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Resumen: Objetivos, metodología y contenido 

 

La información es un recurso muy importante para una empresa, tanto como lo 

puedan ser los recursos financieros, materiales y humanos, pues el éxito o fracaso de la 

misma puede depender de la información de la que dispone. Una parte importante de 

esta información es la relativa a otras empresas (competidores, empresas que operan en 

un mercado en el que se desea entrar, etc.), y puede referirse a los procesos y técnicas 

de producción, costes, recetas y fórmulas, clientes, acciones, planes y estrategias, etc.  

La inteligencia competitiva es el proceso legal y ético por el que una empresa obtiene, 

analiza y utiliza información de valor estratégico sobre la industria y los competidores. 

Este proceso puede incluir la revisión de la prensa, publicaciones corporativas, páginas 

web, solicitudes de patentes, bases de datos especializadas, entre otras muchas 

actividades1. La importancia de este proceso queda reflejada, por ejemplo, en que en 

2002 Business Week informaba que el 90% de las grandes empresas tienen empleados 

que se dedican a temas de inteligencia competitiva y que muchas de las grandes 

empresas estadounidenses gastan más de un millón de dólares anuales en temas de 

inteligencia competitiva. Además, algunas de las mayores multinacionales, como 

General Motors, Kodak y British Petroleum, disponen de unidades propias de 

inteligencia competitiva2. 

Sin embargo las empresas no siempre obtienen esta información de una forma ética y 

legal. Es a este proceso ilegal y no ético al que se denomina espionaje industrial3. 

Durante los últimos años han aumentado los incentivos de las empresas a sobrepasar 

los límites de la inteligencia competitiva, debido a que se enfrentan a entornos cada vez 

más competitivos basados en el conocimiento y a los avances de las tecnologías de la 

comunicación y la información. En este sentido, el espionaje industrial se ha convertido 

en una práctica empresarial muy importante e, incluso, preocupante. 

                                                           
1 Nasheri (2005). 
2 Ver Billand et al (2009), página 2. 
3 A diferencia del espionaje industrial, el espionaje económico lo llevan a cabo los gobiernos. Ver 
Nasheri (2005). 
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A finales de 1980 y en la década de los noventa, Francia y Estados Unidos se vieron 

envueltos en varios casos de espionaje industrial4. Según los informes de 1997 del US 

State Department y del Canadian Security and Intelligence Service, el espionaje 

industrial cuesta a los negocios estadounidenses cerca de los 8,16 millones de dólares 

por año. Además, el 43% de las compañías estadounidenses han sufrido, al menos, seis 

casos de espionaje industrial5. También a finales de los noventa, más concretamente, en 

1997, Volkswagen fue condenada por tratar de obtener secretos industriales de Opel 

contratando a su Jefe de Producción, José Ignacio López, y a siete ejecutivos más6.  

Más recientemente, en 2009, la compañía hotelera estadounidense Starwood acusó a su 

competidor, Hilton, de espionaje industrial al contratar a varios de sus ejecutivos, que 

se llevaron con ellos una gran cantidad de secretos comerciales de la empresa y que 

Hilton usó en su propio beneficio7. Y en enero de 2011, tres directivos de Renault 

fueron acusados de vender información, posiblemente a la competencia, sobre el coche 

eléctrico en el que estaba trabajando la empresa8.   

Sin embargo muchas veces, en la práctica, resulta difícil discernir la legalidad y 

eticidad de los métodos usados. En este sentido, Crane (2005) realiza un estudio muy 

interesante sobre tres casos en que la inteligencia competitiva se convierte en espionaje 

industrial. Puede que el caso más curioso sea el de Procter & Gamble, que en 2001 se 

supo que trataba de obtener información sobre Unilever buscando en los contenedores 

de basura de la empresa.  

Pero nuestro objetivo no es estudiar cuál es el límite que separa la inteligencia 

competitiva del espionaje industrial. Con estos ejemplos (que sólo son una parte de 

todos los que pueden encontrarse) simplemente queremos hacer notar que es muy 

importante para las empresas obtener información sobre sus competidores, sin entrar 

en el tema de la legalidad o eticidad de los métodos que usan para ello. 

 

                                                           
4 New York Times (1991), Jehl (1993) y Nolan (2000). 
5 Ver Solan y Yariv (2004), página 174, nota al pie 1. 
6 Reuters (1996) y Meredith (1997). 
7 Clark (2009). 
8 Jolly (2011). 
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Objetivos y metodología. 

Dada la importancia de este tema, el objetivo de la presente tesis es analizar 

teóricamente el comportamiento de las empresas a la hora de obtener información de 

sus competidores (práctica a la que, por simplicidad, llamaremos espionaje industrial, 

independientemente de la legalidad o eticidad de los métodos, por lo que en este 

concepto se está incluyendo también a la inteligencia competitiva), para poder 

comprenderlo mejor y ver cuáles pueden ser sus consecuencias, ya que, aunque el 

espionaje industrial es una práctica muy extendida, pocos trabajos teóricos han tratado 

de analizarlo. 

Más concretamente, nuestro objetivo es analizar teóricamente el impacto del espionaje 

industrial sobre el comportamiento estratégico de las empresas en un contexto de 

disuasión de la entrada usando las herramientas propias de la Teoría de Juegos.   

Nos centramos en este contexto de entrada a un mercado, porque se trata de una de 

esas situaciones en que la información de que dispone una empresa (en este caso, la 

empresa que pretende entrar al mercado) puede suponer el éxito o el fracaso de la 

misma. El entrante tiene que tener muchos aspectos en cuenta, pero disponer de 

información al respecto, por ejemplo, de las estrategias y los costes de la empresa que 

opera en el mercado, puede ser de vital importancia a la hora de decidir si entrar o no 

al mercado. Un caso real que puede motivar los modelos teóricos de esta tesis podría 

ser el que se explica en Mezzanine Group (2010). Este estudio de caso muestra la 

importancia que tiene, para un entrante potencial a un mercado, la información sobre 

estrategias, posicionamientos y recursos de las empresas que operan en el mismo.      

Además, aunque los juegos de disuasión de la entrada han sido ampliamente 

estudiados en la literatura9 , los efectos del espionaje en estos juegos no han sido 

estudiados con anterioridad. 

En los modelos de la presente tesis se considera la existencia de un monopolio (M) en 

un mercado y un entrante potencial (E) al mismo. Para tratar de impedir que E entre al 

mercado, M considera invertir en la expansión de su capacidad (Capítulos 2 y 3) o 

invertir en I+D para reducir su coste de producción (Capítulo 4). En el primer caso, E 

                                                           
9 Ver Wilson (1992) para una revisión de esta literatura. 
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no observa las decisiones de inversión de M, y en el segundo E no sabe si la inversión 

para reducir costes fue exitosa. Por ello E utiliza un Sistema de Inteligencia (SI), que 

puede tener un coste o ser de libre acceso, para tratar de detectar la acción de M en el 

primer caso, y el resultado de la inversión en el segundo, y tiene en cuenta esta 

información que le proporciona el SI para decidir si entra o no al mercado. 

El SI puede enviar dos señales con ruido sobre la decisión de M en el primer caso, y 

sobre el resultado de la inversión en el segundo. Sea α  la precisión del SI, se supone 

sin pérdida de generalidad que 1 12 α≤ ≤ . Así pues, la señal enviada por el SI es 

correcta con probabilidad α . Por simplicidad se supone que la acción de M no influye 

en α . Si 1α = , el SI es perfecto y E detecta perfectamente la acción de M en el primer 

caso, y el resultado de la inversión en el segundo. Si 1
2α = , la señal enviada por el SI 

no es informativa y es como si E no estuviera usando ningún sistema de inteligencia. 

El SI que se considera es similar al que asumen Biran y Tauman (2009) y Solan y Yariv 

(2004). Por tanto, los modelos de esta tesis están relacionados con estos dos trabajos y, 

como ellos, con la literatura que estudia los juegos con comunicación10. Sin embargo, en 

estos juegos suele ser el jugador que dispone de información privada, quien envía una 

señal al otro jugador, mientras que en nuestros modelos la señal es generada por un 

sistema de inteligencia operado por el jugador que recibe la señal. 

En esta tesis se supondrá que la precisión α  del SI puede ser tanto exógena (Capítulos 

2 y 4) como endógena (Capítulo 3). El primer caso sería aquel en que la empresa que 

espía dispone de un SI antes de encontrar a un nuevo rival (por ejemplo, una empresa 

que puede implantar un Caballo de Troya en el sistema informático de sus rivales). El 

segundo sería el de una empresa que contrata a directivos y trabajadores de otra para 

que le proporcionen información de la misma. El caso de Volkswagen en 1997 y el de 

Hilton en 2009, a los que nos hemos referido anteriormente, serían ejemplos de esta 

situación. 

                                                           
10 Ver Solan y Yariv (2004), página 175. 
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Por último comentar que, como dicen Biran y Tauman (2009), este tipo de SI no es un 

jugador que actúa estratégicamente como en Perea y Swinkels (1999) y en Ho (2007, 

2008)11.  

 

Estructura y contenido. 

La tesis está estructurada en cinco capítulos. El primer capítulo es una introducción 

general. En los tres capítulos siguientes se desarrollan tres modelos teóricos en los que 

se analizan el espionaje industrial en un contexto de disuasión de la entrada. En el 

quinto capítulo se resumen los resultados obtenidos en la tesis y se comentan algunas 

líneas de investigación futura. 

A continuación resumimos los capítulos 2, 3 y 4, sus principales resultados y posibles 

líneas de investigación futura. 

En el segundo capítulo, Entrada bajo una señal con ruido (Entry with a Noisy Signal), un 

monopolio (M) pretende disuadir la entrada al mercado de un entrante potencial (E) a 

través de una expansión de su capacidad. Bajo información perfecta, E no entraría al 

mercado si M expandiera su capacidad, y sí que lo haría si M no la expandiera. Sin 

embargo, la información no es perfecta. Por consiguiente, E no observa las decisiones 

de inversiones en capacidad de M. 

El entrante potencial E usa un Sistema de Inteligencia (SI), sin coste, para tratar de 

detectar la acción de M. El SI puede enviar solo dos señales, la señal i , que indica quee 

M está invirtiendo en capacidad, y la señal ni , que indica lo contrario. Denotemos por 

α  a la precisión del SI, donde 1 12 α≤ ≤ . Es decir, que la señal enviada por el SI es 

correcta con probabilidad α . En base a la señal recibida, E decide si entrar o no (o con 

qué probabilidad) al mercado. En este primer capítulo la precisión α  del SI es exógena. 

Hay cuatro resultados posibles, (NI, NE), (NI, E), (I, NE), (I, E), donde I significa 

“invertir” y NI “no invertir”. La interpretación de E y NE es similarmente “entrar” y 

“no entrar”. Para hacer el análisis interesante se supone que los beneficios de M son 

                                                           
11 Para el tema del valor de la información en conflictos estratégicos ver también Kamien, 
Tauman y Zamir (1990).     
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tales que su mejor resultado es el status quo (NI, NE). Su segundo mejor resultado es (I, 

NE). M prefiere (I, NE) a (I, E), y si el coste de la inversión no es muy alto, M prefiere (I, 

E) a (NI, E). De manera similar, los beneficios de E son tales que su mejor resultado es 

(NI, E), el cual es mejor que (I, NE) o (NI, NE), pues en ambos casos obtiene cero. El 

peor resultado para E es (I, E). 

Este modelo se interpreta como un juego en el que los dos jugadores M y E eligen sus 

acciones simultáneamente, y que será de información simétrica o asimétrica según M 

conozca la precisión α  o no, respectivamente. Por tanto, los conceptos de solución 

empleados serán el de equilibrio de Nash y el de equilibrio Bayesiano de Nash.   

Antes de analizar el caso más realista en el que la precisión α  es información privada 

de E, se estudia el caso de referencia bajo el que α  es conocido por ambas empresas. Si 

el coste de la inversión es relativamente alto, de tal forma que M prefiere no invertir 

incluso sabiendo que E va a entrar al mercado, el equilibrio de Nash es simple, no 

invertir es la estrategia dominante de M y E entrará al mercado. 

Si por el contrario el coste de la inversión es tal que M prefiere invertir si sabe que E va 

a entrar al mercado, la solución de equilibrio dependerá de la señal del SI. Supóngase 

primero que E recibe la señal ni . Si el SI no es muy preciso (α  es menor que cierto 

umbral, α ), entonces en el equilibrio E entra al mercado con probabilidad 1, creyendo 

que M no ha expandido su capacidad. Sin embargo, si el SI es relativamente preciso (α  

es mayor que α ), sorprendentemente, en el equilibrio E “duda” entre entrar y no 

entrar al mercado, y asigna una probabilidad significativa a no entrar. Supóngase 

ahora que E recibe la señal i . Si el SI no es muy preciso (α  es menor que α ), en 

equilibrio E duda y asigna una probabilidad positiva (menor que 1) a entrar al 

mercado, teniendo en cuenta el posible error del SI. Si el SI es más preciso, E no entra al 

mercado con probabilidad 1.              

Un resultado sorprendente bajo información simétrica es que M se beneficia del SI más 

que su dueño, E, si el SI es relativamente preciso. Cuando α  excede el umbral α , el 

pago de E es cero y es indiferente entre espiar o no a M. La precisión óptima del SI para 

E es el umbral α , mientras que lo óptimo para M es que el SI sea perfecto (es decir, 

1α = ). Esto se debe a que la probabilidad de que E entre al mercado es decreciente en 
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la precisión, α , del SI, e implica que M debería subvencionar a E para que desarrollara 

el SI perfecto, aunque eso signifique que E sea capaz de observar perfectamente su 

acción. 

En el caso en el que la precisión α  es información privada de E (caso de información 

asimétrica), M conoce la distribución de α , pero no su valor real. En particular, este 

caso incluye la situación en que E no opera ningún SI ( 1
2α = ), pero M cree que E está 

operando un SI de precisión 1
2α > . En este caso, las estrategias de equilibrio son 

cualitativamente consistentes con las del caso anterior, pero los pagos de M y E se 

comportan de una forma menos sorprendente. Al contrario del caso de información 

completa, E obtiene un pago positivo si SI es relativamente preciso (es decir, si α  es 

relativamente alto) y este pago es creciente en la precisión α . Además, si M cree que el 

valor esperado de α  es menor que el umbral α , el pago de E es positivo para todos los 

valores de α . Respecto a M, y contrariamente al caso de información completa, M está 

mejor cuando E no le espía. 

Este modelo está muy relacionado con el de Biran y Tauman (2009), pero su contexto es 

diferente, ya que estos autores analizan el papel del espionaje en la disuasión de la 

fabricación de bombas nucleares. Las preferencias de los jugadores, y por tanto los 

resultados del modelo, son diferentes. El trabajo de Solan y Yariv (2004) también está 

muy relacionado, pero considera que la precisión del SI es endógena, es decir, es 

elegida estratégicamente por el jugador que espía (analizamos este caso en tercer 

capítulo de la tesis). Otros trabajos en los que el objetivo del espionaje es la estrategia 

del oponente son Matsui (1989) y Provan (2008), pero tratan otro tipo de juegos. 

La contribución de este primer capítulo es el análisis del espionaje industrial en un 

contexto de disuasión de la entrada. El resultado más sorprendente es que, cuando la 

precisión del SI es conocimiento público, el monopolista está interesado en el uso del 

mismo por el entrante. 

En el tercer capítulo, Elección estratégica del Sistema de Inteligencia (Strategic Choice of the 

Intelligence System), se extiende el modelo analizado en el segundo suponiendo que el 
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SI y su precisión α  son elegidos estratégicamente por E (es decir, la elección de α  es 

endógena y además tiene un coste). 

Mientras en el Capítulo 2 la precisión α  es exógena (y puede ser conocida por ambas 

empresas o ser información privada de E), en el tercer capítulo se supone que el valor 

de α  es conocido por ambas empresas y es elegido estratégicamente por E. En este 

caso M puede observar o no esta elección de E. 

Este modelo es un juego dinámico de cuatro etapas. En la primera etapa E elige la 

precisión α  del SI. En la segunda etapa, M puede observar o no (consideramos ambos 

casos) la elección de M y decide si invertir o no invertir en expandir su capacidad. En la 

tercera etapa el SI envía la señal i  o ni . Y en la cuarta y última etapa, E decide si entrar 

o no entrar al mercado basándose en la señal enviada por el SI. El concepto de solución 

que se usa es el de equilibrio perfecto en subjuegos. 

Se considera primero el caso en que α  es elegido estratégicamente por E y su elección 

es perfectamente observada por M. Supóngase que el coste de un SI de precisión α  es 

creciente y convexo en α . Como el equilibrio tiene que ser perfecto en subjuegos, hay 

dos errores que M podría cometer ex-post. El primer tipo de error consiste en que M 

(innecesariamente) invierte en expandir su capacidad y E decide no entrar al mercado. 

El segundo tipo de error consiste en que M no invierte y E entra al mercado. Los 

equilibrios de este modelo dependen de cuál de estos dos errores supone un mayor 

coste para M.  

Si el coste del segundo tipo de error es menor para M, la elección óptima de E es 

desarrollar un SI de precisión, como máximo, α . Dependiendo del coste del SI, 

cualquier α  entre 1
2  y α  puede ser la elección óptima de E. Sin embargo, si el coste 

del primer tipo de error es menor para M, la elección óptima de E es no desarrollar 

ningún SI, independientemente de lo bajo que sea su coste, que siempre es positivo. 

Este es el peor resultado para M ya que, dado que α  es conocido por ambas empresas, 

M se beneficia más cuanto mayor es α . 

El caso en que M no observa la elección de E es más difícil de analizar. Si desarrollar un 

SI no tiene ningún coste, entonces el único equilibrio es que E desarrolla un SI perfecto 
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( 1α = ) y M elige invertir en la expansión de capacidad. En este caso E no entra al 

mercado y obtiene un pago igual a cero. No obstante, dado que M invierte, E no 

entrará al mercado independientemente del valor de la precisión α  y no puede 

beneficiarse de una reducción de la misma. Supóngase ahora que el coste del SI es 

lineal. Si el coste marginal es relativamente alto, E no espía a M. El caso complicado es 

cuando el coste marginal es relativamente bajo, pero positivo. Puede demostrarse que 

en este caso el equilibrio de Nash perfecto en subjuegos existe y es en estrategias 

mixtas, sin embargo no se ha podido encontrar la distribución de probabilidad de 

equilibrio sobre α . Además, cuando el coste del SI es constante (es decir, no depende 

de α ), se obtienen resultados similares.  

Encontrar esta distribución de probabilidad de equilibrio sobre α  sería un tema 

interesante a investigar en el futuro, aunque sería más interesante analizar en general 

el caso en que M no observa la elección de E.   

Solan y Yariv (2004) es un trabajo muy relacionado con este capítulo, pero se centra en 

el caso en que el jugador espiado observa la elección del jugador que le espía. En un 

contexto diferente, Provan (2008) también considera que el espionaje trata de obtener 

información sobre la estrategia del oponente y el jugador que espía tiene que elegir el 

sistema de inteligencia. En Gaisford y Whitney (1999) el objetivo del espionaje no es la 

estrategia del oponente, sino su tecnología, pero también se considera que la precisión 

del sistema de inteligencia es elegida estratégicamente por el jugador que espía. 

La contribución de este capítulo es extender el segundo capítulo al caso en que la 

precisión del sistema de inteligencia es elección estratégica de su dueño, E, y hacer 

explícito el caso en que el jugador espiado (M en este caso) no observa la precisión 

elegida por dueño del sistema de inteligencia, escasamente considerado en la literatura.             

En el cuarto capítulo, Entrada bajo dos señales correlacionadas (Entry with Two Correlated 

Signals), un monopolio (M) invierte en I+D para tratar de reducir su coste de 

producción y disuadir a un entrante potencial (E) de entrar al mercado. El resultado de 

este proyecto de I+D es información privada de M y E asigna cierta probabilidad a que 

M fracasa en reducir sus costes (M es de tipo H) y a que M consigue reducir sus costes 
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(M es de tipo L). Si el proyecto fracasa y E entra al mercado, E obtiene beneficios. Sin 

embargo, si el proyecto tiene éxito y E entra, E no es capaz de cubrir el coste de entrada 

y tiene perdidas. 

El entrante E dispone de un Sistema de Inteligencia (SI) que le permite obtener 

información (con ruido) sobre la estructura de costes de M. El SI puede enviar dos 

señales, la señal h , que indica que el proyecto no tuvo éxito, y la señal l , que indica lo 

contrario. Al igual que anteriormente, la precisión del SI es α , 1 12 α≤ ≤ . Es decir, 

que la señal enviada por el SI es correcta con probabilidad α . En este capítulo se 

supone que α  es exógeno y conocido por ambas empresas. 

El entrante E decide si entrar o no al mercado en base a dos señales: el precio p  que M 

establece para su producto y la señal s  ( h  o l ) enviada por el SI. Si E entra al mercado, 

compite con M, sea en cantidades, en precios u otro tipo de competencia. 

El caso en que 1
2α = , es decir, cuando la señal enviada por el SI no es informativa y 

puede ser ignorada, es exactamente el modelo de Milgrom y Roberts (1982) (MR a 

partir de ahora). Por tanto, este capítulo es una extensión del modelo de MR en la que 

el entrante E dispone de un SI de precisión 1 12 α< < . 

Este modelo es un juego de información asimétrica en el que la interacción entre E y M 

se describe como un juego en tres etapas. En la primera etapa, M, que conoce el 

resultado del proyecto de I+D, establece un precio para su producto y el SI envía la 

señal h  o l . En la segunda etapa, E, basándose en el precio establecido por M y la señal 

enviada por el SI, decide entrar o no al mercado. Si E decide entrar, en la tercera etapa 

E y M compiten en el mercado. El concepto de equilibrio que se usa es el de equilibrio 

secuencial.  

Se distinguen dos tipos de equilibrio. El primero es el equilibrio separador (separating 

equilibrium), en el que los dos tipos de M establecen precios diferentes Hp  y Lp , 

H Lp p≠ . El segundo es el equilibrio agrupador (pooling equilibrium), en el que 

H Lp p= . 
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En este capítulo se demuestra que los equilibrios separadores del modelo coinciden 

con los de MR y que el SI no supone ninguna diferencia ni para E ni para M. Esto no es 

muy sorprendente dado que en un equilibrio separador E identifica perfectamente el 

tipo de M con o sin el SI. Este mismo resultado se obtiene para los equilibrios 

agrupadores si la precisión α  del SI es suficientemente baja (cercana a 1
2 ) para influir 

en la decisión de E de no entrar al mercado. En el otro extremo, si α  es bastante alto 

(cercano a 1), entonces, a diferencia del modelo de MR, no existe ningún equilibrio 

agrupador. En este caso, E identifica el tipo de M con probabilidad alta y entrará al 

mercado si recibe la señal h  y no entrará si recibe la señal l . El monopolista de tipo H, 

que sabe que su tipo es detectado con probabilidad elevada, tiene incentivos a 

desviarse a su precio de monopolio y, por tanto, a eliminar el equilibrio agrupador. En 

los casos intermedios en que α  es relativamente mayor que 1
2  y menor que 1, se 

demuestra que el conjunto de equilibrios agrupadores existe y el precio de monopolio 

del monopolista de tipo L es el máximo precio de equilibrio agrupador posible. La 

decisión de E continúa siendo entrar al mercado si recibe la señal h  y no entrar si 

recibe la señal l . Mientras en el modelo de MR el entrante E nunca entra al mercado en 

un equilibrio agrupador, en el modelo desarrollado en este capítulo E entra al mercado 

para valores intermedios de α  y cuando recibe la señal h , y esto es así incluso cuando 

el equilibrio agrupador no existe en el modelo de MR. Por tanto, desde este punto de 

vista, espiar a monopolistas puede aumentar la competencia con probabilidad alta.       

Este capítulo está relacionado con Perea y Swinkels (1999) y con Ho (2007, 2008) dado 

que estos trabajos también consideran el espionaje en un contexto de información 

asimétrica. Sin embargo, en el modelo desarrollado en este capítulo el SI no es un 

jugador que actúa estratégicamente como en Perea y Swinkels (1999) y en Ho (2007, 

2008). El capítulo también está relacionado con Sakai (1985) dado que este trabajo 

estudia el caso de dos empresas en el que uno de los objetivos de la actividad de 

obtención de información es, como en este capítulo de la tesis, la estructura de costes 

del oponente. Sin embargo, este trabajo considera que ambas empresas desconocen 

tanto los costes de su oponente como los suyos propios. 
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Otro trabajo relacionado es Bagwell y Ramey (1988). Este trabajo extiende el modelo de 

MR considerando que el monopolista puede señalizar su estructura de costes tanto  

con el precio que establece para su producto como con el gasto en publicidad. Por 

tanto, mientras que en este trabajo ambas señales son enviadas por el monopolista, en 

el modelo desarrollado en este cuarto capítulo de la tesis, la única señal enviada por el 

monopolista es el precio, la otra señal es generada por el sistema de inteligencia 

desarrollado por el entrante. Bagwell (2007) extiende Bagwell y Ramey (1988) y 

considera un juego más general en el que el monopolista tiene dos dimensiones de 

información privada, sus costes y su nivel de paciencia.   

La contribución de este capítulo es extender el modelo de Milgrom y Roberts (1982) 

para el caso en que el entrante potencial dispone un sistema de inteligencia que le 

permite obtener información con ruido sobre la estructura de costes del monopolista. 

Suponiendo que la precisión del sistema de inteligencia es conocimiento público, se 

demuestra que el espionaje sobre monopolistas puede aumentar la competencia con 

probabilidad alta. En este sentido, sería muy interesante analizar este modelo para el 

caso más realista en que M no observa la precisión del sistema de inteligencia. 

Por último, comentar que otra línea de investigación futura podría ser ampliar los 

modelos de esta tesis suponiendo que el monopolista lleva a cabo actividades de 

contraespionaje. 
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Chapter 1. Introduction 

 

1.1. Motivation. 

Information is an important resource for a firm, as much as material, financial and 

human resources are, since information can make the difference between success and 

failure. An important part of this information is relative to other firms (competitors, 

incumbents firms, etc.), and it may be about production processes and techniques, 

costs, recipes and formulas, costumer datasets, actions, decisions, plans and strategies, 

etc.     

Competitive intelligence is the ethical and legal process of collecting, analyzing and 

managing information of strategic value about the industry and competitors. This 

activity may include review of newspapers, corporate publications and websites, 

patent filings and specialized databases, among others12. As Business Week reported in 

2002, most of the large companies have competitive intelligence staff, many large US 

firms spend more than a million dollar a year on competitive intelligence issues, and 

multinational firms like Kodak, General Motors and British Petroleum have their own 

competitive intelligence units13. 

But firms do not always get this information ethically and legally. This illegal and 

unethical process of getting information about other firms is called industrial 

espionage14. 

Industrial espionage has a large history. An early case of industrial espionage could be 

the letter by Jesuit Father Francois Xavier d'Entrecolles revealing to Europe the 

manufacturing methods of Chinese porcelain in 171215. In the same century, the Vezzi 

brothers, in Venice, were involved in several incidents of industrial espionage that 

helped to reveal the secret of manufacturing Meissen (Germany) porcelain16. Also in 

                                                           
12 Nasheri (2005). 
13 See Billand et al (2009), page 2. 
14 Unlike industrial espionage, economic espionage is conducted by governments. See Nasheri 
(2005). 
15 Brook and Rowe (2009). 
16 Wikipedia, Industrial Espionage. 
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the 18th century there were cases of industrial espionage between Britain and France 

involving technology transfer between both countries, as stated by Harris (1998). 

During the last few years, the more competitive environment based on knowledge and 

the advances in communication and information technologies have increased firms’ 

incentive to exceed the limits of competitive intelligence activities. As a result, 

industrial espionage has become an important, even worrying, business practice.  

For instance, according to 1997 US State Department and Canadian Security and 

Intelligence Service Reports, industrial espionage costs US business over 8.16 billion 

dollar annually. Moreover, 43% of American firms have had at least six incidents of 

industrial espionage17.     

