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The fight against epidemics/pandemics is one of man versus nature. Technological
advances have not only improved existing methods for monitoring and controlling disease
outbreaks, but have also provided new means for investigation, such as through modeling and
simulation. This dissertation explores the relationship between social structure and disease
dynamics. Social structures are modeled as graphs, and outbreaks are simulated based on a well-
recognized standard, the susceptible-infectious-removed (SIR) paradigm. Two independent, but
related, studies are presented. The first involves measuring the severity of outbreaks as social
network parameters are altered. The second study investigates the efficacy of various
vaccination policies based on social structure. Three disease-related centrality measures are
introduced, contact, transmission, and spread centrality, which are related to previously
established centrality measures degree, betweenness, and closeness, respectively. The results of
experiments presented in this dissertation indicate that reducing the neighborhood size along
with outside-of-neighborhood contacts diminishes the severity of disease outbreaks. Vaccination
strategies can effectively reduce these parameters. Additionally, vaccination policies that target
individuals with high centrality are generally shown to be slightly more effective than a random
vaccination policy. These results combined with past and future studies will assist public health

officials in their effort to minimize the effects of inevitable disease epidemics/pandemics.
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CHAPTER 1

INTRODUCTION

Naturally occurring epidemics/pandemics have alwaysys#dgnankind, however, increased
population coupled with decreased travel time in the modesrhave amplified the cause for con-
cern over such events. Additionally, the cultural enviremttoday is much more diverse than ever
before. An outbreak that once would have affected only algmeaiion of society might now im-
pact the entire world. Moreover, public health experts aghat future epidemics/pandemics are
inevitable [64]. We should not ask, “When will it happen?t lbather “How will we deal with it
when it happens?” The recent emergence of the H1N1 viruskalswn as the swine flu, increased
public awareness regarding the serious nature of a pandsmnt. In fact, as of 17 October 2009,
the World Health Organization (WHO) reports more tlad, 000 laboratory confirmed cases and
nearly5, 000 deaths worldwide attributed to the HIN1 virus [2]. In the tddi States alone, the
Centers for Disease Control and Prevention (CDC) repb@58 laboratory confirmed hospital-
izations and292 deaths as a result of the virus during the time period of 30ustg009 through
10 October 2009 [1]. The breakdown of the US cases by age versimoFigure 1.1. Disease dy-
namics, i.e. how, where, and to whom a disease will spreadjpredictable. Emerging viruses
do not necessarily follow the same pattern as previous eakisrof a similar nature.

Among other concerns, there is often a shortage of vacclesrtages may be caused by an
interruption in supply, an increase in demand, or a lack afifug [41]. In the case of the 2009
H1N1 swine flu, delays were attributed to problems in produgtpackaging, and distribution,
along with the challenge of producing the seasonal flu vacatrthe same time [35]. Regardless
of the reason, a lack of vaccine for an entire populationgntssthe dilemma of who should
receive the available supply. Several options can be cereidvhen vaccine priority decisions are
made. A policy that is best for the individual may not be ogtirfor the entire population [34].

Highest priority groups for the HLIN1 vaccine were healthecaorkers and people who were at



risk of severe complications if infected. This includedgmant women, young children, people
who lived with or cared for children under six months old, ahddren age$ to 18 with chronic
medical conditions [28]. A long-standing policy for seaabinfluenza includes vaccination of the
elderly, even though schoolchildren and working adultskaw@vn to transfer disease at a higher
rate due to having a higher contact rate [34]. A recent stuhdacted by researchers at Yale
University School of Medicine and Clemson University fouhdt consideration of transmission
is an important factor when developing a vaccination poliEyrther, the study concluded that
previous and new CDC recommendations are suboptimal bas&édeooutcome measures: total
infections averted, total deaths averted, years of lifg lo@ntingent valuation (an assumption of
life value based on age), and economic costs [53]. The cagisg over who should be eligible to
receive a vaccine when the supply is limited is not one theassly resolved.

On the positive side, evolution of technology, such as tiead- surveillance, has provided ac-
cess to unprecedented resources that can be used to figlpréael ©f infectious diseases. Even
the ability to quickly and efficiently disseminate infornuat plays a vital role in preventing an out-
break from getting out of control. However, informationmaas insufficient to adequately prepare
for the emergence of new and unknown infectious diseasesul&iion and modeling tools are
needed to better understand disease dynamics and prepareséen types of epidemics, thereby
improving methods for disease control. Development of dools requires cooperation and co-
ordination among the government, public health agencres uaiversities. It further necessitates
a collaborative approach by experts in the fields of biolaggdicine, sociology, epidemiology,
technology, computer science, etc. The joint effort of ¢hestities and individuals are crucially
important to compensate for the favorable disease envieohthat has been created through the

natural progression of mankind. The interest of public eugfis at stake.



Percentage of 2009 H1M1 Hospitalizations by Age
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Percentage of 2009 H1N1 Deaths by Age Group
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FIGURE1.1. CDC reported H1N1 related hospitalizations (a) andhdego) in the United

States [1]

1.1. Disease Definitions and Concepts

Terms associated with disease and disease spread may meaihe enderstood by the general
public. Misconceptions that all diseases are infectioubatrall infectious diseases are communi-
cable are common. To appropriately model diseases, it isiitapt to understand basic terminol-

ogy used in the field of epidemiology.



DEFINITION 1.1. Disease is an interruption, cessation, or disordeodytbunctions, systems, or

organs [54].

Infectious diseaseare caused by an invasion of biological agents, collectiveflerred to as
pathogenghat include bacteria, viruses, or parasites. Pathogerestha ability to enter, survive,
and multiply within a host. If the pathogens additionallwéahe ability to transfer from a host
to another agent, the disease is considemtdmunicable The transmission of a communicable
disease can beertical, host to offspring, othorizontal host to peer. Horizontal transmission
may occur through direct contact, may be air-borne, fooedoor water-borne, or may require a
vector, as with Malaria. Both infectious and noninfectidiseases can be classified as eitdwrte
sudden onset with a relatively short durationgbronic less severe but much longer lasting [54].

The models developed for this research were designed tdatenafectious, communicable,
acute diseases. While not restricted to influenza, the maliletussed herein emphasize influenza-
like illnesses. Four stages of progression, shown in Figu2eare generally associated with this
type of disease. The first stage describes the time peri@d fithe point of infection. This
is the susceptiblestage. The second stagaesymptomaticencompasses latent state and an
incubationperiod. The latent state is the time beginning when an iddai is first infected until
they themselves are able to infect others. The incubatioiwgeescribes the time between the
point when infection occurs and the moment when symptomsganel he third stage is that of
clinical diseasewhich begins when symptoms first appear. The final stage isethevedstate,

which is the result of recovery or death.

