Due to their parasitic life cycle, 

viruses have evolved numerous, complex and fascinating ways of interacting with their 

hosts, which in turn enable them to switch between hosts and become emergent.  

Emergent viruses are those that had “crossed species barriers”, that is, expanded their 

host range to other species.  Emergent virus diseases of viral aethiology nowadays 

represent a major threat to public health and to the agronomy.  Among emerging 

infectious diseases of plants, viruses cause almost a half (Anderson et al. 2004). 

The majority of both past and ongoing pandemics are caused by RNA viruses 

(Domingo & Holland 1997).  Due to their great evolvability; a consequence of 

combining highly error-prone replication, large population sizes and rapid replication 

rates (Elena & Sanjuán 2008), RNA viruses have great capacity of adaptation to 

environmental challenges such as new hosts, resistance genes and antiviral treatments 

(Holmes 2009).  Understanding the evolutionary mechanisms by which a virus may 

become an emergent one is pivotal for the rational design of control strategies and 

antiviral therapies (McDonald & Linde 2002).  Herewith, the aim of this thesis is to 

explore the evolutionary genetics underlying the empirical phenomena of RNA viruses 

switching their hosts.  

Thus, can virus emergence and jump to a new host species be predicted by 

knowing its phenotype, i.e., fitness, in its natural host?  If so, then the architecture of 

virus fitness would be determined only by its genotype (the G component; i.e., 

mutations in the genome) and environment (the E component; i.e., host).  Still, 

interactions between these components may exist and compromise the predictability of 



 
 

virus phenotype in an alternative host.  How mutations affect the fitness of viral 

populations is essential to understanding viral emergence and adaptation to new hosts.  

The widespread observation that the majority of mutations are deleterious coincides 

with the theoretical prediction that an organism will be well adapted to its particular 

environment, so that any genomic change would represent a move-away from the 

optimal phenotype.  In reality, this view is overly simplified; mutational fitness effects 

constitute a continuum and are conditional upon the environment and genetic 

background; effects commonly referred to as genotype-by-environment (GE) genetic 

(GG or epistasis) and GGE (i.e., epistasis-by-host) interactions.  In this Thesis the 

contributions of genetic and environmental components to the architecture of viral 

fitness and, in the final part, the description of an empirical fitness landscape, was 

addressed using a plant positive sense RNA virus: Tobacco etch potyvirus (TEV).  TEV 

pertains to the genus Potyvirus within the family Potyviridae.  Potyviruses are the most 

abundant and economically the most significant plant viruses.  TEV genome is 

composed of single-stranded RNA of about 9.5 kb that directly serves as a template for 

translation into a polyprotein precursor, which is further being proteolyticaly processed 

by its own three proteases into at least 10 mature proteins, plus an additional peptide 

encoded in the +2 reading frame.  TEV has relatively wide host range although most of 

its natural hosts belong to the family Solanaceae. 
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CHAPTER I - GENERAL INTRODUCTION 

 

1.1. Emerging viruses 

Emergence of novel infectious diseases is a critical issue of public health and economic 

welfare (Holmes 2009).  An emerging virus is “the causal agent of an infectious disease 

of viral aetiology whose incidence is increasing following its first introduction into a 

new host population or whose incidence is increasing in an existing host population as 

a result of long-term changes in its underlying epidemiology” (Woolhouse & Dye 2001).  

The majority of emerging and reemerging pathogens are viruses, among which 

numerically predominate RNA viruses, comprising 37% of all emerging and reemerging 

pathogens (Woolhouse & Gowtage-Sequeria 2005; Holmes 2009).  Even though most 

of public attention has been dedicated to emerging viruses of humans and animals, 

emerging plant viruses are equally common and known to cause significant economic 

losses in crops (Roossinck 2008; Navas-Castillo et al. 2011).  Some rough estimates put 

total worldwide damage due to plant viruses as high as US$ 61010 per year (Cann 

2005). 

A virus becomes emergent after jumping from its reservoir species to a new host 

and successfully establishes infection within the latter.  Virus emergence results from 

complex dynamics of pathogen, host and environmental factors; such as transmission 

chains (Parrish et al. 2008; Elena et al. 2011).  Hence, it is of great importance to 

pinpoint the contribution of these factors to disease emergence.  The appearance of new 

diseases, and resurgence of old ones, implies the necessity for interdisciplinary 

involvement in the case.  Within this context, experimental evolution provides an 

invaluable tool for exploring the processes underlying origin, emergence and spread of 

emerging viruses (Elena et al. 2011).  This sort of knowledge may be of help to design 

intervention and prevention measures to control disease propagation and identifying and 

managing the host reservoirs. 

One of the most intuitive and most frequently cited ideas in the prism of viral 

emergence is that the more closely related the host species in question, the greater the 

chance of virus jump between them and successful infection (DeFilippis & Villareal 

2000; Longdon et al. 2011).  Since phylogenetically close hosts share common cell-

surface receptors needed for establishing a successful infection, it is thought that this 

mechanistic basis should underlie the increased likelihood of viral emergence to a 
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phylogenetically proximate host, especially in animal viruses (Baranowski et al. 2001; 

Woolhouse 2002).  Still, spillovers or epidemic infections have occurred between hosts 

that are closely or distantly related, and there is no rule for predicting the susceptibility 

of a new host (Parrish et al. 2008).  It has been suggested that the probability of 

successful cross-species transmission tightly relates to the probability of exposure 

(Holmes 2009a), which depends on the ecology of the two hosts and of the transmission 

biology of the virus, including any relevant vectors.  However, upon initial infection of 

the new host, the infectivity, viral load and transmissibility is usually very low (Elena et 

al. 2011), so in order to expand its host range, a virus needs to adapt to its new host.  

Genetic mechanisms underlying posterior adaptation are described in Section 3. 

A prerequisite for viral emergence is the existence of host-range mutants within 

the standing genetic variation in the reservoir host (Elena et al. 2011).  The amount of 

standing genetic variation would depend (i) on the rates of mutation and recombination, 

(ii) on the distribution of mutational effects on viral fitness and (iii) on the strength of 

genetic drift and gene flow among subpopulations. 

 

1.2. RNA viruses 

Out of 2000 known species of viruses, approximately a half use RNA as their genomic 

material (the other half are the DNA viruses) (Holmes 2009).  Moreover, positive-strand 

RNA viruses encompass over one-third of all virus genera and most of plant viruses 

have such genome.  RNA viruses are the only organisms that store their genetic 

information in RNA.  Other organisms use RNA only temporary: for regulatory and 

various other tasks. 

Here I summarize some of the distinguishing features of RNA viruses with special 

interest in their genome characteristics and replication.  These are the mechanistic 

reasons that underlie and/or constrain the great adaptability hallmark of RNA viruses 

reflected in the following population-genetics parameters: i) high mutation rates, ii) 

large population sizes and iii) short generation times that enable them to generate great 

genetic variability and adapt to many different environments (i.e., hosts). 

 

1.2.1. The genome 

One of the most prominent features of RNA viruses is the restricted size of their 

genome.  All RNA viruses have small genomes, spanning the range from 2.3 kb in 

Ophiostoma novo-ulmi mitovirus 6-Ld up to ca. 30 kb in coronaviruses (Figure 1); 
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typically having around 10 kb (Holmes 2009a).  In comparison, genome sizes of DNA 

viruses can differ by as much as ∼3 orders of magnitude.  The mechanistic reasons that 

underlie the genome size limitation observed in RNA (and ssDNA) viruses are 

unknown.  It has been suggested that the ultimate size of single-stranded RNA viruses is 

limited by the fragility of RNA and the tendency of long strands to break (Cann 2005).  

In the case of plant RNA viruses, which genome size does not exceed 15 kb, it has been 

suggested that plasmodesmata (through which the virus moves cell-to-cell) constrains 

the genome size (Roossinck 2008a).  Since a small genome is replicated faster than a 

long one, this property has important repercussions on the RNA virus population size as 

will be discussed further on.  Moreover, restricted genome size in RNA viruses is 

selected by intrinsically error-prone replication (Holmes 2003).  In this sense, longer 

genome presents bigger mutational target, so great number of mutations (majority of 

which are deleterious) will in final have a negative impact on virus evolution.  In 

comparison, dsDNA viruses that replicate with high fidelity, bear far lower mutation 

rates and are able to achieve much larger genome sizes.  In RNA virus world, the 

exception are animal Nidovirales which possess the largest known RNA genomes (from 

26 to 32 kb) and a set of enzymes involved in proofreading and repair linked to their 

replicase (Gorbalenya et al. 2006; Minskaia et al. 2006).  This hints that Nidovirales are 

able to reduce mutational load and thus evolve larger genome sizes.  From the 

experimentalist perspective, small genomes have an advantage of being easily 

sequenced, thus allowing for experimental observations to be explained mechanistically 

by attributing certain phenotypic response (such as, for example, change in viral 

accumulation, infectivity, transmissibility, etc.) to particular mutation(s).  In other 

words, it is relatively easy to map genotypes into phenotypic space. 

 



4 
 

 

Figure 1.  The distribution of genome sizes among different families (and some 
genera) of RNA viruses.  Segmented (closed bars) and unsegmented (open bars) 
genomes are indicated (Holmes 2009a). 
 

RNA viruses resemble low complexity in terms of their genome structure and 

number of proteins it codes for; according to their parasitic life history.  They have no 

genetic redundancy and the compactness of their genetic information is reflected in 

different levels: i) trough common existence of overlapping reading frames, ii) via 

secondary RNA and higher-order structures and iii) multifunctional proteins. 

 

1.2.1.1. Overlapping reading frames 

Overlapping reading frames are created de novo by mutations within a coding sequence 

that leads to the expression of a novel protein in another reading frame.  Mechanisms 
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that lead to gene overlap include ribosomal frameshifting, the use of non-AUG start 

codons and RNA splicing (Belshaw et al. 2007).  It has been suggested that the proteins 

created by gene overlaps are typically accessory proteins that play a role in viral 

pathogenicity or spread (Rancurel et al. 2009).  These overlaps are typically assumed to 

be a form of genome compression, allowing the virus to increase its repertoire of 

proteins without increasing its genome length (Barrell et al. 1976; Scherbakov & Garber 

2000; Chung et al. 2008).  In addition, Belshaw et al. (2007) showed that viruses with 

longer genomes tend to have less gene overlap compared to shorter RNA viruses, 

presumably because their genome already comprises enough protein diversity.  

However, other authors argue that the gene overlap evolved because the size of the 

capsid physically limits the genome length (Chirico et al. 2010). 

 

1.2.1.2. RNA secondary structures 

Defined RNA secondary and higher-order structures are shown to play fundamental 

roles in many different cell processes; including transcription, translation, RNA 

localization, splicing, transport, stability and catalytic activity.  RNA viruses, as 

obligate intracellular parasites, need to interact with the cellular synthetic machinery for 

completing these processes.  So, in that sense, functional secondary structures within the 

genome of RNA viruses must be crucial for the various stages of the viral life cycle and 

in evasion of host defences.  Important viral RNA structures include internal ribosome 

entry sites (IRES) (Witwer et al. 2001), packaging and splicing signals, pseudoknots, 

transfer RNA mimics, ribosomal frameshift motifs, and cis-regulatory elements (Cann 

2005). 

The observation of widespread RNA secondary structures argues against selective 

neutrality of synonymous sites (Simmonds & Smith 1999; Plotkin & Kudla 2011).  

Synonymous changes that do not affect the translated product may still result in non 

viable virus progeny, since RNA structure has been increasingly found to influence 

virus pathogenesis and survival (Simmonds et al. 2004, Coleman et al. 2008).  In 

addition, it has been shown that structured regions of virus genome bearded more 

mutations than nonstructured indicating that the presence of RNA secondary structure in 

the virus genome affects viral mutation rate (Pathak & Temin 1992; Pita et al. 2007). 

 

1.2.1.3. Multifunctional proteins 
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Finally, plant RNA viruses often comprise multifunctional proteins.  One of such is HC-

Pro from viruses within the genus Potyvirus (Maia et al. 1996) that in addition to being 

self-cleaving proteinase (Carrington & Herndon 1992), is also involved in a number of 

infectious processes such as aphid transmission (Govier et al. 1977), cell-to-cell (Rojas 

et al. 1997) and long-distance movements (Saenz et al. 2002), suppression of gene 

silencing (Llave et al. 2000), synergism between co-infecting viruses (Pruss et al. 1997) 

and symptom development (Redondo et al. 2001).  Potyvirus coat protein (CP) is also 

involved in multitude of interactions with factors encoded by the virus, host plant, or 

viral vector (biological transmission agent) that influence the infection and 

epidemiological facets of plant disease (Callaway et al. 2001). 

 

1.3. Plant RNA virus life cycle 

Life history of a plant RNA viruse consists of several sequential intra-host steps: cell 

entry, replication, cell-to-cell movement and systemic (long-distance) movement (Hull 

2002); in addition to inter-host transmission mediated by vectors (Figure 2).  Among 

these, the mechanism of systemic propagation through the phloem is the most poorly 

understood (Ruiz-Medrano et al. 2012).  To move from cell-to-cell, plant viruses 

encode special proteins; the movement proteins, that modify the plasmodesmata 

because the viruses are too big to pass trough (Boevink & Oparka 2005).  All these 

steps (Melcher 2012) require counteracting host defenses as well as intimate 

interactions between the viral genomes and/or virus-encoded proteins and numerous 

host’s transcriptional, translational, and macromolecular trafficking factors (Harries & 

Ding 2011). 

 

 

Figure 2. Schematic representation of a plant ssRNA(+) virus life cycle. 

 

cell-to-cell 
and 
vascular, 
long-
distance 
trafficking 
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1.3.1. Replication of positive single-stranded RNA viruses 

Unlike other RNA viruses, positive-strand RNA viruses do not encapsidate their RNA-

dependent RNA polymerase (RdRp).  Instead, upon entering the host cell, the virus 

decapsidates and the positive single-stranded (+) genomic RNA serves directly as a 

template (i.e., analogous to mRNA) for translation by host ribosomes.  The polyprotein 

product of translation further self-processes giving rise to structural and nonstructural 

(i.e., replication-associated) proteins.  Once the viral RdRp and other essential proteins 

are synthesized, the genomic RNA is used as a template for transcription (i.e., 

replication).  First, a minus-stranded (-) RNA intermediates are produced, followed by 

the synthesis of (+) RNA.  This results in asymmetric production of an excess of 

genomic (+) over (-) strand RNA, characteristic of all (+) strand viruses.  This may be 

accomplished through transition of the replicase from competence for (-) to (+) strand 

synthesis by the recruitment of additional host factors.  For (+) strand transcription, 

similarities in cis-acting sequence motifs and RNA secondary structures within 5' 

termini of genomic (+) strands have been shown to participate in binding of host factors 

(Pogue et al. 1994).  Even though it has not been clearly demonstrated, it is usually 

thought that viral transcription and translation are spatiotemporally coupled events.  

Virus genomes are further packaged along with structural proteins into virions. 

Virus replication mode is important issue in virology because it has direct 

repercusions on the number and distribution of mutations in virus populations (Elena et 

al. 2008).  Viruses can replicate either linearly, via Luria’s stamping machine model 

(Luria, 1951), using solely a few (-) strand intermediates as templates for the production 

of (+) strand progeny; or exponentially (geometrically) (French & Stenger 2003), 

whereby both (+) and (-) strands are used as templates for the production of (+) strand 

progeny.  Both strategies are mutually non-exclusive.  Neglecting the purifying 

selection, under the stamping machine model, the frequency of mutant progeny depends 

only on the genomic mutation rate, whereas if the replication is solely exponential, the 

frequency of mutants produced additionally depends on the number of replication 

events required to produce N viral genomes per cell.  As a result, the replication would 

be faster but more mutants would be produced if the replication would be exclusively 

exponential because the transcription errors would be geometrically amplified (Malpica 

et al. 2002).  Empirically, it has been found that the stamping machine is the 

predominating mode of replication for dsRNA (Chao et al. 2002), ssRNA(+) (Martínez 

et al. 2011) and DNA viruses (Denhardt & Silver 1966), with exponential mode 
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contributing only to the minor fraction (i.e., less than 10%) of the viral progeny.  These 

studies are evidences that RNA viruses shift the balance on replication accuracy 

depending only on the RdRP error rate rather than on replication speed. 

 

1.3.2. Host defences and counter defences 

Plants actively resist viral infection trough the expression of resistance (R) genes and 

via RNA silencing.  For many plant viruses, R genes has been described (Martin et al. 

2003).  On the other hand, RNA silencing in plants and its animal counterpart RNA 

interference (RNAi) is a mechanism for sequence-specific gene silencing triggered by 

dsRNA (Ratcliff et al. 1997).  During virus replication, dsRNAs are produced that 

trigger virus-induced RNA silencing (VIGS) pathway (Ding & Voinnet 2007).  As a 

counter-defense, viruses have commonly evolved proteins that suppress the silencing 

pathway (Kasschau & Carrington 1998) such as the HC-Pro of potyviruses or the 2b 

from Cucumber mosaic cucumovirus (CMV) (Voinnet 2005). 

 

1.3.3. Transmission 

Animal viruses transmit passively, trough air, or via vectors, and enter their host by 

fusing with the cell membrane.  By contrast, due to robust and thick plant cell wall, 

plant viruses developed the strategy of using vectors that feed on plants in order to 

propagate between hosts.  Most common vectors are arthropods; although nematodes, 

fungi or even bacteria can also transmit viruses (Walkey 1991).  Only relatively few 

viruses, such as Tobacco mosaic tobamovirus, rely on passive mechanical transmission 

from plant to plant.  Besides, some viruses are transmitted trough seed and pollen or by 

vegetative propagation, which represents a good strategy for surviving the winter.  

Transmission is a specific process: a particular virus can be transmitted by only one 

vector species or genera and not by anothers.  Moreover, the interaction between a virus 

and its specific vector is variable: some viruses just attach on their vector mouthparts, 

while some other multiply both in the cells of their insect vectors and in plants. 

 

1.4. General features of Tobacco etch virus 

The model virus used in this thesis is Tobacco etch virus (TEV).  TEV is a member of 

the genus Potyvirus within the family Potyviridae belonging to picornavirus supergroup 

of positive-strand RNA viruses (Figure 3).  Potyvirus is the largest genus in the family.  
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Potyviruses form the largest family (30%) of plant viral pathogens and produce severe 

crop losses worldwide (Shukla et al. 1994; Rajamäki et al. 2004).  One of distinguishing 

features of potyviruses is that gene order and protein sequences are conserved 

throughout the family (King et al. 2012). 

 

 

Figure 3.  Unrooted phylogenetic tree based on the codon-aligned nucleotide 
sequences of the polyproteins of fully-sequenced members of the family Potyviridae 
(King et al. 2012).  The position of TEV in the tree is denoted with an arrow. 
 

 

TEV is distributed worldwide, but occurs with more prevalence in North and 

South America (http://www.dpvweb.net/dpv/showdpv.php?dpvno=258). 

TEV posses relatively broad host range: it infects around 150 species from 19 

families (Shukla et al. 1994), among which Solanaceae members (such as tobacco, 

pepper, tomato, etc.) are its primary hosts. 

Typical symptoms induced by TEV on its primary hosts are stunting and mottling, 

necrotic etching and leaf malformations (Shukla et al. 1994; Figure 4).  The nature and 

extent of symptoms depend upon the virus and particular virus strain as well as the 

specific host species. 
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Figure 4. Symptoms in a Nicotiana 
tabacum plant infected with TEV. 

Potyviruses are transmitted in a non-persistent manner by aphid insects that feed 

on plants (Figure 5).  The virus produces a helper component protein, HC-Pro, that 

“glues” the virions to aphid stylets.  The adsorbed virus is released from the bucal 

apparatus of the aphid when the insect punches another plant in order to feed.  It does 

not replicate nor circulate within the vector body (Pirone & Blanc 1996).  In vitro, 

transmission to most hosts is readily accomplished by mechanical inoculation. 

 

Figure 5.  An aphid (Myzus persicae) 
responsible for Potyvirus transmission. 

 

TEV is an unsegmented (monopartite) virus.  It replicates in the cytoplasm and 

packs into a filamentous, flexuous nucleocapsid with a length of about 800 nm and a 

width of approximately 13 nm (Figure 6).  Virions consist of genomic RNA with a 3' 

poly(A) tail and 5' covalently attached genome-linked protein (the VPg) of about 24 

kDa encapsidated by approx. 2000 molecules of coat protein (CP).  In addition to 

multifunctional VPg, the CP, the cyclindrical inclusion protein (CI) also forms parts of 

viral particle (Oruetxebarria et al. 2001; Puustinen et al. 2002; Gabrenaite-

Verkhovskaya et al. 2008).  During infection, all potyviruses form cytoplasmic 

cylindrical inclusion (CI) bodies. 
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Figure 6.  (Left) Schematic diagram of a potyvirus particle.  The N-terminal (ca. 30 
amino acids; large rectangle) and C-terminal (ca. 19 amino acids; small rectangle) of the 
CP molecules are exposed on the surface of the intact virus particle (from Shukla & 
Ward 1989).  (Right) Negative contrast electron micrograph of particles of an isolate of 
Plum pox virus (from King et al. 2012).  The bar represents 200 nm. 
 

 

TEV genome is composed of positive sense RNA of 9496 nts (Figure 7) that 

directly serves as a template for translation into a 350 kDa polyprotein precursor which 

is co-translationally proteolyticaly cleaved by its own three proteases into at least 10 

mature proteins (Riechmann et al. 1992; Urcuqui-Inchima et al. 2001).  Seven of the 

nine cleavage sites are cut by the viral NIa-Pro acting both in cis and in trans, while P1 

and HC-Pro act only in cis separating themselves from the polyprotein during the 

ongoing traduction (Adams et al. 2005).  First the parental RNA is copied into a 

complementary minus strand.  The minus strand then serves as the template for the 

production of progeny plus strands.  The virus RNA-dependent-RNA polymerase 

(RdRp) uses an uridylylated form of the VPg peptide as primer for the synthesis of both 

(+) and (-) strand RNAs that is cleaved off as elongation of the initial complex occurs to 

become a 5'-genome-linked protein.  Additionally, RdRp requires cellular proteins and 

cis-acting RNA elements to achieve complete replication of the viral RNA genomes 

(Cameron et al. 2009). 
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Figure 7.  Genomic map of TEV (from King et al. 2012).  The ssRNA genome is 
represented by a line and an open box representing the ORF translated into a 
polyprotein.  Functions associated with the mature proteins proteolytically processed 
from the polyprotein are shown.  VPg, genome-linked viral protein covalently attached 
to the 5’-terminal nt (represented by the oval at the 5’ end); P1, a protein with a 
proteolytic activity responsible for cleavage at typically Tyr/Phe-Ser (○); HC-Pro, a 
protein with aphid transmission helper-component activity and proteolytic activity 
responsible for cleavage at typically Gly-Gly (♦); NIa-Pro, serine-like proteolytic 
activity responsible for cleavage at Gln/Glu-(Ser/Gly/Ala) (▼).  Some of these proteins 
of particular viruses of the family Potyviridae aggregate to form inclusion bodies during 
infection.  The protein involved and the particular type of inclusion body is shown 
above the genetic map; AI, amorphous inclusion; CI, cylindrical-shaped inclusion body 
found in the cytoplasm; NIa and NIb, small and large nuclear inclusion proteins, 
respectively, which aggregate in the nucleus to form a nuclear inclusion body.  The 
small ORF PIPO is putatively translated by +2 frameshift of the polyprotein ORF, and 
its product is expressed as a fusion with the N-terminal part of P3. 
 

 

The properties of these 10 viral proteins are listed in Table 1.  Besides, a novel 

viral protein, PIPO, resulting from a +2 frameshift in the P3 cistron has recently been 

reported (Chung et al. 2008) to participate in cell-to-cell movement (Vijayapalani et al. 

2012). 
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Table 1.  Properties of potyviral proteins (from Urcuqui-Inchima et al. 2001; Adams et 
al. 2005; King et al. 2012). 
Protein Properties 
P1 Of all the potyvirus proteins, P1 is the least conserved in sequence and the 

most variable in size.  It plays a significant role in virus replication probably 
due to the stimulation of the gene silencing suppressor HC-Pro.  A serine 
protease domain towards the C-terminus cleaves the P1 from the 
polyprotein, typically at Tyr/Phe-Ser.  It is involved in viral movement and 
symptomatology. 

HC-Pro The HC-Pro (Helper Component-Protease) protein has roles in suppression 
of gene silencing and in vector transmission.  A cysteine protease domain 
towards the C-terminus cleaves it from the remainder of the downstream 
polyprotein, typically at Gly-Gly. It plays roles in systemic movement, 
interaction with 20S proteasome and metilation of siRNAs. 

P3 Involved in virus replication and appears to be significant in host range and 
symptom development. 

PIPO Cell-to-cell movement. 
6K1 The function of this small protein is related to P3 and unknown. 
CI CI (Cylindrical Inclusion protein) has helicase activity and accumulates in 

inclusion bodies in the cytoplasm of infected plant cells.  It binds to RNA 
and is involved in cell-to-cell movement. 

6K2 A small transmembrane protein probably anchoring the replication complex 
to the ER. 

VPg VPg (Viral Protein genome-linked) is attached to the 5' terminus of the 
genome and belongs to a class of intrinsically disordered proteins.  It plays 
multiple roles in the viral infection cycle.  It is essential for virus replication 
and translation, interacting with one or several isoforms of the eIF4E 
translation initiation factor.  It is involved in suppression of RNA silencing. 

NIa-Pro Serine-like cysteine protease responsible for cleavage of most sites in the 
polyprotein, typically at Gln/Glu-(Ser/Gly/Ala). 

NIb The RNA-dependent RNA polymerase. 
CP Viral coat protein that also has roles in virus movement, genome 

amplification and vector transmission. 
 

The genomic RNA of TEV naturally lacks a 5′ cap structure but is nevertheless 

efficiently translated.  Functionally analogous role to eukaryotic 5’ cap has 5’-

covalently attached VPg of potyviruses that binds host initiation factors in order to 

recruit ribosomes (Gallie 2001; Khan et al. 2008; Walsh & Mohr 2011).  In addition, 

the pseudoknot-containing domain within TEV 5′ leader functions as an IRES 

(Carrington & Freed 1990; Gallie & Browning 2001; Zeenko & Gallie 2005). 

 

1.5. The concept of viral fitness 

Fitness is defined as the number of viable progeny produced by a genotype that 

reproductively contributes to the next generation.  The basic viral reproduction rate is a 
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crucial parameter in many epidemiological models of infectious diseases.  Since 

evolution is always studied in the context of an organism’s fitness, herewith, what do 

we mean by viral fitness?  Whether and how selection acts in viruses?  Or, in other 

words, what is a phenotype of a virus and upon which does the selection act?  Fitness 

represents the combined effects of all other phenotypic properties on the capacity for the 

survival and reproduction by a particular genotype in a particular environment (Lenski 

1991).  Virus fitness is the ability of a given viral strain to replicate and accumulate 

within a defined environment, i.e., host.  It is a macroscopic property that includes 

components such as: receptor binding, cell entrance, uncoating, replication, 

transcription, translation, virion assemblage and encapsidation and cell release (Figure 

2), as well as virion stability in the environment, resistance to antiviral responses and 

transmission or adsorption rates.  The majority of these fitness components require 

interaction with host cellular factors (Ahlquist et al., 2003). 

In this Thesis, absolute viral fitness was used to measure the accumulation ability 

of a virus genotype in a given host, that is, the number of viral genomes produced after 

a given constant time per unit of total RNA extracted from the whole plant tissue.  In 

Chapter III, absolute viral fitness was approximated as the Malthusian parameter m.  

Since growth is an exponential process, hence, differences in the growth rate should 

largely determine fitness.  Moreover, this approximation using Malthusian growth rate 

per day ignores interaction between viruses within the same host and it is justifiable in 

the case when a host is infected with a single virus genotype and if new mutations are 

generated too rapidly (Smith 1999).   Malthusian growth rate per day is calculated as: 

ൌ ଵ

௧
log ே೟

ேబ
 , where t states for “days post infection” (dpi), i.e., the time in days that a 

virus was left to replicate within a given host.  Since the time term is included in the 

calculus, this measurement of growth allows for comparison between studies carried out 

for different viruses and over different time scales.  Nt is the number of picograms (pg) 

of TEV RNA per 100 nanograms of total plant RNA quantified at time t dpi.  N0 is 

initial number of pg of TEV RNA used to inoculate the plant, which was 510-6 in all 

Chapters except in Chapter IV.  TEV RNA is directly infectious when applied to 

susceptible host in the absence of any virus proteins (although it is about 106 times less 

infectious than virus particles (Cann 2005)).  Since N0 << Nt, the denominator term in 

the equation can be usually neglected, hence, the absolute viral fitness is proportional to 

decimal logarithm of pg of TEV in 100 ng of total plant RNA.  In Chapters IV and V, 
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the absolute viral fitness is approximated by W = em.  Since the dataset contained 

synthetic lethal genotypes, that have Nt  = 0, it turns out that their Malthusian is , and 

thus could not be used to compute the epistasis coefficient in a classic way by assuming 

multiplicative effects among mutations (see below).  When the trait considered is 

survival it is often more natural to measure epistasis as deviations from independence 

rather than from additivity (Crow and Kimura 1970).  Survival probabilities are 

multiplicative if the genes act independently.  In Chapter VI, fitness of the mutant 

genotypes was expressed relative to the wildtype TEV: ܹ ൌ	݁௠ି௠ഥೢ೟ .  Here we 

decided to use relative fitness in order to emphasize the evolutionary differences in 

fitness among genotypes. 

 

1.6. Key evolutionary concepts 

Here I address the consequences of viral adaptation or, in other words, virus response to 

the selective pressures imposed by different hosts.  Generalist or specialist strategies are 

widely observed for many different host-parasite systems while issuing the problem of 

host range (e.g., Turner et al. 2010; Bedhomme et al. 2012).  Specialization leads to 

better adaptation to a given environmental selective pressure by an increase in fitness 

and trough the reduction in intraspecific competition (Turner & Elena 2000).  

Constraints of specialization are reflected in limitation of resource exploration and that 

even might imply a risk for population extinction (Timms & Read 1999).  The existence 

of genotype-by-environment interaction (G×E) for fitness is prerequisite for local 

adaptation (Kawecki & Ebert 2004).  Out of several causes that can generate G×E, the 

most important for local adaptation is antagonistic pleiotropy, whereby the mutations 

have opposite effects on fitness in different hosts (Elena & Lenski 2003).  Such 

antagonistic pleiotropy implies that no single viral genotype is superior in all hosts, 

leading to trade-offs in adaptation to different hosts. 

