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relationship between the depth of burial disturbance and the resultant signature. 

Further, image classification techniques, especially object-oriented algorithms, can be 

successfully applied to single band thermal imagery. These findings may ultimately 

decrease burial search times for law enforcement and increase the likelihood of locating 

clandestine graves. 
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CHAPTER 1 
 

INTRODUCTION 
 

 This research examined the potential use of airborne thermal scanners to locate 

simulated clandestine graves.  Clandestine graves are the unauthorized burials of 

deceased persons of forensic interest (France et al. 1992), and are generally small 

features measuring one by two meters or less that consist of disturbed soil and human 

remains (Killam 1990).  Previous research has suggested that such disturbances 

typically appear relatively cooler than the surrounding non-disturbed soil following the 

completion of active exothermic decomposition (France et al. 1997; unreferenced 2006 

personal correspondence with J Stremersch).  

 The U.S. Department of Justice states a prevalence of “as many as 100,000 

active missing persons cases in the United States,” with a yearly incidence of “tens of 

thousands of people [that] vanish under suspicious circumstances” (Ritter 2007).  An 

unknown number of decedents are buried in clandestine graves nationwide at any given 

time. Thermal remote sensing techniques have been recognized as a standard 

approach to the location of clandestine graves for some time (France et al. 1992 and 

1997). Currently, there is a limited amount of available published research on the 

thermal identification of clandestine graves. This lack of controlled studies, particularly 

image analyses, has left the method both somewhat time-consuming and ineffective 

because of the difficulty in distinguishing burial signatures from other anthropogenic, 

e.g., cisterns, old wells, buried refuse, etc., and natural artifacts, e.g., uprooted trees, 

acequias, etc. However, the inhibitive costs to law enforcement associated with 
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clandestine grave searches, such as time, manpower, and risk, could be substantially 

reduced if the techniques are refined. 

 This study used signatures from established controls (standardized, artificial 

graves) in an attempt to develop refined image analysis for more effective discrimination 

between clandestine graves and the surrounding environment. The research involved 

image manipulation and enhancement techniques to tease out more detail from 

surrounding noise. Additionally, classification algorithms were incorporated to determine 

the feasibility of identifying disturbances. Future research will focus on improving these 

techniques, as well as discrimination between clandestine burials and other manmade 

and natural artifacts.  Such techniques should eventually reduce the time, costs, and 

manpower associated with the search for clandestine burials. 

The project was made possible through a collaborative effort with the Texas 

Department of Public Safety Aircraft Section (DPS). A DPS helicopter, equipped with a 

3-5µm L-3 Wescam 12DS200 imager, was used to capture digital thermal video over a 

series of control burials.  The final approach should yield a more efficient search 

methodology supported by improved image analysis. These protocols will be made 

available to law enforcement agencies.  The results of this and subsequent projects will 

be used to develop improved protocols for thermal discrimination of potential grave 

sites, which would substantially reduce law enforcement search times during ground-

truthing. 

 Simulated graves (referenced as units) produced for this project did not include 

added animal remains.  Instead, the project focused on the variables of depth and 

precipitation, and their effects on unit thermal signatures when controlling for soil type.  
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This information was used to simulate what an actual clandestine grave thermal 

signature under similar soil and environmental conditions should look like in the 

absence of active decomposition.  Future research should include both control units and 

units with added remains for cross comparisons. Studies could then be expanded into 

different climatic and soil zones. 
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CHAPTER 2 

RELEVANT LITERATURE 
 
2.1 Remote Sensing Concepts 
 

Remote sensing is the process of collecting information about features, e.g., 

differential reflectivity to assess vegetation cover or concentrated pollutants in bodies of 

water, or events of interest, e.g., tracking storm systems or wildfires, with detection 

equipment that is not in immediate contact with the area of interest. These techniques 

typically involve the use of specialized sensors that record electromagnetic radiation 

(EM) phenomena. All incoming EM is either reflected by the atmosphere or a surface, 

transmitted by the atmosphere, absorbed by the atmosphere or a surface, or radiated 

by the surface. Energy transmitted through the atmosphere may be reflected or 

absorbed by various earth surfaces. Those absorbed are converted for natural or 

potentially anthropogenic processes and later radiated outward. Further, energy that is 

radiated from a surface will also interact with the atmosphere, as described above. 

Remote sensors have been developed to detect EM in specific bandwidths, including 

ultraviolet, visible light, near infrared, middle infrared, thermal infrared, and microwave. 

Detection of these energies is only possible within atmospheric windows, the portions of 

the bands where EM is transmitted by the atmosphere and not readily absorbed 

(Jenson 2006). 

 Sensors may be passive or active types. Passive technology detects only EM 

that has been reflected (e.g., visible light, near IR) or radiated from a surface (e.g., 

thermal IR). Because these sensors are non-penetrating, they only record surface 

behaviors. However, qualitative assessments of what is observed on the “first surface” 
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may be indicative of a buried feature, such as an underground hot spring or a buried 

coal fire. Regarding active types, including active microwave and radar, the sensor acts 

as a source of EM. A beam is directed toward a surface of interest, and the sensor 

collects data reflected or backscattered back. Such sensor types can be also be used to 

directly study subsurface features in the right conditions because they have the ability to 

penetrate (Jenson 2006). 

 

2.2 Thermal Remote Sensing 

Thermal remote sensing, in this case the detection of the 3-14µm thermal 

infrared EM, was the technique selected for this project because the technology is 

readily available to law enforcement for standard policing activities. Thermal scanning is 

a passive approach that involves the detection of heat radiated from a surface. The 

thermal equipment mounted on airborne platforms used by various law enforcement 

agencies typically detects heat in the 3-5 µm (mid wave infrared/MWIR) and 8-14 µm 

(long wave/LWIR) atmospheric windows (Jenson 2006). 

All objects with a temperature greater than absolute zero will radiate heat. Hotter 

objects, such as the sun (6000K), will display maximum exittance of shorter wavelength 

EM (in the case of the sun, visible light). The earth is relatively much cooler (300K) and 

radiates longer wavelength EM, such as radiowave and thermal. Thermal remote 

sensors do not detect and display the actual kinetic temperature of a surface, but 

instead detect radiant flux, or the photons emitted, from the surface. Some systems 

allow for the measurement of radiant flux to determine the radiant temperature, which 
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typically correlates with kinetic temperature. Differences between kinetic and radiant 

temperature are due primarily to emissivity (Scollar et al. 1990; Jenson 2006). 

Emissivity is the ratio of EM radiated by a real world object of certain kinetic heat 

to that of a blackbody radiator of the same temperature. A blackbody can be described 

as a theoretical construct which absorbs all EM that strikes its surface, and emits all 

wavelengths of EM, with peak exittance defined by internal temperature. For example, 

the Sun approximates a 6000K blackbody. Emissivity values range between 0 and 1, 

with good emitters, which are typically good absorbers, e.g., water, closer to 1. Weaker 

radiators, such as metals, are typically bad absorbers because they readily reflect 

insolation. Regarding this project, distilled water has a high emissivity, while dry soil is 

relatively lower. An increase of soil moisture content subsequently raises emissivity for 

that soil. This concept is critical with respect to thermal remote sensing: objects with the 

same kinetic energy but different emissivity values should contrast. For example, a 

human (98.6°F) standing on a concrete pad the same temperature should still show up 

as “hot” on the scanner because the concrete is of a lower emissivity (Scollar et al. 

1990; Jenson 2006). 

 

2.3 Thermal Remote Sensing and Soil Disturbance 

 Numerous studies have demonstrated the potential application of thermal 

imaging in identifying disturbed soil.  Johnson et al. (1997) described characteristic 

spectral differences between pristine and disturbed soils due to grain size.  Land mines 

have been located thermally by both recognition of disturbed soil and by emitted heat 

from the mines in controlled studies (Winter et al. 1996).   Irvine et al. (1997) further 
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demonstrated that the disturbed soils of known 1950s and 1960s era waste trenches 

associated with Oak Ridge National Laboratory were cooler than the surrounding soils 

due to increased moisture content. Thermal image temperature contrast was 

subsequently used to aid in the identification of previously undocumented trenches. 

 

2.4 Applications in Archaeology 

Thermal remote sensing has also been applied to archaeological prospecting. 

This method is typically employed for the purposes of the identification of surface and 

subsurface disturbances (Scollar et. al1990). Imagery collected by the NASA thermal 

multispectral scanner (TIMS) was used to identify prehistoric footpaths in highland 

Costa Rica (Sheets and Sever, 1991) and roadways in Chaco Canyon, New Mexico 

(Sever and Wagner 1991), that were not visible to the naked eye. 

Similarly, thermal scanning has been used to identify buried, subsurface 

archaeological features. Ben-Dor et. al, (2001) used this method over an Early Bronze 

Age site in the Leviah Enclosure (Golan Heights), where numerous exposed basalt 

stones, the remnants of prehistoric construction material, had been observed. A 

helicopter-mounted thermal imager recorded nighttime video footage over the site. 

Extracted images were then rectified to a site map and used to discriminate additional 

stones, some contiguous with those exposed, that were buried in accumulated 

sediment. Thermal findings were later validated by excavation: stones were found to be 

between five and 50 centimeters below the surface. Although thermal remote sensing is 

passive and cannot penetrate a surface, the buried stones could be detected partially 

because they radiated heat at a slower rate than the surrounding matrix. 
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2.5 Applications in Forensic Anthropology 

Rapid hydrolysis during the earlier stages of decomposition produces heat 

release from decomposing remains. “Casper’s dictum,” a rule of thumb proposed by 19th 

century pathologist Johann Casper that is still recognized today, states that what takes 

time “X” on the ground will be twice as long in the water and eight times as long in the 

ground (Casper’s Dictum…[2007]). Bass and Rodriguez (1985) noted these slower 

rates using six cadavers buried at various depths. Further, temperature probes 

associated with the burials revealed that during the exothermic portion of 

decomposition, the remains were relatively warmer than the surrounding grave soil, and 

temperatures measured from bodies that were buried at shallower levels were relatively 

hotter than those at greater depths. Similar to buried basalt stones, these heat 

signatures can be detected thermally. 

Davenport (2001) presented an overview of various remote sensing techniques, 

both passive and active, and the application of those methods in clandestine grave 

searches. He noted that the primary goal in these exercises was to look for observed 

contrasts at the surface, or near-surface in the case of active sensors. Regarding 

thermal remote sensing, Davenport noted that graves could potentially be discriminated 

due to differential cooling patterns of the grave when compared to the background. 

Relevant factors affecting the contrast listed include grave moisture content, solar 

intensity (i.e., the load of solar energy on the surface), heat transfer, and likely, soil-

type. Further, Davenport’s contention was that this method was best used when the 

interred corpse was in the earlier stages of exothermic decomposition (heat release). 
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France and colleagues (1992 and 1997) used truck-mounted thermal imagers to 

identify heat signatures on simulated graves containing pigs that were actively 

decomposing. They further noted that the disturbed soils in these simulated graves 

appeared thermally cooler than the surrounding undisturbed matrix following exothermic 

decomposition (France et. al 1997).  Aircraft-mounted imagers used in an unpublished 

1997 study in Belgium yielded similar results (unreferenced 2006 personal 

correspondence with J Stremersch). 

 

2.6 Preliminary Research 

 The concepts described above were used in an April 2006 pilot study. A 

preliminary test was conducted in association with the Texas Department of Public 

Safety (TXDPS) using a site at the University of North Texas Discovery Park (UNTDP), 

where access could be controlled.  Three adjacent units, each measuring 1 by 2 meters, 

were excavated to depths of 0.46 meters (1.5 feet; Unit 1), 0.91 meters (3 feet; Unit 2), 

and 1.52 meters (5 feet; Unit 3).  They were then refilled without added biological 

material and subsequently scanned at night with an L-3 Wescam 12DS200 thermal 

imager mounted on a TXDPS helicopter.  Additional scans were also obtained over a 

nearby historical International Order of Odd Fellows (IOOF) cemetery for comparison in 

Denton, Texas.  The resulting video demonstrated a contrast between the disturbed and 

non-disturbed soils at both the prepared site and the cemetery (see Figures 1 and 2 

below).  Failure to fully discriminate was likely due to excessive rainfall over the 

previous four days. 
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Figure 1. Thermal image of the preliminary test site at 500 feet, April 
2006 flight. Darker features are warm. Scale is approximately 1:200. 
The outlines of units A (0.5 meters) and B (1.o meter) are readily 
observed. Unit C (1.5 meters) appears faint. Poor discrimination was 
likely due to excessive rainfall. 

Figure 2. Thermal image of an historic cemetery in Denton, Texas at 
600 feet, April 2006 flight. Darker features are warm. Scale is 
approximately 1:400. Graves were dated by ground-truthing the 
following morning.  
 A. 1988, 1940  D. 1968 
 B. 1983   E. 1977 
 C. 1943   F. 2001 (appears warmer) 
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Images captured over the UNTDP site were later analyzed at the UNT Center for 

Remote Sensing (CRS). The Erdas Imagine 9.1 software package was used to 

generate 17x37 pixel subset images of the three UNTDP units (see Figure 3). The 

software was further used to acquire the pixel brightness values (BV) that comprised 

each of those subsets. Subset BV distributions were then analyzed with custom-written 

programs for the SAS 9.1 (Statistical Analysis Software) programming language.  BV 

distributions for each subset image were non-normal (Shapiro-Wilks normality test, all P 

< 0.05), highly significantly different (ANOVA on ranked data, P < 0.0001), and 

represented three statistically identifiable groups: Unit 1 > Unit 2 > Unit 3 (SNK multiple 

range test on ranked data, α = 0.05). Thermal signatures became cooler, and were 

composed of a greater number of darker (lower BV) pixels, as depth increased. 

 

 

 

 
 
 
 
 

  

Figure 3. UNT Discovery Park, Unit C, April 2006 flight. 17x37 array of 
eight bit pixels, n = 629. The distribution of brightness values is highly 
significantly different from normal: Shapiro-Wilk, W = 0.9537, P < 0.0001. 
[30, 34, 36, 39, 46] 
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CHAPTER 3 
 

MATERIALS AND METHODS 
 

3.1 Area of Interest 
 
 The research site is located in Denton, Texas, at the University of North Texas 

Discovery Park (UNTDP) campus. The immediate area of interest (AOI), approximately 

120 square meters, includes the three original simulated burials (units) that were placed 

in April 2006. The site is in an undeveloped and minimally-impacted portion on the of 

the UNTDP campus near the northwestern corner of the property line. The maximum 

elevation at the site is 220.68 meters along the north side (NCTCOG 2007). Elevation 

gradually decreases across the site, with a major drop-off into a drainage ditch along 

the southern site edge. Figures 5 and 6 below present the campus (wide field of view) 

and the immediate AOI, with associated contour intervals. 

 Denton is characterized as having a humid subtropical climate, meaning hot 

summers and relatively mild winters. The mean yearly ambient temperature is roughly 

17.7°C, with yearly rainfall equaling approximately 96 centimeters. Precipitation is 

spread out across the year, with peak rainfall typically in May. Figure 4 below presents 

average monthly normal temperatures (high and low) and precipitation (Ford 1980; 

Denton Climatology…[2010]). 
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Figure 4. NOAA 30 Year Normals (1971-2000) for Denton, Texas. Maximum and 
minimum temperatures (left axis) by month are presented in degrees Celsius. 
Precipitation (right axis) by month is reported in centimeters. 
 
 

Mean soil temperatures at depths greater than 50 centimeters for the Denton 

area are typically between 15°C and 22°C, with average summer and winter 

temperatures differing by greater than 6°C. Deeper levels in these soils maintain 

moisture for most of the year and dry out periodically only in the summer months. Local 

mean temperature for groundwater in shallower depths is approximately 19°C, or 1-2°C 

warmer than the mean ambient temperature, and fluctuates seasonally with the local 

climate (Heath 1983). The immediate AOI consists of Justin fine sandy loam soils, with 

slopes between one and three percent (Ford 1980). This soil series is characterized as 

well-drained, with moderately slow permeability. The upper soil layers are slightly acidic, 

becoming more alkaline at the lower levels. The five distinct layers in this series are 

described in Appendix A. 
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Denton is located in the Cross Timbers ecozone, which is recognized for 

expanses of prairie grasses interspersed with clusters of woodland. Vegetation in the 

AOI consists primarily of prairie grasses, including little bluestem, hairy gramas, and 

western ragweed. Multiple mesquite shrubs, as well as a medium-sized cedar tree 

(invasive) are within the AOI. A stand of post oaks is located in an undeveloped 

adjacent parcel to the west of the site (McMahan et al. 1984). 

 
Figure 5. University of North Texas Discovery Park and study Area of Interest with 
contour lines (61 cm intervals, North Central Texas Council of Governments digital 
elevation model). 
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Figure 6. Research site on the in north-eastern aspect of the Discovery Park campus 
with disturbed units, stone ground control points (GCPs), and contour lines (25 cm 
intervals). Disturbed units include the preliminary set (units A-C), Set A (units D-I) and 
Set B (units J-O). 

  
 
3.2 Research Site Set-up and Data Collection 
 

The current research units were placed adjacent to the preliminary study.  The 

site consisted of two locations, identified as Sets A and B. Each set consisted of six 

units measuring one by two meters. Units were excavated to the following depths: 0.25, 
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0.5 (two units), 1.0 (two units) and 1.5 meters, respectively. Site units were laid out prior 

to excavation using standard archaeological techniques (Saul et al. 2007): 

1. Hammer in place a twelve inch galvanized nail (A) 
2. Pull a two meter line from point 1 and place a second nail (B) 
3. From A, pull a one meter line 
4. From B, pull a second line (2.24 meters), representing the hypotenuse of a 

right triangle 
5. Bring the lines from A and B together. Where they meet, place the third nail 

(C) 
6. Repeat the process for the fourth point (D), drawing a one meter line from B 

and a 2.24 meter hypotenuse from A 
 

The total number of experimental units (disturbed soil) was fifteen when including the 

original three from the preliminary study set. Ten additional control subsets (undisturbed 

areas) were later added to the map in ArcGIS (see below, Layer Preparation in ArcGIS). 

Prior to excavation, local soil and vegetation data, as well as weather information 

for the preceding five years, were gathered.  Initial groundbreaking was performed by 

backhoe on 23 May 2008.  The units were then completed to proper dimensions with 

shovels and hand-tools on the following day.  All excavated material was collected on 

tarps lying on ground adjacent to the units. Observed soil strata were identified with the 

Denton County Soil Manual (Ford 1980), and pertinent soil information, including soil 

type and permeability, were recorded. Soil profiles were then photographed with a 

Pentax *istDS SLR digital camera. Soil descriptions are presented in Appendix A. Soil 

and plant material removed from a specific unit were then backfilled with shovels. The 

site map, presented in Figure 6 overlay above, was generated on 28 June 2008 using a 

K&E Paragon Self-Indexing Alidade, Model 760000. 

 The entire research site, including Sets A, B, and the preliminary set, was 

scanned five times at altitudes between roughly 150 and 245 meters (500 to 800 feet) 
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above ground level with a helicopter-mounted L-3 Wescam Sonoma Model 12DS200. A 

sixth flight used a newer 3-5µm sensor that was being beta-tested by DPS (Model 

12DS650). The 12DS200 consists of a three sensor payload encased in a lightweight, 

four-axis gyro-stabilized gimbal. Sensors include the following: a daylight color (RGB) 

camera with continuous zoom; a laser illuminator used by police to “paint targets”, and; 

a 3-5µm staring focal plane array Indium antimonide (InSb) forward looking infrared 

(FLIR) sensor. The color camera and laser were not used for this study. The thermal 

sensor is operated at super-cooled temperatures. Imagery can be recorded through 

three fields of view (wide, middle and narrow); all output imagery is of 8-bit radiometric 

resolution. Permission to convey detailed sensor specifications, as well as Mean 

Resolvable Temperature Difference (“temperature resolution”) and actual spatial 

resolution capabilities, could not be obtained from the manufacturer. 

