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Due to the accelerated growth in digital music distribution, it becomes easy to 

modify, intercept, and distribute material illegally. To overcome the urgent need for 

copyright protection against piracy, several audio watermarking schemes have been 

proposed and implemented. These digital audio watermarking schemes have the purpose 

of embedding inaudible information within the host file to cover copyright and 

authentication issues. 

This thesis proposes an audio watermarking model using MATLAB® and 

Simulink® software for 1K and 2K fast Fourier transform (FFT) lengths. The watermark 

insertion process is performed in the frequency domain to guarantee the imperceptibility 

of the watermark to the human auditory system. Additionally, the proposed audio 

watermarking model was implemented in a Cyclone® II FPGA device from Altera® 

using the Altera® DSP Builder tool and MATLAB/Simulink® software. To evaluate the 

performance of the proposed audio watermarking scheme, effectiveness and fidelity 

performance tests were conducted for the proposed software and hardware-in-the-loop 

based audio watermarking model. 
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CHAPTER 1 

INTRODUCTION 

 

The growth in distribution of digital audio (in the form of files in compressed or 

uncompressed format) has resulted in a corresponding rise in the need for copyright 

protection of digital audio. Cryptographic schemes (which include encryption and 

decryption) are one approach to content protection, but do not completely solve the 

problem because once the encrypted digital audio is decrypted it can be easily copied and 

distributed [1]. Cryptography hides the contents from the unauthorized users by encrypts 

the content. In the process of audio encryption, a private key is hidden which can be 

accessed only by an individual who has purchased it. The private key is then used as a 

decryption key during viewing of the content. 

Another approach, steganography, protects the file using a non-attracting or 

harmless message as mentioned in [1] and [2]. The main purpose of steganography is to 

conceal the fact of communication. At the sender's end the message is inserted into a 

carrier which can only be sensed and extracted at the intended receiving end [3]. 

To overcome this deficiency, digital watermarking techniques have been used to 

serve the purposes of proof of ownership, data authentication, and copyright protection. 

Watermarking satisfies the requirement of robustness which is not met by stenography. 

Two main attributes of a watermark are imperceptibility and inseparability. In general, a 
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more effective digital rights management (DRM) scheme needs both encryption and 

watermarking [1] and [4]. 

Since watermarking and steganography belong to the same hiding information 

category, it might be confusing to differentiate the goal of both methods. However their 

conditions are quite different. In watermarking the medium or "external" data is more 

important than the encrypted message [1].  

For instance, a music track in audio watermarking is the important element and 

the watermarked data is just additional information to protect the intellectual property by 

proving the ownership. On the other hand, steganography can use the same medium or 

external data as a carrier for the main message due to the fact that the most important 

information is the encrypted data. Another difference between these techniques is that 

steganography has the purpose of making the message imperceptible to an unauthorized 

person and it is no longer needed once the message has been decrypted. In contrast, the 

watermarking technique has the intention of sharing the hidden information any time it is 

needed and is permanently encrypted in the host medium [1]. 

 

1.1. Motivation 

Many watermarking schemes have been developed or re-designed to improve the 

watermarking system performance. Even though the current literature is rich in increasing 

number of published papers cover watermarking, most of them are related to video or 

image watermarking [1] and [5]. The amount of published documents and available 

material in libraries for audio watermarking schemes is still lacking. However, there is an 
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urgent need for audio watermarking due to explosive growth of online sale of the digital 

audio [4] and [6]. 

Additionally, the implementation of some digital signal processing (DSP) 

applications in a field-programmable gate array (FPGA) devices can generate high 

efficiency and low-cost DSP systems [7]. This is achieved due easy availability of the 

FPGA hardware architecture which can be customized as per the need. As a result, this 

flexible feature has increased the need for implementing many DSP systems in FPGAs. 

Now-a-days, there is a wide variety of FPGA family devices making the use of FPGAs 

accessible to many research and development entities such as laboratories, and 

universities. 

Another advantage of using FPGA technologies in different research areas is that 

unlike the traditional hardware design flow, some powerful DSP tools such as the 

Altera® DSP builder [8] tool make the FPGA hardware implementation user friendly and 

faster than ever before. The design flow for FPGAs can be software-based flow or 

software and hardware combined flow [7]. For instance, the DSP Builder tool allows the 

designer to create complex DSP systems with reduced hardware description language 

(HDL) knowledge. MATLAB/Simlink® [9] computer programming language also has 

facility to program the FPGAs [7] and [10]. 

Based on these observations, this thesis aims to develop an audio watermarking 

system using algorithm development software like MATLAB® and Simulink® to 

implement the DSP system design in an Altera® Cyclone II FPGA device [8]. The audio 

watermarking process produces suitable performance results in terms of effectiveness and 
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imperceptibility. The audio watermarking algorithm is based on manipulation of direct 

current (DC) component of the audio in the discrete cosine transform (DCT) domain. 

 

1.2. Digital Audio Watermarking 

Sharing electronic files on internet has grown extremely fast over the last decade 

due to large volume of the mobile phones. These files include diverse forms of 

multimedia such as, music, video, text documents, and images. However, digital files can 

be easily copied, distributed, and altered leading to copyright infringement of intellectual 

property. For instance, many people download and compress music from the internet, 

creating exact copies of the original data. It is this ease of reproducing that causes 

copyright violations and unauthorized distribution. In order to combat theft and 

unauthorized distribution, many cryptographic algorithms have been implemented [1] and 

[4]. However, encryption techniques are unable to solve this problem completely. The 

reason is that once the encrypted information has been removed, there is no other data 

that proves the owner‟s authenticity. For that reason, composers and distributors are more 

focused on implementing digital watermarking techniques to protect their material 

against illegal copying and distribution as mentioned in [1]. Digital audio watermarking 

is a sub-category of watermarking techniques that attempts to protect intellectual property 

by embedding watermark data into the audio file and recovering that information without 

affecting the audio quality of the original data. Another aspect that audio watermarking 

techniques have to consider is that the encrypted information should not add noise or 

include additional sounds to the host audio file. 
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1.2.1. Characteristics of Audio Watermarking 

An ideal audio watermark is one that possesses imperceptibility, robustness, and 

data rate properties according to [11]. However, many audio watermarking schemes are 

somehow restricted with regard to these properties due to the application [1]. In the 

following sections, a brief description of each property is discussed as well as additional 

properties. 

Imperceptibility: The human ears can perceive frequencies that are in the range of 

20Hz to 20 KHz. The frequencies that are located below and above this hearing 

bandwidth are called infra-sounds and ultra-sounds, respectively. Watermark data that is 

not detectable the human auditory system has to be located in neither the audible region 

nor have high level signal in the audible region. In addition, an imperceptible watermark 

should not also alter the quality of the original file [1] and [12]. This characteristic can be 

achieved by certain digital processes on the watermark signal. In other words, a 

watermark signal is imperceptible when both the original and the watermarked signal are 

very similar. 

Robustness: This property is present when a watermark signal is detected after 

various changes or attacks on the host signal as mentioned in [1] and [11]. The most 

common attacks include: compression, amplification, re-sampling, noise addition, and 

volume adjustment. Most of the music software editors available to the general public 

include these, and extra editing tools. This ease of easily altering audio files is increasing, 

enforcing the watermark designers to develop more sophisticated watermarking 

techniques. However, it is important that not all watermarking applications should 
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attempt to defeat all signal processing attacks. Essentially, there are two aspects that 

robust watermark systems deal with according to [1] and [13]. These aspects are the 

presence and detection of the watermarked signal after it has undergone any kind of 

signal processing attack. In the case where the watermarked signal has not been detected 

during the detection process, then the attack has successfully achieved its target. Despite 

many efforts, none of them has been able to protect watermarked signals from all hostile 

attacks. Actually, it might be impossible to achieve such an ideal technique [1]. The 

reason is that a very effective watermarking system implies an extremely high cost of 

development and production. The fact is that the cost of a watermarking system depends 

mostly in the application the system has been designed for. As an example, a 

watermarking system that has outstanding robustness features will introduce several 

distortion problems during the watermarking insertion process.  

Data rate: This property indicates the number of bits per second that can be 

embedded in a watermark signal [1]. A watermark has 2N different messages, where N is 

the number of bits the watermark encodes. In other words, there are 2N different 

watermarks to be detected and to be inserted. Some watermarking detectors might be able 

to detect only one watermark signal for a 3-bit watermark. A one-bit watermark is very 

common and is used in this work. This watermark contains an array of two different 

values, which indicate whether or not the watermark signal is present. 

Redundancy: This term refers to the multiple locations the watermark signal is 

embedded in a host audio signal as mentioned in [1]. This property is mainly used to 
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guarantee robustness in the watermark system. However, care has to be taken to ensure 

quality host audio and robustness of the watermarking scheme. 

Multiple watermarks: The aim of this property is the ability to embed more than 

one watermark signal into a file [1]. This property must preserve a watermark signal that 

has been embedded previously even under different watermarking algorithms. 

Secret keys: This property is essential for security issues as described in [1] and 

[4]. Secret keys are included in many watermarking systems to protect the watermark 

information from undesirable alterations or even removal. The use of this key permits the 

watermark to be undetectable and even decoded in case the watermark has been detected 

by the user. There are two kinds of secret keys: unrestricted-keys and restricted-keys. 

Unrestricted-keys are those in which the same key is known and used in different 

watermarks, whereas restricted-keys are used only in a specific watermark. 

Computational cost: As previously discussed, the cost of the watermarking system 

implementation depends on its application. Effectiveness and time are the main issues 

related to this property [1] and [4]. On the other hand, an expensive but real-time 

insertion and extraction watermark processing is required for broadcast monitoring. A 

cheaper but effective watermark system is necessary for many day to day applications. 

 

1.2.2. Applications of Audio Watermarking 

Presently, there are several audio watermarking applications; the properties of 

each depend on the specific function. For instance, even though copyright notices are 

included in original works, these can be removed and published without the owner‟s 
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consent. Hence, watermarking systems provide a solution for this issue. The most 

common audio watermarking applications are discussed in the following sections.  

Broadcast monitoring: Both musicians and advertisers are concerned if their work 

is broadcast. Several techniques have been implemented to ensure broadcasting 

verification. Some of them are ineffective because they are expensive and non-

automated. Watermarking systems deal with these and other issues to prove owner‟s 

authentication. One way an audio watermarking system works in this field is by 

monitoring and computing the air time of the broadcast signal by embedding an identifier 

into it [1]. The advantage of this technique is that the system is compatible with the 

broadcast equipment of the station. However, this technique is more complex than the 

common ones and degrades the quality of the broadcast signal.  

Copyright protection: This is the most important watermark application. To 

protect an original work from unauthorized publication, a creator needs a technique that 

proves rightful ownership. Watermarking systems are used to solve this matter by 

inserting copyright information into the audio file [1] and [11]. Robustness of audio 

watermarking systems is necessary for this application to make the watermark signal 

neither detectable nor separable from the original audio file.  