 

1.6.1. Generalism vs. specialism 

The physical environment of a virus, like any other parasite, is its host.  As other 

organisms, viruses also experience environments or resources that are both 

heterogeneous and dynamic in space and time and thus act as source of selection.  

Meaning that some viruses are able to replicate only in particular kinds of cells, or 

tissue types, or single host species, whereas other viruses are able to infect many 
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different host species even coming from different genera and families (Gibbs et al. 

1995).  Poliovirus and rhinoviruses, for example, infect only humans in nature.  Still, 

majority of both common and emerging pathogens of humans, animals and plants are 

multi-host pathogens (Cleaveland et al. 2001; Woolhouse et al. 2001).  Influenza A 

virus, for example, causes little or no disease in its natural reservoir host, aquatic birds, 

but provoke severe respiratory tract infections in poultry, pigs, seals, whales, horses, 

and humans (Webster et al. 1992).  Almost all plant viruses have a wide host range, 

infecting dozens or hundreds of host species, even those belonging to phylogenetically 

distant families.  An extreme example of wide plant host range is Tomato spotted wilt 

bunyavirus, infecting over 600 different species from 70 families (Cann 2005).  Still, 

Malpica et al. (2006) were the first to investigate natural virus-plant associations and 

showed that multi-host plant viruses are not really so, but instead, tend to associate to a 

particular host.  In summary, viral host range is a poorly understood and historically 

dynamic process, yet comprising very important implications for human, animal and 

plant health because host-range expansion may lead to the emergence of the new 

infectious diseases. 

Since viruses vary in their host range, they can be arbitrarily divided into: a) 

specialists, i.e., those infecting only one or a few related host species and b) generalists, 

i.e., those that show surprising versatility in the number of hosts where they are able to 

replicate (Elena et al. 2009).  

The degree to which parasites adapt to a particular host depends on the balance 

between within-host selection and among-host gene flow (Lajeunesse & Forbes 2001; 

Dennehy et al. 2006).  Encompassing the problem of specialization, Futuyma & Moreno 

(1988) assumed that the cost of adaptation should be reflected in a negative genetic 

correlation between alleles associated with the use of different resources.  In other 

words, when a virus population optimizes its fitness in a constant environment (i.e., 

single host evolution) by fixing adaptive mutations, these host-associated mutations will 

have negative impact on virus fitness in another host (Kassen 2002).  Two mechanisms 

are responsible for fitness tradeoffs across hosts that provide an advantage to specialist 

over generalist viruses (reviewed in Elena et al. 2009): antagonistic pleiotropy and 

mutation accumulation.  Firstly, antagonistic pleiotropy means that mutations that are 

beneficial in one host may be deleterious in another host (Duffy et al. 2006).  Secondly, 

due to genetic drift, neutral mutations may accumulate in the genes that are not 

necessary in one host but are essential in another host (Kawecki 1994; Gandon 2004).  
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Remold et al. (2008) were first to investigate the relative contribution of antagonistic 

pleiotropy versus mutation accumulation to the evolution of host specialization in 

Vesicular stomatitis rhabdovirus (VSV). 

On the other hand, simultaneous adaptation to multiple host types promotes the 

evolution of generalist viruses with no fitness tradeoff across hosts.  A generalist virus 

carries mutations associated with different hosts, but never the optimal combination for 

any one environment: the ‘‘jack of all trades is a master of none’’ (Whitlock 1996).  

Accordingly, a specialist virus may outperform a generalist on a particular host, but 

would not outperform a generalist on the wider range of hosts.  In the case of 

independent adaptation, a mutation fixed by adapting to one host is beneficial in the 

host where adaptation is done, but neutral in the other, so there are no fitness tradeoffs 

across different hosts. 

Host homogeneity usually results in specialization (Duffy et al. 2007) and leads to 

virus local adaptation (Woolhouse et al. 2001).  It is generally believed that interspecific 

competition promotes the evolution of specialization to particular host species, allowing 

parasites to avoid competition or become better competitors (Futuyma & Moreno 1988).  

Key consequences of host specialization are a reduction in genetic variability and fitness 

canalization into a local optimum that leads to limitation in gene flow among viral 

populations and results in the limited exploitation of other possible hosts.  Thus, 

specialization is often considered to be an evolutionarily irreversible ‘dead end’, 

presuming a potential risk of population extinction, because selection within a single 

host should in turn compromise the ability of viral populations to adapt to changing 

environmental conditions (Futuyma & Moreno 1988; Woolhouse et al. 2001).  In 

contrast to the aforementioned constraints, a recent work using comparative analyses of 

host specificity and competition suggests that generalist parasites may even have 

evolved from host specialists (Johnson et al. 2009). 

The advantages of generalism, however, are not well understood.  It has been 

suggested that evolution should favor specialists because there are tradeoffs that limit 

the fitness of generalists in any of the alternative hosts or because evolution proceeds 

faster with narrower niches (Fry 1996; Whitlock 1996; Kawecki 1998; Woolhouse et al. 

2001).  Still, generalism among viruses is rather an exception.  Woelk & Holmes (2002) 

observed reduced positive selection in vector-borne RNA viruses and further suggested 

that vector-borne viruses can be thought of as evolutionary generalists, because of 

evolutionary trade-offs in the vector-host association.  But experimental evolution 
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studies generally do not concur with this assumption of constraint on adaptation 

imposed by vector (Wallis et al. 2007; Deardorff et al. 2011).  Indeed, simultaneous 

evolution in multiple host types may result in generalist virus that does not pay fitness 

cost in any alternative hosts, but instead, performs as well as the specialists (Novella et 

al. 1999; Weaver et al. 1999; Turner & Elena 2000; Cooper & Scott 2001; Bedhomme 

et al. 2012), whereby other studies provided evidences in favor of the tradeoff 

hypothesis and specificity of adaptation to a given host (e.g., Crill et al. 2000; Greene et 

al. 2005).  Experimental evidences for the cost of being a generalist are scarce (Coffey 

et al. 2008). 

The extent of adaptation to a particular host is a function of the genetic variability 

of the pathogen (Woolhouse et al. 2001) and reversely; a variety of different hosts 

drives parasite diversity (Maclean 2005).  The advantage of a high genetic diversity 

both in parasites and hosts is usually considered in the framework of the Red Queen 

hypothesis.  During the long-term co-evolutionary history and arms-race between 

viruses and their hosts (Woolhouse et al. 2002), fitness trade-offs that occur are function 

of evolutionary rate (Whitlock 1996).  However, both generalist and specialist viruses 

are known to have become established successfully in new hosts, suggesting that no 

generalization can be made about the likelihood of either type of virus infecting a 

previously resistant host to create a new epidemic pathogen (Woolhouse & Gowtage-

Sequeria 2005; Parrish et al. 2008).  To conclude, it has been suggested that 

antagonistic pleiotropy and fitness tradeoffs may be common in the small and 

compacted genomes of RNA viruses (Elena 2002; Elena et al. 2009).  A practical 

consequence of the cost of host expansion an fitness tradeoffs is the long-standing 

design and use of attenuated vaccines based on the adaptation of a virus to new hosts, 

whereby the virus diminishes its virulence in humans and farm animals. 

 

1.6.2. Genotype-by-environment (G×E) interactions 

A phenotype is determined by its genotype together with the environment.  Yet, it has 

been widely observed that no single genotype exhibits the same phenotype in different 

environments; due to a phenomenon termed genotype-by-environment (G×E) 

interaction (e.g., Remold & Lenski 2001).  G×E are commonly reported as mayor 

compromise in plant and animal breeding experiments, since breeders search for pure-

line genotypes that are widely adapted across environments and optimized for high 
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yield and other desirable characteristics (Lynch & Walsh 1998).  Still, the form and the 

extent of G×E for fitness is a fundamental issue in evolutionary ecology and pivotal for 

understanding the process of adaptation (Kondrashov & Houle 1994; Kawecki & Ebert 

2004).  In relation, G×E have been explored mainly in quantitative genetics in order to 

understand the maintenance of genetic variation in complex traits (Lande 1976; 

Gillespie & Turelli 1989; Fry et al. 1996) and the evolution of specialization and 

generalism (Wright 1977; Via & Lande 1985; Futuyma & Moreno 1988) and adaptation 

to heterogeneous environments (Via et al. 1995). 

The goals of quantitative genetics are to partition total phenotypic variation into 

genetic (G) and environmental (E) components.  This information (expressed in terms 

of variance components) allows predicting the contribution of each component to the 

total phenotypic response.  Imagine a situation, for example, where one is interested to 

test the fitness (i.e., the phenotype µ) of virus mutants, (i.e., genotypes, G) across 

different hosts (host represents an environment for a virus; E).  If several genotypes are 

each tested in several environments, the variance of the average fitness of genotypes 

represents genetic variance (Gi), and the variance of the average fitness in each 

environment represents environmental variance (Ej).  With additivity of G and E, i.e., no 

G×E, the relative performance of genotypes is independent of the environment µij = µ + 

Gi + Ej + eij, where eij represents the experimental error measure.  The term G×E refers 

to of joint effects of genetic and environmental factors.  In statistical language, G×E are 

considered as non-additive effects: the case when the whole is greater than the sum of 

the parts: μijk = μ + Gi + Ej + (G×E)ij + eijk.  So, variance due to deviation from linear 

relation between the genotype and the environment cannot be attributed neither to 

purely genetic sources, nor to purely environmental sources, but rather to the G×E. 

 

1.6.2.1. The nature and causes of G×E 

There are two equally valid ways of interpreting G×E.  On the one hand, it expresses 

the extent to which genetic variation varies over different environments since the 

selection may be stronger in some environments than in others (e.g., Via 1984b).  So, 

part of this variation among environments in the quantity of genetic variation that is 

expressed in them arises because genotypes that have very high relative fitness in one 

environment are mediocre or even inferior in others.  Thus, genotypes may be 

considered as specialists in particular environments. 



20 
 

On the other hand, G×E expresses the extent to which environmental variation is 

differentially expressed by several genotypes.  Some genotypes may express very 

different phenotypes in different environments, and therefore possess a large quantity of 

environmental variance; others will be less responsive, and express more or less the 

same phenotype regardless of the environment in which they are raised (e.g., Via 1984).  

Thus, the quantity of environmental variance, (sometimes referred to as ‘plasticity’), is 

itself a character, and may vary among genotypes, which may be selected as generalists 

over a range of environments.  The main issue raised by G×E is the balance between 

generalization and specialization that should evolve in populations that live in a 

heterogeneous environment. 

Such interaction can arise from two not necessarily exclusive mechanisms: 

(Lynch & Walsh 1998) i) a change of scale, such that higher-ranking genotypes in one 

environment react more (or less) strongly to conditions in the second environment 

(Figure 8A), and a ii) change of ranking (Figure 8B).  With multiple genotypes in 

multiple environments, many more patterns are possible. 

The function that relates the mean phenotypic response of a genotype to a change 

in the environment is called reaction norm.  If there is no G×E these reaction norms are 

parallel, implying that the same amount of genetic variance is expressed in each 

environment.  So, each genotype performs the same in environment one as it does in 

environment two, and therefore the genotypes may be considered as generalists (Figure 

8A).  Recall that generalism occurs, by definition, if the relative performance of each 

genotype is the same in one environment as it is in the other.  If a population exhibits 

G×E, the slopes of the reaction norms are nonzero, indicating a change in genetic 

variance, which would be detected by a standard analysis of variance.  In the case of the 

change in rank (Figure 8C) the response of genotypes to the environmental change is 

specific to a particular genotype so that the genotypes that perform better in one 

environment do worse in the other.  Here, the genotypes can be considered to be 

specialists, some having an advantage in one environment, while others in the second 

environment. Therefore, the genotypic variance does not vary between two 

environments.  A change in scale (Figure 9b) gives insight into which genotype is more 

sensitive to the change in the environment (case of G2 in Figure 9b).  Here, the rank 

order is preserved, but genotypic variance differs between the two environments. 
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The analyses of variance allow assessing how much phenotypic variance is due to 

the differences in genotype averaged over all environments (i.e., a change in rank or 

‘plasticity’ or antagonistic pleiotropy) and how much in outcome of differences in 

genotype (averaged over all environments), corresponding to a change in scale.  Such 

analysis from the deviation from the mean gives a result that depends upon the actual 

distribution of genotypes and environments in a particular population.  With the same 

genetic composition of the population, a shift of the mean of the environmental 

distribution may reduce the genetic component of the phenotypic variance (Figure 9b).  

Thus, genetic variance can be drastically reduced or disappear by changing the 

environment.  Conversely, a change in genotypic variance changes the environmental 

variance (Gupta & Lewontin 1982). 

 

Figure 8.  Reaction norms for two genotypes in response to two different environments.  
A) No G×E.  Genotype effect (G) is due to average differences among genotypes, 
across environments.  Environmental effect accounts for average differences among 
environments, across genotypes.  B) G×E is due entirely to a change in scale.  C) G×E 
is due to a change in ranking. 
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1.6.3. Source of variation: mutation 

Mutation is the ultimate source of genetic variability that allows for the appearance of 

new viral genotypes.  Thus, mutational supply rate directly limits adaptation.  Still, 

majority of mutations are deleterious.  In a population of large size, the deleterious 

mutations have a negligible chance of fixation, because purifying selection would 

eliminate them.  Only mutants that have higher fitness compared to the wildtype will be 

fixed.  The rare, favorable mutations must escape accidental loss trough genetic drift.  

Thus, adaptation requires a mutation to be favorable and that it escapes the stochastic 

loss (Elena & Sanjuán 2005).  The importance of new beneficial alleles, however, 

depends on the environmental context.  In a constant environment, stabilizing selection 

acts upon already obtained means (fitness optimum), so no new beneficial mutations are 

produced; the population already contains the appropriate genetic variation.  If, 

Figure 9.  Illustration of how a change in environment affects the genetic variance of 
two genotypes.  The lines G1 and G2 are the norms of reaction of two genotypes whose 
phenotypes had been ploted on the abscissa in relation to the environmental distribution 
plotted on the ordinate.  The total population will be a mixture of these two phenotypic 
distributions in proportion to the frequency of the genotypes in the population.  Since 
the means of the two phenotypic distributions are different in panel a, the analysis of 
variance will clearly show the genetic variance.  If the environmental distribution shifts 
to right, as in panel b, the genotypes have not changed, but now there is no genetic 
variance of phenotype because the environmental distribution is centered where the true 
norms of reaction cross, so there is no average effect of genotype.  Thus, genetic 
variance has been destroyed by changing the environment (adapted from Gupta & 
Lewontin 1982). 
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however, selection is commonly directional, as it would be, for example, when a virus 

faces a new host or antiviral treatment, then new mutations within virus population can 

be critical for adaptation (Whitlock 1996). 

 

1.6.3.1. Mutation in RNA viruses 

Even though the genome of RNA viruses show relatively low complexity in terms of 

the number of proteins encoded for, still it is a dynamic system from a population 

genetics’ point of view.  RNA virus populations contain enormous genetic diversity due 

to: i) mutation, ii) homologous and nonhomologous recombination and iii) reassortment 

in the case of viruses with segmented genomes (Rambault et al. 2004; Ghedin et al. 

2005; Duffy et al. 2008;).  With respect to the lines of investigation pursued in this 

thesis, only the effects of mutations will be discussed here in more detail. 

Mutation rates of RNA viruses are orders of magnitude higher than those of their 

DNA-based hosts (Figure 10) and in the range of 0.03 – 2 per genome and replication 

round (Drake et al. 1998; Drake & Holland 1999; Chao et al. 2002; Sanjuán et al. 2010; 

Tromas & Elena 2010).  Positive single-stranded RNA viruses posses the highest 

mutation rate among all viruses (Figure 11).  Moreover, given approximately one 

mutation per genome per replication round, the lack of the genomic space reflected 

overlapping reading frames and cistrones encoding for multifunctional proteins (see 

section 2.1) puts serious constraints on RNA virus genomes (Holmes 2003) being most 

of the mutations deleterious.  Spontaneous mutation rate of TEV was estimated to be 

within the range of 10-6 - 10-5 mutations per site and generation (Tromas & Elena 2010).  

Types of non-lethal mutations observed for plant RNA viruses are nucleotide 

substitutions or deletions (Malpica et al. 2002; Tromas & Elena 2010).  Lack of 

redundancy together with compactness of RNA virus genomes might be reasons that do 

not allow for mutations of larger size. 
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Figure 10.  Relationship 
between mutation rate per 
nucleotide site and genome 
size for different genomic 
systems including viruses. 
(from Gago et al. 2009) 

 

Such elevated mutation rate is attributable to the low replication accuracy of viral 

RNA-dependent RNA polymerases (RdRP) that lack proof-reading activity (Steinhauer 

et al. 1992); with the only exception being the Nidovirales that possess 3’→5’ 

exoribonuclease activity (Gorbalenya et al. 2006; Minskaia et al. 2006).  There is also 

no mismatch repair, even in double stranded RNA viruses; instead, there are some other 

mechanisms involved in genome maintenance and repair (Barr & Fearns 2010).  Except 

for some satellite viruses, all RNA viruses encode the RdRp, because host cells possess 

no enzymes that are capable of replicating long RNA molecules.  It is usually thought 

that low-fidelity of RdRP is an adaptive trait, resulting from a tradeoff with replication 

speed (Elena & Sanjuán 2005; Furió et al. 2005; Belshaw et al. 2008).  Additionally, 

some other factors contributing to increased mutation rate have been reported.  One of 

such is the presence of RNA secondary structures (see section 1.2.1.2.) and host or 

environmental factors (Schneider & Roossinck 2001; Pita et al. 2007). 
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Figure 11.  Average mutation rates for different types of viruses (from Duffy et al. 
2008).  Viruses are denoted by different symbols with respect to their genome type, 
e.g. +ssRNA corresponds to positive-sense single-stranded RNA viruses. 
 

 

1.6.3.2. Mutational fitness effects 

Testing theoretical predictions about the genetics of adaptation requires measuring 

fitness effects of mutations related to the underlying evolutionary dynamics to which a 

population is exposed (Loewe & Hill 2010) such as i) selection, ii) population size (or 

the effects of genetic drift), iii) population structure (or demography; i.e., migration), iv) 

genetic interactions; such as epistasis, linkage, clonal interference (Gerrish & Lenski 

1998) and v) environmental interactions. 

Most mutations have deleterious impact on organism’s fitness (Fisher 1930).  The 

pervasiveness of spontaneous accumulation of deleterious mutations has been 

demonstrated in mutation-accumulation experiments under minimal effect of purifying 

selection and strong bottlenecks (Mukai 1964; Chao 1990; Duarte et al. 1992; Escarmís 

et al. 1996; Elena & Moya 1999; Yuste et al. 1999; De la Peña et al. 2000) that onset 

Muller's ratchet (Mueller 1964).  Studies using direct mutagenesis approach confirmed 

the prevalence of deleterious mutations and additionally revealed the large proportion of 

lethal mutations (Sanjuán et al. 2004; Carrasco et al. 2007; Domingo-Calap et al. 2009). 

Kimura (1968) was the first to recognize the importance of neutral mutations for 

evolution.  Since neutral mutations have no effect on fitness (or their effect in the 

experimental assay is too small (Burch et al. 2007), natural selection does not operate 

on them, so they can be fixed in a population trough the action of random genetic drift 

(Kimura 1983; Ohta 1992).  Still, Kondrashov & Houle (1994) experimentally 
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demonstrated that conditionally neutral mutations may be common during adaptation, 

meaning that the selection might be operative on particular mutations at a given 

circumstances (Eyre-Walker & Keightley 2007).  Even though it is often thought that 

synonymous sites resemble neutral evolution or are under weak selection, in many 

instances, it has been demonstrated that synonymous substitutions are not neutral 

(Plotkin & Kudla 2011) and as such may have a major effect on RNA virus fitness 

(Carrasco et al. 2007; Coleman et al. 2008; Marsh et al. 2008; Cuevas et al. 2011). 

Beneficial mutations are rarely observed, therefore are also thought to be 

extremely rare.  Hence, in a population, a newly arisen beneficial mutation will have a 

small probability of being fixed in a finite population only by means of natural selection 

(Patwa & Wahl 2008).  It has been argued that the existence of beneficial mutations of 

small effect rather than large is more probable (Fisher 1930; Orr 1998).  Increases in 

population size and mutation rate can cause larger-effect beneficial mutations to become 

fixed (Orr 2000).  Sniegowski & Gerrish (2010) recently described a deterministic 

model using data from experimental evolution studies in microbes, which suggests that 

beneficial mutations may actually become abundant under periodic selection in 

combination to high mutation rate.  In such case, genotypes comprising multiple 

beneficial mutations may become prevalent in the population. 

In spite of high mutation rates, plant RNA virus populations in nature resemble 

significant genetic stability over time as shown by the analyses of population genetic 

diversity (i.e., nucleotide diversity per site) between different isolates (García-Arenal et 

al. 2001).  That observation can be attributed to strong purifying (negative) selection 

that purges deleterious mutations from virus genomes (Domingo & Holland 1997).  

More concretely, virus populations show relative stasis in natural host, but evolve 

rapidly in a new host (Novella et al. 1999).  This assumes that virus population within 

its reservoir host has reached the global fitness peak characterized by strong purifying 

selection that operates within host and eliminates unfit mutants in a stable environment 

(single-host evolution). 

But, what is the fate of virus genetic variation under different selection pressures 

presented by different hosts?  Genetic variation within a viral population can be 

simulated by a well designed and controlled experiment using a collection of virus 

genotypes.  The analysis of the distribution of genetic variation for fitness of a viral 

population in its natural or “local” environment (i.e., host), for which the virus is 

adapted to compared to the “foreign” environments should provide an answer to the 
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above stated question.  If virus population contains mutations that are beneficial in the 

alternative host(s), an increase in their frequency must ocurr for a virus to adapt to its 

new host.  The fraction of beneficial mutations within a standing genetic variation may 

be increased in stressfull environments (i.e., new hosts within which a virus population 

experiences low fitness) by two mutually non-exclusive means.  It can be accomplished 

either by a shift in mean of the distribution of mutational fitness effects (DMFE) 

towards more positive values while keeping the shape constant (Agrawal & Whitlock 

2010), or alternatively, by increasing the variance without affecting the mean of the 

DMFE (Figure 12; Martin & Lenormand 2006).  Additionally, the DMFE can be 

addressed by testing how the qualitative effect of mutations on viral fitness (e.g., lethal, 

deleterious, neutral and beneficial) changes from the reservoir to potential new hosts.  A 

mutation beneficial in one host may not be so in an alternative one, so this antagonistic 

pleiotropy among mutations may change the rank order of mutations across hosts.  

Moreover, while still retaining the rank order of fitness effects, GE can be generated 

by altering the genetic component of phenotypic variance (Remold & Lenski 2001).  

Till now, DMFE have been characterized for a handful of viruses in their reservoir hosts 

(reviewed in Sanjuán 2010), but whether and how these distributions change across 

potential hosts has never been experimentally addressed. 

To conclude, selection and counterselection of high mutation rates depends on 

many factors: the number of mutations required for adaptation, the population size, 

competition with other viruses, transmission and temporal and spatial environmental 

heterogeneity (Steinhauer & Holland 1987). 
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Figure 12.  Two possible effects of host switching on the distribution of mutational 
effects on viral fitness.  Panel a) represents the DMFE in the reservoir host.  Panel b) 
represents a change in the mean mutational effect effect (vertical dashed line) but 
retaining the same shape.  Panel c) represents a change in the shape without affecting 
the mean.  The area under the curve to the right of the dashed line corresponds to the 
fraction of possible beneficial mutations in the new host (i.e., host-range mutants). 
 

 

1.6.4. Epistasis 

Over a century ago, it was demonstrated that genes do not act independently of all 

others (Bateson 1909).  Since then, indeed, the existence of numerous interactions 

among genes or mutations in determining phenotypes, i.e., epistasis, has vastly been 

demonstrated (Phillips 2008).  Analogously to G×E interactions, where the expression 
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of a phenotype of different genotypes under different environmental conditions can be 

viewed as a reaction norm curves, the interaction between different loci within a single 

genotype can be viewed as the reaction norms of different genotypes at one locus 

plotted against the different genotypes at the second locus (Wolf et al. 2000).  In this 

sense, epistasis can be referred to as genotypes genotype-by-genotype or G×G 

interactions. 

Herewith, it is important to distinguish between epistasis and genetic 

complementation.  The main difference is that genetic complementation occurs between 

two physically separated (unlinked) genes or mutations.  For instance, complementation 

occurs between virus particles within the single host cell wherein one is defective for a 

particular function or a protein product and this function is provided in trans by a virion 

carrying functional allele or protein. 

RNA viruses are characterized by their small genomes containing secondary 

structures that encode for multifunctional proteins, hence single mutations are likely to 

have multiple and antagonistic effects, such as compensatory mutations (Sanjuán et al. 

2005).  Moreover, genome compactness and the existence of overlapping reading 

frames may impose limitations on the number of available adaptive solutions, which in 

turn may explain the commonness of convergent evolution RNA viruses (Cuevas et al. 

2002; Agudelo-Romero et al. 2008; Remold et al. 2008). 

In the first instance, it is important to differentiate between biological and 

statistical meaning of epistasis.  In biological terms, epistasis occurs when the fitness 

differences of single mutations depend on the presence or absence of other mutations.  

In statistical genetics, epistasis is the deviation (or interaction) of fitness value of a 

genotype carrying multiple mutations from the additive combination of single mutations 

(Falconer 1989).  A detailed description of epistasis can be found in the introduction 

part of Chapter IV of this thesis; here epistasis is elaborated in a more simple and 

general way. 

In the absence of epistasis, the effects of mutations combine in a linear way; so by 

knowing the effect (i.e., fitness value) of each mutation separately, the expected fitness 

value of genotype carrying both mutations can be easily calculated (Figure 13) using 

multiplicative or additive epistasis model.  For some traits, such as fertility, an additive 

scale is thought to be more natural, whereas for other traits, such as fitness or mortality, 

the multiplicative approach is more appropriate (Phillips 2008). 
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Figure 13.  An example of multiplicative genetic effects: the absence of epistasis.  
Grey bars represent a genome of a virus.  The fitness value of the wildtype virus is 
represented by W00.  Mutation x or y (blue and yellow point, respectively) may change 
the virus fitness: Wx0 and W0y, respectively.  Under multiplicative mutational effects the 
fitness of the double mutant xy equals the product of the effects of individual 
mutations. 
 

Alternatively, if the observed fitness of a double mutant deviates from the sum or 

the product (depending on the epistasis model used) of individual mutations, there is an 

interaction between the two mutations, namely ߝ௫௬ ൌ ଴ܹ଴ ௫ܹ௬ െ ௫ܹ଴ ଴ܹ௬	  (in the 

multiplicative scale).  This ߝ௫௬ parameter is, therefore, magnitude epistasis (Figure 14; 

Kouyos et al. 2007).  Negative epistasis for fitness on a multiplicative scale is known as 

synergistic epistasis, meaning that combination of two deleterious mutations result in 

fitness of double mutant that is lower than expected by multiplying the fitness of single 

mutations.  Positive or synergistic epistasis for fitness on a multiplicative scale results in 

larger fitness of a double mutant than expected under the null hypothesis of 

multiplicative fitness effects. 

Epistasis may be studied by another approach: by its sign.  Sign is referred to 

qualitative effect of mutations: a mutation can be beneficial in one genetic background 

and deleterious in another (and vice versa).  In other words, the sign of mutational 

fitness effect is conditioned upon the genetic background (Weinreich et al. 2005).  

Reciprocal sign epistasis occurs when two mutations are deleterious per se but together 

augment the fitness of the double mutant (Poelwijk et al. 2007). 

The deleterious mutational impact on fitness can be buffered by positive or 

antagonistic epistasis (Bonhoeffer et el. 2004; Burch & Chao 2004; Sanjuán et al. 

2004a; Desai et al. 2007) where two deleterious mutations jointly result in milder 

fitness effect. 

Wxy = Wx0 +W0y
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Figure 14.  The relationshiop between observed and expected fitness of a double 
mutant picturing types of magnitude epistasis.  Grey circles correspond to the absence 
of epistasis.  Positive or negative epistasis implies that the fitness of the double mutant 
is higher or lower than expected (green or red circles), respectively, i.e., corresponds to 
magnitude epistasis.  Extreme forms of magnitude epistasis are illustrated by black 
circles (‘synthetic lethality’) and yellow circles (’compensatory viability’) (adapted 
from Kouyos et al. 2007). 
 

 

1.6.5. Robustness 

Robustness and adaptability are two counterpoised properties of living organisms.  The 

ability to preserve a constant phenotype in spite of genetic or environmental 

perturbations (De Visser et al. 2003) is referred to as mutational (or genetic) or 

environmental robustness, respectively.  On the other hand, adaptability or evolvability 

is an organism’s capacity to generate heritable phenotypic variation in order to adapt in 

response to selection (Wagner & Altenberg 1996; Kirschner & Gerhart 1998).  

Alternatively, adaptability may be defined as the ability of an organism to acquire novel 

functions (Burch & Chao 2000; De Visser et al. 2003).  Thus, a prerequisite for 

evolvability is the existence of genetic variability.  Genetic diversity in RNA virus 

populations is maintained due to the counteraction of mutation accumulation vs. 

H0: Expected: E(Wxy)=Wx × Wy -> NO EPISTASIS

HA: Observed: O(Wxy)= E(Wxy)+εxy -> εxy = EPISTASIS

O(Wxy) > E(Wxy) => εxy > O positive (antagonistic)

Wx | Wy = 0 -> compensatory viability

O(Wxy) < E(Wxy) => εxy < O negative (synergistic)

Wxy = 0 -> synthetic lethality

Expected fitness (Wxy)

0,0 0,2 0,4 0,6 0,8 1,0

O
bs

er
ve

d 
fi
tn

es
s 

(W
xy
)

0,0

0,2

0,4

0,6

0,8

1,0



32 
 

selective forces acting on the virus population.  Under appropriate conditions (e.g., 

selection coming from host resistance genes or antiviral treatments) RNA viruses are 

capable of undergoing rapid evolution (Steinhauer & Holland 1987).  How do both 

robustness and evolvability coexist and evolve is an open debate, especially in the case 

of virus populations which need to be robust enough in order to cope with their own 

high mutation rates, as well as evolvable enough to adapt to ever fluctuating 

environments imposed by their hosts or antiviral treatments by creating novel 

phenotypes. 