1.2. Disease Simulation

When a disease is introduced into a population, certainitond must be met in order for the
disease to transmit and successfully spread. Both diseageapulation parameters influence the
course of the potential outbreak. To simulate an infectmutbreak it is important not only to use
a valid disease model, but also to recognize the essentgabfdhe underlying social network.
In the initial stage of an outbreak, the majority of the p@uan is susceptible to the disease.

As the disease spreads, the number of individuals who acegtisle decreases and the number
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FIGURE 1.2. Disease progression within a host

of those who become infected/infectious increases. Assgithiat the disease is acute rather than
chronic, the progression of the outbreak eventually resnilh decrease in the number of infectious
individuals and an increase in the number of those who has@vesed from the iliness or are
otherwise removed, such as through natural immunity orrdeBtte movement of the population
from states of susceptible, infectious, and removed forivasses for modeling disease spread.

The susceptible-infectious-removed (SIR) paradigm amdaunterparts, such as susceptible-
infectious-susceptible (SIS) and susceptible-latefgetmous-removed (SLIR), are recognized stan-
dards for modeling many infectious diseases. The SIR malitifssed more thoroughly in Sec-
tion 2.2) was first introduced by Kermack and McKendrick inrf27 paper titled “A Contribution
to the Mathematical Theory of Epidemics” [46]. The basic 8iBdel can be modified as necessary
to more accurately represent the particular disease unsstiqn.

Just as the disease model is important to the simulatiors 8wiunderlying social network.
Social networks are complex and graph models used to miragethetworks may vary. Connec-
tions between individuals, and thus disease contactsyacagous. The research presented in this
dissertation explores the effect of graph structure on yimachics of disease spread in a simulated

environment.



1.3. Disease Dynamics

Is it possible to precisely measure the severity of an epidempandemic? What gauge can
be used to determine that an outbreak at a particular timgkmee is more destructive than one
at another time and/or location? Because parameters clisorgeone occurrence to another, it
may be impossible to make an entirely valid comparison betwtevo distinct outbreaks. There
are, however, indicators that are widely accepted as epadegic quantifiers. Even though these
standards may not provide a completely unbiased accouobfoparison, they do provide a metric
for classification.

One quantifier often referred to in disease-related liteeais the basic reproduction number,
Ry [6, 7, 19, 39, 67].R,, as formally defined in Section 2.3, is the expected averageber of
secondary infections by a single infectious individual icompletely susceptible population. It is
an epidemic threshold that is measured at the beginning ofilomeak at a time when the majority
of the population is susceptiblé?, provides an indication how quickly an infection will spread
BecauseR, is based on secondary infections, larger valueBp$uggest a higher probability that
an outbreak will progress into an epidemic or pandemic. rAdteepidemic/pandemic has run its
course, the duration of the outbreak and the total numbepaoybrtion of individuals infected
can also be considered. In a simulated environment, thégesrean be measured and compared

from one outbreak to another.

1.4. Social Networks and Graph Theory

Graphs are exceptionally useful tools for analyzing saoédvorks [79]. In the study of graph
theory, graphs are represented by a set of vertices and &esd@s such that the edges represent
an association between two vertices [82]. In a social nékwibie vertices represent individuals
or groups of individuals and the edges represent some seodrwfection between two people or
two groups. There are many advantages to using graphs tgzarsdcial networks, including an
established vocabulary, mathematical operations, andlti¢y to use and prove theorems about

graphs that can be transferred to the social structure [79].



If the social structure is already known, a correspondiraplgrcan be constructed based on
the existing data. An example of this is Padgett’'s Florentamilies [79]. This network consists
of sixteen families where the edges represent marriagegekatpairs of families. Historical data
allows the creation of a representative graph. On the othed hwhen a graph is developed for
simulation purposes, the exact nature of the structure mayknown because the network usually
emerges as a function of a random sequence. The simulatelisgecanstructed for this research

range from entirely random to completely ordered.
1.5. Problem Statement

The foundation of disease modeling is dependent upon thigrde$ the underlying social
network. The fundamental premise of the research presémtinis dissertation is that network
structure and disease outbreaks are tightly coupled. B®egrdsented here reveal that changes
in social structure affect several aspects of disease épireauding the basic reproduction num-
ber, the outbreak duration, and the proportion of individweho become infected. Further, it is
demonstrated that intervention strategies within an éstea social structure affect these figures.

In particular, the following research questions are aduorés

() In a simulated environment, how does the particular aoeetwork structure predict
Ry, the proportion of the population that becomes infected,tae epidemic/pandemic
duration?

(i) How does the vaccination of key individuals in an esistiéd social network, as identi-
fied by centrality measures, affect the progression andowtof an epidemic in terms of
Ry, the proportion of the population that becomes infected,tae epidemic/pandemic
duration?

(iif) Which vaccination strategies are the most effectivedpecific social network structures
in a simulated environment as measured by a reduction inreaitb affecting greater

than20% of the population and a reduction in the proportion of theuydation infected?



Although the results from simulated environments are katyito completely transfer to real
life, the insight gained from such research can certainlp deect investigations in applied set-
tings. The questions addressed here are designed to promavest in graph theory as it applies to
disease spread through social networks, particularly agpproach that can be used to prevent or
impede an epidemic/pandemic. Targeted vaccination gsliare explored at the theoretical level

in this research in expectation that the results will halevence in practice.
1.6. Overview

This chapter has introduced key concepts and provided th&ation for the research pre-
sented herein. The remainder of this dissertation is stradtas follows: Chapter 2, where most
of the significant literature is reviewed, establishes tbeessary background in the areas of epi-
demiology, disease models, the basic reproduction nunaiper,graph theory. Historical infor-
mation in the field of epidemiology is presented, highlightseveral of the main contributors to
this area of interest, followed by an overview of an estélglisdisease model, SIR (susceptible-
infectious-removed). Next, the basic reproduction numBgiis formally defined and discussed.
The remainder of Chapter 2 focuses on graph theory concegtdefinitions. Chapter 3 presents
and discusses the experimental results related to thesasmalygraph structure and outbreak sever-
ity. The findings in Chapter 3 relate to Research Questiorhapter 4 illustrates the importance
of key individuals in a disease outbreak. Vaccination méshare simulated to address Research
Questions ii and iii. Chapter 5 presents the main perspestf this study and summarizes the

research results.