 Proof of ownership: Most of the creators need to copyright their original work; 

however, this might be costly in some scenarios. Unlike pictures and videos, audio files 

face more problems since is difficult to demonstrate visually the copyright notices [1] and 

[11]. Moreover, audio files lack tangible evidence when proving ownership in court. 

Hence, watermarking systems provide a solution to both identify and proof ownership. 
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Data authentication: The aim of this application is to detect any modifications of 

the original file [1]. For this application it is necessary to use a watermark whose 

robustness is not high.  Therefore, fragile watermarks are commonly used for this 

application. During the authentication process the watermarked data is compared with an 

embedded signature. If the watermark and signature are equal, then the data is authentic; 

otherwise, the data has been altered. During the encryption process, it is crucial that the 

watermark must not alter the original file. 

 

1.2.3. Types of Audio Watermarking 

Robust watermarks: These watermarks have the capability to preserve the 

watermark data after various attacks [1]. In other words, the watermark has to be present 

and detected in the audio file after several signal processing attacks. To accomplish this, 

it is necessary to analyze and obtain important features of the original audio to embed the 

watermark using a secure key, which makes the watermark undetectable and unalterable 

[4] and [14]. For that reason, this type of watermark is mainly used for copyright 

protection to prove ownership since most attacks have the main intention of altering or 

even destroying the watermark. 

Fragile watermarks: These types of watermarks are able to detect whether or not a 

watermark has been modified [1] and [15]. A watermark is considered intact if the 

watermark has undergone none or slight changes during the insertion and extraction 

process. To achieve this, low-robustness watermarks are embedded within the host audio. 
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This type of watermarking is implemented in many applications, mainly for 

authentication purposes.  

Perceptible watermarks: Unlike most of the watermarks already mentioned, 

perceptible watermarks have the aim to explicitly identify the owner‟s work as mentioned 

in [1] and [15]. Logos are a good perceptible watermark example since they are visible. 

An audio example occurs when inserting an audible signal on the original audio to avoid 

copying [16]. In other words, perceptible watermarks have the intention of claiming 

ownership immediately by making the watermark detectable for either the human 

auditory or visual system.  

Fingerprinting: The applications for this kind of watermarks have specific 

purposes [1]. In this type of watermarking, the watermark contains unique information to 

identify the creator or receiver. For this special application, the watermark data has to 

poses robustness. 

 

1.3. Audio Watermarking Algorithms 

There are several watermarking techniques focused on audio applications. The 

main difference among them depends on the purpose they were created for. In addition, a 

challenge that audio watermarking systems face is the fact that the human auditory 

system (HAS) has a wide dynamic range and it is also sensitive to noise [1]. Therefore, 

audio watermarking systems are concentrated on inserting the watermark in such a 

manner that the watermark is undetectable. In order to accomplish this, various 
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algorithms have been proposed and implemented, consisting of the two crucial processes 

shown in Figure 1 [1] and [17].   

 

 

Figure 1. Watermarking processes 

 

In Figure 1, the watermark insertion process refers to the methodology and 

content of the watermark data to be embedded. As mentioned, the encrypted watermark 

signal differs not only on the technique but also in the application. On the other hand, the 

extraction process, as the name states, is concentrated in detecting and extracting the 

watermark signal from the host audio file. The purposes of the extraction might vary for 

the application, but mainly it is used to prove ownership and copyright protection. 

Despite having a wide dynamic range, the HAS possesses some other positive 

features on which watermarking systems focus. For instance, the HAS has a very 

imperceptible thin range, so quiet sounds are imperceptible for average human ears [1]. 

In fact, this phenomenon, called masking, is widely used in many watermarking 

techniques, where quiet sounds are masked by loud sounds.  

Watermarking  
algorithm

Watermark 
insertion

Watermark 
extraction
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Figure 2 shows the most popular watermarking algorithms based on [1] and [18]. 

These four algorithms possess some of the properties described on the previous section. 

Moreover, the goal of the following watermark algorithms should be to contain the 

imperceptibility, robustness, and data rate properties. However, it is impossible to have 

such ideal watermarking techniques. For instance, if a watermark system has very high 

property such as robustness, it might have weakness on the other two properties.  

  

 

Figure 2. Watermarking technologies 

 

1.3.1. Phase Encoding 

With phase encoding, the watermark is accomplished by substituting the phase of 

the original audio signal A with one of two reference phases, each one encoding a bit of 

information, i.e. the watermark data W is represented by a phase shift in the phase of A 

[1] and [18]. This technique is possible because the human auditory system is less 

sensitive to the phase components of sound than to noise components. 

Watermarking 
Technology

Low Bit Coding

Phase Encoding

Spread Spectrum 
Watermarking

Echo Hiding  
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1.3.2. Spread Spectrum Watermarking 

Spread spectrum techniques embed a narrow-band signal (the watermark) into a 

wide-band channel (the audio file) according to [1], [18], and [19]. The process can 

protect watermark privacy by using a secret key to control a pseudorandom sequence 

generator [1]. Pseudorandom numbers are binary numbers that have specific statistical 

properties such as correlations which can be used for watermark detection purpose. 

 

1.3.3. Echo Hiding Watermarking 

Echo watermarking embeds information by adding a repeated version (echo) of a 

component of the audio signal with an imperceptible delay [1] and [18]. As the offset 

between the original and the echo decreases, the two signals blend to the point where the 

human ear cannot distinguish between them. The echo is perceived as added resonance 

which in some cases can create a richer sound. 

 

1.3.4. Low Bit Coding 

Low bit coding embeds a watermark by replacing the low bit, or least significant 

bit, of each sampling point with a coded binary string corresponding to the watermark [1] 

and [18]. Low bit coding is the simplest way to embed data into digital audio and can be 

applied in all ranges of transmission rates with digital communication modes. However, 

manipulation can destroy the encoded information. 



14 
 

CHAPTER 2 

AUDIO WATERMARKING IMPLEMENTATION 

 

The purpose of direct current (DC)watermarking is to hide the watermark data in 

the lower frequency or DC component of the audio file. The reason of hiding the 

watermark in this position is that the lower frequency is always below the perceptual 

threshold, making it imperceptible for the human auditory system. In addition this 

technique offers a clear overview of most audio watermarking technologies. Moreover, 

some authors state that many watermarking designers have paid no attention to the DC 

area even though it provides very outstanding features when a correct technique is 

applied. One of these features is the good balance between robustness and fidelity 

properties in watermarking systems.  

Since DC watermarking is the watermark algorithm this project is based on, a 

more detailed explanation of its insertion and extraction processes is provided in the 

following sections.  

 

2.1. DC Watermarking Insertion Process 

The DC watermarking insertion process is defined by the four processes shown in 

Figure 3 [20]. For this particular case, the watermark is embedded into a wave format file 

(.wav). To do so, the host audio file is framed based on a proposed frame size. 

Subsequently, it is analyzed in the frequency domain and processed.  
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Then, the DC component is removed, so the watermark can replace it. Finally, the 

watermark signal is embedded into the host audio file. Each process is now briefly 

described in the rest of the section. 

 

 

Figure 3. DC watermarking insertion process 

 

2.1.1. Framing 

In this process, the host audio file is sectioned in different frames by a 

predetermined constant frame size value. This frame size is determined so that it satisfies 

the following prerequisites, which will provide important parameters such as the number 

of frames and the sample rate: 

Original Signal

Framing

Power Spectral Analysis
(FFT)

DC / zero frequency 
component removal

Watermark Data Addition

Watrmarked 
Signal



16 
 

 Avoid introducing perceptible distortion: after embedding the watermark, the 

watermarked signal should be equal to the original data. Therefore, the 

watermark should not add any audible distortion into the host audio file. 

 The power of two criterions: in order to evaluate the Discrete Fourier Transform 

faster and more efficiently, the number of samples should be a power of two. 

 

2.1.2. Power Spectral Analysis 

After the framing process, each frame of the host signal is analyzed to obtain the 

lowest frequency or DC component [20]. To do so, the original audio signal has to be 

transformed from the time domain to the frequency domain. In other words, a spectral 

analysis is performed by a fast Fourier transform (FFT) analysis. Using the FFT is very 

helpful for acquiring robustness and imperceptibility in the watermark system. The 

following Equation (1) defines the FFT of each frame: 

 

           
              

   
            k=1, 2,…N                

 

Where N is the number of frames, F(k) is the FFT of the k-th frame and f(n) is the 

original time domain signal. 

Furthermore, the overall power of each frame is obtained from the Fast Fourier 

Transform analysis. By implementing the following Equation (2), the power spectral 

density is determined. Additionally, this equation also provides the amplitude of the 

watermark signal in each frame.  
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Figure 4 illustrates a spectral power analysis example of the first four frames of a sample 

host audio file. 

 

 

Figure 4. Spectral power analysis 



18 
 

2.1.3. DC Component Removal 

In this process, the DC component or lowest frequency of each frame is explicitly 

removed. This process is achieved by following the next Equation (3), where F(1) is the 

lowest frequency and was obtained by the previous analysis. 

 

                                                  

 

   

                              

It is important to mention that any modification on the signal at this specific frequency (0 

Hz) is completely inaudible to the human auditory system. 

 

2.1.4. Watermark Addition 

The main purpose of this process is to include the watermark signal into the 

lowest frequency component instead of the previously discarded DC component. This can 

be achieved by the following expression, which is a function of three variables. The first 

one is the spectral power on every frame and is used to define the watermark amplitude. 

Another variable is the scaling factor (Ks), which mainly scales the watermark in such a 

way that is inaudible to the average human ears. Finally, the variable w(n), the watermark 

signal, is included. This particular watermark signal is a sequence binary numbers.  

 

                            

           

   

                           

Where: N = number of frames 
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Ks = scaling factor 

w (n) = watermark signal data. 

 

After this process has been done, the insertion has been concluded. Now the 

watermarked signal is ready to be tested by extracting it and verifying that the watermark 

has undergone no alterations. However, slight alterations can be acceptable in some 

cases, concluding that the watermark signal extracted is identical to the inserted one.  

 

2.2. DC Watermarking Extraction Process 

This process is fairly similar to the insertion process; however, the objective is 

now to extract the watermark data from the audio watermarked file. To accomplish this, 

the watermarked signal is portioned uniformly into frames. Therefore, each frame is 

processed in the frequency domain and the watermark is finally extracted. Figure 5 shows 

the three main processes [20], which will be briefly described. 
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Figure 5. DC watermarking extraction process 

 

2.2.1. Framing 

The watermarked signal is portioned into same-size frames. In fact, this size has 

to be identical to the frames size used during the insertion process.  