Robustness may be examined at many different scales of biological organization; 

from biochemical level to populations and ecosystems.  The hallmarks of robustness are 

redundancy of component parts that compensate for functionality and the existence of 

negative feedbacks that actuate by decreasing the magnitude of perturbation (Lenski et 

al. 2006).  In concrete, two genes are redundant if each can partially or fully substitute 

for the function of the other (Thomas 1993).  Biological systems have evolved 

mechanisms that insure their integrity by purging or buffering the damage.  In concrete, 

examples of robustness are: i) the existence of alternative metabolic pathways; or, ii) the 

presence of multiple genes or alleles that contribute to the same function; or, iii) 

biochemical buffering mechanisms trough regulation of gene expression or chaperon 

proteins that compensate for or alleviate the mutational effects; or iv) the existence of 

proofreading and repair mechanisms that purge deleterious mutations from the genome 

(Elena et al. 2006; Lenski et al. 2006).  So, redundancy is prevalent among eukaryotes.  

Effective genetic redundancy, where several paralogous genes or alleles contribute in 

performing the same single function, gives a space for the accumulation of deleterious 

mutations in any of them since the selection operates on phenotype that is unaffected 

because the deleterious mutational effect (or loss of function of a gene) is masked by the 

functional allele (Figure 15). 
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Figure 15.  (A) Non-robust genomes should have fewer genes than functions (upper 
panel) so the first mutation should lead to a strong decline in fitness.  Subsequent 
mutation accumulation does not lead to a significant fitness decline resulting in 
positive epistasis (lower panel).  (B) Robust genomes should have more genes than 
functions (upper panel) so initial mutations have mild fitness effects.  Increasing 
number of mutations leads to strong decrease fitness giving rise to negative epistasis 
(lower panel; from Elena et al. 2006). 
 

Conferring two redundant genes with no selective advantage associated with 

having both genes, in the long term, should be an unstable condition (Thomas 1993).  

Since, by time, each gene would inevitably suffer a mutation and become non-

functional.  In the absence of selection for both genes or due to genetic drift, a non-

functional allele would probably become fixed in the population by chance and the 

redundancy would be lost.  Thus, if not essential, how are redundant genes maintained 

by the natural selection?  Nowak et al (1997) modeled such a scenario by using 

different selection pressures that act on redundant genes and found that redundancy is 

an evolutionary stable trait.  The proposed, inverse relation between genetic redundancy 

and the impact of deleterious mutations (Nowak et al. 1997) is also seen in dominance 

of antagonistic epistasis among pairs of deleterious mutations.  Furthermore, Krakauer 
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& Plotkin (2009) used a mathematical model in order to investigate the impact of 

genomic redundancy on mean fitness as a function of the effective population size, the 

mutation rate, and the size of the genome.  They found that redundancy is more 

common among phenotypes of higher organisms that experience low mutation rates and 

small population sizes, and reversely; redundancy is less common among organisms 

with high mutation rates and large populations, such as bacteria or viruses. 

As for their genome architecture, RNA viruses are thought to comprise low 

mutational robustness; their compact genomes comprising overlapping reading frames 

clearly indicate the lack genetic redundancy and modularity (Elena et al. 2006; Belshaw 

et al. 2008).  Moreover, since RNA viruses lack proofreading and repair mechanisms, 

mutations in their genomes have strong fitness effects, most of which being deleterious 

(Sanjuán 2010). 

Selection should promote genetic robustness when mutation rates are high, as in 

RNA viruses (De Visser et al. 2003).  This has been vastly demonstrated by theoretical 

works (Wilke & Adami 2003; Wagner 2005; Félix & Wagner 2008; Draghi et al. 2010).  

A study carried out in digital organisms (i.e., self-replicating computer programs that 

can evolve) showed that elevated mutation rates can select for the increase in genetic 

robustness in order to tolerate the accumulated mutations, even at the expense of 

population’s fitness (Wilke et al. 2001).  Thus, robust digital organisms residing on 

lower but flatter (i.e., low-fitness) regions of the fitness landscape should outcompete 

the non-robust populations located at a higher but narrower fitness peak in high 

mutation rate environments (Figure 16).  This phenomenon of mutation-induced 

movement across the landscape whereby robust genotypes produce equally fit 

phenotypes while non-robust genotypes suffer from mutational fitness effects is known 

as “survival of the flattest” in contrary to Darwin’s “survival of the fittest” paradigm.  

The “survival of the flattest” was confirmed experimentally for viroids (Codoñer et al. 

2006) and VSV (Sanjuán et al. 2007). 
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Figure 16.  Schematic representation of a landscape characterized by a peak of high 
fitness but low robustness and another one of low fitness but high neutrality (that is, 
robustness).  At a high mutation rate, populations at the high peak are pushed down, 
whereas those at the low peak remain unchanged (from Elena et al. 2006). 
 

Even though viruses, at the individual level comprise low mutational robustness, 

at the level of the whole population, mutational robustness may be accomplished by 

complementation where functionality is provided by other virus particle(s).  Different 

multiplicity of infection (MOI) are thought to be associated with differences in 

opportunity for genetic complementation (i.e., fewer opportunities when the MOI is 

low), that in final, should influence the population’s ability to retain fitness in the 

presence of deleterious mutations fixed through genetic bottlenecking.  More robust 

viruses are expected to evolve under low MOI and have lower fitness and smaller 

average change in fitness (i.e., lower variance) than the brittle ones.  Under high MOI, a 

single virion can utilize protein products from other virus particles, so the inherent 

mutational robustness of a population subjected to high MOI would not be manifested.  

The first study that demonstrated a measurable difference in robustness between two 

different populations was in the RNA bacteriophage Φ6 (Montville et al. 2005).  The 

authors have confirmed the aforementioned predictions by showing the decreased 

mutational robustness for virus lineages evolved at high MOI, where co-infecting 

particles provided the functional redundancy.  A complementing study conducted in 

silico had investigated the interactions between complementation and mutation, 
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selection and epistasis (Gao & Feldman 2009).  They found that strong 

complementation slightly reduces the fitness of a virus population but substantially 

enhances its diversity and robustness, especially if epistasis among deleterious 

mutations is antagonistic. 

Variable environments require robust organisms.  As noted before, RNA viruses, 

especially those that are generalists or vector-borne, experience wide variety of host 

types, so it is to be expected that they are environmentally robust.  Still, the empirical 

evidences for the environmental robustness are scarce.  Turner et al. (2010) explored 

how environmental robustness influences evolvability measured as a successful host 

shift using VSV.  They showed that environmentally robust viruses (i.e., generalists) 

have higher fitness and and lower variance for fitness than the brittle specialists across 

the novel hosts.  This observation has implications of linking environmental robustness 

to the likelihood of viral emergence. 

Finally, the relationship between robustness and adaptability remains unclear.  

Mutational robustness can either impede or facilitate adaptation, depending on the 

population size, the mutation rate, the time frame of observation and the structure of the 

fitness landscape (Elena & Sanjuán 2008; Wagner 2008; Draghi et al. 2010).  A single 

empirical study provided the evidence that genetic robustness increases evolvability of 

thermotolerance in RNA virus Φ6 (McBride et al. 2008).  Altogether, these evidences 

suggest that RNA virus populations, but not single individuals, comprise inherent 

environmental and mutational robustness. 

 

1.6.6. Adaptive fitness landscapes 

It is almost impossible with any brevity to exemplify the notion of 

adaptation.  Just because adaptation consists, even in the simplest cases, in 

a multiplicity of correspondences between one sufficiently complicated 

system, the organism itself, and another equally complicated, the 

environment in which it finds itself.  It is, indeed, just this multiplicity that 

makes the thing recognizably adaptive. (R. A. Fisher 1934) 

 

Adaptation in constantly changing environments is a complex process influenced 

by a large number of genetical, environmental, developmental and other factors, thus, is 

a central problem of evolutionary theory.  Visualization of the process of evolution as 
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the movement of populations on landscapes consisting of adaptive valleys and peaks 

was proposed by Wright (1932).  The stepwise adaptation of organisms to new 

environments by natural selection results from the intricate relationship between 

genotype and phenotype and between phenotype and fitness that is denominated as 

fitness (or adaptive) landscape (Wright 1932).  The landscape is an N-dimensional plot 

that describes the fitness of all possible genotypes composing the so-called genotypic 

space.  In a two-dimensional projection, the vertical axis, the height of a peak, indicates 

the fitness of each genotype, which is defined by the horizontal axis (Figure 17).  Thus 

different peaks represent alternative solutions to the problem of survival (Gavrilets 

2010).  Spatially neighboring genotypes mutually differ by one mutational change, so 

that fitness associated to a genotype sequence yields a fitness surface.  Genotypes that 

have high fitness occupy landscape peaks, whereas unfit genotypes occupy valleys.  To 

infer a fitness landscape empirically means to (re)construct all possible genotypic 

intermediates that led to adaptation to a new environment and measure their fitness.  

Genotypes should bear all possible combinations of mutations fixed by the adapted 

genotype.  If the order of the appearance of the n mutations during evolution is 

unknown, there are n! mutational trajectories in which the adaptation might have 

occurred.  Still, they all may not be equally accessible to natural selection (Weinreich et 

al. 2006).  The number of combinations of n distinct genotypes taken per class k, can be 

calculated as the combinatory number ቀ
݊
݇ቁ. 

Evolution in a constant environment and by natural selection alone is always a 

hill-climbing process where a population is pushed towards the top of the nearest peak.  

In this framework, evolution occurs trough a continuous network of intermediate 

genotypes bearing each of the mutational steps that lead to increase in fitness in a 

particular environment, without passing trough low fitness valleys.  Low fitness valleys 

formed by intermediate genotypes compromise evolution that always proceeds uphill.  

Hence, selection prevents genotypes from descending from the adaptive peak, moving 

across the valley of low fitness and climbing up to a new peak, even if the new peak has 

a higher fitness. In this scenario, the adaptive landscape is smooth and single peaked 

(Figure 17B).  A change in the environment changes the fitness surface and shifts the 

peak away from the wild type.  In a haploid system, as is our focus here, mutations on 

the wildtype background allow the population to explore the sequence space and 

thereby climb a fitness peak. 
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Figure 17.  Two-
dimensional representation 
of a population's fitness in a 
particular environment as a 
function of its genetic 
composition.  Two types of 
classical fitness landscapes 
are presented: (a) a rugged 
landscape and (b) a single-
peaked landscape (from 
Gavrilets 2010) 

 

However, the probability that a random mutation will be beneficial is very small.  

Fisher (1930) in his geometrical model of adaptation predicted that the evolution occurs 

in small steps, i.e. the accumulation of many mutations of small beneficial effects.  The 

smaller the mutational phenotypic effect, the higher will be the chance that the mutation 

is beneficial.  Later on, Kimura (1983) showed that mutations, apart from being 

beneficial, must escape accidental loss when rare and mutations of larger effect are 

more likely to escape such loss. In other words, mutations of intermediate size are the 

most likely to contribute to adaptation (Kimura 1983).  Using Fisher’s geometric model 

of adaptation, Orr (1998, 1999) showed that adaptation is characterized by 

exponentially distributed phenotypic effects of mutations.  Apart from mutation and 

selection, the fitness of a population, and consequently its underlying fitness landscape, 

can be influenced by the actions of genetic drift, migration, epistasis, etc., therefore 

giving rise to the landscape with multiple adaptive peaks (Figure 17A).  The existence 

of the multiple peaks gives rise to a peak shift problem: how does the population move 
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between peaks?  In small populations, genetic drift plays a more prominent role in 

comparison to selection, so a deleterious mutation can be fixed if followed by a 

compensatory mutation that restores fitness (Kimura 1985; Burch & Chao 1999).  In 

this manner, genetic drift or periods of small population size allows a population to 

traverse fitness valleys and move from one peak to another (Wright 1931; 1932).  

Experimental evolution studies with bacteria (Lenski et al. 1991; Lenski & Travisano 

1994; Elena et al. 1996a) and viruses (Novella et al. 1995, 1996, 1999; Elena et al. 

1996, 1998; Burch & Chao 1999; Miralles et al. 1999, 2000; Wichman et al. 1999) have 

shown that the probability of fixation of beneficial mutations depends upon both the 

population size and mutation rate, thus confirming Fisher’s geometrical model of 

adaptation.  The increase in mutation rate or in the population size results in larger 

fitness increases in the initial steps of adaptation; however, the rate of adaptation 

decreases with time.  On the other hand, if the mutation rate is small, like in complex 

organisms, the theory predicts slower increases in fitness during adaptation (Orr 2000). 

Wright (1932) was the first to theoretically reason that the genetic effects on 

fitness are not properties of genes but depend upon genetic background.  Indeed, 

epistasis determines the architecture of adaptive landscapes as well as the accessibility 

of adaptive pathways throughout the landscape, thus, is central to understanding the 

course of evolution (Figure 18).  In absence of epistasis or in the case of magnitude 

epistasis, mutations give rise to either zero, positive or a negative fitness effect, 

regardless of the genetic background.  This results in adaptive landscapes that are 

smooth and single peaked.  As already mentioned, in a smooth fitness landscape the 

evolution will always proceed uphill towards the single global optimum.  The curvature 

of the fitness trajectory is informative about the sign and strength of epistasis in the 

fitness landscape.  In the presence of sign epistasis, the sign of the fitness effect of a 

mutation depends on the genetic background, such that only a fraction of the total paths 

to the optimum are selectively accessible, i.e., contain only steps that confer a 

performance increase.  Reciprocal sign epistasis is a particular case of sign epsitasis in 

which two mutations are individually deleterious but jointly advantageous.  Both, sign 

epistasis and especially the reciprocal sign epistasis give rise to rugged landscape with 

multiple local optima (i.e., peaks; Figure 17A).  The ruggedness of adaptive landscapes 

is critical to predict whether the evolving populations may reach the global optima or, 

by contrast, trough alternative evolutionary pathways, may get stuck into suboptimal 

fitness peaks (Whitlock et al. 1995; Weinreich 2005; Poelwijk et al. 2011; Kvitek & 
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Sherlock 2011; Poelwijk et al. 2007).  Rugged landscapes are also known as 

uncorrelated, meaning that adaptive mutations are independently drawn form an 

unknown (usually assumed exponential) function (Orr 2002; Rokyta et al. 2006).  In 

other words, there is no correlation in fitness between similar genotypes (i.e., those 

sharing sequence similarities). 

For multihost parasites, such as RNA viruses, different adaptive landscapes are 

predicted because each host imposes different genetic constraints to the virus that result 

in fitness differences among hosts (i.e., fitness trade-offs or antagonistic pleiotropy).  

Generalist viruses must have evolved regions where fitness peaks on different hosts 

coincide or overlap sufficiently to avoid demoting and movement trough low-fitness 

valley during the switch between different hosts.  The same notion could be applied for 

the emerging viruses.  If the hosts’ landscapes are independent and fitness peaks are rare 

relative to low-fitness valleys (i.e., most mutations are deleterious), overlapping peaks 

will be rare relative to peaks for either individual host.  Therefore, the transition from 

one overlapping peak to another will involve movement trough even wider low-fitness 

valleys than it would be required for single-host landscapes.  Thus, reaching coinciding 

fitness peaks in multiple hosts is less likely than reaching a single-host single high-

fitness peak.  
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Figure 18.  Illustrative relation between forms of epistasis and the topography of fitness 
landscapes (adapted from Poelwijk et al., 2007).  Consider an evolutionary transition of 
a haploid population of individuals with ancestral genotype ab to the adapted genotype 
AB.  In the absence of epistasis or in the case of magnitude epistasis, the intermediate 
genotypes: Ab and aB have fitnesses somewhere between ab and AB, so the 
evolutionary transition of a population from the ancestral genotype ab to the adapted 
genotype AB is favored by natural selection because both of the intermediate genotypes 
(Ab and aB) have higher fitnesses than the ancestral genotype.  This reflects in fitness 
landscapes being smooth and single-peaked.  In a smooth fitness landscape evolution 
will always proceed uphill towards the single global optimum.  Evolutionary constraints 
happen in the cases of sign and reciprocal sign epistasis when either or both of the 
intermediate (ab or aB genotypes) have lower fitness(es) compared to the ancestral ab 
genotype, respectably. such as in cases of sign epistasis. In this case(s), the intermediate 
genotype(s) of lower fitness(es) than the ancestral will be selected against thus giving 
rise to rugged fitness landscape. 
 

  

Smooth and single-peaked landscape Rugged and multi-peaked landscape
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CHAPTER II - OBJECTIVES 
 
This Thesis explores the multidimensionality of genetic and environmental interactions 

using sets of mutant genotypes of a plant positive-sense single-stranded RNA virus, 

TEV, and measuring their fitness effects across different hosts and/or different genetic 

backgrounds.  In concrete, the objectives were following and as such, correspond to 

different Chapters: 

III. To generate 20 random, single-nucleotide substitution mutants of TEV and 

characterize the distribution of mutational fitness effects across a panel of eight 

different hosts, varying in their genetic relatedness to the natural one Nicotiana 

tabacum.  This study will inform on the importance of GE interactions in 

determining TEV fitness. 

IV. To generate 53 double mutants of TEV, by randomly combining pairs of 

mutations used in Chapter III, and further estimate their mutational fitness 

effects in the natural host N. tabacum to characterize the patterns of epistasis (or 

GG) for TEV genome. 

V. To randomly select ten double mutants of TEV from Chapter IV and 

characterize the epistasis across four different hosts, varying in genetic 

relatedness to the natural one.  This study will provide light on the possible 

dependence of epistasis on environmental variation (i.e., GGE) 

VI. To construct all combinations of the five mutations fixed by an experimentally 

evolved isolate of TEV adapted to Arabidopsis thaliana Ler-0 named TEV-At17 

(i.e., 25 = 32 genotypes) quantify their fitness in the new host A. thaliana Ler-0 

and construct and analyze the empirical fitness landscape for this emerging plant 

RNA virus. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III - GE INTERACTIONS 

  





Effect of Host Species on the Distribution of Mutational
Fitness Effects for an RNA Virus
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Abstract

Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent
years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this
information has been obtained only for a single environment, and very few studies have explored the effect that
environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-
host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty
single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these
host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially
susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species
interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among
hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure
of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained
constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of
deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All
together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that
knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative
host.
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Introduction

The emergence of new epidemic viruses is a critical issue for

public health and economic welfare [1–7]. Virus emergence is a

complex, multilevel problem that results from a combination of

ecological and genetic factors [5–8]. The increasing threats

imposed by emerging and re-emerging viruses make it even more

urgent to predict whether and when virus populations replicating

in their reservoir hosts will acquire the ability to successfully infect

individuals of a new host species, adapt to it and, eventually, turn

into an epidemic. To make such predictions we must first identify

the factors determining why some viruses, like Hepatitis C virus,

Human immunodeficiency virus type 1 (HIV-1), Influenza A virus or

Cucumber mosaic virus have been so successful in causing pandemics

whereas other viruses such as SARS coronavirus, Ebola virus,

Hantan virus, or Cocoa swollen shoot disease virus produced outbreaks

limited in time and space. A pre-requisite for viral emergence is

the existence of standing genetic variation within the reservoir host

that enables successful virus replication within naı̈ve hosts after

spillover by chance [2,3,8]. As a first approximation, and

neglecting the effect of genetic drift, the frequency of these host-

range mutants in the reservoir population will directly depend on

the equilibrium between (i) the rate at which they are produced

and (ii) the fitness effects they may have in the reservoir host.

If host-range mutations are deleterious in the reservoir host,

their frequency will be low and thus the likelihood of emergence

will be low as well, whereas if they are neutral or perhaps even

beneficial, their frequency will increase, which will in turn increase

the chances of emergence. RNA viruses are characterized not only

by extremely high mutation rates [9], but also by short generation

times and large population sizes [3,8]. For these reasons RNA

viruses have a high evolutionary potential and are over-

represented among emerging viruses. Regarding fitness effects,

extensive data have shown that host-range mutants have high

fitness in the new host but pay fitness penalties in the reservoir host

[10–13]. This fitness trade-offs should also preclude the evolution

of generalist, multi-host viruses [11,13–15]. Antagonistic pleiotro-

py is often called to explain the existence of such fitness trade-offs

[11,13]. However, an alternative, although not mutually exclusive,

mechanism promoting host specialization is the accumulation of

neutral mutations in the genes that are not necessary in a given

host but are essential in alternative hosts, making these mutations

deleterious in the alternative host environment [14,15].

Therefore, to predict the probability of a virus to infect new

hosts, it is necessary to characterize the distribution of mutational

fitness effects (DMFE) on its primary hosts as well as on potential

new hosts. DMFE across hosts show the fraction of all possible

mutations that may be beneficial in new hosts and reveal their
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fitness effects in the primary host. DMFE have been characterized

in recent years for a handful of single-stranded DNA [16,17] and

RNA viruses [16,18–20] in their primary hosts. All these studies

but one [18] took a similar experimental approach to the

characterization of DMFEs. In all cases, site-directed mutagenesis

was performed on infectious clones, generating collections of

random single-nucleotide substitution mutants. The fitness of these

mutants was then measured by means of competition experiments

against the parental non-mutated virus. In [18] (and in some

experiments described in [16]), an undetermined number of

mutations were fixed by genetic drift in the absence of purifying

selection (Muller’s ratchet). Three commonalities can be found in

these studies [21], which we will briefly summarize. First, all

viruses examined show very low tolerance to mutation, as

demonstrated by a large fraction of lethal mutations (between

20% and 40%). Second, for non-lethal mutations, the mean fitness

loss associated to a single nucleotide substitution is about 10%.

Third, DMFEs characterized are left-skewed (i.e., containing more

negative values than the Gaussian distribution) and leptokurtic

(i.e., comprising less central values than the Gaussian and having

longer tails). Accordingly, the probability density functions that

better fitted the data were from the heavy-tailed family (Log-

normal or Weibull) or highly skewed ones (Gamma or Beta). Still,

probably due to the overwhelming amount of work associated with

these studies, the effect of host heterogeneity on the properties of

DMFE have not been experimentally addressed; with the

exception of the work done by Van Opijnen et al. [22] with

HIV-1. However, this study was limited to a few single nucleotide-

substitution mutations that were not randomly scattered along the

viral genome but concentrated in a regulatory non-coding region.

The situation that we have just described in the context of

emerging viruses is a particular case of a more general biological

problem: the extent to which a phenotype (here viral fitness) is

determined by the interaction between the genotype and the

environment (here the host species), or the G6E interaction [23].

Understanding how genotype and environment interact to

determine the phenotype and fitness has been a central aim of

ecology, genetics, and evolution. Therefore, it should also be

central for the epidemiology and evolution of infectious diseases;

even more so in light of the reasons given above. The fate of

genetic variation in populations depends on the form of the G6E

interactions [24,25] and, for instance, a change in the rank order

of genotypic fitness in different environments may support a

balanced polymorphism [25]. Despite this centrality, not much is

known about the extent and underlying form of G6E interactions.

Previous attempts to answer these questions suffer from one or

another weakness (e.g., non-random samples of mutations taken

from standing variation formerly filtered by selection, unknown

number of mutations, traits of unclear relationship with fitness,

etc.) [26]. To overcome these problems, Remold and Lenski [26]

proposed using a collection of mutant genotypes that differ from

the wildtype in a single and well defined mutation. Mutational

fitness effects should further be evaluated in environments not

previously experienced by the organism. By applying this simple

experimental design to the bacterium Escherichia coli, these authors

found that G6E interactions were quite common even for

genotypes that differed by only one mutation and across

environments that differed in a single component.

In this study, we sought to study how different host species affect

the parameters describing the DMFE for a plant RNA virus,

Tobacco etch potyvirus (TEV). Furthermore, we were interested in

testing whether single point mutations are sufficient to give rise to

G6E interactions in simple and compacted RNA genomes. To do

so, we randomly selected 20 single-nucleotide substitution mutants

from the collection previously described in Carrasco et al. [20].

Then, we quantified the absolute fitness (i.e., Malthusian growth

rate) of all these mutants in eight different host species and

characterized the parameters describing the DMFE and how they

varied across hosts. Furthermore, we evaluated the amount of

observed variability that was explained by genetic differences

among viral genotypes, by differences among host species and,

more interestingly, by the non-linear interaction between these

two factors (e.g., the genotype-by-environment variance). In

nature, TEV infects five of these hosts (Nicotiana tabacum, Nicotiana

benthamiana, Solanum lycopersicum, Capsicum annuum, and Datura

stramonium), all belonging to the same plant family, the Solanacea.

The other three species are not TEV natural hosts, although they

are experimentally susceptible to systemic infection. They belong

to two plant families, the Asteraceae (Helianthus annuus) and the

Amaranthaceae (Gomphrena globosa and Spinacea oleracea). Both the

Solanaceae and the Asteraceae are within the Asterids, while the

Amaranthaceae are not [27].

Results

Characterization of the DMFE on different hosts
For this study, we have used a collection of 21 TEV genotypes

(20 mutants plus the wildtype) drawn from a larger collection of

mutants obtained by Carrasco et al. [20]. Each mutant contained a

single nucleotide change whose position and substitution were

chosen at random. In 14 cases, the mutation resulted in an amino

acid substitution (Table 1). Our set of mutants consisted in changes

that were randomly dispersed throughout the TEV genome

(Table 1). Selected mutants were all viable in the natural host N.

tabacum. The absolute fitness effects of these genotypes were

evaluated in eight susceptible host species. The observed DMFEs

for the 21 genotypes in all eight hosts are shown in Figure 1. A

quick look at these histograms suggests that in the natural host N.

tabacum and in its close relative N. benthamiana (both species belong

to the same genus of the Nicotianoideae subfamily) most mutants

have absolute fitness indistinguishable from or below the value of

the wildtype (indicated by the vertical dashed line; enumerated in

Table 2). Indeed, the average absolute fitness values for all mutant

genotypes on these two hosts were significantly smaller than the

values estimated for the wildtype (Table 2; one-sample t-tests,

P#0.019 in both cases). Also supporting this excess of deleterious

effects, the distributions had significant negative skewness values

(Table 2; t-test comparing to the Gaussian null expectation,

Author Summary

Mutations are the raw material on which natural selection
operates to optimize the fitness of populations. The
occurrence of selection and its strength depend on the
effect that mutations may have on the survival and
reproduction of individuals: mutations can be lethal,
deleterious, neutral, or beneficial. Thus, determining how
many mutations belong to each of these categories is of
importance for predicting the evolutionary fate of a
population. For emerging infectious diseases, this distri-
bution determines the likelihood that a pathogen crosses
the species barrier and successfully infects a new host. We
characterized such distributions across a panel of alterna-
tive hosts for a plant virus and found that fitness effects of
individual mutations varied across hosts in an unpredict-
able way and that many mutations considered deleterious
in the natural host may turn out to be beneficial in other
hosts.

Virus Fitness Dependence on Host Species
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P,0.001 in both cases). The average absolute fitness effect of all

genotypes together was undistinguishable in these two hosts (Mann-

Whitney test, P = 0.232). Both distributions are also significantly

leptokurtic (Table 2; t-test comparing to the Gaussian null

expectation, P,0.001 in both cases), indicating that many

mutations have mild fitness effects and, therefore, the DMFEs are

more peaked than expected for a Gaussian distribution. When the

absolute fitness of the different TEV mutants was evaluated in hosts

whose genetic relatedness to N. tabacum decreased, while still

belonging to the Solanaceae (Solanoideae subfamily: D. stramonium, C.

annuum and S. lycopersicum), the average value of the distributions did

not shift significantly compared to Nicotianoideae (Mann-Whitney

test, P = 0.348). In addition, it remained skewed towards the left tail,

that is, the values were smaller than the median of the distribution

(Table 2; t-test, P#0.026). In D. stramonium and S. lycopersicum, a few

mutations were lethal (see below the arguments supporting the

lethality of these mutants), thus making the distributions even more

negatively skewed. The change in shape of DMFE noticeably

affected the kurtosis parameter. In the three Solanoideae hosts

DMFEs have no significant kurtosis (Table 2; t-tests, P$0.195 in all

cases), and thus they are effectively mesokurtic (e.g., Gaussian-like).

In general, DMFE dramatically change in several aspects within

non-Solanaceae hosts. First, the distribution mean shifts towards lower

values; a comparison of absolute fitness values between Solanaceae

and non-Solanaceae hosts indicates that the difference is highly

significant (Mann-Whitney test, P,0.001). Second, the distributions

become positively skewed, although the asymmetry was significant

only for S. oleracea (Table 2; t-test, P = 0.008). Positive skewness

means that the tail of the distribution containing fitness effects

higher than the mean is significantly heavier than the negative tail.

This finding is particularly interesting when observed that the fitness

of the wildtype is always in the negative tail of the distribution.

To further expand the analyses of the data shown in Figure 1,

we compared the absolute fitness of each mutant to that of the

wildtype TEV on each host using the bootstrap method described

in [18]. Based on the bootstrap results, mutations were classified

into lethal, deleterious (i.e., significantly smaller absolute fitness

than wildtype), neutral, and beneficial (i.e., significantly larger

absolute fitness than wildtype) on each alternative host (Table 2).

The analysis of this contingency table shows that there is a

significant heterogeneity in the distributions of discrete mutational

classes among hosts (x2 = 163.262, 21 d.f., P,0.001). However,

this heterogeneity is entirely driven by the differences among TEV

absolute fitness in Solanaceae hosts (x2 = 96.161, 12 d.f., P,0.001),

but not among non-Solanaceae hosts (x2 = 0.891, 6 d.f., P = 0.989).

Indeed, if a new contingency table is constructed by grouping hosts

into Solanaceae and non-Solanaceae, a significant heterogeneity is

observed among the two host classes (x2 = 37.884, 3 d.f.,

P,0.001). These results are explained by the shift from more

neutral mutations in the two Nicotianeae towards more beneficial

and lethal in the three Solanoideae, while the three non-Solanaceae

species had similar counts of neutral and beneficial mutations.

Interestingly, neutral and non-neutral cases were evenly distrib-

uted among synonymous and nonsynonymous mutations for all

hosts (Fisher’s exact test, P$0.131 in all hosts). In recent years,

increasing evidence supports the notion that, for compacted RNA

genomes, synonymous mutations are not necessarily neutral

mutations [20,28]. This observation is most likely due to the

overlapping nature of many viral genes, the existence of secondary

RNA structures essential for regulating gene expression, the

adaptation to the host’s codon usage bias, and the pressure for

evading RNAi-based host defenses.

The above classification of viable mutants into deleterious,

neutral or beneficial depends on whether their fitness values

Table 1. TEV genotypes used in this study and some of their properties.