CHAPTER 2

BACKGROUND

2.1. Epidemiology

Epidemiology is the study of health-related states in aarefb prevent and control health
problems [54]. A primary focus of epidemiology is to detemmiithe cause of disease and the
means by which disease can spread. This assumes that disgaseot randomly distributed,
but rather afflict specific individuals or populations whe ait risk [38]. The traditional triangle
of epidemiology, as shown in Figure 2.1, demonstrates tbatncunicable diseases involve an
agent, a host, and an environment. Hugentis the underlying cause of the disease, ltlostis
the organism that carries the disease, andetheronmenis composed of the surroundings and

conditions that make it possible for the disease to progagatr time [51, 54].

Environment

Time

Host Agent

FIGURE 2.1. Epidemiologic triangle [54]



Epidemiology dates back to the time of Hippocrates (460BCY, who is considered to be the
father of modern medicine and the first epidemiologist [3%, Many of his aphorisms are still in
use today, such as “As to diseases, make a habit of two thitmkelp or at least to do no harm.”
Possibly the most important contribution that Hippocratesle to the field of epidemiology is that
of observation. He believed that as time passed, physiwangd be able to predict the diseases
that would likely affect the local population and when thdgeases could be expected.

John Graunt (1620-1674) added to the field of epidemiologlygemographics by studying
death records in London in 1603 [16, 54]. He was the first tonede life expectancies and thereby
establish the area of vital statistics to the field of epid#agy. Graunt developed a systematic
technique for understanding diseases and causes of deattotitributed to the modern methods
that are still in use today.

Thomas Sydenham (1624-1689), sometimes referred to asitfissi Hippocrates, made ma-
jor contributions to the field of medicine by classifying &s and identifying diseases along with
methods of treatment [31, 54]. Sydenham, like Hippocratedorsed an empirical approach to
medicine. He recognized that science is, and always wilitmymplete. This emphasizes the
need to rely on common sense in addition to pure factual kedgd. He is credited with stating,
“Investigate first, explain afterwards if you like; but remieer that nature is always something
very much greater than all your explanations” [31].

Another respected physician who made a major contributidhe field of epidemiology was
John Snow (1813-1858) [54]. In the mid-1800’s, a large afeoteitbreak occurred in London. By
spot mapping the cholera cases onto a map of London strewtw, \Bas able to discern a pattern
in the outbreaks. This pattern led to the conclusion thattiwdera infections could be attributed
to the water being drawn from the Broad Street pump. John Sm&twdy was instrumental in
demonstrating the importance of tracking diseases by abpdata [49]. Just as with Hippocrates,
Snow’s success came largely due to careful observationenmid-keeping, sound epidemiologic
practices that are still relevant today. Current technplisgcapable of generating similar spot

maps that can be used to track disease outbreaks. The useamhitygraphics, implemented with

10



global information systems (GIS) software, allows a poiattgrn analysis to be mapped onto a
case histogram [61]. The histogram can then display the eummbcases, both by spacial and
temporal occurrences. This system of disease trackingngacable to that of Snow’s, as depicted

in Figure 2.2.
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FIGURE 2.2. (a) Snow’s cholera map [21]; (b) Maptitude GIS systein [3
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The list of contributors to the field of epidemiology is longdavaried. The few mentioned
here, along with many others, established the foundatidghisfdiscipline. Researchers used re-
sources that were currently available to learn about désearsd epidemics. Although the methods
previously established are still valuable, technologazhlances have provided new tools that ear-
lier scientists could have never imagined. Continued dgraknt in the field of epidemiology will
undoubtedly rely heavily on the use of technology. In addito analyzing historical data, disease
outbreaks can now be studied theoretically through sinmrialComputational epidemiology is a

relatively new domain that is certain to become a core corapbof epidemiologic research.

2.2. Disease Models

To better understand difficult computational systems thadehdisease outbreaks, it is help-
ful to first look at a widely accepted elementary model knownSdR (susceptible-infectious-
removed) [6, 46]. Initially in the SIR model, the majority thfe population falls in the susceptible
category. As the disease spreads, individuals move fromegtible to infectious and from in-
fectious to removed, as represented in Figure 2.3. Theshelbed curve shown in Figure 2.4
demonstrates the rise and fall of the number of individuathe infectious group over the course
of an epidemic. Attributes of the graph are indicative of sewerity of the outbreak. The du-
ration of an epidemic is measured from the initial infeciaiase until there are no longer any
infectious individuals. The basic reproduction numberd@sussed in Section 2.3, is measured
at the beginning of the outbreak. The area under the curveastly related to the total number
of infectious individuals, however, the area must be digitg the infectious period to obtain an

accurate estimate. The basic SIR model makes the follovesgraptions:

e The population density remains constant. Births, deatigjramigration are ignored.

e The population mixes homogeneously. That is, contactsdmtvany two individuals are
equally likely to occur.

¢ An individual moves directly from the susceptible stat@itite infectious state.

e Once an individual enters the removed state, they remalmairstate.

12



These assumptions form a solid foundation for disease rmajéiowever, many models are
based on the SIR paradigm to develop more complicated sgdteahinclude additional parame-
ters and relationships. It is quite common to find modelsiti@dtide one or more of the modifica-
tions listed below:

e The population mixes in a non-homogeneous manner. Cordaudsg individuals are
based on demography and/or geography.

e Additional states are incorporated, such as latent, expasesymptomatic.

¢ Individuals are allowed to become susceptible again dftey have recovered from the

illness.

A /A_\
@)M)ﬂ Removed )
v

FIGURE 2.3. SIR schematic

Peakof Outbreak

A1

Infectious Individuals

Ry Measurement
Area

Outbreak Duration Time

FIGURE 2.4. Epidemic curve

The SIS model is a modification of SIR as shown in Figure 2.5Ta)s model is appropriate
when the disease under investigation is such that infeaidididuals recover, but do not develop
immunity to the disease. The SIS model is a modification of BRugh the elimination of the

removed state. Alternately, the SIR model can be extendedigh the addition of one or more

13



states. Figure 2.5 (b) illustrates the SEIR model whichudek arexposear latentstate. SEIR is
a suitable model for infectious diseases in which individ@mter a latent stage before becoming

infectious. Both SIS and SEIR are valid adaptations of thier8bdel [5, 36, 42, 48].

//‘“'_7 T /_/"'_7_"'
! Susceptible X Infectious>
S B AN o

SIS Model

(a)
YO
uscepliole Xpose nrectious cImove
__:)__/ \\_pi_f __7__/ \_‘_7__/,/

SEIR Model
(b)

FIGURE 2.5. Variations of the SIR model

2.2.1. Computation Models in Epidemiology

The spread of an infectious disease through a populatioerdksy to a large extent, on random-
ness. The chance occurrence between an individual whaoestiatis with one who is susceptible,
the probability that the disease will transfer, and furg&pagation to other members of the pop-
ulation lead to an increasingly intractable set of eventdadnte Carlo simulation is a statistical
sampling technique that is applicable to problems that gk levels of uncertainty [55, 56].
Monte Carlo methods are well-suited to model disease srddave been used extensively in
this area [11, 24, 13, 59, 58].