 

2.2.2. Power Spectral Analysis 

Once the host signal has been completely sectioned into frames, a spectral 

analysis is executed using the fast Fourier transform. The aim of this process is to 

determine the following parameters on each frame: 

 The lowest frequency component 

 The power spectral density 
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2.2.3. Watermark Extraction 

Based on the two obtained variables, the watermark signal can be extracted 

according to the criteria of the following formula: 

 

      
           
           

                                

Where: W(i) = extracted watermark signal 

N = number of frames 

 

Since the watermark signal is a series of binary numbers, a threshold of 0.5 is 

used since this value is the midpoint between the 1 and 0 values. 

Comparing with the inserted watermark signal, the extracted watermark should be 

identical or slightly different to conclude that the DC watermark technique has been 

successfully implemented.  

 

2.3. DC Watermarking Limitations 

As mentioned, it is impossible to have an ideal watermark system that possesses 

imperceptibility, robustness, and data rate properties at the same level [1]. The DC 

watermarking technique is not an exception due to mainly two limitations concerning 

robustness and data density.  

For the first limitation, the embedded watermark data can be either intentionally 

or accidentally altered under several attacks. Common signal processing attacks are 
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compression, noise addition, and re-sampling; most of these modify both the host audio 

signal and the watermark signal. A method to resolve this issue is by the mentioned 

redundancy property. By applying redundancy the watermark is inserted in several 

locations in the host audio file to guarantee robustness. To obtain satisfactory results, the 

audio file should be as long as possible to embed the watermark several times. Finally, 

the data density limitation can be overcome by implementing a more complex watermark 

algorithm, such as phase encoding, or echo hiding. 
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CHAPTER 3 

MATLAB/SIMULINK® DC WATERMARKING SYSTEM 

 

A complete direct current (DC) watermarking system is described in this chapter. 

This model is MATLAB/Simulink®-based programming language [9] and performs both 

the DC watermark insertion and extraction processes mentioned in Chapter 2. The aim of 

this system is to have a baseline DC watermarking model able to obtain suitable results 

and to be implemented in a field-programmable gate array (FPGA) chip, as a result. 

The advantage of using Simulink® is that sophisticated signal processing systems 

can be defined and simulated to analyze the behavior of the system [21]. The Signal 

Processing Blockset® software tool [9] is one of the special tools that Simulink® 

provides to create signal processing models like the DC watermarking system presented 

in this chapter. This blockset includes a compilation of blocks that perform a wide variety 

of operations such as filtering, transforms, and math functions. 

 

3.1. General System Description 

The MATLAB/Simulink® model can be divided by two crucial processes, the DC 

watermarking insertion and the extraction process. This model has several configuration 

parameters that must be considered to obtain accurate resulting simulations. For example, 

both models were simulated using the fixed-step discrete MATLAB® solver which is 

suitable for discrete states and can provide precise results for small fixed step sizes.
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Additionally, to optimize the model in terms of speed during signal processing 

execution, the signal can be processed as frame-based M by N matrix input. For this 

model, a 2048 sample per output frame simulation was set due to the requirement for the 

FFT length to be a power of two. The following table shows the configuration parameters 

for the MATLAB/Simulink® model: 

 

Table 1. MATLAB/Simulink® configuration parameters model 

Sample Time 22.67 µsec 
Frame size 2048 samples 
Fixed step size 0.0464 sec 

 

Three audio flies were simulated in the complete DC watermarking system. The 

extension for these three files was wave or wav file, which is an uncompressed audio file. 

This audio file format is encoded using the linear pulse code modulation (LPCM) and has 

the following parameters for all the files used: 

 

Table 2. Audio files parameters 

Resolution 16 bits (signed) 
Frequency 44100 Hz 
Number of Channels 2 

 

Even though the audio files have two channels (stereophonic), the watermark 

signal was embedded in the left channel since the audio tracks used had exactly the same 

information in both channels, as shown in Figure 6. This is due to fact that the audio files 
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proposed were recorded using an electric guitar, where the output is monophonic or 

single channel. However the recording settings were in stereo since most of the 

distributed audio files have two channels.  

 

 

Figure 6. Original waveform of track 1 in stereo 

 

Figure 7 represents the DC watermarking block diagram for the insertion process 

using Simulink®. In this model, the host signal is a stereophonic audio file in which the 

watermark signal is embedded in both channels. To do so, the signal is divided into left 

and right channels. Therefore, the watermark addition and DC removal are performed in 

each channel and finally the two channels are combined back together. Due to several 

limiting reasons, such as long simulation time and memory usage when implementing the 

algorithm in an FPGA board, the DC watermark insertion process was implemented only 

in one channel. In the proposed DC watermarking system, the watermark insertion is 



26 
 

performed on the left channel; however, adding the watermark signal only on the right 

channel can be also executed by simply varying a parameter. 

 

 

Figure 7. Simulink® DC watermarking model for a stereophonic audio file 

 

3.2. Ks-Factor Calculation model 

Prior to the DC watermarking insertion process, the Simulink® Ks-factor 

calculation model (Figure 8) is executed to determine the value of the scaling factor Ks. 

The reason of calculating the value Ks is to ensure that the watermark is embedded below 

the audibility threshold by scaling the watermark signal. For a frame-based M by 1 

matrix input, the Ks factor is calculated by the Equation (6).  

                                                          

Where yj  denotes the root-mean-square (RMS) value of each frame of the audio signal as 

presented in Equation (7): 
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Where M = size of each frame 

 N = number of frames 

Based on the previous expressions, the Simulink® model shown in Figure 8 

computes the Ks factor value for a frame-based 2048 by 1 vector input in the following 

steps: 

1. Read the host audio file, generating a 2048 by 2 output matrix. 

2. Extract the left channel to obtain a 2048 by 1 vector. 

3. Compute the fast Fourier transform (FFT), ordering the output elements in bit-

reversed order for safe extra data sorting manipulation. 

4. Remove the DC component by overwriting the first element of each vector 

with 0.  

5. Compute the root mean square (RMS) value of each frame. 

6. Obtain the maximum RMS value and multiply the result by 0.1 as expressed 

in Equation (6). 

7. Create an output variable called “Ks_factor”. 

 

 

Figure 8. Ks-factor Simulink® model 
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3.3. Watermark Insertion Model 

Once the Ks factor of the host audio file has been calculated, the DC watermark 

insertion process described in the previous chapter can be performed. Figure 9 represents 

the basic DC watermarking block diagram for this process, which was implemented in 

Simulink®. Figure 9 shows that the fast Fourier transform has to be computed in order to 

perform the power spectral density analysis and watermark addition stages in the 

frequency domain. The inverse fast Fourier transform maps the embedded watermark 

signal in the time domain, creating the watermarked signal output. As a result, the 

performance of the DC watermarking model can be tested by verifying whether or not the 

watermark signal is imperceptible to the human auditory system. 

 

 

Figure 9. Basic DC watermarking insertion model block diagram 
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Based on the previous block diagram, the Simulink® model in Figure 10 shows 

the functions involved in the DC watermark insertion process. Similar to the Ks-factor 

model in the Figure 8, the host audio file is read and divided to extract the left channel. 

However, the output data type is double-precision floating point since the power 

spectrum density (PSD) Analysis block has a function that only accepts this type of 

values. Next, the Fast Fourier transform is computed by the FFT block, generating a 

frame-based 2048 by 1 complex vector. This vector and the binary watermark signal are 

processed in the PSD Analysis block, where a scaled watermark signal is generated. 

Next, the output signal from the PSD Analysis block is placed in the DC component or 

first element of each frame in the DC removal block. Finally, the inverse fast Fourier 

transform block generates a watermarked signal data called “final_water” to the 

MATLAB® workspace to be analyzed in the DC watermark extraction model. This 

signal outputs a P by 1 array, where P is the total number of samples of the host audio 

file. 

 

Figure 10. Simulink® DC watermark insertion model 
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It is important to mention that the watermark signal is a series of binary random 

numbers generated by the Watermark Signal block in the Figure 10. This block generates 

a binary double output data type sequence every frame period. Therefore, it is required to 

make a rate conversion in order to maintain the same frame size during the simulation. 

This can be accomplished by setting the Watermark Signal block sample time as 

described in the Equation (8) : 

                      

 

Where, Tf corresponds to the frame period, Ts to the sample period, and M is the frame 

size of the host audio signal. 

The generated binary watermark signal is also saved in the MATLAB® 

workspace in order to be compared with the watermarked signal during the DC 

Watermark Extraction model. 

 

3.3.1. Power Spectral Density Analysis 

The power spectral density analysis subsystem, shown in Figure 10, contains the 

functions that appear in Figure 11. This subsystem performs the scaling of the binary 

watermark signal by multiplying the three variables expressed in Equation (9). 
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Where, P corresponds to the Power spectral density of each frame, Ks the scaling factor, 

w the binary watermark signal, W the scaled watermark signal, and N is the number of 

frames. 

To obtain the scaled watermark signal W, the Simulink® model in Figure 11 reads 

the frame-based complex vector from the FFT block to estimate the frame power spectral 

density in the periodogram block followed by the Mean block. With the combination of 

these two blocks, the frame average power is calculated and multiplied by the binary 

watermark signal. In the last step, the resulting output is scaled by the Ks factor, 

generating the scaled watermark signal to be encrypted. 

 

 

Figure 11. Watermark insertion Simulink® model 

 

3.3.2. Watermark Addition 

This process is performed by the DC Removal block shown in the Figure 10. The 

frame DC component or X[0] element is replaced by the scaled watermark signal W 

defined in the Equation ( 9). So the X[0] element on each frame is defined as follows: 
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As mentioned, the watermark embedding process is performed in the frequency 

domain; thus, the use of an inverse FFT block will provide the watermarked signal in the 

time domain. As a result, the watermarked signal A’ can be expressed as      

   here A is the original audio signal and W corresponds to the scaled watermark 

signal. At the end of this process, the watermarked signal is ready to be tested and 

extracted. 

 

3.4. Watermark Extraction System Description 

Once the watermark is embedded, the DC watermark insertion model creates a 

variable called „final water‟ that represents the watermarked signal A’. This signal is 

analyzed in the second model of the complete Simulink® DC watermark system, which 

performs the watermark extraction process. The watermark extraction model is described 

in the following diagram: 
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Figure 12. Watermark extraction block diagram 

 

Figure 12 can be analyzed into two main process, the watermark detection and 

verification processes. The goal of the first process is to indicate the presence or the 

absence of the encrypted watermark signal based on the formula in Equation (5). 

Additionally, the verification process aims to provide the total number of bit error 

detection by comparing the embedded watermark signal W with the extracted 

watermarked signal   . In the following two sections, a more detailed description of these 

two processes is provided. 
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3.4.1. Watermark Detection Model 

In this process, a similar method used in the DC watermark insertion process is 

performed in the watermark detection model (see Figure 13). The watermarked signal is 

read, extracting the left channel of the watermarked audio file A’. This is because the 

watermark signal W was embedded in the left channel. After that, the FFT block is 

performed to analyze the watermarked signal A’ in the frequency domain, where the DC 

component is extracted. The extracted DC component is an M x 1 vector whose values 

correspond to Equation (10) since the watermark signal W is equal to the extracted 

watermark signal   . 