Flights were scheduled over the course of 18 months between August 2008 and 

February 2010 to account for a variety of environmental conditions. Scans were 

collected in the late evening to early morning hours, to ensure maximum contrast, and 

recorded live to an on-board flash drive. Both the scanner and the helicopter were 

operated by Texas Department of Public Safety personnel.  Thermal scans were later 

converted to standard MPEG format upon return to the hangar and stored on a 2.0GB 

Cruzer Titanium Flashdrive. Weather data from the National Oceanic and Atmospheric 

Administration (NOAA) regional marking station, located approximately 4.5 miles from 

the project site at the Denton County Municipal Airport, were collected for the duration 

of the study and are presented in Appendices B-D (NCDC 2010). In situ research was 

conducted on sunny, clear days.  Trips included documentation of invading vegetation, 
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as well as changes in unit physical appearance over time, such as superficial soil 

breakdown or possible soil compaction.  All units were digitally photographed. 

 

3.3 Data Collection 

Thermal image analysis is typically qualitative (Jenson 2006).  A scanner with the 

polarity set to “white equals hot” provides a grayscale thermal image composed of 

targets that are warmer (appearing light) or cooler (appearing dark) when compared 

with surrounding known targets in the image.  Typical quantitative techniques, including 

the derivation of target temperature (kinetic) from radiant temperature, are extremely 

difficult and require highly sensitive equipment and specific knowledge of target 

properties, such as emissivity and moisture content (Jenson 2006).  Image analysis for 

this project focused on the grayscale pixel variation of test units in aerial thermal images 

and subsequent image classification.  It was hypothesized that units should appear 

thermally cooler (France et al. 1992 and 1997, Irvine et al. 1997), therefore the subset 

images should be composed of a greater number of darker (lower value) pixels. 

 

3.3.1 Layer Preparation in ArcGIS 

Prior to image analyses, preparations were made using the ESRI ArcGIS 9® 

software package. A file geodatabase was created in ArcCatalog® and populated with 

the site map, as well as the following created feature classes: ground control points 

(GCPs); unit corners; units, and; sample boxes (subsets). Additional files acquired from 

the North Central Texas Council of Governments (NCTCOG 2007 and 2009) were 

added, including a 2009 aerial image and the 2007 contour shapefile. The native 
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projection for the NCTCOG data was North American Datum 1983 (NAD83) Texas 

State Plane, North Central Texas, in feet. Both datasets were generated during 

NCTCOG winter surveys. The aerial photo was shot from 4800 feet (1463 meters) 

above ground level on a leaf-off, cloud free day, and was georeferenced by NCTCOG. 

The associated two-foot (61 centimeter) contour layer was generated from stereo-

image: the images were collected at no greater than 5500 feet (1676 meters) altitude. 

Resulting contours were smoothed at NCTCOG. Both NCTCOG files were projected to 

NAD83 Universal Transverse Mercator Zone 14N North Central Texas, in meters 

(NAD83 UTM Zone 14N NCT, m). Projections for the site map and the above feature 

classes were defined in the same coordinate system. 

 The site map was rectified to the aerial image using the series of stone ground 

control points. Spatial coordinates were drawn from the stone locations on the map 

(center pixel of an “X”) as well as the spatial coordinates of the same stone in the aerial 

image. A first order transformation was selected (27 ground control points, total RMSerror 

= 0.29897) with nearest neighbor interpolation to establish the relationship between the 

map and the image. 

 Features were then added to the GCPs, unit corners, and unit classes created 

above. All new features were generated in ArcMap® Editor. The GCPs file consisted of 

27 points corresponding to stones located on the map. The unit corner class consisted 

of 60 points (four points for each unit by 15 total units) that were used for a snapping 

environment for polygons created in the unit class. These polygons corresponded 

directly with the units on the site map. The ArcMap® Advanced Editing Tools option was 

then used to generate a rectangular “sample” area within each unit polygon. That 
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sample was copied and rotated to properly fit within the other 14 experimental units. An 

additional 10 sample subsets were placed in undisturbed areas throughout the site. 

Lastly, each subset was selected and exported as an individual feature class (25 total). 

 

3.3.2 Image Selection 

 All analyzed images were originally sampled from MPEG data recorded during 

scheduled flights. Selected images included the following: raw images; enhanced 

images, and; filtered images. Raw images represented individual frames in the video 

(one frame out of 30 frames per second) using the Topaz Moment® media player, 

exported as JPEGs. Images selected from each flight video were primarily near and 

mid-range field of view (FOV). Collected images were converted to TIFF format 

(Windows Paint). 

Enhanced images were also produced by Topaz Moment®. However, instead of 

being single frame stills, these are images that are interpolated by four consecutive 

frames, a technique referred to as super-resolution (unreferenced 2009 personal 

correspondence with A Yang). All enhanced images were generated from consecutive 

frames that included the captured raw image to ensure the same FOV and scale.  

Super-resolution techniques were originally developed for data collected by 

sensors located on orbital platforms. Although the actual Topaz Labs® algorithms are 

unavailable for proprietary reasons, the general concepts behind super-resolution are 

well understood. Given a series of consecutive images, the data collected by the sensor 

are slightly different for each scan due to: 1) sensor error/mis-calibration; 2) data 

potentially lost during download, and; 3) additional possible errors introduced during 
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image processing. Each of these and other factors suggest that although resolution 

capabilities for a sensor (e.g., spatial, spectral, and radiometric) may be “X,” recorded 

data observed on an image will always be less than the maximum. Using a series of 

images, the data that are missing in one may be present in another. Thus, a series of 

images can be used to generate a new image that is of “higher resolution” than 

originals. Companies such as Topaz Labs® have applied these principals to generating 

enhanced images from consecutive video frames (Park et al. 2003; Farsiu 2004; 

unreferenced 2009 personal correspondence with A Yang). 

Each pair of raw and enhanced images was duplicated. The duplicated images 

were then subjected to customized filters built with Topaz Simplify v.3®. Filter design 

focused on edge detection and area contrast in an effort to further “tease out” additional 

details and increase contrast between the disturbed units and the undisturbed 

surroundings.  

Thermal data recorded during each flight included two available polarities (white 

equals hot, and an inverse black equals hot). Regardless of the polarity selected, the 

sensor gathers the same information, thus, established relationships between image 

features as observed by the user will reverse when the polarity is switched. This is 

demonstrated statistically in Appendix E. 

A review of the collected flight data revealed that disturbed units were best 

visually discriminated when they appeared relatively dark against a light, undisturbed 

background, regardless of hot/cold considerations. Since polarity presentation is based 

on user preference, images selected for later analyses included only those in which 

units appeared relatively dark. It should be noted that a “dark” unit may be either 
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warmer or cooler than the background, depending on the flight. Units appeared 

relatively cool when compared to the background on only one of the six flights. Those 

same units appeared warm in four of the other flights, and faint to not present at all in 

one. 

 

3.3.3 Image Preparation 

Raw, enhanced and filtered images were loaded individually into ArcMap® and 

defined (NAD 83 UTM Zone 14N NCT m), along with the rectified site map, aerial photo, 

and pertinent feature classes. The site map was zoomed in to the corresponding extent 

of the FOV for the recorded image. Image transparency was adjusted to between 10 

and 20% with the ArcGIS® Effects tool. The image was then set to fill the full extent of 

the viewer and permanently rectified to the site map using the ArcMap®Georeferencing 

tool. Links were drawn from thermal signatures of identifiable stones and/or the centers 

of individual unit signatures to corresponding points on the map. Overlaid feature 

classes, including the GCPs, units, and sample boxes, were used to properly identify 

link points on the map. Associated link tables were saved for all rectified images. All 

rectifications were first order (affine) polynomials with total RMSerror ≤ 0.5. Cell values for 

all rectified images were calculated by cubic convolution interpolation. Output cell sizes 

were rounded to the nearest hundredth. 

 

3.3.4 Band Selection  

 Although the sensor only gathers emitted radiation in one bandwidth (3-5µm), the 

output imagery is three-band, red-green-blue (RGB) composite grayscale. True 



23 
 

grayscale consists of equal parts of the three primary colors. Brightness value intensity 

in the study images is almost, but not quite identical. It should be understood that each 

band presents the same information. These slight shifts are for presentation only. When 

band levels are equal, the output is slightly brighter and has relatively lower contrast 

between lighter and darker image features. Figure 7 below displays an unrectified frame 

as captured from flight footage (a), and that same image converted (via Photoshop 

Elements 7®) to actual grayscale (b). 

 

Figure 7. The three-band composite (a) and actual grayscale (b) versions of image 6r11 
(unrectified). Contrast between image features is less pronounced in (b). 
 

 Prior to applying the sampling (extraction) scheme described below, a rectified 

image was taken from each flight and sampled repeatedly from each band. Although the 

bands were distinct from each other, relationships between samples were consistent 

across all three bands (see Appendix F). Because these three bands are providing 

redundant information, only one stretched band (Red: Band 1) was used for later 

sampling. 

 

 

a.  b. 
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3.3.5 Subset Image Extractions and Pixel Data Acquisition 

 Samples from unit and control area signatures recorded in the FOV of a given 

rectified image were extracted. The individual sample class files generated above were 

used as feature masks. Extracted raster samples were then converted to ascii text files 

that consisted of the BVs making up the sample. Units that displayed poor alignment 

following rectification were omitted from extraction due to the possibility of interference 

from signature edge defects.  Signatures or control areas partially or completely out of 

the FOV were not examined. Additionally, samples were not collected from any unit that 

was partially obscured by the viewer display icons (e.g., target, operator identification, 

etc.). The text files were then imported to an assigned Microsoft® Excel 2007 workbook. 

Following upload, additional attributes (variables) were added for each dataset, 

including a unit identifier (A-Y), depth, a set identifier, and the image type. The following 

model (Figure 8) was built in ArcGIS® Model Builder and used to perform extractions 

and ascii conversions: 

 

Figure 8. Unit Extraction and Conversion Model ArcMap® 9.0. 
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3.3.6 Statistical Analyses 

 Subset BV distribution variation was analyzed with SAS 9.2®. Procedures 

selected were parametric or nonparametric, dependent upon the outcome of normality 

testing on subset pixel distributions. Procedures included: 1) one-way ANOVA or 

Kruskall-Wallis, as necessary; 2) Student-Newman-Keuls (SNK) multiple range test 

(non-ranked or ranked), and; 3) Pearson’s or Spearman’s correlation. Conditions tested 

were: 1) differences between disturbed unit signatures and non-disturbed controls; 2) 

differences within a Set based on depth of disturbance, and; 3) associations between 

thermal signature and depth. All procedures described above in section 3.3 are 

presented diagrammatically in Appendix G. 

 

3.4 Classification Study 

Image classification in remote sensing is the process of assigning the BVs of 

features recorded in an image to proper, identifiable classes. The output classified 

image serves as a thematic map consisting of various land covers and land uses, such 

as prairie grass, forest, pond, roadway, etc. Lu and Wang (2007) identify multiple issues 

that can ultimately affect the accuracy of a classification, including: 1) complexity of the 

landscape (e.g., heterogenous, homogenous, rugged, etc.); 2) the data sources 

(resolutions, climatic conditions when collected, etc.); 3) processing methods used for 

the data, and; 4) the actual algorithms selected for classification. 

 Traditional classification techniques, or “hard classifiers,” are done on a pixel-by-

pixel basis. The two basic methods are “unsupervised” and “supervised”. Although there 

are multiple algorithms that can be used for either selection, each process can be 
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readily generalized. Unsupervised classification involves a two step approach, in which 

the user defines the number of clusters (e.g., 25, 50, 100, etc.) to which pixels in an 

image should be assigned. The process then populates each cluster with pixels based 

on spectral characteristics (brightness value, or BV). The user then merges multiple 

clusters of pixels into a single known class. For example, three clusters recognized to 

represent water would be combined as one. Conversely, supervised classification 

requires the user to identify known examples from each class in the image (e.g., 

grassland, forest, etc.). The analyst selects areas from each land cover or land use area 

to serve as training sites for class signatures. The classification software then places all 

remaining “unknown” pixels into various classes based on the pixel BV.  

 Object oriented classifications are relatively newer techniques that have become 

more prevalent as the availability of higher spatial resolution imagery has increased. 

These techniques in some ways can be viewed as a combination of unsupervised and 

supervised classification. The method consists of two primary steps. First, the image is 

segmented, a process that splits the image into contiguous objects. Each object is 

composed of a group of pixels which are closely related, both spectrally and spatially. 

This differs from the traditional classifiers in that those classification types are based 

solely on spectral characteristics (BVs only) and do not account for geographical 

relationships. 

 The initial segmentation, somewhat analogous to the unsupervised process, is 

followed by user defined manipulation and rule building. Closely related objects are 

merged together a larger individual objects. For example, a segmented image of a 

cement-constructed helicopter landing pad may consist initially of 15 objects: these 
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objects can then be joined together as a single object by the user. Various algorithms 

can also be used to separate objects into different classes based on shared attribute 

characteristics or dissimilarities (e.g., mean object brightness, area, 

circular/ellipsoid/rectangular shape, length/width, linearity, etc.). User-defined attribute 

threshold levels are used to classify objects. An example of this would be classifying all 

objects with a mean brightness greater than 110 and area greater than 300 pixels as 

“control. “ 

While the traditional methods have been used more extensively in remote 

sensing, the object oriented models are fast becoming acceptable and sometimes 

preferred alternatives. Whiteside (2005) compared the results of both a per-pixel 

(supervised) and object oriented classifications in a land use study using multispectral 

images collected by the Advanced Spaceborne and Thermal Emission and Reflection 

Radiometer (ASTER) over an area of interest (AOI) in the Australian Northern Territory. 

The latter method reportedly generated higher accuracy output images. Similar findings 

were reported in a coal fire mapping study, conducted in Mongolia, China that also 

compared resulting classified ASTER images (Yan et. al, 2006). Willhauck (2000) used 

both methods in a change detection study (deforestation in Tierra del Fuego Province, 

Argentina) using older digitized aerial photos and newer Satellite Pour l’Observation de 

la Terra (SPOT) images. The author reported that although accuracy levels were 

comparable, the hierarchial tree developed for the object oriented could be reapplied for 

future images for change detection and potentially save a lot of time. All authors 

reported speckled appearance, or a “salt and pepper” effect, observed on traditionally 

classified images. 
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Traditional and object-oriented techniques were used to classify a selection of 

rectified images generated above. Images were selected from three flights, and 

included both near and middle FOV. Duplicated units in Sets A and B (two each of 0.5 

and 1.0 m units) were used to test the Erdas Imagine® supervised classification 

function. Treating one pair of units in a location as “graves of known depth,” training 

sites were selected from those units to see if the other “unknown” pair could be properly 

classified, as well as other represented classes, such as vegetation/control, trees, ditch, 

etc. Conversely, process trees constructed in Trimble eCognition Developer 8® were 

developed to separate units based on depth (classes for 0.25, 0.5, 1.0, and 1.5m 

disturbances) from all other represented class identifications. 

Image classifications were performed for multiple reasons. Initially, this was done 

to test the robusticity of both methods to see how well disturbed unit signatures were 

discriminated from undisturbed backgrounds that exhibited similar spectral 

characteristics. Successful thermal image classifications represent a potential tool for 

future law enforcement reconnaissance, especially as real-time classification programs 

become available. Additionally, the results could help determine the feasibility of using 

classification techniques to discriminate between undisturbed areas and potential 

burials, as well as other anthropogenic and natural soil disturbances. 

 Prior to conducting any classifications, all images were converted in ArcMap® to 

Imagine (.img) format. Converted images were then cropped with the Erdas Imagine® 

Subset function to remove as much of the peripheral readout as possible. No features of 

major interest, e.g., disturbed units, were included in the cropped area. 
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3.4.1 Supervised Classification 

 Classes attempted with this method included: 1) current units by depth, in 

meters; 2) preliminary units as a group; 3) control (undisturbed area); 4) trees; 5) ditch, 

and; 6) readout. For reasons of presence or absence within a given image, it should be 

noted that not all classes were applicable in each classification. The recommended 

number of sample pixels per class was determined as follows: 

   n = k + 1, 

where n represents the number of pixels, and k is the number of available bands in the 

image (Jenson 2006). Due to redundancy, there was essentially only one band (n = 2); 

therefore, the total recommended number of pixels should be at least “10n,” or at least 

20 pixels per class. 

 Training sites were selected using the Erdas Imagine® seed option. The defined 

maximum seed size was dependent on the type of image: “raw-based” image seed size 

was 10 pixels, and up to 50 pixels were used for “enhanced-based” images. The seed 

Euclidian distance was set to 5, which excluded pixels with BVs that were five units 

greater or less than the seed pixel. All classes started out with a minimum of 10 training 

sites, although many of the training signatures were later deleted or merged with other 

classes based on excessive signature overlap. The minimum distance algorithm was 

selected for all subsequent supervised classifications. 

 

3.4.2 Object-Oriented Classifications 

 The same subset images generated above were classified with Trimble 

eCognition Developer 8®. Process trees (rule sets) were developed for each 
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classification. The initial step (parent process) in each case applied the multiresolution 

segmentation algorithm, which broke each image into contiguous segments. When 

necessary (image dependent), multiple objects that comprised one feature, such as a 

disturbed unit or a tree, were manually merged together. 

 All subsequent rule set steps (child processes) assigned objects to classes 

based on object features. These features consisted primarily of actual value (mean 

object brightness and maximum-minimum difference in brightness), geometry (object 

area, and shape characteristics: e.g., roundness, compactness, rectangularity, 

asymmetry, etc.), and relative position (object distance of X or Y units from a given 

image border).  Rule set design consisted of earlier child processes that identified 

individual classes that were not disturbed units, including ditch, trees, and control areas. 

Once non-disturbances were classified, the last set of child processes assigned units to 

specific classes, including the current study units by depth, and preliminary units 

collectively. 

 

3.4.3 Accuracy Assessment 

 The accuracy of classifications produced from both methods was assessed by 

using error matrices. A stratified random sample of 64 pixels was generated in Erdas 

Imagine® for each supervised classification. Pixels were identified and labeled based 

on the class that the individual pixels should belong to. Due to the small size of the 

immediate AOI, the assigned classes for reference data and the above samples were 

the same in each supervised classification assessment. Error matrices conducted in 

eCognition® were based on training and test area (TTA) masks constructed from each 
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segmented image. Similar to the process described above, objects, each consisting of 

multiple pixels, were sampled for each class based on a known “real world” identity. 

Error matrices for both methods calculated accuracy levels by comparing the labeled 

identification of pixels or objects against how they were eventually classified. All 

classification procedures described in section 3.4 are available diagrammatically in 

Appendix G. 
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CHAPTER 4 
 

RESULTS 
 
 A total of seven flights were conducted. These included six flights for the current 

study and well as the preliminary run from April 2008. All but the final flight (Number 6) 

used the L-3 Wescam 12DS200 imager. The sensor used on flight six was a new 

sensor being field-tested for the manufacturer. General flight information is presented in 

Table 1 below. 