Implementation of computational models vary; common mashioclude cellular automata,
agent-based systems, contact models, and hybrid appsodcikular automata models (CA) con-
sist of a grid of individual cells, a set of cell states, a hdigrhood definition, and a set of transition
rules [69]. Each cell in a CA begins in a particular state amy whange state depending on the
transition rules and the state of neighboring cells. Adeged models are designed with interact-
ing, autonomous agents that each follow a set of rules [5D, B8e agents can display specific

behaviors and are able to react to their environment anttier agents in the system. Agent-based
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models are often computationally expensive and may reqparallelization to work efficiently.
Contact models focus on the probability of contacts betwedividuals. In a contact network,
vertices represent one or more individuals and edges m@mresntacts between individuals [57].
Hybrid models combine one or more computational models.

Mikler et al. developed a global stochastic cellular autammaodel (GSCA) which addresses
two of the limitations of the basic SIR model, that of homog@ums mixing and the lack of a latent
period [59]. The implementation of GSCA overcomes the pobbf neighborhood saturation
found in classical CA models by allowing global contactsdadi#ion to typical neighborhood con-
tacts. The GSCA has been used to model influenza, conjutgtamd the common cold. A hybrid
approach contact simulator, the global stochastic comactel (GSCM), was also developed at
the University of North Texas [58]. Like the GSCA, the GSCMlirdes a latent period and it
also incorporates a symptomatic state which allows a belravihange to occur once an individ-
ual realizes that they have become infected. Increaseaasnbetween individuals resulted in
an elevation of the number of infected individuals and a el@®e in outbreak duration in simu-
lations conducted with the GSCM. Both the GSCA and the GSCewlesigned to incorporate
geographic and demographic dimensions of the populatidemstudy.

EpiSims, developed in 2004 by researchers at the UnivesEMaryland and the Los Alamos
National Laboratory in New Mexico, is another example of R-Based computational model [27].
EpiSims is an agent-based system that simulates a populaftimmdividuals, each following a
specific daily schedule. The social interaction network@esented as a bipartite graph consisting
of a set of nodes which represents people and a set of nodeh vagresents locations. Transfer
of disease is only possible between susceptible and infectndividuals when contacts are made
at a particular location during the same time frame.

EpiSimdemics, an SEIR model developed at Virgina Tech ax@msion of EpiSims, broad-
ened the scope to include large, realistic social netwoykséking adjustments to parallelize the
code [10]. The input data set for EpiSimdemics is approxaiyat00GB and includes data from

the U.S. Census for demographics, NAVTEQ for road netwofrmation, Dun and Bradstreet
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(a commercial database) for business, the National Holgdhnansportation Survey for schedul-
ing individuals, and the Digest of Education Statisticsg$ohool locations and enroliment. The
algorithm used to simulate an outbreak is a simple discrnegatesimulation, which implies that
the system only changes state when an event occurs. Thesgstemposed of both people and
locations. An example of an event is a particular personmgga specific location at a given time.
If an infectious person and a susceptible person are at the &&ation at the same time, there
is a possibility for transfer of the disease. The model idekirealistic states in addition to the
fundamental SEIR, such as vaccinated and asymptomati&Siregemics has been used for real
studies by the Department of Homeland Security, the Departof Defense, and the Department
of Health and Human Services.

Closely related to EpiSims and EpiSimdemics, researchéfisgana Tech have more recently
developed EpiFast, a parallel agent-based SEIR model Ei8Fast has many of the same features
as EpiSimdemics, but it executes much faster as the modgjngisantly less complex. Unlike
EpiSimdemics, in which state changes can occur every hqiffalst measures discrete time steps
by the day. EpiFast also increases speed by using a preractest people-people contact network,
i.e. social network. Intervention strategies include wa&ion, individual behavioral changes,
and facility closures. On similar networks, EpiFast waswaimdo execute ten times faster than

EpiSimdemics .
2.3. The Basic Reproduction Number

Individuals who become infected at the onset of an outbréakakey role in the progression
of a disease. For an epidemic or pandemic to occur, the ratease in the number of newly
infected individuals at the beginning of the outbreak musted an epidemic threshold referred
to as the basic reproduction numb&y,. The value ofR, provides an indication of the transfer of

specific disease pathogens as well as the conducivenesgirenental conditions.

DEFINITION 2.1. The basic reproduction numbéi, is defined as the average number of ex-
pected secondary cases produced from a single primarytimiecase in a completely susceptible

population.
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Ry is an established epidemiologic indicator used to estittiet@robability that an infectious
disease will create an epidemic or pandemic [B}. > 1 indicates that an epidemic or pandemic
is likely to occur because, on average, every infectiousgrewill transfer the disease to more
than one other person; therefore, the disease will contimgeread. A value oR?, < 1 suggests
that the disease spread cannot be maintained and shouldididyqvith relatively few individuals
infected.

It is unlikely that the primary infectious case and the seeoy infections resulting from that
case can be identified, however, estimatefigfare generally based on data collected near the
beginning of an outbreak since the majority of the poputaigosusceptible at that timez, pro-
vides an indication of how quickly a disease will spread tigtmout a population and is related to
a trendline based on initial data from an outbreak. The grapRigure 2.6 were created by simu-
lated outbreaks with estimatédg), values of 2, 6, and 10. Each outbreak curve is accompanied by
a linear graphy = %x. In this linear equationd represents the infectious period andepresents
a single day of the outbreak. Because an infectious indatidas the potential to create secondary
infections overd days, dividing byd normalizes the trendline to the outbreak curve which mea-
sures infected individualger day Note that as th&,-related slope increases, the outbreak curve
becomes taller and the duration of the outbreak decreases$, Mcreases, the disease spreads
more rapidly throughout the population which results in acréase in infectious individuals (a

taller peak) and a decrease in the time it takes the epidenumtits course (a shorter duration).

2.3.1. The Importance of UnderstandifRg

From a public health point of view, a clear understandingigis beneficial in determining a
course of action when a disease is introduced into a subteptpulation. A valid estimate of
R, provides an indication of the force of a specific disease. Fhestimate can be used to guide
implementation of accepted intervention strategies tognethe outbreak from progressing into
an epidemic or pandemic. Estimates®f have been calculated for past outbreaks of malaria,

tuberculosis, SARS, and Spanish influenza (see Table D11 67, 71, 77].
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FIGURE 2.6. Outbreak graphs argh-related slope lines.