 

 

Figure 13. Watermark detection Simulink® model 

 

As described in Equation (5), the DC component or X[0] element of each frame is 

compared to a fixed value, generating an extracted binary watermark signal    variable. 

This is because the extraction criteria generates a variable           . Ideally, this 

variable has to be equal to the embedded binary watermark signal w; however, there are 

some other factors, like noise, that might alter the information in the embedded 
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watermark signal W. The following watermark verification model is implemented in the 

DC Watermark extraction process to confirm that the extracted signal    is equal to the 

original watermark signal w. 

 

3.4.2. Watermark Verification Model 

The Simulink® watermark verification model, as shown in Figure 14, is a 

complement of the DC Watermark extraction process since it determines whether or not 

the DC watermark insertion model meets the insertion and extraction requirements. The 

methodology to verify that assumption is to compare the extracted watermark signal     

with the original watermark signal w. The comparison process will generate an M by 1 

error vector , where              and M is the total number of frames of the audio 

signal. 

The error variable can be expressed as: 

 

          
               

           
                            

 

As shown in Equation (11), the error variable assigns the value 1 when the two compared 

watermark signals are different; otherwise, a zero is assigned. Another measurement error 

variable is the B_error variable that sums the number of errors detected by the error 

variable.  
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Then, the B_error variable is expressed as: 

 

                  

 

   

                                  

 

 

Figure 14 - Simulink® watermark verification model 

 

Additionally, the Simulink® model in Figure 14 can also provide more 

information about the DC Watermark Simulink® model performance. Such information 

is the bit-error rate (BER) that aims to measure the success of the recovery process and 

the robustness of the DC Watermarking scheme, as a result. 

 

3.5. Performance and Discussion 

In this section, the performance of the DC audio watermarking scheme is tested 

and analyzed using the proposed MATLAB/Simulink® model described in this chapter. 

To analyze the performance of the model, the fidelity or imperceptibility and 

effectiveness properties were evaluated. Three audio files were used to evaluate the 
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performance of the Simulink® DC watermark model. Table 3 lists three characteristics of 

the audio files, namely the number of frames and Ks factor value for each track. It is 

important to mention that the fixed frame value size under the performance tests were 

executed correspond to 2048. Thus, the fixed step size of the simulations was 0.0464 

seconds.  

 

Table 3. Audio files specifications used in the performance test evaluation 

 Duration Num_frames Ks factor 

Track_1 36.548 787 1.265 
Track_2 39.985 862 1.57 
Track_3 48.576 1046 1.121 

 

Each track was first processed by the DC watermark insertion model, where the 

watermark signal is embedded. Then, the resulting watermarked signal is evaluated by 

the DC watermark extraction model, extracting and comparing the watermark signal    

with the original watermark signal w to testify the functionality of the DC watermarking 

scheme model. Finally, the experimental results were plotted in a Simulink® model in 

order to have visual evidence of the complete DC watermark model performance. 

In the following sections, the graphical and analytical experimental results are 

discussed for the previously mentioned audio files. Additionally, improvements in the 

DC watermarking model are mentioned, achieving better performance results in the 

simulations. 
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3.5.1. Host Audio Signal and Watermarked Signal Comparison 

After performing the Simulink® DC watermark model simulation test, a 

Simulink® model plotted the experimental results. This useful feature provides a visual 

and clear understanding of the model‟s performance. In Figure 15, the resulting 

simulation waveforms for Track 1 are displayed. Listed from top to bottom, the original 

audio file A (subplot A), the watermarked audio file A’(subplot B), the difference 

between A and A’ (subplot C), and the error-variable (subplot D) waveforms are 

displayed. 

 

 

Figure 15. Track1 DC watermarking resulting simulation waveforms 
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As we can see in Figure 15, it appears that there is a slight difference between the 

original waveform A and the watermarked waveform A’. However, the subplot C 

provides a more evident comparison between them since it is the actual difference 

between the original waveform A and the watermarked waveform A’. In addition, the 

bottom subplot or subplot D indicates the moment when a discrepancy occurs in the 

watermark extraction process. In other words, it indicates the resulting values of the error 

variable Equation (11), which compares the extracted watermark signal     with the 

original watermark signal w.  

 

 

Figure 16. Track2 DC watermarking resulting simulation waveforms 
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Figure 17. Track3 DC watermarking resulting simulation waveforms 

 

Figures 16  and 17 display the resulting simulation waveforms for Tracks 2 and 3, 

repectively. Conmparing the three plots, we can see that Tracks 1 and 2 present 

prolonged peaks in some regions indicated in their respective subplot C. On the other 

hand, Track 3 seems to present more incorect extracted bits than the other tracks. 

In order to provide more quantitative information than graphical model 

performance representations, we can interpret the resulting values using mathematical 

equations to measure the impact that the DC watermarking scheme has on the host audio 

signal. As mentioned in the Chapter 2, the fidelity property refers to the similarity 

between the host audio signal and the watermarked signal. In other words, the 

watermarked signal should maintain the sound quality of the original audio signal. The 

fidelity performance evaluation can be measured using objective and subjective 
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degradations [19]. The subjective degradation refers to the perceptual test or listening 

test, where trained listeners grade the quality of the watermarked signal based on an 

impairment scale according to [1], [19], and [22]. On the other hand, the objective 

degradation measures the quality of the watermarked signal quantitatively. Using 

statistical metrics, the objective degradation can be determined. 

To measure the resulting degradation of the DC watermarking scheme, three 

common objective degradation metrics were used [1]. These metrics are the Maximum 

Difference (MD), Average Absolute Difference (AD), and Mean Square Error (MSE), 

which are defined as follows: 

 

                                              

   
 

 
             

 

   

                          

    
 

 
              

 

   

                      

 

Where, A corresponds to the original audio signal, A’ to the watermarked signal, and N 

the nth sample of the watermarked signal A. 

A MATLAB® code computes the MD, AD, and MSE formulas using the original 

audio signal A and the watermarked signal A’ from the Simulink® DC watermarking 

model simulations as inputs. The results are listed in Table 4 for the three proposed audio 
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files. In addition, it also includes the number of bit errors obtained during the watermark 

verification model (Figure 14) defined by the Bit_error variable  Equation (12). 

 

Table 4. Common effectiveness and objective degradation metrics 

 Num_error MD AD MSE 

Track_1 34 0.1442 0.0156 7.56e-4 
Track_2 42 0.1044 0.0151 5.70e-4 
Track_3 60 0.047 0.0127 2.65e-4 

 

From Table 4, the assumptions obtained from the three DC Watermarking 

resulting simulation waveforms are confirmed (see Figures 15, 16, and 17). In terms of 

watermark system effectiveness, the Watermark extraction model (Figure 12) was unable 

to recover the complete watermark signal. As listed in Table 4 and displayed in Figure 

17, Track 3 shows more bit errors detected than the other tracks. However in relation to 

fidelity, the same Track 3 has less degradation than the rest.  

Even though the results shown in Table 4 seem to be acceptable, these results 

provide a quantitative metric of the impact or difference between the watermarked and 

the original signals and do not reflect the exact perceived noise [1] and [19]. Therefore, 

informal subjective degradation tests or listening tests were performed. As a result, 

whereas the watermarked Tracks 1 and 2 include perceptible and annoying noise, Track 3 

poses slightly annoying noise. This conclusion can be visually confirmed by analyzing 

Figures 15, 16, and 17, where the tracks 1 and 2 have prolonged peaks in some portions 

in their respective subplots C. 
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3.5.2. Bit Error Rate and SNR Analysis 

In addition to the MD, AD, and MSE formulas (Equations 13, 14, and 15) to 

measure the fidelity of the DC watermark model, the signal-to-noise ratio (SNR) or 

signal-to-watermark ratio (SWR) was implemented. This difference distortion metric is 

the most representative metric in terms of embedding watermark distortion used in the 

audio watermarking literature [1], [4], [19], and [22]. The SNR is defined as follows: 

 

            

      
 

   

             
  

   

                     

 

Where, A corresponds to original audio signal, A’ to the watermarked signal, and N is the 

total number of samples of the watermark signal A. The SNR is measured in decibels 

(dB) using the above expression. 

For the watermark recovery performance, another frequent effectiveness metric 

applied in the audio watermarking literature is the Bit-Error Rate (BER) [1], [4], [19], 

and [22]. The BER determines the percent number of incorrect extracted bits by 

comparing the embedded watermark signal w with the extracted watermark signal   , and 

it is given by the following expression: 
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Where,          is the embedded watermark signal,    corresponds to the extracted 

watermark signal, and N the length of the embedded watermark w. The BER is also used 

to measure the robustness of the audio watermark after experiencing any signal 

processing attack. 

A MATLAB based code was executed to compute the SNR variable, whereas the 

BER values were obtained using the B_error variable (Equation 12) from the Watermark 

Verification Model and divided by the number of samples of the same set of audio tracks 

listed in Table 3. The resulting simulation values are mentioned in Table 5. While Track 

3 poses less embedded distortion than the other tracks, it contains more incorrect 

extracted watermark bits than the rest. 

 

Table 5. Experimental BER and SNR values 

 BER [%] SNR [dB] 

Track_1 4.32 33.44 
Track_2 4.87 36.89 
Track_3 5.73 42.50 

 

In order to improve the fidelity and effectiveness performances of the DC 

watermark model, a deeper SNR and BER analysis was performed. The goal of the first 

experimental test was to find the impact or correlation between the Ks factor and the 
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SNR variable. The value of Ks factor is closely related to the noise the embedded 

watermark signal can add into the host audio file. A MATLAB®-based program was 

executed, where the SNR was computed for 100 different Ks factor values as shown in 

the following expression, Equation (18). Based on the embedded watermark Equation (9) 

and Equation (18), there will be 100 different watermark signals W for each Ks factor 

value. 

  

                                                  

 

Figures 18 and 19 represent the relationship between SNR and the Ks factor for 

Tracks 1 and 2, respectively. From these figures, it can be concluded that as the Ks factor 

increases, the signal-to-noise ratio SNR decreases. Thus, the embedded watermark signal 

will add noise into the host signal as Ks increases. 
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Figure 18. Track 1 SNR vs Ks factor plot 

 

Figure 19. Track 2 SNR vs Ks factor plot 
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Next, the second experimental test was to obtain the correlation between the Ks 

factor and the BER variable in order to determine how the Ks factor affects both the SNR 

and BER variables. Another MATLAB®-based program computed the BER for the 100 

Ks factor values. To do so, the MATLAB® program performed the DC watermarking 

insertion and extraction process for each Ks factor value. Figure 20 and Figure 21 

represent the resulting simulation plots of the relation between the Ks factor and BER for 

tracks 1 and 2. 