Table 1. Pertinent flight data for the seven scheduled surveys. With the exception of the 
Preliminary Set, units were not observed in the Flight 2 survey (*). Thermal 
discrimination for the preliminary flight was relatively poor. 

Flight Date Conditions On site 
Altitude 

(ft) Temp(°C) Unit 

P 4/29/06 warm, wet 
4/30/2006, 
0045hrs 500  13.9 cool, poor 

1 8/28/08 hot, wet 
8/28/2008, 
0135hrs 650  26.1 warm 

2 11/21/08 cold, damp 
11/22/2008, 

0005hrs 650  5 
not 

observed* 

3* 9/1/09 hot, dry 
9/2/2009, 
0000hrs 650  22.5  warm 

4 9/2/09 hot, dry 
9/3/2009, 
0000hrs 800  23.9  warm 

5 10/20/09 warm, wet 
10/21/2009, 

0005hrs 700  20.6  cool 

6 2/27/10 cold, dry  
2/27/2010, 
2325hrs 650  3.3  warm  

 

4.1 Statistical Analyses Results 

All images selected for analysis were rectified to the site map. Image 

rectifications were conducted using an affine polynomial, with the associated root mean 

square error (RMSerror) value less than 0.5. Brightness values for the new raster grids 

were calculated by cubic convolution interpolation. A table for each rectified image, 
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including the RMSerror, number of links, and the samples extracted is presented in 

Appendix H. 

 Analyzed images (32 total) were arranged in eight series. Each series consisted 

of four rectified images, including the following: raw (r), enhanced (e), filtered-raw (rf), 

and filtered-enhanced (ef). The selected image nomenclature reflects the flight number, 

image number, and type of image. For example, the four images belonging to series 

1_23 are from flight one, image number 23, and are identified 1r23, 1e23, 1r23f, and 

1e23f). 

 No images were analyzed for the preliminary, second and third flights. The 

preliminary site set-up pre-dated placement of stone ground control points (GCPs). The 

lack of GCPs and other known features from newer units in Sets A and B left a shortage 

of link sites to the map. All attempts at rectifying preliminary flight images produced 

badly warped outputs. Similarly, flight two images yielded poor to no discrimination of 

units. The preliminary set exhibited slightly warm signatures, however, the remaining 

newer units were not readily observed. Data from the third flight failed to record due to 

equipment malfunction, although the in flight sensor readout on the monitor looked no 

different from those recorded during flight four conducted on the following evening. 

Statistical results for series 1_23, 6_11, 4_25, and 5_26 are presented below. 

Except for series 5_26, these image sets were selected for presentation due to the best 

visual contrast in the raw image. Additionally, the representative series include both 

middle-to-wide (whole site) and narrow (individual Sets A and B) FOV’s. Series 5_26 

displays some distortion due to sensor miscalibration. However, it was included 

because flight five was the only survey during which the units appeared relatively cool. 
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Rectified frames and associated statistical results for the four remaining image series 

(1_22, 4_22, 5_2, and 6_10) are available in Appendices I and J, respectively.  Samples 

consisting of units and controls were extracted from each image and analyzed with SAS 

9.2®. 

 

4.1.1 Image Series 1_23 

 Series 1_23 consists of narrow FOV shots of units D through I (Set A), as well as 

preliminary units A and B. The four images in this series are displayed in Figure 9, a-d, 

below. The cell size for 1r23 and 1r23f is 0.05meters; the corresponding value for 1e23 

and 1e23f is 0.02 meters. Four units (E-H) and two controls were sampled from each 

image. Image 1r23 also included units D and I. Units A and B were not sampled. The 

majority of samples collected were not distributed normally: there were three exceptions 

from image 1r23f. Results of Shapiro-Wilks (image samples from 1r23 and 1r23f) and 

Kolmogorov-Smirnov (images 1e23 and 1e23f, sample sizes greater than 2000 pixels) 

normality testing are presented in Table 2, a-d. Box plots of the five number summaries 

may be viewed in Figure 10, a-d.  

Samples from each group were highly significantly different from each other 

(Kruskall-Wallis, i.e., one way analysis of variance on ranked data), and in each case, 

separated into statistically distinct groups (SNK on ranked data, α=0.05). Further, there 

is a significant negative association between depth of disturbance and pixel brightness 

value (Spearman’s ranked correlation). The results for all three tests are available in 

Table 3. 
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Figure 9, a-d. Rectified images comprising series 1_23. Image 1r23 (a.) is the rectified 
version of the original frame capture. Image 1e23 (b.) is rectified from the original 
enhanced image. 1r23f (c.) and 1e23f (d.) were generated from filtering the original, 
unrectified images. Viewed left to right in the middle of each image are Set A units (D 
through I). Two additional units from the Preliminary Set are present in the bottom of 
the image (units A and B).   

a. 1r23 

d. 1e23f c. 1r23f 

b. 1e23 
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Table 2. Sample size and normality results for BV sample distributions extracted from 
image series 1_23. Shapiro-Wilk W normality (S-W W) and probability are reported in 
(a) and (b). Kolmogorov-Smirnov D normality (K-S D) and probability are presented for 
(c) and (d). “*” denotes normal distributions in (b). Control units are reported as (Con). 
 

a. Image 1r23 b. Image 1e23 

Unit ID n 
S-W 
W P Unit ID n K-S D P 

D 490 0.8521  < 0.0001 E 3073 0.0491  < 0.01 
E 491 0.9915  = 0.0064 F 3073 0.0637  < 0.01 
F 492 0.9908  = 0.0037 G 3074 0.0908  < 0.01 
G 489 0.9886  = 0.0007 H 3075 0.0573  < 0.01 
H 493 0.9804  < 0.0001 (P) 3073 0.0703  < 0.01 
I 492 0.99  = 0.0019 (S) 3073 0.131  < 0.01 

(P) 492 0.9766  < 0.0001         
(S) 492 0.9249  < 0.0001         

c. Image 1r23f d. Image 1e23f 

Unit ID n 
S-W 
W P Unit ID n K-S D P 

E 491 0.9965  = 0.3674* E 3073 0.0628  < 0.01 
F 492 0.9965  = 0.3571* F 3073 0.0563  < 0.01 
G 489 0.9957  = 0.2017* G 3074 0.1012  < 0.01 
H 493 0.9926  = 0.0151 H 3075 0.0622  < 0.01 

(P) 492 0.9671  < 0.0001 (P) 3073 0.0876  < 0.01 
(S) 492 0.9383  < 0.0001 (S) 3073 0.1394  < 0.01 
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a. 1r23   

b. 1r23f   
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Figure 10, a-d. Box plots of five number summaries for extracted samples. Plots are 
arranged left to right by increasing depth of disturbance, from control (no 
disturbance) to 1.5 meters. Depths are presented in “()” next to the unit identifier. 

c. 1e23   

d. 1e23f   
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Table 3. Results of Kruskall-Wallis analysis of variance on ranked data, Student-
Neumann-Keuls on ranked data, and Spearman’s correlation analysis for image series 
1_23. Samples from each image are highly significantly different and each sample is 
statistically distinct. Depths are reported as (meters). (Con) denotes no disturbance 
(depth = 0m). Significant negative correlation between depth of disturbance and 
brightness value is noted. 
 

Image K-W H DF P SNK Grouping rs P 

1r23 3524.55 7  < 0.0001 
S(con) > P(con) 

>G(0.5) > F(0.25) -0.8693  < 0.0001 

        
> E(0.5) > H(1.0) > 

I(1.5) > D(1.0)     

1r23f 2505.87 5  < 0.0001 
S(con) > P(con) > 

G(0.5) >   -0.8402  < 0.0001 

        
F(0.25) > E(0.5) > 

H(1.0)     

1e23 15307.6 5  < 0.0001 
S(con) > P(con) > 

G(0.5) >  -0.8329  < 0.0001 

        
F(0.25) > E(0.5) > 

H(1.0)     

1e23f 15603 5  < 0.0001 
S(con) > P(con) > 

G(0.5) >  -0.846  < 0.0001 

        
F(0.25) > E(0.5) > 

H(1.0)     
   

4.1.2 Image Series 6_11 

Series 6_11 was comprised of narrow FOV images over Set B (units J – O). Cell 

sizes were 0.04 (images 6r11 and 6r11f) and 0.02 (6e11 and 6e11f) meters, 

respectively. Image 6r11 is presented in Figure 11. The remaining three images are 

available in Appendix I. Each of the four images provided sample extractions for all six 

units and at least control. An additional control was sampled for images 6r11 and 6r11f. 

There were no normally distributed samples (Shapiro-Wilks normality test). Normality 

results for image 6r11 are presented in Table 4. Box plots displaying five number 

summaries for the eight 6r11 samples are presented in Figure 12. Summaries for the 

remaining three images are available in Appendix J. 
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The samples extracted from each image were highly significantly different 

(Kruskall Wallis one way analysis of variance on ranked data) and separated into 

identifiable groups for each of the four images (SNK multiple range test on ranked data). 

Similar to that observed in series 1_23, there was a highly significant negative 

correlation between depth of disturbance and pixel value (Spearman’s ranked 

correlation). Analyses results for 6_11 images are presented in Table 5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Image 6r11, consisting of Set B units, left to right (J through O). The 
signature for unit L (0.25 meter unit) is faint.  
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Table 4. Sample size and normality results for BV sample distributions extracted from 
image 6r11. Shapiro-Wilk W normality (S-W W) and probability are reported. Control 
units are reported as (Con). 

Unit ID n S-W W P 
J 769 0.358  < 0.0001 
K 769 0.9096  < 0.0001 
L 768 0.9938  < 0.0001 
M 770 0.9693  < 0.0001 
N 769 0.7427  < 0.0001 
O 768 0.4926  < 0.0001 
(T) 769 0.9597  < 0.0001 
(U) 769 0.9356  < 0.0001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Box plots of five number summaries for the eight samples extracted from 
image 6r11.  Plots are arranged left to right by increasing depth of disturbance, from 
control (no disturbance) to 1.5 meters. Depths are presented in “()” next to the unit 
identifier. 
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Table 5. Results of Kruskall-Wallis analysis of variance on ranked data, Student-
Neumann-Keuls on ranked data, and Spearman’s correlation analysis on image series 
6_11. Samples from each image are highly significantly different and each sample is 
statistically distinct. Depths are reported as (meters). (Con) denotes no disturbance 
(depth = 0m). Highly significant negative correlation between depth of disturbance and 
brightness value is noted. 
 

Image K-W H DF P SNK Grouping rs P 

6r11 4194.77 7  < 0.0001 
U(con) > L(0.25) > 

T(con) > M(0.5) -0.7558  < 0.0001 

        
> K(0.5) > N(1.0) > 

J(1.0) > O(1.5)     

6r11f 3933.43 7  < 0.0001 
L(0.25) = U(con) > 

M(0.5) = T(con) -0.6258  < 0.0001 

        
> K(0.5) > N(1.0) > 

O(1.5) > J(1.0)     

6e11 16288.8 6  < 0.0001 
U(con) > L(0.25) > 

M(0.5) > K(0.5 -0.8222  < 0.0001 

        
> N(1.0)  > O(1.5) > 

J(1.0)     

6e11f 16261.7 6  < 0.0001 
T(con) > L(0.25) > 

M(0.5) > K(0.5 -0.8207  < 0.0001 

        
> N(1.0)  > O(1.5) > 

J(1.0)     
 

4.1.3 Image Series 4_25 

 Series 4_25 consists of a wide FOV over the entire site. Please see Figure 13, 

image 4r25, below). The remaining three rectified images are presented in Appendix I. 

Images 4r25 and 4r25f cell sizes are 0.10 meters; the cell size for the other two images 

is 0.05 meters. Each image was sampled 13 times (six units, seven controls), with the 

exception of image 4e25 (six units, six controls). An additional four units were sampled 

from image 4r25f. Shared unit extractions included three from Set A (units E, F, and G), 

three from Set B (J, K and L). 

All samples, except two from both 4r25 and 4r25f, consisted of non-normal 

distributions (Shapiro-Wilk’s test). Normality results for image 4r25 are presented in 
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Table 6. Box plots for sample descriptive statistics are presented in Figure 14. Normality 

results and five number summaries for samples belonging to images 4r25f, 4e25, and 

4e25f are in Appendix J. Samples again were highly significantly different (Kruskall-

Wallis analysis of variance on ranked data) and separated into statistically distinct 

groups (SNK on ranked data).  The previously observed significant negative relationship 

between depth of disturbance and unit signature occurred (Spearman’s ranked 

correlation). Series 4_25 statistics are presented in Table 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Image 4r25, a wide FOV image over the entire site. Set A units are toward 
the top of the image, with Set B units located toward the lower right corner. The 
Preliminary Set is visible in the center, within the target area of the monitor.  



44 
 

Table 6. Sample size and normality results for BV sample distributions extracted from 
image 6r11. Shapiro-Wilk W normality (S-W W) and probability are reported. Control 
units are reported as (Con). “*”denotes a normal distribution. 
 
Unit ID n S-W W P Unit ID n S-W W P 

E 128 0.9823 =0.0927* (P) 125 0.9282 <0.0001 
F 125 0.8664 <0.0001 (Q) 125 0.9793 =0.0517* 
G 130 0.913 <0.0001 (R) 125 0.9167 <0.0001 
J 121 0.8931 <0.0001 (T) 125 0.9503 <0.0002 
K 124 0.9597 <0.0001 (U) 125 0.9423 <0.0001 
L 122 0.9625 =0.0018 (V) 121 0.971 =0.0104 
        (Y) 128 0.964 =0.0018 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14. Box plots of five number summaries for the 13 samples extracted from 
image 4r25. Plots are arranged left to right by increasing depth of disturbance, from 
control (no disturbance) to one meter. Depths are presented in “()” next to the unit 
identifier. 
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Table 7. Results of Kruskall-Wallis analysis of variance on ranked data, Student-
Neumann-Keuls on ranked data, and Spearman’s correlation analysis on image series 
4_25. Samples from each image are highly significantly different from each other and 
separate out into statistically groups. Depths are reported as (meters). (Con) denotes no 
disturbance (depth = 0m). Significant negative correlation between depth of disturbance 
and brightness value is noted. 
 
Image K-W H DF P SNK Grouping rs P 

4r25 1436.42 12  < 0.0001 
Y(con) > R(con) = 
P(con) > Q(con) -0.7198  < 0.0001 

        
> V(con) > T(con) > 

J(1.0) > U(con)     

        
> F(0.25) > K(0.5) > 

G(0.5)     
        > L(0.25) > E(0.5)     

4r25f 1421.65 12  < 0.0001 
Y(con) > R(con) > 
P(con) = Q(con) -0.7103  < 0.0001 

        
> V(con) > T(con) > 

J(1.0) > U(con)     
        > F(0.25) > K(0.5)     

        
 > G(0.5) = L(0.25) > 

E(0.5)     

4e25 5147.09 11  < 0.0001 
Y(con) > R(con) = 
P(con) > Q(con) -0.7376  < 0.0001 

        
> V(con) > U(con) > 

J(1.0)     

        
> F(0.25) > K(0.5) = 

L(0.25)     
        > G(0.5) > E(0.5)     

4e25f 6318.89 14  < 0.0001 
Y(con) > R(con) > 
P(con) > Q(con) -0.6655  < 0.0001 

        
> V(con) > J(1.0) > 

U(con)      

        
> F(0.25) > H(1.5) > 

K(0.5)      

        
> G(0.5) = L(0.25) > 

E(0.5)     
        > N(1.0) > M(0.5)     

 

 Statistical separations presented in Table 7 were not clear on first observation. 

The sets were examined independently to determine if this was due to differences 

between the unit sets: Set A units with associated controls, and; Set B samples with 
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nearby controls. Significant sample differences (Kruskall-Wallis) and distinct groups 

(SNK on ranked data) were observed within each set. Negative correlation between unit 

depth and signature was also observed (Spearman’s ranked correlation), however, the 

relationship was much more pronounced within Set A. Results are presented for image 

4r25 Sets A and B in Table 8. Sample box plots for the separated sets are presented in 

Figure 15. 

 
 
Table 8. Results of Kruskall-Wallis analysis of variance on ranked data, Student-
Neumann-Keuls on ranked data, and Spearman’s correlation analysis on Sets A and B 
of image 4r25. Negative correlation is significant for both sets, but is less pronounced in 
Set B. 
 

Image K-W H DF P SNK Grouping rs P 

4r25 617.08 5  < 0.0001 
R(con) = P(con) > 

Q(con) -0.8971  < 0.0001 

Set A       
> F(0.25) > G(0.5) > E 

(0.5)     

4r25 741.84 6  < 0.0001 
Y(con) > V(con) > 

T(con) > J(1.0) -0.5634  < 0.0001 

Set B       
> U(con) > K(0.5) > 

L(0.25)     
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Figure 15. Box plots of five number summaries for Sets A and B samples extracted from 
image 4r25. Plots are arranged left to right by increasing depth of disturbance, from control 
(no disturbance) to one meter. Depths are presented in “()” next to the unit identifier. 

a. 4r25 Set A 

b. 4r25 Set B 
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4.1.4 Image Series 5_26 

The 5_26 set consisted of four wide FOV shots over the entire site. The three 

preliminary units were not visible. All other units appeared relatively cool. Cell sizes for 

the two raw images (5r26 and 5r26f) were 0.15 meters; the corresponding enhanced 

pair was 0.07 meters. Each image yielded a minimum of 19 samples (10 units, 9 

controls). Image 5r26 is presented in Figure 16, below. The remainder of the image 

series is presented in Appendix I. 

Samples extracted from both enhanced images (5e26 and 5e26f) consisted of 

distributions significantly different from normal (Shapiro-Wilks normality test). 21 

samples were extracted from image 5r26 (11 units, 10 controls), of which ten were 

normally distributed (Table 9). Likewise, six of the 20 samples extracted from 5r26f were 

normal. Five number summary box plots for samples collected from 5r26 may be 

viewed in Figure 17. Normality and descriptive statistics for images 5r26f, 5e26, and 

5e26f are presented in Appendix J. 

With respect to each image in the series, samples extracted were highly 

significantly different from each other (Kruskall-Wallis analysis of variance on ranked 

data). Although these samples separated into statistically distinct groups (SNK on 

ranked data), the combination of both Sets A, B and all controls made interpretation 

difficult. Additionally, significant negative correlation was noted between signature and 

depth (Spearman’s ranked correlation), although the association appears to be 

somewhat weak. Results for each of the above analyses are reported in Table 10. 
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Figure 16. Image 5r26, a wide FOV image over the entire site. The light colored object 
in the middle is a cedar tree (relatively warm). Set A units are located above and to the 
left of the tree, while Set B units are located below and slightly to the right. Both unit 
sets appear relatively cool. Preliminary units could not be discriminated in this flight. 
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Table 9. Sample size and normality results for BV sample distributions extracted from 
image 5r26. Shapiro-Wilk W normality (S-W W) and probability are reported. Control 
units are reported as (Con). “*” denotes a normal distribution. 
 