In late 1980 and in the nineties, France and the USA were involved in several cases of 

industrial espionage18. Also at the end of the nineties, more precisely, in 1997, 

Volkswagen was sentenced for attempting to obtain industrial secrets from Opel, the 

German division of General Motors, by hiring eight managers from General Motors, 

who took secret documents with them19. In 2009, the US based hospitality 

company Starwood accused its rival Hilton of a "massive" case of industrial espionage 

when the latter employed 10 managers and executives from the former, who took 

many commercial secrets with them that Hilton used to its advantage20. And more 

recently, in January 2011, three executives of Renault were sentenced for selling 

information, possibly to competitors, about the electric vehicle project the company 

was working on21.   

However, often it is hard to discern the legality and ethicality of the methods 

employed by firms to obtain information about competitors. Crane (2005) is an 

interesting study of three cases where competitive intelligence becomes industrial 

espionage. Maybe, the most curious case is Procter & Gamble trying to get more 

information about Unilever by hunting through their garbage bins.  

                                                           
17 See Solan and Yariv (2004), page 174, footnote 1. 
18 New York Times (1991), Jehl (1993) and Nolan (2000). 
19 Reuters (1996) and Meredith (1997). 
20 Clark (2009). 
21 Jolly (2011). 
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But our objective is not to study the limit between competitive intelligence and 

industrial espionage. With all these examples (these are only a few and much more can 

be found) we just wanted to note that it is very important for firms to obtain 

information about their competitors, and hence the importance of competitive 

intelligence and industrial espionage as topics of study. 

Given the importance of this topic, the objective of this thesis is to analyze theoretically 

the behavior of firms in obtaining information about their competitors, to better 

understand it and the possible consequences it may imply. Note that in this thesis we 

call industrial espionage to every process by which a firm tries to get information about 

another one, regardless of the legality or ethicality of the methods used. Hence, in this 

thesis, the concept industrial espionage includes competitive intelligence.  

 

1.2. Literature Review. 

Espionage is a widespread practice in many areas of society, not only in industrial or 

economic field22. As Ho (2008) says23, espionage has become a well-organized 

profession and there are many private investigators who offer their services to 

investigate infidelity, fraud, and more. On the other hand, the importance of espionage 

in military and national security affairs is undeniable. 

Despite the importance of espionage, little theoretical work has been done to analyze it. 

This could be related to the veil of secrecy surrounding espionage. However, several 

theoretical papers analyze situations closely related to espionage where an agent has 

incentive to violate certain rules, and an inspector has to verify that the former adheres 

to them. This is the literature on inspection games and analyzes situations such that arm 

control and disarmament, auditing and accounting, etc24. 

Sakai (1985), Gaisford and Whitney (1999), Billand et al (2009) and Grossman (2005), 

like us in this thesis, analyze theoretically espionage in an economic and industrial 

context.  

                                                           
22 Bishop (2012) is a very interesting article on espionage in the Olympic Games. 
23 See Ho (2008), page 55. 
24 An extensive survey of this literature is Avenhaus, Von Stengel y Zamir (2002). 
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Sakai (1985) considers a duopoly market model in which both firms know neither their 

own costs nor the costs of their opponent. Both firms can pay a market research agency 

to obtain information about these facts. When one firm hires this agency to obtain 

information about the cost structure of the other one, it would be a case of competitive 

intelligence. The paper assumes that this agency is not a strategic player in the game 

and the information it provides is correct.  

Sakai (1985) shows that any improvement in information structure from the case where 

both firms have no information, tends to be beneficial to both firms and consumers. 

However, when the existing information structure is not the null information structure, 

improvements in information are more complex to evaluate.    

Gaisford and Whitney (1999) study economic espionage between two countries (France 

and the USA as an example). Assuming that there is a single firm in each country 

(Airbus and Boeing in the example) and both firms compete à la Cournot, this paper 

analyzes the case where one or both countries spy on the other in an attempt to learn 

the technology and as a result to be able to lower the marginal cost of its own firm. 

When only one country is spying, the paper also considers the case where the spied 

country conducts counterespionage activities25. 

Assume that Boeing possesses a secret technology and France engages in economic 

espionage trying to obtain that technology for Airbus. Gaisford and Whitney (1999) 

show that espionage always benefits France  and it is harmful to the US. Although the 

US can reduce this damage by conducting counterespionage activities, France would 

still benefit from spying. When both countries engage in spying on each other, both 

may be better off because of the technology transfer implicit in espionage26. Espionage 

is generally beneficial to consumers because the expected output rises and the expected 

price falls. However, as Gaisford and Whitney (1999) point out, all these results highly 

                                                           
25 Gaisford and Whitney (1999) say that this “analysis could easily be adapted to allow for 
spying by the firms themselves” (page 104). This would be an industrial espionage case. 
26 This result would be related to Harris’ (1998) historical research, according to which 
espionage helped the technology transfer between Britain and France in the eighteenth century 
(see Ho (2008), page 35, footnote 3). 



 

 

22 

 

depend on the type of competition. For instance, if firms compete à la Bertrand, 

espionage will also be harmful to France.  

In a recent paper, Billand et al (2009) analyze industrial espionage in a Cournot model 

of several firms with differentiated goods. Firms compete on two interrelated markets 

and there are diseconomies of scope across them. Before competing on the markets, 

firms can spy each other trying to obtain information about other products that help to 

improve the quality of their own product. In this first version, it is assumed that spying 

is always successful. 

The paper focuses first on the case where firms engage in espionage in one market only 

and, depending on the espionage costs, characterizes all the possible espionage 

configurations. The paper also shows that, in some situations, firms have no incentive 

to spy even if the costs are very low. Another interesting result is that, in some 

situations, firms may wish to be spied upon and, hence, they have no incentive to 

conduct counterespionage activities. Moreover, even though espionage implies 

improvements in product quality, there exist situations where it is detrimental to 

consumers as well as social welfare. 

In case of economies of scope, firms spy on each other provided that the espionage 

costs are low enough. On the other hand, when firms engage in espionage in both 

markets, the number of equilibrium configurations increases without altering the 

above results.          

Grossman (2005) considers a model where agents can pirate creative ideas created by 

others and these ideas can be protected from pirating. Pirating is defined as the 

appropriation of valuable ideas and, hence, it may include, among other activities, 

industrial (or economic) espionage. Consequently, guarding ideas from pirating may 

include counterespionage activities27. For instance, this would be the case of a firm that 

reduced its production cost or differentiated its product after investing in research and 

development, and another firm tries to appropriate the results of this research to 

reduce its own cost or differentiate its own product.  

                                                           
27 Other ways of guarding ideas considered by Grossman (2005) include filing patents and 
copyrights. Hence, in this model, pirating activities also include the violation of them.    
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Note that the last two situations are, more or less, the ones considered by Gaisford and 

Whitney (1999) and Billand et al (2009) respectively, but the approach of Grossman 

(2005) is quite different and uses the structure of the models of producers, predators 

and guarding against predators summarized in Grossman (1998)28. More precisely, the 

paper analyses a model where, for a exogenously given environment for pirating ideas 

and distribution of talent, both creative activity and the security of the intellectual 

property rights depend on the decisions made by potential creative agents either to 

engage in creative activity (becoming inventors) or to be pirates of the creative ideas 

created by others and on the decisions made by inventors to allocate time and effort to 

guarding ideas from pirating29.  

Grossman (2005) first analyzes a simple version of the model in which all potentially 

creative agents are equally talented, but the most interesting case is when some 

potentially creative agents, the geniuses, are more talented than ordinary creative 

agents. The paper shows that the existence of geniuses may result in the fraction of 

potentially creative agents that chooses to be pirates, the fraction of time and effort that 

inventors allocate to guarding their ideas and the value of ideas created being larger 

than in the previous simple version of the model. However, in this case, the intellectual 

property rights are less secure and inventors are allocating a larger fraction of their 

time and effort to guarding their ideas than the fraction that would maximize the value 

of the ideas created30.   

Matsui (1989) considers a two-person repeated game in which one or both of the 

players have a small probability of perfectly detecting the other player action and 

                                                           
28 Usher (1987) developed a seminal model in which people decide whether to be producers or 
predators and in which producers also decide how much time and effort allocate to guarding 
against predators. 
29 Cozzi (2001) also considers the choice to be an inventor or to spy, but the paper does not 
consider the efforts of inventors to guard against espionage and focuses on the implications of 
espionage for growth. Cozzi and Spinesi (2006) also analyze the implications of espionage for 
growth. 
30 Grossman (2005) recognizes that the paper does not attempt a complete welfare analysis in 
which pirating can result in consumers paying lower prices for ideas (something like the 
welfare analysis of espionage in Gaisford and Whitney (1999) and Billand et al (2009)), and 
even, by diffusing ideas, can stimulate the creation of more ideas (see page 272, footnote 6).  
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revise his strategy accordingly. A central assumption of this model is that there is a 

certain cost in revising strategies. 

The basic model focuses on the case where only one player spies on the other one, his 

preferences are lexicographical and the revision cost is infinitesimal. Matsui (1989) 

shows that, in this case, any subgame perfect equilibrium payoff is Pareto efficient for 

any positive probability of espionage. 

A similar result is obtained when the preferences are not lexicographical and the 

revision cost is not infinitesimal. However, when both players spy on each other, this 

result is true only for sufficiently small probability of espionage. 

Solan and Yariv (2004) also analyze espionage in two-person games in which 

espionage tries to obtain information about the opponent’s strategy. But they consider 

normal form games where players decide on their strategies before the game starts and 

one of the players can purchase noisy information about his opponent’s decision.  

The paper provides a sort of a “folk theorem”. Namely, for every espionage game it 

provides a characterization of the set of distributions over the entries of the payoff 

matrix that for some set of information devices and some cost structure can arise from 

espionage equilibria. It also describes their welfare and Pareto properties.  

Solan and Yariv (2004) conclude that, while pure equilibria of the base game remain in 

the game with espionage, the set of mixed equilibria may change when the costs of the 

information devices are sufficiently low. Moreover, there may be additional (perfect 

Bayesian) equilibria when on player can spy on his opponent’s strategy. In general, the 

set of true equilibria of the games with espionage coincides with the set of non-

degenerate semi-correlated equilibrium distributions. On the other hand, while 

espionage sometimes leads to a strict Pareto improvement, espionage does not 

necessarily imply efficiency. 

Provan (2008) focuses on two-person-zero-sum games in which one or both players can 

spy trying to obtain information about his opponent’s strategy and the spied player 

can conduct counterespionage activities to mislead the spying player. This paper is 

more computational-based approach and it uses linear programming solutions.  
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Unlike the previous papers, Perea and Swinkels (1999) and Ho (2008) analyze 

espionage in the context of asymmetric information that is not related to the player’s 

actions.  

Perea and Swinkels (1999) study a model of extensive form games in which, at every 

information set, players can purchase an information device from a monopolistic seller 

who sets prices for the devices. They consider different scenarios and analyze the value 

of information, the way it can be computed and how the way the information seller 

sets the price (in advance or to negotiate at every information set) influences the game.   

Ho (2008) focuses on a two-person game in which an uninformed player can hire at 

least one private investigator (PI) to try to obtain this information. The PI is another 

player in the game, with his own interests. In this environment there are two possible 

loyalty problems. First, PI might not put full effort to obtain the information, and this is 

the moral hazard problem. Second, if the value of the information is really high, the 

spied side might pay PI to not give the information or even to transmit false 

information. This is the double crossing problem.      

Ho (2008) focuses on these PI’s loyalty problems and analyzes, applying contract 

theory, if there exists a mechanism to ensure PI’s loyalty and extract information. The 

paper concludes that, in the case without a double crossing problem, direct 

mechanism, in which the uninformed player hire only one PI, can solve the moral 

hazard problem and espionage is most beneficial when the uninformed side has only a 

small suspicion. When there may be double crossing problems, direct mechanism is 

costly and the reward can be too high for a PI to be hired. This is because in the direct 

mechanism the PI has larger bargaining power by double crossing. The controlling 

side’s bargaining power would increase by introducing some competition to the PI 

side. In this sense, Ho (2008) shows that a competitive mechanism, where the 

controlling side hires two PIs and introduces a relative performance regime, can extract 

information and mitigate the over rewarding problem in the direct mechanism. 

Let us briefly mention only a few theoretical papers on military intelligence.  

Ho (2007) is similar in spirit to Ho (2008). In this case there are two countries and 

asymmetric information about the possession of a new weapon by one of the countries. 
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In this context, Ho (2007) uses contract theory to analyze when the uninformed country 

will hire a spy to obtain this information, why a spy will defect and how the enemy can 

use a double agent to fight back.  

Biran and Tauman (2009) deal with the role of intelligence in nuclear deterrence and, 

unlike Ho (2007), espionage aims to obtain information on the rival’s strategy. In this 

game there are two rival countries. One of them wishes to develop some weapons and 

the other one wants to frustrate this, even if it requires attacking the country. But 

before attacking, he spies his enemy to make sure with high probability she is indeed 

developing the weapons. The purpose of the paper is to analyze the impact the spying 

activity has on the strategic behavior of the two rivals and on the equilibrium outcome 

of this conflict.   

Biran and Tauman (2009) is closely related to Solan and Yariv (2004), but in the latter 

the spying device is the strategic choice of the player who spies on his opponent. Biran 

and Tauman (2009), on the other hand, assume that the owner of the device owns it 

before the game starts, and its quality is either common knowledge or it is his private 

information. 

Finally, the purpose of Pecht and Tishler (2011a,b) is to determine the optimal 

expenditures on military intelligence, subject to the assumption that the government’s 

objective is to maximize national welfare.  

 

1.3. Objectives and Methodology. 

The objective of this thesis is to analyze theoretically the impact of industrial espionage 

on the strategic behavior of the firms in the context of entry deterrence using the tools 

provided by Game Theory.  

We focus on market entry because it is one of the situations where, as we said above, 

information can make the difference between success and failure of a firm. Market 

entry is one of the most fundamental decisions a firm has to make. The entrant firm has 

to consider many things31, but for instance, information about the incumbent’s actions 

or production costs may be very important ones. A real case that can motivate the 

                                                           
31 Basov, Smirnov and Wait (2007). 
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theoretical models of this thesis could be the one explained in Mezzanine Group (2010). 

This is a case study that shows the importance for a potential entrant to obtain 

information about the incumbent(s) firm(s). More precisely, it deals with the case of an 

energy market entrant that asked a consulting company (The Mezzanine Group) to 

evaluate the competitive landscape of Ontario market. Similarly as we consider in the 

models of this thesis, competitor positions, strategies and resources were part of the 

information the entrant obtained. 

Moreover, although entry deterrence games have been extensively studied in the 

literature32 , the effects of espionage on these games have not been studied before.  

In the models of this thesis we consider the existence of a monopoly incumbent (M) 

and a potential entrant (E) to the market. M wishes to deter E from entering the market. 

For this purpose, M can consider an investment in capacity expansion (Chapters 2 and 

3) or to invest in R&D in an attempt to reduce his production cost (Chapter 4). In the 

first case E does not observe M’s decision of whether or not to invest in capacity, and in 

the second one E does not observe if the investment was successful or not. For this 

reason, E operates an Intelligence System (IS) which set to detect M’s action in the first 

case, and the result of the investment in the second one. E takes into account the 

information provided by the IS to decide whether or not to enter the market. 

The precision of the IS is α  and it is assumed w.l.o.g that 1 12 α≤ ≤ . The IS can send 

one out of two noisy signals about M’s decision in the first case, or about the success of 

the investment in the second one. The signal sent by the IS is correct with probability 

α . For simplicity we assume that the precision, α , of the IS  is independent of the 

action of M. If 1α = , the IS is a perfect device and E can perfectly detect the action of 

M in the first case, and the success of the investment in the second one. If 1
2α = , it is 

the case where E is not using any intelligence system.      

This IS is exactly the same to that considered by Biran and Tauman (2009) and to the 

information devices in Solan and Yariv (2004). Hence the models in this thesis are 

closely related to both papers and, like them, to games with communication where the 

                                                           
32 For a survey of this literature see Wilson (1992). 
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noisy signals are determined via free messages that players send according to an 

exogenously specified communication protocol and precede the players’ decisions33. 

Nonetheless, it is worth nothing that Crawford and Sobel (1982) consider a signaling 

game of one sender, S, and one receiver, R. The sender has private information and 

based on his information he sends a noisy signal to the receiver. The receiver then 

chooses an action that affects the utilities of both players based on the signal she 

observes. We can think of M in our models as the sender of the signal since his action 

or the success or failure of his investment automatically induces a noisy signal by the 

IS. The entrant, E, is the receiver of the signal and takes it into account to decide 

whether or not to enter the market.  

In this thesis we consider that the precision α  of the IS may be both exogenously given 

(Chapters 2 and 4) and endogenous (Chapter 3). The first one is the case if a firm has 

already a spying technology before it encounters a new rival (e.g., a firm that has the 

ability to plant a Trojan Horse in the computer system of her rivals). The second one 

would be the case of a firm hiring managers and workers from another one trying to 

obtain industrial secrets from them. For instance, the Volkswagen case in 1997 and the 

Hilton case in 2009 we refer in the motivation section of this chapter, would be real 

examples of this situation.   

Finally, as Biran and Tauman (2009) say, this kind of IS is not a decision maker who 

can act strategically as in Perea and Swinkels (1999) and Ho (2007, 2008). For the value 

of information in strategic conflicts see also Kamien, Tauman and Zamir (1990).  

 

1.4. Structure and Contents. 

The remainder of the thesis is structured in four chapters. 

Chapters two, three and four analyze theoretically industrial espionage in the context 

of entry deterrence. In what follows, we summarize each chapter and point out the 

important results. 

In the second chapter, Entry with a Noisy Signal, a monopoly incumbent (M) wishes to 

deter a potential entrant (E) from entering the market considering a capacity 

                                                           
33 Solan and Yariv (2004), page 175. 
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expansion. Under perfect information E stays out if the capacity of M is expanded and 

enters if M did not expand capacity. Capacity expansion requires investment and E 

does not observe M’s decision of whether or not to invest in capacity. Hence, E enters 

only if she believes that with high probability the capacity was not expanded.  

The entrant E operates an Intelligence System (IS) which set to detect M’s action. The IS 

can send one out of two signals. The signal i  indicating that M invests in new capacity 

and the signal ni  indicating the opposite. The precision of the IS is α , 1 12 α≤ ≤ . 

Namely, the signal sent by the IS is correct with probabilityα . Based on the signal 

received, E decides whether or not (or with what probability) to enter the market. In 

this chapter the precision α  of the IS is exogenously given.  

There are four possible outcomes: (NI, NE), (NI, E), (I, NE), (I, E), where I stands for 

“invest” and NI stands for “not invest”. The interpretation of E and NE is similar. The 

best outcome for M is the status quo outcome (NI, NE). His second best outcome is     

(I, NE). M prefers the outcome (I, NE) on (I, E), and if the investment cost not too high, 

then M prefers the outcome (I, E) on (NI, E). As for E, her best outcome is (NI, E) and it 

is better for her than either (I, NE) or (NI, NE) (in both cases E obtains zero). The worst 

outcome for E is (I, E).  

This model is a game in which M and E choose their actions simultaneously. The 

information is symmetric or asymmetric depending on whether or not M knows the 

precision α  of the IS. Hence, the solution concepts employed in this chapter are Nash 

equilibrium and perfect Bayesian equilibrium.   

A more realistic scenario is the case where α  is a private information of E. But before 

analyzing this case, we study the benchmark case where the value of α  is commonly 

known. If the investment cost is sufficiently high so that M prefers not to invest even if 

he knows that E enters, the result is straightforward. It is a dominant strategy for M not 

to invest and E will enter the market.  

Suppose next that the investment cost is such that M prefers to invest if he knows that 

E enters. Suppose first that E obtains the signal ni . If the IS is not very accurate (α  

falls below a certain threshold, α ) then with probability 1 E enters (believing with high 
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probability that M did not expand his capacity). However, if the IS is sufficiently 

accurate (aboveα ) then, quite surprisingly, E “hesitates” and stays out with a 

significant probability. Suppose next that E obtains the signal i . If the IS is not very 

accurate (belowα ), E hesitates and enters with a positive probability (less than 1), 

taking into account the possible mistake of the IS. If the IS is more accurate, E stays out 

with probability 1. 

Regarding the benefits of the two players, M benefits from the IS more than its owner, 

E, if the IS is relatively accurate. Whenever α  exceeds the threshold,α , E ends up with 

zero payoff and she is indifferent between spying on M or not. The optimal accuracy of 

the IS for E is the threshold valueα  while M is best off with a perfect IS (namely 1α = ). 

The implication is that M should subsidize E for building a perfect IS, even though this 

means that E will be able to perfectly monitor him.  

Next we analyze the asymmetric information case where the precision,α , of the IS is 

the private information of E.  The incumbent M knows the distribution of α but does 

not know the actual realization ofα . In particular it covers the case where E does not 

use an IS ( 1
2α = ) but M believes with positive probability that E does operate an IS of 

a precision 1
2α > . We find out that while the equilibrium strategies are qualitatively 

consistent with the common knowledge case, the payoffs of M and E behave in a more 

intuitive way. Contrary to the complete information case, E obtains positive payoff ifα  

is sufficiently large and this payoff is increasing in α . Furthermore, if M believes that 

the expected value of α  is below the threshold α , then E obtains positive payoff for 

all values of α . As for M and contrary to the complete information case, M is best off 

when E does not spy on him. 

The closest related paper to this chapter is Biran and Tauman (2009). Actually, our 

model is similar in spirit to them, but their context is different and deals with the role 

of intelligence in nuclear deterrence. The preferences of the players are different and so 

are the results. Solan and Yariv (2004) are also closely related to this chapter, but they 

consider that the precision of the intelligence system is the strategic choice of the 

spying player. Another papers where the objective of the espionage activities is the 
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opponent’s strategy are Matsui (1989) and Provan (2008), but their set-up is different 

from ours.  

The contribution of this chapter is the analysis of industrial espionage in the context of 

entry deterrence. The most interesting result is that when the precision α  of the IS is 

common knowledge, M benefits from the IS more than its owner, E.  

In the third chapter, Strategic Choice of the Intelligence System, we extend the model in 

Chapter 2 by assuming that the Intelligent System and its precision α  are a costly 

choice of E. 

While in Chapter 2 α  is exogenously given (and it can either be commonly known or a 

private information of its owner E), in the third chapter we assume that the value of α  

is common knowledge to both firms and it is a strategic choice of E. In this case M can 

either observe or not this choice of E.  

This model is a four-stage game in which E chooses first the precision α  of the IS. In 

the second stage M can observe or nor α  (we consider both cases) and chooses 

whether to invest or not to invest. In the third stage the IS sends a signal " "i  or " "ni , 

and in the last stage, based on the signal observed, E chooses whether or not to enter. 

The solution concept employed is the subgame perfect equilibrium (s.g.p.e.). 

Consider first the case where α  is a strategic choice of E and her choice is perfectly 

observed by M. Suppose that the cost of an IS of precision α  is increasing and convex 

in α . Ex-post M could make two possible mistakes. The first type mistake is that  M 

(unnecessarily) expands his capacity and E decides to stay out. The second type 

mistake is when M does not invest and E enters. Our results depend on whether the 

penalty of M from the first type mistake is smaller or larger than that of the second 

type mistake. 

 If the penalty is smaller for the second type mistake, the optimal choice of E is to build 

an IS of a precision of at most α . Depending on the cost structure, any α  in between 

1
2  and α  can be the optimal choice of E. If  however the penalty of M from 

committing the first type mistake is smaller, the optimal choice of E is not to build any 

IS, irrespective of how small is the cost to build it (provided that it is positive). Sadly 
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for M, this is the worst case scenario. M benefits the higher is the precision of the IS, 

provided that the value of α  is common knowledge to both firms. 

The case where M does not observe the choice α  of E is more difficult to analyze. If 

building an IS of precision α  is cost free, then the only equilibrium is that E chooses to 

build a perfect IS ( 1α = ) and M chooses to invest. In this case E stays out and obtains 

zero. Nevertheless, given that M invests, E will not enter no matter what is α  and she 

cannot benefit from reducing α . Suppose next that the cost of building an IS is linear 

and the marginal cost of α  is constant. If the marginal cost is relatively high, E does 

not spy on M. The difficult part is when the marginal cost is relatively low, but 

positive. It can be shown that there is no equilibrium where E selects a certain α  with 

probability 1. While it is shown that equilibrium exists, we could not find the 

equilibrium probability distribution over α . Similar results are obtained when the cost 

of building an IS is constant, i.e, it does not depend on the precision α . 

The closest related paper to this chapter is Solan and Yariv (2004), but they focus on the 

case where the spied player observes the precision of the device chosen by the spying 

player. In a different set-up, Provan (2008) also considers that the objective of the 

espionage is to obtain information about the opponent’s strategy and analyzes the 

situation where the player has to choose which informational probe he will employ, 

but the opponent does not know which one he will be using. In Gaisford and Whitney 

(1999) the objective of the spying activities is not the opponent’s strategy, but they also 

consider that the precision of the intelligence system is the strategic choice of its owner. 

The contribution of this chapter is to extend the model in Chapter 2 assuming that the 

precision of the IS is a strategic choice of its owner, E. In this chapter we consider the 

case where the spied player (M, in this case) does not observe the choice of E (the 

spying player), scarcely considered in the literature.   

In the fourth chapter, Entry with Two Correlated Signals, a monopoly, M, is engaged in 

R&D to reduce his cost of production and deter a portential entrant, E, from entering 

the market. The outcome of this R&D project is a private information of M and E 

assigns a certain probability that M fails to reduce his cost. If the project fails and E 
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enters, she obtains positive profit. Otherwise, if the project succeeds and E enters, she 

will not be able to cover her entry cost and she will end up with negative profit. 

The entrant has an access to an Intelligence System (IS) that allows her to collect (noisy) 

information about the cost structure of M. The IS sends one out of two signals. The 

signal h , which indicates that the investment was not successful (M is of type H), and 

the signal l , which indicates that the investment was successful (M is of type L). As 

usually, the precision of the IS is α , 1 12 α≤ ≤ . That is, the signal sent by the IS is 

correct with probability α . It is assumed that α  is exogenous and common 

knowledge. 

The entrant decides whether or not to enter the market based on a pair of signals: the 

price, p , that M charges for his product and the signal s  ( h  or l ) sent by the IS. If E 

enters the market, she competes with M (whether it is a Cournot or Bertrand 

competition, or any other mode of competition). 

The case where 1
2α = , namely, where the IS has no value (and, therefore, can be 

ignored), is exactly the limit pricing model of Milgrom and Roberts (1982) (hereafter 

MR). Therefore, our model is an extension of the MR model where the entrant has an 

access to an intelligence system and it is only for 1 12 α< < . 

This model is a game with asymmetric information and the interaction between E and 

M is described as a three-stage game. In the first stage M sets a price and the IS sends a 

signal, h  or l . In the second stage, E who observes both the price set by M and the 

signal sent by the IS, decides whether or not to enter the market. Finally, in the third 

stage, if E enters, M and E compete in the market. The solution concept employed is 

sequential equilibrium. 

We distinguish two cases: the first one is the separating equilibrium where the two 

types of M charge different prices Hp  and Lp , H Lp p≠ ; the second one is the pooling 

equilibrium case where H Lp p= . 