Genotype Protein Location Nucleotide substitution Amino acid change Polarity change

DQ986288, wild-type isolate

PC2 P1 158 URG FRC apolarRpolar

PC6 P1 375 ARG LRM

PC7 P1 475 ARC KRQ basicRpolar

PC12 P1 872 ARC MRL

PC19 HC-Pro 1503 ARG synonymous

PC22 HC-Pro 1655 ARG NRS

PC26 HC-Pro 2119 ARU synonymous

PC40 P3 3238 TRC synonymous

PC41 P3 3406 CRA QRK polarRbasic

PC44 P3 3468 URG synonymous

PC49 CI 4418 GRC SRT

PC60 CI 5349 URC synonymous

PC63 6K2 5582 ARG KRR

PC67 NIa-VPg 6012 URG IRM

PC69 NIa-VPg 6044 CRA TRN

PC70 NIa-VPg 6197 URG MRR apolarRbasic

PC72 NIa-VPg 6251 URC FRS apolarRpolar

PC76 NIa-Pro 6519 URC synonymous

PC83 NIb 7315 ARG IRV

PC95 NIb 8501 ARC ERA acidRpolar

doi:10.1371/journal.pgen.1002378.t001
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Figure 1. DMFEs across different host species. Host species belong to the taxonomic families Solanaceae, Asteraceae and Amaranthaceae. The
first two families belong to the Asterids class. In nature, TEV is found infecting members of the Solanaceae family. The ancestral isolate used in this
study was obtained from and subsequently passed in N. tabacum plants. Lethal mutations (which have a Malthusian fitness of 2‘) are indicated in
the histograms with ,20.1 fitness values. The vertical dashed lines represent the fitness value of the wildtype genotype in each host.
doi:10.1371/journal.pgen.1002378.g001

Table 2. Parameters describing the DMFE shown in Figure 1 and number of mutations classified as lethal, deleterious, neutral, and
beneficial on each host.

Mean Median Std. deviation Skewness Kurtosis Lethal Deleterious Neutral Beneficial

N. tabacum 0.280 0.283 0.016 21.974*** 4.608*** 0 6 14 0

N. benthamiana 0.267 0.277 0.050 23.949*** 16.879*** 0 10 10 0

D. stramonium 0.307 0.322 0.040 21.566** 1.364 2 15 3 0

C. annuum 0.200 0.260 0.116 21.037* 20.389 0 0 9 11

S. lycopersicum 0.338 0.349 0.029 20.768 0.062 8 0 2 10

H. annuus 0.026 0.020 0.043 0.527 0.579 0 0 15 5

G. globosa 0.019 0.010 0.041 0.997 0.561 0 0 17 3

S. oleracea 20.018 20.039 0.053 1.479** 1.915 0 0 17 3

t-test significance levels for skewness and kurtosis:
*0.05.P$0.01,
**0.01.P$0.001;
***P,0.001.
doi:10.1371/journal.pgen.1002378.t002
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deviates significantly from that of the wildtype TEV in the

bootstrap test. However, given the statistical uncertainties inherent

to our measurements, it is difficult to distinguish between small-

effect mutations and lack of fitness effects. For the Solanaceae,

relative fitness values,20.03 were generally significantly delete-

rious, whereas mutations were assigned to the beneficial class if

they had relative fitness .0.05 as in S. lycopersicum, although the

threshold for C. annuum rose up to .0.2. For the non-Solanaceae, in

general, mutations were considered as beneficial if they had

relative fitness values .0.05. However, since the concept of

neutrality depends on the effective population size [29], modeling

the continuous DMFE rather than their discretization, at length, is

to be more informative. In the next section we will address this

problem.

Failed inoculation experiments and lethal mutations produce

the same apparent result: a lack of viral accumulation in the

inoculated plants. To rule out the possibility that the putative

lethal mutations observed in D. stramonium and S. lycopersicum are

just a succession of failed inoculation experiments, we applied the

following statistical argument. First, we evaluated our rate of

failure to produce an infection when starting the experiment with

viruses that are viable in each host species. In the case of D.

stramonium, two mutants were assigned to the class of lethals. Out of

171 D. stramonium plants inoculated with viable viruses, 72 plants

were infected and thus the failure rate was 1–72/171 = 0.579 per

inoculation event. After nine trials (corresponding to the number

of replicates per mutant and per host species), the probability of

failing all cases should be 0.5799 = 0.007. Therefore, in a sample of

21 genotypes, we expect less than one case (2160.007 = 0.153) to

be erroneously assigned to the category of lethal mutations.

Similarly, in the case of S. lycopersicum, where eight mutants were

putatively lethal, 72 out of 117 plants inoculated with viable

viruses were infected, which represents a failure rate of 0.385 per

inoculation experiment. From this, we expect (2160.3859 = 0.004)

much less than one case to be classified as lethal but resulting from

multiple inoculation failures. Therefore, on these grounds, we are

confident that the mutations classified as lethal on these two hosts

were really so.

Fit of empirical DMFE to theoretical probability density
functions

Next, we sought to determine which of several competing

statistical models better describes the observed DMFEs. Following

previous analyses of the DMFE for RNA viruses [16,18,19,20], we

evaluated the goodness-of-fit of distributions sharing the property

of asymmetry and with heavy tails to the empirical DMFEs

observed in each host. Lethal mutations were excluded from the

analyses. The probability density functions (pdf) tested were:

Exponential, Gaussian, Gamma, Beta, Log-normal, Laplace,

Pareto, and Weibull. Nonlinear regression techniques were used

to fit models to the data. Table 3 shows the best-fitting model for

each host and the relevant parameters describing each distribu-

tion, as well as the statistics measuring the goodness of fit (Akaike’s

weight and R2). The Weibull pdf was the model that better

described the DMFEs measured in N. tabacum, N. benthamiana, D.

stramonium, S. lycopersicum, and G. globosa. A Weibull pdf is described

by two parameters, the scale l and the shape k, related to the

expected value of the distribution as E(m)~lC(1z1=k), where

C(?) is the gamma function evaluated at the given argument.

However, the Akaike’s weight for this pdf is ,0.95 in all cases,

suggesting that alternative models, or combinations of models, can

still contribute to better describe the observed distributions. In the

cases of C. annuum and S. oleracea the pdf that better explained the

observed DMFEs were Laplace and Pareto, respectively. These

two distributions are from the power-law family. In the case of the

Laplace pdf, the expected fitness value is equal to the location

parameter E(m) = m, whereas in the case of the Pareto, the

expected value is E(m)~ac=(a{1), where a is the shape

Table 3. Probability distribution models that best describe the observed DMFEs on each host (excluding lethal mutations).

Model Parameter estimatesa
Expected
fitness

Akaike’s
weightb R2 ER (to second best model)c

N. tabacum Weibull scale l = 0.28660.000 0.286 0.706 0.988 7.675 (Normal)

shape k = 33.13861.433

N. benthamiana Weibull scale l = 0.28260.000 0.274 0.917 0.989 28.924 (Normal)

shape k = 20.37160.840

D. stramonium Weibull scale l = 0.32360.002 0.311 0.643 0.849 4.990 (Laplace)

shape k = 12.99262.317

C. annuum Laplace location m = 0.25360.010 0.223 0.521 0.842 5.495 (Weibull)

scale b = 0.10460.019

S. lycopersicum Weibull scale l = 0.32460.004 0.300 0.479 0.873 2.514 (Normal)

shape k = 5.77460.785

H. annuus Laplace location m = 0.06760.001 0.020 1.000 0.992 3721.827 (Normal)

scale b = 0.03260.014

G. globosa Weibull scale l = 0.05860.001 20.322 0.400 0.992 1.159 (Beta)

shape k = 1.35860.046

S. oleracea Pareto threshold c = 0.82960.001 20.024 0.997 0.930 553.409 (Laplace)

shape a = 22.18961.493

a61 SE of the estimated value.
bThe set of pdf models fitted and compared was: Exponential, Normal, Gamma, Beta, Log-normal, Laplace, Pareto, and Weibull.
cER: evidence ratio. In this case, ER measures how many times the best fitting model is more likely than the model ranked in second place.
doi:10.1371/journal.pgen.1002378.t003
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parameter and c the threshold value. For the two non-Asterids

hosts (e.g., G. globosa and S. oleracea) the expected fitness values were

negative, whereas in all other cases the expected fitness values were

positive and in the range 0.02–0.311.

The Akaike’s weight informs about which one among a set of

competing models is best supported by the data, after ranking

them according to their AIC values. However, given the

uncertainties associated to the small sample size here used (21

TEV genotypes), one may be interested in evaluating how much

better performs the best fitting model relative to any other model.

To make this analysis, we used an evidence ratio (ER) computed as

the likelihood of the best model divided by the likelihood of the

alternative model of interest [30]. The last column in Table 3

shows the ER values computed for models ranked in second place.

The Weibull pdf is the best descriptor in five out of eight host

species. Hence, one may ask how good a descriptor it is for the

three remaining hosts. In the case of C. annuum, the Weibull was

ranked as the second best fitting, performing only ,5.5 times

worse than the Laplace pdf. For H. annuus, the Weibull pdf ranked

in third position, with an ER = 38609.153, thus providing a much

worse fit than the Laplace pdf. Finally, in the case of S. oleracea the

Weibull pdf ranked in seventh position, with an ER = 190935.254,

indicative of a very poor fit compared to the best fitting Pareto pdf.

The phylogenetic distance between natural and naı̈ve
hosts influence the location and shape of DMFE

Next, we sought to evaluate whether the location and shape

characteristics of the DMFE were affected by the genetic

relationship between the hosts. Figure 2a shows that a statistically

significant negative correlation (Spearman’s rS = 20.798, 6 d.f.,

P = 0.018) exists between the expected centrality parameter of the

DMFE, E(m) (taken from Table 3), and the ranked phylogenetic

distance of each host to the natural one; N. tabacum. This negative

correlation indicates that the average absolute fitness decreases as

the host becomes more and more distant from the one to which

the virus was originally adapted. By contrast, a significant positive

correlation has been observed between the skewness of the DMFE

and host’s phylogenetic distance from the natural one (Figure 2b;

Spearman’s rS = 0.877, 6 d.f., P = 0.004). This result is congruent

with the above observation that the skewness of the DMFE shifts

from negative to positive as hosts become more phylogenetically

distant from the natural one. The phylogenetic distance did not

significantly affect the variance and kurtosis of the distributions (in

both cases Spearman’s rS#0.569, 6 d.f., P$0.153).

Contribution of G6E interactions to TEV absolute fitness
Model I in Table 4 shows the GLM analysis of the absolute

fitness data using host species and TEV genotype as random

factors. First, there is a highly significant difference among TEV

genotypes in their absolute fitness. This is in agreement with

previous analyses of the larger collection of genotypes from which

these 20 were drawn [20]. However, only ,4% of total observed

variability is explained by genetic differences among TEV

genotypes. There is also a highly significant effect of the host

species on viral fitness, which explains ca. 26% of the observed

variability in absolute fitness. Finally, and more interestingly from

the perspective of predicting emerging viral infections by using

information about fitness effects in natural hosts, the G6E

interaction term is also highly significant, and explains ca. 67%

of the observed variability in absolute fitness. This significant

interaction means that we cannot accurately predict a particular

genotype’s absolute fitness in a given host from the main effects,

thus adding an unpredictability component to viral emergence.

Finally, it is worth noting that only 2.76% of the observed variance

remained unexplained by the model and was used as error

variance in the computation of the different variance components.

To account for the fact that hosts are not independent but

phylogenetically related, we fitted a more complicated model to

the data (Model II in Table 4). This alternative model treated the

host species as a binary factor; belonging to one of two classes

(Solanaceae vs. non-Solanaceae). Then, host species were nested

within these two classes and the G6E component was evaluated by

looking the significance of the interaction between hosts within

classes and TEV genotype. This model has an appreciably lower

AIC value than the Model I and thus should be taken as a better

one, although the conclusions do not qualitatively depart from

those reached from the simpler model (Model I): the genetic

component only explains a minor fraction of observed fitness

variance whereas most of it is explained by the G6E interaction

term.

Figure 2. Changes in the centrality and shape parameters of
the DMFE with increasing genetic distance among hosts. (a) The
centrality parameter of the best fitting pdf shifts from positive to
negative Malthusian fitness, indicating that the average effect of single
mutations is stronger as the host genetic relatedness with the natural
host N. tabacum decreases. (b) Distributions become more positively
skewed with increasing host genetic distance from N. tabacum,
suggesting that more mutations have positive effect in the new hosts.
doi:10.1371/journal.pgen.1002378.g002

Virus Fitness Dependence on Host Species

PLoS Genetics | www.plosgenetics.org 6 November 2011 | Volume 7 | Issue 11 | e1002378



The causes of G6E
A significant G6E interaction can be produced by two non-

mutually exclusive mechanisms [26]. First, pleiotropic effects may

change the rank order of mutations across environments (e.g., a

mutation beneficial in one environment may not be so in an

alternative one). Second, while still retaining the rank order of

fitness effects, G6E can also be generated by altering the genetic

component of phenotypic variance (s2
G ) across hosts. To evaluate

the contribution of these two mechanisms to the observed G6E,

we run two different analyses.

As a first statistical test, we computed Spearman’s rank

correlation coefficients between absolute fitness values in the

primary host N. tabacum and the values estimated on each

alternative host (Figure 3). Lethal mutations were assigned to the

lowest rank. A negative correlation would indicate negative or

antagonistic pleiotropy (e.g., mutations change the strength and

sign of their effects on different hosts), whereas a positive

correlation would indicate positive pleiotropy. Interestingly, the

correlations were positive for all the Solanaceae hosts (although only

reached significance in two cases, N. benthamiana and D. stramonium).

By contrast, for the three non-Solanaceae hosts the correlation

coefficients had negative non-significant values. We used the

frequency of discrete mutational signs on each host class to

construct a contingency table, and applied a Fisher’s exact test to

confirm that the difference in correlation signs among host classes

was significant (P = 0.029) despite the small sample size. Further-

more, the shift from negatively skewed DMFE (excess of

deleterious effects) in the Solanaceae to positively skewed distribu-

tions (excess of beneficial effects) in the non-Solanaceae described

above is also consistent with antagonistic pleiotropy. Therefore,

from these analyses we concluded that antagonistic pleiotropy

contributed to generate G6E when the new host species are

phylogenetically distant from the natural host (i.e., outside the

plant family), but not when host species belong to the same family.

Nevertheless, this conclusion needs to be qualified because the

most extreme cases of antagonistic pleiotropy are mutations that

were viable in N. tabacum but lethal in D. stramonium and S.

lycopersicum, all being from the same family.

A non-significant correlation test, however, cannot be taken as

an evidence of a lack of pleiotropic effects across hosts. For

instance, one can imagine a situation in which, in a given host,

some mutations may have negative pleiotropic effects, some others

positive ones and some even being independent on the host. In

such situation, the correlation would turn out to be non-significant

while still some mutations may be pleiotropic. To overcome this

drawback, we performed a second statistical test based on the

frequency of mutations that changed the sign of its fitness effects

(compared to that of the wildtype TEV) across hosts. For each

mutation on each host, we recorded whether fitness was lower

(negative sign) or higher (positive sign) than the wildtype TEV.

Then we counted the number of cases for which the sign changed

between the primary host, N. tabacum, and each alternative one. If

a mutation has the same sign both in the primary and in the

alternative hosts, it is considered not to be pleiotropic. By contrast,

if sign changes, then it is considered as pleiotropic. Under the null

hypothesis of no excess of pleiotropic effects, mutations would

distribute evenly across both categories. Departures from this null

hypothesis were evaluated using Binomial tests. Only in N.

benthamiana (x = 2) and D. stramonium (x = 4) the number of observed

mutations with putative pleiotropic effects was not significantly

larger than expected under the null expectation (probability of

having x or more cases of pleiotropic mutations than expected by

sheer chance: P,0.001 and P = 0.006, respectively). By contrast,

the number of mutations whose fitness effects switched signs were

significantly larger than expected by chance in all other hosts:

x = 18 in C. annuum (P.0.999), x = 19 in S. lycopersicum (P.0.999),

x = 14 in H. annuus (P = 0.942), 15 in G. globosa (P = 0.979), and 17

in S. oleracea (P.0.999). Therefore, this second test of antagonistic

pleiotropy confirmed the conclusions drawn from the Spearman’s

correlation test. Moreover, it showed that antagonistic pleiotropy

also made an important contribution to the fitness variability

observed in the two hosts (C. annuum and S. lycopersicum) in which no

overall tendency was observed in Figure 2.

Next, to evaluate the importance of changes in genetic variance,

s2
G , for absolute fitness as a source of G6E we computed it for each

of the eight host species. Table 5 shows the estimates of s2
G , of

error variance (s2
e ) as well as the broad sense heritability (H2) that

indicates the percentage of total phenotypic variance explained by

genetic differences among TEV genotypes. For the five Solanaceae

hosts, s2
G ranged from 0.051 to 0.115, with an average value of

0.083, and s2
G explaining .95% of the observed phenotypic

variance. By contrast, s2
G within the non-Solanacea hosts was

Table 4. Two generalized lineal models testing the effect of TEV genetic background (G), host species (E), and their interaction
(G6E).

Source of variation x2 d.f. P Variance componenta Percentage of varianceb

Model I (AICc = 22328.299)

G (TEV genotype) 2783.062 20 ,0.001 4.4861023 4.29%

E (Host species) 6467.415 7 ,0.001 2.7361022 26.13%

G6E 7282.589 140 ,0.001 6.9961022 66.82%

Model II (AIC = 22412.799)

G (TEV genotype) 2783.062 20 ,0.001 4.3261023 4.17%

Host class 1371.172 1 ,0.001 8.5661023 8.25%

E (species within Host class) 3177.883 6 ,0.001 1.8161022 17.47%

G6E 7282.589 140 ,0.001 6.9961022 67.33%

Both variables were treated as random sources.
aMaximum-likelihood estimators.
bFor Model I, computed using a value of error variance equal to 2.8861023, which is equivalent to a 2.76% of unexplained variance. For Model II, computed with an error

variance 2.8861023 (2.77%).
cAkaike information criterion.
doi:10.1371/journal.pgen.1002378.t004
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significantly smaller (Mann-Whitney test, P = 0.036), with an

average value of ,0.002. Besides, for these hosts only ca. 25% of

phenotypic variance for absolute fitness was explained by genetic

differences among TEV mutants. Henceforth, from these analyses

we conclude that changes in genetic variance for absolute fitness

contributed to the observed G6E only when comparing

phylogenetically distant hosts.

All together, these results suggest that G6E arises from the

combined effect of antagonistic pleiotropy and reductions in

genetic variance associated to the shift from hosts that belong to

the same family as the natural host to hosts that do not belong to

this family.

Discussion

Changes in DMFE and the likelihood of crossing the
species barrier

New emerging epidemic viruses represent one of the most

serious threats to human, animal and crops health [1–8]. The

problem of viral emergence is complex and depends on the

interaction between host’s genetics, vectors’ abundance, ecology,

and virus evolvability. Predicting the potential of a virus to

spillover from its natural host reservoir to few individuals of a new

host species and successfully establish a productive infection that

will trigger a new epidemic seems an insurmountable problem.

However, from the perspective of evolutionary genetics, the

problem can be simplified by considering that the fate of the viral

population entering into the new host depends, in a first instance,

on whether it contains genetic variants with a positive fitness value.

In other words, a pre-requisite for predicting the ability of a virus

to expand its host range is to have information about the

distribution of fitness effects associated to mutations (DMFE)

across all possible hosts. In this study, we have characterized

DMFE across a set of hosts for the plant virus TEV. The host

species selected widely ranged in their degree of genetic

relatedness with the natural host, N. tabacum: from very close

relatives (members of the same genus) to members of other genera

within the same family, and finally, to species belonging to

different families within the same class or even to different classes.

We found that the central parameter of the DMFE shifted towards

smaller values as the phylogenetic distance of each host from

tobacco increased (Figure 2a). The distributions did not just

displace; they also changed in shape, moving most of the

probability mass from the negative to the positive tails. This

means that, on average, the absolute fitness of TEV decreased as

hosts became more different from the natural one. However, if the

fitness of individual mutant genotypes is expressed relative to

wildtype virus, the change in shape means that the number of

(conditional) beneficial mutations increases as hosts become more

phylogenetically distant from tobacco. This suggests that the

number of mutations that may potentially expand TEV host range

is large. A similar abundance of host-range mutants was also

observed for phage w6 [12]. In this case, the mutations were

concentrated in the P3 gene that encodes for the protein

responsible for attaching the virion to the bacterial pili. However,

in our case, host-range mutations do not concentrate in any

particular gene but were scattered along the genome. Notably,

Gaussian fitness landscape models [31] predict an increase in the

proportion of beneficial mutations under stressful conditions (here

represented by those hosts in which absolute fitness was

dramatically reduced).

The shape of DMFE is a critical component of many

mathematical models of evolutionary dynamics, including the

molecular clock, the rate of genomic contamination by Muller’s

ratchet, the maintenance of genetic variation at the molecular

level, and the evolution of sex and recombination [32]. In more

practical terms, characterizing the shape of DMFE is essential for

understanding the nature of quantitative genetic variation, here

including complex human diseases as well as pathogens virulence

[32]. Therefore, it is not surprising that much effort has been

recently invested in characterizing the DMFE for many organisms

(reviewed in [32]), including several RNA and DNA viruses.

Despite differences in the genetic material of these viruses, their

sizes and gene contents, the methodology applied has been similar

in all cases, namely, generating collections of single-nucleotide

substitutions mutants and then characterizing the fitness of each of

these mutants relative to the non-mutated parental. In RNA

viruses such as bacteriophage Qb [16], Vesicular stomatitis virus

(VSV) [19] and TEV [20], over one third of mutations generated

unviable viruses, whereas viable mutations reduced fitness, on

average, by ,10% [21]. Regarding the theoretical pdf that better

explained these datasets, VSV fitness data conformed to a complex

distribution combining a Log-normal and an Uniform pdfs, the

original TEV larger dataset was best fitted by a Beta pdf (notice

that in [20] fitness was measured as a relative value, which may

justify the difference to the Weibull pdf conclusion reached here),

and the Qb DMFE was well described by a Gamma pdf. In the

case of DNA phages wX174 [16] and f1 [17] the fraction of

unviable mutations was lower (one fifth) but the average effect of

viable mutations was almost identical to the one reported for RNA

viruses [21]. wX174 best fitting was to the Exponential pdf

whereas for f1 the Log-Normal and the Weibull fitted equally well.

Taken together, all these results suggested the existence of certain

common rules: a large fraction of mutations are lethal or have a

large negative fitness effects (displaying the fragility of viral

genomes). In addition, DMFE for viruses are highly asymmetric

Figure 3. Relationship between fitness in N. tabacum and in the seven alternative hosts. Spearman’s non-parametric correlation
coefficients and their statistical significance are shown above each plot. The non-parametric test was chosen given its robustness against extreme
data points. Dashed lines represent the fitness of the wildtype TEV in the corresponding hosts. The solid lines are only inserted to illustrate the overall
trend.
doi:10.1371/journal.pgen.1002378.g003

Table 5. Maximum likelihood estimators for the variance
components of absolute fitness estimated on each host (6
variance of the estimator).

Host species s2
G (61022) s2

e ( 61024) H2

N. tabacum 7.85860.059 3.52460.000 0.996

N. benthamiana 7.32360.051 16.05260.000 0.979

D. stramoniuma 9.46260.097 40.16060.006 0.959

C. annuum 5.16260.028 61.52060.015 0.894

S. lycopersicuma 11.47560.203 6.20460.000 0.995

H. annuus 0.14860.000 48.06160.006 0.236

G. globosa 0.10960.000 47.06260.006 0.188

S. oleracea 0.19560.000 46.76260.005 0.294

aLethal alleles were removed from the computations because they have
absolute fitness 2‘.

doi:10.1371/journal.pgen.1002378.t005
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and can be reasonably well described by theoretical pdfs with

heavy tails. In a recent study [33], the reason for this generality

was grounded into the thermodynamic properties of protein

folding, suggesting that the effect of mutations on protein folding

and stability was a good explanation for the observed DMFEs.

Despite being important for understanding the evolution of a virus

in its natural host, these results were, even so, insufficient to

understand the likelihood of a virus expanding its host range.

Here, we have contributed to cover this lack of knowledge by

describing the effect of changing hosts on the properties of DMFE.

One of the most striking conclusions from our study is that the

fraction of lethal, deleterious, neutral and beneficial mutations,

and hence the shape and location of the distributions, radically

depends on the host in which the fitness effects of mutations is

evaluated, and that this dependence is, itself, conditioned by the

phylogenetic distance among hosts. Furthermore for host species

belonging to the same family as the primary host, the Weibull pdf

fitted best (or second to best for C. annuum) model to describe

DMFE, although for hosts outside the family this model is the best

only in one out of three cases (Table 3).

Martin and Lenormand [31] proposed three possible outcomes

for the DMFEs measured in permissive vs. stressful environments:

(i) conditional expression means that some mutations have a

detectable fitness effect in some environments but are neutral in

others, (ii) conditional average means that the average mutational

effect differs between the two types of environments and (iii)

conditional variance, meaning that variance in mutational effects

changes between the two types of environments. In a survey of

DMFE across benign and stressful environments for organisms as

diverse as the fungi Saccharomyces cerevisiae and Cryptococcus neofor-

mans, the nematode Caenorhabditis elegans, and the fruitfly Drosophila

melanogaster, Martin and Lenormad [31] found that stressful

conditions tend to inflate the variance of the DMFE while leaving

the central value of the distributions almost unaffected. These

results contrast with those reported here: for TEV, DMFE

evaluated in stressful hosts (the non-Solanaceae) had lower average

(Figure 2a) and more positive skewness (Figure 2b) than in

permissive hosts (the Solanaceae), while no significant effects on

variance were observed. Furthermore, we found that some

mutations that were neutral in the natural host had reduced

absolute fitness in alternative ones. Therefore, our data contain all

three possible outcomes proposed by Martin and Lenormand [31],

thus suggesting that their expectations were somewhat simplistic.

A compelling idea of the phylogenetic constraints for a virus

jumping the host species barrier resides in the argument that the

more closely related the primary host and the new host are, the

greater are the chances for a successful spillover [34]. There are

good mechanistic reasons that argue for it; if the ability to

recognize and infect a host cell is important for cross-species

transmission, then phylogenetically related species are more likely

to share related cell receptors and defense pathways. However,

others support the opposed view based on the observation that

spillovers have occurred between hosts that can be either closely or

distantly related, and no rule appears to predict the susceptibility

of a new host [35]. Whether or not phylogenetic relatedness

between reservoir and new hosts may be a factor for host

switching, the rate and intensity of contact may be even more

critical. Viral host switches between closely related species (e.g.,

species within the same genera) may also be limited by cross-

immunity to related pathogens [2]; paraphrasing Holmes and

Drummond [35] ‘‘although a species might be exposed to a novel

pathogen, they might, through a combination of shared common

ancestry and good fortune, already posses a sufficient immune

response to prevent the infection from being established’’. Our

results shed some light into this debate: certainly the absolute

fitness of a virus may be reduced when colonizing a new host,

especially those distantly related ones, but the fraction of mutations

that may be beneficial in this new host also increases with

phylogenetic distance between the new host and the reservoir.

Pleiotropy and changes in genetic variance as sources of
G6E interactions

The existence of G6E interactions in determining fitness has

been well established for many organisms, however, many of these

studies used genotypes that differed in a large and unknown

number of mutations [23,36–39], making unclear whether G6E

depended on single plasticity genes or on the quantitative

contribution of multiple genes. Furthermore, in many examples,

these studies used genotypes sampled from natural populations

and thus have been filtered out by natural selection. Interestingly,

our data demonstrate that single random nucleotide substitutions

are sufficient to produce a significant G6E interaction. Mutations

involved in significant G6E were scattered along the genome and

they were randomly chosen irrespective of their fitness effects,

provided they were viable in the primary host N. tabacum. Thus, we

can conclude that phenotypic plasticity of TEV is not associated to

the expression of any particular gene but results from the

contribution of different genes. The concordance of these results

with those previously reported by Remold and Lenski [26] for the

bacterium E. coli and using knockout mutations suggests that the

contribution of individual mutations to G6E is a general norm. In

the context of emerging viral infections, the existence of a

significant G6E interaction means that by knowing the absolute

viral fitness in the natural host informs us little about what it may

be in an alternative one, thus minimizing our ability to predict

which genetic variants may be relevant for expanding TEV host-

range.

Two non-mutually exclusive explanations can be brought

forward to explain the existence of G6E: a change in the rank

order of mutational effects across hosts (i.e., pleiotropy) and a

change in the magnitude of the genetic variance but without

changing the rank order. The evolutionary implications for these

two mechanisms are different. Changes in genetic variance imply

that the relative influence of selection and drift on the fate of

mutations depends on the host. Exposure to hosts where the

genetic variance in absolute fitness effects is low minimizes the

efficiency by which selection operates either removing deleterious

alleles or fixing beneficial ones and thus enhances the role of drift.

By contrast, changes in rank order imply that selection favor

different mutations in different hosts thus driving to a balanced

polymorphism and specialization. We have assessed the extent to

which these two possibilities may contribute to the observed G6E

and found that both indeed coexist. Antagonistic pleiotropy does

not contribute significantly to G6E when the novel host is closely

related to the natural one, however, it becomes an important

factor when hosts are distantly related (Figure 3). Similarly, genetic

variance for absolute fitness was similar within Solanaceae hosts, but

approximately one order of magnitude smaller for hosts outside

the Solanaceae. Therefore, we conclude that the observed G6E

interaction can be explained both by antagonistic pleiotropy and

by changes in the genetic component of variance. Previous studies

with E. coli showed that G6E was mainly explained by changes in

genetic variance but not by changes in the rank order of fitness

effects across environments [26]. However, other authors found

that the contribution of new mutations to G6E for fitness traits in

D. melanogaster was mostly via antagonistic pleiotropy [40].

The significant positive pleiotropy observed between absolute

fitness in the natural host N. tabacum and in two closely related
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alternative ones (N. benthamiana and D. stramonium) suggests that

mutations ameliorate aspects of the virus interaction with host

factors that may be common to all three hosts but not to the other

hosts. By contrast, the antagonistic pleiotropy observed between

absolute fitness in N. tabacum and in the non-Solanaceae hosts

suggests that TEV may be interacting with different host factors

and that the improved interaction with tobacco may led to less

efficient interaction with an orthologous factor, if available, in the

alternative hosts. In this regard, many examples exist in the plant

virology literature showing that host-range mutations have

negative pleiotropic effects in the natural host (reviewed in

[8,41]). An illustrative example is the interaction between the

VPg protein of other potyviruses and the host translation initiation

factor eIF4E [42,43]. Translation of the viral genomic RNA into

the polyprotein depends upon the correct attachment between

VPg and eIF4E. Mutations in eIF4E have been identified as the

cause of the Potato virus Y (PVY) resistant phenotype of pepper

cultivars. However, PVY overcomes the resistance by fixing amino

acid changes in the central domain of VPg that reconstitutes the

correct binding. These mutants pay a fitness cost in the non-

resistant pepper.