Unit ID n S-W W P Unit ID n S-W W P 

E 59 0.9592 =0.05* (P) 56 0.951 =0.0236 
F 56 0.9737 =0.2585* (Q) 56 0.9787 =0.4204* 
G 60 0.9614 =0.0553* (R) 56 0.7828 <0.0001 
H 60 0.9538 =0.0237 (S) 56 0.962 =0.0754* 
I 60 0.9764 =0.2962* (T) 56 0.9394 =0.0073 
J 55 0.9457 =0.0149 (U) 56 0.9364 =0.0055 
K 54 0.9536 =0.0358 (V) 55 0.9433 =0.0117 
L 54 0.9349 =0.0058 (W) 55 0.9687 =0.1605* 
M 54 0.9761 =0.3517* (X) 60 0.977 =0.3147* 
N 55 0.9313 =0.0037 (Y) 60 0.9679 =0.1148* 
O 54 0.9588 =0.0608*         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17. Box plots of five number summaries for the 21 samples extracted from image 
5r26. Plots are arranged left to right by increasing depth of disturbance, from control (no 
disturbance) to 1.5 meters. Depths are presented in “()” next to the unit identifier. 
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Table 10. Results of Kruskall-Wallis analysis of variance on ranked data, Student-
Neumann-Keuls on ranked data, and Spearman’s correlation analysis on image series 
5_26. Samples from each image are highly significantly different and separate out 
statistically. Depths are reported as (meters). (Con) denotes no disturbance (depth = 
0m). Significant negative correlation between depth of disturbance and brightness value 
is noted. 
 

Image K-W H DF P SNK Grouping rs P 

5r26 749.96 20  < 0.0001 
M(0.5) = L(.25) = S(0) 

> P(0) = R(0) > -0.4951  < 0.0001 

        
Q(0) = K(0.5) = V(0) = 

T(0) = X(0) =     

        
U(0) = W(0) = Y(0) > 

N(1) = G(0.5) =     

        
E(1) > O(1.5) = F(0.25) 

= H(1) =     
        I(1.5) = J(1)     

5r26f 634.8 19  < 0.0001 
M(0.5) = L(.25) = P(0) 

= R(0) > S(0) = -0.3945  < 0.0001 

        
Q(0) = T(0) > K(0.5) = 

V(0) > X(0) =     

        
U(0) = E(0.5) = W(0) > 

G(0.5) = Y(0) =     
        N(1) > H(1) = F(0.25) =     
        I(1.5) = J(1)     

5e26 3906.49 20  < 0.0001 
M(0.5) > S(0) = L(0.25) 

> R(0) = P(0) > -0.5043  < 0.0001 

        
Q(0) > K(0.5) = V(0) = 

T(0) = U(0) >     

        
X(0) > Y(0) = N(1) = 

E(0.5) > G(0.5) =     

        
W(0) > F(0.25) > I(1.5) 

= O(1.5) >     
        H(1) > J(1)     

5e26f 3406.99 19  < 0.0001 
M(0.5) > S(0) > P(0) = 

R(0) = L(0.25) > -0.4964  < 0.0001 

        
Q(0) = K(0.5) = U(0) = 

W(0) = T(0) >     

        
V(0) > E(0.5) = X(0) > 

Y(0) > N(1) =     

        
Q(0) > F(0.25) > H(1) = 

I(1.5) > J(1)     
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Much like the case for image 4r25, group separation presented in Table 10 was 

not clear. Units for this image were re-examined independently by set. Significant 

differences were noted between samples within a Set (Kruskall-Wallis). Statistical 

groups emerged from both sets (SNK on ranked data), although Set B remained 

somewhat ambiguous. Negative correlation between unit depth and signature was also 

observed (Spearman’s ranked correlation). Again, similar to that seen for image 4r25, 

the relationship was relatively stronger within Set A. Analyses results for both sets of 

image 5r26 are presented Table 11; box plots of the samples are available in Figure 18. 

 
Table 11. Results of Kruskall-Wallis analysis of variance on ranked data, Student-
Neumann-Keuls on ranked data, and Spearman’s correlation analysis on Sets A and B 
of image 5r26. Negative correlation is significant for both sets, but is much less 
pronounced in Set B. 

Image K-W H DF P SNK Grouping rs P 

5r26 365.63 8  < 0.0001 
S(con) > P (con) > 
R(con) > Q(con) -0.6855  < 0.0001 

Set A       
> G(0.5) > E(0.5) > 

F(0.25)     
        > I(1.5) > H(1.0)     

5r26 353.58 11  < 0.0001 
M(0.5) = L(0.25) > 
K(0.5) = T(con) = -0.2291  < 0.0001 

Set B       
V(con) = X(con) = 
U(con) = W(con)      

        
= Y(con) = N(1.0) > 

O(1.5) > J(1.0)     
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Figure 18. Box plots of five number summaries for Sets A and B samples from image 
5r26. Plots are arranged left to right by increasing depth of disturbance, from control (no 
disturbance) to 1.5 meters. Depths are presented in “()” next to the unit identifier. 
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4.2 Classification Study 

 All classifications were performed on rectified images generated for the statistical 

analyses described above. Selections were cropped prior to classification to exclude a 

maximum amount of unnecessary readout information on the image periphery. Series 

1_23, 4_25 and 6_11 were used in the classification study based on both good visual 

discrimination and differing FOV’s over the research area. Series 5_26 was excluded 

from this portion of the study due to the previously mentioned calibration issues. 

Presented below are classifications and accuracy assessments for the complete series 

1_23, and individual images 6r11 and 4r24. The remainder of the classified images and 

assessments for series 6_11 and 4_24 are presented in Appendices K and L, 

respectively. 

 

4.2.1 Image Series 1_23 

 The four images comprising series 1_23 were classified by both supervised and 

object-oriented methods. Classes attempted for the supervised set included the 

following: 1.0 meter units; 0.5 meter units; Preliminary units (grouped); Trees; Control, 

and; Readout. The 0.25 meter unit (F) blended primarily with the control class in all four 

cases. Output images generated with the supervised technique are presented in Figure 

19, a-d, with associated legends.  

Image 1r23 was the sole member of the group to contain all six classes in the 

final output. Class overlap was noted, primarily between the 1.0 meter and Preliminary 

unit classes. Additionally, the “unknown” 1.0 meter unit (H) classified at 0.5 meters, 

while the like 0.5 meter unit (G) blended with Control. Unit I (1.5 meters deep) grouped 
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spectrally with the 1.0 meter class. The remaining three images yield similar output 

classifications, although fewer classes were generated: significant signature overlap 

required class merging.   

 The same original image series was then subjected to an object-oriented 

procedure. Output classes for each image included: 1.5 meter units; 1.0 meter units; 0.5 

meter units; 0.25 meter units; Preliminary units (grouped); Trees, and; Control. The 

Readout class was not applied. Following segmentation, some image objects were 

merged, including those associated with preliminary units in image 1r23, all units in 

images 1r23f, 1e23, and 1e23f, and trees for images 1e23 and 1e23f. Each of the 

above classes was then successfully generated. The output classifications, with 

legends, are presented in Figure 20,a-d. Accuracy levels by class and overall were 

considerably higher (approaching or at 100%) for the eCognition-produced images. 

Assessments are presented below in Table 12,a-d (supervised) and Table 13, a-d 

(object-oriented). 
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a. 1r23 b. 1e23 

c. 1r23f d. 1e23f 

Figure 19, a-d. Supervised classifications of series 1_23.
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Figure 20, a-d. Object-oriented classifications of series 1_23. 

a. 1r23 b. 1e23 

c. 1r23f d. 1e23f 
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Table 12, a-d. Supervised classification accuracy tables for image series 1_23. 
a. 1r23 

Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit D 3 3 1 76.00% 88.37% 0.3005 
Unit E 3 16 0 0.00% 33.33% -0.0492 
Preliminary 2 1 1 0.00% 0.00% 1 
Control 50 43 38 50.00% 100.00% 0.4684 
Tree 2 0 0 \ \ 0 
Readout 4 1 1 25.00% 100.00% 1 
Total 64 64 39       
Overall Accuracy    
64.06% 
Overall Kappa         0.2183 

 
b. 1r23f 

Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit D 5 3 1 20.00% 33.33% 0.2768 
Unit E 2 15 0 0.00% 0.00% -0.0323 
Prelim/Tree 6 3 3 50.00% 100.00% 1 
Control 46 40 33 71.74% 82.50% 0.3778 
Readout 5 3 2 40.00% 66.67% 0.6384 
Total 64 64 39       
Overall Accuracy    
60.94% 
Overall Kappa         0.2654 

 
c. 1e23 

Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

Units 13 12 4 30.77% 33.33% 0.1634 
Control 47 51 39 89.98% 76.47% 0.1142 
Readout 4 1 1 25.00% 100.00% 1 
Total 64 64 44       
Overall Accuracy    
68.75% 
Overall Kappa         0.1683 
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d. 1e23f 
Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit D 6 4 4 66.67% 100.00% 1 
Unit E 7 15 0 0.00% 0.00% -0.1228 
Control 50 41 34 68.00% 82.93% 0.2195 
Readout 1 4 1 100.00% 25.00% 0.2381 
Total 64 64 39       
Overall Accuracy    
60.94% 
Overall Kappa         0.1636 

 
Table 13, a-d. Object-oriented classification accuracy tables for image series 1_23. 

a. 1r23 
Class Classified Number Producer User Cond. 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 1004 1004 100.00% 100.00% 1 
1.0 meter unit 924 924 100.00% 100.00% 1 
0.5 meter unit 679 679 100.00% 100.00% 1 
0.25 meter unit 1280 1280 100.00% 100.00% 1 
Old Units 947 947 100.00% 100.00% 1 
Control 15061 15061 100.00% 100.00% 1 
trees 483 483 100.00% 100.00% 1 
Total 20378 20378       
Overall Accuracy    100.00% 
Overall Kappa         1.00 

 
b.   1r23f 

Class Classified Number Producer User Cond. 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 1262 1262 100.00% 100.00% 1 
1.0 meter unit 803 803 100.00% 100.00% 1 
0.5 meter unit 972 972 100.00% 100.00% 1 
0.25 meter unit 1052 1052 100.00% 100.00% 1 
Old Units 1049 1049 100.00% 100.00% 1 
Control 8641 8641 100.00% 100.00% 1 
trees 3693 3693 100.00% 100.00% 1 
Total 17472 17472       
Overall Accuracy   100.00% 
Overall Kappa         1.00 
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c.    1e23 
Class Classified Number Producer User Cond. 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 8460 8460 0.00% \ 0 
1.0 meter unit 6222 6222 100.00% 100.00% 1 
0.5 meter unit 8934 8934 100.00% 100.00% 1 
0.25 meter unit 7863 7863 100.00% 100.00% 1 
Old Units 5718 5718 100.00% 100.00% 1 
Control 47326 47326 100.00% 100.00% 1 
trees 3382 3382 100.00% 100.00% 1 
Total 87905 87905       
Overall Accuracy    90.38% 
Overall Kappa         0.8573 

 
d. 1 e 23f 

Class Classified Number Producer User 
Conditiona

l 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 7712 7712 100.00% 100.00% 1 
1.0 meter unit 8762 8762 100.00% 100.00% 1 
0.5 meter unit 8790 8790 100.00% 100.00% 1 
0.25 meter unit 7489 7489 100.00% 100.00% 1 
Old Units 8358 8358 100.00% 100.00% 1 
Control 29729 29729 100.00% 100.00% 1 
trees 3703 3703 100.00% 100.00% 1 
Total 74543 74543       
Overall Accuracy    100.00% 
Overall Kappa         1.00 

 

4.2.2 Image Series 6_11 

 Series 6_11 was subjected to the same routine described above. Classes 

sampled for the supervised classification included 1.0 meter and 0.5 meter units, 

Control, Trees, Ditch and Readout. The 0.25 meter unit (L) again blended primarily with 

the Control class. Each image in this series exhibited 100% spectral overlap between 

the Ditch, Tree, and two Unit classes and were therefore merged into one class (“Units, 
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etc.”): the output observed in Figure 21a (supervised classification of image 6r11) 

includes the combined Units, Control, and Readout classes. 

 Images classified with eCognition® consisted of the above listed classes (sans 

Readout), as well as 0.25 meter and 1.5 meter units. Following segmentation, objects 

associated with Trees, Ditch, and some units (J, K and L) were manually merged. 

Similar to series 1_23, all classes were present in the output image: please see Figure 

21b, object-oriented classified version of 6r11. Accuracy assessments are reported in 

Table 14. Overall accuracy for both methods as applied to image 6r11was high (93.75% 

and 100.00%, respectively); however, the seven thematic classes associated with the 

object-oriented output are more informative.  
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a. 

b.  

Figure 21. Supervised (a) and (b) object-oriented classifications of image 6r11. 
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Table 14. Accuracy assessments for supervised (a) and object-oriented (b) 
classifications of image 6r11. 

a.  
Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit, etc. 17 17 15 88.24% 88.24% 0.8398 
Control 47 47 45 97.74% 97.74% 0.8398 
Readout 0 0 0 \ \ 0 
Total 64 64 60       
Overall Accuracy    
93.75% 
Overall Kappa         
0.8398 

 
        b.  

Class Classified Number Producer User Cond. 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 987 987 100.00% 100.00% 1 
1.0 meter unit 1069 1069 100.00% 100.00% 1 
0.5 meter unit 502 502 100.00% 100.00% 1 
0.25 meter unit 1157 1157 100.00% 100.00% 1 
Control 11470 11470 100.00% 100.00% 1 
Trees 687 687 100.00% 100.00% 1 
Ditch 1027 1027 100.00% 100.00% 1 
Total 16899 16899       
Overall 
Accuracy 100.00% 
Overall Kappa 1.00 

 

4.2.3 Image Series 4_25 

 Although the application of supervised classification to series 4_25 yielded an 

increased number of classes over the previous image series (Ditch, Trees, Control, 

Readout), newer and preliminary unit signatures could not be separated out and were 

thus merged into one class. This was the case for all four images. Presented in Figure 

22a is image 4r25, as classified with Erdas Imagine®. Significant, but not complete, 

signature overlapping is noted between the following classes: Units; Trees, and; Ditch. 
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 Classes for Individual units by depth of disturbance (1.5, 1.0, 0.5 and 0.25 

meters), as well as Preliminary Units, Trees, Ditch, and Control, were successfully 

generated with eCognition®.  Prior to classification, tree-related objects were merged in 

all four images. Unit objects were merged only in image 4e25f. Figure 22b displays the 

object-oriented classification of image 4r25. Irregular unit classifications can be 

observed in both Sets A and B. These include the following: an elongated footprint for 

unit H (Set A); incomplete classification for unit J (Set B), and; Set B units N (1.0 meter) 

and O (1.5 meter) both classified as 1.0 meter units. Additionally, minor 

misclassifications included portions of the central targeting readout which was classified 

as Ditch, 0.5 meter and 1.0 meter units. An area adjacent to unit N (1.0 meter) was 

misclassified as a tree. Overall accuracy was still considerably higher for the object-

oriented rather than supervised output (94.67% vs. 62.5%). Complete accuracy 

assessments for both 4r25 classification outputs are presented in Table 15. 
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a. 

b. 

Figure 22. Supervised (a) and (b) object-oriented classifications of image 4r25. 
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Table 15. Accuracy assessments for supervised (a) and object-oriented (b) 
classifications of image 4r25. 
     a. 

Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

Units 8 20 4 50.00% 20.00% 0.0857 
Trees 5 8 3 60.00% 37.50% 0.322 
Ditch 9 1 1 11.11% 100.00% 1 
Control 42 35 32 76.19% 91.43% 0.7506 
Readout 0 0 0 \ \ 0 
Total 64 64 40       
Overall Accuracy    
62.50% 
Overall Kappa         
0.3645 

 
     b. 

Class Reference Classified Number Producer User Cond. 
Name Totals Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 201 201 201 100.00% 100.00% 1 
1.0 meter unit 155 155 155 100.00% 100.00% 1 
0.5 meter unit 176 176 176 100.00% 100.00% 1 
0.25 meter unit 258 258 258 100.00% 100.00% 1 
Old Units 107 107 107 100.00% 100.00% 1 
Control 11896 12566 11896 94.67% 100.00% 0.7254 
Trees 320 320 320 100.00% 100.00% 1 
Ditch 1650 980 980 100.00% 59.39%   
Total 14763 14763         
Overall 
Accuracy 94.67% 
Overall Kappa 0.7451 
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CHAPTER 5 

DISCUSSION 

5.1 Visual Examination of Unit Signatures 

 Clear, visual discrimination between disturbed units and the undisturbed 

background area was noted for nearly all flight surveys, with the exceptions of the 

preliminary and second flights. This contrast was expected based on previous research 

and cited literature. Generally speaking, disturbed unit signatures were more 

pronounced (darker) and displayed relatively defined margins with some degree of 

linearity. Adjacent control areas typically exhibited a lighter signature. Exceptions to this 

pattern occurred primarily along the northern and eastern portions of the research site, 

where control areas appeared slightly darker. However, no obvious linear orientations 

were observed in these undisturbed areas. 

 Disturbed units appeared relatively cool during the preliminary flight. It was 

assumed that disturbed units should appear relatively cooler than undisturbed 

surroundings in the absence of exothermic decomposition prior to the first survey in 

August 2008. The seven flights, including April 2006, were conducted in various 

weather regimes. The recorded thermal scans revealed that on a given flight, disturbed 

units could appear relatively warm, cool, or not visible at all. Disturbances appeared 

cool only on two flights, the preliminary and flight 5, and were relatively warm during 

flights 1, 3, 4 and 6. Flight 2 video yielded poor to no discrimination between units and 

the surroundings. The Preliminary Set appeared slightly warmer than the surroundings, 

but the remainder of units in Sets A and B could not be readily observed. The poor 
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results for this flight were due to excessive cloud cover prior to the flight, which 

minimized daytime solar loading of the surface. 

 The differences observed across the seven flights suggest that unit signature is 

dependent upon multiple weather-related variables, such as temperature, cloud cover, 

precipitation, relatively humidity, etc. However, an overall pattern between underlying 

weather conditions and resultant unit signature cannot be surmised due to the relatively 

low number of flights. Additionally, other variables not studied in this project, including 

soil moisture, soil temperature, porosity, and others, are also likely to be major factors in 

observed signatures. The only conclusion to be drawn at this point is that potential 

burials, in this or similar contexts, should appear as either hot or cold thermal defects 

that contrast with the neighboring or surrounding background. Future research should 

investigate the potential relationships between these and other variables, and their 

possible effects on thermal signature. 

Manipulation of the images by enhancement and/or filtering methods did tend to 

increase visual contrast between the disturbed units and the control areas. However, 

these procedures did not have pronounced effects on the statistical relationships 

described in Chapter 4, and in some situations, the results became muddied. Similarly, 

accuracy assessments for classifications of manipulated images were for the most part 

no different than classifications performed on raw rectified frames. This was the case for 

both classification methods. This demonstrates that although image manipulation may 

qualitatively provide better visual discrimination between features, these techniques are 

not necessary for quantitative assessment.  
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5.2 Statistical Analyses 

 Based on the pilot study, it was predicted that unit signatures would not only be 

significantly different from undisturbed areas, but those signatures would also vary 

based on the depth of disturbance as well. Differences between disturbed and control 

areas were demonstrated statistically. Regarding the question of depth-related variation, 

there appeared to be a visual relationship between unit depth and the associated 

thermal signature in many of the selected images. Samples extracted from control areas 

and disturbed units were analyzed, revealing a significant negative correlation between 

depth and signature: signatures became more pronounced as the depth of the 

disturbances increased. This relationship was consistent in near FOV imagery of both 

Sets A and B. 

It was also predicted that units of similar like depth would not be significantly 

different from each other and should group together into statistically distinct groups (i.e., 

control equals control, 0.5 meter equals 0.5 meter, etc.). It was further surmised that 

these groupings would be consistent across the two sets in the wide field of view 

imagery. These latter two predictions turned out to be incorrect. 