We show that the separating equilibria of our model coincide with that of MR and the 

IS makes no difference for either E or M. This is not very surprising since in a 
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separating equilibrium E identifies the type of M with or without the use of the IS. The 

same result is obtained for pooling equilibria if the precision α  of the IS is sufficiently 

low (close to 1
2 ) to affect the decision of E of staying out. For the other extreme, if α  

is very accurate (close to 1), then contrary to the MR model, pooling equilibrium does 

not exist. In this case, E identifies with high probability the type of M and she will enter 

the market if the signal is h  and she will stay out if the signal is l . The H type 

monopolist, who knows that his type is detected with high probability, has an 

incentive to deviate to his monopoly price, upsetting a pooling equilibrium. For the 

intermediate case, where α is bounded away from 1
2  and 1, we show that the set of 

pooling equilibria is non-empty and the monopoly price of the L-type monopoly is the 

highest pooling equilibrium price. The decision of E is still entering if the signal is h  

and staying out if the signal is l . Note that in the MR model the entrant never enters in 

a pooling equilibrium. Hence, the use of the IS with high probability increases 

competition in pooling equilibrium. The entrant enters the market for intermediate 

levels of α  if the signal is h . This is true even when pooling equilibrium does not exist 

in the MR model. From this point of view, spying on incumbent firms increases 

competition with high probability.  

This chapter is related to Perea and Swinkels (1999) and Ho (2007, 2008) since they also 

consider espionage in the context of asymmetric information. However, in the present 

model the IS is not a decision maker who can act strategically as in Perea and Swinkels 

(1999) and Ho (2007, 2008). The chapter is also related to Sakai (1985) since he considers 

two firms and one objective of the information gathering activity is, like in our model, 

the cost structure of the opponent firm. However, unlike us, the paper considers that 

both firms know neither the costs of their opponent nor their own costs. 

Another related paper is Bagwell and Ramey (1988). They extend the MR model by 

allowing the incumbent to signal his costs with both price and advertisements. Hence, 

while in this paper both signals are sent by the incumbent, in our model he only signals 

his costs by the price, the other signal is generated by the IS operated by the entrant. 

Bagwell (2007) extends Bagwell and Ramey (1988) and considers a more general game 
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in which the incumbent has two dimensions of private information, his costs and his 

level of patience.   

The contribution of this chapter is to extend the MR model to the case where the 

potential entrant has an access to an intelligence system to better detect the cost 

structure of the cost structure of the monopolist. Assuming that the precision α  of the 

IS is common knowledge, we show that spying on incumbent firms increases 

competition with high probability.  

Finally, the fifth chapter summarizes the results of this thesis and presents some 

guidelines for future research. 
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Chapter 2. Entry with a Noisy Signal 

  

2.1. Introduction. 

Information about the reaction of an incumbent firm to a new firm entering the market 

is very important for a firm considering market entry. Since incumbent’s strategy may 

be determined in meetings and filed in reports, it may leak to the potential entrant firm 

by means of industrial espionage34.   

In this chapter we analyze the role of industrial espionage when a monopoly 

incumbent (M) wishes to deter a potential entrant (E) from entering the market 

considering a capacity expansion. Under perfect information E stays out if the capacity 

of M is expanded and enters if M did not expand capacity. Capacity expansion requires 

investment and E does not observe M’s decision of whether or not to invest in capacity. 

Hence, E enters only if she believes that with high probability the capacity was not 

expanded.  

The entrant E operates an Intelligence System (IS) which set to detect M’s action. The IS 

can send one out of two signals. The signal i  indicating that M invests in new capacity 

and the signal ni  indicating the opposite. The precision of the IS is α , 1 12 α≤ ≤ . 

Namely, the signal sent by the IS is correct (it sends the signal i when M invests and 

sends the signal ni , otherwise) with probability α . If 1α =  the IS is a perfect device 

and E can perfectly detect the action of M. The case 1
2α =  is equivalent to not using 

any intelligence system. Based on the signal received, E decides whether or not (or 

with what probability) to enter the market.  

In this model the precision α  of the IS is exogenously given. This would be the case if 

the entrant firm has already a spying technology before she considers entering the 

market where the incumbent firm is operating (e.g. she has the ability to plant a Trojan 

Horse in the computer system of the incumbent firm).  

                                                           
34 Matsui (1989).  
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There are four possible outcomes: (NI, NE), (NI, E), (I, NE), (I, E), where I stands for 

“invest” and NI stands for “not invest”. The interpretation of E and NE is similar. The 

best outcome for M is the status quo outcome (NI, NE). His second best outcome is     

(I, NE). M prefers the outcome (I, NE) on (I, E), and if the investment cost not too high, 

then M prefers the outcome (I, E) on (NI, E). As for E, her best outcome is (NI, E) and it 

is better for her than either (I, NE) or (NI, NE) (in both cases E obtains zero). The worst 

outcome for E is (I, E).  

A more realistic scenario is the case where α  is a private information of E. But before 

analyzing this case, we study the benchmark case where the value of α  is commonly 

known. If the investment cost is sufficiently high so that M prefers not to invest even if 

he knows that E enters, the result is straightforward. It is a dominant strategy for M not 

to invest and E will enter the market.  

Suppose next that the investment cost is such that M prefers to invest if he knows that 

E enters. Suppose first that E obtains the signal ni . If the IS is not very accurate (α  falls 

below a certain threshold, α ) then with probability 1 E enters (believing with high 

probability that M did not expand his capacity). However, if the IS is sufficiently 

accurate (above α ) then, quite surprisingly, E “hesitates” and stays out with a 

significant probability. Suppose next that E obtains the signal i . If the IS is not very 

accurate (below α ), E hesitates and enters with a positive probability (less than 1), 

taking into account the possible mistake of the IS. If the IS is more accurate, E stays out 

with probability 1. 

Let us provide some intuition for these results. If the precision of the IS is relatively 

high, M who knows α  knows that if he does not expand his capacity, E will detect this 

with high probability and she is likely to enter the market. Hence, M expands capacity 

with high probability, and the signal ni  is less likely to occur. Consequently, when E 

observes the signal ni , she can no longer rely on its accuracy and she decides to stay 

out with positive probability. If the precision of the IS is less accurate, M expands 

capacity with smaller probability, knowing that there is a good chance that his action 

will not be detected. The signal ni  is now more likely to be sent and when E observes 

it, she enters the market with probability 1. 
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In equilibrium the unconditional probability that E enters the market decreases, the 

higher is the precision of IS. Hence, M benefits from a better precision of IS. 

Regarding the benefits of the two players, M benefits from the IS more than its owner, 

E, if the IS is relatively accurate. Whenever α  exceeds the threshold, α , E ends up 

with zero payoff and she is indifferent between spying on M or not. The optimal 

accuracy of the IS for E is the threshold value α  while M is best off with a perfect IS 

(namely 1α = ). The implication is that M should subsidize E for building a perfect IS, 

even though this means that E will be able to perfectly monitor him.  

Next we analyze the asymmetric information case where the precision, α , of the IS is 

the private information of E.  The incumbent M knows the distribution of α but does 

not know the actual realization of α . In particular it covers the case where E does not 

use an IS ( 1
2α = ) but M believes with positive probability that E does operate an IS of 

a precision 1
2α > . We find out that while the equilibrium strategies are qualitatively 

consistent with the common knowledge case, the payoffs of M and E behave in a more 

intuitive way. Contrary to the complete information case, E obtains positive payoff if 

α  is sufficiently large and this payoff is increasing in α . Furthermore, if M believes 

that the expected value of α  is below the threshold α , then E obtains positive payoff 

for all values of α . As for M and contrary to the complete information case, M is best 

off when E does not spy on him. 

The closest related paper to this chapter is Biran and Tauman (2009). Actually, our 

model is similar in spirit to them, but their context is different and deals with the role 

of intelligence in nuclear deterrence. The preferences of the players are different and so 

are the results. Solan and Yariv (2004) are also closely related to this chapter, but they 

consider that the precision of the intelligence system is the strategic choice of the 

spying player35. Another papers where the objective of the espionage activities is the 

opponent’s strategy are Matsui (1989) and Provan (2008), but their set-up is different 

from ours36.  

                                                           
35 We consider this situation in Chapter 3. 
36 For more details about all these papers see the literature review in Chapter 1. 
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The contribution of this chapter is the analysis of industrial espionage in the context of 

entry deterrence. The most interesting result is that when the precision α  of the IS is 

common knowledge, M benefits from the IS more than its owner, E.  

The reminder of the paper is organized as follows. The next section sets out the basic 

model. In Section 2.3 we analyze the equilibrium when the precision α  of the IS is 

commonly known. Section 2.4 analyzes the equilibrium when α  is the private 

information of E. And Section 2.5 gives a conclusion of the chapter. The proofs of all 

the results are given in the Appendix of this chapter. 

 

2.2. The Basic Model. 

There are two firms, M and E. The Incumbent Firm, M, is a monopolist and E is a 

potential entrant. In an attempt to deter E from entering M considers whether to invest 

or not to invest in a new capacity. E has an Intelligence System (IS) that monitors the 

action of M. The IS sends a noisy signal, one of the two signals i  or ni . The signal i  

indicates that M invests and the signal ni  indicates that M does not invest. The IS 

sends the right signal with probability α  and the wrong signal with probability 1 α− . 

If 1
2α = , the IS is of no relevance and if 1α = , the IS is perfect. 

The following tree summarizes the above:  

 

Figure 1 

 

Based on the signal received E decides whether or not to enter the market. 

The following table describes the payoffs of the two firms based on their possible 

actions: 
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            E 

      M      

 

E 

 

NE 

           I b, -1 c, 0 

           NI a, 1 1, 0 

 

Figure 2 

 

It is assumed that max( , ) 1a b c< <  and min( , ) 0a b ≥ . 

We consider two cases: (i) a b>  and (ii) b a> . The first case is when the investment 

cost is high and M prefers not to invest even if he knows that E enters. In this case NI is 

a strictly dominat strategy for M and E enters the market irrespective the signal 

received. The more difficult case is where the investment cost is not too high and M 

prefers to invest if he knows that E enters.  

So from now on we assume that 

                                                                   0 1a b c≤ < < <       (AS1) 

Without loss of generality assume 0a = . Then, we replace the table in Figure 2 by 

 

            E 

      M      

 

E 

 

NE 

           I b, -1 c, 0 

           NI 0, 1 1, 0 

 

Figure 3 

 

 

 



 

 

41 

 

2.3. The Case where α  is Commonly Known. 

Suppose that (AS1) holds. We first focus on the case where α  is common knowledge. 

In particular, M knows that E spies on him with an IS of precisionα .  

2.3.1. Two Extreme Cases. 

Let us start with the two extreme cases where 1
2α =  and 1α = . 

The case 1
2α =  is basically the case where E does not operate an IS on M, and the 

strategic game between M and E is described in Figure 3. This game has a unique Nash 

equilibrium in which: M invests with probability 
1

2
 and E enters the market with 

probability 
1

1

c

c b

−
− +

, which is decreasing in both b  and c . Namely, the higher is the 

payoff of M from expanding his capacity the lower is the probability that E enters. 

The payoff of E is zero (E is indifferent between entering and not entering), and the 

payoff of M is 
1

b

c b− +
 (which increases in b  and c ). 

The second case is 1α =  and M’s action is perfectly detected by E. In this case, E 

chooses her action based on M’s action. This game can be described by the following 

tree: 

 
Figure 4 

 

The backward induction is the unique Nash equilibrium. M expands his capacity and E 

does not enter the market. This outcome yields a higher payoff for M than the 

equilibrium outcome for 1
2α = . The payoff of E is zero in both there two cases. 
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Hence, only M benefits from a perfect IS. The entrant, who spies on M and who is able 

to perfectly monitor M’s action (before taking her action) does not benefit at all from 

using it. This result follows by the assumption that is α  commonly known.  

2.3.2. The General Case 1 12 α< < . 

The entrant has four pure strategies. A pure strategy of E is a pair ( ),x y  where both x  

and y  are in { },E NE , x  is the action of E if she observes the signal ni  and y  is her 

action if she observes the signal i . The following figure describes the game, αG , 

between M and E in strategic form (see Figure 1 and Figure 3): 

 

 

  E 

M 

(E, E) (E, NE) (NE, E) (NE, NE) 

I , 1b −  ( )1 , 1c bα α α+ − − +  ( )1 ,b cα α α+ − −  ,0c  

NI 0,1 1 ,α α−  ,1α α−  1,0 

 

Figure 5 

For instance, the strategy ( ),E NE  of E is to enter the market if the signal is ni  and not 

to enter if the signal is i . The strategy ( ),E E  is to enter the market irrespective of the 

signal. 

Note that the strategy ( ),NE E  of E is strictly dominated by her strategy ( ),E NE , 

since 1
2α > . Therefore the strategy ( ),NE E  can be removed, and the resulting game 

is: 
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 E 

M 

(E, E) (E, NE) (NE, NE) 

p I , 1b −  ( ) , 1b c b α α+ − − +  ,0c  

1-p NI 0,1 1 ,α α−  1, 0 

 

Figure 6 

Let 
1 1

max ,
2 1

b

b c
α − =  − + 

. This parameter plays a central role in our analysis. 

We first analyze the case where 1 c b− ≤ . Namely (see Figure 3), the cost of making a 

mistake for M is larger when E enters than when E does not enter. In this case 1
2α = . 

Proposition 1. Suppose that 1 c b− ≤ . Then the game has a unique Nash equilibrium. 

(1) The Entrant does not enter the market if the signal is i  and randomizes between 

entering and not entering if the signal is ni . The Incumbent randomizes between 

expanding and not expanding its capacity. (2) The probability that the Incumbent 

expands his capacity is increasing in α . The probability that the Entrant enters the 

market is decreasing in α . (3) The expected payoff of the Incumbent increases in α . 

The expected payoff of the Entrant is zero. 

Proof. See Appendix. 

Since 1b c≥ −  the penalty of M for not expanding capacity if E enters is relatively high. 

Thus M invests in capacity expansion with relatively high probability. Actually, this 

probability is shown to be equal to the precision α  of the IS and since 1
2α >  E 

expects to observe the signal i  with higher probability than the signal ni . As a result, E 

stays out for sure if she observes the signal i  and E hesitates if she observes the less 

expected signal ni . In the latter case E mixes her two pure actions. The higher is the 

precision α  of the IS the higher is the probability that M invests and the higher is the 

probability that E stays out. Hence, the expected payoff of M increases with α  and the 

expected payoff of E is zero.     

We conclude that for 1 c b− ≤  even if the IS is cost free E has no incentive to use IS 

since her payoff is zero irrespective of the quality α . 
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We next deal with the case where 1 c b− > . In this case 1
2α >  and the equilibrium 

outcome depends on whether α α<  or α α> .  

Proposition 2. Suppose that 1 c b− > . If α α≠ , the game has a unique Nash 

equilibrium. In equilibrium: (1) If E observes the signal ni  she enters the market with 

probability 1 if α α<  and she randomizes her two actions if α α> . If E observes the 

signal i  she randomizes her two actions if α α<  and stays out with probability 1 if 

α α> . (2) The probability that E enters the market is decreasing in α  for all 

( )1 ,12α ∈ . (3) The probability that M expands capacity is decreasing in α  for 

1
2 α α< <  and it is increasing in α  for 1α α< < . (4) The expected payoff of M is 

increasing in α , for all α , and the expected payoff of E is increasing in α  for 

1
2 α α< <  and it is zero for all α , 1α α< < . 

Ifα α= , the game has a multiplicity of equilibria. In equilibrium E enters the market 

with certainty if she observes the signal ni  and E stays out with certainty if she 

observes the signal i . M has a continuum of best reply strategies. 

Proof. See Appendix. 

The proposition implies that E is better off the higher is the precision of the IS as long 

as it is smaller than α  (see Figure 7 below). The incumbent firm is best off with a 

perfect IS, even thought that means perfect monitoring of his actions. Let EΠ  be the 

equilibrium expected payoff of E.  
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Figure 7 

Let us provide intuition for these results. If the precision α  of the IS is sufficiently 

large (α α> ), M who knows α  knows that his action will be correctly detected with 

high probability. He therefore expects that if he does not expand his capacity, E is 

likely to enter. Hence, M expands his capacity with high probability which can be 

shown to be α . Consequently, the signal ni  is not likely to occur. If E observes this 

signal, she should not trust its accuracy and should update her belief about M’s action. 

As a result, she does not enter with positive probability. On the other hand, E expects 

the signal i  and when she observes it, she trusts its accuracy and does not enter with 

probability 1. 

If the precision of the IS is not too accurate ( 1
2 α α< < ), M assigns significant 

probability that his action will not be accurately detected. Therefore, in an attempt to 

conceal his action, M mixes his two strategies I and NI, both with significant 

probabilities (1 α−  and α  respectively). Thus both signals i  and ni  have reasonable 

likelihood to occur. However the signal ni  is more likely than the signal i  since 

1α α> − . As a result E enters with probability 1 if the signal is ni  and randomizes her 

action if the signal is i . 

An increase in the quality α  of the IS increases the reliability of the signal generated. 

Hence, when E observes the signal i  she enters the market with lower probability and 

M is better off. Less intuitive is the fact that as α  increases M invests with lower 

probability and reduces the probability of the signal i . However, we argue that this 
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decreases the probability that E enters. This behavior of M has two opposite effects on 

M’s payoff. The negative effect is the increase of the probability of the signal ni , which 

contributes to the increase of the probability that E enters (E enters with probability 1 

when she observes the signal ni ). On the other hand, it decreases the conditional 

probability that E enters given i , which contributes to the decrease of the probability 

that E enters. It turns out that the latter effect outperforms the negative effect and as a 

result the unconditional probability that E enters decreases with α . 

 

2.4. Asymmetric Information about the Precision of the IS. 

In this section we assume that the precision α  of the IS is the private information of its 

owner, E. The incumbent, who doesn’t know α  assigns a continuous density 

probability ( ) 0>αf  to every α , 1
1

2
α≤ ≤  and ( )

1

1

2

1f dα α =∫ . In other words, E knows 

the game αG  which is actually being played while M doesn’t know what game is being 

played. But M knows that α  is chosen according to ( )αf , and this is commonly 

known. Denote by Γ  this game. 

Let Mu  and Eu  be the utilities of the two firms from the various outcomes. As in the 

previous section (see Figure 3), it is assumed that 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

, , 1

, , 0

, 0 , 1

, 1 , 0

M E

M E

M E

M E

u I E b u I E

u I NE c u I NE

u NI E u NI E

u NI NE u NI NE

= = −
= =
= =

= =

 

Suppose that M chooses I with probability p  and NI with probability p−1 . 
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Figure 8 

The probability that E assigns to the event that M expands his capacity after observing 

the signal i  is 

( ) ( ) ( ),
1 1E

p
Prob I i

p p

αα
α α

=
+ − −

 

Similarly 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1
,

1 1

1
,

1 1

1
,

1 1

E

E

E

p
Prob NI i

p p

p
Prob I ni

p p

p
Prob NI ni

p p

α
α

α α
α

α
α α

α
α

α α

− −
=

+ − −

−
=

− + −

−
=

− + −

 

 

Let ( ),E E iαΠ  be the expected payoff of E if the signal is i  and if she enters the 

market. Then 

( ) ( ) ( ) ( ) ( )

( ) ( )

, , , , ,

1

1 1

E E E E EE i Prob I i u I E Prob NI i u NI E

p

p p

α α α
α

α α

Π = + =

− −=
+ − −

                         (1) 

Similarly 

 ( ) ( ) ( ),
1 1E

p
E ni

p p

αα
α α

−Π =
− + −

                                                                   

 ( ), 0E NE iαΠ =                                                                                                      (2) 
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 ( ), 0E NE niαΠ =                                                                                             

Given p , by (1) and (2), if E receives the signal i  she prefers E on NE iff 

( ) ( )
1

0
1 1

p

p p

α
α α

− − >
+ − −

 

or equivalent iff 1 pα < − . 

That is, if E receives the signal i  she will enter if 1 pα < −  and she will not enter 

1 pα > − . If 1 pα = − , E is indifferent between entering and not entering the market. 

Similarly, if E receives the signal ni  she enters the market iff 

 

( ) ( ) 0
1 1

p

p p

α
α α

− >
− + −

 

or equivalently iff pα > . 

We can write now the best reply strategy of E as a function of the signal she receives. 

 

( )

1 1
, 1

2 2
1 1

, 1
2 2,
1

, 1 1
2
1

any strategy , 1
2

E

NE p

E p p
s i p

NE p p

p p

α

α
α

α

α

 > < ≤

 ≤ < < −


= 
 ≤ − < ≤


 ≤ = −


                                                       (3) 
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Figure 9: ( ),Es i pα  

 

( )

1 1
, 1

2 2
1 1

,
2 2,
1

, 1
2
1

any strategy ,
2

E

E p

NE p p
s ni p

E p p

p p

α

α
α

α

α

 < < ≤

 ≥ < <


= 
 ≥ < ≤


 ≥ =


                                                              (4) 

 

 

Figure 10: ( ),Es ni pα  
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Let ( ) ( )
1

1

2

E f dα α α α= ∫  be the expected value of α . Namely ( )αE  is the expected 

quality of the IS from the perspective of the uninformed M. 

The next proposition shows that the strategic behavior of the two players in the 

asymmetric information case is qualitatively similar to the case where the precision of 

the IS is common knowledge. 

Proposition 3. Suppose that ( ) αα ≠E . Then Γ  has a unique perfect Bayesian 

equilibrium. 

(1) If ( )E α α> , there exists 1 1

1
, 1

2
p p< <  such that M expands his capacity with 

probability 1p . If the signal is ni , E does not enter the market if 1pα <  and she enters if 

1pα > . If the signal is i , E does not enter the market irrespective of the precision α  of 

the IS. 

(2) If ( )E α α< , there exists 2p , 2

1
0

2
p< < , such M expands his capacity with 

probability 2p . If the signal is ni , E enters the market irrespective of the precision α  of 

the IS.  If the signal is i , E does not enter the market if 21 pα > −  and she enters the 

market if 21 pα < − .  

Proof. See Appendix. 

The next two figures illustrate the results of Proposition 3. 
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Figure 11: The decision of E when the signal is ni  

 

 

Figure 12: The decision of E when the signal is i  

Unlike the case where α  is commonly known, the equilibrium strategy of E as a 

function of α  is a pure action (enter or not enter the market with probability 1). 

However, M mixes his two pure actions, similarly to the common knowledge case.  

The action of E depends on both the expected and the actual precision of the IS. If the 

expected precision of IS does not exceed α , M believes that the expected precision of 

the IS is low and with high probability he does not expand capacity believing that E is 

likely not to detect him. Then E, following the signal ni , will enter the market 

irrespective of the actual precision. Furthermore, E will enter the market even if she 

receives the signal i  and if the actual precision α  is relatively small ( 21 pα < − ), 
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otherwise she will not enter the market. If on the other hand, the expected precision of 

the IS exceeds α , M believes that the expected precision of the IS is relatively high and 

in this case E is likely to detect his action. Hence, M expands his capacity with 

relatively high probability, and E, following the signal ni , will enter the market if the 

actual precision is relatively high ( 1pα > ) and will not enter the market otherwise.  

This result is quite consistent with the case where α  is commonly known. When α  is 

commonly known, the actual precision and the expected precision are the same. If it 

does not exceed α , M invests with relatively low probability and E, following the 

signal ni , will enter the market with probability 1. If it exceedsα , M invests with 

relatively high probability and E, following ni , will randomize between entering and 

not entering. In the asymmetric information case the mixing is obtained by varying the 

pure action of E as a function of α . Namely, E of type α  enters the market if 1pα >  

and stays out if 1pα < . 

Next we analyze the expected payoff of the entrant. Let ( )Eπ α  be the equilibrium 

expected payoff of E when the precision of the IS is α .  

The next proposition provides a significant change from the symmetric information 

case. 

Proposition 4. Consider the equilibrium of Γ . Then, 

(1) Suppose that ( ) αα >E . Then for all α  in the interval  ( )1
1 ,2 p  E does not enter 

the market, irrespective of the signal received, and ( )Eπ α is zero in this interval. For 

all α  in ( )1,1p ,  ( )Eπ α  is strictly increasing.  

(2) Suppose that ( ) αα <E . Then for all α  in the interval  ( )2
1 ,12 p−  E enters the 

market, irrespective of the signal sent by the IS, and ( )Eπ α  is a positive constant in 

this interval. On the other hand, for all α  in ( )21 ,1p− , ( )Eπ α  is strictly increasing. 

Proof. See Appendix. 
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Figure 13: The expected payoff of E when ( )E α α>    

 

Figure 14: The expected payoff of E when ( ) αα <E    

In contrast to the common knowledge case, Proposition 4 shows that in the asymmetric 

case E is always best off with a perfect IS. The payoff of E as function of α  is constant 

up to a certain α  (depending on whether or not ( )E α α> ) since her equilibrium 

strategy does not depend on the signal generated by the IS, and there after it is strictly 

increasing because E can detect M’s action with a relatively accurate precision and 

choose her strategy accordingly. When ( )E α α< , the expected equilibrium payoff of 

E is greater than when ( )E α α>  because in the first case M invest with low 

probability believing that E is not likely to detect him and, for large α , E can 

accurately detect that he is not investing and enter the market consequently, while in 
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the second case, M invests with relatively high probability reducing the equilibrium 

expected payoff of E.  

Let ( )Mπ α  be the equilibrium expected payoff of M when the precision of the IS is α .  

The next proposition describes the equilibrium payoff of M. 

Proposition 5. Consider the equilibrium of Γ . Then, 

(1) If ( )E α α> , ( )Mπ α  is constant for 1

1

2
pα< < . For 1 1p α< < , ( )Mπ α  is strictly 

decreasing if 1

1 1

2 1
p

b c
< <

− +
, and it is strictly increasing if 1

1
1

1
p

b c
< <

− +
. 

(2) If ( ) αα <E , ( )Mπ α  is constant for 2

1
1

2
pα< < −  and is strictly decreasing for 

21 1p α− < < .  

(3)  Suppose that ( )E α α> , if c  is sufficiently close to 1, then 1

1

1
p

b c
>

− +
 and 

( )Mπ α  is strictly increasing for 1 1p α< < . If c  is sufficiently small, 1

1

1
p

b c
<

− +
 and 

( )Mπ α  is strictly decreasing. 

Proof. See Appendix. 

 

Figure 15: The expected payoff of M when ( )E α α>  and 1

1 1

2 1
p

b c
< <

− +
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Figure 16: The expected payoff of M when ( )E α α>  and 1

1
1

1
p

b c
< <

− +
    

 

 

Figure 17: The expected payoff of M when ( ) αα <E    

In the common knowledge case M is always best off when E perfectly detects his 

action. The asymmetric case yields different results.  

Up to a certain value of α  the ex-post expected payoff of M is constant because the 

equilibrium strategy of E does not depend on the signal she receives. 

If M believes that the expected precision of the IS is relatively high he is best off when 

E does not spy on him or if the IS has a low accuracy.  

Note that in this case, when 1 1p α< < , the equilibrium payoff of M may be increasing 

or decreasing in α . When the reward, c , from deterring E from entering the market 
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when M expands capacity, is sufficiently close to 1, then (and only then) M benefits 

from large values of α . The reason is that when ( )E α α>  M believes that it is likely 

that E operates a highly accurate IS and in this case E is likely to detect his action. 

Hence, M expands his capacity with relatively high probability and for large α  it is 

likely that the IS generates the signal i , which induces E to stay out. In this case M 

obtains c . Hence, the larger is c  the larger is the probability that M expands capacity37 

(and if c  is sufficiently close to 1, 1

1
1

1
p

b c
< <

− +
). Also the more accurate the IS is the 

higher is the probability that E stays out and the higher is the payoff of M. 

When c  is not sufficient close to 1, M expands his capacity with relatively high 

probability ( 1
1

2p > ) but it is not as large as when c  is sufficient close to 1 (now 

1

1 1

2 1
p

b c
< <

− +
). Then, in this case, for large α  it is more likely that the IS generates 

the signal ni  than when c  is sufficient close to 1, inducing E to enter the market and 

decreasing the expected equilibrium payoff of M. 

However, even when c  is sufficient close to 1, the expected equilibrium payoff of M is 

greater when 1

1

2
pα< <  than when 1 1p α< <  because in the first case E stays out for 

sure while in the second one there exists a chance that she enters the market. That’s 

why M prefers an IS with a low accuracy. 

If M believes that the expected precision of the IS is low, M prefers E to spy on him, but 

with an IS which is not perfect. Actually, the closer α  is to 21 p−  (from above) the 

better is M.  