Concluding remarks
Here we have shown for the first time how DMFE for an RNA

virus vary across hosts. Our results suggest that the location of the

DMFE moves towards smaller values as the phylogenetic distance

to the natural host increases. In parallel, the distribution switches

from negative to positive skewness, indicating that the probability

of potential beneficial mutations increases along with host genetic

distance. Similarly, we have found that the virus genotype and the

host species interact in a non-linear manner to determine viral

fitness. Both pleiotropic effects and reductions in genetic variance

contribute to generate this genotype-by-host interaction. The

implications of these observations for our understanding of

emerging viral infections are multiple, but basically all hint on

the unpredictability at the level of individual mutations: in the light

of information collected on the primary host one can not

anticipate which particular viral genotypes will be more likely to

emerge. However, antagonistic pleiotropy still leaves some room

for predictability at the level of classes of mutations: beneficial

mutations, as a class, in the natural host may become deleterious in

an alternative one, or vice versa.

Materials and Methods

Virus genotypes
For this study, a subset of 20 mutants non-lethal in N. tabacum

(Table 1) was randomly chosen from a larger collection used in a

previous study [20]. A plasmid containing the TEV genome,

pMTEV [44], generously gifted by Dr. J.A. Daròs, was used to

generate both the wildtype virus and the mutant genotypes. Single-

nucleotide substitution mutants were generated by site-directed

mutagenesis using QuikChange II XL Site-Directed Mutagenesis

Kit (Stratagene) as described in [20] and following the manufac-

turer’s instructions. The kit incorporates PfuUltra high fidelity

DNA polymerase that minimizes the introduction of undesired

mutations. The uniqueness of each mutation was confirmed by

sequencing an 800 bp fragment encompassing the mutagenized

nucleotide.

Infectious RNA of each genotype was obtained by in vitro

transcription after BglII linearization of the corresponding plasmid

as described in [45]. The infectivity of each RNA genotype was

tested by inoculating five N. tabacum plants. All TEV genotypes

were confirmed to be infectious on N. tabacum.

Host species
Eight host species previously described as susceptible to TEV

systemic infection (VIDE database; pvo.bio-mirror.cn/refs.htm)

were chosen for these experiments. Five hosts belong to the

Solanaceae family: N. tabacum, N. benthamiana, D. stramonium, C.

annuum, and S. lycopersicum. The first two belong to the same genus

of the Nicotianoideae subfamily whereas the other three belong to the

Solanoideae subfamily [27]. One host, H. annuus, pertains to the

Asteraceae family. Both Solanaceae and Asteraceae are classified as

Asterids [27]. The remaining two hosts, G. globosa and S. oleracea

belong to the family Amaranthaceae. The three plant families are

Eudicots [27].

Inoculation experiments
All hosts were at similar growth stages when inoculated in order

to minimize infectivity error due to possible variation in defense

response to infection with developmental stage. All inoculations

were done in a single experimental block. Nine plants per host per

TEV genotype (968621 = 1512) were inoculated by rubbing the

first true leaf with 5 mL containing 5 mg RNA in vitro transcript of

the virus and 10% carborundum (100 mg/mL). Solanaceae hosts

show clear symptoms when infected and thus visual inspection was

enough for determining infection. Nonetheless, some randomly

chosen asymptomatic Solanaceae plants were subjected to RT-PCR

for detection of infection as described in [46]. None was positive in

this test. In the case of the non-Solanaceae hosts, symptoms were not

recognizable and thus, infection was confirmed by RT-PCR.

Ten days post-inoculation (dpi), the whole infected plant, except

the inoculated leaf, was collected. The whole tissue was frozen in

liquid nitrogen and ground with mortar and pestle.

RNA purification and virus quantification
An aliquot of approximately 100 mg of grounded tissue was

taken and mixed with 200 mL of extraction buffer (0.2 M Tris,

0.2 M NaCl, 50 mM EDTA, 2% SDS; pH 8). An equal volume of

phenol:chloroform:isoamylic alcohol (25:25:1) was added, thor-

oughly vortexed and centrifuged at 14000 g for 5 min at 25uC.

Ca. 160 mL of the upper aqueous phase were mixed with 80 mL of

a solution containing 7.5 M LiCl and 50 mM EDTA and

incubated overnight on ice at 4uC for RNA precipitation. The

precipitated RNAs were centrifuged at 14000 g for 15 min at 4uC,

washed once with 70% ice-cold ethanol, dried in a SpeedVac

(Thermo) and resuspended in 30 mL of DEPC-treated ultrapure

water. RNA concentration was measured spectrophotometrically

and the samples were diluted to a final concentration of 50 ng/mL.

Within-plant virus accumulation was measured by absolute RT-

qPCR using external standard [47]. Standard curves were

constructed using five serial dilutions of TEV RNA produced by

in vitro transcription and diluted in RNA obtained from the

corresponding healthy host plant species. Samples were grouped

by hosts and quantity of viral RNA was calculated using the

corresponding standard curve.

RT-qPCR reactions were performed in 20 mL volume using

One Step SYBR PrimeScript RT-PCR Kit II (TaKaRa) following

the instructions provided by the manufacturer. The primers

forward TEV-CP 59-TTGGTCTTGATGGCAACGTG and

reverse TEV-CP 59-TGTGCCGTTCAGTGTCTTCCT amplify

a 71 nt fragment within the TEV CP cistron. CP was chosen

because it locates in the 39 end of TEV genome and hence would

only quantify complete genomes but not partial incomplete

amplicons. Each RNA sample was quantified three times in

independent experiments. Amplifications were done using the ABI

PRISM Sequence Analyzer 7000 (Applied Biosystems). The

thermal profile was as follows: RT phase consisted of 5 min. at
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42uC followed by 10 s at 95uC; and PCR phase of 40 cycles of 5 s

at 95uC and 31 s at 60uC. Quantification results were examined

using SDS7000 software v. 1.2.3 (Applied Biosystems).

Statistics
Absolute fitness was estimated as Malthusian growth rate per

day, according to expression m~ 1
t
log Q, where Q is the number

of pg of TEV RNA per 100 ng of total plant RNA quantified at

t = 10 dpi.

Unless otherwise indicated, all statistical tests were performed

using SPSS version 19. Generalized linear models (GLM) were

used to explore the effect of the different factors on TEV fitness.

We assumed that m was distributed either as a Gaussian pdf or as a

more stretched Gamma pdf. In both cases an identity link function

was used. No qualitative differences were observed between the

results obtained with these alternative distributions. Results

reported will be those obtained using the Gaussian model.
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ORIGINAL ARTICLE

Magnitude and sign epistasis among deleterious mutations
in a positive-sense plant RNA virus

J Lalić1 and SF Elena1,2

How epistatic interactions between mutations determine the genetic architecture of fitness is of central importance in evolution.
The study of epistasis is particularly interesting for RNA viruses because of their genomic compactness, lack of genetic
redundancy, and apparent low complexity. Moreover, interactions between mutations in viral genomes determine traits such as
resistance to antiviral drugs, virulence and host range. In this study we generated 53 Tobacco etch potyvirus genotypes carrying
pairs of single-nucleotide substitutions and measured their separated and combined deleterious fitness effects. We found that
up to 38% of pairs had significant epistasis for fitness, including both positive and negative deviations from the null hypothesis
of multiplicative effects. Interestingly, the sign of epistasis was correlated with viral protein–protein interactions in a model
network, being predominantly positive between linked pairs of proteins and negative between unlinked ones. Furthermore, 55%
of significant interactions were cases of reciprocal sign epistasis (RSE), indicating that adaptive landscapes for RNA viruses
maybe highly rugged. Finally, we found that the magnitude of epistasis correlated negatively with the average effect of
mutations. Overall, our results are in good agreement to those previously reported for other viruses and further consolidate the
view that positive epistasis is the norm for small and compact genomes that lack genetic robustness.
Heredity (2012) 109, 71–77; doi:10.1038/hdy.2012.15; published online 11 April 2012

Keywords: epistasis; fitness landscapes; genome architecture; virus evolution

INTRODUCTION

Epistasis has been the focus of intensive research since the beginning
of genetics as a scientific discipline (Phillips, 2008). In general,
epistasis is the interaction between genes or mutations in determining
phenotypes. The direction, magnitude and prevalence of epistasis is
central to theories seeking to explain the origin of characteristics of
genetic systems, such as sex and recombination (De Visser and Elena,
2007), dominance (Bagheri and Wagner, 2004), ploidy (Kondrashov
and Crow, 1991), phenotypic plasticity (Remold and Lenski, 2004),
robustness (De Visser et al., 2003), the ruggedness of adaptive
landscapes (Weinreich et al., 2006; Poelwijk et al., 2007), or attempt-
ing to mechanistically explain dynamic biological processes such as
the accumulation of mutations in finite populations (Kondrashov,
1994), and speciation by reproductive isolation (Coyne, 1992). Very
recently, the evolutionary causes of epistasis, and not only their
evolutionary consequences, have also attracted attention (Sanjuán and
Nebot, 2008; De Visser et al., 2011; Macı́a et al., 2012).

Broadly speaking, epistatic interactions can be classified as uni- or
multi-dimensional (Kondrashov and Kondrashov, 2001). Uni-dimen-
sional epistasis is defined as deviations from a linear relationship
between mean multiplicative fitness and the number of mutations
affecting fitness. By contrast, multi-dimensional epistasis includes all
the possible individual interactions among a set of mutations. Multi-
dimensional epistasis provides a more complete description of the
interactions within the fitness landscape defined by a set of mutations.
Interactions can be further classified as magnitude or as sign epistasis.
Magnitude epistasis (ME) occurs when that the fitness value
associated to a mutation, but not its sign, changes upon the genetic

background wherein it appears (Weinreich et al., 2005; Poelwijk et al.,
2007). Moreover, ME can be positive or negative, depending on
whether the fitness of the double mutant is larger or smaller than
expected under the multiplicative null model, respectively. ME is a
widespread phenomenon observed in organisms of different complex-
ity (Sanjuán and Elena, 2006). Sign epistasis (SE) refers to cases in
which the sign of the fitness effect of a mutation is under epistatic
control; thus, such a mutation is beneficial in some genetic back-
grounds and deleterious in others (Weinreich et al., 2005; Poelwijk
et al., 2007). In few instances where it has been sought, SE seems to be
quite common, although perhaps not as ubiquitous as ME (Weinreich
et al., 2006 Poelwijk et al., 2007; Franke et al., 2011; Kvitek and
Sherlock, 2011).

Epistasis is particularly relevant for our understanding of adaptive
evolution, as it determines the ruggedness of the adaptive landscape
(Withlock et al., 1995; Poelwijk et al., 2011) as well as the accessibility
of adaptive pathways throughout the landscape (Weinreich, 2005
Welch and Waxman, 2005; Franke et al., 2011). Evolutionary
trajectories may end at suboptimal fitness peaks due to the ruggedness
of the fitness landscape. Epistasis can therefore hamper the efficiency
of natural selection and thus slow down the rate of adaptation
(Withlock et al., 1995). Moreover, epistasis can make certain evolu-
tionary pathways towards higher fitness genotypes selectively inacces-
sible because of troughs and valleys in the fitness landscape:
intermediate genotypes have reduced fitness compared with sur-
rounding genotypes. Weinreich et al. (2005) were the first to notice
this evolutionary constraint and to postulate that such limitation
would arise only as a consequence of SE. Indeed, a particular type of
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SE known as RSE, that is, the sign of the fitness effect of a mutation is
conditional upon the state of another locus and vice versa, has been
shown to be a necessary condition for an adaptive landscape to be
rugged (Poelwijk et al., 2011).

RNA viruses are ideal experimental systems for exploring the nature
of epistatic interactions: their compact genomes often code for
overlapping reading frames, contain functional RNA secondary
structures and encode for multi-functional proteins. Altogether, these
properties are expected to lead to strong epistasis. Indeed, recent
studies exploring uni- and multi-dimensional epistasis have provided
empirical evidences that ME is common for RNA viruses such as
Foot-and-mouth disease virus (Elena, 1999), bacteriophage f6 (Burch
and Chao, 2004), Vesicular stomatitis virus (VSV, Sanjuán et al., 2004),
Human immunodeficiency virus type 1 (Bonhoeffer et al., 2004; Van
Opijnen et al., 2006; Parera et al., 2009; Da Silva et al., 2010; Martı́nez
et al., 2011), Rous sarcoma virus (Sanjuán, 2006), or Tobacco etch virus
(TEV; De la Iglesia and Elena, 2007b), among others, as well as for
ssDNA bacteriophages such as ID11 (Rokyta et al., 2011) or fX174
(Pepin and Wichman, 2007). Furthermore, in most of these studies
positive epistasis is more abundant than negative epistasis, although
variability exists within each virus. Positive epistasis may appear as a
consequence of individual mutations having a large negative impact
on fitness such that any additional mutation that still produces a
viable virus must necessarily exert a minor impact (Elena et al., 2010).
SE, by contrast, has been detected only among compensatory
mutations for fX174 (Poon and Chao, 2006) and among pairs of
beneficial mutations for ID11 (Rokyta et al., 2011). By contrast, no
evidence of SE was found for combinations of beneficial mutations in
the RNA bacteriophage MS2 (Betancourt, 2010).

In this study we sought to characterize the patterns of multi-
dimensional epistasis for the RNA plant virus TEV (genus Potyvirus,
family Potyviridae). TEV has a single-stranded positive-sense RNA
genome of ca. 9.5 Kb that encodes for a single polyprotein that self-
processes into 10 mature peptides. An additional peptide is translated
from an overlapping ORF after þ 2 frameshifting. To this end, we
generated a collection of 53 double mutants by randomly combining
20 individual mutations whose deleterious fitness effect had been
previously quantified (Carrasco et al., 2007b). The fitness of all single
and double mutants was evaluated in the primary host Nicotiana
tabacum. We characterized the statistical properties of the distribution
of epistatic interactions and found a mixture of positive and negative
effects (including some examples of synthetic lethals (SLs)). Next, we
found that RSE was the most common type of epistasis. We also
explored the negative association between the average fitness effect of
deleterious mutations and the strength of the epistastic interaction in
which they were involved. Finally, we tried to frame the observed
epistatic effects within a model of the protein–protein interaction
network (PPIN) formed by all 11 TEV proteins.

There are many novelties within our study. First, this is the first
description of extensive SE, particularly of the reciprocal type,
contributing to the architecture of fitness of an RNA virus. Second,
we contextualize epistasis in the network of interactions among viral
proteins. Third, it is the first report of epistasis for a eukaryotic virus
in its natural host rather than in in vitro cell cultures, which represent
an artificial and oversimplified environment. Last, but not least, this is
the first analysis of multidimensional epistasis for any plant pathogen.

MATERIALS AND METHODS

Virus genotypes
A subset of 20 mutants non-lethal in N. tabacum (Supplementary
Table 1) was randomly chosen from a larger collection generated in a

previous study (Carrasco et al., 2007b). Six were synonymous
mutations, whereas the rest were nonsynonymous. Plasmid pMTEV
(Bedoya and Daròs, 2010) was used to reconstitute the wild-type TEV
and to generate the mutant genotypes. These 20 mutations were
randomly combined to generate a set of 53 double mutants
(Supplementary Table 2) by site-directed mutagenesis using the
QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene, Santa
Clara, CA, USA) as described by Carrasco et al. (2007a). The kit
incorporates PfuUltra high fidelity DNA polymerase that minimizes
the introduction of undesired mutations. The uniqueness of each
mutation was confirmed by sequencing an 800-bp fragment encom-
passing the mutated nucleotide.

Infectious RNA of each genotype was obtained by in vitro
transcription after BglII linearization of the corresponding plasmid
as described in Carrasco et al. (2007a).

Inoculation experiments
All N. tabacum plants were inoculated at an identical growth stage to
minimize variations in defense response to infection with develop-
mental stage. All inoculations were done in a single experimental
block. Nine plants per TEV genotype were inoculated by rubbing the
first true leaf with 5ml containing 5mg RNA in vitro transcript of the
virus and 10% Carborundum (100 mg ml�1).

Ten days post-inoculation, the whole infected plant, except the
inoculated leaf, was collected. The collected tissue was frozen in liquid
nitrogen and grounded with mortar and pestle.

RNA purification and virus quantification
An aliquot of approximately 100 mg of grounded tissue was taken and
mixed with 200ml of extraction buffer (0.2 M Tris, 0.2 M NaCl, 50 mM

EDTA, 2% SDS; pH 8). An equal volume of phenol:chloroform:
isoamylic alcohol (25:25:1) was added, thoroughly vortexed and
centrifuged at 14 000 g for 5 min at 25 1C. Ca. 160ml of the upper
aqueous phase was mixed with 80ml of a solution containing 7.5 M

LiCl and 50 mM EDTA and incubated overnight on ice at 4 1C. The
precipitated RNA was centrifuged at 14000 g for 15 min at 4 1C,
washed once with 70% ice-cold ethanol, dried in a SpeedVac (Thermo
Fisher Scientific, Waltham, MA, USA) and resuspended in 30ml of
DEPC-treated ultrapure water. RNA concentration was measured
spectrophotometrically and the samples were diluted to a final
concentration of 50 ngml�1.

Within-plant virus accumulation was measured by absolute
RT�qPCR using an external standard (Pfaffl, 2004). Standard curves
were constructed using five serial dilutions of TEV RNA produced by
in vitro transcription and diluted in RNA obtained from the host plant.

RT�qPCR reactions were performed in 20ml volume using One
Step SYBR PrimeScript RT�PCR Kit II (TaKaRa, Bio Inc, Otsu,
Japan) following the instructions provided by the manufacturer. The
forward TEV�CP 50-TTGGTCTTGATGGCAACGTG and reverse
TEV�CP 50-TGTGCCGTTCAGTGTCTTCCT primers amplify a 71
nt fragment within the TEV CP cistron. CP was chosen because it is
located in the 30 end of TEV genome and hence would only quantify
complete genomes. Each RNA sample was quantified three times in
independent experiments. Amplifications were done using the ABI
PRISM Sequence Analyzer 7000 (Applied Biosystems, Carlsbad, CA,
USA). The thermal profile was: RT phase consisted of 5 min at 42 1C
followed by 10 s at 95 1C; and PCR phase of 40 cycles of 5 s at
95 1C and 31 s at 60 1C. Quantification results were examined using
SDS7000 software v. 1.2.3 (Applied Biosystems).

For each genotype, a Malthusian growth rate per day was
computed as m¼ (1/t)log(Qt), where Qt are the pg of TEV RNA
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per 100 ng of total plant RNA quantified at t¼ 10 days post-
inoculation. Absolute fitness was then defined as W¼em (Crow and
Kimura, 1970).

Estimation of epistasis among pairs of mutations
Epistasis among pair of mutations x and y, Exy, was calculated as
Exy¼W00Wxy�Wx0W0y (Kouyos et al., 2007), where W00, Wxy, Wx0,
and W0y correspond to the absolute fitness of the wild-type, the
double mutant and each single mutant, respectively. A value of Exy40
corresponds to the case of positive (antagonistic) epistasis, whereas a
value of Exyo0 is indicative of negative (synergistic) epistasis. Values
of Exy not significantly deviating from zero were qualified as multi-
plicative (that is, non-epistatic) mutational effects.

In all cases, reported error intervals correspond to ±1 s.e.m. All
statistical analyses were performed using IBM SPSS v. 19 (Armonk,
NY, USA).

RESULTS

Epistasis among pairs of deleterious mutations
Figure 1 shows the relationship between observed and expected fitness
values for the set of 53 double mutant genotypes synthetized for this
study (Supplementary Table 2). The solid line represents the null
hypothesis of non-epistatic fitness effects. The observed fitness values of
20 double mutant genotypes significantly departed from this null
expectation (Supplementary Table 2; t-tests, in all cases Pp0.049).
Nine of these cases were SLs, which means that two mutations that
were viable by themselves become lethal when combined. These SLs
represent an extreme case of negative epistasis. All other significant
cases corresponded to positive epistasis. Therefore, we found variability
in the sign and strength of epistasis. However, only the nine SLs
remained significant after applying the more stringent sequential
Bonferroni correction for multiple tests of the same hypothesis (Rice,
1989). Nonetheless, for all analyses presented below, we used all 20
significant cases, unless otherwise indicated. This decision represents a
compromise between reducing the data set to only the nine SLs (which
precludes running any additional analysis) and using the whole data set
irrespective of the significance of observed fitness values.

Three double mutants contained two synonymous mutations, 22
combined one synonymous and one nonsynonymous mutation and

28 carried two nonsynonymous mutations. No differences existed,
however, in the magnitude of epistasis among these genotypic classes
(Kruskal–Wallis test: w2¼ 0.405, 2 df, P¼ 0.817).

Using the whole data set, we sought to test whether the distribution
of SL and viable mutations were homogeneous among pairs of
mutations within the same cistron or among affecting different
cistrons. In two out of nine SLs both mutations were at the same
cistron (22.2%), whereas in the case of viable double mutant
genotypes, only one genotype out of 44 had both mutations in
the same cistron (2.3%), a significant difference (w2¼ 5.569, 1 df,
P¼ 0.018) despite the small sample size. Furthermore, the average
epistasis coefficient computed for mutations within the same cistron
was �1.142±0.617, whereas it was reduced to �0.171±0.090 for
pairs of mutations affecting different cistrons. This 85.1% relaxation
in the strength of epistasis was also significant (t51¼ 2.477, P¼ 0.017).
Therefore, we can conclude that a tendency exists for mutations
affecting the same cistron to generate a SL phenotype and to interact
in a stronger and more negative manner, whereas mutations affecting
different viral proteins presented weaker interactions.

Statistical properties of the epistasis distribution
Figure 2 illustrates the distribution of epistasis parameters for all pairs
of point mutations analyzed. The distribution had a bimodal shape,
with SLs representing the left probability mass and the viable
genotypes being on the right side of the distribution. The average
epistasis was �E¼ � 0:226 � 0:095, a value that departs from the null
hypothesis of multiplicative effects (t52¼ 2.376, P¼ 0.021). Further-
more, the distribution had a significant negative skewness
(g1¼ �1.806±0.327; t52¼ 5.515, Po0.001), that is, the tail contain-
ing negative epistasis is heavier than the Gaussian and thus asym-
metric. Similarly, the distribution was significantly leptokurtic
(g2¼ 1.326±0.644, t52¼ 2.058, P¼ 0.045), indicating that it had a
more acute peak around the mean value compared with the Gaussian.

Given that lethal mutations are largely irrelevant for evolutionary
dynamics, we sought to reanalyze the epistasis distribution
after removing SLs. The main consequence of this removal was
that the average epistasis then becomes significantly positive
(�E¼ 0:084 � 0:005; t43¼ 17.438, Po0.001). Regarding the shape of
the distribution, it still remained asymmetric with significant negative

Figure 1 Relationship between observed and expected multiplicative fitness

for 53 TEV genotypes carrying pairs of nucleotide substitutions. The solid

line represents the null hypothesis of multiplicative fitness effects.

Deviations from this line arise as a consequence of the existence of

epistatic fitness effects.

Figure 2 Distribution of epistasis. Epistasis, E, was computed as the

difference between the observed fitness of the double mutant (W00Wxy) and

the value expected from subtracting the effects of each single mutant from

the wild-type value (Wx0W0y).
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skewness (g1¼ �1.050±0.358; t43¼ 2.936, P¼ 0.005), although the
skewness parameter was 41.9% smaller than when SLs were included
in the data set. In contrast, the distribution became 77.1% more
leptokurtic (g2¼ 2.348±0.702, t43¼ 3.346, P¼ 0.002), as a conse-
quence of the removing the cases from the left tail extreme.

Pervasive RSE
We were interested in evaluating the extent to which SE was present in
our data set. Poelwijk et al. (2011) defined mathematically the
condition for SE as

jWx0�W00þWxy �W0y jojWx0�W00jþjWxy �W0yj

Twelve out of the twenty TEV double-mutant genotypes for which we
had detected significant epistasis (Supplementary Table 2) fulfilled
this condition and thus can be classified as cases of SE. The other
eight, hence, correspond to cases of ME. Is this 3:2 proportion
expected given the observed fitness values of individual mutations
and of the double mutants? To tackle this question we applied the
above inequality to the 33 non-epistatic pairs of mutations, founding
that 26 fulfilled it, despite not being significant. A Fisher’s exact test
failed to detect significant differences among epistatic and non-
epistatic pairs fulfilling the inequality (1-tailed P¼ 0.124), thus
confirming that the observed proportion of ME and of SE was not
significantly enriched in the later class. Therefore, we conclude that SE
makes a major contribution (60%) to all cases of significant epistasis.

Next, we specifically evaluated the contribution of RSE to the
observed pattern of SE. According to Poelwijk et al. (2011) the
following additional condition must be met by a pair of mutations
showing SE in order to be considered as cases of RSE:

jW0y �W00þWxy �Wx0 jojW0y �W00jþ jWxy �Wx0j :

Herewith, this condition was fulfilled by 11 out of 12 cases of SE
(91.7%). Indeed, only synthetic lethal PC6/PC76 did not match it. As
before, given the fitness of single and double mutants, we tested
whether this extremely high prevalence of RSE among cases of SE is to
be expected. We counted the number of cases that fulfilled this second
inequality (25) among the 26 non-epistatic cases that matched the
first one. A Fisher’s exact test also showed no significant enrichment
in cases of RSE among cases of SE (1-tailed P¼ 0.538). Therefore, we
conclude that RSE is common in TEV genome.

Correlation between fitness effects and epistasis
It has been observed that average deleterious mutational effects and
the strength of positive epistasis are not independent parameters but,
instead, are negatively correlated (Wilke and Adami, 2001 You and
Yin, 2002; Wilke et al., 2003; Bershtein et al., 2006; Sanjuán et al.,
2006; De la Iglesia and Elena, 2007). We sought to investigate if this
negative relationship holds for TEV. Figure 3 shows the relationship
between the mean fitness of the two mutations combined and the
estimated epistasis for all 53 double mutants. A first observation is
that two different and significant relationships exist in correspondence
to different phenotypic classes: one for the nine SLs (Spearman’s
rS¼ �1.000, 7 df, Po0.001) and another one for the viable genotypes
(rS¼ �0.416, 42 df, P¼ 0.005). However, overall a significant
negative correlation existed after controlling for the difference within
two phenotypic classes (partial r¼ �0.331, 50 df, P¼ 0.017). The
slope for the viable genotypes was significantly smaller than the slope
for the SLs (analysis of covariance test for the homogeneity of slopes
in Figure 3: F1,49¼ 9.212, P¼ 0.004), suggesting that the underlying
mechanisms for the observed relationships were different for each
phenotypic class. Indeed, the correlation observed for the SLs is trivial

because it is expected based on the definition of epistasis used here.
If the observed fitness of the double mutant is Wxy¼ 0, then
Exy ¼ �Wx0W0y ¼ � W

� 2, where W
�

is the geometric mean fitness
of mutations x and y. The validity of this explanation was confirmed
by the fact that linear regression throughout the origin of epistasis on
W
� 2 for the SLs data rendered the expected slope of �1.000±0.000.

These correlations suggest that mutational effects and epistasis are
not independent traits, but instead, they may evolve hand in hand.
Stronger mutational effects are associated with more positive inter-
actions, whereas milder effects are associated with more relaxed
positive interactions. Therefore, a reduction in the magnitude of
mutational effects translates into a relaxation of the positive epistasis.

Epistasis in the context of TEV PPIN
Mutations were grouped according to the mature protein they affect.
By doing so, we focused on the analyses of interaction among proteins
rather than among individual nucleotide residues. Rodrigo et al.
(2011) inferred the undirected PPIN shown in Figure 4 using a
compendium of physical interactions experimentally determined by
the yeast two-hybrid method. We were interested in correlating the
network properties with the characteristics of the distribution of
epistasis inferred in this study.

First, we sought to test whether the number of significant epistatic
and non-epistatic interactions was homogeneously distributed among
pairs of proteins directly linked in the PPIN graph or unlinked
(Figure 4). A Fisher’s exact test failed to reveal a significant association
(P¼ 0.151), thus rejecting the hypothesis that a direct interaction
between two proteins is a necessary condition to generate significant
epistasis.

Second, we explored whether the number of pairs of proteins
involved in positive and negative epistatic interactions was evenly
distributed among pairs directly connected in the PPIN and those that
are not (Figure 4). It has been argued for modularly organized PPINs
that mutations affecting independent modules would show a pattern
of positive epistasis, although PPINs organized as a single-functional
module would be more sensitive to the effect of mutations and show a
pattern of negative epistasis (Sanjuán and Elena, 2006; Sanjuán and
Nebot, 2008; Macı́a et al., 2012). In agreement to this expectation,

Figure 3 Association between average mutational effects and the magnitude

of epistasis. Two apparent relationships exist: one for pairs of mutations

generating viable genotypes (upper cloud) and a different one associated to

the SLs (lower cloud). The regression lines are included to illustrate the

difference in the underlying relationship between epistasis and average

mutational effects between both types of phenotypes.
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we found that nine out of fourteen (64.3%) positive interactions
between linked elements, whereas only two out of six (33.3%)
interactions between unlinked elements were positive. Thus, we
conclude that mutations affecting connected elements in the PPIN
tend to be involved in more positive epistatic interactions than those
affecting non-connected components.

Finally, we hypothesized that highly linked nodes would have a
stronger tendency to be epistatic, whereas less connected nodes will be
less so. To test this hypothesis, we first computed the tendency of a
protein to be involved in significant epistasis interactions (that is,

epistasiness) for each protein as the absolute value of the average
epistasis coefficient computed across all interactions in which this
protein was involved and using the whole data set. Absolute values
were used because we tested for the tendency for involvement in
significant interactions regardless of their sign. Then, we computed
the connectivity of each node as the number of links it has in
Figure 4. A non-parametric correlation coefficient failed to detect a
significant association between these two variables (rS¼ �0.221, 6 df,
P¼ 0.599). Therefore, we conclude that the tendency of a protein to
be involved in epistatic interactions is not a necessary consequence of
the amount of interactions itself.