 Samples extracted from each unit and control area did separate out as 

statistically distinct groups from each other; however, like samples did not typically 

group together. This occurred because the signature samples were heterogeneous. 

Undisturbed areas were especially variable, with some spectral overlap with the darker 

disturbed unit signatures. Major factors likely included the following: slight differences in 

surface vegetation (e.g., vegetation density, height, among others); immediate 
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topography, as discussed below, and; limitations from collecting spectral information in 

only one band. 

 Although equal units did not group together, they did tend to separate out 

statistically by depth in near FOV images. Control samples were composed of higher 

mean-ranked pixels, meaning associated BVs in the original unranked samples were of 

higher value (approaching 255, or white). Thus, these samples generally separated out 

first. Conversely, lower-ranked samples extracted from disturbed units of greater depth, 

such as 1.0 and 1.5 meter units, tended to fall out last. 

 The shallowest units (0.25 meter) generally separated out just after, or 

sometimes interspersed, with the control samples. This was due to the high degree of 

signature overlap previously mentioned. In practical terms, this suggests that at least in 

this environmental setting, shallow burials are less likely to be discriminated thermally 

than deeper disturbances. The caveat to this would be that a shallow burial is probably 

of greater likelihood to be discovered by a ground search due to partial exposure of the 

interred remains. 

 The remaining disturbed units (0.5, 1.0 and 1.5 meters, respectively) were more 

likely to separate by depth, although there was overlap as depth increased. In some 

instances, 1.0 and 1.5 meter samples were not significantly different. Other cases 

presented 1.0 meter units that separated out as the lowest ranked group. This was not 

completely surprising, given unit appearances in the images. Aside from slight variation 

in unit shape, 1.0 and 1.5 meter units were spectrally similar, with BVs approaching 

zero. This similarity between deeper units suggests that although there is a significant 

negative association between depth of disturbance and unit signature, even greater 
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increases in depth (e.g., 2.0, 3.0, and 5.0 meters) are unlikely to yield a signature much 

different from that of a 1.5 meter unit. 

 Statistical relationships between the depth of disturbance and signature were 

much more confusing when dealing with wide FOV frames that encompassed both 

Sets. A relatively weaker negative correlation was noted when including all extracted 

units and controls. Additionally, when plotted, like depth signatures in Set B did not 

approximate those of Set A. Set B unit separation by depth was not as evident, 

displaying a great degree of Set B signature overlap with shallower Set A units and 

controls. 

Analyzing the two sets independently yielded significant negative correlation in 

both cases, although the Spearman’s rho value for Set B samples was considerably 

lower. This outcome differed from the analyses performed on the near FOV examples 

previously discussed, where negative associations were much stronger. The two most 

likely culprits responsible for this are as follows: diminished spatial resolution and MCRT 

associated with the wider FOV lens, and; changes in the immediate site topography. 

Regarding the first factor, image MCRT and spatial resolution will decrease at a smaller 

scale. Scale decrease may be due to changes in flight elevation, or in the case of this 

project, FOV change. This occurs because there is only one sensor array directed at the 

AOI and with wider FOV imagery, there are fewer overall pixels available to resolve a 

particular feature. Differences at the research site between the two Sets are therefore 

more pronounced in the wider FOV imagery. These differences are due to both the 

previously mentioned heterogeneity of the surface as well as the site topography.  
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 The research site was relatively flat, gradually decreasing in elevation from the 

north (Set A) to south (Set B) end by approximately 50 centimeters. However, Set B 

was located adjacent to a drainage ditch characterized by a sharp downward slope of 

more than 1.25 meters. Any moisture located in Set A and the Preliminary units would 

drain relatively slowly, through the deposits and horizontally across the longer slope. 

The presence of the ditch, an artificial cut through the original slope, likely lead to rapid 

differential draining of the nearby Set B units, and accounts for some of the differences 

in the resulting signatures. 

 

 5.3 Classification Study 

 Supervised and object-oriented algorithms were applied to three selected image 

series (12 total images). The eCognition® generated outputs were of higher accuracy 

for each image. Poor supervised accuracy was due to the high degree of spectral 

overlap between image features. Accuracy increased for object-oriented classifications 

because other image attributes aside from BVs could be included. 

 High accuracy for Erdas® supervised classification was only achieved with the 

Flight 6 series. However, only three actual classes were generated: Control, Readout, 

and Everything Else. Ignoring the Readout class, Control represents all of the relatively 

cool, undisturbed areas while the final combined class is comprised of the warm 

features, such as disturbed units, trees, and so on. These four output images therefore 

offered essentially the same information as the original thermal panels. 

 Signature confusion in supervised classifications was a major issue in the other 

two flight series as well. Associated accuracy levels were considerably lower for these 
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eight images.  The shallowest unit (G, 0.25 meter) was lost in the Flight 1 near FOV 

series, registering primarily as Control. Adjacent “unknown” units at 0.5 meter (G) unit 

and 1.0 meter (H) were misclassified as well. Unit G also tended to merge with control, 

while unit H was classified into the 0.5 meter class. The 1.5 meter unit (I) registered as 

1.0 meter. Additionally, there was significant signature overlap between the deeper 

units, the tree, and the preliminary units. Likewise, all units were merged into one class 

for the wide FOV Flight 4 series, with pronounced overlap between Unit, Tree and Ditch 

classes. Spectral confusion was not completely surprising, especially with the wide FOV 

imagery, given the results of the statistical analyses. 

 Classifications generated with eCognition® did not include a Readout class. The 

segmentation patterns in each of the 12 images allowed for readout components to be 

blended, for the most part, into the Control class. Each of the three image series yielded 

outputs with all desired classes (Control, Ditch, Trees, Preliminary Set, and newer units 

grouped by depth). Overall accuracy levels for many of the object-oriented 

classifications were approaching or at 100%, with the lowest for image 1e23 (90.38%). 

The considerably higher accuracy for these outputs was likely due to the ability to use 

spatial relationships, as previously noted. 

 Accuracy levels achieved with the eCognition® software on these selected 

images can be somewhat misleading to an analyst. These images are large scale, and 

the main features of interest, disturbed units, are limited in number. Accuracy for this 

group of classifications was assessed by TTA masks, which require selecting known 

objects from each class from the unclassified, segmented image. When only one object 

for a given class is available for sampling, as was the case for 0.25 and 1.5 meter units 
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in the two near FOV image series, resultant accuracy for that class will automatically be 

100%. Accuracy levels would likely decrease at smaller scales, although in a grave 

search context, image scale would need to remain fairly large in order to detect such 

small features. 

 The addition of other spectral bands, such as visible light or reflective infrared, 

would likely increase overall classification accuracy for both methods, especially the 

traditional hard classifier. The use of the thermal band alone introduces too much 

signature overlap, making it extremely difficult to tease out individual features. 

Additional bands were not included in this project because the primary objective was to 

determine which method can be best applied to thermal imagery alone. 

 Object-oriented classification appears to be the best approach to thermal 

imagery collected by law enforcement. However, a real-world scenario would be 

considerably different from the approach of this study. Unit locations and dimensions 

involved in this project were known quantities and were therefore somewhat easier to 

classify out, especially when, following segmentation, unit-related objects could be 

manually merged. This luxury would not be afforded in an actual search. Application of 

this method in a true law enforcement context would have to be applied in reverse. 

Following image segmentation, readily identifiable objects, such as trees, culverts, or 

pathways, would be merged into the correct perspective classes and ignored. The 

remaining unclassified area would then need to be heavily scrutinized for potential burial 

sites. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 The preceding research was conducted in an effort to improve the application of 

thermal imaging to clandestine burial searches. Prior research and literature suggested 

that burials, in the absence of exothermic decomposition, would look relatively cool 

when compared to the undisturbed background. It has now been determined, at least in 

this local context, that this is not the case. Such burials might appear relatively cool, 

warm, or neutral. Further, it has been demonstrated that when signatures can be 

discriminated, there is a relationship between the depth of a grave and the resultant 

thermal signature. Additionally, as depth decreases, the grave is more likely to blend 

into the background and be missed during a search. If a grave is not observed thermally 

in a real world search, flight personnel can interpret this information as follows: 1) the 

conditions, both on the ground and/or weather-related, may not be right for the search; 

2) the grave depth is too shallow to discriminate thermally under present conditions, or; 

3) there is no grave in the AOI. 

 The relationship between depth and signature is more pronounced at the larger 

scales provided by near FOV imagery. Likewise, the ability to detect clandestine burials 

is scale dependent: imagery needs to be fairly large scale due to these features being 

relatively small. With respect to law enforcement searches, the sensor platforms 

typically available (helicopter and fixed wing) can be flown at low enough altitudes that 

large scale imagery can be readily collected. 

 Thermal scans recorded by law enforcement agencies can be analyzed with 

classification methods currently available to remote sensing analysts. This research 
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suggests that object oriented algorithms are the more robust option for single band 

thermal imagery. The limited spectral information and the inability to use additional 

image attributes severely limits the abilities of more traditional hard classifiers. 

 Although much information was gained from this research, many new questions 

arose that require additional study. Foremost, the underlying pattern behind grave 

thermal appearance, cool, warm, or neutral, needs to be determined. A better 

understanding of the effects of local soil and climate conditions on grave signatures 

would not only identify for investigators the best times in which to conduct searches, it 

will also give investigators an idea of what they are looking for. This question could be 

examined using soil temperature and moisture probes placed at various depths in 

simulated burials and undisturbed cores taken from unit profiles. Along with a dedicated 

weather station for the site, all data could be recorded continuously to a logger located 

on site, coinciding with periodic aerial scans. Data could be downloaded and analyzed 

for patterns. 

 A related issue is the effect of actual interred biological material on grave 

signature. The assumption prior to the study was that in the absence of exothermic 

decomposition, a grave should appear relatively cool. Since this is not the case, the 

effect of adding biological mass to a burial on soil moisture, temperature, and surface 

signature requires study. This could be done in conjunction with the ground probe study 

previously described. The total research site could consist of undisturbed area, a set of 

control units at various depths with no added remains, and a set of units at like depths 

containing buried domestic pigs (Sus scrofa domestica), all with associated ground 

probes. To minimize the number of required flights, a thermal sensor could be mounted 
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on an elevated platform over the site to record at regular intervals, especially during the 

earlier exothermic stages of decomposition. 

 Lastly, the current research can only provide definitive information for the 

immediate area (Cross Timbers ecozone of Texas) and similar environments. Although 

certain observations collected here may be repeated elsewhere (e.g., variable unit 

thermal appearance, depth-signature correlation, etc.), this study should replicated 

elsewhere to verify or disprove consistency. Texas provides a variety of ecological 

environments, and DPS flight hangars are widely dispersed. One possibility would be to 

construct research sites in various parts of Texas (desert, high plains, piney woods, 

etc.) near existing DPS facilities. Sites could be scanned regularly by DPS investigators 

prior to or following routine missions without interfering with their normal schedules. 

Recorded thermal scans could then be sent to UNT for subsequent analyses. 

 The results of the current and future projects will substantially benefit law 

enforcement agencies.  The improved ability to thermally discriminate clandestine 

graves from an airborne perspective would be time-saving and greatly decrease the 

manpower required for more conventional ground searches. Development of the image 

analysis and classification techniques may in time help produce new predictive models 

for determining time of deposition and depth of potential burials. Improved accuracy in 

signature recognition will increase the likelihood of obtaining a search warrant for 

suspect premises by strengthening probable cause. Unmanned drones could be 

equipped with thermal imagers and piloted into environments where suspected 

clandestine and/or mass burials are associated with human rights violations (e.g. 
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Bosnia, Afghanistan, etc.).  Additional benefits would include reduced risks to ground 

search personnel in hostile contexts. 
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APPENDIX A 
 

SOIL DESCRIPTIONS 
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The strata comprising Justin fine sandy loam soils are as follows (per the soil manual): 

• Ap: 0 to13 centimeters (0 to 5 inches). Dark brown, moist, fine sandy 
loam. Slightly acidic, with abrupt, smooth boundary observed between Ap 
and A1 
 

• A1: 13 to 31 centimeters (5-12 inches). Dark brown sandy loam. Slightly 
acidic, with a clear wavy boundary between A1 and B21t 

 
• B21t: 31 to 43 centimeters (12-17 inches). Red/brown moist sandy loam 

with fine red mottles, with the potential for iron oxide deposits 
 

• B22t: 43 to 84 centimeters (17-33 inches). Moist red/yellow clay loam, with 
some red mottles and a gradual, smooth boundary 

 
• B23t: 84 to 203 centimeters (33-80 inches). Moist brown/yellow clay with 

yellow/red mottles, and soft masses of calcium carbonate in the lower 
levels 

 
Soil observed during excavation of all units, including those from the 2006 study, were 

consistent with the descriptions above. Iron oxide deposits were noted in all units that 

were 0.5 meters in depth or greater, with larger deposits observed in Set A and the 

Preliminary Set. A calcium carbonate layer was located in the bases of units C and I 

(1.5 meter units); no calcium carbonate was noted in unit O (1.5 meter unit of Set B). 
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APPENDIX B 
 
 
WEATHER CONDITIONS RECORDED AT STATION 03391 (NOAA), RENTON 
REGIONAL AIRPORT 
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Table B1. NOAA reported weather conditions per flight. Records were selected based 
on the closest recording to the reported time over the research site. 
 

Date Time 
Temperature 

(°F) 
Temperature 

(°C) 
Dew Point 

(°C) 
Humidity 

(%) 
4/30/2006 53 55 12.8 9.4 80 
8/28/2008 2353 80 26.7 20.6 69 
11/21/2008 2353 36 2.2 -5 59 
9/1/2009 2353 75 23.9 16.1 62 
9/2/2009 2353 75 23.9 17.8 69 

10/20/2009 2353 69 20.6 15.6 73 
2/27/2010 2353 39 3.9 0 76 
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APPENDIX C 
 
 
WEATHER DATA BY SURVEY (TABLES C1-C6) AS REPORTED BY NOAA FOR THE 
FLIGHT DATE (“*”), THE PRECEDEING WEEK, AND DATE FOLLOWING A FLIGHT. 
DATA WERE COLLECTED FROM STATION 03391 (NOAA) AT THE DENTON 
REGIONAL AIRPORT. PREPORTED ARE THE MAXIMUM (Tmax), MINIMUM (Tmin) 
AND AVERAGE (Tavg) TEMPERATURE, AS WELL AS DEW POINT, IN DEGREES 
CELCIUS (°C). HUMIDITY IS EXPRESSED AS A PERCENTAGE. PRECIPITATION 
(Precip) IS IN CENTIMETERS. “T” DENOTES TRACE PRECIPITATION 
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Table C1. Weather data for the Preliminary flight week. 

Date Tmax Tmin Tavg Humidity 
Dew 
Point Precip 

4/22/2006 28.9 13.9 21.7 50.9 13.9 0 
4/23/2006 30.6 18.3 24.4 37.2 16.1 0 
4/24/2006 28.9 20.6 25.0 53.9 18.9 0 
4/25/2006 24.4 12.2 18.3 77.8 10.6 0 
4/26/2006 21.7 10.0 16.1 51.1 7.8 0 
4/27/2006 26.1 7.8 17.2 42.5 8.9 0 
4/28/2006 22.8 17.8 20.6 37.9 16.1 3.86 

*4/29/2006 21.7 13.9 17.8 80.2 13.9 0.20 
4/30/2006 28.3 11.1 20.0 50.5 9.4 0 

 
 

Table C2. Weather data for the week of Flight 1. 

Date Tmax Tmin Tavg Humidity 
Dew 
Point Precip 

8/21/2008 32.8 20.6 26.7 75.5 20.0 0.41 
8/22/2008 35.6 24.4 30.0 68.4 21.7 0.05 
8/23/2008 35.6 22.8 29.4 60.9 20.6 0 
8/24/2008 34.4 21.1 27.8 67.4 20.0 0 
8/25/2008 33.3 22.2 27.8 65.8 20.6 T 
8/26/2008 34.4 21.1 27.8 64 20.0 0 
8/27/2008 35.6 23.9 30.0 62.6 20.6 T 

*8/28/2008 35.6 23.3 29.4 61.5 20.0 0 
8/29/2008 35.6 22.8 29.4 65 21.1 0 

 
 

Table C3. Weather data for the week of Flight 2. 

Date Tmax Tmin Tavg Humidity 
Dew 
Point Precip 

11/14/2008 22.8 9.4 15.9 64.9 9.9 0.03 
11/15/2008 11.7 -1.1 6.6 46.4 -4.8 0 
11/16/2008 21.1 -1.7 9.1 49.4 -3.1 0 
11/17/2008 25.6 2.2 13.6 45.4 -0.3 0 
11/18/2008 15.6 4.4 9.3 52.1 0.4 0 
11/19/2008 25.6 3.9 13.7 36.7 2.6 0 
11/20/2008 14.4 3.3 9.3 55.3 0.02 0 

*11/21/2008 7.8 -1.7 3.4 47 -7.8 T 
11/22/2008 13.3 1.1 7.7 54.9 -1.1 0 
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Table C4. Weather data for the week of Flights 3 and 4. 

Date Tmax Tmin Tavg Humidity 
Dew 
Point Precip 

8/25/2009 38.9 23.9 31 55.6 19.9 0 
8/26/2009 36.7 23.9 30.3 57.5 20.5 0 
8/27/2009 31.7 21.7 24.9 77.6 20.4 0.61 
8/28/2009 31.7 19.4 25.3 69.1 18.1 0.03 
8/29/2009 31.7 16.1 24.1 63.8 15.8 0 
8/30/2009 30.6 17.8 24.1 60.4 15.1 0 
8/31/2009 30 17.2 24 58.5 14.65 0 
*9/1/2009 31.7 18.9 25.6 56.8 15.9 0 
*9/2/2009 33.9 21.7 27 54.7 16.8 0 
9/3/2009 32.2 20.6 26.2 67.2 19.1 0.51 

 
 

Table C5. Weather data for the week of Flight 5. 

Date Tmax Tmin Tavg Humidity 
Dew 
Point Precip 

10/13/2009 19.4 16.7 17.8 98.1 17.5 3.40 
10/14/2009 28 19 22.2 94.4 21.2 0.03 
10/15/2009 23.9 11 16.7 86.7 14.3 0 
10/16/2009 20.6 10 13.9 75.3 9.2 0 
10/17/2009 23.3 7.8 14.9 69.3 8.4 0 
10/18/2009 21.1 5.6 13.8 74.7 9 0 
10/19/2009 24.4 12.2 18.2 71.9 12.8 0 

*10/20/2009 26.1 15 20.6 67.3 14 0 
10/27/2009 20 15 18 96.4 17.4 7.11 

 
 

Table C6. Weather data for the week of Flight 6. 