Note that in this case, when 21 1p α− < < , the equilibrium payoff of M is decreasing in 

α  because in this case with high probability M does not expand capacity believing that 

E is likely not to detect him, and then, as α  becomes larger E is more likely to detect 

M’s action and she is likely to enter. But, even though the expected equilibrium payoff 

                                                           

37 1p  is also increasing in b , but it can be shown that 1 1p p

c b

∂ ∂>
∂ ∂

. See the proof of Proposition 3 in 

the Appendix. 
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of M is decreasing in α  when the IS is quite accurate ( 21 1p α− < < ), it is greater than 

his expected equilibrium payoff when the IS is less accurate ( 2

1
1

2
pα< < − ) because in 

the last case E enters the market for sure while in the first one there exists a chance that 

she stays out. That’s why M prefers a precision of the IS, α , as close as possible to 

21 p−  (from above), because with this precision is more likely that IS generates the 

(less likely) signal i , inducing E to stay out.  

Finally consider the next two examples to illustrate these results.  

Example 1: Consider the uniform distribution case where ( ) 2f α =  for 1 12 α≤ ≤  and 

( ) 0f α =  otherwise. Note that ( ) 3
4E α =  and ( )E α α>  implies that 3 1b c+ > .  

It can be shown that 
( ) 2

1 1

c b c b bc
p

b c

− + + −
=

− +
 and the equilibrium ex-post expected 

payoff ( )Mπ α  of M is increasing in α  for 1 1p α< <  iff 1 12 c< <  and 

( ) 21 6 3
0

2

c c c
b

− − + + −
< < .  

For every other values of b  and c  s.t. 0 1b c< < <  ( )Mπ α  is strictly decreasing. 

Example 2: Assume that 1
2b c= − . Note that in this case it must be that 1 12 c< < . 

Consider, like the example 1, the uniform distribution case where ( ) 2f α =  for 

1 12 α≤ ≤  and ( ) 0f α =  otherwise. ( ) 3
4E α =  and ( )E α α>  implies that 3

8c > .  

It can be shown that 1

1 6 2

3

c
p

+ −=  and the equilibrium ex-post expected payoff 

( )Mπ α  of M is increasing in α  for 1 1p α< < . 

The proof of these examples appears in the Appendix. 

 

2.5. Conclusion. 

In this chapter we analyzed industrial espionage when a potential entrant (E) develops 

an Intelligence System (IS) of precision α  to spy on a monopoly incumbent (M), trying 

to detect his decision of whether or not to invest in capacity expansion, and then decide 
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whether or not to enter the market taking into account this information. We showed 

that, if α  is commonly known to both firms, surprisingly, M is the one who benefits 

from a perfect IS and E who spies on M prefers a less accurate one. If, on the other 

hand, α  is a private information of E, the opposite result is obtained. E is best off with 

a perfect IS and M with a less accurate one. However, the equilibrium strategies of both 

firms in the asymmetric information case are quite consistent with the case where α  is 

common knowledge. 

    

2.6. Appendix 

Proof of Proposition 1. 

Note that the game has no equilibrium in pure strategies (since 1 12 α< < , 0 1c< <  

and 0b > ). And since 1
2α >  there is no equilibrium where the Entrant mixes its three 

pure strategies. 

Consider first the case where the Entrant mixes its strategies ( ),E E  and ( ),E NE . Note 

that in this case the strategy NI of the Incumbent is strictly dominated by its strategy I. 

Hence the Incumbent will deviate from ( ,1 )p p−  to I.  

When the Entrant mixes ( ),E E  and ( ),NE NE , 
1

2
p =  and the Entrant obtains zero. 

But the Entrant will deviate to ( ),E NE  because 
1

0
2

α − >  since 1
2α > . 

If the Entrant mixes ( ),E NE  and ( ),NE NE , p α=  and the Entrant obtains zero. If the 

Entrant deviates to ( ),E E , it obtains 1 2 0α− < , since 1
2α > . Hence, the Entrant will 

not deviate. 

Note that in this case, if the Incumbent chooses the strategy I he obtains 

( ) (1 )b c b q c qα+ − + −   , and if he chooses its strategy NI he obtains 

( )1 (1 )q qα− + − . Hence, in equilibrium, 

 

( ) ( )(1 ) 1 (1 )b c b q c q q qα α+ − + − = − + −    
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Solving for q  we have 

1

(1 )

c
q

b c b cα
−=

− + + −
 

We can conclude that the game has the following equilibrium point: the M’s 

equilibrium strategy is ( ),1p p−  and the E’s strategy is ( )0, ,0,1q q−  where p α=  is 

the probability that M invests and 

1

(1 )

c
q

b c b cα
−=

− + + −
 

 

The expected payoffs of the firms are 

 

 
(2 )

(1 )M

c b b c

b c b c

α
α

− + −Π =
− + + −

 

 0EΠ =  

� 

Proof of Proposition 2. 

Consider five cases: 

Case 1. The Entrant mixes only the two pure strategies ( ),E E  and ( ),E NE  and 

assigns zero probability to the pure strategy ( ),NE NE . The following figure shows the 

resulting game: 

 

           E 

M 

(E, E) (E, NE) 

p I , 1b −  ( ) , 1b c b α α+ − − +  

1-p NI 0,1 1 ,α α−  

 

Figure 18 
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This case is relevant only if 
1

1

b

b c
α α −< =

− +
. If α α> , the strategy NI of the 

Incumbent is strictly dominated by its strategy I, and M will choose I with probability 

1, which contradicts the fact that the game has no equilibrium in pure strategies. Let 

α α<  and suppose that the Incumbent chooses the mixed strategy ( ),1p p−  where 

0 1p< < . If the Entrant chooses ( ),E E , she obtains an expected payoff of 

(1 )p p− + − , while her expected payoff is ( 1 ) (1 )p pα α− + + −  if she chooses ( ),E NE . 

Since the Entrant mixes two pure strategies it must be that 

(1 ) ( 1 ) (1 )p p p pα α− + − = − + + − . 

Solving for p  we obtain * 1p α= − .                                                         

The payoff of the Entrant is 2 1α −  and she has no incentive to deviate to ( ),NE NE  

because 2 1 0α − > . 

Suppose next that the Entrant mixes her two pure strategies ( ),E E  and ( ),E NE  with 

probabilities q  and 1 q−  respectively, where 0 1q< < . If the Incumbent chooses the 

strategy I, he obtains ( ) (1 )bq b c b qα+ + − −   ; and if he chooses NI, he obtains 

( )1 (1 )qα− − . Since *0 1p< <  it must be that 

 

( ) ( )(1 ) 1 (1 )bq b c b q qα α+ + − − = − −    

 

Solvig for q  we have 

 

* 1 (1 )

1 (1 )

b c b
q

c b

α
α

− − + −=
− + −

 

 

We summarize this first case in the following lemma: 
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Lemma 1. Suppose that 1
2 α α< < . Then the game has the following equilibrium 

point: the Incumbent plays ( )* *,1p p−  and the Entrant plays ( )* *,1 ,0,0q q−  where 

* 1p α= −   

* 1 (1 )

1 (1 )

b c b
q

c b

α
α

− − + −=
− + −

                                                                   (A1) 

 

The expected payoffs are 

 * (1 )

1 (1 )M

b

c b

α
α

−Π =
− + −

 

 * 2 1E αΠ = −  

also they both increase in α . 

Case 2. The Entrant mixes only the two pure strategies ( ),E E  and ( ),NE NE  and 

assigns zero probability to ( ),E NE . The resulting game is 

 

            E 

      M        

 

(E,E) 

 

(NE.NE) 

I b, -1 c, 0 

NI 0, 1 1, 0 

 

Figure 19 

Suppose first that the Incumbent mixes his two strategies I and NI and plays ( ),1p p− . 

If the Entrant chooses ( ),E E , she obtains (1 )p p− + − , and if she chooses ( ),NE NE , 

she obtains zero. Since the Entrant mixes these two strategies, (1 ) 0p p− + − = . 

Solving for p  we obtain 
1

2
p =⌢ . 

The expected payoff of the Entrant is zero. If the Entrant deviates to ( ),E NE , she 

obtains 
1

( 1 ) (1 )
2

p pα α α− + + − = −⌢ ⌢
, which is positive. 
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Hence, the Entrant is better off deviating to ( ),E NE , and there is no equilibrium 

where the Entrant mixes only the two pure strategies ( ),E E  and ( ),NE NE . 

Case 3. The Entrant mixes her two pure strategies ( ),E NE  and ( ),NE NE . 

 

  E 

M 

(E, NE) (NE, NE) 

p I ( ) , 1b c b α α+ − − +  ,0c  

1-p NI 1 ,α α−  1, 0 

 

Figure 20 

This case is relevant only if 
1

1

b

b c
α α −> =

− +
. If α α< , the strategy I of M is strictly 

dominated by the strategy NI, and the Incumbent will play NI purely, contradicting 

the fact that the game has no pure strategy equilibrium. Assume therefore that α α> . 

If E chooses ( ),E NE , she obtains ( 1 ) (1 )p pα α− + + − ; and if she chooses ( ),NE NE , 

she obtains zero. Hence in equilibrium, ( 1 ) (1 ) 0p pα α− + + − = . 

Solving for p  we obtain p̂ α= , and E obtains zero. If E deviates to ( ),E E , she obtains 

ˆ ˆ(1 ) 1 2p p α− + − = − , which is negative. Hence, the Entrant has no incentive to deviate.   

Suppose next that E mixes her two pure strategies ( ),E NE  and ( ),NE NE  with 

probabilities q  and 1 q−  respectively. Note that if M chooses the strategy I he obtains 

( ) (1 )b c b q c qα+ − + −   , and if he chooses his strategy NI it obtains ( )1 (1 )q qα− + − . 

Hence, in equilibrium, 

 

( ) ( )(1 ) 1 (1 )b c b q c q q qα α+ − + − = − + −    

 

Solving for q  we have 

1
ˆ

(1 )

c
q

b c b cα
−=

− + + −
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We summarize this case in the following lemma: 

Lemma 2. Suppose that 1α α< < . Then, the game has a unique equilibrium point: the 

Incumbent’s strategy is ( )ˆ ˆ,1p p−  and the Entrant’s strategy is ( )ˆ ˆ0, ,0,1q q−  where 

 

 p̂ α=  

 
1

ˆ
(1 )

c
q

b c b cα
−=

− + + −
                                                                    (A2) 

The expected payoffs of the firms are 

 

 
(2 )ˆ

(1 )M

c b b c

b c b c

α
α

− + −Π =
− + + −

 

 ˆ 0EΠ =  

 

The expected payoff of M increases in α . 

Case 4. The Entrant mixes the three strategies ( ),E E , ( ),E NE  and ( ),NE NE . By 

cases 1 and 3 we must have that * ˆp p= . It can be easily shown that * ˆp p=  iff 1
2α = . 

Consequently, there is no equilibrium in this case as we assumed that 1
2α > . 

Case 5. The Entrant chooses ( ),E NE  purely. This case is relevant only if 

1

1

b

b c
α α −= =

− +
. If α α≠  by cases 1 and 3 we know that there is no equilibrium in 

which E chooses one strategy purely. Assume therefore that α α= . 
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 E 

M 

(E, E) (E, NE) (NE, NE) 

p I , 1b −  
,

1 1

c c

b c b c
−

− + − +
 

,0c  

1-p NI 0,1 1
,

1 1

c b

b c b c

−
− + − +

 
1, 0 

 

Figure 21 

If E plays ( ),E NE  purely, M is indifferent between choosing I or NI and he plays 

( ),1p p−ɶ ɶ . In this case E obtains 

( ) ( )1 11
1

1 1 1

b p b cc b
p p

b c b c b c

− − − +−− + − =
− + − + − +

ɶ
ɶ ɶ  

In order for E not to deviate from ( ),E NE  to ( ),NE NE , 

( )1 1
0

1

b p b c

b c

− − − +
≥

− +
ɶ

 

or equivalently, 

1

1

b
p

b c

−≤
− +

ɶ  

In order for E not to deviate from ( ),E NE  to ( ),E E , 

( )1 1
1 2

1

b p b c
p

b c

− − − +
≥ −

− +
ɶ

ɶ  

or equivalently, 

1

c
p

b c
≥

− +
ɶ  

Note that 
1 1

1 2

b

b c

− >
− +

 since we are assuming 1 c b− > . Then, 
1

1 1

b c

b c b c

− >
− + − +

 and 

we can conclude that 
1

1 1

c b
p

b c b c

−≤ ≤
− + − +

ɶ . 

We summarize this case in the following lemma: 
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Lemma 3. Suppose that α α= . Then, the game has multiple equilibrium points: the 

Incumbent strategy is ( ),1p p−ɶ ɶ  where 
1

1 1

c b
p

b c b c

−≤ ≤
− + − +

ɶ  and the Entrant’s 

strategy is ( ),E NE . 

The expected payoffs of the firms are 

 
1M

c

b c
Π =

− +
ɶ  

 
1

0,
1E

b c

b c

− − Π ∈  − + 
ɶ  

Next let us prove that the unconditional probability that E enters is decreasing in α .  

Consider first the case 1
2 α α< < . By Lemma 1 the Entrant enters the market with 

probability 1 if the signal is ni , and with probability *q  if the signal is i . Hence the 

probability of the Entrant enters the market is 

( ) ( ) ( )*Prob E Prob ni q Prob i= +  

To calculate ( )Prob ni  and ( )Prob i  consider Figure 8 (replacing p  by *p ). We have 

( ) ( ) ( ) ( )2* * 21 1 1Prob ni p pα α α α= − + − = − +  

and 

( ) ( ) ( ) ( )* *1 1 2 1Prob i p pα α α α= + − − = −  

By (A1), 

( )
21 2 (1 )

1 (1 )

b c b
Prob E

c b

α α
α

+ − + +=
− + −

 

And it is decreasing in α , 

( ) [ ]
[ ]2

2 2 (1 ) 1
0

1 (1 )

b c bProb E

c b

α α
α α

 − + − −∂  = <
∂ − + −

 

since [ ] 2 22 (1 ) 1 ( 1) ( ) 0c b b cα α α α− + − − = − − + − < .  

Let us show why this probability is decreasing in α . Note that  

( ) ( ) ( )*Prob E Prob ni q Prob i= +  
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has two components. The first one is the probability that E enters when she receives the 

signal ni , i.e., the probability of ni , ( )Prob ni , 

( ) ( ) ( ) ( )2* * 21 1 1Prob ni p pα α α α= − + − = − +  

which is increasing in α , 

( ) 14 2 0, , 12
Prob ni

α α α
α

∂
= − > ∀ < <

∂
 

The second one is the probability that E enters when she receives the signal i , 

( )*q Prob i , which is decreasing in α . That is, when α  increases and E receives the 

signal i , she “trusts” this signal (as the IS is more accurate) and enters the market with 

lower probability. But she is making a “mistake”, because this signal i  is wrong with 

higher probability as α  increases (since M invests with lower probability): 

( ) ( ) ( ) ( )* *1 1 2 1Prob i p pα α α α= + − − = −  

( ) 12 4 0, , 12
Prob i

α α α
α

∂
= − < ∀ < <

∂
 

It turns out that the negative effect (the positive effect on M’s payoff) produced by the 

probability that E enters when she receives the signal i  (the “mistake”) is greater than 

the positive effect (the negative effect on M’s payoff) produced by the probability that 

E enters when she receives the signal ni , and, hence, the unconditional probability that 

E enters is decreasing in α . 

Next assume that 1α α< < . By Lemma 2, the probability that E enters is 

( ) ˆ ( ) 0 ( )Prob E qProb ni Prob i= +
 

Using the tree in Figure 8 (replacing p  by p̂ ) we have 

( ) ( ) ( ) ( )ˆ ˆ1 1 2 1Prob ni p pα α α α= − + − = −
 

By (A2), 

( ) ( ) ( )2 1 1

(1 )

c
Prob E

b c b c

α α
α

− −
=

− + + −
 

And it is decreasing in α  since 
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( ) ( ) ( )
[ ]

2 2

2

2 1 1 ( )
0

(1 )

c c bProb E

b c b c

α α

α α

 − − − − +∂  = <
∂ − + + −

 

� 

Proof of Proposition 3. 

(1) Suppose that ( )E α α>  where 
1

1

b

b c
α −=

− +
.  Consider first the case where M 

expands his capacity with probability 
1

1
2

p< < . Let ( )ME pα Π  be the expected 

payoff of M, if he plays the mixed strategy ( )pp −1, . In this case, M expands his 

capacity with probability p , the signal i  is observed with probability α  and the signal 

ni  is observed with probability α−1 . Hence 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

2 2

1 1

1 1
2 2

, 1 , 1 ,

1 , , 1 ,

p

M M M M

p

p

M M M

p

E p p u I NE f d u I NE f d u I E f d

p u NI NE f d u NI E f d u NI NE f d

α α α α α α α α α α

α α α α α α α α α

 
 Π = + − + − + 
  

 
 + − + + − 
  

∫ ∫ ∫

∫ ∫ ∫

 

Since ( ) ( ) ( ) ( ), , , , , 0 and , 1M M M Mu I E b u I NE c u NI E u NI NE= = = =  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

2 2

1

1 1
2 2

1 1

1 1

p

M

p

p

E p p c f d c f d b f d

p f d f d

α α α α α α α α α α

α α α α α α

 
 Π = + − + − + 
  

 
 + − + − 
  

∫ ∫ ∫

∫ ∫

 

Since ( ) 1
1

2

1

=∫ αα df  

( ) ( ) ( ) ( ) ( )
1 1

(1 ) 1 1M

p p

E p p c b c f d p f dα α α α α α α
   

Π = + − − + − −   
      

∫ ∫                          (A3) 
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Note that E observes neither the mixed strategy played by M nor his actual action. She 

only observes the signal sent by the IS. Hence, if M unilaterally deviates from his 

mixed strategy ( )pp −1,  to any other strategy, the strategy of E (as a function of her 

type α  and the signal observed) does not change, but the probabilities of the signals 

do change. In equilibrium, M should be indifferent between playing ( )pp −1,  and 

playing either one of his pure strategies, since 10 << p . That is 

                                                    ( ) ( )0 1M ME Eα αΠ = Π                                                   (A4) 

By (A3) and (A4) 

                  ( ) ( ) ( )
1 1

(1 ) 1
p p

c b c f d f dα α α α α α+ − − = −∫ ∫                                             (A5) 

Let 

( ) ( ) ( ) ( )
1 1

1 (1 )
p p

g p c b c f d f dα α α α α α≡ − + − − +∫ ∫  

be defined for all 
1

1
2

p≤ ≤ . Since ( )αf  is continuous in α , ( )g p  is continuously 

differentiable in p . Also 

( ) ( )1
1 1

2
g b b c E α  = − + + − + 
 

 

By our assumption ( ) 1

1

b
E

b c
α −>

− +
, 0

2

1 >







g . Since ( )1 1 0g c= − <  by the Mean 

Value Theorem there is 1p , 1

1
1

2
p< < , such that ( )1 0g p = . 

Next 

( ) ( ) ( ) ( ) ( )
( ) ( )

1

1 ( )

g p b c f p b c p f p

b c p b c f p

′ = − − − − + =

= − − + − −  
 

Since ( ) 0f p >  

( ) 0g p′ >  iff 
1

c b
p

b c

−<
− +
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Hence ( )g p  is decreasing for 
1

1
2

p≤ <  since 
1

1 2

c b

b c

− <
− +

.  Since  
1

0
2

g
  > 
 

 and 

( )1 0g <  then g  intersects the x-axis only once. Namely, there is a unique 1p  such that 

( )1 0g p =  and 1

1
1

2
p< < . Then 1p  is the unique solution of (A5) and 1

1

2
p >  which is 

consistent with our assumption. 

Next observe that there is no equilibrium strategy ( )pp −1,  such that 
1

2
p ≤  and 

( ) 1

1

b
E

b c
α −>

− +
. Otherwise (A5) should be replaced by 

( ) ( ) ( )
1 1

1 1

2 2

(1 ) 1c b c f d f dα α α α α α+ − − = −∫ ∫  

This implies that 

( ) 1

1

b
E

b c
α −=

− +
, 

a contradiction. We conclude that whenever ( ) 1

1

b
E

b c
α −>

− +
 there exists a unique 

equilibrium. M chooses to expand capacity with probability 1

1

2
p > and E takes an 

action as described in (3) or (4). Namely, if E observes the signal i , she doesn’t enter 

the market irrespective of her type α . If the signal is ni  E does not enter the market iff 

1

1

2
pα< < . 

Next let us prove that 1 0
p

c

∂ >
∂

, 1 0
p

b

∂ >
∂

 and 1 1p p

c b

∂ ∂>
∂ ∂

. 

We know that 

                      ( ) ( )
( )

( )
( )1 1

1 1

, ,

(1 ) 1
p b c p b c

c b c f d f dα α α α α α+ − − = −∫ ∫                           (A6) 

Deriving (A6) with respect to c  and operating we have 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
1

1
1 1

1

,

, ,
1 1 , (1 )

p b c

p b c p b c
c b p b c f p f d pf p

c c
α α α

∂ ∂
+ − − − − =   ∂ ∂∫  
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          ( )[ ]{ } ( ) ( ) ( )
( )1

1
1

1

,

,
, 1 (1 ) 1

p b c

p b c
c b p b c b c f p f d

c
α α α

∂
− − − + = − −

∂ ∫                   (A7) 

Note that ( )[ ]1 , 1 0c b p b c b c− − − + <  since 
1

1 2

c b

b c

− <
− +

 and ( )1

1
,

2
p b c > . Hence, 

( )1 ,
0

p b c

c

∂
>

∂
. 

Deriving (A6) with respect to b  and operating we have 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
1

1
1 1

1

,

, ,
(1 ) 1 ,

p b c

p b c p b c
f d c b p b c f p pf p

b b
α α α

∂ ∂
− + − − =   ∂ ∂∫  

              ( )[ ]{ } ( ) ( ) ( )
( )1

1
1

1

,

,
, 1 (1 )

p b c

p b c
c b p b c b c f p f d

b
α α α

∂
− − − + = − −

∂ ∫                 (A8) 

Similarly to the previous case we can conclude that 
( )1 ,

0
p b c

b

∂
>

∂
. 

From (A7) and (A8) we know that 

( )
( )

( )

( )[ ]{ } ( )
1

1

,1

1

(1 ) 1
,

, 1
p b c

f d
p b c

c c b p b c b c f p

α α α− −
∂

=
∂ − − − +

∫
 

( )
( )

( )

( )[ ]{ } ( )
1

1

,1

1

(1 )
,

, 1
p b c

f d
p b c

b c b p b c b c f p

α α α− −
∂

=
∂ − − − +

∫
 

Note that 
( ) ( )1 1, ,p b c p b c

c b

∂ ∂
>

∂ ∂
 since  

( )
( )

( )
( )

( )
1 1

1 1 1

1, ,
2

1 1 1
(1 )

2 2 2p b c p b c

f d f d f dα α α α α α α− ≤ < =∫ ∫ ∫  

(2) Suppose next that ( ) 1

1

b
E

b c
α −<

− +
. Consider the case where M expands his 

capacity with probability 
1

, 0
2

p p< < . Similarly to the previous case 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 11
2 2

11 1

1 1 1
2 2

, , 1 ,

1 , 1 , 1 ,

p

M M M M

p

p

M M M

p

E p p u I E f d u I NE f d u I E f d

p u NI E f d u NI E f d u NI NE f d

α α α α α α α α α α

α α α α α α α α α

−

−

−

−

 
 Π = + + − + 
  

 
 + − + − + − 
  

∫ ∫ ∫

∫ ∫ ∫

 

Since ( ) ( ) ( ) ( ), , , , , 0 and , 1M M M Mu I E b u I NE c u NI E u NI NE= = = =  

        ( ) ( ) ( ) ( ) ( )
1 1

1 1

( ) 1 1M

p p

E p p b c b f d p f dα α α α α α α
− −

   
Π = + − + − −   

      
∫ ∫               (A9) 

In equilibrium where 10 << p  we have 

 ( ) ( )0 1M ME Eα αΠ = Π                                                  (A10)                                         

By (A9) and (A10) we have 

 ( ) ( ) ( )
1 1

1 1

( ) 1
p p

b c b f d f dα α α α α α
− −

+ − = −∫ ∫                                (A11) 

Let 

( ) ( ) ( ) ( )
1 1

( ) 1
x x

m x b c b f d f dα α α α α α≡ + − − −∫ ∫  

be defined for all 
1

1
2

x≤ ≤ . Clearly ( )m x  is continuous and differentiable. 

By our assumption 

( ) ( ) ( )1
1 1 0

2
m b c E bα  = − + + − < 
 

 

Also 

( )1 0m b= >  

In addition 

( ) ( ) ( )1 1m x b c x f x′ = − − +    

Since ( ) 0>xf  

( ) 0m x′ >  iff 
1

1
x

b c
<

− +
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Hence m  increases for 
1 1

2 1
x

b c
≤ <

− +
 and decreases for 

1
1

1
x

b c
< ≤

− +
. Since  

1
0

2
m
  < 
 

 and ( )1 0m >  then m  intersects the x-axis only once. Namely, there is a 

unique x  such that ( ) 0m x =  and 
1

1
2

x< < . Thus there exists a unique 20 1p< <  

such that 2p  is the unique solution of (A11), and 2

1

2
p <  which is consistent with our 

assumption. 

Next it is easy to verify (similarly to the previous case) that there is no equilibrium 

where 
1

2
p ≥  while ( ) 1

1

b
E

b c
α −<

− +
. We conclude that whenever ( ) 1

1

b
E

b c
α −<

− +
 

there exists a unique equilibrium: M expands his capacity with probability 2p ,  

2

1
0

2
p< < . As for E, if the signal is i , E enters the market iff 21 pα < − . If the signal 

is ni , E enters the market, irrespective of α . 

It is also easy to verify that there is no equilibrium where M is playing a pure strategy. 

Suppose that M expands his capacity with probability 1. The strategy of E is not to 

enter the market irrespective of the signal or of α . Hence, M obtains c . If he does not 

expand his capacity and E does not enter the market, he obtains 1 c> . Similarly, if in 

equilibrium, M does not expand his capacity with probability 1, then E’s best reply 

strategy is to enter the market irrespective of α  and M obtains 0 . If he expands 

capacity, he obtains 0b > . Consequently, M is better off deviating from any one of his 

pure strategies. This completes the proof of the proposition. 

� 

Proof of Proposition 4. 

By (3), (4) and Proposition 3 it is easy to verify that 
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( )

( )
( )
( )
( )

2 2

2 2

1

1 1

1
1 2 , , 1

2
, , 1 1

1
0 , ,

2
, , 1

E

p E p

p E p

E p

p E p

α α α

α α α α
π α

α α α

α α α α

 − < < < −


− < − < <= 
 > < <

 − > < <

 

and the proof follows immediately. 

� 

Proof of Proposition 5:  

By (3), (4) and Proposition 3  it is easy to verify that 

( )

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 2

2 2 2

1 1 1

1 1 1

1
, , 1

2
1 1 1 1 , , 1 1

1
1 , ,

2
1 1 1 1 , , 1

M

p b E p

p b c p b E p

p c p E p

p b c p b E p

α α α

α α α α
π α

α α α

α α α α

 < < < −


− + − + − − < − < <  = 
 + − > < <

 − + − + − − > < <  

 

Note that when ( )E α α< , ( ) ( )2 21 1 1 1p b c p bα− + − + − −    at 21 pα = −  is 

( ) ( )2 2 21 1p b p p b c+ − − + , and at 1α =  is 2p c . 

Next note that ( ) ( )2 2 2 21 1p b p p b c p c+ − − + >  iff 2

1

1
p

b c
<

− +
, but this always holds 

because 2

1
0

2
p< <  and 

1 1
1

2 1 b c
< <

− +
. Similarly it can be shown that 

( ) ( )2 21 1 1 1p b c p bα− + − + − −    is decreasing in α . 

Next consider the case where ( )E α α> . 