The 2002-2003 SARS outbreak was kept under control largeéy/ td early diagnosis and
patient isolation [20]. Chowell et al. used a variation of tBIR model (SEIJR, which includes
exposed and diagnosed individuals) along with regionalglobal data to determine the effects

that model parameters have @iy. In another article, Chowell and others studied the Spanish
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TABLE 2.1. Ry Estimates of Past Outbreaks

Disease Ry Estimate Author
Malaria 1 — 3,000+ Smith [71]
Tuberculosis 1.10 — 31.26 Sanchez [67]
SARS 0.24 — 2.47 Chowell [20]
Spanish influenzal.20 — 7.50 Vynnycky [77]

flu outbreak in Geneva, Switzerland [19]. An epidemic moadhel hospital records were used to
estimateR, for the first and second waves of the pandemic spread.

In the paper, “Appropriate Models for the Management of ¢titeus Diseases,” Wearing et al.
stress the significance of accurately determining the tated infectious periods in mathematical
models [81]. This paper suggests that common methods ferrdating these two parameters
are often incorrect, resulting in an underestimatd?gfand thus misguided efforts to control an
outbreak.

Farrington and Whitaker recognize the significant role otdioa& intervention in lowering
the effectivereproduction numberR,. () [29]. Two sets of serological studies were compared, one
with data from 1987, prior to the introduction of the measteamps and rubella (MMR) vaccine
and one in 1996, “post-vaccination”. The results show a erdecrease in the estimate of both
Ry and R, (t).

Based on survey data from two military ships and five Marylanchmunities, White and
Pagano estimate the effective reproductive number eacbfdhg 1918 influenza outbreak apply-
ing two distinct likelihood methodologies [83]. The first thed presented by White and Pagano,
modelsR; (the effective reproduction number on dgyparametrically as a function of time. The
second method, described by Wallinga and Teunis [78], isesged as a probability;;, that case
1 was infected by casg accounting for the time difference between the initialeird symptoms
for both cases. The first method, based on four parameterdyecgeneralized to other settings.
The second method produces results that follow the samerpats the epidemic curve. Estimates

for the Maryland communities range fronB4 to 3.21. The average estimate for the two ships is
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slightly higher at4.97. This higher value of?, may be attributed to the close living quarters on

the ships resulting in more frequent contacts.
2.3.2. DerivingRRy Mathematically

The fundamental equations of the SIR model can be used teedggi mathematically. The
established differential equations below represent theement from susceptible to infected to
removed. The constanmt is a probability that describes the likelihood of diseasmdfer. The
constanty is the removal rate, which is the reciprocal of the averageber of days in the Infected

state. The three SIR differential equations are defined|bsvs:

(1) AS = —OéStIt
(2) AI = OéStIt — ’}/It

The SIR equations correspond directly to Figure 2.4. Theatiegsign in Equation (1) in-
dicates that as the disease spreads, the number of suseepldriine. Likewise, the number
of removed individuals, Equation (3), increases. The nunobénfected individuals initially in-
creases and then decreases following a bell-shaped cugquatign (2) provides the basis for the
calculation ofR,. If the rate of infection is faster than the rate of removal (> 0), for some time,

t, an epidemic occurs. Factorind; from Equation 2, the change in infected individuals oveltim

becomes:

4) AT =1, (O‘—St = 1)
v

It is now evident that ifaTSt > 1, the number of infected individuals will increase. The neath
matical definition ofRR, is taken directly from Equation 4. BecauBgis measured at the beginning

of the outbreak#= 0), the definition is as follows:
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%) Ry = @5 _ (aSp) (l)
8 8

In Equation (5),5, represents the initial population of susceptibles ai% represents the
number of new infections per infected individual. This &g then multiplied by the average
duration of infectivity,%, because an infectious individual can continue to infelsed as long as

they remain infectious.
2.3.3. Experimental Expectde,

Based on the mathematical definition/®f shown in Equation 5, an expected valueffcan
be derived to validate computational models. In the mathiealaaquations of Section 2.3.2S;
represents the probability of disease transfer from ieféabdividuals to susceptible individuals
at timet. The computational model used in this research repladgsvith a Contact Rate (CR)
multiplied by a Transmission Rate (TR). The number of dayedious (Daysl) is equivalent
to % Equation 6 demonstrates the equivalence between the matical value ofR, and the

experimental expected value.

6) Ry = (aSo) (%) — (CR)(TR)(DaysI)

BecauseR, is a measure of secondary infections, it can be concludedthanfectious indi-
vidual will infect others based on the transmission ratdefdisease, how many contacts are made
in a day, and the length of time the individual is infectiod$ie Ordinary Differential Equations
(ODE) that describe an outbreak can be compared with a catipoial model based on the contact
rate, transmission rate, and number of days infectiougUsguation 6 as a basis. To construct the
comparisong and~ are calculated as shown in Equations 7 and 8. The daily ODkesaif SIR
are then calculated using a spreadsheet. The chart in FAglii®a comparison using the infectious

column from an ODE spreadsheet and the daily infectioustcfsam a comparable simulation.
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TABLE 2.2. Comparable Disease Parameters for ODE and Compw@bkitodel

Simulation ODE
N = 500 So = 499
CR =20

TR =0.03]«=0.0012

Daysl =4 | v=0.25

The simulated outbreak was averaged awgrindependent simulations. The parameters used for

this comparison are shown in Table 2.2.

_ (CR)(TR)
(7) o= S
1
®) 7= DayslI
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FIGURE 2.7. Comparison between ODE and computational model

Figure 2.7 illustrates that the infectious curve of the ORgsl behind that of the simulation.
This is likely attributed to the fact that the infectious abis reduced each day byin the ODE,
whereas each infectious individual in the simulation reamean the count until after they have been
in the infectious state for Daysl. This causes a discrepdmatybecomes apparent early in the

oubreak comparison.
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2.4. Graphs

Many real-world systems naturally correlate to graph stmas. Examples include the Internet
and World Wide Web topology [4, 9, 84], mobile devices [18], T8ad networks [25, 45], biolog-
ical systems [30, 73, 76], and a host of other domains. Graphbtares are inherently well suited
to describe social networks and have been used extensivétysi field [15, 17, 23, 65, 66, 79].
A major benefit to using graphs is the ability to reduce a cexpl/stem to a simplified model of

entities and relationships.

DEFINITION 2.2. A graph is formally described as a tugle= (V, E) in which V' is a set of

vertices andt is a set of edges [82].