Date Tmax Tmin Tavg Humidity 
Dew 
Point Precip 

2/20/2010 16.1 11 13.1 86 10.7 T 
2/21/2010 15 3.3 10.7 89.4 8.9 0.74 
2/22/2010 4 1.1 2.5 78.9 -0.8 0 
2/23/2010 5 0 1.8 70 -3.4 0 
2/24/2010 8.3 -2.8 2.2 60.7 -5.3 0 
2/25/2010 12.8 0 7.5 55.4 -1.6 T 
2/26/2010 9.4 0.6 5.5 86.3 3.4 T 

*2/27/2010 17.8 -1 6.5 68.4 -0.6 0 
2/28/2010 17.2 0.6 9.7 57.4 0.6 0 
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APPENDIX D 
 
 
MONTHLY WEATHER DATA AVERAGES, JANUARY 2003 THROUGH MAY 2010. 
TABLES ARE ARRANGED BY YEAR (TABLES D1-D8). DATA WERE COLLECTED 
FROM STATION 03391 (NOAA) AT THE DENTON REGIONAL AIRPORT. 
REPORTED ARE THE MAXIMUM (Tmax), MINIMUM (Tmin) AND AVERAGE (Tavg) 
TEMPERATURES, AS WELL AS DEW POINT (°C). TOTAL PRECIPTIATION (Precip) 
IS IN CENTIMETERS. “*” DENOTES NO DATA 
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Table D1. Monthly weather averages near the site for January through May of 2010. 
Month Tmax Tmin Tavg Dew Point Precip 
January 12.4 -0.6 6.1 -0.1 6.68 
February 9.0 -0.2 4.5 -0.1 7.37 
March 18.9 5.1 12.2 4.7 9.88 
April 23.9 11.7 17.9 11.3 8.18 
May 29.4 16.9 23.3 16.3 4.72 

 
 

Table D2. 2009 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 15.1 -1.7 6.8 -3.6 1.78 
February 19.4 4.4 12.1 1.8 3.68 
March 20.5 7.8 14.3 6.0 6.68 
April 24.2 10.0 15.6 7.3 9.75 
May 27.6 15.5 21.7 16.3 15.14 
June 33.6 21.4 27.6 19.7 6.38 
July 35.7 22.5 29.2 19.4 6.48 
August 35.8 23.2 29.6 19.9 2.57 
September 29.2 17.6 23.5 17.3 9.17 
October 21.4 10.4 16.0 11.9 32.05 
November 21.1 6.9 14.2 8.3 1.32 
December 11.0 -1.2 5.3 -0.6 4.19 

 
 

Table D3. 2008 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 13.4 -1.4 6.2 -1.9 0.25 
February 18.7 1.9 10.5 1.1 6.65 
March 21.7 7.8 15.0 6.1 16.26 
April 24.4 10.4 17.6 9.8 7.39 
May 29.7 16.5 23.2 15.1 9.50 
June 35.3 22.8 28.9 19.2 6.45 
July 36.8 23.2 30.1 18.3 0.86 
August 34.9 22.7 28.9 19.7 13.34 
September 30.6 16.9 23.9 15.9 2.39 
October 26.6 11.3 19.1 9.4 3.28 
November 20.5 5.3 13.1 3.8 6.05 
December 14.7 -0.8 7.1 -1.3 1.12 
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Table D4. 2007 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 9.7 0.1 4.9 -0.3 6.63 
February 15.2 0.3 8.7 0.8 1.32 
March 22.7 10.6 16.8 8.8 9.98 
April 21.6 9.9 15.8 9.4 17.09 
May 27.5 18.1 22.9 17.7 17.37 
June 31.3 21.1 26.2 20.3 35.81 
July 32.8 21.9 27.6 21.2 4.01 
August 35.9 23.4 29.7 21.2 0.20 
September 32.5 20.2 26.5 18.8 8.41 
October 27.7 13.0 20.5 11.9 6.58 
November 21.2 8.3 14.9 6.5 3.48 
December 14.9 0.7 7.9 1.2 3.89 

 
 

Table D5. 2006 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 19.8 3.1 15.2 -1.8 4.85 
February 15.4 1.7 8.7 -0.5 5.79 
March 22.3 10.2 16.2 5.5 8.51 
April 28.4 14.4 21.6 11.3 6.93 
May 30.3 17.7 24.1 15.0 3.94 
June 35.4 20.5 28.1 16.1 2.82 
July 37.4 24.2 30.9 18.3 1.19 
August 38.3 25.2 31.8 18.6 2.46 
September 30.9 17.1 24.2 14.7 6.22 
October 25.8 11.9 19.0 10.1 7.14 
November 20.3 6.1 13.3 5.8 10.72 
December 15.2 2.9 9.2 2.4 7.98 
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Table D6. 2005 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 15.1 3.0 9.2 3.0 8.79 
February 16.5 5.2 10.9 4.4 3.99 
March 19.7 6.2 13.1 4.2 6.25 
April * * * * * 
May 28.1 16.7 22.6 14.8 6.22 
June 34.1 21.5 27.9 18.4 2.69 
July 35.0 22.2 28.7 19.4 3.43 
August 36.1 22.9 29.6 19.4 4.22 
September 35.3 20.1 27.8 15.8 0.76 
October 27.2 11.8 19.6 9.4 1.57 
November 22.8 6.4 14.7 3.5 0.10 
December 15.2 -0.2 7.7 -3.4 0.05 

 
 

Table D7. 2004 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 13.9 1.8 7.8 2.4 3.58 
February 11.7 1.8 6.9 1.8 9.55 
March 21.2 8.9 15.2 8.7 4.09 
April 23.6 12.1 18.2 12.4 14.53 
May 28.5 17.4 23.4 17.1 9.19 
June 31.0 20.6 26.0 20.8 28.96 
July 33.4 21.2 27.8 20.4 8.99 
August 31.9 20.7 26.6 19.1 10.39 
September 31.3 17.4 24.6 16.3 3.84 
October 27.2 15.1 21.4 14.9 18.36 
November 17.6 8.3 13.1 8.9 17.07 
December 14.9 1.5 8.6 0.7 1.88 
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Table D8. 2003 monthly weather averages near the site. 
Month Tmax Tmin Tavg Dew Point Precip 
January 12.3 -1.1 5.8 -0.4 0.46 
February 12.0 1.3 6.9 2.6 7.87 
March 19.3 5.7 12.8 6.6 1.85 
April 25.7 11.1 18.8 11.2 3.25 
May 29.3 17.0 23.4 17.6 12.14 
June 31.5 19.1 25.4 19.4 8.86 
July 36.3 22.9 29.8 20.3 2.46 
August 36.3 22.9 29.8 20.1 3.05 
September 28.9 17.0 23.1 16.3 11.15 
October 27.4 11.6 20.0 11.9 0.61 
November 19.3 8.5 14.3 7.6 7.95 
December 15.4 1.0 8.2 0.3 1.91 
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APPENDIX E 
 
 
 
STATISTICAL COMPARISONS BETWEEN TWO IMAGER POLARITIES, “WHITE 
HOT” VS. “BLACK HOT”  



92 
 

Table E1. Sample size (n), Shapiro-Wilks normality results and five number summaries 
for samples extracted (Unit ID) from Images 6r7 (white hot) and 6r10 (black hot). “*” 
denotes a normal distribution. 
 

  Unit ID n S-W W P Five Number Summaries 

6r
7 

(W
hi

te
 H

ot
) J 62 0.874 <0.0001 120, 113, 105, 95, 53 

K 64 0.9655 =0.0701* 112, 101, 81.5, 69, 40 
L 63 0.9429 =0.0056 48, 38, 26, 18, 10 
M 65 0.979 =0.3337* 96, 75, 56, 43, 11 
N 62 0.8382 <0.0001 124, 118, 111.5, 96, 55 
T 64 0.9563 =0.0237 19, 13, 10, 7, 4 

6r
10

 (B
la

ck
 H

ot
) J 62 0.7932 <0.0001 46, 14, 7, 4, 1 

K 64 0.9561 =0.0231 50, 37, 25, 13.5, 4 
L 63 0.972 =0.1606* 73, 66, 62, 56, 48 
M 65 0.9805 =0.3940* 65, 48, 42, 30, 16 
N 62 0.8284 <0.0001 46, 18, 7, 4, 0 
T 64 0.9414 =0.0044 79, 73, 70, 68.5, 55 

 
 
Table E2. Sample collections from each image were highly significantly different 
(Kruskall-Wallis one way analysis of variance on ranked data). Samples separated into 
statistically distinct groups (SNK on ranked data, α=0.05), although the order are 
inversed. Likewise, the association between signature and depth (Spearman’s 
correlation) is a near-perfect inverse. 
 

K-W H DF P SNK Grouping rs P 

6r
7 314.56 5  < 0.0001 

N(1) = J(1) > K(0.5) > 
M(0.5) 0.8912  < 0.0001 

      > L(0.25) > T(0)     

6r
10

 

314.77 5  < 0.0001 
T(0) > L(0.25) > M(0.5) > 

K(0.5) -0.8835  < 0.0001 
      > N(1) = J(1)     
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APPENDIX F 
 
 
STATISTICAL COMPARISONS BETWEEN THE THREE BANDS OF AN RBG 
COMPOSITE THERMAL IMAGE. MULTIPLE SAMPLES CONSISTING OF 
DISTURBED UNITS AND CONTROLS WERE EXTRACTED AND ANALYZED AND 
ARE PRESENTED 
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Table F1. Sample size (n), Shapiro-Wilks normality (SW-W) and five number summaries 
by band for each extracted sample (Unit ID) from Image 1r6. Although the descriptive 
statistics differed by band, the W statistic and associated probability are the same for a 
given sample. 
 
Unit 
ID n SW-W P Band 1 (Red) Band 2 (Green) Band 3 (Blue) 

B 492 0.934 <0.0001 
107,100, 97, 

92, 66 
109, 102, 99, 

94, 68 
106, 99, 96, 

91, 65 

D 490 0.9316 <0.0001 
82, 77, 75, 72, 

57 
84, 79, 77, 74, 

59 
81, 76, 74, 71, 

56 

E 491 0.9883 =0.0006 
73, 59, 54, 49, 

37 
75, 61, 56, 51, 

39 
72, 58, 53, 48, 

36 

F 492 0.9923 =0.0123 
59, 50, 47, 43, 

34 
61, 52, 49, 45, 

36 
58, 49, 46, 42, 

33 

G 489 0.9881 =0.0005 
57, 48, 46, 44, 

37 
59, 50, 48, 46, 

39 
56, 47, 45, 43, 

36 

H 493 0.976 <0.0001 
69, 63, 59, 55, 

43 
71, 95, 91, 57, 

45 
68, 62, 58, 54, 

42 

I 492 0.9861 <0.0001 
73, 65, 63, 61, 

54 
75, 67, 65, 63, 

56 
72, 64, 62, 60, 

53 

P 492 0.9747 <0.0001 
39, 32, 28, 26, 

20 
41, 34, 30, 28, 

22 
38, 31, 27, 25, 

19 

Q 492 0.9319 <0.0001 
52, 33, 26, 22, 

17 
54, 35, 28, 24, 

19 
51, 32, 25, 21, 

16 

R 492 0.9868 <0.0001 
67, 57, 48, 38, 

20 
69, 59, 50, 40, 

22 
66, 56, 47, 37, 

19 

S 492 0.9029 <0.0001 
46, 32.5, 26, 

23, 20 
48, 34.5, 28, 

25, 22 
45, 31.5, 25, 

22, 19 
 
 
Table F2. Sample collections from each band were highly significantly different 
(Kruskall-Wallis one way analysis of variance on ranked data) with the same resulting 
Chi-square value for each band. Statistical separation into distinct groups (SNK on 
ranked data, α=0.05) was likewise the same, demonstrating that the band display 
redundant information. 
 

Image 
1r6 K-W H DF P SNK Grouping 

Band 1 4764.91 10 <0.0001 B > D > I > H > E > R > F > G > P > Q = S 
Band 2 4764.91 10 <0.0001 B > D > I > H > E > R > F > G > P > Q = S 
Band 3 4764.61 10 <0.0001 B > D > I > H > E > R > F > G > P > Q = S 
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APPENDIX G 
 

FLOW CHART OF EXPERIMENTAL PROCEDURES (FIGURES G1-G3) 
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APPENDIX H 
 
 
RECTIFICATION DATA PRESENTED BY IMAGE, INCLUDING THE FINAL RMSerror , 
NUMBER OF ESTABLISHED LINKS, FINAL CELL SIZE, AND THE NUMBER OF 
DISTURBED AND CONTROL SAMPLES EXTRACTED 
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Table H1. Associated rectification information for each image, including RMSerror, the 
number of links, output cell size for rectified images, and the number of extracted 
samples. 
 

Samples 

Image RMSerror Links Cell Size Units Controls 
1r22 0.3345 15 0.16 10 10 
1r22f 0.3055 15 0.16 10 10 
1e22 0.3638 15 0.07 10 10 
1e22f 0.3154 15 0.07 9 10 
1r23 0.1974 13 0.05 6 2 
1r23f 0.2058 12 0.05 4 2 
1e23 0.2087 13 0.02 4 2 
1e23f 0.2284 13 0.02 4 2 
`4r22 0.3532 15 0.11 6 5 
4r22f 0.2954 15 0.11 5 5 
4e22 0.3099 15 0.04 5 5 
4e22f 0.2621 15 0.04 5 5 
4r25 0.3083 20 0.1 6 7 
4r25f 0.339 18 0.1 6 7 
4e25 0.3346 15 0.05 6 6 
4e25f 0.2346 15 0.05 9 6 
5r2 0.1505 10 0.04 6 1 
5r2f 0.1586 9 0.04 6 1 
5e2 0.1632 10 0.02 5 3 
5e2f 0.1999 9 0.02 5 2 
5r26 0.3166 15 0.15 11 10 
5r26f 0.2698 12 0.15 10 10 
5e26 0.2613 15 0.07 11 10 
5e26f 0.2434 12 0.07 10 9 
6r10 0.3565 20 0.14 10 8 
6r10f 0.295 19 0.14 10 8 
6e10 0.2549 20 0.07 10 8 
6e10f 0.1987 17 0.07 10 7 
6r11 0.3155 10 0.04 6 2 
6r11f 0.2209 7 0.04 6 2 
6e11 0.238 10 0.02 6 1 
6e11f 0.2535 7 0.02 6 1 
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APPENDIX I 
 
 
RECTIFIED IMAGES, BY SERIES (FIGURE I1-I25). COMPLETE SERIES 1_23, AS 
WELL AS IMAGES 4r25, 5r26, AND 6r11 ARE PRESENTED IN THE TEXT (CHAPTER 
4) AND ARE NOT INCLUDED IN THIS APPENDIX 
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Figure I1. Rectified version of image 1r22. 
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Figure I2. Rectified version of image 1r22f. 
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Figure I3. Rectified version of image 1e22. 
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Figure I4. Rectified version of image 1e22f. 
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Figure I5. Rectified version of image 4r22. 
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Figure I6. Rectified version of image 4r22f. 
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Figure I7. Rectified version of image 4e22. 
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Figure I8. Rectified version of image 4e22f. 
 
 
 
 
 
 
 



110 
 

 

 
 
Figure I9. Rectified version of image 4r25f. 
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Figure I10. Rectified version of image 4e25. 
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Figure I11. Rectified version of image 4e25f. 
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Figure I12. Rectified version of image 5r2. 
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Figure I13. Rectified version of image 5r2f. 
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Figure I14. Rectified version of image 5e2. 
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Figure I15. Rectified version of image 5e2f. 
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Figure I16. Rectified version of image 5r26f. 
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Figure I17. Rectified version of image 5e26. 
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Figure I18. Rectified version of image 5e26f. 
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Figure I19. Rectified version of image 6r10. 
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Figure I20. Rectified version of image 6r10f. 
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Figure I21. Rectified version of image 6e10. 
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Figure I22. Rectified version of image 6e10f. 
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Figure I23. Rectified version of image 6r11f. 
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Figure I24. Rectified version of image 6e11. 
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Figure I25. Rectified version of image 6e11f.  
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APPENDIX J 
 
 
 
RESULTS OF STATISTICAL ANALYSES, PRESENTED BY IMAGE IN TABULAR 
FORMAT. SERIES 1_23, AS WELL AS IMAGES 4r25, 5r26, AND 6r11 WERE 
REPORTED IN CHAPTER 4 AND ARE NOT INCLUDED IN THIS APPENDIX 
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Table J1. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4r25f. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

4r
25

f 

E 128 0.9847* =0.1619 80, 54, 48, 41, 23 
F 125 0.9097 <0.0001 98, 73, 70, 66, 48 
G 130 0.9098 <0.0001 97, 61, 50, 42, 29 
J 121 0.8621 <0.0001 113, 97, 93, 84, 45 
K 124 0.9752 =0.0221 86, 65.5, 57, 52, 39 
L 122 0.9558 =0.0005 97, 58, 51, 40, 25 

(P) 125 0.9545 =0.0003 151, 127, 120, 115, 101 
(Q) 125 0.981* =0.0762 142, 128, 120, 110, 91 
(R) 125 0.9432 <0.0001 146, 131, 122, 118, 105 
(T) 125 0.9537 =0.0003 124, 110, 104, 98, 91 
(U) 125 0.9433 <0.0001 101, 85, 72, 65, 57 
(V) 121 0.9569 =0.0007 126, 114, 108, 103, 85 
(Y) 128 0.9763 =0.0243 181, 153, 145, 137, 123 

 
Table J2. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4e25. 

Unit ID n S-W W P Five Number Summaries 

4e
25

 

E 491 0.9829 <0.0001 54, 43, 38, 35, 25 
F 492 0.895 <0.0001 66, 53, 52, 51, 44 
G 489 0.9293 <0.0001 66, 46, 43, 37, 31 
J 493 0.8975 <0.0001 79, 70, 67, 60, 34 
K 491 0.9601 <0.0001 63, 53, 47, 44, 35 
L 492 0.9675 <0.0001 73, 52, 48, 42, 32 

(P) 492 0.9049 <0.0001 105, 87, 80, 77.5, 72 
(Q) 492 0.9669 <0.0001 96, 85, 79, 74, 66 
(R) 492 0.9145 <0.0001 96, 86, 80, 78, 74 
(U) 492 0.9634 <0.0001 80, 68, 61, 58, 50 
(V) 493 0.9422 <0.0001 89, 79, 77, 74, 62 
(Y) 492 0.976 <0.0001 114, 102, 96, 92, 84 
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Table J3. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4e25f. 

Unit ID n S-W W P Five Number Summaries 

4e
25

f 

E 491 0.9808 <0.0001 79, 46, 37, 29, 0 
F 492 0.9164 <0.0001 91, 68, 65, 63, 38 
G 489 0.9689 <0.0001 81, 49, 45, 31, 13 
H 493 0.9711 <0.0001 104, 69, 64, 55, 27 
J 493 0.8699 <0.0001 124, 100, 95, 81, 31 
K 491 0.9738 <0.0001 86, 64, 50, 43, 24 
L 492 0.9787 <0.0001 78, 49, 43, 30, 12 
M 493 0.9117 <0.0001 70, 30, 18, 7, 0 
N 491 0.536 <0.0001 255, 34, 14, 3, 0 

(P) 492 0.9181 <0.0001 164, 136, 123, 119, 97 
(Q) 492 0.9814 <0.0001 159, 137, 122, 114, 91 
(R) 492 0.9502 <0.0001 160, 141, 137, 124, 114 
(U) 492 0.9515 <0.0001 106, 85, 73, 64, 47 
(V) 493 0.979 <0.0001 148, 120, 115, 109, 83 
(Y) 492 0.9824 <0.0001 198, 166, 158, 150, 125 
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Table J4. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 5r26f.  “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

5r
26

f 

E 59 0.8587 <0.0001 23, 10, 4, 0, 0 
F 56 0.6658 <0.0001 16, 3, 0, 0, 0 
G 60 0.8334 <0.0001 18, 8, 2.5, 0, 0 
H 60 0.5298 <0.0001 30, 2, 0, 0, 0 
I 60 0.4006 <0.0001 13, 0, 0, 0, 0 
J 55 0.3245 <0.0001 2, 0, 0, 0, 0 
K 54 0.9262 =0.0026 26, 17, 9, 3, 0 
L 54 0.9526 =0.0324 34,28, 22, 14, 1 
M 54 0.9704 =0.2015* 43, 28, 20.5, 17, 9 
N 55 0.566 <0.0001 33, 4, 0, 0, 0 

(P) 56 0.9756 =0.3139* 31, 22, 19,13, 4 
(Q) 56 0.9615 =0.0713* 26, 15.5, 12, 9, 2 
(R) 56 0.9774 =0.3718* 38, 25.5, 17.5, 12, 0 
(S) 56 0.9752 =0.2995* 34, 19, 14, 8, 0 
(T) 56 0.98 =0.4771* 24, 14, 11.5, 8, 1 
(U) 56 0.9163 =0.0009 21, 10, 5, 1, 0 
(V) 55 0.9122 =0.0007 15, 13, 8, 5, 0 
(W) 55 0.855 <0.0001 22, 9, 3, 0, 0 
(X) 60 0.8844 <0.0001 29, 11, 5, 2, 0 
(Y) 60 0.8608 <0.0001 19, 6, 3, 0, 0 
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Table J5. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 5e26. 