 

 

Figure 20. Track 1 Ks factor vs. BER plot 
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Figure 21. Track 2 Ks factor vs. BER plot 
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Figure 22 provides the experimental results for this test, where the top subplot 

shows the resulting BER values for different Ks factor values and the second subplot 

displays the number of ones in the binary watermark signal w. 

 

`  

Figure 22. BER for different Ks factor and watermark signals plot 

 

From Figure 22, it is clear that for different Ks factor and binary watermark signal 

w values, the range of the resulting BER values is approximately between 3.5%  and 6%. 
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3.5.3. Watermark System Improvement 

Based on the conclusions from the experimental tests presented in the previous 

section, it can be concluded that the resulting BER values are independent of the 

embedded watermark signal. We now should focus on the DC watermark detection 

model since the BER evaluates the watermark recovery performance. The only variable 

that can be modified in this process is the value defined in Equation 5. However, after 

altering some possible values, the embedded watermark signal was never 100% 

recovered. 

Finally, the embedded watermark signal w was fully recovered by dividing the 

butterfly output by 2 in the FFT block of the watermark detection model (Figure 13). This 

modification divides the resulting FFT values by N, which is the length of the frame. 

Figure 23 shows the Track1 DC Watermarking simulation waveforms.  

 

 

Figure 23. Track1 DC watermarking simulation waveforms for 2K-FFT 
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From the previous figure, it is notable that the embedded watermark signal w is 

totally recovered since the resulting error variable value is zero. Thus, the BER value is 

also zero. The same statement can be applied for the other two tracks, where the BER 

was also zero. Even though the BER variable was successfully minimized into the ideal 

value, the resulting SNR values for the proposed tracks remain unaltered. This can be 

visually proved by comparing the watermark difference section or subplot C between 

Figure 15 and Figure 23. 

 

3.6. 1K-FFT-Length MATLAB/Simulink® DC Watermarking Model 

A second DC watermarking model using Simulink® was developed, with a FFT 

length value of 1024. This means that a 1K samples per frame simulation was executed, 

so the fixed step time value has changed to 0.0232 seconds. The DC watermarking 

insertion and extraction algorithms shown in Figure 9 and Figure 12 were implemented 

with the new 1024 frame size variation. In addition, the same set of tracks used in the 

previous DC Watermarking performance tests were utilized for this alternative 

Simulink® model. The advantage of designing and simulating a second DC 

Watermarking model is that more experimental results can offer a better overview of the 

proposed audio watermarking scheme. The parameters and simulation results are 

provided for this second DC watermarking model are provided in the following section. 
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3.6.1. System Parameters 

As mentioned, the new proposed Simulink® DC watermarking model has a frame 

size of 1024 samples per frame since the FFT length must be a power of two in order to 

obtain accurate FFT resulting values in the simulations. Based on this condition, the first 

proposed value corresponded to the result of 2n where n has a value of 11, whereas the 

second frame size value is the resulting value when n is equal to 10. In Table 6, the 

second configuration parameters are shown for a 1024 frame size simulation. 

 

Table 6. MATLAB/Simulink® configuration parameters for 1K Frame Size 

Sample Time 22.67 µsec 
Frame size 1024 samples 
Fixed step size 0.0232 sec 

 

Table 6 provides the number of frames and Ks factor values for the same set of 

tracks. Each Ks factor was also computed following the algorithm and Simulink® model 

described in the Ks-factor calculation model section.  

 

Table 7. Audio files specifications for 1K 

 Num_frames Ks factor 

Track_1 1573 1.055 
Track_2 1759 1.222 
Track_3 2091 0.985 
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3.6.2. Experimental Results and Discussion 

In accordance with the same methodology as described in section 3.5.1, the 

simulation waveforms for each track were obtained by a Simulink® model. The 

advantage of using this feature for a second model is that a visual comparison between 

the models can lead to the selection of a better model based on the resulting simulation 

waveforms. 

 

 

Figure 24. Track1 DC watermarking resulting simulation waveforms for 1K frame size 
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Figure 25. Track2 DC watermarking resulting simulation waveforms for 1K frame size 

 

 

Figure 26. Track3 DC watermarking resulting simulation waveforms for 1K frame size 
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Comparing the three previous simulation waveforms with their respective 2K 

frame-size waveforms, several conclusions are reached. First, the Track 1 simulation 

waveform in Figure 24 appears to have better performance since prolonged peaks are 

present only in the 2K frame-size simulation waveform. In contrast, the Track 2 

simulation waveform shown in Figure 25 has considerably more noise in subplot C than 

in the one showed in the Figure 11. Finally, both Track 3 simulation waveforms look 

quite similar.  

As mentioned before, these conclusions are merely visual, so the use of 

mathematical expressions provides a quantitative representation of the DC watermarking 

performance models. Table 8 lists the resulting effectiveness and the objective 

degradation values for the 1K frame-size Simulink® DC watermarking model.  

 

Table 8. Effectiveness and objective degradation metrics results 

 BER[%] MD AD MSE 
SNR 

[dB] 

Track_1 0 0.1383 0.0152 5.327e-4 36.944 
Track_2 0 0.1658 0.0202 0.0011 30.1975 
Track_3 0 0.0667 0.0124 2.552e-4 42.911 

 

Again, by comparing the listed results in the table above with the values on 

Tables 4 and 5, the assumption that the Track 1 has a better performance is valid based on 

the SNR values. However, this is not quite true for the SNR values shown in Table 8 for 

Tracks 2 and 3. Moreover, it is important to mention that the Track 2 MSE value in the 
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same table is almost two times more than the resulting MSE value on Table 4. Looking at 

Figure 25, the resulting simulations show noise in many regions.  

Additionally, an informal subjective degradation test was performed for this 

second Simulink® DC watermarking model. The listening test results indicate that Track 

1 has a better fidelity performance even though Track 3 has the biggest SNR value.   This 

confirms that the actual perceptual noise is not always represented by the resulting SNR 

value.
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CHAPTER 4 

DSP BUILDER AND MATLAB/SIMULINK® MODEL IMPLEMENTATION 

 

The purpose of this chapter is to present the implementation of the watermark 

insertion models described in Chapter 3 using an Altera® Cyclone II [8] device. The 

main reason of implementing the watermark insertion model in a field-programmable 

gate array (FPGA) chip is that superior signal processing performance can be achieved 

[7] and [23]. In order to achieve this goal, different models were designed, simulated, 

implemented, and compared with the existing MATLAB/Simulink® [9] programming 

language watermarking model. The coverage of the FPGA device implementation of 

audio watermarking is discussed in three sections. The first section introduces the FPGA 

and digital signal processing (DSP) builder features and system level design flow using 

DSP builder in the watermark model. In the next two sections, two software-hardware 

models are described as well as performance and comparison tests results. 

 

4.1. Hardware Implementation 

In addition to the already mentioned reasons of implementing the audio 

watermarking model on a field-programmable gate array FPGA device, most of the 

digital signal processing applications require specific DSP processors to satisfy system 

requirements. However, DSP processors have fixed hardware architecture, making the 

hardware implementation inefficient in terms of performance and cost. 
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As an alternative solution for this problem, the use of FPGAs can provide better 

system performance and lower costs in most DSP applications [7]. This is achieved due 

to the fact that the FPGA‟s hardware architecture can be reconfigurable, offering 

customized DSP applications. In other words, the designers can develop a complete 

system using an FPGA with customized architecture, bus structure, memory, and 

hardware accelerator blocks. This advantage makes FPGAs more suitable for many DSP 

applications such as the direct current (DC) audio watermarking system described in this 

project.  

An Altera® Cyclone II FPGA device was utilized to implement the DC audio 

watermarking system. Moreover, Altera® offers a powerful DSP design tool named 

MegaCore® [8] functions. This DSP tool covers many critical functions such as filters, 

transforms, and signal generation functions, which are used in most DSP designs. The 

benefit of using MegaCore® functions is that DSP systems can reach efficient hardware 

configurations since they can be parameterized [6] and [7]. The use of the fast Fourier 

transform (FFT) MegaCore® function was implemented in this project because the fast 

Fourier transform is essential to the proposed DC audio watermarking scheme. 

MegaCore® functions can be implemented in a hardware description language (HDL) 

like VHDL. However, Altera® also provides a powerful tool called DSP Builder, where 

the hardware implementation is represented in an algorithm development environment. 

For this project, the proposed DC audio Watermarking scheme was implemented using 

Simulink® and the DSP Builder tool in order to implement the watermarking model in an 

FPGA device.  
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4.1.1. FPGA and DSP Builder Features 

In the previous section, the advantages of implementing a DSP system in an 

FPGA device over specialized DSP processors were mentioned. The most important 

advantage is the flexibility of customizing the hardware architecture in the FPGA rather 

than implement the DSP system in a fixed hardware architecture processor. In order to 

satisfy this feature, FPGA architecture includes several embedded components which are 

able to fit any DSP system to the FPGA device following the designer‟s hardware 

specification. The Altera® Cyclone II FPGA device used in this project has the following 

features [7]: 

 Embedded memory 

 Embedded DSP blocks 

 External memory interfaces 

 Embedded multipliers 

 Advanced I/0 standard support 

 Global clock network 

 Logic elements & logic array blocks 

All these elements are configurable in order to satisfy the DSP system 

functionality. For instance, the embedded DSP and memory blocks are widely used to 

parameterize and program the MegaCore® functions such as the FFT and finite impulse  

response (FIR) blocks. There are several ways to configure these DSP functions that 

Altera® offers to the designer. One method can be using a HDL language like VHDL in 

the Quartus II® [8] design software form Altera®. However, the designer must have a 
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broad HDL language knowledge to effectively utilize this approach and it can become 

fairly complicated when designing complex DSP systems. An alternative configuring 

DSP function solution provided by Altera® is the use of the DSP Builder tool. This 

powerful tool can configure and program any MegaCore® function in an algorithm 

development software such as MATLAB® and Simulink® [7]. As a result, any DSP 

function like the FFT MegaCore® function can be configured and built in the 

MATLAB®/Simulink® environment using the Altera® DSP Builder tool. Some of the 

most important DSP Builder features are [10] and [24]: 

 MATLAB® and Simulink® software compatibility with the Quartus II® 

software 

 Combining existing MATLAB® and/or Simulink® programs with the 

Altera® DSP Builder tool 

 Automated Quartus II® compilation process for DSP designs in 

Simulink® 

 FPGA hardware co-simulation with Hardware in the Loop (HIL) using 

Simulink® 

 MegaCore® function instantiation feature 

 Importing VHDL or Verilog HDL files into Simulink® 

The combination of these DSP Builder features makes any DSP model 

implementation in an FPGA device possible with minimal HDL knowledge from the 

designer. For example, when implementing the DC audio watermarking in an FPGA 

device, it was necessary to import a VHDL file for the FFT MegaCore® controller. 
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4.1.2. FFT MegaCore® Function Description 

This DSP function performs the FFT function with very high performance. This 

MegaCore® function is parameterized and generated using the DSP Builder tool, 

improving the DSP model in terms of performance, flexibility, time and memory 

consumption. The FFT MegaCore® function is completely compatible in most of the 

Altera® FPGA device families like the used Cyclone® II FPGA device. The designer can 

implement this DSP function to perform both the FFT and inverse FFT functions using a 

block-floating-point (BFP) architecture to guarantee the total input data width during the 

FFT calculation values process [25]. Additionally, this architecture also provides a better 

SNR performance when implementing the DSP in a FPGA chip. 