The vertices of a graph, also referred to as nodes, reprassettof entities, such as people,
locations, or objects. The edges in a graph represent goredaip between two nodes. On a map,
the nodes could correspond to cities and the edges, roads bilwlogical system, a graph may
symbolize proteins and protein interactions, metaboltaneks, or various other life structures. In
a social network, the nodes of a graph are individuals antirtke between individuals represent
some sort of relationship. For the research presentedmehes links represent contacts in the

social network and disease transmission in the outbreadhgra

2.4.1. Graph Theory Concepts

Two vertices in a graph adjacentif an edge exists between them. Adjacency matrixA;;

of a graph is am by n matrix representation of a graph of sizén which each entry in the matrix
represents a value describing the relationship betweeasicahdj. In a non-weighted graph,
each adjacency matrix entry is either a 1 or a 0. A value of Icatds that node is adjacent

to nodej and a value of 0 signifies that the two nodes are not adjacextle 2.3 illustrates the
adjacency matrix of the graph in Figure 8(a).ldop is an edge that connects a vertex to itself.
Edges that connect the same pair of vertices are referreshaléiple edgesA graph that contains

no loops or multiple edges issaample graph If numerical values are assigned to the edges, the

graph is considered to beveeighted graph The edge weight may refer to cost, distance, or any
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other relationship between nodes.sAbgraphof G is a graphG’, such that/(G’) C V(G) and
E(G') C E(G). Figure 2.8 illustrates the relationship between a gragphasubgraph. The
graphs shown in Figure 2.8 aumdirected graphsindicating that the relationship between two
nodes is identical, such ds a relative of” or “lives in the same neighborhood”A directed
graph, or digraph on the other hand, suggests a directional relationshif) asc'is the child
of” or “passes the disease to”. Undirected graphs and digrape both useful tools, but serve
different purposes. In regard to disease simulation, asoetwork is an undirected graph, but the
transmission of disease from one person to another inHgriemplies direction. The difference

between an undirected graph and a directed graph is iltestia Figure 2.9.

TABLE 2.3. Adjacency matrix of graph in Figure 2.8(a)

| [A[B[CID|E|F[G]

Aloj1(1{1}1/0/0
B|11{0/0[{0/0|0|0
ci1/0(0/1j1/01
D|1/0;1/0/1|0]|1
Ef1/0/{0/1]0|0|0
F|I0{0[{1]0(0|0|O0
G|oj0|j1/1(0|0]|O0

G °\° ¢
© ) © (©
(®) ) (®
() (b)

FIGURE 2.8. (a) Graph(; (b) G’, a subgraph ofr

The degreeof a node denotes the number of incident edges. In a digraphe tare both an

in-degreeand anout-degreendicating edges coming in and edges going out, respegtiGbsely
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FIGURE 2.9. (@) Undirected graph; (b) directed graph
related to the degree of a node is thensityof a graph. The number of edges, in a graph with
n nodes, excluding self-loops, is bounded by Equation (9 dénsity of a graphD(G), is the
ratio of the number of edges present, to the maximum number of edges possible as shown in

Equation (10). The density of a graph ranges from 0, if no sdge present, to 1, if the maximum

number of edges are present.

9) m <

(10) biG) = nin—1/2 n(n—1)

Another important aspect of graphs involves paths betwaés pf nodes. The shortest path
between two nodes is referred to as gemdesigath. The largest geodesic distance between a
given node and all other nodes in a graph is known astoentricityof the node. The largest
geodesic distance between any two vertices in a connectgzhdgs called thediameter The

diameter can also be described as the largest eccentriatirmdes in a graph.
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2.4.2. Random Graphs, Ordered Lattices, Hypergraphs, anadl-8Vorld Graphs

In 1951, Solomonoff and Rapoport described structuresrexfedo asrandom netg72]. In
1960, Erds and Rnyi continued the investigation chhdom graph$26], as shown in Figure 2.10.
Two distinct methods for building random graphs were déscti One begins with a fixed number
of vertices,n, and a fixed number of edges, The edges are randomly selected out ofiﬁgﬂ

n(n—1)
that are possible. Using this technique, there(slre2 ) equiprobable random graphs that can
m

be constructed. The alternate definition is one in which tnalver of vertices are fixed, but the
edges are selected randomly with probability The number of edges using this technique is a
random variable. Therefore, to develop a graph with an gesoém edges, the value gf should

be set to@. For example, to construct random graph with an averageedlges in a graph with

10 nodes, the probability that an edge exists between two vertice§ &s calculated below:

FIGURE 2.10. Random graph example

Contrary to arandom graph, a completely ordered graph ¢aléed a regular graph or a lattice)
is a graph in which each node is linkedit@f its immediate neighbors. To visualize such a graph,

it is helpful to think of the vertices in aligned in a circufashion as demonstrated in Figure 2.11.
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FIGURE 2.11. Ordered graph example

Although regular graphs represent contacts with neighlmaher interactions that are known
to exist in real social networks are not accurately represenSuch interactions are those that
frequently occur in daily life when meetings occur betwesn people who are not normally in
the same social circle. This includes contacts that takeepiéhile in a grocery store, on vaca-
tion, riding in public transportation, standing in line at avent, or a number of other similar
situations. Even in very large social networks, the smaliteveffect theorizes that any two peo-
ple are connected by a relatively short chain of intermediaintacts [60]. A small-world graph
is a model based on the small-world effect. It is a structbheg falls between a random graph
and an ordered lattice, exhibiting the clustering behasfasn ordered graph while maintaining
the small-world property observed in random graphs. Fnsbduced in the mid-1950’s, small-
world graphs gained scientific popularity after a publicatby Watts and Strogatz in 1998 [70].
Since that time, many researchers have explored the prepard applications of small-world
graphs [22, 43, 47, 52, 60].

A small-world graph can be easily constructed from an oml&attice by rerouting some of the
edges [80]. Each edge may be rerouted to another vertex bassaime probabilityp. A value

of p = 0 results in a completely ordered graph and a valug ef 1 creates a random graph. A
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small-world graph results wheih < p < 1. Figure 2.12 is an example of a small-world graph.
Note that when an edge is rerouted, loops and multiple edggsrahibited resulting in a simple

graph.

FIGURE 2.12. Small-world graph example

A hypergraph, as shown in Figure 2.13, is another way to sgptea social network. Hyper-
graphs consider ties among subsets of individual nodesighadges can connect any number of
vertices rather than joining only two nodes [44]. Thus, traTal description of the graph changes.
The graph can now be describedids= (V, E") in which E" refers to a set of hyperedges. Each
hyperedge is a subset of the vertex set. Hypergraphs are@paie for affiliation networks, or
membership networks, in which the connection among ind&isl may represent those who be-
long to the same social group or club [79].