Unit ID n S-W W P Five Number Summaries 

5e
26

 

E 253 0.9043 <0.0001 28, 26, 21, 18, 15 
F 252 0.9707 <0.0001 27, 19, 18, 16, 10 
G 255 0.8315 <0.0001 28, 21, 18, 17, 15 
H 252 0.9457 <0.0001 25, 17, 12, 9, 5 
I 253 0.9307 <0.0001 21, 18, 17, 15, 9 
J 252 0.9312 <0.0001 20, 11, 10, 8, 4 
K 252 0.975 =0.0002 36, 29, 26, 24, 19 
L 251 0.9532 <0.0001 38, 34, 31, 27, 22 
M 251 0.9164 <0.0001 39, 36, 34, 32, 24 
N 251 0.9747 =0.0002 37, 26, 20, 16, 7 
O 251 0.8288 <0.0001 35, 18, 11, 9, 5 

(P) 252 0.9607 <0.0001 33, 29, 28, 27, 24 
(Q) 252 0.9413 <0.0001 30, 27, 26, 25, 23 
(R) 252 0.9344 <0.0001 37, 31, 28, 27, 24 
(S) 252 0.908 <0.0001 39, 35, 33, 27, 23 
(T) 252 0.9189 <0.0001 28, 26, 26, 25, 22 
(U) 252 0.883 <0.0001 30, 26, 25.5, 25, 15 
(V) 252 0.9602 <0.0001 32, 27, 26, 25, 21 
(W) 252 0.9156 <0.0001 28, 22, 19, 17, 14 
(X) 253 0.9521 <0.0001 29, 26, 25, 24, 18 
(Y) 253 0.9699 <0.0001 30, 25, 22, 21, 17 
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Table J6. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 5e26f. 

Unit ID n S-W W P Five Number Summaries 

5e
26

f 

E 253 0.9188 <0.0001 41, 25, 21, 8, 0 
F 252 0.8853 <0.0001 26, 10, 6, 3, 0 
G 255 0.8457 <0.0001 30, 15, 8, 6, 0 
H 252 0.7371 <0.0001 28, 9, 0, 0, 0 
I 253 0.9202 <0.0001 16, 7, 4, 1, 0 
J 252 0.3078 <0.0001 11, 0, 0, 0, 0 
K 252 0.9823 =0.0031 44, 30, 25, 20.5, 7 
L 251 0.9421 <0.0001 51, 42, 32, 24, 10 
M 251 0.9333 <0.0001 52, 45, 40, 30, 20 
N 251 0.8816 <0.0001 56, 21, 9, 2, 0 

(P) 252 0.9895 =0.0177 37, 31, 29, 27, 20 
(Q) 252 0.9292 <0.0001 36, 26, 25, 23, 20 
(R) 252 0.949 <0.0001 47, 35, 29, 23, 17 
(S) 252 0.8916 <0.0001 50, 44, 37.5, 25, 20 
(T) 252 0.9599 <0.0001 30, 25, 24, 23, 19 
(U) 252 0.93 <0.0001 38, 26, 25, 23, 10 
(V) 252 0.9647 <0.0001 30, 24, 23, 21, 10 
(W) 252 0.9704 <0.0001 52, 30, 24, 20.5, 2 
(X) 253 0.9659 <0.0001 28, 23, 21, 17, 3 
(Y) 253 0.9752 =0.0002 30, 22, 16, 12, 3 

 
Table J7. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 6r11f. 

Unit ID n S-W W P Five Number Summaries 

6r
11

f 

J 769 0.0518 <0.0001 28, 0, 0, 0, 0 
K 769 0.7095 <0.0001 75, 18, 0, 0, 0 
L 768 0.9931 =0.0013 111, 75, 62, 49, 0 
M 770 0.9221 <0.0001 96, 57, 34, 6, 0 
N 769 0.4593 <0.0001 53, 0, 0, 0, 0 
O 768 0.3006 <0.0001 43, 0, 0, 0, 0 
(T) 769 0.8783 <0.0001 99, 60, 24, 0, 0 
(U) 769 0.9441 <0.0001 113, 81, 66, 46, 0 
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Table J8. Kilmogorov-Smirnov normality testing and five number summaries for 
samples extracted from image 6e11. 

  Unit ID n K-S D P Five Number Summaries 

6e
11

 

J 3074 0.3843 <0.01 54, 1, 1, 1, 0 
K 3076 0.2207 <0.01 80, 27, 6, 1, 0 
L 3073 0.0438 <0.01 95, 71, 62, 53, 18 
M 3075 0.666 <0.01 78, 50, 37, 18, 0 
N 3075 0.4205 <0.01 47, 2, 1, 1, 0 
O 3073 0.4023 <0.01 33, 2, 1, 1, 0 

(U) 3073 0.1787 <0.01 255, 85, 76, 62, 11 
 
Table J9. Kilmogorov-Smirnov normality testing and five number summaries for 
samples extracted from image 6e11f. 

  Unit ID n K-S D P Five Number Summaries 

6e
11

f 

J 3074 0.3843 <0.01 54, 1, 1, 1, 0 
K 3076 0.2207 <0.01 80,27, 6, 1, 0 
L 3073 0.0438 <0.01 95, 71, 62, 53, 18 
M 3075 0.0666 <0.01 78, 50, 37, 18, 0 
N 3075 0.4205 <0.01 47, 2, 1, 1, 0 
O 3073 0.4023 <0.01 33, 2, 1, 1, 0 
(T) 3073 0.1608 <0.01 95,75, 69, 64, 1 
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Table J10. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 1r22. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

1r
22

 

D 50 0.9683* =0.1972 55, 51, 46, 43, 41 
E 51 0.9488 =0.0282 77, 69, 66, 62, 59 
F 49 0.9102 =0.0012 77, 75, 73, 69, 67 
G 50 0.9605* =0.0932 76, 74, 73, 72, 69 
H 45 0.9809* =0.0547 67, 60, 58, 55, 52 
I 50 0.823 <0.0001 68, 57, 55, 53, 52 
K 49 0.9611* =0.1053 78, 69, 66, 62, 58 
L 48 0.9668* =0.1889 96, 89, 84, 79.5, 74 
M 49 0.9708* =0.2609 68, 59, 54, 51, 46 
N 48 0.9123 =0.0016 65, 47, 41, 37, 34 

(P) 49 0.9608* =0.1021 108, 102, 99, 96, 83 
(Q) 49 0.9688* =0.2177 112, 106, 99, 95, 81 
(R) 49 0.9496 =0.0356 118, 91, 82, 72, 63 
(S) 49 0.947 =0.028 109, 105, 101, 97, 86 
(T) 49 0.9501 =0.0376 106, 95, 89, 84, 77 
(U) 49 0.9598* =0.0933 96, 91, 87, 81, 73 
(V) 48 0.9589* =0.0909 109, 97, 88, 78, 69 
(W) 48 0.9455 =0.0264 87, 85, 82, 80, 77 
(X) 50 0.9476 =0.0273 106, 99, 92, 82, 76 
(Y) 50 0.9796* =0.5340 111, 100, 95.5, 92, 85 
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Table J11. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 1r22f. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

1r
22

f 

D 50 0.9405 =0.0141 84, 60, 53, 47, 39 
E 51 0.9653* =0.1397 122, 100, 89, 82, 72 
F 49 0.9552* =0.0602 114, 108, 104, 98, 93 
G 50 0.9802* =0.5586 113, 108, 105, 103, 96 
H 45 0.9295 =0.009 99, 80, 74, 67, 60 
I 50 0.8623 <0.0001 96, 72, 64, 61, 57 
J 48 0.9725* =0.3155 92, 72.5, 58.5, 48, 31 
K 49 0.9625* =0.1197 108, 97, 94, 87, 75 
L 48 0.9765* =0.4442 157, 142, 132.5, 123, 109 
M 49 0.9700* =0.2429 90, 69, 61, 54, 43 
(P) 49 0.884 =0.0002 177, 170, 164, 158, 131 
(Q) 49 0.9852* =0.7898 196, 175, 162, 157, 130 
(R) 49 0.9541* =0.0543 220, 188, 151, 125, 84 
(S) 49 0.9738* =0.3407 194, 181, 171, 162, 135 
(T) 49 0.9579 =0.0772 167, 157, 145, 134, 115 
(U) 49 0.9705* =0.2534 156, 144, 132, 125, 105 
(V) 48 0.9416 =0.0187 183, 162, 139.5, 119.5, 100 
(W) 48 0.9254 =0.0046 149, 132, 130, 125, 118 
(X) 50 0.9747* =0.3548 178, 166, 157.5, 150, 133 
(Y) 50 0.9573* =0.0686 192, 169, 158, 148, 132 
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Table J12. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 1e22. 

Unit ID n S-W W P Five Number Summaries 

1e
22

 

D 254 0.9387 <0.0001 60, 50, 46, 44, 39 
E 253 0.9673 <0.0001 86, 72, 68, 63, 58 
F 252 0.9237 <0.0001 83, 78, 76, 71, 66 
G 255 0.9632 <0.0001 81, 77, 76, 74, 69 
H 252 0.9727 <0.0001 73, 62, 58, 53, 48 
I 253 0.8079 <0.0001 71, 57, 53, 52, 48 
K 252 0.9786 =0.0008 88, 73.5, 69, 65.5, 54 
L 251 0.964 <0.0001 111, 99, 94, 86, 76 
M 251 0.9726 <0.0001 69, 58, 53, 49, 40 
N 251 0.905 <0.0001 72, 44, 36, 29, 22 

(P) 252 0.9087 <0.0001 118, 110, 104,101, 82 
(Q) 252 0.9716 <0.0001 125, 113, 105, 102, 85 
(R) 252 0.9573 <0.0001 125, 94.5, 83, 73, 62 
(S) 252 0.9393 <0.0001 123, 113, 110, 100, 85 
(T) 252 0.9522 <0.0001 114, 102, 95, 87, 82 
(U) 252 0.9404 <0.0001 103, 96, 91, 83, 63 
(V) 252 0.9422 <0.0001 119, 104, 93, 81, 72 
(W) 252 0.9649 <0.0001 95, 88, 86, 85, 78 
(X) 253 0.9299 <0.0001 114, 105, 101, 88, 81 
(Y) 253 0.9712 <0.0001 121, 108, 103, 98, 82 
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Table J13. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 1e22f. 

Unit ID n S-W W P Five Number Summaries 

1e
22

f 

D 254 0.9373 <0.0001 74, 50, 41, 38, 27 
E 253 0.955 <0.0001 119, 95, 89, 77, 70 
F 252 0.9252 <0.0001 122, 115.5, 109, 98, 89 
G 255 0.9845 =0.0071 123, 114, 110, 107, 95 
H 252 0.9703 <0.0001 94, 77, 70, 60, 50 
I 253 0.7858 <0.0001 100, 71, 60, 57, 50 
K 252 0.9787 =0.0008 125, 100, 94, 84, 65 
L 251 0.966 <0.0001 179, 152, 136, 125, 111 
M 251 0.9694 <0.0001 138, 93, 76, 59, 34 
(P) 252 0.9034 <0.0001 201, 190, 177.5, 168, 119 
(Q) 252 0.9619 <0.0001 224, 204.5, 180, 170, 124 
(R) 252 0.9574 <0.0001 223, 155, 128, 103.5, 80 
(S) 252 0.9576 <0.0001 219, 200, 191, 175.5, 147 
(T) 252 0.9305 <0.0001 199, 185, 173.5, 151.5, 123 
(U) 252 0.9207 <0.0001 194, 146, 136, 127, 110 
(V) 252 0.9507 <0.0001 219, 186, 171, 137.5, 105 
(W) 252 0.9734 <0.0001 158, 140, 136, 131, 114 
(X) 253 0.9409 <0.0001 189, 158, 137, 130, 109 
(Y) 253 0.959 <0.0001 210, 193, 177, 162, 134 
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Table J14. Results of Kruskall-Wallis testing, SNK multiple range test on ranked data 
(α=0.05), and Spearman’s ranked correlation on image series 1_22. 

K-W H DF P SNK Grouping rs P 

1r
22

 

852.92 19 <0.0001 
S(0) = Q(0) = P(0) = Y(0) > 

X(0) = -0.8661 <0.0001

      
T(0) = V(0) = U(0) = L(0.25) > 

R(0) =     

      
W(0) > G(0.5) = F(0.25) > 

K(0.5) =     

      
E(0.5) > H (1) = I(1.5) = M(0.5) 

>      
      D(1) > N(1)     

1r
22

f 

852.2 19 <0.0001 
S(0) = Q(0) > P(0) = Y(0) > 

X(0) > -0.8691 <0.0001

      
T(0) > V(0) = L(0.25) > U(0) > 

W(0) >     

      
R(0) > G(0.5) = F(0.25) > 

K(0.5) >     

      
E(0.5) > H(1) > I(1.5) > M(0.5) 

>     
       D(1) = N(1)     

1e
22

 

4316.45 19 <0.0001 
S(0) = Q(0) > P(0) > = Y(0) > 

X(0) > -0.8439 <0.0001

      
T(0) > V(0) = L(0.25) > U(0) > 

W(0) >     

      
R(0) > G(0.5) = F(0.25) > 

K(0.5) >     

      
E(0.5) > H(1) > I(1.5) > M(0.5) 

=     
      D(1) = N(1)     

1e
22

f 

4089.5 18 <0.0001 
S(0) > Q(0) > Y(0) = P(0) > 

T(0) > -0.85 <0.0001

      
V(0) > X(0) > U(0) = L(0.25) = 

W(0) >     

      
R(0) > G(0.5) > F(0.25) > 

K(0.5) >     
      E(0.5) > M(0.5) >H(1) =     
      I(1.5) > D(1)     
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Table J15. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4r22. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

4r
22

 

E 101 0.9558 =0.0019 58, 52, 48, 44, 39 
F 103 0.976* =0.0574 67, 60, 57, 55, 47 
G 103 0.9593 =0.003 66, 53, 50, 46, 39 
H 104 0.9075 <0.0001 71, 60, 53, 50, 43 
I 101 0.956 =0.002 64, 51, 47, 42, 38 
J 102 0.943 =0.0003 62, 54, 50, 40, 30 

(P) 103 0.6601 <0.0001 142, 82, 79, 76, 70 
(Q) 103 0.9643 =0.0071 86, 79, 74, 71, 67 
(R) 103 0.9644 =0.0072 92, 85, 82, 79, 69 
(S) 103 0.9439 =0.0003 97, 85, 77, 71, 67 
(Y) 101 0.9785* =0.0979 88, 79, 76, 73, 67 

 
Table J16. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4r22f. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

4r
22

f 

E 101 0.9739 =0.0428 80, 63, 54, 47, 37 
F 103 0.9742 =0.0417 99, 83, 77, 73, 54 
G 103 0.9596 =0.0032 95, 68, 61, 52, 37 
H 104 0.9657 =0.0085 90, 70, 65.5, 60, 42 
I 101 0.9576 =0.0025 76, 60, 48, 41, 34 

(P) 103 0.6737 <0.0001 255, 131, 124, 118, 104 
(Q) 103 0.9691 =0.0163 139, 126, 118, 111, 102 
(R) 103 0.9744 =0.0428 154, 140, 134, 128, 106 
(S) 103 0.94 =0.0002 160, 136, 120, 106, 98 
(Y) 101 0.9904* =0.6943 142, 124, 118, 111, 94 
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Table J17. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4e22. 

Unit ID n S-W W P Five Number Summaries 

4e
22

 

E 768 0.9755 <0.0001 60, 50, 45, 42, 33 
F 769 0.9842 <0.0001 71, 60, 58, 54, 46 
G 770 0.9769 <0.0001 63, 52, 48, 44, 31 
H 775 0.9523 <0.0001 65, 54, 52, 50, 36 
I 770 0.9467 <0.0001 56, 44, 40, 36, 30 

(P) 769 0.8185 <0.0001 152, 87, 82, 79, 72 
(Q) 769 0.9477 <0.0001 89, 84, 78, 75, 67 
(R) 769 0.9443 <0.0001 99, 93, 87, 86, 70 
(S) 769 0.954 <0.0001 102, 88, 79, 73, 64 
(Y) 770 0.9805 <0.0001 94, 83, 79, 75, 67 

 
Table J18. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 4e22f. 

Unit ID n S-W W P Five Number Summaries 

4e
22

f 

E 768 0.9707 <0.0001 74, 52, 48, 42, 22 
F 769 0.9823 <0.0001 109, 82, 74, 68, 51 
G 770 0.9774 <0.0001 86, 64, 55, 46, 22 
H 775 0.9434 <0.0001 91, 66, 64, 60, 27 
I 770 0.9366 <0.0001 78, 47, 38, 29, 18 

(P) 769 0.826 <0.0001 255, 138, 128, 122, 99 
(Q) 769 0.9557 <0.0001 147, 136, 122, 117, 96 
(R) 769 0.9332 <0.0001 168, 154, 142, 139, 117 
(S) 769 0.9453 <0.0001 164, 136, 118, 102, 86 
(Y) 770 0.9447 <0.0001 175, 140, 130, 122, 109 
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Table J19. Results of Kruskall-Wallis testing, SNK multiple range test on ranked data 
(α=0.05), and Spearman’s ranked correlation on image series 4_22. 

K-W H DF P SNK Grouping rs P 

4r
22

 910.99 10  < 0.0001 
R(0) > P(0) = S(0) = Y(0) = 

Q(0) >  -0.839  < 0.0001 
      F(0.25) > H(1) > G(0.5) >      
      J(1) > E(0.5) > I(1.5)     

4r
22

f 855.82 9  < 0.0001 
R(0) > P(0) > S(0) = Q(0) = 

Y(0) > -0.869  < 0.0001 
      F(0.25) > H(1) > G(0.5) >      
      E(0.5) > I(1.5)     

4e
22

 7076.2 9  < 0.0001 
R(0) > P(0) > S(0) > Y(0) = 

Q(0) > -0.867  < 0.0001 
      F(0.25) > H(1) > G(0.5) >      
      E(0.5) > I(1.5)     

4e
22

f 6605.6 9  < 0.0001 
R(0) > Y(0) > P(0) > Q(0) > 

S(0) > -0.871  < 0.0001 
      F(0.25) > H(1) > G(0.5) >      
      E(0.5) > I(1.5)     
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Table J20. Normality testing results and five number summaries for samples extracted 
from image series 5_2. Shapiro-Wilks is presented for image 5r2 and 5r2f; Kilmogorov-
Smirnov D was calculated for the remaining two images due to large sample sizes. 