Like all MegaCore® functions, the FFT function is parameterized in order to 

obtain high FPGA implementation performance. This block has two engine architectures 

that define the number of parallel engines which can optimize either the time or size of 

the transform. Additionally, it has streaming, burst and buffered burst options to define 

the I/O data flow during the transform. The main difference among these operational 

options is the resulting latency in the FFT process.  

For this project, the streaming data flow option was implemented where the FFT 

function control signals are generated by a custom built controller. To allow the correct 

data transfer in the FFT function, the sink_valid and sink_ready signals are asserted as 

shown in Figure 27. Then, the controller sends the start of packet (SOP) and end of 

packet (EOP) signals, indicating the start and end of the FFT frame respectively. Next, 

the FFT function block computes the incoming values and asserts the source_valid signal 
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indicating available output data. In the same way, the FFT block outputs the source_SOP 

and end source_EOP signals to specify the start and end of the output FFT frame, as 

shown in Figure 27. 

 

 

Figure 27. FFT function streaming data flow 

 

Analyzing Figure 27, it is notable that there is latency of almost two input frames 

to perform the Fourier transform. During each FFT calculation value stage, the input is 

scaled in order to provide high precision in the resulting values.  
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Then, the FFT output can be expressed as [25]: 

 

                                        

Where FFTouput is the real or imaginary output value and exp corresponds to the number 

of shifts registered during the Fourier transform to enhance the precision.  

 

During the FPGA implementation, the two proposed DC watermarking models 

described in Chapter 3 were simulated and downloaded in the Cyclone® II FPGA device. 

To achieve this goal, the FFT MegaCore® function was parameterized as shown in Table 

9 for the 2K and 1K FFT transform length models. 

 

Table 9. FFT parameterized values 

Parameters 

Transform Length 2048 or 1024 
Data Precision 16 bits 
Twiddle Precision 16 bits 

Architecture 

FFT engine Architecture Quad Output 
Number of Parallel FFT Engines 2 
I/O Data Flow  Streaming 

Implementation Options 

Structure 3 Mults/ 5 Adders 
Implement Multipliers in DSP Blocks/Logic Cells 
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Based on the FFT MegaCore® function parameterized values shown above, the 

FFT implementation produced the resource usage values shown in Table 10 for the 

Cyclone II® device in the two DC audio watermarking models. 

Table 10. FFT resource usage for Cyclone II® device 

Resource Usage 
2K-FFT 

Length 

1K-FFT 

Length 

LEs 7395 5303 
Memory bits 327680 172032 
M4K RAM Blocks 80 42 
DSP Block 9-bit elements 36 18 
Transform Calculation Cycles 2048 1024 
Block Throughput Cycles 2048 1024 

 

From the table above, we can notice that the FFT resource usage for the 2K-FFT 

length model is almost two times more than the 1K-FFT length model. Both models 

produced clear performance differences that are described in the following sections. 

 

4.1.3. System-Level Design Flow 

When implementing a DSP system in an FPGA chip, it is very common to use an 

HDL language like VHDL or Verilog. However, the use of Altera® DSP Builder makes 

the design flow completely software-based. Figure 28 shows the design flow used for the 

DSP Builder and MATLAB/Simulink® model implementation. 
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Figure 28 DC audio watermarking design flow [7] and [24] 

 

The system-level design flow shown in Figure 28 makes the DSP system 

hardware implementation simplified and user-friendly since the designer can implement a 

specific DSP model using a complete software-based design flow. Based on this design 

flow, the DSP model was designed using MATLAB® and Simulink®. Next, by 

implementing the Altera® DSP blocks, such as the FFT MegaCore® function and 

counters, the final model can be synthesized to generate the VHDL files. These files are 

automatically generated within Simulink® by the Signal compiler, where a Quartus® II 

project for the resulting model is also created. From this point, a Simulink® model 

simulation can be executed to analyze the behavior of the DSP system in the FPGA 

device. Additionally, the model can be also implemented in an FPGA device using the 

hardware-in-the-loop (HIL) co-simulation. 
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4.2. FFT Function Hardware-in-the-Loop Implementation  

To implement the DC audio watermarking model in the Cyclone® II FPGA 

device, a DSP Builder-MATLAB/Simulink® model for the 2K and 1K FFT length 

models were tested. Figure 29 corresponds to the FFT Function Hardware-in-the-Loop 

block diagram implemented for each model.  

 

 

Figure 29. FFT function HIL block diagram 

 

For this model, a VHDL controller was designed in order to control the data flow 

on the FFT MegaCore® function. A MATLAB® code was computed to read the original 

audio signal A and the same controller provides the incoming input signal to the FFT 

block. Both the controller and the FFT function blocks are implemented in the mentioned 

FPGA device. Since the FFT block has a block-floating-point architecture, where the 

output is expressed by Equation 19, we need to scale up the input signal prior to the FFT 
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process and scale the output back by the kn factor as expressed in Equation 20 Otherwise, 

a loss of precision in the FFT process would occur. 

    
 
       

    
 
                 

 

Where                 and y is the mth sample of the original audio signal A. 

Therefore, the resulting output value for the FFT block is as follow: 

 

                 
     

  
              

 

Now, the output from the Scaling Algorithm is the actual FFT value of the host 

signal A. This signal is processed in the Simulink® model shown in Figure 30 where the 

power spectrum density (PSD) analysis and watermarking addition processes are 

performed in accordance to the DC audio watermarking scheme. 

 

 

Figure 30. PSD analysis and watermark addition Simulink® model 
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4.2.1. MATLAB/Simulink and DSP Builder Model Description 

Figure 31 displays the actual FFT Function model using MATLAB/Simulink® 

and DSP Builder functions. As mentioned, the controller manages the control FFT block 

and input audio block signals to guarantee the correct data flow and FFT performance. 

For this model, it was necessary to obtain the total number of frames for the host audio 

file to indicate when the last input frame occurs. Therefore, the controller stops sending 

real values to the FFT block. The resulting total number of frames was computed by a 

MATLAB® code which depends on the frame size. In this case, the 1K and 2K frame 

sizes were implemented. 

 

 

Figure 31. MATLAB/Simulink® and DSP Builder model 

 

After compiling the Simulink® model, a VHDL file is created by the Signal 

compiler block. As a result, this model can be also simulated using the Quartus® II 
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software. This software can provide the register transfer level (RTL) diagram of the 

resulting VHDL code as shown in Figure 32. 

 

Figure 32. The 1K-FFT length model RTL view 

 

Since the main difference between the two simulated models was the FFT length, 

the resulting RTL diagrams are quite similar. In this diagram, the actual instantiated 

VHDL components are shown. 

 

4.2.2. Controller Design and Performance  

The design of an appropriate FFT block controller leads to accurate and functional 

results. Therefore, it is important to know and understand the description of each FFT 

control signal. To ensure the correct data transfer during the FFT process the controller 

asserts the SOP and EOP signals to let the FFT block know that incoming data is 
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available. The period for the SOP and EOP depends of the parameterized frame size or 

transform length.  

Figure 33 shows a brief example of the controller performance. In this example, 

five input frames with a sample time of 1/44100 seconds are simulated in Simulink®.  

From the same figure, it can be noted that the input signal is sent to the FFT block as long 

as the valid control signal is asserted. However, this control signal depends on the 

specified total number of frames obtained by a MATLAB® code. 

 

 

Figure 33. The controller performance simulation 

 

The controller is completely developed using the Quartus® II software since is 

VHDL code. Subsequently, the file is compiled and imported to Simulink® as a new 

DSP block. The clock used in the controller is the Simulink® sample time clock. Once 
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the controller is compiled, we can obtain the RTL view of the resulting VHDL file as 

shown in Figure 34. 

 

 

Figure 34. The RTL view of the controller 

 

From Figure 34, we can see the Altera® primitives‟ library components, such as 

logic gates, operators and registers. This diagram represents the actual embedded 

components utilized by the controller in the implemented Cyclone® II FPGA device. 

 

4.2.3. FFT HIL Model Resource Usage  

Table 11 lists the MATLAB/Simulink® and DSP Builder model resource usage 

shown in Figure 31. The table contains the definite embedded elements implemented in 

the FPGA chip with their respective total number of elements for some FPGA features. In 

the same way, Figure 35 shows the resource usage percentage plot for some elements 

such as combinational functions and logic registers [10] and [24]. 
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Table 11. 2K-FFT HIL model resource usage 

Total logic elements 7.783/33.216 
Total combinational functions 6.368/33.216 
Dedicated logic registers 6.785/33.216 
Total registers 6785 
Total memory bits 311.793/483.840 
Embedded Multiplier 9-bit elements 36/70 
Total PLLs 0/4 

 

 

Figure 35. The 2K-FFT HIL model resource usage percentage plot 

 

From Figure 35, it can be concluded that the 2K-FFT HIL model consumes 64% 

of the available memory bits for the Cyclone® II FPGA device. Most of this 

consumption is due to the FFT function block. However, after simulating the final model, 

very acceptable outcomes were obtained from this particular model. 
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Similarly, Table 12 lists the resource usage for the 1K-FFT HIL model with its 

respective percentage plot (see Figure 36). 

 

Table 12. 1K-FFT HIL model resource usage 

Total logic elements 5.560/33.216 
Total combinational functions 4.321/33.216 
Dedicated logic registers 4.888/33.216 
Total registers 4888 
Total memory bits 156.140/483.840 
Embedded Multiplier 9-bit elements 18/70 
Total PLLs 0/4 

 

 

Figure 36. The 1K-FFT HIL Model resource usage percentage plot 

 

Comparing the resulting tables and figures, it is evident that the FFT function 

Hardware-in-the-Loop model for 1024 FFT transformation length uses fewer resources 

than the 2048 FFT transformation length. It is important to mention that one of the 
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embedded elements that reduces the cost when implementing a DSP system in a FPGA 

device is the total memory bits. Whereas the 2K-FFT HIL model requires a total 

percentage of 64% to perform the FFT function, the 1K-FFT HIL model uses only half of 

the total capacity.  

Even though two different FFT Hardware-in-the-loop models were co-simulated 

using Simulink®, both had a simulation rate of 1.80 minutes to process 1 second of 

sound. However the resulting simulation waveforms and performance differ as described 

in the next section. The same holds for the MATLAB/Simulink®-based audio 

watermarking comparison models. 