The graphs under study for this investigation cover a widecspm of those that could be
considered for social network representation. The rand@plgprovides a small degree of sepa-
ration between any two nodes, but does not display the cingteffect typically found in social
networks. Conversely, the ordered lattice captures thaeng effect, but does not maintain the
small degree of separation. Both the small world network @nedhypergraph more accurately

depict the characteristics that are likely to be found i acial networks.
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FIGURE 2.13. Hypergraph example

2.4.3. Centrality Measures

Point centrality, also referred to as node centrality, isdu® determine which nodes are the
mostimportantin a graph [33]. Importance, of course, is relative to theppse of the graph. For
the purpose of this research, importance refers to theyatuliransfer a disease. Of four centrality
measures outlined by Wasserman and Faust in “Social NetAoakysis” [79], Degree, Close-
ness, and Betweenness were implemented for this resealttiough there are other measures of
centrality, these three were selected to represent thetsteuof a graph. The initial software for
this research was validated using the centrality indice®&ulgett’'s Florentine families as shown
in [79]. A description and example of each of these cenyratieasures is outlined below.

Degree Centrality. Degree centrality is the most straightforward to computeahse it is
simply a count of the number of edges incident to a node. Aivididal with more connections to
other individuals may be deemed more important. Degreeaégtcan be calculated for a pointin
a graph of sizes as shown in Equation (11§ (7), the degree centrality of nodeis the sum of alll
adjacent nodes as indicated Hy;, the adjacency matrix. In Figure 2.14, it is easily obsemed
Node4 is of degree 8 and could be regarded as the most importantindicle network. However,
a degree of size 8 in a much larger graph might be comparaswedll. It is common to normalize
centrality measures to produce a value that is independenhe@raph size. The largest possible

degree of a node in a graph of sizes n — 1. Therefore, Equation (12) can be used to calculate
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a degree centrality that is normalized to the size of the lgrapince the network displayed in
Figure 2.14 has 11 nodes, each vertex degree is divided lydiQd the relative degree centrality,
Cp(i), as shown in Table 2.4.

In the context of disease spread, an individual who has adeghee centrality makes contacts
with more individuals in the population. If an individual thihigh degree centrality becomes in-
fected with a disease there is greater opportunity for teeadie to propagate. The degree centrality
of individuals infected early in an outbreak is of even gee@nportance as this will have an effect

on the value of?, and may determine whether of not an epidemic emerges.

(11) Co(i) = > Ay

(12) Chli) = =

FIGURE 2.14. High level of degree centrality illustrated by Nate

Closeness Centrality. Closeness centrality is dependent upon the geodesic pathdine ver-
tex to another. It is a measure of the distance from a paaticubde to every other node in the

graph followed along a geodesic network path. A large clesewalue indicates that a vertex can
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TABLE 2.4. Relative degree centrality measures for verticesdnriei 2.14

v Chw) | v |ChH(v)
1| 0.2 7| 04
2| 0.2 8| 0.1
3| 0.3 9| 03
4| 0.8 | 10| 0.5
5/ 01 |11} 0.3
6| 0.4

quickly influence other nodes in the network. Unlike degrestiality, closeness centrality takes
into account indirect as well as direct connections. It aspmable to expect that the duration of
an outbreak will be influenced if individuals with a high degrof closeness become infected, as
these individuals are tightly connected to the rest of theupation. In Figure 2.15, although sev-
eral other nodes have a higher degree centrality, Nlodeat most two hops from any other node
in the network, making it the most important node based upaseoess centrality (see Table 2.5).
Closeness centrality of a nod€ (i), is calculated as shown in Equation (13). In this equation,
d(i, 7) refers to the geodesic distance from nede nodej. Some formulas for closeness do not
take the reciprocal of the summation of the distances, hemwetien a node is a greater distance
away, the centrality should decrease. Therefore, the gegodestances should be weighted in-
versely. The maximum closeness value is obtained when a isadieectly connected to every
other node in the network. In a network of sizethe maximum closenessjlé_—l. Thus, a relative

closeness centrality; (i), is calculated by multiplying by, — 1 as shown in Equation (14).

(13) Coli) =~
> dii,j)
j=Li#]
(14) Coli) = —2 =1 — (= 1)Celi)
> d(i, j)
j=Li#]
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FIGURE 2.15. Closeness centrality illustrated by Ndde

TABLE 2.5. Relative closeness centrality measures for vertic€sgure 2.15

V[ C&w) | v |Cé&)
1| 043 || 7| 0.56
2| 053 | 8| 053
3| 046 | 9| 050
4| 0.56 || 10| 0.37
5| 0.59 ||11| 0.42
6| 048

Betweenness Centrality. Similar to closeness centrality, betweenness centraityased on
network paths. A node has a hightweenness centralitfyit falls on a large proportion of network
paths when all paths are considered. Nodes with a high batvess centrality assert more control
over the flow of information across a network. Note that inUf&g2.16, Nodeb falls on every
path that connects the left side of the graph to the right sidbee graph. If this node is removed
from the network, the graph will become disconnected. N&dkerefore, is central to the flow of
information in this graph and has the highest betweenneasune as shown in Table 2.6.

Individuals or groups in a population who possess a religthigh betweenness centrality pro-
vide important links by which a disease can spread. If thediiduals or groups can be identified,
it may be possible to use preventative strategies, suchcagnadion or quarantine measures, to ef-
fectively prevent a disease from reaching large portiona pbpulation. These strategies could
essentially disconnect the population graph and prevetitduspread.

Freeman suggests a method for calculating the betweenhespaint that incorporates the
probability that the point will lie on a randomly selectedogesic path [32]. To determine the

partial betweennessf point: on a path that connects point@ndt such thats # i # ¢, let g
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represent the number of geodesic paths feaim¢ andg,, (i) the number of geodesic paths fram
to ¢ that contain.. Now the probabilityp,, (), that pointi lies on a randomly selected path from
to pointt is shown in Equation (15).

To consider the overall betweenness centrality of powhich includes all geodesic paths in
the network,Cz(i), the sum of all partial betweenness values is calculatechasrsin Equa-
tion (16). SinceC'z (1) is simply a count, the relative potential based on the sizé®hetwork is
not taken into consideration. A relative betweenness valygi) as shown in (18), can be derived
by expressing this value as a ratio@f (i) to the maximum betweenness value possible in a net-
work of sizen. The maximum betweenness valuegxCg(i) as shown in Equation (17), occurs

when a node falls on every geodesic path connecting all nodes not imctuid

- Pl = ( 1 ) (gui)) = 221

(16) Cpi) =Y Y bali)

an marCy(i) = Py gy = T2
Y i) = 3

Information Centrality. Information centrality is based on the same concept as lesimess
centrality, but also considers the degrees of the nodeg &ach network path. When betweenness
centrality is calculated, it is assumed that two geodediespare equally likely to be “chosen” and
therefore the probability of each geodesic path is idehtitenay be presumed that vertices along

the path which have a high degree are more likely to be on asttiogeodesic path. An even
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FIGURE 2.16. Betweenness centrality illustrated by Néde