Note that ( ) ( )1 11 1 1 1p b c p bα− + − + − −    at 1pα =  is ( )1 1 1 2 1p p b c b− + − + +   , 

and ( ) ( )1 1 1 11 2 1 1p p b c b p c p− + − + + < + −    iff ( ) ( )1 11 1 0p b c p− + − < , i.e., 

always. 

Next note that ( ) ( )1 11 1 1 1p b c p bα− + − + − −    at 1α =  is 1p c , and 

( )1 1 11 2 1p p b c b p c− + − + + >    iff 1

1 1

2 1
p

b c
< <

− +
.  
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Similarly, ( ) ( )1 11 1 1 1p b c p bα− + − + − −    is decreasing in α iff 1

1 1

2 1
p

b c
< <

− +
. 

Let us now prove that 
1

0
1

g
b c

  > − + 
 if c  is sufficiently close to 1. 

( ) ( ) ( )
1 1

1 1

1 1

1
1 (1 )

1
b c b c

g c b c f d f d
b c

α α α α α α

− + − +

  = − + − − + − + 
∫ ∫  

If c  is sufficiently close to 1, 
1

1
g

b c
 
 − + 

 is sufficiently close to 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1
2 2

1 1

1 1

2 2

1 1 1

1 1 1

2 2 2

1 (1 )

1 2

1 0

b b

b b

b b b

b f d f d

b f d b f d

b f d f d b f d

α α α α α α

α α α α α

α α α α α α

− −

− −

− − −

− − +

= − + −

> − + = >

∫ ∫

∫ ∫

∫ ∫ ∫

 

 

Since ( ) 0g p′ <  for all 1, 12p p< < , and 
1

0
1

g
b c

  > − + 
 for c  sufficiently large, we 

have that 1

1

1
p

b c
>

− +
. 

� 

Next let us prove the two examples. 

Example 1: Consider the uniform distribution where ( ) 2f α =  for 1 12 α≤ ≤  and 

( ) 0f α =  otherwise. In this case ( ) 3
4E α =  and ( )E α α>  implies that 3 1b c+ > . 

From (A5) we have, 

( )
1 1

2(1 ) 1 2
p p

c b c d dα α α α+ − − = −∫ ∫  

Operating and solving for p , we obtain 

( ) ( )21 2 0c b p b c p b+ − + − − =  
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( ) 2

1 1

c b c b bc
p

b c

− + + −
=

− +
                                          (A12) 

Note that 
( ) 2 1

1 1

c b c b bc

b c b c

− + + −
>

− + − +
 iff ( )2 1 1 2 0b b c c+ − + − < , or equivalently, 

( ) 21 6 3
0

2

c c c
b

− − + + −
< < . 

Note also that 
( ) 21 6 3

0
2

c c c
c

− − + + −
< <  iff 1 12 c< < . 

� 

Example 2: Suppose that 1
2b c= − . In this case 1 12 c< <  and the equilibrium ex-

post expected payoff ( )Mπ α  of M is given by 

 

( )

( ) ( )

( )

( ) ( )

( )

2 2

2 2 2

1 1 1

1 1 1

11 , , 12 2
3 3

1 1 , , 1 1
2 2

1
1 , ,

2
3 3

1 1 , , 1
2 2

M

p c E p

p p c E p

p c p E p

p p c E p

α α α

α α α α
π α

α α α

α α α α

 − < < < −

    − + − − < − < <     = 
 + − > < <


    − + − − > < <     

 

 

It is easy to verify that if ( )E α α> , ( )Mπ α  is strictly decreasing for 1 1p α< <  if 

1

1 2

2 3
p< < , and is strictly increasing if 1

2
1

3
p< < . 

Now consider, like in example 1, the uniform distribution where ( ) 2f α =  for 

1 12 α≤ ≤  and ( ) 0f α =  otherwise. Note that ( ) 3
4E α =  and ( )E α α>  implies 

that 3
8c > . 

Replacing 1
2b c= −  in (A12), we have 
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1

1 6 2

3

c
p

+ −=  

 

Note that 
1 6 2 2

3 3

c+ − >  iff 1 12 c< < . Then the equilibrium ex-post expected payoff 

( )Mπ α  of M is increasing in α  for 1 1p α< < .  

� 
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Chapter 3. Strategic Choice of the Intelligence System 

 
3.1. Introduction. 

The precision of the intelligence system operated by the potential entrant may be both 

exogenously given38 or endogenous. The first one would be the case if the entrant firm 

has already a spying technology before she considers entering the market where the 

incumbent firm is operating (e.g. she has the ability to plant a Trojan Horse in the 

computer system of the incumbent firm). The second one would be the case of entrant 

firm hiring managers and workers from the incumbent firm trying to obtain industrial 

secrets (in this case information about the incumbent’s action) from them. 

In this chapter we analyze the model in Chapter 2 when the Intelligent System and its 

precision α  are a costly choice of E. While in Chapter 2 α  is exogenously given (and it 

can either be commonly known or a private information of its owner E), in the present 

chapter we assume that the value of α  is common knowledge to both firms and it is a 

strategic choice of E. In this case M can either observe or not this choice of E.  

Consider first the case where α  is a strategic choice of E and her choice is perfectly 

observed by M. Suppose that the cost of an IS of precision α  is increasing and convex 

in α . Ex-post M could make two possible mistakes. The first type mistake is that  M 

(unnecessarily) expands his capacity and E decides to stay out. The second type 

mistake is when M does not invest and E enters. Our results depend on whether the 

penalty of M from the first type mistake is smaller or larger than that of the second 

type mistake. 

 Suppose first that the penalty is smaller for the second type mistake. Then the optimal 

choice of E is to build an IS of a precision of at most α . Depending on the cost 

structure, any α  in between 1
2  and α  can be the optimal choice of E. If  however the 

penalty of M from committing the first type mistake is smaller, the optimal choice of E 

is not to build any IS, irrespective of how small is the cost to build it (provided that it is 

positive). The intuition is as follows. This is the case where the penalty of not 

                                                           
38 Like in Chapters 2 and 4 of this thesis. 
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expanding the capacity (and E enters) is higher than the penalty of the other mistake of 

expanding capacity (and E stays out). In this case M invests with probability higher 

than 1
2  and E expects to observe the signal i  with high probability. Therefore, if E 

observes i , she stays out for sure. If, however, E observes the less expected signal ni , 

she is “confused” and mixes between entering and not entering. This can happen only 

if she is indifferent between these two choices and E obtains zero irrespective of α . 

Hence if the cost of building an IS  is positive, she is best off not spying on M. Sadly for 

M, this is the worst case scenario. M benefits the higher is the precision of the IS, 

provided that the value of α  is common knowledge to both firms. 

The case where M does not observe the choice α  of E is more difficult to analyze. If 

building an IS of precision α  is cost free, then the only equilibrium is that E chooses to 

build a perfect IS ( 1α = ) and M chooses to invest. In this case E stays out and obtains 

zero. Nevertheless, given that M invests, E will not enter no matter what is α  and she 

cannot benefit from reducing α . Suppose next that the cost of building an IS is linear 

and the marginal cost of α  is constant. If the marginal cost is relatively high, E does 

not spy on M. The difficult part is when the marginal cost is relatively low, but 

positive. It can be shown that there is no equilibrium where E selects a certain α  with 

probability 1. While it is shown that equilibrium exists, we could not find the 

equilibrium probability distribution over α . Similar results are obtained when the cost 

of building an IS is constant, i.e, it does not depend on the precision α . 

The closest related paper to this chapter is Solan and Yariv (2004), but they focus on the 

case where the spied player observes the precision of the device chosen by the spying 

player. In a different set-up, Provan (2008) also considers that the objective of the 

espionage is to obtain information about the opponent’s strategy and analyzes the 

situation where the player has to choose which informational probe he will employ, 

but the opponent does not know which one he will be using. In Gaisford and Whitney 

(1999) the objective of the spying activities is not the opponent’s strategy, but they also 
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consider that the precision of the intelligence system is the strategic choice of its 

owner39.   

The contribution of this chapter is to extend the model in Chapter 2 assuming that the 

precision of the IS is a strategic choice of its owner, E. In this chapter we consider the 

case where the spied player (M, in this case) does not observe the choice of E (the 

spying player), scarcely considered in the literature.   

The structure of the chapter is as follows. Sections 3.2 and 3.3 analyze the case when M 

observes α  and where M does not observe it, respectively. Section 3.4 concludes the 

chapter. The proofs of all the results are given in the Appendix of this chapter.  

 

3.2. The Strategic Choice of α  when M Observes It. 

Let 0Γ  be defined like the game αG  (see Chapter 2) except that α  is a strategic 

variable of E and ( )γ α  is the cost of building an IS of quality α . We assume that M 

observes the choice α  of E before he chooses whether to invest or not. The game 1Γ , 

defined later on, deals with the case where M does not observe E’s choice of α .  

The game 0Γ  is a four-stage game in which E chooses first the precision α  of the IS. In 

the second stage M observes α  and chooses whether to invest or not to invest. In the 

third stage the IS sends a signal " "i  or " "ni , and in the last stage, based on the signal 

observed, E chooses whether or not to enter. We analyze the subgame perfect 

equilibrium (s.g.p.e.) of 0Γ . 

3.2.1. The General Case. 

Suppose that the cost of building an IS is ( )γ α . Assume that 1( ) 02γ = , (́ ) 0γ α >  and 

´́ ( ) 0γ α > .  

Ex-post M could make two possible mistakes. The first type mistake is that  M 

(unnecessarily) expands his capacity and E decides to stay out. The second type 

mistake is when M does not invest and E enters. Note that 1 c−  is the penalty of M 

from the first type mistake and b  is his penalty from the second type mistake (see 

                                                           
39 For more details about these papers see the literature review in Chapter 1. 
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Figure 3 in Chapter 2). Our results depend on whether the penalty of M from the first 

type mistake is smaller or larger than that of the second type mistake. 

Consider first the case where 1b c+ < , namely, the penalty is smaller for the second 

type mistake. In this case 
1 1

1 2

b

b c
α −= >

− +
. By Proposition 2 in Chapter 2, for every α  

the equilibrium expected payoff of E is given by  

                  ( )
( )

( )

( ) ( )

12 1 , 2
, 1

1
, ,
1

E

b c

b c

α γ α α α

α γ α α α

γ α γ α α α


 − − ≤ <
Π = − < ≤
 − − ∈ − − =  − + 

                             (1) 

The next proposition characterizes the subgame perfect equilibrium choice of α . 

Proposition 1. Let 1b c+ < . The game 0Γ  has a unique subgame perfect equilibrium. 

Suppose that 1( ) 02γ = , (́ ) 0γ α >  and ´́ ( ) 0γ α >  for all 1 ,12α  ∈  . Let *α  be the 

equilibrium choice of E. Then, (i) * 1
2α =  and E does not operate an IS on M iff 

( )1´ 22γ ≥ , (ii) *α α=  iff ( )´ 2γ α ≤ , (iii) *1
2 α α< <  and ( ) ( )1* ´ 2α γ −=  iff 

( )1´ 22γ <  and ( )´ 2γ α > . In the last two cases E obtains a positive net payoff and in 

the first case his payoff is zero. 

Proof. See Appendix. 

The following figure summarizes Proposition 1: 

 

Figure 1 
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Proposition 1 asserts that, when the penalty is smaller for the second type mistake, E 

only benefits from spying on M if ( )1´ 22γ <  and the optimal choice of E is to build an 

IS of a precision of at most α . Depending on the cost structure, any α  in between 1
2  

and α  can be the optimal choice of E. 

Note that, although there are multiple equilibrium strategies for M in αG  in case 

α α=  (see Proposition 2 of Chapter 2), the game 0Γ  has a unique s.g.p.e. even when 

*α α=  is the equilibrium choice of E. This is because there is no equilibrium where M 

chooses at α α=  to invest with probability higher than 1 α−  since, if M invests with 

probability higher than 1 α− , E has an incentive to slightly lower α  below α . We 

conclude that the unique subgame perfect equilibrium outcome in this case is α α= , 

and M invests in capacity with probability 1 α− . 

Consider next the case where 1b c+ ≥ , namely, the penalty of M from committing the 

first type mistake is smaller. In this case the entrant obtains zero payoff even if the cost 

( )γ α  is zero (see Proposition 1 in Chapter 2), and her payoff is negative if the cost is 

positive, unless 1
2α = . Hence the entrant in this case does not build an IS, that is 

* 1
2α = . 

We summarize this case by the following proposition. 

Proposition 2. Suppose that 1b c+ ≥ . Then any subgame perfect equilibrium of 0Γ  

and for every increasing cost function ( )γ α  with 1( ) 02γ = , * 1
2α = . 

3.2.2. Examples. 

In this section we consider three examples to better understand the last results. 

Example 1. 

Consider a specific case of the cost function ( )γ α  where 

1
( ) 2

1
kγ α

α
 = − − 

 

The only interesting case is where 1b c+ < . In this case 
1 1

1 2

b

b c
α −= >

− +
. By (1), 
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( )

1 12 1 2 , 21

1
2 , 1

1

1 1 1
2 , 2 ,

1 1 1

E

k

k

b c
k k

b c

α α α
α

α α α
α

α α
α α

  − − − ≤ <  − 
  Π = − − < <  − 
  − −    ∈ − − − − =     − − + −     

. 

Claim 1. (1) Suppose that 
( )

2

2

2 1

21

c
k

b c
< <

− +
. Then * 1

2

kα = −  and *1
2 α α< < . E 

obtains a net payoff of ( )2

1 2 0k− > . 

(2) Suppose that 
1

2
k ≥ . Then * 1

2α =  and E does not operate an IS on M and 

obtains zero expected payoff. 

(3) Suppose that 
( )

2

2

2
0

1

c
k

b c
< ≤

− +
. Then *α α= , M chooses at α  to invest in 

capacity with probability 1 α−  and E obtains a net payoff of ( ) 1
1

1

k
b c

b c c
 − − − − + 

. 

Proof. See Appendix. 

Example 2. 

Consider that the cost is linear, namely ( )1( ) 2γ α γ α= − , 0γ ≥ .  

This case can be easily analyzed using the results of Chapter 2. As before let 

1 1
max ,

2 1

b

b c
α − =  − + 

. 

Claim 2. (1) Suppose that 2γ ≠ . Then there exists a unique s.g.p.e. in 0Γ and it is 

characterized as follows: If 1b c+ <  then 

                      (i) For 2γ >  we have * 1
2α = , namely E does not build an IS and the 

equilibrium strategies are that of 1
2

G . E obtains zero payoff. 
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                      (ii) For 2γ <  we have *α α= , namely E builds an IS of precision α , M 

invests with probability 
1

c

b c− +
 and E enters the market iff the signal is ni . E Obtains 

positive payoff. 

                      If 1b c+ ≥  then for any 0γ ≥  we have * 1
2α =  and E obtains zero payoff. 

                (2) Suppose that 2γ = . Then every α , 1
2 α α≤ ≤  can be supported as 

s.g.p.e. outcome, and E does not benefit from building an IS. 

Proof. See Appendix. 

The only case where E benefits from spying on M is when 1b c+ <  and the marginal 

cost γ  of building an IS is less than 2. When 1b c+ <  M invests with probability less 

than 1
2 . Actually, the higher is α  up to α , the lower is the probability that M invests. 

For α α>  this probability is increasing and approaches 1, as α  approaches 1. Hence, 

at α  the probability that M invests is the lowest and E benefits the most (see 

Proposition 2 of Chapter 2). This result does not change even when the cost of building 

an IS is increasing in α  provided that 2γ < . 

In contrast, in the case where 1b c+ ≥  the probability that M invests is increasing in α  

for all 1 12 α≤ ≤  and E obtains zero irrespective of the magnitude of α  (see 

Proposition 1 of Chapter 2). In this case E has no incentive to build an IS. 

Note that there are multiple equilibrium strategies for M in αG  in case α α= . 

Nevertheless, the game 0Γ has a unique s.g.p.e. even when *α α=  is the equilibrium 

choice of E (in case 1b c+ <  and 2γ < ). 

Let ( ) ( )1 1
21

b c
R

b c
γ γ α− −≡ − −

− +
. 

Then ( ) 0R γ <  iff 2γ > . In this case the payoff of E is negative for all α  except 

1
2α = . If 2γ <  then ( ) 0R γ >  and E obtains positive payoff at α α=  If given γ , M 

chooses pɶ  which is sufficiently close to 
1

c

b c− +
. However if M chooses any 
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1

c
p

b c
>

− +
ɶ  then E is better off reducing α  slightly below α  (see Figure 7 in Chapter 

2). Thus the only equilibrium is where E chooses α  following by (NE, E) and M 

chooses 
1

c
p

b c
=

− +
ɶ .    

Example 3.  

Suppose next that the cost of building an IS does not depend on the quality α , 

1 12 α< ≤ . Namely, 

10, 2( )
1, 12

α
γ α

γ α

 == 
< ≤

 

It is easy to verify the following result, 

Claim 3. Suppose that for all 1 12 α< ≤  ( )γ α γ≡ , 0γ ≥  and ( )1 02γ = . The game 0Γ  

has a unique s.g,p.e. 

(1) If 1b c+ <  then 

(i) For 
1

1

b c

b c
γ − −>

− +
 we have * 1

2α = , namely E does not build an IS and 

the equilibrium strategies are that of 1
2

G . E obtains zero payoff. 

(ii) For 
1

1

b c

b c
γ − −<

− +
 we have *α α= , namely E builds an IS of precision α , 

M invests with probability 
1

c

b c− +
 and E enters the market iff the 

signal is ni . E obtains positive payoff. 

(iii) For 
1

1

b c

b c
γ − −=

− +
 both α α=  and 1

2α =  can be supported as s.g.p.e. 

outcome. In both cases E obtains zero. 

(2) If 1b c+ ≥  then for any 0γ ≥  we have * 1
2α =  and E obtains zero payoff. 

Proof. See Appendix. 

Note that the only case where E is better off spying on M is when 1b c+ <  and 

1
0

1

b c

b c
γ − −≤ <

− +
. 
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3.3. The Strategic Choice of α  when M does not Observe It. 

Let 1Γ  be defined like 0Γ  except that we assume now that M does not observe the 

choice α  of E before he chooses whether to invest or not.  

This case is more difficult to analyze and we consider three particular cases: the case 

where the cost of building an IS is linear, the case where the IS is cost free and the case 

where the cost is constant. 

Suppose first that the cost of building an IS of any precision is zero. Namely, ( ) 0γ α =  

α∀ , 1 12 α≤ ≤ . 

Proposition 3. If the IS is cost free, the game 1Γ  has a unique s.g.p.e., * 1α = . Namely E 

builds a perfect IS and the equilibrium strategies are that of 1G 40. E obtains zero payoff. 

Proof. See Appendix. 

Proposition 3 asserts that when building an IS of precision α  is cost free, the only 

equilibrium is that E chooses to build a perfect IS ( 1α = ) and M chooses to invest. In 

this case E stays out and obtains zero. Nevertheless, given that M invests, E will not 

enter no matter what is α  and she cannot benefit from reducing α . 

Proof. See Appendix. 

Suppose next that the cost is linear, namely ( )1( ) 2γ α γ α= − , 0γ > . Then, 

Proposition 4. If 0 1γ< < , there is no equilibrium of 1Γ  where E chooses some α  with 

probability 1. If 1γ ≥ , the game 1Γ  has a unique s.g.p.e., * 1
2α = . Namely E does not 

build an IS and the equilibrium strategies are that of 1
2

G 41. E obtains zero payoff. 

Proof. See Appendix. 

Finally, suppose that the cost of building an IS does not depend on the precision α , 

1 12 α< ≤ . Namely, 
10, 2( )

1, 12

α
γ α

γ α

 == 
< ≤

, where 0γ > . Then we can prove that, 

                                                           
40 See Chapter 2. 
41 See Chapter 2. 
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Proposition 5. If 10 2γ< < , there is no equilibrium of 1Γ  where E chooses some α  

with probability 1. If 1
2γ ≥ , the game 1Γ  has a unique s.g.p.e., * 1

2α = . Namely E 

does not build an IS and the equilibrium strategies are that of 1
2

G . E obtains zero 

payoff. 

Proof. See Appendix. 

By propositions 4 and 5, if the cost of building an IS is relatively high, E does not spy 

on M. The difficult parts are when the cost is relatively low, but positive. While it is 

shown that equilibrium in mixed strategies exists, we could not find the equilibrium 

probability distribution over α .  

 

3.4. Conclusion. 

This chapter analyzed the industrial espionage model in Chapter 2 when the precision 

α  of the IS is commonly known by both firms and it is the strategic choice of E. We 

have shown that, when the choice of E is observed by M and E benefits from spying on 

him, the optimal choice of E is to build an IS of a precision of at most α . When the 

choice of E is not observed by M and the IS is cost free, E builds a perfect IS ( 1α = ), but 

this situation is more beneficial for M than for E, since M benefits the higher is the 

precision of the IS while E does not, provided that the value of α  is common 

knowledge to both firms. For the case where the cost of the IS is positive, we have 

focused on linear and constant cost functions. In these cases, when the cost is relatively 

high, E does not spy on M. And when the cost is relatively low, we have shown that in 

equilibrium E does not choose some α  with probability 1, but E assigns some 

probability distribution over α . We could not find this mixed strategy equilibrium, 

and this would be interesting for future research. However, the most interesting 

research would be to analyze the general case where M does not observe the choice of 

E.    
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3.5. Appendix 

Proof of Proposition 1. 

First recall that the equilibrium strategy of M is 

( )
[ ]

11 , 2
, 1

1 ,
M

α α α

σ α α α α
α α α α

 − ≤ <
= < ≤
∈ − =

 

Next notice that there is no equilibrium where α α>  since ( ) 0E αΠ <  for α α>  and 

( )1 02EΠ = . Any maximizer of ( )E αΠ  in )1 ,2 α
  can be supported in a subgame 

perfect equilibrium by the following equilibrium strategy of M: 

( )
11 , 2

, 1
M

α α α
σ α

α α α

 − ≤ <= 
≤ ≤

 

Note that when M plays ( )Mσ α , E obtains ( )γ α−  when α α= , and does not have an 

incentive to deviate to α . 

Our next goal is to find the maximizer of ( )E αΠ  in )1 ,2 α
 . Define for all 

)1 ,2α α∈  , 

( ) ( ) ( )2 1Ef α α α γ α= Π = − −  

Since ( )γ α  is strictly convex, ( )f α  is strictly concave. The FOC for the maximizer of 

( )f α  is  

( ) ( )´ 2 ´ 0f α γ α= − ≤  

and equality holds if the maximizer *α  is an interior point. 

We can extend the definition of f  to 1 ,2 α 
   and define 

( )
( )

( )

12 1 , 2
1

,
1

f b c

b c

α γ α α α
α

γ α α α

 − − ≤ <
=  − − − =

− +

 

Then f  is continuos in 1 ,2 α 
   and strictly concave, and hence it has a unique 

maximizer. Note that E obtains ( )f α  when she chooses α α=  if M is playing  
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( )
11 , 2

, 1
M

α α α
σ α

α α α

 − ≤ ≤= 
< ≤

 

Let us consider three cases regarding the behavior of (́ )f α . 

Case 1: ( )1´ 22γ <  and ( )´ 2γ α > . In this case since ´γ  is continuous, by the Mean 

Value Theorem the maximizer *α  of f  is interior, namely *1
2 α α< <  and 

( )*´ 2γ α = .  Also ( ) ( ) ( )* * 1 02E f fα αΠ = > = . 

Case 2: ( )1´ 22γ ≥ . In this case the unique maximizer is * 1
2α =  and E obtains zero. 

Case 3: ( )´ 2γ α ≤ . In this case *α α=  maximizes ( )f α . 

Claim 4. ( ) 0f α > . 

Proof: Note that there exists α̂ , 1 ˆ
2 α α< <  s.t. 

( ) ( ) ( )
1
2 ˆ´ 2

1
2

γ α γ
γ α

α

−
= <

−
 

Since ( )1 02γ = , 

( ) 2 1γ α α< −  

and 

( ) ( ) ( )2 11 1
1 0

1 1 1

bb c b c
f

b c b c b c
α γ α

−− − − −= − > − + =
− + − + − +

 

The graph of ( )E αΠ  is depicted below,  

 

Figure 2 
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Note that there is no equilibrium where M chooses at α α=  to invest with probability 

higher than 1 α− . If M invests with probability higher than 1 α− , E obtains less than 

( )f α . Since f  is continuous at any point in 1 ,2 α 
   (including at α ), E has an 

incentive to slightly lower α  below α .      

We conclude that the unique subgame perfect equilibrium outcome in this case is 

α α= , and M invests in capacity with probability 1 α− . 

� 

Proof of Claim 1. 

Note that 
( )2(́ )
1

kγ α
α

=
−

 and ( ) ( )
1

* ´ 2 1
2

kα γ
−

= = − . Also, 

( )1´ 22γ =  iff 
1

2
k ≥  

and 

( )´ 2γ α =  iff 
( )

2

2

2

1

c
k

b c
=

− +
 

 

Now the proof follows immediately by Proposition 1.  

� 

Proof of Claim 2. 

Suppose first that 1b c+ < . In this case 
1 1

1 2

b

b c
α −= >

− +
. Then by Proposition 2 in 

Chapter 2, for every α  the equilibrium expected payoff of E is given by  

( )
( )

( )
( ) ( )

1 12 1 ,2 2

1 , 12

11 1, ,2 21

E

b c

b c

α γ α α α

α γ α α α

γ α γ α α α


 − − − < <

Π = − − < <


− − ∈ − − − − =  − + 

.  

Or equivalently, 
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( )
( )( )

( )
( ) ( )

1 12 ,2 2

1 , 12

11 1, ,2 21

E

b c

b c

α γ α α

α γ α α α

γ α γ α α α


 − − < <

Π = − − < <


− − ∈ − − − − =  − + 

 

When 1b c+ ≥  the entrant obtains zero even if the cost is zero, and her payoff is 

negative if the cost is positive, unless 1
2α = . 

� 

Proof of Claim 3. 

Follows immediately from the equilibrium payoff of E given by  

( )
12 1 , 2

, 1

1
, ,
1

E

b c

b c

α γ α α

α γ α α

γ γ α α


 − − < <
Π = − < <
 − − ∈ − − = − +  

 

� 

In the following three proofs we analyze the subgame perfect equilibrium of 1Γ  using 

Figure 6 and Proposition 2 in Chapter 2.  

 

Proof of Proposition 3. 

Suppose that in equilibrium E chooses α , s.t. α α> . Then E assigns positive 

probability to (E, NE) and (NE, NE) only.  M chooses I with probability α  and E 

obtains zero profit. The net payoff of E is zero α α∀ > . Suppose that E deviates to 

´α α α< <  follwing by (E, NE). Then she obtains ( ) ( )1 ´ 1 ´ ´ 0α α α α α α− + + − = − >  

since ´α α> . Hence, E will deviate. The only candidate is 1α = , M chooses the pure 

strategy I and E chooses (NE, NE). In this case E obtains zero. Any deviation of E will 

yield a negative payoff (holding the strategy I of M fixed). 
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Suppose next that in equilibrium E chooses α α=  and 1
2α > . Similarly to the 

previous proof, if 
1

c
p

b c
=

− +
ɶ , E obtains 

1

1

b c

b c

− −
− +

, and if 
1

1

b
p

b c

−=
− +

ɶ  then E obtains 

zero.  

If M assigns the lowest probability 
1

c

b c− +
 to I, E benefits by deviating to ´α α>  

following by the strategy (E, NE). In this case E obtains ´
1

c

b c
α −

− +
. If M chooses the 

highest probability 
1

1

b

b c

−
− +

 to I, E obtains zero. If E deviates to ´α α>  following by  

(E, NE), she obtains 
1

´
1

b

b c
α −−

− +
 which is greater than zero iff ´α α> . Hence E has 

always incentive to deviate to ´α α> . M in this case chooses I with probability 1 α− . 