 

4.2.4. HIL DC Watermarking Model Testing and MATLAB/Simulink® Model 

Comparison 

For the FFT Function HIL model shown in Figure 29, two different models were 

implemented in a Cyclone® II FPGA device. The only difference between them is that 

the FFT transformation length is equal to 2048 for one model and 1024 for the other. 

Based on the same figure, it is noted that the most important implemented DSP function 

block is the FFT MegaCore® function, so it is necessary to guarantee the right 

performance of this block in order to obtain accurate and better performance results than 

the Simulink®-based DC watermarking models described in Chapter 3.  

The first performance test was to compare the resulting FFT values from the 

FPGA device with the values obtained using MATALB® and Simulink. Figure 37 shows 
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the difference between the first 2048 frame-size real and imaginary values for the 2K-

FFT HIL model and the MATLAB®-based model simulation results.  

 

 

Figure 37. First frame MATLAB/Simulink® vs FPGA device 2K-FFT values 

 

From the previous figure it appears that the differences between the first 2048 

frame values for both models are minimal. However, a statistical expression would 

provide a quantitative dimension of the actual difference, especially for the DC or X[0] 

component since the objective is to insert a watermark signal in this location. The 

percentage error (Equation 21) expression was used to determine the existing DC 

difference between the two models.  
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Where the theoretical or expected value T. value corresponds to the resulting 

Simulink® -based program values and the experimental value E. Value is the 2K-FFT 

HIL model DC value. The resulting %error value is 0.3498, which is very small. Thus, 

we can conclude that the 2K-FFT HIL model satisfies the FFT performance. In order to 

confirm this conclusion, another experimental test was performed. The Ks factor was 

calculated using the resulting FFT values from the 2K-FFT HIL model and compared 

with the Ks-factor Simulink® model shown in Figure 8. The resulting values were 

1.2653 for the Simulink®-based model and 1.2654 for the 2K-FFT HIL model. Again, 

we can affirm that the 2K-FFT HIL model has high performance. 

Similarly to the host audio signal and watermarked signal comparison tests 

mentioned in Section 3.5.1, the resulting watermarked signal A’ from the 2K-FFT HIL 

model was compared with the original audio file A. Figures 38, 39, and 40 display the 

resulting waveforms after comparison. 
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Figure 38. Track1 DC watermarking simulation waveforms -2K-FFT model 

 

 

Figure 39. Track2 DC watermarking simulation waveforms -2K-FFT model 
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Figure 40. Track3 DC watermarking simulation waveforms -2K-FFT model 

 

Comparing the resulting waveforms for both the 2K-Simulink®-based and the 

2K-FFT HIL models, it is evident that the 2K-FFT HIL model results have better fidelity 

performance results for Track 1 since it lacks the prolonged peaks shown in the 2K-

Simulink®-based waveform (see Figure 15). The same conclusion can be stated for the 

Track 3 2K-FFT HIL model results shown in Figure 40. 

As in Chapter 3, effectiveness and degradation tests were performed for the same 

set of tracks in order to obtain a quantitative representation of the resulting waveforms. 

Table 13 lists both the effectiveness and objective degradation results, where the 

assumption is that Track 1 and Track 3 had better performance in terms of fidelity than 

the Simulink®-based model degradation results shown in tables 4 and 5, for a FFT 

transform length of 2048. 
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Table 13. Effectiveness and objective degradation metrics results -2K-FFT model 

 BER [%] MD AD MSE SNR [dB] 

Track_1 0 0.0196 0.0038 2.147e-5 69.057 
Track_2 0 0.0518 0.0055 6.237e-5 59.036 
Track_3 0 0.0295 0.0040 2.435e-5 66.402 
 

Moreover, an informal subjective degradation test or listening test performed for 

each track indicates that Track 1 has slighter perceptible noise than the rest of the 

watermarked tracks. To sum, the developed and implemented 2K-FFT HIL model is 

suitable for the proposed DC audio watermarking scheme. 

 

Similarly to the 2K-FFT HIL model performance test, the resulting FFT values of 

the 1K-FFT HIL model were compared with the first 1024 Simulink®-based program 

values. Figure 41 shows the real and imaginary part comparison values between both 

models. 

 

Figure 41. First frame MATLAB/Simulink® vs. FPGA device 1K-FFT values 
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Once again the difference appears to be minimal, which it is an expected result 

since the only difference between the models is the FFT transforms length. Applying the 

same percentage error expression, the resulting % error value is 0.2407, when the 

expected value T. value is the Simulink® -based program DC result and the experimental 

value E. Value corresponds to the 1K-FFT HIL model DC value. Additionally, the Ks 

factor value obtained using the 1K-FFT HIL model is 1.0553 compared with the 

Simulink®-based model Ks value of 1.0554. This difference is insignificant since the 

resolution for the Ks factor difference is three decimals. 

 

 

Figure 42 Track1 DC watermarking simulation waveforms -1K-FFT model 
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Figure 43. Track 2 DC watermarking simulation waveforms -1K-FFT model 

 

 

Figure 44. Track3 DC watermarking simulation waveforms -1K-FFT model 
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Figures 42, 43, and 44 show the resulting waveforms after comparing the original 

audio file with the 1K-FFT HIL model watermarked signal respectively. In Figure 42, it 

can be seen that the magnitude of the peaks in the comparison waveform section or 

subplot C are lower than the respective Track 1 Simulink® 1K frame size waveform in 

Figure 24. However, the plot in Figure 42 apparently presents more noise.  

 

In addition, Table 14 contains the effectiveness and objective degradation results 

for the respective DC watermarking model. Comparing these results with the values 

listed in Table 8, the 1K-FFT HIL model has better signal-to-noise ratio (SNR) results for 

each track even though the simulation waveform for Track 1 (see Figure 42) presents 

more difference. Now, comparing these values with the ones listed in Table 13, the 2K-

FFT HIL model performance is outstanding, especially for Track 1.  

 

Table 14. Effectiveness and objective degradation metrics results -1K-FFT model 

 BER [%] MD AD MSE SNR [dB] 

Track_1 0 0.0705 0.0093 1.624e-4 48.824 
Track_2 0 0.0835 0.0090 1.541e-4 49.988 
Track_3 0 0.0642 0.0060 6.228e-5 57.012 
 

4.3. Hardware-in-the-Loop Implementation of the DC Watermarking Insertion Process 

 
To implement a complete DC watermarking system in an FPGA chip, the first 

step to develop such model is to include another FFT MegaCore® function since it is the 

DSP function that involves more FPGA resource usage than the rest of the FPGA 
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elements. Since the best subjective and objective degradation results were obtained for 

the 2K-FFT HIL, a 2048 transform length watermarking model was the best prototype 

development option. However, the use of two FFT MegaCore® functions exceeded the 

Cyclone II® FPGA device hardware capability. For instance, the proposed complete DC 

watermarking hardware model would not fit in the FPGA device due to the lack of 

embedded memory and DSP blocks. Therefore, a more complete DC watermarking 

model that could fit and be implemented in the Cyclone II® FPGA device would perform 

the FFT and inverse FFT processes with a 1024 or 1K transform length. Figure 45 shows 

the block diagram of the proposed DC watermarking insertion process implemented in 

the FPGA device. 

 

 

Figure 45. FFT Function HIL block diagram 

 

Scaling
Algorithm

Input
Audio

FFT

Input Data Controller

HIL

A’A Watermarked 
Signal

iFFT

ROM 
Memory

Watermark
Insertion

w



84 
 

In the figure above, it is observed that the controller has to ensure the correct data 

flow in four DSP blocks, such as the ROM memory and the two FFT blocks. This 

required an algorithmic alteration on the previous controller code as well as on the 

Scaling Algorithm block. Since the output on this particular block corresponds to the 

resulting watermarked signal A‟, the scaling expression is therefore defined as [25]: 

 

       
 

    
                                     

 

Where iFFTouput is the real output value and exp1 and exp2 correspond to the 

number of shifts for the FFT and iFFT blocks, respectively. Another significant alteration 

in the DC watermarking algorithm is the absence of the PSD Analysis process since it 

would require more memory capacity to perform the power spectral density of each 

frame and multiply it by the scaling Ks factor. The alternative algorithm suggests 

multiplying solely the DC component by the binary watermark signal. Thus, the 

embedded watermark signal W is expressed as the following expression: 

 

                               

 

Where W is the embedded watermark signal,       is the nth DC component of 

the host audio signal and w the binary watermark signal. In this alternative DC 

watermarking insertion process scheme, the binary watermark signal is stored in an on-

chip ROM memory of the Cyclone II® FPGA chip. 
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4.3.1. MATLAB/Simulink® and DSP Builder Model Description 

Figure 46 shows the alternative HIL DC watermarking insertion process model in 

Simulink®. The HIL block shown in this figure contains the necessary DSP blocks to 

embed the watermark signal according to the block diagram in Figure 45.  

 

Figure 46. Alternative HIL DC watermarking insertion process model 

 

A MATLAB® file reads the host audio signal to get some important input data to 

set the some constants such as the Ks factor and number of frames. After the DC 

watermark insertion is done, the resulting watermarked signal A’ can be extracted by the 

watermark extraction process described in Section 3.4 in order to test the effectiveness of 

the alternative DC watermarking model.  
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Figure 47 shows part of the alternative DC watermarking RTL circuit. In contrast 

with the RTL diagram of the 1K-FFT HIL model in Figure 32, this DSP system contains 

a larger number of embedded elements inside each instantiated VHDL component.  

 

Figure 47. Part of the alternative DC watermarking RTL view 

 

4.3.2. On-chip Single-Port ROM Memory   

The Cyclone II® FPGA device has embedded M4K memory blocks that are pre-

initialized using a MATLAB® file [24] and [26]. In the proposed DC watermarking 

insertion model a 1024x1 ROM memory is implemented with an input address port and 

an output port. The DSP Builder library provides both ROM and RAM memories blocks 

that map stored data to the internal FPGA device. 

The watermark insertion process for the alternative DC audio watermarking 

scheme is represented in Figure 41. This figure contains the ROM memory and 
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configuration circuit of three multiplexers. The complete circuit also satisfied the 

expression in Equation (23), where the DC component is multiplied by the binary 

watermark signal w. The function of the ROM memory is to store the watermark signal in 

the embedded memory of the FPGA device. 

 

Figure 48. Alternative DC watermark insertion using DSP blocks 

 

Following the DSP blocks in Figure 48, an additional controller is implemented to 

manage the insertion of the watermark signal. Figure 49 shows a simple example of how 

the extra controller performs the watermark insertion. Based on Equation (23) and the 

FFT MegaCore® function control signals, the SOP signal is asserted to indicate the start 

of the frame. In other words, the SOP signal indicates when the FFT block outputs the 

DC or X[0] component. Taking that event as a flag or indicator, the controller reads the 

SOP signal and changes the ROM memory address when a start of frame occurs indicated 

by the SOP signal. Moreover, the controller has an enable control signal that ensures the 

complete watermark insertion. After the watermark has been inserted the enable signal 

goes to a neutral value.  