Unit ID n S-W W P Five Number Summaries 

5r
2 

D 770 0.981 <0.0001 42, 36, 33, 30, 23 
E 768 0.974 <0.0001 49, 39, 34, 30, 23 
F 769 0.9343 <0.0001 50, 35, 30, 26, 21 
G 770 0.9863 <0.0001 46, 36, 34, 31, 23 
H 775 0.9234 <0.0001 51, 34, 28, 24, 17 
I 770 0.9784 <0.0001 53, 42, 35, 30, 20 

(P) 769 0.9685 <0.0001 53, 42, 41, 40, 32 

5r
2f

 

D 770 0.9733 <0.0001 43, 28, 20, 12, 0 
E 768 0.9528 <0.0001 50, 33, 21, 9, 0 
F 769 0.8872 <0.0001 48, 24, 10, 1, 0 
G 770 0.9898 <0.0001 43, 25, 18, 12, 0 
H 775 0.8519 <0.0001 53, 25, 7, 0, 0  
I 770 0.9593 <0.0001 53, 33, 20, 10, 0 

(P) 769 0.9862 <0.0001 56, 39, 35, 31, 8 

5e
2 

E 3073 0.1032 <0.01 46, 34, 27, 24, 14 
F 3073 0.1622 <0.01 46, 30, 22, 18, 14 
G 3074 0.1427 <0.01 45, 32, 28, 26, 15 
H 3075 0.1012 <0.01 46, 26, 20, 16, 6 
I 3076 0.0837 <0.01 50, 35, 27.5, 23, 15 

(P) 3073 0.1775 <0.01 47, 38, 37, 36, 31 
(Q) 3073 0.1434 <0.01 55, 45, 44, 43, 30 
(R ) 3073 0.0836 <0.01 53, 41, 36, 33, 20 

5e
2f

 

E 3073 0.2035 <0.01 47, 24, 9, 0, 0 
F 3073 0.3012 <0.01 46, 19, 0, 0, 0 
G 3074 0.1949 <0.01 43, 17, 6, 0, 0 
H 3075 0.303 <0.01 45, 19, 0, 0, 0 
I 3076 0.159 <0.01 61, 28, 12, 0, 0 

(P) 3073 0.8569 <0.01 48, 34, 28, 23, 10 
(Q) 3073 0.1228 <0.01 59, 39, 30, 19, 0 
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Table J21. Results of Kruskall-Wallis testing, SNK multiple range test on ranked data 
(α=0.05), and Spearman’s ranked correlation on image series 5_2. 

  K-W H DF P SNK Grouping rs P 

5r
2 1520.1 6  < 0.0001 

P(0) > I(1.5) > E(0.5) = 
G(0.5) >  -0.214  < 0.0001 

      D(1) > F(0.25) > H(1)     

5r
2f

 

1366.7 6  < 0.0001 
P(0) > E(0.5) = I(1.5) = 

D(1) > -0.218  < 0.0001 
      G(0.5) > F(0.25) = H(1)     

5e
2 17625 7  < 0.0001 

Q(0) > P(0) > R(0) > 
I(1.5) > -0.648  < 0.0001 

      
E(0.5) = G(0.5) > F(0.25) 

> H (1)     

5e
2f

 

6870.6 6  < 0.0001 
P(0) = Q(0) > I(1.5) > 

E(0.5) > -0.368  < 0.0001 
      G(0.5) > H(1) > F(0.25)     

 
 
Table J22. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image 6r10. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

6r
10

 

E 63 0.8928 <0.0001 26, 13, 8, 4, 2 
F 64 0.876 <0.0001 36, 17.5, 11, 8, 5 
G 62 0.9503 <0.0001 45, 28, 16.5, 9, 2 
H 60 0.7889 <0.0001 43, 12.5, 5.5, 3, 0 
I 63 0.8498 <0.0001 30, 12, 6, 4, 1 
J 62 0.7932 <0.0001 46, 14, 7, 4, 1 
K 64 0.9561 =0.0231 50, 37, 25, 13.5, 4 
L 63 0.972* =0.1606 73, 66, 62, 56, 48 
M 65 0.9805* =0.394 65, 48, 42, 30, 16 
N 62 0.8284 <0.0001 46, 18, 7, 4, 0 

(P) 64 0.9662* =0.0765 61, 57, 55, 52, 45 
(Q) 64 0.964* =0.0586 74, 66.5, 62, 56, 49 
(R ) 64 0.9427 =0.0051 69, 55, 52.5, 49, 43 
(S) 64 0.8545 <0.0001 61, 57.5, 54.5, 41.5, 28 
(T) 64 0.9414 =0.0044 79, 73, 70, 68.5, 55 
(U) 64 0.8561 <0.0001 83, 77, 73, 68.5, 44, 
(V) 62 0.9341 =0.0025 78, 70, 61, 57, 51 
(W) 62 0.9612* =0.0671 71, 65, 61, 57, 50 
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Table J23. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image series 6r10f. “*” denotes a normal distribution. 

Unit ID n S-W W P Five Number Summaries 

6r
10

f 

E 63 0.2242 <0.0001 10, 0, 0, 0, 0 
F 64 0.3452 <0.0001 4, 0, 0, 0, 0 
G 62 0.6255 <0.0001 30, 5, 0, 0, 0 
H 60 0.4828 <0.0001 42, 0, 0, 0, 0 
I 63 0.2561 <0.0001 21, 0, 0, 0, 0 
J 62 0.2214 <0.0001 8, 0, 0, 0, 0 
K 64 0.8087 <0.0001 35, 16, 3, 0, 0 
L 63 0.9655* =0.0742 83, 72, 66, 53, 37 
M 65 0.9572 =0.0246 74, 42, 32, 15, 0 
N 62 0.3725 <0.0001 26, 0, 0, 0, 0 

(P) 64 0.9744* =0.2052 63, 57, 51.5, 47.5, 34 
(Q) 64 0.9611 =0.0418 87, 75, 66.5, 55, 45 
(R ) 64 0.9442 =0.006 76, 54.5, 50, 43.5, 35 
(S) 64 0.8344 <0.0001 63, 57, 52.5, 32.5, 5 
(T) 64 0.9777* =0.2995 95, 84.5, 81, 78, 71 
(U) 64 0.8554 <0.0001 102, 92, 87.5, 80.5, 36 
(V) 62 0.9368 =0.0032 99, 82, 68.5, 57, 44 
(W) 62 0.9792* =0.3725 84, 72, 64, 58, 46 
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Table J24. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image series 6e10. 

Unit ID n S-W W P Five Number Summaries 

6e
10

 

E 253 0.6664 <0.0001 30, 5, 2, 1, 0 
F 252 0.7193 <0.0001 64, 22.5, 4, 2, 0 
G 255 0.8458 <0.0001 54, 23, 8, 2, 0 
H 252 0.6754 <0.0001 53, 15.5, 2, 1, 0 
I 253 0.5538 <0.0001 38, 3, 1, 1, 0 
J 252 0.5831 <0.0001 31, 3, 1, 1, 0 
K 252 0.9209 <0.0001 54, 25, 15, 4, 0 
L 251 0.96 <0.0001 75, 67, 62, 54, 42 
M 251 0.9793 =0.001 74, 48, 36, 22, 1 
N 251 0.5602 <0.0001 48, 4, 2, 1, 0 

(P) 252 0.98 =0.0013 67, 57, 52, 50, 41 
(Q) 252 0.9545 <0.0001 81, 69, 62, 55, 48 
(R ) 252 0.9482 <0.0001 74, 55, 51, 48, 40 
(S) 252 0.8901 <0.0001 62, 55, 37, 32, 19 
(T) 252 0.9549 <0.0001 85, 77, 75, 71, 60 
(U) 252 0.8067 <0.0001 88, 81, 77, 74, 37 
(W) 252 0.9565 <0.0001 73, 67, 62, 57, 41 
(Y) 253 0.98 =0.0013 75, 69, 65, 63, 57 
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Table J25. Shapiro-Wilks normality testing and five number summaries for samples 
extracted from image series 6e10f. 

Unit ID n S-W W P Five Number Summaries 

6e
10

f 

E 253 0.0557 <0.0001 9, 0, 0, 0, 0 
F 252 0.5026 <0.0001 71, 0, 0, 0, 0 
G 255 0.4289 <0.0001 38, 0, 0, 0, 0 
H 252 0.1881 <0.0001 37, 0, 0, 0, 0 
I 253 \ \ 0, 0, 0, 0, 0 
J 252 0.0738 <0.0001 8, 0, 0, 0, 0 
K 252 0.6188 <0.0001 49, 7.5, 0, 0, 0 
L 251 0.9686 <0.0001 90, 73, 64, 51, 29 
M 251 0.8759 <0.0001 78, 42, 18, 0, 0 
N 251 0.3304 <0.0001 55, 0, 0, 0, 0 

(P) 252 0.9797 =0.0011 73, 56, 48, 44, 28 
(Q) 252 0.9415 <0.0001 95, 77, 61.5, 52, 43 
(R ) 252 0.9307 <0.0001 91, 56, 48, 41, 27 
(T) 252 0.7776 <0.0001 102, 90, 85, 79, 28 
(U) 252 0.8616 <0.0001 111, 94, 88.5, 76.5, 20 
(W) 252 0.9701 <0.0001 86, 72, 63, 54, 29 
(Y) 253 0.9601 <0.0001 83, 75, 71, 64, 47 
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Table J26. Results of Kruskall-Wallis testing, SNK multiple range test on ranked data 
(α=0.05), and Spearman’s ranked correlation on image series 6_10. 

K-W H DF P SNK Grouping rs P 

6r
10

 

967.23 17 <0.0001 T(0) = U(0) > V(0) = Q(0) = W(0) -0.811 <0.0001
      = L(0.25) > P(0) = R(0) = S(0) >     

      
M(0.5) > K(0.5) > G(0.5) = 

F(0.25) >     

      
N(1) = J(1) = E(0.5) = I(1.5) = 

H(1)     

6r
10

f 

995.7 17 <0.0001 U(0) = T(0) > V(0) > Q(0) = W(0) -0.806 <0.0001
      = L(0.25) > P(0) = R(0) = S(0) >     
      M(0.5) > K(0.5) > G(0.5) = H(1) =     

      
N(1) = I(1.5) = F(0.25) = E(0.5 = 

J(1)     

6e
10

 

3790.4 17 <0.0001 U(0) = T(0) > Y(0) > Q(0) = W(0) -0.799 <0.0001
      = L(0.25) > P(0) = R(0) > S(0) >     

      
M(0.5) > K(0.5) = F(0.25) = 

G(0.5) >     

      
H(1) > N(1) = E(0.5) = I(1.5) = 

J(1)     

6e
10

f 3665.7 16 <0.0001 
T(0) = U(0) > Y(0) > Q(0) = 

L(0.25) = -0.821 <0.0001
      W(0) > R(0) = P(0) > M(0.5) >     
      K(0.5) = F(0.25) > G(0.5) = N(1)     
      > H(1) = J(1) = E(0.5) = I(1.5)     
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APPENDIX K 
 
 
CLASSIFIED IMAGE OUTPUTS. ALL SUPERVISED (SUP) AND OBJECT-ORIENTED 
(OO) CLASSIFICATIONS FOR SERIES 1_23, AS WELL AS IMAGES 6r11 AND 4r25, 
ARE PRESENTED IN CHAPTER 4 OF THE TEXT AND ARE NOT INCLUDED IN THIS 
APPENDIX 
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Figure K1. Object-oriented output of image 6r11f. 
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Figure K2. Supervised output of image 6r11f. 
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Figure K3. Object-oriented output of image 6e11. 
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Figure K4. Supervised output of image 6e11. 
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Figure K5. Object-oriented output of image 6e11f. 
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Figure K6. Supervised output of image 6e11f. 
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Figure K7. Object-oriented output of image 4r25f. 
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Figure K8. Supervised output of image 4r25f. 
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Figure K9. Object-oriented output of image 4e25. 
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Figure K10. Supervised output of image 4e25. 
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Figure K11. Object-oriented output of image 4e25f. 
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Figure K12. Supervised output of image 4e25f. 
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APPENDIX L 
 
 
ACCURACY ASSESSMENTS FOR CLASSIFICATIONS. ALL SUPERVISED (SUP) 
AND OBJECT-ORIENTED (OO) CLASSIFICATION ACCURACY ASSESSMENTS FOR 
SERIES 1_23, AS WELL AS IMAGES 6r11 AND 4r25, ARE PRESENTED IN 
CHAPTER 4 OF THE TEXT AND ARE NOT INCLUDED IN THIS APPENDIX 
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Table L1. Accuracy assessment for object-oriented classification of image 6r11f. 
Class Classified Number Producer User Conditional 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 2023 2023 100.00% 100.00% 1 
1.0 meter unit 720 720 100.00% 100.00% 1 
0.5 meter unit 887 887 100.00% 100.00% 1 
0.25 meter unit 295 295 100.00% 100.00% 1 
Control 7232 7232 100.00% 100.00% 1 
Trees 1674 1674 100.00% 100.00% 1 
Ditch 21037 21037 100.00% 100.00% 1 
Total 33868 33868       
Overall 
Accuracy 100.00% 
Overall Kappa 1.00 

 
Table L2. Accuracy assessment for the supervised classification output for image 6r11f. 

Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit, etc. 24 25 23 95.83% 92.00% 0.872 
Control 39 39 37 94.87% 94.87% 0.8687 
Readout 1 0 0 0.00% \ 0 
Total 64 64 60       
Overall Accuracy    
93.75% 
Overall Kappa         
0.8704 
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Table L3. Accuracy assessment for object-oriented classification of image 6e11. 
Class Classified Number Producer User Conditional 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 7774 7774 100.00% 100.00% 1 
1.0 meter unit 3092 3092 100.00% 100.00% 1 
0.5 meter unit 3348 3348 100.00% 100.00% 1 
0.25 meter unit 4035 4035 100.00% 100.00% 1 
Control 30994 33094 100.00% 100.00% 1 
Trees 9081 9081 100.00% 100.00% 1 
Ditch 130714 130714 100.00% 100.00% 1 
Total           
Overall 
Accuracy 100.00% 
Overall Kappa 1.00 

 
Table L4. Accuracy assessment for the supervised classification output for image 6e11. 

Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit, etc. 19 16 13 68.42% 81.25% 0.7333 
Control 45 48 42 93.33% 87.50% 0.5789 
Readout 0 0 0 \ \ 0 
Total 64 64 55       
Overall Accuracy    
85.94% 
Overall Kappa         
0.6471 
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Table L5. Accuracy assessment for object-oriented classification of image 6e11f. 
Class Classified Number Producer User Conditional 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 6846 6846 100.00% 100.00% 1 
1.0 meter unit 3069 3069 100.00% 100.00% 1 
0.5 meter unit 5140 5140 100.00% 100.00% 1 
0.25 meter unit 4359 4359 100.00% 100.00% 1 
Control 32331 32331 100.00% 100.00% 1 
Trees 4520 4520 100.00% 100.00% 1 
Ditch 19072 19072 100.00% 100.00% 1 
Total 75337 75337       
Overall 
Accuracy 100.00% 
Overall Kappa 1.00 

 
Table L6. Accuracy assessment for the supervised classification output for image 6e11f. 

Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

Unit, etc. 18 19 18 100.00% 94.74% 0.9268 
Control 44 44 43 97.73% 97.73% 0.9273 
Readout 2 1 1 50.00% 100.00% 1 
Total 64 64 62       
Overall Accuracy    
96.88% 
Overall Kappa         
0.9295 
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Table L7. Accuracy assessment for object-oriented classification of image 4r25f. 
Class Classified Number Producer User Conditional 
Name Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 104 104 100.00% 100.00% 1 
1.0 meter unit 92 92 100.00% 100.00% 1 
0.5 meter unit 264 264 100.00% 100.00% 1 
0.25 meter unit 182 182 100.00% 100.00% 1 
Old Units 74 74 100.00% 100.00% 1 
Control 8688 8688 100.00% 100.00% 1 
Trees 331 331 100.00% 100.00% 1 
Ditch 1167 1167 100.00% 100.00% 1 
Total 10902 10902       
Overall 
Accuracy 100.00% 
Overall Kappa 1.00 

 
Table L8. Accuracy assessment for the supervised classification output for image 4r25f. 

Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

Units 2 20 2 100.00% 10.00% 0.071 
Trees 3 8 3 100.00% 37.50% 0.3443 
Ditch 14 1 1 7.14% 100.00% 1 
Control 44 35 33 75.00% 94.29% 0.8171 
Readout 1 0 0 \ \ 0 
Total 64 64 39       
Overall Accuracy    
60.94% 
Overall Kappa         
0.3543 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



166 
 

Table L9. Accuracy assessment for object-oriented classification of image 4e25. 
Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 491 491 491 100.00% 100.00% 1 
1.0 meter unit 792 792 792 100.00% 100.00% 1 
0.5 meter unit 737 737 737 100.00% 100.00% 1 
0.25 meter unit 724 724 724 100.00% 100.00% 1 
Old Units 370 370 370 100.00% 100.00% 1 
Control 28639 29940 28639 95.65% 100.00% 0.8346 
Trees 2065 2065 2065 100.00% 100.00% 1 
Ditch 5031 3730 3730 100.00% 100.00% 1 
Total 38849 38849 37548       
Overall 
Accuracy 95.65% 
Overall Kappa 0.9194 

 
Table L10. Accuracy assessment for the supervised classification output for image 
4e25. 

Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

Units 7 20 4 57.14% 20.00% 0.1018 
Trees 10 9 5 50.00% 55.56% 0.4733 
Ditch 10 1 1 10.00% 100.00% 1 
Control 37 34 30 81.08% 88.24% 0.7211 
Readout 0 0 0 \ \ 0 
Total 64 64 40       
Overall Accuracy    
62.50% 
Overall Kappa         
0.4088 
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Table L11. Accuracy assessment for object-oriented classification of image 4e25f. 
Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

1.5 meter units 1074 1074 1074 100.00% 100.00% 1 
1.0 meter unit 871 871 871 100.00% 100.00% 1 
0.5 meter unit 603 603 603 100.00% 100.00% 1 
0.25 meter unit 753 753 753 100.00% 100.00% 1 
Old Units 616 616 616 100.00% 100.00% 1 
Control 20716 20019 20019 100.00% 96.64% 1 
Trees 1268 1268 1268 100.00% 100.00% 1 
Ditch 2059 6745 2059 30.53% 100.00% 0.2574 
Unclassified   (3898)         
Total             
Overall 
Accuracy 85.33% 
Overall Kappa 0.7451 

 
Table L12. Accuracy assessment for the supervised classification output for image 
4e25f. 

Class Reference Classified Number Producer User Conditional
Name Totals Totals Correct Accuracy Accuracy Kappa 

Units 1 21 0 0.00% 0.00% -0.0159 
Trees 5 7 2 40.00% 28.57% 0.2252 
Ditch 10 2 2 20.00% 100.00% 1 
Control 48 33 32 67.67% 96.97% 0.8788 
Readout 0 1 0 \   0 
Total 64 64 36       
Overall Accuracy    
56.25% 
Overall Kappa         
0.2644 
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