DISCUSSION

In this study, the distribution of epistatic interactions on fitness for a
plant RNA virus has been evaluated by constructing genotypes
carrying pairs of single-nucleotide substitutions, each having a
deleterious fitness effect. We detected cases of both positive and
negative epistasis, although positive epistases were significantly more
abundant than negative ones, such that the combined effect of
mutations is significantly less harmful than expected under the null
multiplicative model. This dominance of positive epistasis is particu-
larly frequent among mutations affecting two different proteins,
whereas, on average, mutations affecting the same protein interact
in a negative manner. These findings are in good agreement with
observations accumulated in recent years for other RNA viruses,
including retroviruses, and small ssDNA viruses (reviewed by Elena
et al., 2010), both using experimental approaches to characterize uni-
and multi-dimensional epistasis. Given this heterogeneity in viral
systems, it thus seems highly likely that positive epistasis among
deleterious mutations is a general feature of most small viruses. What
may be the mechanistic reason for this excess of positive epistasis?
Several reasons can be brought forward. First, the compactness of
viral genomes, many of which even had adopted the strategy of
overlapping genes and multifunctional proteins, necessarily implies
that the deleterious effects of different mutations can partially overlap,
hence producing positive epistasis. Indeed, this expectation is well
fulfilled by our finding that interactions are, on average, more positive
when mutations occur in two different proteins than when they both
occur in the same one. Second, positive epistasis can also be a
consequence of the existence of elements of RNA secondary structure.
Indeed, it was shown by computer simulations of RNA folding that
mutations affecting the same structural element may restore it and
thus generate positive epistasis (Wilke et al., 2003 Sanjuán et al.,
2006). Another observation that seems to be common among
experiments of multi-dimensional epistasis in RNA viruses is the
existence of frequent cases of synthetic lethality, for example, for the
mammalian rhabdovirus VSV (Sanjuán et al., 2004).

The dominance of positive epistasis among deleterious mutations
and the existence of frequent cases of synthetic lethality are both
fingerprints of another phenomenon: the low genetic robustness of
viral genomes. It has been postulated that epistasis and robustness are
two sides of the same coin and that negative epistasis must be a
hallmark for genetic robustness (De Visser et al., 2003, 2011; Proulx
and Phillips, 2005; Desai et al., 2007). Indeed, the observed negative
correlation between epistasis and mutational effects shown in Figure 3
provides additional support for this hypothesis and is consistent with
observations made in systems as diverse as artificial life (Wilke and
Adami, 2001; Edlund and Adami, 2004), computer simulations of
genetic systems (You and Yin, 2002; Macı́a et al., 2012), RNA (Wilke
et al., 2003; Sanjuán et al., 2006) and protein folding (Bershtein et al.,
2006), and in a mutation–accumulation experiment done with TEV

NIa
Pro

6K1

P3

VPg

6K2

HC
Pro

NIb

CP

PIPO

CI

P1

Figure 4 TEV PPIN inferred from yeast two-hybrid data published

elsewhere. The 11 mature peptides are indicated as nodes. Black edges
correspond to interactions for which we did not detect significant epistasis.

Red edges correspond to cases of negative epistasis and green edges

correspond to cases of positive epistasis. Double green lines correspond to

two pairs of mutations affecting the same proteins. The dashed blue line

corresponds to a case in which a first pair of mutations showed positive

epistasis (PC19/PC95) but a second pair had negative epistasis (PC22/

PC95). The PPIN was drawn using Cytoscape (Killcoyne et al., 2009).
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(De la Iglesia and Elena, 2007). The negative correlation between
epistasis and mutational effects means that the milder the
average mutational effect is, the more negative the epistatic interac-
tions between mutations will be. This results in a genotype
that is more mutationally robust against genetic perturbations. In
contrast, positive epistasis reflects strong mutational effects
and, therefore, low genetic robustness. Sanjuán and Elena (2006)
postulated that robustness would scale up with genetic complexity
and that it may result from the fact that more complex genetic
systems may contain more redundant structures capable of buffering
the effect of mutations. Very recently, Macı́a et al. (2012) tested this
hypothesis by simulating the evolution of genetic circuits under
variable selection for robustness. They found that, as predicted,
negative epistasis was caused by the existence of genetic redundancy
in complex networks and not due to complexity itself, as
the correlation disappeared when the formation of redundant
structures was not allowed during the evolution of complex networks.
In this sense, RNA viruses will occupy the lower side of the
complexity spectrum and, therefore, would be highly sensitive (that
is, non-robust) to mutations.

Within cases of significant epistatic interactions, we found a large
contribution of SE relative to the contribution of ME. This represents
the first description of SE for an RNA virus, as previous studies of
multi-dimensional epistasis in RNA viruses did not explicitly look for
SE (for example, Bonhoeffer et al., 2004; Sanjuán et al., 2004; Sanjuán,
2006; Van Opijnen et al., 2006) or simply failed to find them
(Betancourt, 2010). In contrast, SE has been shown to be common
during adaptation of b-lactamase to cefotaxime (Weinreich et al.,
2006; Salverda et al., 2011), in evolution experiments compensating
for the cost of antibiotic resistance in bacteria (Schrag et al., 1997;
Maisnier-Patin et al., 2002) and viruses (Molla et al., 1996; Cong et al.,
2007; Martı́nez-Picado and Martı́nez, 2009), in experimental evolu-
tion of asexual Saccharomyces cerevisiae (Kvitek and Sherlock, 2011),
and in multi-dimensional tests of epistasis in Aspergillus niger (Franke
et al., 2011). All but one cases of SE detected in TEV corresponded to
RSE, perhaps making this observation even more interesting. This
type of epistasis is particularly relevant from the perspective of
describing fitness landscapes. Poelwijk et al. (2011) have shown that
the existence of multiple adaptive peaks in a fitness landscape, that is,
ruggedness, requires RSE. Furthermore, Kwitek and Sherlock (2011)
experimentally confirmed that RSE caused the ruggedness of a fitness
landscape. The ruggedness of adaptive landscapes is critical to predict
whether evolving populations may reach the global optima or may get
stuck into suboptimal peaks (Weinreich, 2005; Withlock et al., 1995).
Our finding of a predominance of RSE suggests that the fitness
landscape for TEV, and maybe for other RNA viruses, must be highly
rugged.

In conclusion, the results reported here, together with previous
findings, contribute to the perspective that viral genomes are
dominated by positive epistasis, which may result from their
compactness and lack of genetic redundancy. In addition, we provide
the first direct proof that SE, in particular RSE, contributes in a large
extent to the architecture of viral fitness. The high frequency of RSE
suggests that adaptive landscapes for RNA viruses maybe highly
rugged. This ruggedness may impose harsh constraints on the
often-invoked but not empirically grounded limitless adaptability
of RNA viruses.
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Supplementary Table 1.  TEV single mutant genotypes used in this study and some of their properties. 

Genotype Protein Location 

Nucleotide 

substitution 

Amino acid 

change 

Polarity 

change Fitness (1 SEM)

DQ986288, wild-type isolate 1.34610.0118

PC2 P1 158 UG FC apolarpolar 1.33100.0101

PC6 P1 375 AG LM  1.34770.0100

PC7 P1 475 AC KQ basicpolar 1.31980.0088

PC12 P1 872 AC ML  1.33710.0084

PC19 HC-Pro 1503 AG synonymous  1.33080.0049

PC22 HC-Pro 1655 AG NS  1.27950.0081

PC26 HC-Pro 2119 AU synonymous  1.25860.0115

PC40 P3 3238 TC synonymous  1.32910.0150

PC41 P3 3406 CA QK polarbasic 1.31000.0077

PC44 P3 3468 UG synonymous  1.32370.0099

PC49 CI 4418 GC ST  1.31640.0065

PC60 CI 5349 UC synonymous  1.32000.0108

PC63 6K2 5582 AG KR  1.32050.0092

PC67 NIa-VPg 6012 UG IM  1.33270.0093

PC69 NIa-VPg 6044 CA TN  1.31560.0092

PC70 NIa-VPg 6197 UG MR apolarbasic 1.32680.0084

PC72 NIa-VPg 6251 UC FS apolarpolar 1.33590.0072

PC76 NIa-Pro 6519 UC synonymous  1.33920.0059

PC83 NIb 7315 AG IV  1.33710.0099

PC95 NIb 8501 AC EA acidpolar 1.33060.0051



 
Supplementary Table 2.  TEV double mutant genotypes synthesized for 

this study and some of their properties.  Epistasis values marked with an 

asterisk were significant (t-test, P  0.0491 in all cases). 

Mutation 1 Mutation 2 Fitness (1 SEM) Epistasis (1 SEM) 

PC2 PC69 1.34450.0089 0.05870.0533 

PC6 PC7 1.38890.0035 0.09080.0461 

PC6 PC19 1.38420.0047 0.06940.0424 

PC6 PC49 1.38130.0065 0.08510.0468 

PC6 PC63 1.37640.0063 0.07300.0485 

PC6 PC69 1.39040.0022 0.09850.0448 

PC6 PC76 0 1.71360.0183* 

PC7 PC19 1.38020.0040 0.10140.0399* 

PC7 PC63 1.38430.0026 0.12050.0420* 

PC7 PC69 1.38060.0033 0.11410.0418* 

PC12 PC19 1.37400.0055 0.06990.0413 

PC12 PC83 1.36980.0056 0.05620.0481 

PC12 PC95 1.35530.0039 0.04510.0392 

PC19 PC40 1.38170.0033 0.09090.0471 

PC19 PC41 1.37810.0029 0.11170.0369* 

PC19 PC69 1.38560.0051 0.12190.0444* 

PC19 PC70 1.38100.0032 0.09300.0383 

PC19 PC83 1.38360.0010 0.08280.0372 

PC19 PC95 1.37860.0000 0.08500.0294* 

PC22 PC63 0 1.75330.0245* 

PC22 PC69 1.22880.0306 0.01790.0635 

PC22 PC72 1.28310.0210 0.02930.0780 

PC22 PC76 0 1.77910.0198* 

PC22 PC95 0 1.80500.0212* 

PC26 PC63 1.33100.0052 0.12960.0478* 

PC26 PC69 1.31220.0003 0.11030.0426 

PC26 PC76 0 1.68960.0208* 



PC40 PC63 0 1.68570.0228* 

PC40 PC69 1.35380.0051 0.07370.0548 

PC40 PC83 1.40270.0000 0.08140.0436 

PC41 PC49 1.38750.0040 0.14320.0404* 

PC41 PC83 1.38110.0054 0.10770.0469 

PC44 PC49 1.38350.0064 0.11990.0453* 

PC44 PC63 1.34540.0094 0.06320.0509 

PC44 PC69 1.34970.0084 0.07550.0510 

PC44 PC76 1.37620.0114 0.08210.0528 

PC49 PC67 1.38400.0051 0.10850.0441* 

PC49 PC70 1.38510.0035 0.11770.0406* 

PC49 PC83 1.36820.0044 0.11110.0496 

PC49 PC95 1.35470.0072 0.07200.0409 

PC60 PC83 1.35340.0238 0.05680.0754 

PC60 PC95 1.33920.0149 0.04650.0567 

PC63 PC69 1.36030.0215 0.09380.0676 

PC63 PC70 1.38140.0057 0.10730.0456 

PC63 PC95 1.35770.0058 0.07040.0411 

PC67 PC69 0 1.75510.0303* 

PC67 PC76 1.35640.0095 0.04080.0490 

PC69 PC76 0 1.70240.0172* 

PC69 PC95 1.38860.0087 0.10010.0466 

PC70 PC83 1.38870.0039 0.09520.0459 

PC72 PC83 1.38810.0101 0.07980.0514 

PC76 PC95 1.35220.0227 0.03810.0609 

PC83 PC95 0 1.76200.0200* 
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How, and to what extent, does the environment
influence the way mutations interact? Do
environmental changes affect both the sign and
the magnitude of epistasis? Are there any corre-
lations between environments in the variability,
sign or magnitude of epistasis? Very few studies
have tackled these questions. Here, we addressed
them in the context of viral emergence. Most
emerging viruses are RNA viruses with small
genomes, overlapping reading frames and multi-
functional proteins for which epistasis is
abundant. Understanding the effect of host
species in the sign and magnitude of epistasis
will provide insights into the evolutionary ecology
of infectious diseases and the predictability of
viral emergence.
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epistasis; genotype-by-environment; virus evolution

1. INTRODUCTION
The large majority of emerging viruses are RNA viruses
[1]. However, their compact genomes comprising over-
lapping reading frames and multifunctional proteins
and their high mutation rates may impose severe adap-
tive constraints [2]. Understanding the mechanistic
basis of these constraints is central to explaining why
some RNA viruses are more able than others to cross
species boundaries. Epistasis is thought to be important
in the evolution of host range [3,4]. Moreover, it has
been suggested that the sign of epistasis depends on
environmental severity, switching from positive to nega-
tive as environments become stressful [5]. Yet, few
studies have empirically examined this possibility.

To evaluate the effect that different hosts exert on the
distribution of epistatic interactions, we tested the fit-
ness of Tobacco etch virus (TEV) genotypes carrying
two single-nucleotide substitutions, whose independent
effects were previously evaluated [6], across susceptible
hosts of increasing genetic divergence from the primary
host. TEV naturally infects Solanaceae plants, and the
strain used here was isolated from Nicotiana tabacum
[7]. Previously, we have shown that the deleterious
effects of mutations were stronger as the host (i.e. the
virus’s environment, E ) was more genetically diverged
from tobacco, and the proportion of lethal, deleterious,
Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsbl.2012.0396 or via http://rsbl.royalsocietypublishing.org.
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neutral and beneficial mutations was also altered [6].
We also found that this host dependence (i.e. plasticity
or G � E) had two origins: antagonistic pleiotropy and
changes in genetic variance for fitness across hosts [6].
Furthermore, we recently found that the fitness effect
of a given mutation depended on the genetic back-
ground where it was evaluated (i.e. epistasis or G �
G) [8]. Variation was observed both in the sign and
the strength of epistasis, being negative on average and
with abundant cases of reciprocal sign epistasis [8]. If
G � E and G � G play major roles in determining
TEV fitness, it is logical to expect that epistasis may
also vary depending on environmental severity [9], that
is, a G � G � E component may exist. Quantifying the
extent to which G � G � E determines viral fitness is
central to predicting the fate of viral genotypes across
hosts and, ultimately, the likelihood that viruses will
cross host species barriers. Epistatic interactions allow-
ing RNA viruses to infect new hosts have been widely
observed. For example, interactions between five
amino acids in the coat protein of Pelargonium flower
break virus are necessary for improving fitness in the
new host Chenopodium quinoa [10]. Similarly, the ability
of Potato virus Y to infect resistant pepper plants depends
both on the alleles at the VPg and at the CI genes [11].
2. MATERIAL AND METHODS
(a) Virus genotypes

The 10 double mutants ([8]; electronic supplementary material,
table S2) were generated by randomly combining pairs of 12 single
mutations ([12]; electronic supplementary material, table S1). The
particular 10 double mutants generated were randomly chosen.
Mutant genotypes were generated by site-directed mutagenesis of
plasmid pMTEV [7] using QuikChange II XL Site-Directed Muta-
genesis Kit (Stratagene). Infectious RNAs were obtained by in vitro
transcription of the corresponding plasmids [13].

(b) Host species and inoculation experiments

Nicotiana tabacum and Datura stramonium are Solanaceae. Helianthus
annuus is an Asteraceae. Solanaceae and Asteraceae are Asterids [14].
Spinacea oleracea is an Amaranthaceae. All families are eudicots [14].

All plants were inoculated in a single block and at similar devel-
opmental stages. Nine plants per host per virus genotype were rub-
inoculated at the first true leaf with 5 mg of RNA of each genotype
and 10 per cent carborundum. Solanaceae hosts show symptoms
when infected; non-Solanaceae hosts do not, and infections were
confirmed by RT-PCR [15]. Ten days post-inoculation (dpi), the
whole infected plant, except the inoculated leaf, was collected.
Tissue was frozen in liquid nitrogen and ground.

(c) RNA purification, virus fitness and epistasis estimation

Viral RNA was purified as described elsewhere [6]. Total plant RNA
concentration was measured spectrophotometrically and the samples
were diluted to a final concentration of 50 ng ml21. Within-plant
virus accumulation was measured by absolute RT-qPCR [6].

For each genotype, a Malthusian growth rate per day was computed
as m ¼ 1/t logQt, where Qt is the number of pg of TEV RNA per 100 ng
of total plant RNA quantified at t ¼ 10 dpi. Absolute fitness was
defined as W ¼ em (electronic supplementary material, table S1).

Epistasis between mutations x and y was calculated as 1xy ¼
W00Wxy 2 Wx0W0y, where W00, Wxy, Wx0, W0y stand for the fitness
of wild-type, double and single mutants, respectively (electronic
supplementary material, table S2). Qualitatively identical results
are obtained using the scaled epistasis [16].
3. RESULTS
First, we sought to determine whether the number of
epistatic pairs was affected by the host species.
Table 1 shows the pairs of mutations evaluated on
each host classified as: (i) independent effects 1xy ¼

0, (ii) positive epistasis, and (iii) negative interactions
(for each host, one-sample t-tests controlling for
This journal is q 2012 The Royal Society
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Table 1. Epistasis of double mutants in each host. Average epistasis was computed after excluding lethal combinations. Sign
epistasis refers to cases in which the sign of the fitness effect depends on the genetic background. Reciprocal (recip.) sign
epistasis means that the sign of the fitness effect of a mutation is conditional upon the state of another locus and vice versa. Last
row shows the significance test for the average epistasis. Red numbers indicate significant changes in epistasis from the primary
host (N. tabacum) to alternative ones (paired t-tests corrected for multiple comparisons; figure 1). Errors represent +1 s.e.m.

genotype N. tabacum D. stramonium H. annuus S. oleracea average epistasis

PC6/PC63 0.0730 1.5520a 20.0725 20.0828 0.3674+0.3965
PC6/PC76 21.8050a (sign) 20.6233 (sign) 20.1178 20.0055 20.6379+0.4116
PC19/PC41 0.1117a (recip. sign) 0 20.0245 20.0263 0.0152+0.0327
PC22/PC69 20.0293 21.7129a 20.2147 20.2106 20.5419+0.3927

PC22/PC72 0.0179 20.3213a 20.2172 20.1414 20.1633+0.0698
PC22/PC95 21.7024a 20.4537 20.1855 20.1474 20.6222+0.3665
PC40/PC83 0.1111 20.2108 20.0829 20.0535 20.0590+0.0662
PC67/PC76 0.0408 20.5341a (sign) 21.0253a (recip. sign) 0.1158 20.3507+0.2677
PC69/PC76 21.7620a 20.5057a (sign) 20.1112 0.0221 20.5892+0.4067

PC76/PC95 0.0381 20.5955a 0.0127 0.0496 20.1238+0.1574

average
epistasis

0.0519+0.0193 20.2834+0.3187 20.2185+0.1043 20.0480+0.0316

t-test (9 d.f.) 0.0358 0.4034 0.0695 0.1630

aEpistasis significantly departs from zero within the host.
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multiple comparisons). The distribution of counts for
these three categories differs among hosts (x2¼

14.157, 6 d.f., p ¼ 0.028), with the difference being
driven by an excess of non-epistatic cases in the non-
Solanaceae (table 1). The difference is further
enhanced if counts are pooled together for Solanaceae
and non-Solanaceae (Fisher’s exact tests, p ¼ 0.003).
However, this classification into multiplicative versus
epistatic pairs has to be taken with caution since a
weak yet significant negative correlation exists between
the absolute value of 1xy and its error (see electronic
supplementary material, table S2; partial correlation
coefficient controlling for host: r ¼ 20.282, 37 d.f.,
1-tailed p ¼ 0.041), suggesting that the smaller the
1xy, the larger its uncertainty, resulting in less power
to reject the null hypothesis of independent effects.

The above classification is just one of several pos-
sible. An alternative classification distinguishes
between magnitude and sign epistasis. For magnitude
epistasis, the fitness value associated with a mutation,
but not its sign, changes upon the genetic background
[17]. For sign epistasis, the sign of the fitness effect
itself is under epistatic control [17]. Table 1 indicates
which pairs match these categories. For pairs involved
in significant sign epistasis, those of reciprocal type
(i.e. the sign of the fitness effects change for both
mutations) are also indicated. A significant difference
among hosts holds if mutations are sorted according
to this classification (x2 ¼ 14.927, 6 d.f., p ¼ 0.021;
Solanaceae versus non-Solanaceae: Fisher’s exact test,
p ¼ 0.004). With this classification scheme, the excess
of independent fitness effects for non-Solanaceae also
drives the difference among hosts. From these analyses,
we can conclude that the host species has an effect on
the number of epistatic interactions in TEV, with the
number of independent fitness effects being significantly
larger in hosts distantly related to the primary host.

Next, we identified the effect of hosts on epistasis
for each pair of mutations. Figure 1 shows the
change in 1xy from N. tabacum to alternative hosts.
A horizontal line means that epistasis among a pair
Biol. Lett.
of mutations is host-independent. Lines with positive
or negative slopes indicate host-dependent epistasis.
In D. stramonium (figure 1a), epistasis became more
negative in one case, less negative in three, more posi-
tive in one and less positive in four instances. In
H. annuus (figure 1b), one case was significantly
more negative than in tobacco and the less negative
cases were the same as in D. stramonium. Finally, for
S. oleracea, significant changes were detected only for
the same three pervasive genotypes (table 1). Interest-
ingly, pairs PC6/PC76, PC22/PC95 and PC69/
PC76, each of which carries viable mutations when
tested individually in N. tabacum, are not viable in
this host when combined. This synthetic lethality (SL)
is an extreme case of negative epistasis. However, these
three genotypes are viable in the alternative hosts. By
contrast, genotypes PC22/PC69 and PC67/PC76 rep-
resent cases of SL only in D. stramonium and H. annuus,
respectively. These observations indicate that SL is
also host-dependent. In all these cases, mutations
affect different proteins (see electronic supplementary
material, table S1). PC19, affecting HC-Pro, was pre-
viously described as lethal in D. stramonium [6], and
the same lethal phenotype was observed for PC19/
PC41. Conversely, PC63, affecting 6K2, also previously
described as lethal in this host [6], is compensated by
PC6 in protein P1, rendering a viable PC6/PC63.

When SLs are included, no host departed from the
expectation of independent effects (table 1, one-sample
t-tests; p� 0.052), although significant differences
among hosts exist (F3,177¼ 33.660, p , 0.001). Since
SLs are irrelevant in terms of evolutionary dynamics,
we re-evaluated average epistasis after removing them.
In this case, the average 1xy becomes significantly positive
in N. tabacum (p¼ 0.036) but remains non-significant in
the alternative hosts (p� 0.070). Therefore, we con-
clude that the intensity of epistasis decreases as the
genetic divergence between the primary host and alterna-
tive hosts increases. However, this trend may be a
spurious consequence of our reduced statistical power
to detect small epistasis values.

http://rsbl.royalsocietypublishing.org/
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Figure 1. Changes in epistasis from the primary host to alternative hosts ((a) D. stramonium, (b) H. annuus and (c) S. oleracea).
Significant differences are indicated in red (paired t-tests corrected for multiple comparisons).
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The last column of table 1 shows epistasis for each
double mutant averaged across hosts. A significant
overall genotype effect exists (F9,177 ¼ 168.593, p ,

0.001), with epistasis ranging from negative to weakly
positive. A significant genotype-by-host effect has
been detected (F27,177 ¼ 1.55 � 105, p , 0.001), pro-
viding support for the importance of G � G � E in
the architecture of viral fitness.

This ANOVA treated epistasis values as independent
observations. However, this raises two statistical con-
cerns: (i) the same mutations are involved in multiple
pairs and (ii) the fitness of the wild-type on a host
(W00) has been used to compute 1xy for each genotype
in this host. We circumvented these problems as follows:
(i) the effect of using the same mutation on different
combinations was removed by running the analyses
for each genotype independently and making inferences
valid only for each individual genotype and (ii) the
non-independence introduced by re-using W00 was mini-
mized using a bootstrap approach. The results from
these extra analyses (see electronic supplementary
material, table S3) confirm the significant G � G� E.
4. DISCUSSION
Our experiments show that the fitness value of a given
mutation depends on the genotypic background wherein
Biol. Lett.
it appears and on the infected host. This observation has
implications for predicting the fate of viral genotypes
under different and variable environments and, conse-
quently, for the development of successful antiviral
strategies based on the use of attenuated vaccines. We
stress the importance of evaluating candidate attenuating
mutations in multiple genetic backgrounds and across
the widest possible panel of hosts, especially in close
relatives to the ones for which the vaccine is intended.
Otherwise, attenuating mutations may be easily compen-
sated by second-site changes that are viable, or even
beneficial, in alternative hosts.

Our results indicate that host effects on epistasis are
modulated by the degree of genetic divergence between
the primary and alternative hosts. It was previously
shown that point mutations had more deleterious effects
as the genetic divergence from the primary host increased
[6]. This observation agreed with the results of a simu-
lation study of phage T7 showing that mutations were
more severe in poor environments and milder in rich
ones [5]. Furthermore, mild mutations showed negative
epistasis in poor environments but weak positive epistasis
in rich ones, while severe mutations showed either no
epistasis or weak positive epistasis in poor environments
and positive epistasis in rich ones [5]. We have shown
here that epistasis was positive in the primary host
(after removing SLs) but switched to no epistasis in

http://rsbl.royalsocietypublishing.org/
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other hosts. Together, these observations suggest that
N. tabacum (and to a minor extent D. stramonium) rep-
resent rich environments for TEV, while the alternative
hosts represent more stressful environments. This
makes sense, considering that TEV has a coevolutionary
history with Solanaceae hosts and thus its interaction with
cellular resources and defenses is optimal. By contrast,
alternative hosts may not provide the necessary resources
at the right time, amount or location.
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by CSIC JAE-Pre program (J.L.).

1 Holmes, E. C. 2009 The evolutionary genetics of emer-
ging viruses. Annu. Rev. Ecol. Evol. Syst. 40, 353–372.
(doi:10.1146/annurev.ecolsys.110308.120248)

2 Holmes, E. C. 2003 Error threshold and the constraints
to RNA virus evolution. Trends Microbiol. 11, 543–546.

(doi:10.1016/j.tim.2003.10.006)
3 Holmes, E. C. & Rambaut, A. 2004 Viral evolution and

the emergence of SARS coronavirus. Phil. Trans. R. Soc.
Lond. B 359, 1059–1065. (doi:10.1098/rstb.2004.1478)

4 Pepin, K. M. & Wichman, H. A. 2007 Variable epistatic
effects between mutations at host recognition sites in
fX174 bacteriophage. Evolution 67, 1710–1724.
(doi:10.1111/j.1558-5646.2007.00143.x)

5 You, L. & Yin, J. 2002 Dependence of epistasis on envi-

ronment and mutation severity as revealed by in silico
mutagenesis of phage T7. Genetics 160, 1273–1281.

6 Lalić, J., Cuevas, J. M. & Elena, S. F. 2011 Effect of host
species on the distribution of mutational effects for an
RNA virus. PLoS Genet. 7, e1002378. (doi:10.1371/
journal.pgen.1002378)
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Table S3.  Bootstrap one-way ANOVAs for the effect of host species on epistasis.  Fitness values of  

single mutants Wx0 and W0y, of the wild-type W00 and of the double mutant Wxy are sampled from the 

experimental replicates to compute pseudo-values of xy.  The nu mber of such pseudo-valu es equals 

the actual experimental sample size for each host.   Then, a one-way  ANOVA testing for differences 

in epistasis among hosts was computed for this pseudo-sample and the associated significance level P 

was recorded.  This procedure was rep eated 10000 times to estimate the median P and to construct 

95% CI for P.  These confidence intervals represent a measur e of the statistical power associated to 

each test.  Using Fisher’ s combined probability test of the sam e hypothesis, we can su mmarize the 

results into a single test and conclude that an overall significant host effect on epistasis exists (2 = 

61.238, 20 d.f., P < 0.001). 

Genotype Lower P Median P Upper P 

PC6/PC76 2.2071012 1.299108 1.176104 

PC76/PC95 3.8781011 1.758107 1.251103 

PC22/PC95 1.3151010 7.428107 4.734103 

PC69/PC76 2.3631010 1.489106 3.472103 

PC19/PC41 8.496107 3.215104 0.0298 

PC22/PC72 5.632104 0.1443 0.9377 

PC6/PC63 0.1469 0.3629 0.7913 

PC40/PC83 0.0089 0.3949 0.9654 

PC67/PC76 0.0838 0.6611 0.9858 

PC22/PC69 0.3104 0.7512 0.9876 
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Empirical Fitness Landscape for the Adaptation of an RNA Virus to 
Arabidopsis thaliana 

 
Jasna Lalić1 and Santiago F. Elena1,2 

 
1Instituto de Biología Molecular y Celular de Planta (CSIC-UPV), València, Spain and 2The 

Santa Fe Institute, New Mexico, USA. 

 

RNA viruses are of considerable concern in evolution because their high mutation rates, great population sizes 

and short generation times allow them to rapidly explore fitness landscapes and consequently, emerge and 

adapt to new hosts.  Here we partially reconstructed the fitness landscape describing the adaptation of 

Tobacco etch potyvirus (TEV) to Arabidopsis thaliana.  The adapted virus differed from the wildtype in five 

single-nucleotide substitutions.  We reconstructed the majority of intermediate genotypes of adaptation and 

measured two fitness components: the infectivity and within host virus growth rate relative to the wildtype, the 

later being considered as an approximate to relative fitness.  We found prevailing epistatic effects between 

mutations in the first three steps of adaptation, while independent fitness effects became more common with 

the increase in the number of fixed mutations.  Epistatic interactions included both positive and negative 

deviations from the expected values.  Furthermore, we characterized the landscape topography approximated 

by the number of the plants infected by a particular virus genotype and found that more than a half of possible 

evolutionary paths were neutral and the landscape was single peaked.  The smoothness of TEV landscape in A. 

thaliana suggests that virus easily adapted to its new host.  This is an important result from the perspective of 

emerging viral diseases and in concordance to common observation that majority of emerging viruses are 

indeed RNA viruses. 