Suppose that in equilibrium 1
2 α α< < . Then E assigns positive probability to (E,E) 

and (E, NE) only and obtains a profit equals to 2 1α − . M in this case chooses I with 

probability 1 α− . In this case E benefits by deviating to ´α α>  following by the 

strategy (E, NE). 

Suppose that 1
2α =  is the equilibrium choice of E. Then M plays ( )1 1,2 2  and E 

mixes (E, E) and (NE, NE) and obtains zero. If E deviates to 1´ 2α >  following by (E, 

NE) she will obtain 1´ 02α − >  and E is best off deviating from 1
2α = . 

� 

Proof of Proposition 4. 

Suppose that in equilibrium E chooses α , s.t. α α> . Then E assigns positive 

probability to (E, NE) and (NE, NE) only.  M chooses I with probability α  and E 

obtains zero profit. The net payoff of E is ( )1
2γ α− − . 

Suppose that E deviates to ´α  s.t. ´α α α< < . If E chooses to play the pure strategy 

(NE, NE) she will obtain zero profit and a net payoff of ( )1´ 2γ α− − . Since 
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( ) ( )1 1´ 2 2γ α γ α− − > − − , E is better off deviating to ´α . We conclude that there is no 

equilibrium where E chooses α  s.t. ´α α α< < . 

Suppose next that in equilibrium E chooses α α=  and 1
2α >  . This implies that 

1b c+ <  (recall that for 1b c+ ≥ , 1
2α = ). As we have shown before if α α=  and if it 

is common knowledge, then M has multiple equilibrium strategies. Namely, to choose 

I with any probability 
1

,
1 1

c b
p

b c b c

− ∈  − + − + 
ɶ . E has a unique equilibrium strategy, 

namely to select the pure strategy (E, NE). The net payoff of E is decreasing in pɶ . If 

1

c
p

b c
=

− +
ɶ , E obtains ( )1 1

21

b c

b c
γ α− − − −

− +
, and if 

1

1

b
p

b c

−=
− +

ɶ  then E obtains 

( )1
2γ α− − . Clearly if ( ) 11

2 1

b c

b c
γ α − −− >

− +
 or equivalently, if 2γ >  then E is better 

off choosing 1
2α =  following by (NE, NE), where E obtains zero. Hence α α=  can 

not be an equilibrium if 2γ > . Assume that 2γ ≤ . 

If M assigns the lowest probability 
1

c

b c− +
 to I, E benefits by deviating to 1

2α =  

following by the strategy (E, E). In this case E obtains 
1

1

b c

b c

− −
− +

. If M chooses the 

highest probability 
1

1

b

b c

−
− +

 to I, E obtains ( )1
2γ α− − . If E deviates to 1

2α =  

following by (NE, NE), she obtains a zero net payoff which is greater than 

( )1
2γ α− − . Hence E has always incentive to deviate to 1

2α = . 

Suppose that in equilibrium 1
2 α α< < . Then E assigns positive probability to (E,E) 

and (E, NE) only and obtains a profit equals to 2 1α − . The net payoff of E is 

( )12 1 2α γ α− − − . 
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M in this case chooses I with probability 1 α− . Clearly, ( )1 2 12γ α α− > −  iff 2γ > . 

Thus if 2γ >  E obtains a negative payoff. But then E is better off choosing 1
2α =  

following by (NE, NE), where E obtains zero. 

Hence 1
2 α α< <  can not be an equilibrium if 2γ > .  

Suppose that 2γ ≤ . In this case E benefits by deviating to 1
2α =  following by the 

strategy (E, E). In this case E obtains 2 1α − . We conclude that there is no equilibrium 

where E chooses α  s.t. 1 12 α< < . 

Suppose that 1
2α =  is the equilibrium choice of E. Then M plays ( )1 1,2 2  and E 

mixes (E, E) and (NE, NE) and obtains zero. If E deviates to 1´ 2α >  following by (E, 

NE) she will obtain ( )1 1´ ´2 2α γ α− − − , which is greater than zero iff 1γ < . Hence if 

1γ < , again E is better off deviating from 1
2α = . But if 1γ ≥ , E has no incentive to 

deviate and 1
2α =  is an equilibrium. 

Finally suppose that in equilibrium 1α = . Then M chooses the pure strategy I and E 

obtains 
1

2
γ− . If E deviates to 1

2α =  following by (NE, NE) she obtains zero. Hence 

1α =  is also not an equilibrium. 

Next let us show that the game 1Γ  has an equilibrium in mixed strategies. Suppose 

that 0 1γ< < . 

We can represent any pure strategy of E by either ( )1,0,0α  or ( )0,1,0α  or ( )0,0,1α , 

where ( )1,0,0α  stands for choosing a precisión α  following by (E, E). Similarly, 

( )0,1,0  stands for (E, NE) and ( )0,0,1  stands for (NE, NE). 

Let 

( ){ }1 11,0,0 12ES α α= ≤ ≤  

( ){ }2 10,1,0 12ES α α= ≤ ≤  
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( ){ }3 10,0,1 12ES α α= ≤ ≤  

and let 1 2 3
E E E ES S S S= ∪ ∪  be the set of all pure strategies of E. It is a compact subset of 

3ℝ . 

Let { }0,1MS =  be the set of pure strategies of M where 0  stands for “invest”.  

Let ESσ ∈ . Then the payoff function of M, ( ),M k σΠ  where 0,1k = , is given by 

( ) ( )

1

2

3

,

0, ,

,

E

M E

E

b S

b c b S

c S

σ
σ α σ

σ

 ∈


Π = + − ∈
 ∈

 

( )

1

2

3

0,

1, 1 ,

1,

E

M E

E

S

S

S

σ
σ α σ

σ

 ∈


Π = − ∈
 ∈

 

The payoff function of E, ( ),E k σΠ , taking into account the cost of building an IS, is 

given by 

( )
( )

( )
( )

1

2

3

11 ,2

10, 1 ,2

1 ,2

E

E E

E

S

S

S

γ α σ

σ α γ α σ

γ α σ

− − − ∈

Π = − − − ∈

− − ∈


 

( )
( )
( )

( )

1

2

3

11 ,2

11, ,2

1 ,2

E

E E

E

S

S

S

γ α σ

σ α γ α σ

γ α σ

 − − ∈

Π = − − ∈

− − ∈


 

( ),·E kΠ  is continuous. Suppose nσ σ→  as n → ∞ . Since i j
E ES S = ∅∩  for i j≠  if 

i
ESσ ∈  then i

n ESσ ∈  for all n  sufficiently large and hence ( ) ( ), ,E n Ek kσ σΠ → Π , as 

n → ∞ . 

We conclude that both payoff functions of the players are continuous in their 

strategies. By Glicksberg’s (1952) theorem, the game 1Γ  has a Nash equilibrium in 

mixed strategies. 
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Actually, we know that if 0γ =  or 1γ ≥ , the game has a s.g.p.e. in pure strategies. But 

when 0 1γ< <  the game has an equilibrium but only in mixed strategies. 

� 

Proof of Proposition 5. 

Suppose that in equilibrium E chooses α , s.t. α α> . Then E assigns positive 

probability to (E, NE) and (NE, NE) only.  M chooses I with probability α  and E 

obtains zero profit. The net payoff of E is γ− . Suppose that E deviates to ´α α α< <  

follwing by (E, NE). Then she obtains ( ) ( )1 ´ 1 ´ ´α α α α γ α α γ γ− + + − − = − − > −  since 

´α α> . Hence, E will deviate. The only candidate is 1α = . 

Suppose that in equilibrium M 1α = . Then M chooses the pure strategy I and E 

chooses (NE, NE) and obtains γ− . But if E deviates to 1
2α =  follwing by (NE, NE), 

she obtains zero and she will deviate. 

Suppose next that in equilibrium E chooses α α=  and 1
2α > . Similarly to the 

previous proofs, if 
1

c
p

b c
=

− +
ɶ , E obtains 

1

1

b c

b c
γ− − −

− +
, and if 

1

1

b
p

b c

−=
− +

ɶ  then E 

obtains γ− . Clearly if 
1

1

b c

b c
γ − −>

− +
 then E is better off choosing 1

2α =  following by 

(NE, NE), where E obtains zero. Hence α α=  can not be an equilibrium if 

1

1

b c

b c
γ − −>

− +
. Assume that 

1

1

b c

b c
γ − −≤

− +
. 

If M assigns the lowest probability 
1

c

b c− +
 to I, E benefits by deviating to 1

2α =  

following by the strategy (E, E). In this case E obtains 
1

1

b c

b c

− −
− +

. If M chooses the 

highest probability 
1

1

b

b c

−
− +

 to I, E obtains γ− . If E deviates to 1
2α =  following by 

(NE, NE), she obtains a zero net payoff which is greater than γ− . Hence E has always 

incentive to deviate to 1
2α = . 



 

 

96 

 

Suppose that in equilibrium 1
2 α α< < . Then E assigns positive probability to (E,E) 

and (E, NE) only and obtains a profit equals to 2 1α − . The net payoff of E is 2 1α γ− − . 

M in this case chooses I with probability 1 α− . Clearly, if 2 1γ α> −  E obtains a 

negative payoff. Then E is better off choosing 1
2α =  following by (NE, NE), where E 

obtains zero. 

Hence 1
2 α α< <  can not be an equilibrium if 2 1γ α> − .  

Suppose that 2 1γ α≤ − . In this case E benefits by deviating to 1
2α =  following by 

the strategy (E, E). In this case E obtains 2 1α − . 

Suppose that 1
2α =  is the equilibrium choice of E. Then M plays ( )1 1,2 2  and E 

mixes (E, E) and (NE, NE) and obtains zero. If E deviates to 1´ 2α >  following by (E, 

NE) she will obtain 1´ 2α γ− − , which is greater than zero iff 1´ 2γ α< − . As E tries to 

maximize her payoff, she will choose ´ 1α = , then 1
2γ < . Hence if 1

2γ < , E is better 

off deviating from 1
2α = . But if 1

2γ ≥ , E has no incentive to deviate and 1
2α =  is 

an equilibrium. 

Next, let us show that if 10 2γ< < , the game 1Γ  has an equilibrium in mixed 

strategies. This proof is similar to that in Proof of Proposition 4, but taking into account 

that in this case the payoff function of E, ( ),E k σΠ , is given by 

( )

1

2

3

1 ,

0, 1 ,

,

E

E E

E

S

S

S

γ σ
σ α γ σ

γ σ

− − ∈


Π = − − ∈
− ∈

 

( )

1

2

3

1 ,

1, ,

,

E

E E

E

S

S

S

γ σ
σ α γ σ

γ σ

 − ∈


Π = − ∈
− ∈
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But this is also continuous in the strategies of E. Hence, since both payoff functions of 

the players are continuous in their strategies, by Glicksberg’s (1952) theorem, the game 

1Γ  has a Nash equilibrium in mixed strategies. 

Actually, we know that if 0γ =  or 1
2γ ≥ , the game has a s.g.p.e. in pure strategies. 

But when 10 2γ< <  the game has an equilibrium, but only in mixed strategies. 

� 
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Chapter 4. Entry with Two Correlated Signals 

 

4.1. Introduction. 

Other very important information for a firm contemplating market entry is the cost 

structure of the incumbent firm. Since this information is usually available in 

statements for internal use, the entrant firm could obtain it spying on the incumbent 

firm.  

In this chapter we deal with a monopoly, M, who is engaged in R&D activity with the 

aim to reduce his cost of production from the current cost ( )HC q  to ( )LC q , where q  

is the production level. The outcome of the R&D project is the private information of 

M. A potential entrant, E, assigns a certain probability, 0µ > , that M fails to reduce his 

cost and probability 1 0µ− >  that the project was successful. If the project fails and E 

enters, she obtains positive profit. Otherwise, if the project succeeds and E enters, she 

will not be able to cover her entry cost and she will end up with negative profit. 

The entrant has an access to an Intelligence System (IS) that allows her to collect (noisy) 

information about the cost structure of M. The IS sends one out of two signals. The 

signal h , which indicates that the investment was not successful (in which case we 

refer to M as having the type H), and the signal l , which indicates that the investment 

was successful (namely, M is of type L). The precision of the IS is α , 1 12 α≤ ≤ . That 

is, the signal sent by the IS is correct with probability α  (for simplicity, whether the 

cost function is ( )HC q  or ( )LC q ). The case where 1
2α =  is equivalent to the case 

where E does not use an IS. The case 1α =  is the one where E knows exactly the 

outcome of the project. 

It is assumed that the precision α  of the IS is exogenously given. As we pointed out, 

this would be the case if the entrant firm has already a spying technology before she 

considers entering the market where the incumbent firm is operating (e.g. she has the 

ability to plant a Trojan Horse in the computer system of the incumbent firm). The 

second one would be the case of entrant firm hiring managers and workers from the 
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incumbent firm trying to obtain industrial secrets (in this case information about the 

incumbent’s action) from them. 

The entrant decides whether or not to enter the market based on a pair of signals: the 

price, p , that M charges for his product and the signal s  ( h  or l ) sent by the IS. If E 

enters the market, she competes with M (whether it is a Cournot or Bertrand 

competition, or any other mode of competition). It is assumed that the above is 

commonly known (including the precision α  of the IS). 

The interaction between E and M is described as a three stage game, ( )G α . In the first 

stage, M who knows the outcome of the R&D project, sets a price p  and the IS sends a 

signal s ( h  or l ). Based on the signals ( ),p s , E in the second stage decides whether or 

not to enter the market. If she decides to enter, then E in the third stage is engaged in a 

certain mode of competition with M. 

The game ( )G α  is a game of incomplete information and, using Harsanyi’s approach, 

we analyze it as a three player game, where the players are the two types, H and L, of 

M and the entrant, E. We analyze the sequential equilibria of ( )G α . 

The case where 1
2α = , namely, where the IS has no value (and, therefore, can be 

ignored), is exactly the limit pricing model of Milgrom and Roberts (1982) (hereafter 

MR). Therefore, our model is an extension of the MR model where the entrant has an 

access to an intelligence system and it is only for 1 12 α< < . 

We distinguish two cases: the first one is the separating equilibrium where the two 

types of M charge different prices Hp  and Lp , H Lp p≠ ; the second one is the pooling 

equilibrium case where H Lp p= . 

We show that the separating equilibria of our model coincide with that of MR and the 

IS makes no difference for either E or M. This is not very surprising since in a 

separating equilibrium E identifies the type of M with or without the use of the IS. 

Even though the off equilibrium behavior of E is affected by the signal of the IS, it does 

not affect the separating equilibria. The same result is obtained for pooling equilibria if 
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the precision α  of the IS is sufficiently low (close to 1
2 ) to affect the decision of E. For 

the other extreme, if α  is very accurate (close to 1), then contrary to the MR model, 

pooling equilibrium does not exist. In this case, E identifies with high probability the 

type of M and she will enter the market if the signal is h  and she will stay out if the 

signal is l . The H type monopolist, who knows that his type is detected with high 

probability, has an incentive to deviate to his monopoly price, upsetting a pooling 

equilibrium. Let us next deal with the intermediate case, where α  is bounded away 

from 1
2  and 1. We show that the set of pooling equilibria is non-empty and the 

monopoly price of the L-type monopoly is the highest pooling equilibrium price. The 

decision of E is still entering if the signal is h  and staying out if the signal is l . To 

compare this result with the result obtained in the MR model, suppose first that prior 

to the completion of the R&D project, the expected payoff of E from entering the 

market is positive. Then, contrary to our model, no pooling equilibrium exists in the 

MR model. Otherwise, E in a pooling equilibrium enters the market expecting positive 

profit and, hence, both types of M are best off with their monopoly prices, upsetting a 

pooling equilibrium. In the game ( )G α  where α  is bounded away from 1, M of type 

H knows that with significant probability E will obtain the wrong signal l  and will 

stay out. Hence, H succeeds to fool E about his type with significant probability. 

However, the precision α  of the IS should not be too low. Otherwise, E will not trust 

the signal of the IS and she will enter the market whether the signal is h  or l . In this 

case, the two types of M are best off with their monopoly prices, upsetting a pooling 

equilibrium. 

Note that in the MR model the entrant never enters in a pooling equilibrium. Hence, 

the use of the IS with high probability increases competition in pooling equilibrium. 

The entrant enters the market for intermediate levels of α  if the signal is h . This is 

true even when pooling equilibrium does not exist in the MR model. From this point of 

view, spying on incumbent firms increases competition with high probability.  

This chapter is related to Perea and Swinkels (1999) and Ho (2007, 2008) since they also 

consider espionage in the context of asymmetric information. However, in the present 
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model the IS is not a decision maker who can act strategically as in Perea and Swinkels 

(1999) and Ho (2007, 2008). The chapter is also related to Sakai (1985) since he considers 

two firms and one objective of the information gathering activity is, like in our model, 

the cost structure of the opponent firm. However, unlike us, the paper considers that 

both firms know neither the costs of their opponent nor their own costs 42. 

Another related paper is Bagwell and Ramey (1988). They extend the MR model by 

allowing the incumbent to signal his costs with both price and advertisements. Hence, 

while in this paper both signals are sent by the incumbent, in our model he only signals 

his costs by the price, the other signal is generated by the IS operated by the entrant. 

Bagwell (2007) extends Bagwell and Ramey (1988) and considers a more general game 

in which the incumbent has two dimensions of private information, his costs and his 

level of patience43. 

The contribution of this chapter is to extend the MR model to the case where the 

potential entrant has an access to an intelligence system to better detect the cost 

structure of the cost structure of the monopolist. Assuming that the precision α  of the 

IS is common knowledge, we show that spying on incumbent firms increases 

competition with high probability.    

The remainder of the chapter is organized as follows. Section 4.2 sets out the model.  

The strategy of E is presented in Section 4.3. Section 4.4 analyzes separating equilibria 

of the game. Pooling equilibria is analyzed in Section 4.5. Section 4.6 concludes the 

chapter. Most proofs of the results are presented in the Appendix.             

 

4.2. The Model. 

We start with the benchmark case of the limit price model of MR. Their game, which is 

denoted MRG , consists of a monopoly M and a potential entrant E. The cost function of 

M is a private information and it can be of two types: L (low cost) and H (high cost). A 

potential entrant, E, assigns probability µ  that M is of type H. In the first period M 

                                                           
42 For more details about all these papers see the literature review in Chapter 1. 
43 For other extensions of MR model see Albaek and Overgaard (1992a, 1992b), Bagwell (1992), 
Bagwell and Ramey (1990, 1991), Harrington (1986, 1987) and Linnemer (1998). 
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chooses a price as a function of his type. The price serves as a signal for E, who then 

decides whether to enter the market or stay out. If E enters, she incurs an entry cost K . 

In the second period, if E enters, E and M compete in the market.  

The form of competition (Cournot, Bertrand or other) is commonly known and once E 

enters, the outcome of the competition is assumed to be uniquely determined. By 

confining the analysis to sequential equilibria, the strategic interaction takes place only 

in the first period. 

The strategy of the t-type monopoly is a first period price tp  for { },t H L∈ . The 

strategy of E is assumed to be of the form 

( ) " ",

" ",E

Stay out p p
p

Enter p p
σ

≤
=  >

 

where the threshold p  is the choice of E.  

Let ( )Q p  be the demand function and ( )tC q  be the cost function of the t-type 

monopoly. 

Let HD  and LD  be the duopoly profits of the H-type and the L-type monopolists, 

respectively. For short we denote by H and L the H-type and the L-type monopolists, 

respectively. Let ( )H pΠ  be the profit of H and let ( )L pΠ  be the profit of L when they 

set the price p  and when E does not enter. Denote by ( )ED H  and ( )ED L  the 

duopoly profits of E when she competes with H and L respectively. Denote by M
Hp  and 

M
Lp  the monopoly prices of H and L respectively (and by M

Hq  and M
Lq  the monopoly 

quantities). Finally, let p̂  and 0p  be s.t. 

( )ˆH Hp DΠ =  and ˆ M
Hp p<  

and 

( )0L Lp DΠ =  and 0
M
Lp p< . 

See Figures 1 and 2 below. 



 

 

103 

 

 

Figure 1 

 

Figure 2 

Assumptions 

1. ( ) ( ) 0E ED L K L− ≡ ∆ <  and ( ) ( ) 0E ED H K H− ≡ ∆ > . 

2. ( )t pΠ , { },t H L∈ , is increasing in p  whenever M
tp p≤  and is decreasing in 

p  whenever M
tp p≥ . 

3. ( ) ( )M M
L L L H H Hp D p D∏ − > ∏ − . Namely, L loses from entry more than H.  

4. The cost functions ( )tC x , { },t H L∈ , are differentiable , ( ) ( )H LC q C q′ ′>  and 

( ) ( )0 0H LC C≥ . 

5. ( )Q p  is differentiable and ( ) 0Q p′ <  for all 0p ≥ . 
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6. All the parameters of the model and the above five assumptions are commonly 

known. 

Lemma 1.  (i) ( ) ( )L Hp p∏ − ∏  decreases in p . 

 (ii) M M
H Lp p> . 

 (iii) 0p̂ p> . 

Proof: Appears in the Appendix. 

Let Hp  and Lp  be the equilibrium strategies of H an L respectively. In a separating 

equilibrium H Lp p≠ , and in a pooling equilibrium *
H Lp p p= = . 

Propositions 1 and 2 below are due to Milgrom and Roberts (1982) and they 

characterize the separating and pooling equilibrium respectively for the case where E 

does not operate an IS on M. 

Proposition 1 (Milgrom and Roberts (1982)). The set of sequential separating equilibria 

MRSSE  in MRG  is non-empty and 

( ) ( ){ }0 ˆ, , , , min ,M M
MR H L H H L L LSSE p p p p p p p p p p p= = = ≤ ≤  

Remark: By Lemma 1, 0p̂ p>  and MRSSE  is non-empty. 

Proposition 2 (Milgrom and Roberts (1982)). The set of all sequential pooling equilibria 

in MRG  , ( ), ,H Lp p pσ = , is characterized by 

(i) *
H Lp p p p= = =  

and 

(ii) *ˆ M
Lp p p≤ ≤  

Our goal is to extend the MR results to the case where E uses an Intelligence System 

(IS) to spy on M to better detect his type. Denote by ( )G α  the game that extends MRG  

to allow espionage activity and where the Intelligence System operated by E is of 

precision α , 1 12 α≤ ≤ . 

The game ( )G α  is a three-stage game. In the first stage M sets a price and the IS sends 

a signal, h  or l . In the second stage, E who observes both the price set by M and the 

signal sent by the IS, decides whether or not to enter the market. Finally, in the third 
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stage, if E enters, M and E compete in the market. As mentioned above, the third stage 

competition is assumed to generate a unique equilibrium outcome 

( ) ( )( ), , ,H L E ED D D H D L  if E enters and ( ) ( )( ),M M
H H L Lp pΠ Π  if E does not enter. 

It is assumed that Assumptions 1-6 hold and, in addition, α  is commonly known. 

 

4.3. The Strategy of E in ( )G α . 

Given α , for every pair of signals ( ),s p , { },s h l∈ , p +∈ℝ , let ( ),Prob H s p  and 

( ) ( ), 1 ,Prob L s p Prob H s p= −  be the off equilibrium probability that E assigns to the 

event that M is of type H and of type L, respectively. 

It is assumed that, conditional on the type of M, the signals are mutually independent. 

Namely, M chooses the price p  independently of the choice of the IS. Nevertheless, 

the signals p  and s  are correlated. If E observes a very high price, then it is more 

likely that she will observe the signal h . If however E observes a low price, it is more 

likely that she will observe the signal l .  

Hence, the off equilibrium probability that E assigns to the types of M is  

( ) ( ) ( )
( ) ( ) ( ) ( )

,
,

, ,

Prob h p H Prob H
Prob H h p

Prob h p H Prob H Prob h p L Prob L
=

+
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

Prob h H Prob p H Prob H

Prob h H Prob p H Prob H Prob h L Prob p L Prob L
=

+
 

Equivalently, 

( ) ( )
( ) ( )( ) ( ),

1 1

f p H
Prob H h p

f p H f p L

µα
µα µ α

=
+ − −

                                           (1) 

Similarly, 

( ) ( ) ( )
( ) ( ) ( ) ( )

1
,

1 1

f p H
Prob H l p

f p H f p L

µ α
µ α µ α

−
=

− + −
                                           (2) 

where ( )f p t  is the (density) probability that E assigns to the event that M of type t , 

{ },t H L∈  sends the signal p .  
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In a pure strategy equilibrium, if H assigns probability 1 to the event that Hp p= , then 

( ) 1Hf p H =  and ( ) 0f p H =  if Hp p≠ . In this case, ( )f p H  is identified with the 

probability that H selects p . Similarly, ( ) 1Lf p L =  and ( ) 0f p L = , Lp p∀ ≠ . Hence, 

for Hp p≠  and Lp p≠  (1) and (2) are not well defined for { },H Lp p p∉  since the 

numerators and denominators are zero. 

Using the notion of sequential equilibrium, we approach ( )f p t  by a sequence 

( )( )
1n n

f p t
∞

=
, such that ( ) 0nf p t >  and ( ) ( )lim n

n
f p t f p t

→∞
=  for all p +∈ℝ . Let  

                              ( ) ( )
( ) ( )( ) ( ),

1 1
n

n

n n

f p H
Prob H h p

f p H f p L

µα
µα µ α

≡
+ − −

                       (3) 

                               ( ) ( ) ( )
( ) ( ) ( ) ( )

1
,

1 1
n

n

n n

f p H
Prob H l p

f p H f p L

µ α
µ α µ α

−
≡

− + −
                      (4) 

Now ( ),nProb H h p  is well defined for all p +∈ℝ  and (1) can be modified to be 

( ) ( )
( ) ( )( ) ( ), lim

1 1
n

n
n n

f p H
Prob H h p

f p H f p L

µα
µα µ α→∞

≡
+ − −

 

We modify (2) in the same way. Note that different sequences of ( )( )
1n n

f p t
∞

=
 generate 

different conditional probabilities ( ),Prob t s p , { },t H L∈ , { },s h l∈ , p +∈ℝ . 

Let ( ),E s pΠ  be the expected payoff of E given her on and off equilibrium beliefs, 

namely 

                                 ( ) ( ) ( ) ( ) ( ), , ,E E Es p Prob H s p H Prob L s p LΠ ≡ ∆ + ∆                   (5) 

In a sequential equilibrium, if ( ), 0E s pΠ < , E will not enter the market and if 

( ), 0E s pΠ > , E will enter. To simplify the analysis we assume that E stays out also 

when ( ), 0E s pΠ = . Namely, E stays out if and only if she observes ( ),s p  such that 

( ) ( ) ( ) ( ) ( ), , , 0E E Es p Prob H s p H Prob L s p LΠ ≡ ∆ + ∆ ≤  

Assumption 7.  

(1) For each { },t H L∈  and each n , ( )nf p t  is differentiable in p  for all 0p ≥ .  
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(2) Let  

( ) ( )
( )

n
n

n

f p H
g p

f p L
=  

Then ( )ng p  is increasing in n  for each p , and is increasing in p  for each n . 

Furthermore, for every n , ( )
0

lim 0n
p

g p
→

=  and ( )lim n
p

g p
→∞

= ∞ .   

(3) Let ( ) ( )lim n
n

g p g p
→∞

= . Then, ( )g p  is continuous in p . 

Lemma 2. (i) For each { },s h l∈  and { },t H L∈ , ( ),Prob t s p  is continuous in p  and      

( ),Prob H s p  is non-decreasing in p , 0p ≥ . 

(ii) For every 0p ≥ , ( ) ( ), ,Prob H h p Prob H l p> . 

(iii) Let ( ){ }0 , 0s EJ p s p= ≥ Π ≤ . Then, sJ  and \ sJ+ℝ  are both non-empty 

sets.  

Proof:  

(i) By (3), 

( )
( )
( )

( )
( ) ( )( )

,

1 1

n

n

n
n

n

f p H

f p L
Prob H h p

f p H

f p L

µα

µα µ α
=

+ − −
 

Hence, 

                                      ( ) ( )
( ) ( )( ),

1 1

g p
Prob H h p

g p

µα
µα µ α

=
+ − −

                                      (6) 

and by Assumption 7, ( ),Prob H h p  is continuous in p . 