88 
 

Based on the example in Figure 49, the watermark signal sequence is „101‟, so the 

real value goes to zero when the watermark signal has a zero and remains the same 

otherwise. Additionally, once the watermark is completely inserted, the real signal does 

not change its value when SOP is asserted.  

 

 

Figure 49. The ROM memory controller performance 

 

The RTL diagram for the controller is shown in Figure 50, where logic gates, 

registers, and operators handle the alternative DC watermark insertion process. 
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Figure 50. The ROM memory controller RTL view 

 

4.3.3. DC Watermarking HIL Model Resource Usage 

As mentioned, the alternative DC watermarking insertion process presented in 

this project is a solution for the Cyclone II® FPGA device architecture limitations 

defining two features as a result. The transform length for the FFT function has to be 1K 

as maximum and the elimination of the PSD analysis process modified the original DC 

watermarking scheme. The HIL model resource usage for this alternative DC 

watermarking scheme is shown in Table 15, values of which are similar to the ones listed 

in Table 11.  

Table 15. Alternative DC watermarking model resource usage 

Total logic elements 10.909/33.216 
Total combinational functions 8.429/33.216 
Dedicated logic registers 9.661/33.216 
Total registers 9661 
Total memory bits 313.328/483.840 
Embedded Multiplier 9-bit elements 36/70 
Total PLLs 0/4 
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Additionally, Figure 51 has a similar relation in terms of resource usage 

percentage with the plot in Figure 35. Moreover, the alternative DC watermarking 

insertion model had a simulation rate of 1.9 minutes per second of sound processed. To 

sum, the alternative DC watermarking scheme is a cost-effective DSP system since it is 

performing a complete DC watermark insertion process in the same FPGA device, using 

similar resource usage for a 2K length FFT process, as described in Figure 35. 

 

Figure 51. Alternative DC watermarking resource usage percentage plot 

 

4.3.4. HIL Model Performance and MATLAB/Simulink® System Comparison 

To test the performance of the alternative DC watermarking insertion model 

implemented in the Cyclone II® FPGA device, this DSP system was evaluated under the 

same performance tests in order to obtain representative results in a fair DC 

watermarking scheme comparison. To obtain a visual comparison between the original 

audio and the watermarked signal, the same Simulink® model plotted the original, 

watermarked signals with their respective resulting comparison test results. Additionally, 
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the error variable (see Equation 11) provides the incorrect watermark extracted bits 

during the DC watermark extraction process. The resulting Track 1 waveforms are 

displayed in Figure 52, where the audio files comparison waveform (subplot C) has a 

similar result as the plot in Figure 24. In both experimental cases, the length of the FFT 

function is 1024. Moreover, the resulting comparison waveform of the alternative DC 

watermarking insertion model has fewer peaks than the waveform in Figure 42.  

In other words, comparing the three 1K transform length DC watermarking 

models, the alternative DC watermarking insertion process has visually better fidelity 

performance than the implemented FFT HIL model (see Figure 42) and similar 

performance to the Simulink®-based model in Figure 24.  

 

Figure 52. Track1 alternative DC watermarking simulation waveforms 
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Running the same performance tests, the effectiveness and degradation tests for 

alternative DC watermarking schemes were evaluated, where the results are listed in 

Table 16. In terms of effectiveness, the watermarked signal was unsuccessfully extracted 

since Figure 45 shows incorrect extracted bits during the watermark extraction process. 

The resulting BER number is 10.8% which can be acceptable for a 1K width watermark 

signal. Against visual fidelity performance prediction, the objective degradation results 

show that the implemented FFT HIL model has better fidelity performance than the 

alternative DC watermarking. This also can be prove in an informal listening test, where 

the alternative scheme contains a little more noise than the 1K-FFT HIL model. 

 

Table 16. Effectiveness and degradation results - Alternative DC watermarking model 

 BER [%] MD AD MSE SNR [dB] 

Track_1 10.8 0.0695 0.0187 5.172e-4 39.857 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This thesis presented a brief description of audio watermarking applications and 

algorithms to introduce the direct current (DC) audio watermarking scheme. Like most 

watermarking schemes, the proposed audio watermarking algorithm requires two crucial 

processes to achieve the watermarking, namely insertion and extraction, where the 

watermark signal is embedded in the host audio signal. Audio watermarking systems like 

the DC watermarking have the purpose of embedding a watermark signal without 

producing any perceptible alteration in the original audio file, so that the watermark 

signal is imperceptible to the human auditory system. Another watermarking 

characteristic is that the embedded watermark has to remain in the host signal after 

several signal processing attacks, such as cropping and audio compression. This 

watermark characteristic is called robustness and is one of most analyzed properties due 

to the wide range of capabilities that can be designed in a real-world application.  

In order to design and develop an imperceptible and robust audio watermarking 

system, a DC audio watermarking model is proposed using MATLAB® [9] and 

Simulink® [9] programming software. The prototyping design flow is described in 

Chapters 2 and 3. In Chapter 3 the MATLAB/Simulink® DC watermarking model is 

described, where a set of three audio files were used during the simulations.  
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In general, the proposed software-based watermarking model can be divided in 

two main parts, one for the DC watermarking insertion process and the other for the 

extraction process.  

 

Based on the DC audio watermarking algorithm described in Chapter 2, two 

watermarking models were designed using MATLAB/Simulink®. The main distinction 

between these models is the Fourier transform length, the values of which are 1024 and 

2048. Several tests were conducted to evaluate the effectiveness and fidelity performance 

of the two DC watermarking models. To visually evaluate both watermarking 

characteristics, a Simulink® model plots the original audio signal, the watermarked 

signal, the difference between them, and the event when an incorrect bit is extracted. 

Additionally, some quantitative measures were also included in the tests in order to 

quantify the DC watermarking performance. Among them, the most representative 

measures are the signal-to-noise ratio (SNR) and the bit error rate (BER) for the 

effectiveness and fidelity performance respectively. Table 5 listed the resulting values for 

the 2048 transform length DC watermarking model, whereas Table 8 listed them for the 

1024 model. Based on these results, Track 3 has better fidelity performance in both 

models since the resulting SNR is around 42-43dB. However, a visual inspection on the 

resulting simulation waveforms indicates that Track 1 has less added noise for the 2048 

transform length DC watermarking model. Additionally, an informal listening test 

confirms that assumption, indicating that the measure of the SNR does not always reflect 
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the actual perceptual noise. This case is also presented between Tracks 1 and 3 in table 8. 

Whereas Track 3 has a better SNR result, Track 1 has lower perceptible noise. 

In order to achieve better effectiveness and fidelity performances results in the 

proposed DC audio watermarking model, a Cyclone® II [8] device form Altera® [8] was 

used to create a software-hardware-in-the-loop audio watermarking model. To reach this 

goal, the use of the Altera® DSP Builder [8] tool makes the field-programmer gate array 

(FPGA) hardware implementation compatible with MATLAB® and Simulink®. The 

final DC audio watermarking model implemented in a FPGA device is shown in Figure 

29, where the fast Fourier transform (FFT) function is computed in the FPGA device. 

Tables 13 and 14 list the effectiveness and objective degradation performance results for 

the 2K-FFT length and the 1K-FFT length models. Comparing these results, the 2048 

transform length DC watermarking model implemented in the FPGA shows better 

fidelity results than the 1K-FFT length model. On the other hand, by comparing the 

MATLAB/Simulink®-based DC watermarking performance results with the software-

hardware-in-the-loop audio watermarking model results, it is evident that the FPGA 

hardware implementation approach produced better fidelity results. In particular, the SNR 

value in the 2K-FFT length DC audio watermarking model is in the range of 59-69 dB. 

This outstanding result is even better to other experimental results for more complex 

audio watermarking schemes presented in several papers [1], [19], [22], and [27]. 

Moreover, the conducted informal listening tests also showed better performance results 

for the 2K-FFT length DC audio watermarking model implemented in the Cyclone® II 

FPGA device. Figure 53 shows the resulting waveforms for the original and watermarked 
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signals in comparison to the  MATLAB/Simulink® DC audio watermarking (a) and 

MATLAB/Simulink®-hardware-in-the-loop audio watermarking model (b) for Track 1. 

It is evident that the first waveform presents more difference or added noise than the 

second one. In other words, there is more fidelity or less alteration in the proposed 

MATLAB/Simulink®-hardware-in-the-loop audio watermarking model. 

 

 

(a) 

 

(b) 

Figure 53. Track 1 MATLAB/Simulink® DC audio watermarking (a) and 

MATLAB/Simulink®-hardware-in-the-loop audio watermarking model (b) comparison 

waveforms 

 

Finally, an alternative DC watermarking insertion model is described in the last 

section of Chapter 4. The aim of this alternative model is to implement a complete audio 

watermarking insertion process in the Cyclone® II FPGA device. Due to the FPGA 

embedded memory capability, the design was only implemented for a 1K-FFT length DC 

watermarking insertion process. In spite of this hardware limitation, the proposed 
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alternative DC watermarking insertion algorithm, expressed in Equation 23, produced 

satisfactory performance results as shown in Figure 52 and Table 16. 

 To conclude, the 2K-FFT MATLAB/Simulink®-hardware-in-the-loop audio 

watermarking model presents better performance results in terms of fidelity and 

effectiveness. However, the alternative DC watermarking insertion model shows 

acceptable performance results in almost the same FPGA resource usage as the 2K-FFT. 

Based on the experimental results presented in Chapter 3 and Chapter 4, 

additional work is necessary to be done in order to improve the presented DC audio 

watermarking models implemented in a FPGA device. First, a new set of audio tracks has 

to be tested. This set has to include audio files from different music genres such as pop, 

rock, and classical genres [19]. Additionally, the DC audio watermarking model must be 

suitable for stereophonic music. This specification might involve more memory 

resources; however, redundancy in the watermark insertion process can be implemented 

since small watermark signals are embedded through the audio file [27] and [28]. 

The use of external memory instead of embedded memory in the FPGA will lead 

to a high performance digital audio watermarking. For instance, the Cyclone® II FPGA 

device provides an 8MB SDRAM (synchronous dynamic random access memory) [26] 

that can be implemented to improve the proposed DC audio watermarking scheme shown 

in Chapter 2. In addition, this device also includes a secure digital (SD) memory card 

slot, where a complete DC watermarking scheme can be implemented in a FPGA device. 

Moreover, real-time DC audio watermarking system can be achieved, where the 

watermark signal is embedded while capturing the input audio signal.  
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Once the mentioned future work to obtain a complete DC watermarking model 

implemented in a FPGA chip is achieved, experimental performance tests can be 

conducted such as capacity, robustness and fidelity tests. For the last one, a formal 

subjective degradation test can be performed based on the International 

Telecommunication Union (ITU), based on [19] and [22], where trained listeners 

evaluate the perceptible audio degradation made during the watermark insertion process 

using a graded impairment scale.  
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