 

 

Evolutionary dynamics of adaptation is a complex 

process depending on the complexity of the 

organism, as well as on many genetic, developmental, 

ecological and environmental factors.  Sewall 

Wright's metaphor of the fitness landscape (Wright 

1932) pictures the process of adaptation as a surface 

in a multidimensional space that represents the 

relationship between mean fitness and the frequency 

of alleles within a population.  Epistasis determines 

the topography of adaptive landscapes (Wright 1932; 

Whitlock et al. 1995; Poelwijk et al. 2011) as well as 

the accessibility of adaptive pathways throughout the 

landscape, thus, is central to understanding the course 

of evolution (Weinreich, 2005; Welch & Waxman, 

2005; Franke et al. 2011).  In absence of epistasis or 

in the case of magnitude epistasis, mutations give rise 

to either zero, positive or a negative fitness effect, 

regardless of the genetic background.  This results in 

adaptive landscapes that are smooth and single 

peaked.  In a smooth fitness landscape the evolution 

will always proceed uphill towards the single global 

optimum.  In the case of sign epistasis, the sign of the 

fitness effect of a mutation depends on the genetic 

background, such that only a fraction of the total 

paths to the optimum are selectively accessible, i.e., 

contain only steps that confer a performance increase.  

Reciprocal sign epistasis, in which two mutations are 

individually deleterious but jointly advantageous, 

gives rise to rugged landscape with multiple local 

optima (i.e., peaks).  The ruggedness of adaptive 

landscapes is critical to predict whether the evolving 

populations may reach the global optima or, by 

contrast, trough alternative evolutionary pathways, 

may get stuck into suboptimal fitness peaks 

(Whitlock et al. 1995, Weinreich 2005, Poelwijk et 

al. 2011, Kvitek & Sherlock, 2011, Poelwijk et al. 

2007.) 
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To infer a fitness landscape empirically means to 

reconstruct all possible genotypic intermediates that 

led to adaptation to a new environment and measure 

their fitness.  Genotypes should bear all possible 

combinations of mutations fixed by the adapted 

genotype.  Till now, simple empirical fitness 

landscapes have been characterized for either a single 

gene or promotor in: bacteria (Weinreich et al. 2006; 

Lunzer et al. 2005; Poelwijk et al. 2007; Dawid et al. 

2010; Chou et al. 2011), protozoa (Lozovsky et al. 

2009), fungi (De Visser et al. 2009) and HIV-1 (Da 

Silva et al. 2010; Kouyos et al. 2012) being the only 

virus for which such landscape has been inferred.  

The majority of these studies are based on two 

genotypes: the ancestral and the one adapted to a 

given environment, differing mutually in a small set 

of known mutations.  The largest empirical fitness 

landscape derived so far was for an evolved genotype 

that bared five mutations, that is, 32 genotypes.  In all 

cases, the landscape is rugged and the number of 

accessible evolutionary pathways driving to the 

highest fitness peak is quite limited. 

Here, we aimed to construct the first empirical 

adaptive landscape for an emerging plant RNA virus.  

Our work is based on previous experimental 

evolution of host switching. Recently, Agudelo-

Romero et al. (2008) simulated the emergence of 

TEV in a population of a partially susceptible host, A. 

thaliana Ler-0.  A. thaliana belongs to family 

Brassicaceae, whereas TEV primary host species 

come from a completely distinct family: the 

Solanaceae.  Evolution of TEV on A. thaliana was 

done by serial passaging of the virus within several 

independent evolution lineages.  After 17 serial 

passages, the resulting evolved virus, hereafter named 

TEV-At17, showed ca. 10-fold higher infectivity, 2-

logs greater viral load, increased virulence and more 

severe symptoms in the new host compared to the 

ancestral virus (Agudelo-Romero et al. 2008).  

Transcriptomic analyses have shown that the evolved 

virus was able of evading host’s defense mechanisms 

by shutting down the expression of several defense 

pathways compared to its ancestor TEV.  During 

adaptation TEV-At17 fixed five mutations among 

which, two were synonymous (Table 1). Each of the 

mutations was in different virus cistrons (Table 1). 

In order to picture the accessible evolutionary 

pathway(s) for TEV-At17 in A. thaliana Ler-0, we 

constructed all experimentally possible intermediate 

genotypes of adaptation and quantifyied the fitness 

and the infectivity of each viral genotype in A 

thaliana Ler-0.  The set of genotypes consisted of all 

25 = 32 combinations of the five mutations fixed by 

TEV-At17 during its adaptation to the new host.  The 

parental class consisted of only one genotype: the 

wildtype TEV, following by a group of five simple 

mutants, ten both double and triple mutants, five 

quadruple mutants and one quintuple (Figure 1).  Our 

dataset consisted of 22 genotypes in total; missing 

four double mutants, three triple mutants and two 

quadruple mutants (Figure 1). 

Table 1. Mutations fixed in the evolved virus TEV-At17.  The adaptiveness of two synonymous single-nucleotide 
substitutions is inferred form codon usage database: http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=3702 and 
denoted in the last two columns on the right. 

      A. thaliana codon usage 
frequency (per 

thousand) 

Locus 
name 

Mutation Gene Amino acid change 
Wildtype 

codon 
Mutated 

codon 
Wildtype 

codon 
Mutated 

codon 

1 U357C P1 synonymous (119H) CAU CAC 13,8 8,7 

2 C3140U P3 A1047V GCG GUG   

3 C3629U 6K1 T1210M ACG AUG   

4 C6037U VPg L2013F CUU UUU   

5 C6906U NIa-Pro synonymous (2302F) UUC UUU 20,7 21,8 
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Figure 1.  Graphical representation of fitness 
landscape of size m = 5 for the evolution of TEV-
At17 in A. thaliana Ler-0.  The presence/absence of a 
given mutation is indicated by 1/0, respectively.  
Genotypes are ordered top-down; starting from the 
ancestral, wildtype virus; whereby each row 
represents each of five classes of genotypes; ending 
with the adapted TEV-At17 genotype.  Arrows show 
all possible mutation-fixation pathways.  The 
genotypes marked in bold are missing from our 
empirical dataset. 
 

With this experiment we sought to answer 

important questions about the adaptive landscape and 

its topography.  First, we aimed to characterize the 

prevalence of epistasis and characterize different 

types of epistasis that may be present in the 

architecture of fitness.  Next, we question whether the 

differences in fitness are large relative to differences 

between genotypes, so that many changes are needed 

to obtain a high-fitness peak?  In other words, how 

rugged is the landscape and how this topography 

influences the evolutionary potential of a virus 

population in the new host environment?  If small 

genetic differences are associated to large differences 

in fitness, the landscape would be rugged.  

Conversely, if small differences in fitness are 

associated with large differences between genotypes, 

the landscape would be smooth. 

 

MATERIALS AND METHODS 

Virus genotypes 

Virus genotypes were constructed by successive 

rounds of site-directed mutagenesis starting from 

template plasmid containing TEV genome: pMTEV 

(Bedoya & Daròs 2010) using mutagenic primers 

with specific single-nucleotide mismatch and 

Phusion® High-Fidelity DNA Polymerase 

(Finnzymes) following manufacturer’s manual.  PCR 

mutagenesis profile consisted of 30 s denaturation at 

98ºC, followed by 30 cycles of 10 s at 98ºC, 30 s at 

60ºC and 3 m at 72ºC, ending with 10 m elongation at 

72ºC.  Next, the PCR-mutagenesis products were 

incubated with DpnI (Fermentas) for 2h at 37ºC in 

order to digest the methylated DNA template.  

Escherichia coli DH5α electrocompetent cells were 

transformed with 2μl of these reactions products and 

plated on LB agar supplied with 100 μg/mL 

ampicillin.  Bacterial colonies were inoculated in 8 

mL LB liquid medium supplied with 100 μg/mL 

ampicillin and grown for 16 h in an orbital shaker 

(37°C, 225 rpm).  Plasmid preparations were done 

using Promega kit following user manual.  

Incorporation of mutation was confirmed by 

sequencing a ca. 800 bp fragment circumventing the 

mutagenized nucleotide.  The plasmid DNA was 

BglII linearized and in vitro transcribed using 

mMESSAGE mMACHINE® SP6 Kit (Ambion) as 

described in Carrasco et al. (2007) in order to obtain 

infectious RNA of each virus genotype. 

 

Plants inoculation experiments 

Since A. thaliana cannot be infected by viral RNA, 

but instead, with virions, we used N. tabacum for 

growing virus particles.  Batches of eight-week old N. 

tabacum plants were inoculated with 5 μg of RNA of 

each viral genotype by abrasion of the third true leaf.  

Ten days post-inoculation (dpi), the whole infected 

plants were collected and pooled for each virus 

genotype.  Next, plant tissue was frozen by liquid 

nitrogen, homogenized using mortar and pestle and 

aliquoted in 1.5 ml tubes.  Saps were prepared by 

adding 1 ml of 50 mM potassium phosphate buffer 

(pH 8.0) per gram of N2-frozen plant tissue.  Next, 

the homogenate was centrifugated at 4ºC and 10 000g 

for 10 min and the upper liquid phase with 10% 

carborundum served as sap inocula. 

A. thaliana Ler-0 plants plants were grown in a 

BSL-2 greenhouse at 25ºC and 16 h light period.  

Plants were inoculated at growth stage 3.5 regarding 

the scale of Boyes et al 2001.  Six plants per virus 

genotype per block were inoculated with extracts of 

virus genotypes.  The inoculations were done in three 

independent blocks.  Infection was determined by one 

step RT-PCR as described previously (Lalić et al. 

00000

0100010000 00100 00010 00001

11000 10100 10010 10001 01010 01001 00110 000110010101100

11100 11010 11001 10110 10011 01110 01101 001110101110101

1110111110 11011 10111 01111
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2010).  Infected whole plants were collected at 21 

dpi.  Total RNA was extracted and virus 

accumulation was quantified as described in (Lalić et 

al. 2010). 

 

Statistics 

First, we calculated Malthusian growth rate per day, 

for each genotype, according to the expression: 

݉ ൌ
ଵ

௧
 ଵ଴ܳ where Q is the number of pg of TEV݃݋݈

RNA per 100 ng of total plant RNA quantified at t = 

21 dpi (Lalić et al. 2011).  Then, the relative fitness 

of each genotype (or just fitness, W), used in all 

analyses, was calculated by dividing the absolute 

fitness of a genotype (em) (Crow & Kimura, 1970) by 

the mean absolute fitness of the wildtype TEV 

ሺ݁௠ഥ 	ೢ೟ሻ: ܹ ൌ	݁௠ି௠ഥೢ೟. 

Statistical tests were performed using SPSS 

version 20. 

 

Lethal genotypes 

Genotypes 11000, 10100, 10010, 10001, 11100, 

11010, 10101, 11101 and 11011 (Figure 1) were not 

viable in N. tabacum.  The following section 

describes our intents to obtain virions of these 

genotypes since their lethality in tobacco represents 

artificial holes in the fitness landscape because we 

know nothing about their viability in A. thaliana Ler-

0.  In first instance, we suspected that the apparent 

lethality might be due to infidelity of the RNA 

polymerase supplied with the kit used for in vitro 

transcription that might have incorporated some other 

mutation(s).  Thus, we repeated the in vitro 

transcription twice, independently, for each genotype.  

The phenotypic effect of all repeated genotypes’ 

transcripts on tobacco was as before: lethal. 

In second instance, we suspected that genotypes 

lethal in tobacco may not really be lethal, but instead, 

may have lost their ability to infect systemically 

tobacco plants.  Thus, we inoculated 12 A. thaliana 

plants of per virus genotype with sap prepared from 

tobacco leaf inoculated with these genotypes 

(necrotic lesions).  Herewith, it is important to notice 

that we did not observe visually the typical necrotic 

spots, but instead, we performed one-step RT-PCR 

detection for virus presence in the inoculated leaf 

using primers that specifically amplify 334 

nucleotides of a conserved region from the virus NIb 

gene as described (Lalić et al. 2010).  The infection 

result was negative: none of the plants were infected 

with either of the virus genotypes.  Herewith, false 

positives might have occurred due to the presence of 

in vitro transcript RNA that served as inoculum and 

not due to local infection of tobacco leaf. 

Thirdly, since we have previously shown the 

occurrence of antagonistic pleiotropy (Lalić et al. 

2011), we decided to test the viability of given 

genotypes on other hosts: N. benthamiana and D. 

stramonium.  Inoculation of batches of each plant 

species with 5 μg of RNA in vitro transcripts within 

two independent blocks resulted in all genotypes 

remaining lethal phenotype in both hosts that are 

most proximate to tobacco. 

 

RESULTS 

Epistasis 

Interaction among mutations or epistasis can be 

calculated using two different approaches: firstly, as a 

deviation from the expected fitness value of an n-

tuple mutant and secondly, as the dependence of the 

effect of a mutation on the genetic background.  The 

latter refers to the sum of squares for the interactions 

measuring the combined effects of levels of factors; 

in our case presence or absence of mutations on each 

of the five loci.  Both approaches tend to magnify the 

interaction sum of squares (Sokal & Rohlf 1995). 

As a first approach, the epistasis among the M set 

of mutations ( ெߝ ) was calculated as ߝெ ൌ ெܹ െ

∏ ௜ܹ௜∈ெ  (Da Silva et al. 2010), where WM is the 

fitness of the genotype comprising the whole set of 

mutations and Wi is the relative fitness of a single-

mutant genotype comprising the mutation i from M 

set.  Under the null hypothesis of multiplicative (i.e., 

non-epistatic effects so ߝெ  = 0), the observed fitness 

of the genotype M (WM) equals its expected value 

given by the product of the fitnesses estimated for 

each single mutation of which has the M genotype.  If 

ெߝ  > 0, the epistasis is positive (antagonistic), 

whereas ߝெ  < 0 indicates negative (synergistic) 

epistasis.  One-sample t-tests were applied for 

inferring the significance of the deviation of observed 
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fitness values form the mean expected fitness for 

each genotype (Sokal & Rohlf 1995).  Figure 2 shows 

the relationship between observed fitness values of 

seventeen constructed genotypes (all except single 

mutants) and their fitness values expected under null 

hypothesis of multiplicative fitness effects. 

Expected relative fitness
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Figure 2.  Comparison between the observed and 
expected multiplicative fitnesses values for seventeen 
genotypes.  The straight line denotes the null 
hypothesis of multiplicative effects.  Deviations from 
this line result from the epistatic fitness effects. 
 

Four genotypes showed independent fitness 

effects. Only two genotypes (combinations of 

mutations at the loci 01010 and 01011) showed 

significant negative (synergistic) epistasis even when 

applying a stringent Bonferroni test for multiple 

comparisons (P ≤ 0.0217).  Eleven genotypes showed 

significant positive (antagonistic) epistasis (P < 

0.0001).  All these eleven genotypes comprised the 

compensatory mutation in the locus C3629U that was 

lethal in a single mutant genotype but viable in 

combination with any other mutation present in our 

dataset.  Consequentially, zero expected fitness 

values were obtained using multiplicative fitness thus 

leading to possible overestimate of the presence of 

antagonistic epistasis.  Therefore, we tested the 

epistasis using another approach as described in the 

following. 

An alternative way to estimate epistasis is by 

computing the sum of squares for the interaction 

among the five mutations.  So, in order to address 

which genotypes act epistatically, we fitted relative 

fitnesses of genotypes from the whole dataset in a 

sorted factorial general linear model using ‘loci’ as 

factors.  The term ‘locus’ is binomial, stating for the 

presence or absence of a particular mutation in a 

particular genotype, so, it total, five factors were used 

in the model.  The fitted model first tests for the 

single mutations (main effects), sequentially adding 

pairwise, 3-way, 4-way and 5-way interactions 

between ‘loci’, assuming normal distribution and 

identity linking function.  Table 2 shows only the 

effects of interactions between mutations; the main 

effects and the intercept of the fitted model make no 

biological sense and therefore are not presented.  

Zero interaction coefficients indicate the lack of 

epistasis.  Out of 17 combinations of mutations in our 

dataset, eleven cases corresponded to significant 

epistasis and six genotypes were not significantly 

epistatic (Table 2). 

 

Among eleven genotypes with significant 

epistasis, five cases corresponded to positive epistasis 

and six cases corresponded to negative epistasis 

(Figure 3).  Among the six non-significant cases, five 

cases corresponded to multiplicative effects (i.e., 

were not epistatic).  All non-significant cases of 

epistasis were genotypes having the mutation at the 

Table 2. Sorted factorial GLM estimates of epistasis testing 
for the interactions among mutations across genotypes. 

Genotype Epistasis (±S.E.) 2 P 

01100 0,1558±0,0331 20,6568 0,0000 

01010 -0,2982±0,0310 71,6540 0,0000 

01001 -0,1731±0,0302 29,6551 0,0000 

00110 0,2620±0,0309 58,4557 0,0000 

00101 0,1716±0,0310 27,8120 0,0000 

00011 -0,2845±0,0310 66,4177 0,0000 

11001 0,0087±0,0842 0,0107 0,9175 

10110 0,0000 

10011 0,0000 

01110 -0,4842±0,0617 51,2870 0,0000 

01101 -0,3394±0,0619 27,2613 0,0000 

01011 0,4920±0,0619 52,3785 0,0000 

00111 -0,5622±0,0617 65,5349 0,0000 

11110 0,0000 

10111 0,0000 

01111 0,9060±0,1234 45,8106 0,0000 

11111 0,0000 
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locus U357C, whereas all other genotypes that 

showed significant epistasis did not comprise this 

mutation.  Still, the differences in relative fitness 

between these two groups of genotypes, epistatic and 

non-epistatic, were not significant (one tailed t-test, 

15 d.f., P = 0.3156). 

Two different tests applied for testing the 

presence of epistasis were incongruent in estimating 

the proportions of positive and negative epistasis. 

Indeed, there is a significant association between the 

type of the test and epistasis outcome (Fisher’s exact 

test, P = 0.0551). 
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Figure 3.  Relation between the epistasis resulting 
from GLM and the classes of genotypes represented 
by the number of mutations that they carry.  Filled 
circles correspond to significant cases of epistasis; 
open circles correspond to non-significant cases of 
epistasis. 
 

Figure 3 reveals that epistatic interactions 

increase in frequency in the first steps of adaptation 

(i.e., fixation of the second mutations) and become 

less common and approach to zero epistasis with 

increasing number of mutations.  In concrete: all 

double mutants (100%) showed significant epistatic 

interactions; 57.14% of triple mutants had significant 

epistasis; 33.33% of quadruple mutants were epistatic 

and quintuple mutant showed no epistasis (0%).  

Moreover, Figure 3 pictures one more interesting 

feature: the bimodal distribution of epistasis per class 

of genotypes.  Here, bimodal distribution refers to 

unequal proportion of positive and negative epistatic 

effects among genotypes belonging to the same class.  

With increasing number of mutations, the epistasis 

becomes more negative and tends to zero as in the 

case of the evolved quintuple genotype.  There was 

equal proportion of positive and negative epistasis 

cases among double mutants (three vs. three 

genotypes).  Only one out of four triple mutants had 

positive epistasis; the rest had negative epistasis 

coefficient.  One out of three quadruple mutants had 

strong positive epistasis while the rest lack epistasis.  

Quintuple mutant showed multiplicative fitness 

effects. 

Next, following definitions given by Poelwijk et 

al. (2011), we calculated sign and reciprocal sign 

epistasis among constructed genotypes by pairwise 

comparison of fitnesses of single (Wi) and M│i (WM, 

i ∉ M) genotypes.  Out of 32 combinations of 

significant cases of epistasis, eleven genotypes 

corresponded to the cases of magnitude epistasis: all 

double mutants: 01100, 01010, 01001, 00110, 00101, 

and 00011, four triple mutants: 01110, 01101, 01011, 

00111 and one quadruple mutant: 01111; and four 

genotypes corresponded to the sign epistasis: three 

triple mutants: 01110, 01011 and 00111, and one 

quadruple mutant: 01111.  Out of these four cases of 

sign epistasis, two genotypes: 01110 and 01111 

corresponded to reciprocal sign epistasis (Figure 5).  

Thus, magnitude epistasis was prevalent in the 

dataset (73.33%).  The rest, 26.67% of significant 

cases of epistasis, corresponded to sign epistasis.  To 

test this ratio, we counted the number of cases among 

n = 32 possible combinations that fulfilled the 

condition of either n  1 single mutant having fitness 

smaller than observed for their corresponding n-tuple 

mutant.  The expected probability of sign epistasis 

was 100%.  Using one-tailed Binomial test, the 

probability of observing 4 or fewer cases of sign 

epistasis among 15 was P < 0.0001 thus confirming 

the expected ratio of magnitude and sign epistasis.  

The same test was applied for inferring the 

significance of reciprocal sign epistasis where we 

counted the number of cases that fulfilled the 

condition of both single mutants having fitness 

smaller than the observed for the corresponding n-

tuple mutant.  The expectation of reciprocal sign 

epistasis was 7/22= 0.3182 and the probability of 

observing 2 or less cases of reciprocal sign epistasis 

among 4 cases of sign epistasis was P = 0.3805, 

rejecting deviations from the expectation. 
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Since the mutations at the loci U357C and 

C6906U were synonymous, we tested their effects on 

relative fitness and epistasis by fitting the data to 

sorted full factorial linear generalized model using 

normal distribution and identity linking function.  We 

found no significant effect of synonymous mutations 

nor their interaction on any of the response variables 

(2 = 0.8881, 1 d.f., P = 0.3460; 2 = 0.0499, 1 d.f., P 

= 0.8232, respectively).  In comparison, we 

performed the same test using only the three non-

synonymous mutations and found significant effect of 

mutations on relative fitness of genotypes (Table 3; 

whole model test: 2 = 61.8555, 7 d.f., P < 0.0001), 

but not on epistasis (whole model test: 2 = 1.2124, 7 

d.f., P < 0.9906).  Additionally, to check whether 

adaptive mutations arise from codon-bias adaptation, 

we compared the contingency in codon usage 

frequency for two synonymous mutations in TEV-

At17 (Table 1) and found no significant tendency 

(Fisher’s exact test, P = 0.4405). 

 

Fitness of virus genotypes 

Differences in relative fitness were significant among 

genotypes (2 = 2551.6320, 21 d.f., P < 0.0001).  

Figure 5 shows the differences in fitness among 

genotypes carrying the same number of mutations.  It 

can be noted that fitness differences between single 

mutants are greater than of the double mutants, those 

being greater than of the triple mutants with 

quadruple mutants having almost indistinguishable 

fitness.  Indeed, differences in fitness between these 

genotypic classes were significant (2 = 3.6585, 4 

d.f., P = 0.0073).  Tukey-Kramer comparisons of 

means for all pairs revealed that n-tuple mutants 

cluster in total in three distinct groups where single 

mutants form the first cluster of lowest relative 

fitness; the second cluster is formed by quadruple and 

quintuple mutants and the third cluster form double 

and triple mutants.  Since the individually lethal 

mutation at the locus C3629U would not contribute to 

the adaptation, we reexamined the fitness ranking of 

genotypes with respect to the number of mutations 

they carry and observed the following trend in fitness 

decrease.  The highest fitness was among triple 

mutants, followed by double, simple, quadruple and 

quintuple mutants (Figure 5). The wildtype virus had 

the lowest fitness. 

 

Figure 5.  Relation between mean relative fitness of 
each genotype with respect to the number of 
mutations that it carries.  Each point in the graph 
represents the mean fitness value of a particular 
genotype.  Next to their fitness value, genotypes are 
denoted in correspondence to the locus where the 
particular mutation is present (Table 1).  Higher 
order interaction between loci is denoted by a star 
(*).  Genotypes marked in bold correspond to the 
sign epistasis.  Genotypes marked in red are cases 
of reciprocal sign epistasis. The inserted line 
connects the group means between genotypes 
carrying  n-tuple mutations. 

 

Infectivity 

Infectivity, as a fitness component, was estimated as 

the frequency of infected plants out of the total 

number of inoculated plants.  Expected frequency 

with 95% confidence intervals (CI) was 

approximated as LaPlace’s point estimator for the 

Binomial frequency parameter using 

http://www.measuringusability.com/wald.htm server.  

We found significant differences in infectivity among 

virus genotypes (2 = 0.1025, 22 d.f., P < 0.0208).  

Figure 6 represents the infectivity plotted for each 

genotype.  Monotonic increase in infectivity indicates 

two most probable evolutionary trajectories.  The first 

may be: 00000 → 01000 → 01001 → 01101 → 

01111 → 11111.  The second may be equally 
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Table 3. Non-synonymous mutations interactions resulting 
from a generalized linear model. 

Response Genotype d.f. 2 P 

Relative fitness 01100 1 5.0269 0.0250 

01010 1 23.7154 < 0.0001 

00110 1 13.9560 0.0002 

01110 1 13.8587 0.0002 

Full model 7 61.8555 < 0.0001 
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probable: 00000 → 00001 → 00101 → 01101 → 

01111 → 11111.  Both paths consist of three steps 

that do not lead neither to increase nor decrease in 

infectivity and remaining two steps that do lead to the 

increase in infectivity (Figure 6).  Thus, 60 % of the 

infectivity landscape consisted of neutral steps, while 

the rest lead to an increase in infectivity. 

Figure 6.  Relation between infectivity and classes of 
genotypes with corresponding number of mutations.  
Classes of genotypes are indicated next to their 
adjacent infectivity value represented by a dot.  
Genotypes are represented as loci; with respect to the 
presence of a particular mutation (Table 1).  Higher 
order interaction between loci is denoted by star (*).  
Solid arrows indicate monotonic increase or stasis in 
infectivity, thus represent the most probable pathways 
in the infectivity landscape.  Dashed arrows indicate 
continuous increase in infectivity leading to the dead-
end pathway. 
 

DISCUSSION 

Here we address empirically the partial fitness 

landscape of a positive sense plant RNA virus TEV-

At17 adapted to the novel host A. thaliana.  Our 

dataset consisted of 22 genotypes out of 32 possible 

combinations of the five mutations fixed by the 

evolved TEV-At17.  We measured two fitness 

components: the infectivity and within host virus 

growth rate relative to the wildtype as an approximate 

to relative fitness. 

Firstly, we focused on epistasis measured as the 

deviation from the expected null hypothesis of 

multiplicative mutational fitness effects.  Epistasis 

was prevalent (76.47%) in our dataset and 

predominately positive (84.62%), meaning that the 

absolute effect of the second mutation is smaller than 

that of the first.  Previously, we have found the 

significant prevalence of positive epistatic effects 

among deleterious mutations in TEV measured in its 

primary host N. tabacum (Lalić & Elena 2012).  

Thus, positive epistasis is common in TEV genome 

among both deleterious and beneficial mutations.  

Strong mutational effects give rise to positive 

epistasis (De Visser et al. 2003, 2011; Proulx & 

Phillips, 2005; Desai et al. 2007), thus indicating low 

genetic robustness of RNA viruses.  In this case, at 

the extreme, a long series of such mutations in a 

population with sufficiently high fitness would 

eventually lead to an effectively neutral rate of 

mutation accumulation with no further measurable 

fitness changes (Loewe & Hill 2010).  The fitness 

landscape data are in concordance to this (Figure 5).  

Moreover, our results show that the epistasis governs 

the initial steps of adaptation; during fixation of the 

second and third mutation.  On the contrary, 

independent fitness effects took a commonplace in 

the final steps of adaptation (Figure 1). 

Additional test for the interactions between 

mutations confirmed the prevalence of epistatic 

effects between mutations (herewith 64.71%).  Still, 

in contrary to the former, this test showed almost 

equal proportion of negative (54.54%) and positive 

(45.45%) cases of significant epistasis.  The slight 

dominance of negative over positive epistasis implies 

jumping over the low fitness valley that is very 

unlikely to occur.  Still, since both tests applied are 

equally valid and accounting for lack of more than 

30% of data in our dataset (i.e., ten genotypes that 

could not be tested experimentally), we are not able 

to draw any further firm conclusions about the 

prevalence of particular type of epistasis.  Analogous 

studies that sought to address the contribution of 

epistasis among beneficial mutations in evolving 

bacterial (Chou et al. 2011; Khan et al. 2011) and 

yeast (Kvitek & Sherlock 2011) found a 

predominance of negative epistasis that impeded the 

rate of adaptation.  Negative epistasis has diminishing 

returns effect meaning that adaptive mutations of 

large individual effect result in a smaller fitness effect 

when they occur together.  Diminishing returns 

fitness effects were firstly observed in the 

experiments of long-term evolution of E. coli (de 

Visser & Lenski 2002; Barrick et al. 2009) within 

which the initial fitness improvement was fast but it 
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rapidly decreased over time and remained low.  

However, out fitness data show no pattern of 

diminishing returns, but instead, the adaptation began 

with relatively small steps in fitness increase until the 

fixation of the third mutation, a part from which, the 

fitness (in quadruple and quintuple mutants) 

decreased (Figure 5). 

Epistasis causes stochastic differences in the rank 

order of mutations, hence, directly influences the 

evolutionary trajectories of populations (Martínez et 

al. 2011).  Recent works on the contribution of 

epistasis to the architecture of fitness of RNA viruses 

found significant portion of ruggedness of fitness 

landscapes.  Lalić and Elena (2012) found prevalent 

contribution of epistasis, especially of reciprocal sign 

type, to the architecture of TEV fitness suggesting 

that the adaptive landscape of TEV in its primary host 

(tobacco) must be highly rugged.  Simultaneously, 

Hinkley et al. (2011) confirmed the commonality and 

strength of epistasis in HIV-1 protease and reverse 

transcriptase.  In a concomitant study, Kouyos et al. 

2012 analyzed fitness landscapes derived from in 

vitro fitness measurements of HIV-1 and reported 

ruggedness of the HIV-1 adaptive landscape.  

Because different peaks can also differ in magnitude, 

the adaptive landscape could impose an additional 

constraint on the evolvability of the organism.  

Rugged fitness landscapes have highly negative 

consequence on the evolvability of a population.  

Since a rugged fitness landscape lacks large constant-

fitness plateaus, it is thus antirobust.  In such a 

landscape, a population can become confined to a 

region of genotype space in which it must wait for the 

occurrence of the advantageous mutation(s).   

However, our data contrast former observations.  

Figures 5 and 6 reveal that fitness landscape of TEV 

was single-peaked, implying the lack sign epistasis 

(Poelwijk et al. 2007).  Indeed, our results showed 

that majority of epistatic effects were attributed to 

magnitude epistasis (about 73%).  In addition, the 

infectivity data revealed two possible pathways of 

adaptation, each carrying three out of five neutral 

steps (Figure 6), indicating the 60% neutrality of the 

infectivity landscape.  Accounting for both 

measurements of fitness; the relative growth rate and 

the infectivity, we conclude that the fitness landscape 

of TEV adapted to A. thaliana in its new host is 

mostly neutral and smooth, bearing a single peak.  