The proof that ( ),Prob H l p  is continuous is similarly derived by (4). 

Since ( ) ( ), 1 ,Prob L s p Prob H s p= − , then ( ),Prob L s p  is also continuous.   

Next note that ( )g p  is non-decreasing  in p  since ( )ng p  is increasing in p  for all n . 

It is easy to verify by (6) that ( ), 0Prob H h p
p

∂ ≥
∂

 iff ( ) 0g p′ ≥  and thus 
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( ),Prob H h p  is non-decreasing in p . The proof that ( ),Prob H l p  is non-decreasing 

is similar. 

(ii) Let 

( ) ( )
( )

,

,
n

n

n

Prob H h p
x p

Prob H l p
=  

By (3) and (4), 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2

1 1
11 1

1 1

1 1 1
1

1 1

1 2 1

1 1 1

1 2 1

1 1 1

n n

n

n n

n n

n n

n

n n

n

f p H f p L
x p

f p H f p L

f p L f p L

f p H f p L

f p L

f p H f p L

g p

α µ α µ α
α
µα µ α

αµ µ α
α

µα µ α

µ α
α µα µ α

µ α
α µα µ α

 − + − −− = −
+ − −

− − − −
−=

+ − −

− −
=

 − + − − 

− −
=

− + − −  

 

Hence,  

( ) ( )( )
( ) ( ) ( ) ( )

1 2 1
lim 1 0

1 1 1n
n

x p
g p

µ α
α µα µ α→∞

− −
− = >   − + − −  

 

Hence ( )lim 1n
n

x p
→∞

>  and, consequently, for every 0p ≥ , 

                                                    ( ) ( ), ,Prob H h p Prob H l p>                                            (7) 

(iii) By (5), 

                         

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

, , ,

,
,

,

E E E

E E

s p Prob H s p H Prob L s p L

Prob H s p
Prob L s p H L

Prob L s p

Π = ∆ + ∆

 
= ∆ + ∆ 

  

                      (8) 

Let s h= . For every p , 

( )
( )

( )
( )( ) ( ) ( )( ) ( )

,
lim

1 1, 1 1
n

n
n

Prob H h p f p H
g p

Prob L h p f p L

µα µα
µ αµ α→∞

= =
− −− −
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We claim that ( ) 0g p →  as 0p → . This follows by Dini’s theorem, as ( )ng p  is 

increasing in n , ( )ng p  is continuous in p  and ( )g p  is also continuous. Hence, for 

every 0δ > , ( ) ( )lim n
n

g p g p
→∞

=  uniformly on [ ]0,δ . Since for every n , ( ) 0ng p →  as 

0p → , we have ( ) 0g p →  as 0p → . Consequently, 

                                                 
( )
( )

,
lim 0

,p

Prob H h p

Prob L h p
= , as 0p →                                           (9) 

Inequality (9) holds also when h  is replaced by l  (the proof is similar). 

Next, let us show that ( ), 0Prob L h p >  for small p . 

                           

( ) ( )( ) ( )
( ) ( ) ( ) ( )

( )
( )( )

1 1
,

1 1

1

1
1 1

n

n
n n

n

f p L
Prob L h p

f p H f p L

g p

µ α
µα µ α

µα
µ α

− −
=

+ − −

=
+

− −

                         (10) 

Again, since ( ) ( )ng p g p→  as n → ∞  uniformly in any interval [ ]0,δ , 0δ > , and 

since ( ) 0g p →  as 0p → , 

( ) ( ), lim , 1n
n

Prob L h p Prob L h p= → , as 0p →  

In particular, ( ), 0Prob L h p >  for p  sufficiently small. In a similar way, we can prove 

that ( ), 0Prob L l p >  for p  sufficiently small. 

Now, (8), (9) and the fact that ( ) 0E L∆ <  and ( ), 0Prob L s p >  for small p , imply that 

for sufficiently small p , ( ), 0E s pΠ <  and sJ ≠ ∅ . 

Let us show that for p sufficiently large, ( ), 0E s pΠ > . We use the following claim. 

Claim 1.  ( )lim , 0
p

Prob L s p =  as p → ∞ . 

Proof: Let 1n =  and s h= . By Assumption 7.2, 
( )
( )

1

1

lim
f p H

f p L
= ∞ . By (10), 

( )1 , 0Prob L h p →  as p → ∞  

Hence, for every 0ε > , there exists P  s.t. for all p P> , 
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( )1 ,Prob L h p ε<  

By (3), 

( )
( ) ( ) ( )

( )

,

1 1
n

n

n

Prob H h p
f p L

f p H

µα

µα µ α
=

+ − −
 

By Assumption 7.2, ( ),nProb H h p  is increasing in n  and, hence, ( ),nProb L h p  is 

decreasing in n  for every p . Thus, for all p P> , 

( ) ( )1, ,nProb L h p Prob L h p ε< <  

Hence, for every 0ε >  and for all p P> , 

( ) ( ), lim ,n
n

Prob L h p Prob L h p ε
→∞

= ≤  

implying that  

( )lim , 0
p

Prob L h p
→∞

=  

The proof that ( ), 0
p

Prob L l p = , as p → ∞  is similarly derived. 

� 

Claim 1 together with (5) imply that for p sufficiently large, ( ), 0E s pΠ > , and the 

proof of Lemma 2 is completed. 

� 

By part (i) of Lemma 2 and by (5), ( ),E s pΠ  is continuous and non-decreasing in p  

(this follows from the fact that ( ),Prob H s p  is continuous and non-decreasing in p , 

( ) 0E H∆ > , ( ) ( ), 1 ,Prob L s p Prob H s p= −  and ( ) 0E L∆ < ). 

By part (iii) of Lemma 2, ( ), 0E s pΠ <  for small p  and ( ), 0E s pΠ >  for sufficiently 

large p . Let 

( ){ }max 0 , 0h Ep p h p= ≥ Π ≤  

( ){ }max 0 , 0l Ep p l p= ≥ Π ≤  

By the continuity of ( ),E s pΠ  in p , 
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                                                       ( ) ( ), , 0E h E lh p l pΠ = Π =                                        (11) 

and E enters the market iff she observes either ( ),h p  s.t. hp p>  or ( ),l p  s.t. lp p> . 

By (7) it is easy to verify that  

                                                            ( ) ( ), ,E Eh p l pΠ > Π                                                 (12) 

By (11) and (12) 

( ) ( ) ( ), , ,E l E h E hl p h p l pΠ = Π > Π  

and since ( ),E s pΠ  is non-decreasing in p , we have l hp p> .  

We conclude that the decision rule of E when she observes the pair of signals ( ),s p  is 

given by Figure 3 below. 

 

Figure 3 

We summarize the above in the following lemma. 

Lemma 3. Suppose that Assumption 1 holds. Then, any beliefs of E which satisfy 

Assumption 7, uniquely determine hp  and lp , h lp p< , s.t. in every sequential 

equilibrium with these beliefs, E enters the market iff she observes the signal ( ),h p  

with hp p>  or the signal ( ),l p  with lp p> .  

Our next goal is to characterize the sequential equilibrium of ( )G α  given the above 

decision rule of E. We start with separating equilibria. 

 

4.4. Separating  Equilibria. 

In a separating equilibrium H Lp p≠  and E identifies with probability 1 the type of M. 

Hence, E enters the market when observing the price Hp  irrespective of the signal of 
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the IS, and E stays out when observing Lp , again irrespective of s . Therefore, H lp p>  

and L hp p≤ . 

Notation: Let ( )tp αɶ  be the (unique) solution in p  of the following equation, 

( ) ( ) ( )1M
t t t tp p Dα αΠ = Π + − , { },t H L∈  

(see Figure 4) 

 

Figure 4 

And let ( )tp α⌢  be the unique solution in p  of the following equation, 

( ) ( ) ( )1 M
t t t tp p Dα αΠ = − Π +  

(see Figure 5) 

 

Figure 5 

where ( ) ˆp t p=  if t H=  and ( ) 0p t p=  if t L= . 
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The following proposition characterizes the sequential separating equilibrium of 

( )G α . 

Proposition 3. Consider the game ( )G α  for 1 12 α< < , and let SSE  be the set of all 

sequential separating equilibrium points of ( )G α . Let tSSE  be the set of all 

equilibrium prices of the t-type monopolist in SSE . Then, 

(1) ( ){ }0 ˆmin ,M
L L L LSSE p p p p p= ≤ ≤  and { }M

H HSSE p= . 

(2) Let L Lp SSE∈ . If M
L Lp p< , then L hp p= . If M

L Lp p= , then M
L hp p≤ . 

(3) The set SSE  coincides with MRSSE , the set of all sequential separating 

equilibrium points of MRG . 

(4) Let L Lp SSE∈  and suppose that M
L Lp p< . Let hp  and p  be the equilibrium 

cutoff price for entry in ( )G α  and in MRG  respectively. Then, hp p= . 

(5) Let L Lp SSE∈  and suppose that M
L Lp p< . Then the equilibrium strategy of E in 

( )G α  coincides with the equilibrium strategy of E in MRG  for all ( ],L h lp p p∉ . 

If ( ],L h lp p p∈ , then E in ( )G α  enters the market with positive probability 

(which is α  if M is of type H and 1 α−  if M is of type L) and stays out for sure 

in MRG . 

Proof: Appears in the Appendix. 

Part (5) of Proposition 3 asserts that in ( )G α  E is less inclined to enter the market. For 

all prices below hp p=  E stays out of the market in both games MRG  and ( )G α . For 

prices above lp , E enters for sure in both these games. But for prices p , h lp p p< ≤ , E 

in ( )G α  enters the market iff the signal sent by the IS is h . In contrast, E in this region 

enters the market for sure in the game MRG . The difference between ( )G α  and MRG  

with regard to sequential separating equilibrium is only in the behavior of E off the 

equilibrium path. 
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4.5. Pooling Equilibrium. 

By pooling equilibrium we refer to triples of the form ( ), ,E H Ls p pσ =  where Es  is the 

strategy of E and *
H Lp p p= ≡ .  

Given the signal l  of the IS, the expected payoff of E is 

( ) ( ) ( ) ( ) ( )E E El Prob H l H Prob L l LαΠ ≡ ∆ + ∆  

Equivalently, 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )1 1

1 1 1 1E E El H L
µ α µ α

α
µ α µ α µ α µ α

− −
Π = ∆ + ∆

− + − − + −
 

Hence, if the IS sends the signal l , E does not enter the market when observing the 

price *p  iff 

                                                              ( ) 0E l αΠ ≤                                                                (13) 

Let  

                                                 
( )

( ) ( ) ( )1
E

l
E E

H

H L

µ
α

µ µ
∆

=
∆ − − ∆

                                             (14) 

Note that (13) holds and E does not enter iff lα α≥ . 

Since ( ) 0E L∆ < , 0 1lα< <  and 1
2lα <  iff 

                                                     ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <                                         (15) 

Thus, for 1 12 α< < , E does not enter iff (15) holds. 

Suppose next that the IS sends the signal h . Then the expected payoff of E is 

( ) ( ) ( ) ( ) ( )E E Eh Prob H h H Prob L h LαΠ ≡ ∆ + ∆  

Equivalently, 

( ) ( )( ) ( ) ( )( )
( )( ) ( )1 1

1 1 1 1E E Eh H L
µ αµαα

µα µ α µα µ α
− −

Π = ∆ + ∆
+ − − + − −

 

Hence, if the IS sends the signal h , E does not enter the market when observing the 

price *p  iff 

( ) 0E h αΠ ≤  

Let 



 

 

115 

 

                                              
( ) ( )

( ) ( ) ( )
1

1
E

h
E E

L

H L

µ
α

µ µ
− − ∆

=
∆ − − ∆

                                             (16) 

Note that ( ) 0E h αΠ ≤  iff hα α≤ . 

Since ( ) 0E L∆ < , 0 1hα< < . Note that 1
2hα >  iff (15) holds. 

Corollary 1. Suppose that 1 12 α< <  and  

( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  

Then E stays out iff she observes the signal l  or if hα α≤ . 

In other words, if (15) holds, the entrant enters the market if and only if the signal is h  

and hα α> . Let  

                                          
( )
( )

( ) ( )
( ) ( )

ˆ

ˆ

M M
H L H H L H

M M
H H H H H H

p D p p

p D p p
δ

Π − Π − Π
= =

Π − Π − Π
                                (17) 

Clearly 0 1δ< < . 

 

The following proposition characterizes the pooling equilibria of the game ( )G α . 

Proposition 4. Consider the game ( )G α , where 1 12 α< < . Let SPEP  be the set of all 

sequential pooling equilibrium prices and SPE  the set of all sequential pooling 

equilibria of ( )G α .  

(1) If ˆM
Lp p≤ , then SPE = ∅ , unless ˆM

Lp p=  and hα α≤ . In this case 

{ }M
LSPEP p= .  

(2) Suppose that ˆM
Lp p>  and ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . Then, 

(i) For hα α≤ , in every equilibrium in SPE , E stays out irrespective of the 

signal s   and ˆ , M
LSPEP p p =   . The set SPEP  coincides with the set MRSPEP  of 

all sequential pooling equilibrium prices of the game MRG . 

(ii) If hα δ< , then for all α , hα α δ< ≤ , E enters iff s h= , SPE ≠ ∅  and 

( ) ( )( )max , , M
H L LSPEP p p pα α =  

⌢
ɶ . 



 

 

116 

 

(iii) For α δ> , SPE = ∅ . 

(3) Suppose that ˆM
Lp p>  and ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . Then, 

(i) For lα α< , SPE = ∅ . 

(ii) If lα δ≤ , then for all α , lα α δ≤ ≤ , E enters iff s h= , SPE ≠ ∅  and 

( ) ( )( )max , , M
H L LSPEP p p pα α =  

⌢
ɶ . 

(iii) For α δ> , SPE = ∅ . 

(4) Suppose that ( )max ,l hδ α α< . Then SPE = ∅ 44. 

Proof: Appears in the Appendix.   

Proposition 4 asserts that sequential pooling equilibrium does not exist if either 

ˆM
Lp p<  or if α δ> . The first condition, ˆM

Lp p< , implies that the cost function of H is 

significantly higher than that of L. Even the duopoly price p̂ , when H competes with 

E, is above the monopoly price of L. In this case, it is too costly for H to mimick L and 

to fool E about his type. The other condition, α δ> , means that the IS is sufficiently 

accurate so that when E observes the signal h , she knows that the true type of M is H 

with high probability, and she is best off entering the market. In this case, H, who 

knows that his type is detected with high probability, has no reason to pool and he is 

best off charging the monopoly price M
Hp , upsetting the pooling equilibrium.   

For intermediate values of α  ( hα α δ< ≤  or lα α δ≤ ≤ ), the set of pooling equilibria 

is non-empty and the decision of E is to enter the market if and only if the signal sent 

by the IS is h . In this case, M of type H knows that α  is sufficiently low so with 

significant probability E will obtain the wrong signal l  and will stay out. However, we 

also need the precision α  to be not too low since, otherwise, E will not trust the signal 

and she will enter whether the signal is h  or l . But then, the two type monopolists are 

best off with their monopoly prices, upsetting a pooling equilibrium. 

Note that when α δ= , then ( ) ( )( ) ( )max , M
H L H Lp p p pα α α= =⌢
ɶ ɶ  and { }M

LSPEP p= . 

                                                           
44 It is easy to verify that if hδ α= , then SPE = ∅ . 
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Proposition 4 also asserts that if ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ >  (in which case h lα α< ) 

and if α  is relatively small ( lα α< ), then SPE = ∅ . Without the use of the IS, when 

the expected profit of the entrant is positive, pooling equilibrium does not exist since E 

will enter the market and both types of M are best off deviating to their monopoly 

price. Hence, the use of a relatively not accurate IS has no impact on this result.    

The relationship between δ  and hα  or lα  is not obvious and in general it is quite 

complex. But in light of part (3) of Proposition 4 it is important to shed a light on this 

relationship. We next analyze this relationship for the linear demand and linear cost 

functions case, assuming a Cournot competition if E enters the market. 

Suppose that p a Q= −  is the total demand function and suppose that the cost 

functions are given by 

( ) ( )L E LC q C q c q= =  

( )H HC q c q=  

where L Hc c< .  Proposition 5 summarizes the results of this linear model. 

Proposition 5. Consider the linear model and assume that, if entry occurs, E and M are 

engaged in a Cournot competition. (1) if ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , there exists K  

s.t. if 
5

2
L

H L

a c

c c

− >
−

 and if K K< , then hδ α>  and for every ( ],hα α δ∈  the set SPEP  is 

non-empty and contains M
Lp ; (2) if ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > , there exists Kɶ  s.t. if 

5

2
L

H L

a c

c c

− >
−

 and if K K≥ ɶ , then lδ α≥  and for every [ ],lα α δ∈  the set SPEP  is non-

empty and contains M
Lp .   

Remark: The nature of Proposition 5 essentially does not change if we replace Cournot 

competition by Bertrand competition. 

Proof: Appears in the Appendix.  

Proposition 5 asserts that in the linear model, if α  is not very accurate and the demand 

is not too small (it is sufficient that the demand intensity, a , exceeds 2.5 Hc ), then 
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( )max ,l hδ α α>  and M
Lp  is a sequential pooling equilibrium price. In particular 

SPEP ≠ ∅ .  

Finally, suppose that 
1 3 14

5
L

H L

a c

c c

− +≤
−

. Then it can be verified that, if 

( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , then SPEP = ∅  for all hα α> . Also if 

( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > , then SPEP = ∅  for all lα α≥ . 

 

4.6. Conclusion. 

In this chapter we analyzed industrial espionage when a potential entrant, E, does not 

observe the outcome of the R&D project carried out by an incumbent monopolist with 

the aim to reduce his cost of production and deter E from entering the market. E 

develops an Intelligence System (IS) of precision α  that allows her to collect noisy 

information about the cost structure of M. Based on this information and the price that 

M charges for his product, E decides whether or not to enter the market. We assumed 

that α  is exogenously given and commonly known by both firms. 

We showed that the separating equilibria of our model are not affected by the spying 

activity of E. This is not very surprising since in a separating equilibrium E identifies 

the type of M with or without the use of the IS. The same result is obtained for pooling 

equilibria if the precision α  of the IS is sufficiently low to affect E’s decision of staying 

out. If α  is very accurate, then pooling equilibrium does not exist. For intermediate 

values of α  we find that pooling equilibrium exists and E enters the market if the IS 

tells her the cost of M is high. Hence, the use of the IS with high probability increases 

competition in pooling equilibrium. And, from this point of view, spying on incumbent 

firms increases competition with high probability.  

An interesting suggestion for further research might be to analyze the more realistic 

scenario where α  is the private information of E.  
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4.7. Appendix 

Proof of Lemma 1. 

(i) 

( ) ( ) ( )( ) ( )( )L H H Lp p C Q p C Q p∏ − ∏ = −  

( ) ( ) ( ) ( )( ) ( )( )L H H Lp p Q p C Q p C Q p
p

∂
 ′ ′ ′∏ − ∏ = −    ∂

 

By Assumptions 4 and 5 the right side is negative. 

(ii) 

( ) ( )
( ) ( )

M M M M M M
L L L L H H L H

M M M M M M
H H H H L L H L

p q C q p q C q

p q C q p q C q

− ≥ −

− ≥ −
 

Adding the two inequalities we have 

( ) ( ) ( ) ( )M M M M
H L L L H H L HC q C q C q C q− ≥ −  

By Assumption 4 we have that M M
L Hq q≥  and hence M M

L Hp p≤ . 

Let us show that M M
L Hp p< . If not, then M M

L Hp p= . Since the First Orden Condition 

(FOC) for M of type t is 

( )( ) ( )( ) ( )
( )0t

t

Q p
Q p C Q p p

p Q p

∂ ∏ ′= ↔ = +
′∂

 

the solution does not depend on t, namely ( )( ) ( )( )M M
L L H LC Q p C Q p′ ′= . But this 

contradicts Assumption 4. 

(iii) 

By Assumption 3, 

( ) ( )M M
L L L H H Hp D p D∏ − > ∏ −  

Note that ( )L L oD p= ∏  and ( )ˆH HD p= ∏ . Hence this inequality can be written as 

( ) ( ) ( ) ( )0 ˆM M
L L L H H Hp p p p∏ − ∏ > ∏ − ∏  

Thus, 

( ) ( ) ( ) ( ) ( ) ( )0

0

ˆM M M M
L L H L H L H H L Hp p p p p p

<

∏ − ∏ + ∏ − ∏ > ∏ − ∏
��������	

 

Hence, 
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                                             ( ) ( ) ( ) ( )0 ˆM M
L L H L L Hp p p p∏ − ∏ > ∏ − ∏                              (A1) 

Since 0
M
Lp p≤ , we have by section (i) of Lemma 1 

( ) ( ) ( ) ( )0 0
M M

L H L L H Lp p p p∏ − ∏ > ∏ − ∏  

This together with (A1) imply that 

( ) ( )0ˆH Hp p∏ > ∏  

But 0
M
Hp p<  and ˆ M

Hp p<  and by Assumption 2 0 ˆp p< . 

� 

Proof of Proposition 3. 

The H-type monopoly, knowing that entry will occur is best off choosing the price M
Hp . 

Thus { }M
H HSSE p=  and E enters for sure when she observes the price M

Hp . In 

particular, M
H lp p> . 

 

Figure 6 

Next let us show that ( ){ }0 ˆmin ,M
L L L LSSE p p p p p= ≤ ≤  for all α , 1 12 α< < . We 

consider two cases. 

Case 1: Suppose first that ˆM
Lp p≤ . We show that M

L Lp p=  can be supported as a 

separating equilibrium price. Let hp  and lp  be s.t. 

                                          ( )ˆM M
L L h l H Hp p p p p p pα= ≤ ≤ < ≤ <ɶ                                      (A2) 

To make sure that H has no incentive to deviate to either hp  or lp , the following two 

inequalities should hold 

                                          ( ) ( ) ( )M M
H H H H h H Hp D p pΠ + ≥ Π + Π                                       (A3) 

and 

                                 ( ) ( ) ( ) ( )1M M
H H H H l H H Hp D p D pα αΠ + ≥ Π + + − Π                        (A4) 
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These two are equivalent to 

( ) ( )ˆH H H hp D pΠ = ≥ Π  

and 

( ) ( ) ( ) ( )( )1M
H l H H H H Hp p D pα α αΠ ≤ Π + − = Π ɶ  

(see Figure 4). Thus ˆhp p≤  and ( )l Hp p α≤ ɶ . 

By (A2) the two incentive compatibility constraints of H are satisfied and hence 

M
L Lp SSE∈  

Next let Lp  be s.t. 0
M

L Lp p p≤ < . Let us show that we can support Lp  as a separtaing 

equilirium price. Let hp  and lp  be s.t. 

                                           ( )ˆM M
L h l L H Hp p p p p p pα= < < ≤ < <ɶ                                     (A5) 

Similarly to the previous case (A3) and (A4) must hold and thus ˆhp p≤  and 

( )l Hp p α≤ ɶ . 

Since ( )ˆM
L Hp p p α≤ < ɶ , by (A5) the two incentive compatibility constraints of H hold.  

Next, since M
L lp p> , there are two relevant incentive compatibility constraints for L 

                                              ( ) ( ) ( )M M
L L L L L L Lp p p DΠ + Π ≥ Π +                                      (A6) 

and 

                                ( ) ( ) ( ) ( ) ( )1M M
L L L L L l L L Lp p p p Dα αΠ + Π ≥ Π + Π + −                    (A7) 

(A6) and (A7) are equivalent to  

                                                        ( ) ( )0L L L Lp D pΠ ≥ = Π                                                (A8) 

and                                               

                                           ( ) ( ) ( ) ( )1 M
L L L l L L Lp p p Dα  Π ≥ Π − − Π −                            (A9) 

Since 0h Lp p p= ≥ , (A8) holds. As for (A9), it holds for every 1α < , provided that hp  

is sufficiently close to lp . Hence (A5) guarantees that, for all 1 12 α< < , L Lp SSE∈  

provided that L hp p= , lp  is sufficiently close to hp  and M
l Lp p< . 
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Case 2: Suppose next that ˆ M
Lp p<  and let Lp  be s.t. 0 ˆLp p p≤ ≤ . We will show that for 

all α , 1 12 α< < , L Lp SSE∈ . Let hp  and lp  be s.t. 

                                        ( )( )ˆ min ,M M
L h l L H Hp p p p p p pα= ≤ < < <ɶ                              (A10) 

As in (A3) and (A4), the incentive compatibility constraints of H are equivalent to 

ˆhp p≤  and ( )l Hp p α≤ ɶ . By (A10) the two incentive compatibility constraints of H are 

satisfied. 

Next, since M
L lp p> , in order for L not to deviate (A8) and (A9) must hold. Since 

0h Lp p p= ≥ , (A8) holds. Similar to Case 1, for every 1α < , (A9) holds if lp  is 

sufficiently close to hp . Hence (A10) guarantees that, for all 1 12 α< < , L Lp SSE∈  

provided that l hp p−  is sufficiently small and ( )( )min ,M
l L Hp p p α< ɶ . 

 

Cases 1 and 2 prove that any price L Lp SSE∈  if ( )0 ˆmin ,M
L Lp p p p≤ ≤ . Finally, we 

need to show that if ( )0 ˆ,min ,M
L Lp p p p ∉   , then L Lp SSE∉ . 

Let ( )0 ˆ,min ,M
LQ p p p =   . 

Case A: ˆM
Lp p≤ . 

Subcase A.1. Suppose that ˆM
L hp p p≤ < . There is no separating equilibrium in this case 

since by (A3) ˆhp p≤ , a contradiction. 

Subcase A.2. Suppose that ˆM
L hp p p≤ ≤ . Then by Assumption 2 L is best off choosing 

M
L Lp p=  and M

Lp Q∈ . 

Subcase A.3. Suppose that M
h L lp p p< ≤ . Since M

L h Lp p p≤ < , by Assumption 2 L is 

best off choosing M
L h Lp p p= < .  

From the incentive compatibility constraint of L we have 

                             ( ) ( ) ( ) ( ) ( )1M M M
L h L L L L L L Lp p p p Dα αΠ + Π ≥ Π + Π + −                   (A11) 

or 

 ( ) ( ) ( ) ( )( )1M
L h L L L L Lp p D pα α αΠ ≥ Π + − = Π ɶ  
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(see Figure 4). Thus ( )h Lp p α≥ ɶ . Consequently,  

( )0
M

L L h Lp p p p pα< ≤ = <ɶ  

and hence Lp Q∈ . 

Subcase A.4. Suppose that M
l Lp p< . Similarly to the previous case, L is best off 

choosing M
L h Lp p p= < .  

In order for L not to deviate, (A8) must hold. Equivalently, 0hp p≥ . Hence  

0
M

L h Lp p p p≤ = <  

and Lp Q∈ . 

Case B: ˆ M
Lp p< . 

Subcase B.1. Suppose that M
L hp p≤ . There is no separating equilibrium in this case 

since by (A3) ˆhp p≤ , a contradiction. 

Subcase B.2. Suppose that M
h L lp p p< ≤ . Then, L is best off choosing L hp p= .  

By (A3), in order for H not to deviate, ˆhp p≤  must hold. By (A11), L has no incentive 

to deviate if ( )h Lp p α≥ ɶ . Consequently, 

( )0 ˆL L hp p p p pα< ≤ = ≤ɶ  

and Lp Q∈ . 

Subcase B.3. Suppose that M
l Lp p< . Again, L is best off choosing L hp p=  and ˆhp p≤  

must hold. To guarantee that L has no incentive to deviate, 0hp p≥  must hold (see 

(A8)). Hence 

0 ˆL hp p p p≤ = ≤  

and Lp Q∈ . 

� 

Proof of Proposition 4. 

Let ( ){ }0l EA lα α= Π ≤  and ( ){ }0h EA hα α= Π ≤ . 
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Case 1. ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . 