Several other studies have reached the similar 

observations.  Weinreich (2005) explored fitness 

landscape lacking sign epistasis and found a 

significant effect between landscape membership in 

fitness rank-ordering and genetic constraints of 

genotypes given by their fitness value.  Later on, 

Weinreich et al. (2006) explored the fitness landscape 

of the E. coli β-lactamase conferring resistance to 

cefotaxime due to five mutations and found that 

majority of the trajectories contained fitness 

decreasing or neutral steps.  Kvitek and Sherlock 

(2011) observed few deleterious mutations that 

hitchhiked along with one or more adaptive mutations 

in the evolved yeast clones. 

Mutations are random with respect to their effect 

in improving the fitness.  Evolution is driven either 

by natural selection of beneficial mutations or by 

stochastic fixation of selectively neutral or slightly 

deleterious mutations due to random genetic drift. 

Mutation at locus U357C showed independent fitness 

effects in all n-tuple mutant states implying that it 

was not important target of natural selection, but 

instead, results as a by-product of genetic drift.  In 

favor to this observation goes the codon usage of A. 

thaliana that was lower for the mutated codon in 

comparison to codon of the wildtype virus (Table 1).  

The evidences we presented here about the 

commonplace of epistasis together with the 

genotypes’ fitness results (Figure 5) suggest that the 

evolution of TEV within A. thaliana Ler-0 have not 

occurred solely by natural selection of mutations that 

improved TEV fitness within a new host.  A major 

role in this evolutionary event most probably played 

the genetic drift associated with serial passages.  In 

nature, virus populations experience bottlenecks 

during transmission and cell-to-cell movement.  

Thus, genetic drift is an ever-present source of 

stochastic variation in allele frequencies among virus 

populations so it cannot be disregarded.  In fact, 

genetic drift can lead to decrease in the mean fitness 

of an asexual population due to the process known as 

Muller’s ratchet (Mueller, 1964) which proceeds if all 
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individuals with the minimum number of deleterious 

mutations are lost by chance.  Thus, Muller’s ratchet 

can lead a population into extinction (Lynch et al. 

1993).  In the case of independent mutational fitness 

effects, the rate of fitness decline is constant, but if 

there is a positive epistasis between deleterious 

mutations, as the ratchet advances, the frequency of 

the best available genotype will increase, making its 

loss less probable (Kondrashov 1994).  Consequently, 

synergistic epistasis can arrest the action of Muller’s 

ratchet and provide the survival of the population 

although with lower mean fitness (Kondrashov 1994). 

Additionally, it is important to note that the 

missing data influenced the results interpretation.  For 

instance, we cannot argue that all tested genotypes 

form part of the same continuous network, so that 

mutations arose in a successive order.  It is possible 

that independent mutation events in polymorphic 

viral population contributed jointly (or by 

recombination) to fixation of the observed TEV-At17 

consensus sequence. In the former case, a two or 

more distinct networks may exist, with multiple 

starting points. 

 

CONCLUDING REMARKS 

Here, we aimed to reconstructed partially the first 

empirical adaptive landscape of a ss(+)RNA virus.  

This is the first experimental fitness landscape for a 

whole organism.  We found prevalent epistatic effects 

between mutations, both positive and negative, that 

led to different fitness ranking of genotypes.  

Furthermore, we characterized the landscape 

topography approximated by the number of the plants 

infected by a particular virus genotype and found that 

more than a half of possible evolutionary paths were 

neutral and the landscape was single peaked.  The 

lack of ruggedness of TEV’s landscape in A. thaliana 

suggests that virus easily adapted to its new host.  

This is an important result from the perspective of 

emerging viral diseases and in concordance to 

common observation that majority of emerging 

viruses are indeed RNA viruses. 
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GENERAL SUMMARY 

 

The relationship between genotype and fitness is one of the most important functions in 

determining the evolutionary dynamics of a population.  In this Thesis, 

multidimensional genotype-fitness maps have been explored.  In Chapter III, the fitness 

of genotypes was mapped across different environments.  In Chapter IV, the fitness of 

genotypes was mapped with respect to a particular genetic background.  In Chapter V, 

the fitness of genotypes was mapped with respect to both environment and genetic 

background.  The final chapter aimed to map the fitness of a partial set of genotypes to 

the new environment where they had evolved.  In all cases, except of part II, a 

significant non-linear relation for viral fitness was found indicating that fitness is a 

unique consequence of its genotype in interaction with the genetic background and the 

environment.  Still, it is important to note that Population Genetics does not assume 

linear effects being a rule in Nature; actually, they are not.  Instead; since the response 

to selection depends on the fraction of variance in fitness that can be attributed to 

statistically linear component of mutational effects, the linear component of genotype 

regression for fitness is of particular importance. Hence, the adaptation depends on 

these additive effects.  Herewith, it is worth to recall that during evolution not only 

genotypes change in response to an environment, but environments are also rarely 

constant.  The heterogeneity of environments is due to both biotic and abiotic causes.  In 

this sense, the evolutionary theory remains to be a powerful tool for inferring parasite-

host interactions because we still lack much of knowledge in understanding the 

environmental and genetic bases of interactions, particularly in plant-virus system.  It is 

worth keeping in mind that evolution is a process and not an event, so, evolutionary 

theory provides also a powerful tool for interpretation of host-parasite dynamics and 

alerts about the necessary design and application of disease control programmes. 

Biology is a science of complex systems.  The constituents of a complex system 

interact in many different ways that lead to dynamic and emergent features that cannot 

be predicted satisfactorily by linear mathematical models that disregard interaction and 

non-additive effects.  Concordantly, the essential message of the work presented here is 

that the dynamic interplay between viral and host populations is necessarily a non-linear 

one, and as such has many properties that cannot be predicted simply by analyzing the 

structure of their components. 



88 
 

CHAPTER III – GE INTERACTIONS 
 

New emerging and re-emerging viruses represent an increasing threat to human and 

animal health and to agronomy (Holmes 2009).  However, the ability to predict when a 

virus may become emerging is limited by the lack of knowledge about the genetic basis 

of emergence.  Particularly relevant in this sense is to know how the effect of mutations 

on viral fitness changes across the reservoir and potential new hosts.  Here we provide a 

first description of the distribution of mutational fitness effects for an RNA virus across 

a panel of hosts of increasing phylogenetic distance from the reservoir species. 

A key pre-requisite for a virus to jump the species barrier from its reservoir to a 

new one is the existence of genetic variants that may have a significant fitness in the 

new host (Turner & Elena 2000).  These host-range mutations, usually, are deleterious 

in the reservoir host and their frequency is thus low.  Therefore, to predict the likelihood 

of a virus to infect new hosts, it is necessary to characterize the distribution of 

mutational fitness effects (DMFE) on its reservoir host as well as on potential new 

hosts.  DMFE have been characterized for a handful of viruses in their reservoir hosts 

(Sanjuán 2010), but whether and how these distributions change across potential hosts 

has never been experimentally addressed.  To cover this gap, here we sought to 

characterize the DMFE for the plant RNA virus TEV.  To do so, we generated 20 

single-nucleotide substitution mutants of TEV.  Both, the nucleotide site chosen and the 

replacement made were both randomly chosen.  Then, we measured the absolute fitness 

of each genotype across a panel of eight susceptible hosts, including the natural one, N. 

tabacum.  The alternative hosts spanned a wide range of genetic distances from the 

reservoir.  Fitness on each host was measured as a growth rate by quantifying the 

accumulation of viral genomic RNA using RT-qPCR. 

We first characterized the properties of the DMFE across hosts.   We found that 

the distributions were almost undistinguishable for the natural host and its close relative 

N. benthamiana.  However, as the genetic relatedness to tobacco decreased, the 

distributions moved towards lower fitness values, thus reflecting the overall lack of 

adaptation of TEV to these hosts.  Interestingly, the shape of the distribution also 

changed as genetic distance among hosts increased, switching from being negatively 

skewed to positively skewed.  This switch indicates that in the reservoir and close 

relatives TEV mutant genotypes are, in general, deleterious and have lower fitness than 

the non-mutated genotype.  By contrast, in unrelated hosts the fraction of mutant 
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genotypes with fitness values larger than the wild-type dominates.  This result shows 

that under stressful conditions the proportion of beneficial mutations increases, in 

agreement with certain theoretical predictions. 

Next, we sought to quantify to which extent the phenotype of TEV (i.e., its 

fitness) was determined by the interaction between its genotype and the environment 

(i.e., its host).  Understanding how genotype and environment interact to determine the 

phenotype and fitness has been a central aim of ecology, genetics, and evolution and, 

for instance, the fate of genetic variation in populations depends on the form of the G×E 

interactions.  For any organism, environmental components are prevalent, thus 

environment cannot be dissected from the phenotype of a genotype.  Because 

phenotypically plastic adaptations are more likely to evolve in variable environments 

than fixed adaptations, and species interactions are intrinsically variable in space and 

time, the (co)evolution of species interactions has certainly resulted in G×E (Agrawal 

2001).  Since natural selection acts on phenotypes but evolution occurs only through 

genetic change in populations, G×E reduces the global efficiency of natural selection 

and can even result in the maintenance of polymorphism.  Thus, the existence of 

genotype-by-environment interactions calls into question the existence of globally 

adaptive gene combinations (Wright, 1977).  We found that the fitness of a given TEV 

genotype depended on the particular host wherein it was measured, which translates in a 

highly significant G×E interaction (67% of the observed variability in TEV fitness 

could be explained by this interaction).  This is not the first observation the response of 

a particular genotype is conditional upon the environment and as such, cannot be 

predicted.  The work presented here hints upon the form and the extent of the presence 

of G×E even in the simple organism such as a RNA virus.  Lewontin (1974) pointed out 

upon the unpredictability of individual phenotypic responses once the G×E interaction 

over a wide range of environments was considered.  Here we show that there is neither 

an overall effect of genotype nor environment, but both can appear in the given set of 

virus mutants in a particular environment, as discussed above. 

A significant G×E can arise by two non-exclusive mechanisms.  First, pleiotropic 

effects may change the rank order of mutations across hosts (e.g., a mutation beneficial 

in one host may not be so in an alternative one).  Second, while still retaining the rank 

order of fitness effects, G×E can be generated by altering the genetic component of 

phenotypic variance.  We evaluated these two hypotheses and found that we could not 

specifically reject any of them: pleiotropic effects were abundant (positive among hosts 
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of the tobacco family but negative for the outsider hosts) and the genetic component of 

variance for fitness decreased in comparison to what was observed in the reservoir.  The 

quantity of genetic variation is not a fixed property of a population, but may vary 

according to the environment in which the population is living.  Therefore, the purpose 

of this study was to predict the fate of virus genetic variation in response to selection 

represented by different hosts that mutually differ in their phylogenetic proximity.  It 

has been showed that genetic variation can be maintained by mutation in polygenic 

characters even under strong selection; when selection is weak, a small increase in the 

strength of selection can produce a major decrease in the heritability (Lande 1976).  Our 

results confirm these predictions; we showed that the direct action of natural selection in 

the form of the environment (i.e., host) is proportional to the contribution of genetic 

variance for fitness. Indeed, when comparing Solanaceae vs. non-Solanaceae, or, in 

other words, “local” vs. “foreign” environments, the heritability drops from 0.965 to 

0.239 (Table 5 in Chapter III) respectively, and the genetic variance drops from 0.083 to 

0.002 respectively.  Keeping in mind the high amount of genetic variability that RNA 

virus populations posses, this result indicates that it can be maintained even in the new 

hosts to which the virus is not adapted nor have shared a common coevolutionary 

history. 

The major objection to this work can be attributed to the experimental setup.  

Within our results interpretation we assume genetic homogeneity of the virus genotype 

population quantified at 10 dpi.  During this time period, some additional mutations 

might have appeared within the viral populations and might have contributed to the 

observed fitness of genotypes approximated as within-host growth rate.  That is why we 

have collected plants and measured viral fitness at the minimal possible time point for 

all hosts.  In addition, the inexactitude of our methods of measurement can be reflected 

in the significant variance arising between plants; i.e., biological replicates. 

In conclusion, we have shown that the location and shape of the DMFE for an 

RNA virus depends on the host wherein it is evaluated.  Therefore, virus genotype and 

the host species interact in a non-linear manner to determine viral fitness.  Pleiotropic 

effects and reductions in genetic variance contribute to generate this genotype-by-host 

interaction.  The implications of these observations for understanding the emergence of 

new viruses are multiple, and hint on the unpredictability of the process; in the light of 

information collected on the reservoir host one can not anticipate which viral genotypes 

will be more likely to emerge. 
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CHAPTER IV – G×G 

 

In this work we addressed the multi-dimensional epistasis within TEV genome by 

measuring the growth rate as a proxy for fitness of 53 double mutants constructed by 

randomly combining 20 single-nucleotide substitution mutants whose deleterious fitness 

effects were also measured in its primary host, N. tabacum.  The epistasis was prevalent 

and predominately positive indicating strong mutational fitness effects, and 

consequently, low genetic robustness of the virus.  Sign epistasis dominated over the 

magnitude epistasis.  The major contribution of reciprocal sign epistasis among the 

significant cases of sign epistasis implies ruggedness of TEV fitness landscape. 

Further on, some possible objections to our work are discussed.  Apparently, low 

power in our measurements is reflected in the small gap between the lowest detected 

fitness (0.21) and the fitness of the lethals (0).  Indeed, all of the single- and double-

mutant fitnesses are within a relatively narrow range (0.21-0.34) of fitnesses and this 

gap between viable and lethal genotypes is actually falsely too small.  This is due to 

definition of epistasis used here; as the difference between observed fitness and the 

product of fitnesses of single mutants.  Initially, we used Malthusian parameter as in 

Chapter III in order to calculate epistasis.  Epistasis among pair of mutations x and y, 

xy, was calculated as: ߝ௫௬ ൌ ݉଴଴ ൅ ݉௫௬ െ݉௫଴ െ݉଴௬  (Fisher, 1918; Phillips, 2008), 

where m00, mxy, mx0, m0y correspond to the Malthusians of the wildtype, the double 

mutant and of each single mutant, respectively.  In the light of null hypothesis of 

additive mutational effects, the results were following.  Forty epistasis values 

significantly departed from the null hypothesis of additive fitness effects (t-tests, in all 

cases P  0.0469).  Comparing between additive and multiplicative epistasis, the results 

remained qualitatively identical although, obviously, differ quantitatively.  Mainly, the 

number of significant cases of epistasis is reduced to 20 when using multiplicative 

epistasis.  Still, justification of the use of multiplicative epistasis is noted in section 1.5. 

 

CHAPTER V – G×G×E 

 

Here we studied the variability of interactions between pairs of random point mutations 

in the genome of TEV across four different hosts.  In nature, TEV infects two of these 

hosts (N. tabacum and D. stramonium), that belong to the same plant family, the 
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Solanacea.  The other two species are not TEV natural hosts, although they are 

experimentally susceptible to systemic infection.  They belong to the Asteraceae (H. 

annuus) and the Amaranthaceae (S. oleracea) families, respectively.  We quantified 

fitness of all single and double mutants on each of the hosts and calculated the 

multiplicative epistasis coefficient.  We found significant epistatic effects for nine 

double mutants in the two TEV natural hosts (i.e., permissive environments) among 

which four corresponded to cases of sign epistasis and the rest corresponded to 

magnitude epistasis.  For non-natural hosts, the number of significant epistatic 

interactions dramatically dropped to one.  Furthermore, when we tested the effect of 

host on the magnitude of epistasis, we found that 40% of cases showed significant 

variation among hosts.  The intensity of epistasis decreased as the genetic relatedness 

between the primary host and alternative ones increased. 

To conclude, we have shown that magnitude of epistasis between mutations 

declines as the host becomes more distantly related to the typical host.  This suggests 

that epistasis is small when conditions are stressful.  Further, there is evidence for both 

synthetic lethality and suppression of lethality, both of which are extreme forms of 

negative and positive epistasis for fitness, respectively.  Such epistasis makes predicting 

host shifts difficult, which is an important result in the aspect of viral emergence.  

Understanding the variability of sign and magnitude epistasis in the context of virus 

host range expansion will give us new and very much necessary insights into the 

evolutionary ecology of infectious diseases. 

 

CHAPTER VI - Empirical fitness landscape 

 

The world as we perceive it is three dimensional.  Physicists currently 

believe one needs on the order of a dozen dimensions to explain the physical 

world.  However, biological evolution occurs in a space with millions of 

dimensions (Gavrilets 2003). 

 

The dynamics of adaptation depend on the underlying fitness landscape, thus it is 

critical to know the proportion of peakedness vs. flatness of the adaptive landscapes.  

This is especially important in the context of emerging viruses in order to predict the 

tempo and mode of virus adaptation to a new host and how this adaptation may be 

constrained.  In this work we addressed the partial, empirical fitness landscape of TEV 
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adapted to A. thaliana.  The adaptation to a new host consisted in acquiring five point 

mutations.  We have constructed approximately all intermediate genotypes of adaptation 

and quantified the infectivity (as a proxy to transmissibility) and within host virus 

growth rate relative to the wildtype (as an approximate to relative fitness) within A. 

thaliana for a large fraction of them.  Epistasis among the adaptive mutations was 

strong and, in major proportion, corresponded to magnitude epistasis.  We found cases 

of both positive and negative deviations from the expected multiplicative fitness effects.  

Epistasis was more prevalent among the genotypes bearing less than four mutations, 

while quadruple and quintuple mutants showed independent mutational fitness effects.  

Infectivity data showed that the potential evolutionary pathways consist of neutral steps 

in major proportion (60%).  The landscape consisted of a single peak.  The smoothness 

of TEV landscape in A. thaliana suggests that the virus apparently had no constraints in 

adapting to this new host, even if the new host belongs to different family of plants.  

Recall that TEV typically infects members of the family Solanaceae, while A. thaliana 

belongs to Brassicaceae.  This observation has strong implications for the emerging 

virus diseases because RNA viruses comprise great evolutionary potential that enables 

them to rapidly adapt to the new hosts. 

Additionally, here I argue about two experimental procedures that might have 

influenced our observations.  First is the dosage effect arising from the inoculation of A. 

thaliana plants with unknown quantity of virus particles of a particular genotype.  The 

quantity of virus particles of a particular genotype within sap that served as inocula was 

not measured.  Thus, the inocula doses were, most probably, not equal for all virus 

genotypes that might have influenced our observations.  Since the plants were very 

small when inoculated, it was physically impossible to do the inoculation with more 

than 4 μl of sap.  Inoculation with lees quantity might lead to underestimation of the 

infectivity and fitness due to imprecision inherently biased to the inoculation procedure.  

Previous works have shown that the effective number of viruses colonizing the host is 

low (González-Jara et al 2009), but can depend on the virus doses (Zwart et al. 2012).  

Secondly, but not less important, leaving virus genotypes to grow for ten days in 

tobacco plants might have led to appearance of some other mutations so that 

polymorphic populations.  Still, previous work (Torres-Barceló, pers.commun. ) showed 

that TEV populations in N .tabacum is relatively stable meaning that the virus does not 

fix new mutations even after more than 20 serial passages. 
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SUMMARY	

 

One of the major threats to human and animal health as well as to agronomy is the 

emergence of new infectious diseases, most of which are caused by RNA viruses.  It is a 

complex, multilevel problem that consists in acquisition of genetic variation by 

mutation or recombination within a virus population in the reservoir host that would 

enable the host-switch.  RNA viruses show a remarkable evolvability owed to their 

large population sizes, short generation times and high mutation and recombination 

rates.  Understanding the underlying evolutionary mechanisms by which a virus may 

become an emergent one is pivotal for the rational design of control strategies and 

antiviral therapies. 

Thus, can virus emergence and jump to a new host species be predicted by 

knowing its phenotype, i.e., fitness, in its natural host? If so, then the architecture of 

virus fitness would be determined only by its genotype (the G component, i.e., 

mutation) and environment (the E component, i.e., host).  Still, interactions between 

these components may exist and compromise the predictability of virus phenotype in an 

alternative host.  How mutations affect the fitness of viral populations is essential to 

understanding viral emergence and adaptation to a new host. 

The widespread observation that the majority of mutations are deleterious 

coincides with the theoretical prediction that an organism will be well adapted to its 

particular environment, so that any genomic change would represent a move-away from 

the optimal phenotype.  In reality, this view is overly simplified; mutational fitness 

effects constitute a continuum and are conditional upon the environment and genetic 

background; effects commonly referred to as genotype-by-environment (G×E) genetic 

(G×G or epistasis) and G×G×E (epistasis-by-host) interactions.  In this Thesis the 

contribution of these components to the architecture of viral fitness was addressed using 

a plant positive sense RNA virus, TEV.  RNA viruses form the largest group of plant 

viruses and cause many economically important diseases. 

First, to infer G×E, we characterized the distribution of mutational fitness effects 

(DMFE) for a collection of twenty single-nucleotide substitution mutants of TEV across 

a set of eight environments represented by different hosts.  Five of these host species 

were naturally infected by TEV, all belonging to family Solanaceae, whereas other 

three were partially susceptible hosts belonging to three other plant families.  First, we 

found a significant virus genotype-by-host species interaction, which was sustained by 



95 
 

differences in genetic variance for fitness and the pleiotropic effect of mutations among 

hosts.  Second, we found that the DMFEs were markedly different between Solanaceae 

and non-Solanaceae hosts.  Exposure of TEV genotypes to non-Solanaceae hosts led to 

a large reduction of mean viral fitness, while the variance remained constant and 

skewness increased towards the right tail, thus containing a significant proportion of 

beneficial mutations.  Within Solanaceae the tail of the distribution was drawn out more 

to the left side, thus comprising an excess of deleterious mutations.  All together, this 

result suggests that TEV may easily broaden its host range and improve fitness in new 

hosts, and that knowledge about the DMFE in the natural host does not allow for 

making predictions about its properties in an alternative host. 

Secondly, to infer epistasis, we generated 53 TEV genotypes carrying pairs of 

single nucleotide substitutions and measured their separated and combined deleterious 

fitness effects in its primary host: Nicotiana tabacum.  We found up to 38% of pairs 

had significant epistasis for fitness, including both positive and negative deviations 

from the null hypothesis of multiplicative effects.  Moreover, we found the 

predominance of cases of reciprocal sign epistasis, indicating that adaptive landscapes 

for RNA viruses maybe highly rugged.  Finally, we found that the magnitude of 

epistasis correlated negatively with the average effect of mutations.  Negative 

correlation observed between epistasis and deleterious fitness effects indicates low 

genetic robustness of the compact RNA virus genomes.  These observations are bad 

news regarding predictability of which viral genotypes may be more prone to emerge. 

Thirdly, in order to characterize the degree to which epistatic effects vary across 

hosts, we quantified the fitness of ten TEV genotypes carrying pairs of single 

nucleotide substitutions across four hosts that differ from the primary host in taxonomic 

proximity.  We found that epistasis among a particular pair of mutations is host-

dependent and positive, on average, in natural host and weaker in more distant ones.  

The existence of epistasis and its variation across hosts makes the effect of individual 

mutations unpredictable. 

Finally, we empirically characterized the fitness landscape of TEV adapted to A. 

thaliana by reconstructing the major part of intermediate and final genotypes of 

adaptation and measuring their fitness components in the new host.  We found 

prevalent magnitude epistatic effects among the beneficial mutations, especially in the 

first steps of adaptation.  Epistasis is small in the more adapted genotypes.  Epistatic 

interactions included both positive and negative deviations from the expected values.  
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The landscape topography is predominately neutral and single-peaked.  The smoothness 

of TEV landscape in A. thaliana suggests that virus easily adapted to its new host.  This 

is an important result from the perspective of emerging viral diseases and in 

concordance to common observation that majority of emerging viruses are indeed RNA 

viruses. 
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RESUMEN	EN	CASTELLANO	

 

Una de las mayores amenazas tanto para la salud humana y animal, como para la 

agronomía es la emergencia de nuevas enfermedades infecciosas, la mayoría de las 

cuales están causadas por los virus de RNA.  La emergencia viral es un problema 

complejo que consista en la adquisición de la variación genética, por mutación o 

recombinación, dentro de la población viral en el huésped reservorio la cual podría 

facilitar la capacidad de infectar de manera eficiente nuevos huéspedes.  Los virus de 

RNA presentan a una evolucionabilidad extraordinaria por sus grandes tamaños 

poblacionales, cortos tiempos de generación y altas tasas de mutación y recombinación.  

Comprender los mecanismos evolutivos que podrían dar lugar a un virus emergente es 

imprescindible para hacer un diseño racional de las estrategias del control y las terapias 

antivirales. 

¿Podríamos predecir la emergencia de un virus y su salto a un huésped nuevo 

sabiendo el fenotipo del virus, es decir, su eficacia biológica, en su huésped natural?  Si 

es así, la arquitectura de la eficacia biológica del virus estaría determinada solamente 

por su genotipo (la componente G, o en otras palabras, la mutación) y el ambiente (la 

componente E o, en otras palabras, el huésped).  Sin embargo, podrían existir 

interacciones entre estos componentes y comprometer la predictibilidad del fenotipo del 

virus en un huésped alternativo.  Saber cómo las mutaciones afectan la eficacia 

biológica de las poblaciones virales es esencial para llegar a entender la emergencia 

viral y la posterior adaptación del nuevo virus a su nuevo hospedador. 

La observación común de que la mayoría de las mutaciones son deletéreas 

coincide con la predicción teorética de que un organismo ya está adaptado a su 

ambiente en particular, por lo cual, cualquier cambio genético supondría apartarse del 

fenotipo optimo.  En realidad, este punto de vista es demasiado simplificado; los 

efectos mutacionales sobre la eficacia biológica constituyen un continuo y están 

condicionados tanto por el ambiente como por el fondo genético.  Estos efectos se 

nombran comúnmente como interacción genotipo-ambiente (G×E), interacción 

genética (G×G o epistasia) e interacción G×G×E (epistasia-huésped).  En esta Tesis, la 

contribución de estos componentes a la arquitectura de la eficacia biológica de un virus 

de RNA de la cadena positiva que infecta plantas, TEV.  Los virus de RNA forman el 

grupo más grande de los virus de las plantas y causan muchas enfermedades 

económicamente importantes. 
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En primer lugar, para inferir G×E, hemos caracterizado la distribución de los 

efectos mutacionales sobre la eficacia biológica (DMFE) de TEV utilizando una 

colección de veinte mutantes simples que tenían una única sustitución nucleotídica.  

Los efectos mutacionales se midieron en un conjunto de ambientes representados por 

ocho huéspedes distintos.  Cinco de estos huéspedes pertenecían a la familia 

Solanaceae y se infectaban con TEV de la forma natural.  Otros tres huéspedes 

pertenecían a otras tres familias de las plantas y eran parcialmente susceptibles a la 

infección con TEV.  Primero, hemos encontrado una interacción significativa entre el 

genotipo del virus y la especie del huésped, generada por diferencias en la varianza 

genética de la eficacia biológica y los efectos pleiotrópicos de las mutaciones entre 

huéspedes.  Segundo, las DMFE eran profundamente distintos entre los huéspedes que 

pertenecían a Solanaceae y los que no.  La exposición de los genotipos de TEV a las 

no-solanáceas resultó en una gran reducción en la eficacia biológica, mientras que la 

varianza permanecía constante y la asimetría de la distribución era positiva.  Una 

asimetría positiva implica que hay más valores mayores que la media, es decir, la cola 

derecha de la distribución contiene una proporción significativa de mutaciones 

beneficiosas.  Entre solanáceas, la cola izquierda de la distribución tenía mayor peso, 

indicando un exceso de las mutaciones deletéreas.  Conjuntamente, este resultado 

muestra que TEV puede fácilmente extender su rango de huéspedes y mejorar su 

eficacia biológica en los nuevos huéspedes, y que conocer la eficacia biológica de un 

mutante en un huésped no nos permite extrapolar que su eficacia se mantenga en otro(s) 

huésped(es). 

En segundo lugar, para inferir la epistasia, hemos generado 53 genotipos de TEV 

los cuales llevaban pares de únicas sustituciones nucleotídicas y hemos medido sus 

efectos deletéreos sobre la eficacia biológica por separado y en combinación en el 

huésped primario: Nicotiana tabacum.  Hemos encontrado que el 38% de los pares 

mostraban epistasia significativa sobre la eficacia biológica.  Las desviaciones de la 

hipótesis nula de efectos multiplicativos eran tanto positivas como negativas, aunque 

predominaban los casos de epistasia de signo reciproco, lo cual indica de que el paisaje 

adaptativo de TEV debe de ser muy rugoso.  Por último, hemos observado que la 

epistasia de magnitud correlaciona negativamente con el efecto promedio de las 

mutaciones, lo cual revela baja robustez genética de los genomas compactos de los 

virus de RNA.  Estas observaciones son malas noticias con respeto a la predictibilidad 

de cuales genotipos virales podrían ser más propensos a emerger. 
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En tercer lugar, con el objetivo de caracterizar el grado de variación de los efectos 

epistaticos con los huéspedes en los que estos se miden, hemos cuantificado la eficacia 

de diez genotipos de TEV que llevaban pares de únicas sustituciones nucleotídicas a 

través de cuatro huéspedes que variaban en su proximidad taxonómica con el huésped 

primario.  Hemos observado que la epistasia entre pares de mutaciones era dependiente 

del huésped y, en promedio, positiva en el huésped natural, haciéndose más débil a 

medida que el parentesco genético de estos huéspedes disminuía respecto al primario.  

La existencia de la epistasia y su variación entre huéspedes hace que los efectos de las 

mutaciones individuales sean aun más imprevisibles.  

Por último, hemos caracterizado empíricamente el paisaje de la eficacia del TEV 

adaptado a A. thaliana reconstruyendo la mayor parte de los genotipos intermediarios 

posibles durante el proceso de adaptación y hemos medido dos componentes de la 

eficacia biológica en el nuevo huésped.  En nuestro conjunto de datos predominaba la 

epistasia de magnitud entre las mutaciones beneficiosas, especialmente en los primeros 

pasos de la adaptación.  La epistasia era pequeña en los genotipos más adaptados.  Las 

interacciones epistaticas consistían en desviaciones de los valores esperados que eran 

ambos positivos y negativos.  La topografía del paisaje era predominantemente neutral 

y consistía de un único pico.  La suavidad del paisaje de TEV en A. thaliana sugiere 

que el virus se haya adaptado fácilmente a su nuevo huésped.  Este resultado es 

importante desde la perspectiva de las enfermedades virales emergentes y en 

concordancia con la observación común de que la mayoría de los virus emergentes son 

efectivamente los virus de RNA. 
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