In this case 1 12l hα α< < < . Hence, lα α>  and by Corollary 1, lAα ∈  α∀ , 

1 12 α< < . Namely, if the IS sends the signal l , E does not enter the market when 

observing the price *p  irrespective the precision α  of the IS.  

Subcase 1.1. 1
2 hα α< ≤ . 

In this case l hA Aα ∈ ∩ . Namely, E does not enter the market when observing the price 

*p  irrespective of the signal sent by the IS. 

Let us characterize the pooling equilibria in this case. We start with a lemma. 

Lemma 4. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  and 1
2 hα α< ≤ . Then in every 

pooling equilibrium 

(i) M
H hp p>  

(ii) *
lp p≤  

Proof: (i) Suppose to the contrary that M
H hp p≤ . Then also M

L hp p<  and E stays out 

whether she observes M
Lp  or M

Hp . Hence, both types of M will set their (different) 

monopoly prices, a contradiction. 

(ii) Suppose to the contrary that *
lp p> . Then at least one type of M has an 

incentive to deviate. Indeed if M
L lp p>  and * M

Lp p= , the H-type monopoly is better off 

deviating to M
Hp  or  lp  depending on α  and the parameters of the model. Similarly, if 

M
L lp p>  and * M

Hp p=  the L-type monopoly is better off deviating to M
Lp  or  lp  

depending on α  and the parameters of the model. Finally, if M
L lp p≤ , at least one type 

of M has an incentive to deviate to his monopoly price, a contradiction.  

� 
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Lemma 5. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤  and ˆM

Lp p< . Then 

SPE = ∅ . 

Proof: Suppose to the contrary that *p SPEP∈  and suppose that hp  and lp  are the 

equilibrium thresholds of E. We consider six cases. 

Case 1. Suppose that M
L hp p≤ . First note that in this case * M

Lp p= . Next observe that 

the incentive compatibility constraint of H  

                                             ( ) ( ) ( )M M M
H L H H H H Hp p p DΠ + Π ≥ Π +                                 (A12) 

requiring that H has no incentive to deviate to M
Hp , is equivalent to 

( ) ( )ˆM
H L H Hp D pΠ ≥ = Π  

and hence ˆM
Lp p≥  (see Figure 4), a contradiction.  

 

Case 2. Suppose that M M
h L H lp p p p< < ≤ .  

In this case *
hp p≤  (otherwise, by Lemma 4, ( ]* ,h lp p p∈  and at least one type of M  

has an incentive to deviate to his monopoly price). Therefore *
hp p=  must hold. 

The incentive compatibility constraint of H is, 

                             ( ) ( ) ( ) ( ) ( )1M M M
H h H H H H H H Hp p p D pα αΠ + Π ≥ Π + + − Π               (A13) 

Equivalently, 

( ) ( ) ( ) ( )( )1 M
H h H H H H Hp D p pα α αΠ ≥ + − Π = Π ⌢

 

or ( ) M
H h Hp p pα ≤ <⌢

 (see Figure 5). But ( )ˆM
L Hp p p α< < ⌢  and in particular M

L hp p< , a 

contradiction. 

Case 3. Suppose that * M M
h L l Hp p p p p≤ < ≤ < . 

In this case again *
hp p= . The incentive compatibility constraint of H is 

                                               ( ) ( ) ( )M M
H h H H H H Hp p p DΠ + Π ≥ Π +                                 (A14) 

Equivalently, 

( ) ( )ˆH h H Hp D pΠ ≥ = Π  
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or ˆ hp p≤  (see Figure 4). But we deal with the case where ˆM
h Lp p p< < , a 

contradiction. 

Case 4. Suppose that M M
h L l Hp p p p< ≤ <  and ( ]* ,h lp p p∈ . 

In this case * M
Lp p= . In order for H not to deviate from M

Lp  to M
Hp , the inequality 

                              ( ) ( ) ( ) ( )1M M M
H L H H H H H Hp D p p Dα αΠ + + − Π ≥ Π +                    (A15) 

should hold. Equivalently, 

( )
( )

( ) ( )
( ) ( )

ˆ
0

ˆ

M M
H L H H L H

M M
H H H H H H

p D p p

p D p p
α δ

Π − Π − Π
≤ = ≡ <

Π − Π − Π
 

a contradiction. 

Case 5. Suppose that * M M
h l L Hp p p p p≤ < < < . 

In this case *
hp p=  and (A14) guarantees that H has no incentive to deviate from *p  

to M
Hp . By (A14), ˆ M

h Lp p p≤ < , a contradiction. 

Case 6. Suppose that M M
h l L Hp p p p< < <  and ( ]* ,h lp p p∈ . 

Clearly in this case *
lp p=  and E follows the signal sent by the IS. 

In order for H not to deviate from lp  to M
Hp , the inequality 

                                ( ) ( ) ( ) ( )1 M M
H l H H H H H Hp D p p Dα αΠ + + − Π ≥ Π +                       (A16) 

must hold. Equivalently, 

( ) ( ) ( ) ( )( )1M
H l H H H H Hp p D pα α αΠ ≥ Π + − = Π ɶ  

and ( ) M
H l Hp p pα ≤ <ɶ . But ( )ˆM

L Hp p p α< < ɶ , a contradiction. We conclude that if 

ˆM
Lp p< , then SPE = ∅ . 

� 

We next deal with the case where ˆ M
Lp p< . We need to show that 

{ }* *ˆ M
LSPEP p p p p= ≤ ≤  for all α , 1 12 α< < .  

First we prove the following lemma. 
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Lemma 6. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤  and ˆ M

Lp p< . Then 

{ }* *ˆ M
Lp p p p SPEP≤ ≤ ⊆  

Proof: We start by showing that M
Lp SPEP∈ . 

Let hp  and lp  be s.t. 

                                                         * M M
h L l Hp p p p p= = < <                                             (A17) 

Clearly L is best off with M
Lp  and has no incentive to deviate. 

The two incentive compatibility constraints of H in this case are: 

(i) H has no incentive to deviate from M
Lp  to lp . Namely, 

                          ( ) ( ) ( ) ( ) ( )1M M M
H L H H H l H H Hp p p D pα αΠ + Π ≥ Π + + − Π                   (A18) 

Equivalently, 

( ) ( ) ( )M M
H l H L H H Hp p p Dα  Π − Π ≤ Π −   

(ii) H has no incentive to deviate from M
Lp  to M

Hp  if (A12) holds. 

Since ˆ M
Lp p< , (A12) holds. As for (A18), it holds for every 1 12 α< < , provided that 

lp  is sufficiently close to M
Lp . Hence (A17) for lp  sufficiently close to M

Lp , guarantees 

that, for all 1 12 α< < , M
Lp SPEP∈ . 

Next let hp  and lp  be s.t. 

                                                  *ˆ M M
h l L Hp p p p p p≤ = < < <                                             (A19) 

The incentive compatibility constraints of L in this case are two: 

(i) L has no incentive to deviate from hp  to lp . 

                              ( ) ( ) ( ) ( ) ( )1M M
L h L L L l L L Lp p p p Dα αΠ + Π ≥ Π + Π + −                    (A20) 

Equivalently, 

( ) ( ) ( ) ( )1 M
L l L h L L Lp p p Dα  Π − Π ≤ − Π −   

(ii) L has no incentive to deviate from hp  to M
Lp . 

                                             ( ) ( ) ( )M M
L h L L L L Lp p p DΠ + Π ≥ Π +                                     (A21) 

Equivalently, 
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( ) ( )0L h L Lp D pΠ ≥ = Π  

or 0 hp p≤  (see Figure 4). 

The two incentive compatibility constraints of H are the one given by (A14) and 

                           ( ) ( ) ( ) ( ) ( )1M M
H h H H H l H H Hp p p D pα αΠ + Π ≥ Π + + − Π                   (A22) 

Equivalently, 

( ) ( ) ( )M
H l H h H H Hp p p Dα  Π − Π ≤ Π −   

(A14) and (A21) imply ˆ hp p≤  and 0 hp p≤  respectively. By Lemma 1, 0p̂ p> . Hence, 

ˆ hp p≤ , which is consistent with (A19).  (A20) and (A22) hold for every 1 12 α< <  

provided that hp  is sufficiently close to lp . Hence (A19) for 0 l hp p< −  sufficiently 

small, guarantees that, for all 1 12 α< < , *p SPEP∈ , and the proof of Lemma 6 is 

complete.  

� 

Lemma 7. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  and 1
2 hα α< ≤ . Then, 

ˆ , M
LSPEP p p ⊆   . 

Proof: Let *p SPEP∈ . By Lemma 4, *
lp p≤  and M

H hp p> .  

Let ˆ , M
LR p p =   . 

The relevant cases are  

Case 1. Suppose that M
L hp p≤ . Then * M

Lp p R= ∈ . 

Case 2. Suppose that ˆ M M
h L H lp p p p p< < < ≤ . 

Similarly to case 2 of Lemma 5, *
hp p= . By the incentive compatibility constraint of H 

given by (A13), ( ) *ˆ M
H h Lp p p p pα< ≤ = <⌢

. Hence *p R∈ . 

Case 3. Suppose that ˆ M M
h L H lp p p p p≤ < < ≤ . 

Similar to the previous case ( ) *
H hp p pα ≤ =⌢

. Hence, no pooling equilibrium exists in 

this case since ( )ˆh Hp p p α≤ < ⌢ . 

Case 4. Suppose that *ˆ M M
h L l Hp p p p p p≤ ≤ < ≤ < . Then clearly *p R∈ . 
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Case 5. Suppose that * ˆ M M
h L l Hp p p p p p≤ < < ≤ < . 

Similarly to the previous case *
hp p= , and by (A14) ˆ hp p≤ , a contradiction. Hence, 

there exists no pooling equilibrium in this case. 

Case 6. Suppose that M M
h L l Hp p p p< ≤ <  and ( ]* ,h lp p p∈ . 

Clearly in this case * M
Lp p=  and M

Lp SPEP∈ . 

Case 7. Suppose that *ˆ M M
h l L Hp p p p p p≤ ≤ < < < . Then *p R∈ . 

Case 8. Suppose that * ˆ M M
h l L Hp p p p p p≤ < < < < . 

Similarly to case 5 above, there is no pooling equilibrium in this case. 

Case 9. Suppose that ˆ M M
h l L Hp p p p p< < < <  and ( ]* ,h lp p p∈ . 

Clearly in this case *
lp p= . From the incentive compatibility constraint of H given by 

(A16), ( ) *ˆ M
H l Lp p p p pα< ≤ = <ɶ . Hence *p R∈ . 

Case 10. Suppose that ˆ M M
h l L Hp p p p p< ≤ < <  and ( ]* ,h lp p p∈ . 

Similarly to the previous case ( ) *
H lp p pα ≤ =ɶ . Hence, no pooling equilibrium exists 

in this case since ( )ˆl Hp p p α≤ < ɶ . 

The above 10 cases prove that if *p SPEP∈ , then *p R∈ , as claimed.  

� 

Finally, let us show that if ˆM
Lp p= , then { }M

LSPEP p=  for all 1 12 α< < . 

Lemma 8. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤  and ˆM

Lp p= . Then 

M
Lp SPEP∈ . 

Proof: Let hp  and lp  be s.t. (A17) holds. The incentive compatibility constraints of H 

are given by (A12) and (A18). Clearly (A12) holds since ˆM
Lp p= . But also (A18) holds 

for every 1 12 α< < , provided that lp  is sufficiently close to M
Lp . Hence, M

Lp SPEP∈  

for all 1 12 α< <  is guaranteed by (A17) with lp  sufficiently close to M
Lp . 

� 



 

 

130 

 

Lemma 9. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1
2 hα α< ≤ , ˆM

Lp p=  and 

*p SPEP∈ . Then * M
Lp p= . 

Proof: We consider the same six cases as in proof of Lemma 5. 

Case 1. Suppose that M
L hp p≤ . Then * M

Lp p= , as claimed. 

Case 2. Suppose that M M
h L H lp p p p< < ≤ .  

Similarly to case 2 of Lemma 5, *
hp p= . By (A13), ( )ˆ M

H h Hp p p pα< ≤ <⌢
 must hold. 

But ˆM
h Lp p p< = , a contradiction. Hence, there is no pooling equilibrium in this case. 

Case 3. Suppose that * M M
h L l Hp p p p p≤ < ≤ < . 

In this case again *
hp p= . The incentive compatibility constraint of H is given by (A14) 

and implies ˆ hp p≤ . But in this case ˆM
h Lp p p< = . Consequently, no pooling 

equilibrium exists in this case. 

Case 4. Suppose that M M
h L l Hp p p p< ≤ <  and ( ]* ,h lp p p∈ . 

In this case * M
Lp p SPEP= ∈ , as claimed. 

Case 5. Suppose that * M M
h l L Hp p p p p≤ < < < . 

In this case *
hp p=  and H has no incentive to deviate from *p  to M

Hp  if (A14) holds, or 

equivalently, ˆ M
h Lp p p≤ < , a contradiction. Hence, there is no pooling equilibrium in 

this case either. 

Case 6. Suppose that M M
h l L Hp p p p< < <  and ( ]* ,h lp p p∈ . 

Clearly in this case *
lp p= . From the incentive compatibility constraint of H given by 

(A16), ( )H lp pα ≤ɶ  must hold. But ( )ˆM
L Hp p p α= < ɶ . Consequently, no pooling 

equilibrium exists in this case. 

� 

Lemmas 8 and 9 establish the second part of part (1) of the proposition. 
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Subcase 1.2. 1hα α< < . 

In this case \l hA Aα ∈ . Namely, E enters the market when observing the price *p  if 

the IS sends the signal h  and does not enter if the IS sends the signal l . Hence, 

accordingly to the strategy of E defined in Lemma 3, *
h lp p p< ≤ . 

Let us find pooling equilibria in this case. 

Lemma 10.  Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ <  and 1hα α< < . Then, in every 

pooling equilibrium M
L hp p>  and M

H lp p> . 

Proof: Suppose to the contrary that M
L hp p≤  or M

H lp p≤ . Then, at least one type of M 

has an incentive to deviate to his monopoly price.  

� 

Lemma 11. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1hα α< <  and ˆM
Lp p≤ . Then 

SPE = ∅ . 

Proof: Suppose to the contrary that *p SPEP∈ . We consider two cases. 

Case 1. Suppose that M M
h L l Hp p p p< ≤ < . Note that in this case * M

l Lp p p= = . 

In order for H not to deviate from M
Lp  to M

Hp , (A15) should hold. Equivalently 

0α δ≤ ≤ , a contradiction. 

Case 2. Suppose that M M
h l L Hp p p p< < < . Note that in this case *

lp p= . 

H has no incentive to deviate from lp  to M
Hp if (A16) holds. Equivalently, ( )l Hp p α≥ ɶ  

(see Figure 4). Since M
l Lp p< , ( )M

L Hp p α> ɶ  must hold. Equivalently, 0α δ< ≤ , a 

contradiction.  

� 

Note that Lemmas 5 and 11 establish the first part of part (1) of the proposition. 

Lemma 12. Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < , 1hα α< <  and ˆ M
Lp p< . Then 

( ) ( )( ){ }* *max , M
H L LSPEP p p p p pα α= ≤ ≤⌢
ɶ  

and this set is non-empty if hδ α>  and for all α , hα α δ< ≤ . 

Proof: We start by showing that M
Lp SPEP∈ . 

Let hp  and lp  be s.t. 
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                                                          * M M
h L l Hp p p p p< = = <                                           (A23) 

In order for H not to deviate from M
Lp  to M

Hp , (A15) should hold. Equivalently α δ≤ , 

where 0 1δ< <  since ˆM
Lp p> . 

H has no incentive to deviate from M
Lp  to hp , if 

                       ( ) ( ) ( ) ( ) ( )1M M M
H L H H H H h H Hp D p p pα αΠ + + − Π ≥ Π + Π                (A24) 

holds. Equivalently,  

( ) ( ) ( )( )M M
H L H h H H Hp p p DαΠ − Π ≥ Π −  

The incentive compatibility constraint of L is given by 

                             ( ) ( ) ( ) ( ) ( )1M M M
L L L L L L h L Lp p D p pα αΠ + Π + − ≥ Π + Π                  (A25) 

Equivalently, 

( ) ( ) ( ) ( )( )1M M
L L L h L L Lp p p DαΠ − Π ≥ − Π −  

Note that (A24) and (A25) hold for hp  sufficiently small. Hence (A23) hp  sufficiently 

small and for hδ α> , guarantees that, for all hα α δ< ≤ , M
Lp SPEP∈ .                                  

Next let hp  and lp  be s.t. 

                                  ( ) ( )( ) *max , M M
h H L l L Hp p p p p p pα α< ≤ = < <⌢

ɶ                       (A26) 

H has no incentive to deviate from lp  to M
Hp if (A16) holds. Equivalently, ( )l Hp p α≥ ɶ  

(see Figure 4). Since M
l Lp p< , ( )M

L Hp p α> ɶ  must hold. Equivalently, α δ< . Note that 

0 1δ< <  since ˆM
Lp p> . 

In order for H not to deviate from lp  to hp ,  

                             ( ) ( ) ( ) ( ) ( )1 M M
H l H H H H h H Hp D p p pα αΠ + + − Π ≥ Π + Π                 (A27) 

should hold. Equivalently,  

( ) ( ) ( )( )M
H l H h H H Hp p p DαΠ − Π ≥ Π −  

Next, let us consider the two incentive compatibility constraints of L. 

(i) In order for L not to deviate from lp  to M
Lp , 

                                  ( ) ( ) ( ) ( )1M M
L l L L L L L Lp p D p Dα αΠ + Π + − ≥ Π +                      (A28) 
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should hold. Equivalently, ( )l Lp p α≥ ⌢  (see Figure 5).  

(ii) In order for L not to deviate from lp  to hp , 

                             ( ) ( ) ( ) ( ) ( )1M M
L l L L L L h L Lp p D p pα αΠ + Π + − ≥ Π + Π                  (A29) 

should hold. Equivalently,  

( ) ( ) ( ) ( )( )1 M
L l L h L L Lp p p DαΠ − Π ≥ − Π −  

(A16) and (A28) imply that ( ) ( )( ) *max , M
H L l Lp p p p pα α ≤ = <⌢
ɶ , which is consistent 

with (A26), but it needs hδ α>  and hα α δ< < . Note that (A27) and (A29) hold for hp  

sufficiently small. Hence, (A26) for  hp  sufficiently small and hδ α> , guarantees that, 

for all hα α δ< < , *p SPEP∈ . 

� 

Case 2. ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . 

Note that in this case 1 12h lα α< < < . Hence hα α>  and hAα ∉ , α∀ , 1 12 α< < . 

Namely, if the IS sends the signal h , E enters the market when observing the price *p  

irrespective the precision α  of the IS.  

Subcase 2.1. 1
2 lα α< < . 

In this case l hA Aα ∉ ∪ . Namely, E enters the market when observing the price *p  

irrespective of the signal sent by the IS and, therefore, both H and L should select the 

prices M
Hp  and M

Lp , respectively. Since M M
L Hp p< , no pooling equilibrium exists in this 

case. 

Subcase 2.2. 1lα α≤ < . 

In this case \l hA Aα ∈ . Namely, E enters the market when observing the price *p  if 

the IS sends the signal h  and does not enter if the IS sends the signal l . Hence, 

similarly to Subcase 1.2, if ˆM
Lp p≤ , then SPE = ∅ . In particular, this together with 

Lemmas 5 and 11 establish the first part of part (1) of the proposition. If ˆ M
Lp p< , then 

( ) ( )( ){ }* *max , M
H L LSPEP p p p p pα α= ≤ ≤⌢
ɶ  
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and this set is non-empty if lδ α≥  and for all α , lα α δ≤ ≤ . 

� 

Proof of Proposition 5. 

In this linear model, 

2
M L
L

a c
p

+= , 
2

M H
H

a c
p

+=  

( )
2

2
M L

L L

a c
p

− Π =  
 

, ( )
2

2
M H

H H

a c
p

− Π =  
 

 

2

3
L

L

a c
D

− =  
 

, ( )
2

3
L

E

a c
D L

− =  
 

 

2
2

3
H L

H

a c c
D

− + =  
 

, ( )
2

2

3
L H

E

a c c
D H

− + =  
 

 

Note that  

                                                                
2

L
L H

a c
c c a

+< ≤ <                                            (A30) 

must hold and it is easy to verify that ˆM
Lp p> .  

( )
2

3
L

E

a c
L K

− ∆ = − 
 

 

( )
2

2

3
L H

E

a c c
H K

− + ∆ = − 
 

 

Since ( ) 0E L∆ <  and ( ) 0E H∆ > ,  

                                             
2 2

2

3 3
L L Ha c a c c

K
− − +   < <   

   
                                 (A31) 

must hold. 

(1) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . Then, 

                                         ( )
2 2

1 2 12
1

3 3

a c c a c
K µ µ− + −   > + −   

   
                                 (A32) 

(A31) together with (A32) imply that 
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                            ( )
2 2 2

1 2 1 1 22 2
1

3 3 3

a c c a c a c c
Kµ µ− + − − +     + − < <     

     
                (A33) 

We conclude that (A30) and (A33) must hold. 

For the existence of a pooling equilibrium we need to have hδ α>  for every 

( ],hα α δ∈ . This holds iff 

                                                            
1 3 14

5
L

H L

a c

c c

− +>
−

                                                   (A34) 

and 

                                  ( )
2 2

2
1

3 3
L H La c c a c

K Kµ µ− + −   + − < <   
   

                         (A35) 

where K  is the solution to hδ α=  (see (16) and (17)). 

It can be shown that when (A34) holds, 

( )
2 2 2

2 2
1

3 3 3
L H L L Ha c c a c a c c

Kµ µ− + − − +     + − < <     
     

 

and thus, the set of all K ’s s.t. (A35) holds, is non-empty. 

(2) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . Hence, 

                                       ( )
2 2

2
1

3 3
L H La c c a c

K µ µ− + −   < + −   
   

                                 (A36) 

(A36) together with (A31) imply 

                               ( )
2 2 2

2
1

3 3 3
L L H La c a c c a c

K µ µ− − + −     < < + −     
     

                    (A37) 

Hence, we conclude that (A30) and (A37) must hold. 

For the existence of a pooling equilibrium we need that lδ α≥  for every [ ],lα α δ∈ . 

This holds iff (A34) holds and 

                                   ( )
2 2

2
1

3 3
L H La c c a c

K K µ µ− + −   ≤ < + −   
   

ɶ                        (A38) 

where Kɶ  is the solution to lδ α=  (see (14) and (17)). 

It can be shown that when (A34) holds, 
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( )
2 2 2

2
1

3 3 3
L L H La c a c c a c

K µ µ− − + −     < < + −     
     

ɶ  

and the set of all K ’s s.t. (A38) holds, is non-empty. 

� 

If we replace Cournot competition by Bertrand competition, we have 

2
M L
L

a c
p

+= , 
2

M H
H

a c
p

+=  

( )
2

2
M L

L L

a c
p

− Π =  
 

, ( )
2

2
M H

H H

a c
p

− Π =  
 

 

0LD = , ( ) 0ED L =  

0HD = , ( ) ( ) ( )E H L HD H c c a c= − −  

Note that L Hc c a< <  must hold and ˆM
Lp p>  iff 

2
L

H

a c
c

+< . Hence  

                                                               
2

L
L H

a c
c c a

+< < <                                               (A39) 

must hold.  

( ) 0E L K∆ = −  

( ) ( ) ( )E H L HH c c a c K∆ = − − −  

Since ( ) 0E L∆ <  and ( ) 0E H∆ > ,  

                                                         ( ) ( )0 H L HK c c a c< < − −                                           (A40) 

must hold. 

(1) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ < . Then, 

                                                         ( ) ( )H L HK c c a cµ> − −                                         (A41) 

(A40) together with (A41) imply that 

                                       ( ) ( ) ( ) ( )H L H H L Hc c a c K c c a cµ − − < < − −                             (A42) 

We conclude that (A39) and (A42) must hold. 

For the existence of a pooling equilibrium we need to have hδ α>  for every 

( ],hα α δ∈ . This holds iff 
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                                                            2H

H L

a c

c c

− >
−

                                                   (A43) 

and 

                                              ( ) ( ) 1H L Hc c a c K Kµ − − < <                                         (A44) 

where 1K  is the solution to hδ α=  (see (16) and (17)). 

It can be shown that when (A43) holds, 

( ) ( ) ( ) ( )1H L H H L Hc c a c K c c a cµ − − < < − −  

and thus, the set of all K ’s s.t. (A44) holds, is non-empty. 

(2) Suppose that ( ) ( ) ( )1 0E EH Lµ µ∆ + − ∆ > . Hence, 

                                                     ( )( )H L HK c c a cµ< − −                                                 (A45) 

(A45) together with (A40) imply 

                                            ( )( )0 H L HK c c a cµ< < − −                                         (A46) 

Hence, we conclude that (A39) and (A46) must hold. 

For the existence of a pooling equilibrium we need that lδ α≥  for every [ ],lα α δ∈ . 

This holds iff (A43) holds and 

                                                     ( )( )1 H L HK K c c a cµ≤ < − −ɶ                                      (A47) 

where 1Kɶ  is the solution to lδ α=  (see (14) and (17)). 

It can be shown that when (A43) holds, 

( )( )10 H L HK c c a cµ< < − −ɶ  

and the set of all K ’s s.t. (A47) holds, is non-empty. 

� 
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Chapter 5. Conclusions 

 

This thesis contributes to the theoretical analysis of industrial espionage and 

competitive intelligence activities in the context of entry deterrence, in which this topic 

has never been analyzed before. 

In Chapter 2, in which a potential entrant spies on a monopoly incumbent trying to 

detect his decision of whether or not to invest in capacity expansion, we showed that, if 

the precision of the intelligence system is common knowledge, surprisingly, the 

monopoly incumbent is the one who benefits from a perfect intelligence system and 

the potential entrant who spies on the monopoly prefers a less accurate one. The results 

of the case where the precision of the intelligence system is the private information of 

the potential entrant are less surprising. 

Chapter 3 analyzed the model in Chapter 2 assuming that the intelligence system is 

costly and its precision is commonly known by both firms and the strategic choice of 

the potential entrant, its owner. If the monopoly observes the choice of the potential 

entrant, the optimal precision is bounded away from 1. When the monopoly does not 

observe the choice and the intelligence system is cost free, the entrant builds a perfect 

intelligence system, but this situation is more beneficial for the monopoly. When the 

cost is positive and relatively high, the potential entrant does not spy on the monopoly. 

But it is more complicated when the cost is relatively low but positive. We showed that 

in equilibrium the entrant assigns some probability distribution over the precision of 

the intelligence system. We could not find this mixed strategy equilibrium, and this 

would be interesting for future research. However, the most interesting research would 

be to analyze the general case where M does not observe the choice of E.      

In Chapter 4, in which a potential entrant spies on a monopoly incumbent trying to 

better know the outcome of a R&D project carried out by the latter in an attempt to 

reduce his cost of production, we showed (assuming that the precision of the 

intelligence system is exogenous and common knowledge) that the separating 

equilibria are not affected by the spying activity of the potential entrant. This is not 

very surprising since in a separating equilibrium the entrant identifies the cost of the 
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monopoly with or without the use of the intelligence system. Although the same result 

is obtained for pooling equilibria if the precision of the intelligence system is 

sufficiently low to affect potential entrant’s decision of staying out, if the intelligence 

system is very accurate, then pooling equilibrium does not exist. But the most 

interesting result is that for intermediate values of the precision of the intelligence, 

pooling equilibrium exists and potential entrant enters the market if the intelligence 

system tells her the cost of M is high. From this point of view, spying on incumbent 

firms increases competition with high probability.  

An interesting suggestion for further research might be to analyze the last model 

assuming that the precision of the intelligence system is the private information of the 

potential entrant, its owner. And an interesting way the models in this thesis could be 

extended would be to assume that the monopoly incumbent conducts 

counterespionage activities.  
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