TABLE 2.6. Relative betweenness centrality measures for veriicEigure 2.16

vV Cgi)| v |Cgsv)
1| 0.01 | 7| 0.07
2| 0.06 | 8| 0.36
3| 0.05| 9| 0.05
4|1 0.06 | 10| 0.00
5| 0.01 11| 0.02
6| 0.59

greater generalization is considered in determining médion centrality. It is possible thatren-
geodesigath is of greater significance thal other paths Information centrality takes this point
under considerationAll paths, both geodesic and non-geodesic, are weighted wiamation

centrality is calculated. Information centrality was nojlemented in this research.
2.5. Summary

Building computational models for simulating disease agris challenging, at best. The un-
derlying framework of an outbreak model must emulate compéhaviors without becoming too
computationally expensive. A graph theoretical approdichiva this social environment to be rep-
resented in a simple format, i.e. nodes and edges. The nbdegaph represent the individuals in
a population and the edges in the graph correspond to ne&ijes among individuals. This basic
construct creates a foundation for disease simulation.

The SIR infectious disease model is very compatible withaglgrbased social network. This
research explores two methods for implementing a simulditshse outbreak. The first technique,

implemented in Chapter 3, generates the social networki&maously as the disease proliferates.
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Contacts are established between individuals who may lmeptisle, infectious, or removed. The
disease transfers from an infectious individual to one vglsusceptible with a probability based on
the transfer rate. The second approach, implemented int@hépcreates a static social network
and then simulates a disease spread on the predefined graph.

Dynamically generating a social network may arguably beewealistic because true social
contacts are not restricted or predetermined. This is anedde choice for investigating how an
outbreak manifests itself if no intervention strategiesemployed. The exploration in Chapter 4,
however, focuses on targeted vaccination. This cannot@#ately tested in dynamically created
social networks because the node attributes must be knoaaivience of vaccination. Nodes that
have certain properties in one graph may not exhibit the ganmgerties in another graph. Thus,
it is impossible to create the contact graph concurrentiy\ain outbreak. A concession is to
create and save the contact graph first, vaccinate spedifidgdnals, and then allow the outbreak

to evolve.
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CHAPTER 3

GRAPH STRUCTURE AND OUTBREAK SEVERITY

As previously discussed in Section 2.4.2, small-world bsagre considered acceptable models
for representing social networks. In addition to the siza afmall-world network, there are two
parameters that affect the structure of the graph. The firdte neighborhood sizé, and the
second is the probability of a random contactT he neighborhood size representoatactgroup.
The definition ofcontact however, changes depending on the situation being modbsldatie
small-world graph. Even in the same area of research, tlee$izvaries. For example, a contact
required for the transfer a sexually transmitted diseagseti€quivalent to a contact necessary for
the transfer of influenza. The value lbftherefore, depends on context. Similarly, the probapbilit
of a random contacp, is a conditional parameter. The purpose of the experimaetsented in

this chapter is to explore outbreak variation as a resulhahges in these two parameters.

3.1. Simulation Method

Based on the SIR model with an additional latent state, ego@rgnent has a number of static
parameters as shown in Table 3.1. The parameters selectdb$e experiments result in a large
portion of the population becoming infected in most casdss & intentional and is not a fallacy
of the simulator. Each experiment begins with the primaryece theinfectiousstate and all
other individuals in thesusceptiblestate. Contacts are made each day until the predetermined
number of contacts for the entire population is reached.slinelation continues as long as there
are individuals in either the infectious or latent state. o&ial network is created dynamically
as the simulation progresses; an edge is created betweemtias every time a contact occurs.
Generated contact graphs range from ordered to random. dhememt graphy = 0, is one in which
contacts arenly allowed within a restricted neighborhood of size A random graphp = 1, is

one in which contacts are made randomly between any twoidhdils in the network.

36



Initial experiments are conducted on a small network grdpsize 30. N nodes are labeled
0 — 29 and node€29 is linked back to nod®. This population size provides modeling capabilities
that are limited to situations in which a small group of indivals is predominantly self-contained,
such as in a nursing home or on a ship. However, a benefit tossamall population is that it
allows visualization of the contact and infectious graptisich is not viable on larger population
sets. For this set of experiments, the neighborhood sizeases fronk = 2to £k = 10 in
increments o2 and fromk = 14 to k£ = 30 in increments ofl. For each value of, the probability
of a random contact increases frem= 0.0 to p = 1.0 in increments of.1. For each unique value
of k£ andp, the simulation is repeated0 times.

Similar experiments are conducted on a larger populatda=(500) to gauge whether the re-
sults are scalable. Due to the substantial number of simakl0 values ofk, 10 values ofp, 100
simulations each), larger population sizes are beyondcibyeesof this research. The neighborhood
size increases frorh = 2 to £ = 10 in increments o and fromk = 20 to &£ = 100 in increments
of 20. As with the previous experiments, for each valué: pfhe probability of a random contact
increases from = 0.0 top = 1.0 in increments 0.1, and for each value df andp, there are 00
executed simulations. The complexity of the graphs creasety a population of size 500 makes

it impractical to include visual representations.

3.2. Results

Figure 3.1 illustrates a representative contact graphfancesulting outbreak graph with= 6
andp = 0. Note that not all of the nodd® — 29) are included in the contact graph. This signifies
that during this particular simulation there are some imllials that never make any contacts.
Sincep = 0, all contacts are made within the neighborhood of size Bireg to the left and three to
the right. Because the graphs are not weighted, an edge déretwe nodes signifies one or more
contacts. The contact graph depicted in Figure 3.1 (a)titiess that Nod€ makes at least one
contact with Nodel and the related infectious graph in Figure 3.1 (b) indic#tes$ the disease
transfers from Nodé to Nodel. It is not evident, however, how many contacts are made befor

or after the transfer. Any contacts that occur after diséa@sesfer are useless in terms of disease
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propagation since an individual can only be infected onetifm contrast, Figure 3.1 illustrates
a representative contact graph and the resulting outbregdhgvithk = 6 andp = 1. For this
particular simulation, the resulting contact graph is a egeanplete graph. In a random graph, such
as this, contacts are not as likely to be repeated. This @aptat there is a higher probability that
the disease will transfer to more individuals in the popalatAnother point regarding Figure 3.1,
is that the neighborhood size is essentially irrelevantalue@ ofp = 1 indicates that every contact
is random. Each individual is allowed to make contact with ather individual in the population,

thereby effectively eliminating the boundaries of a nemyiiood.

(b)

FIGURE 3.1. Example of an ordered graph with= 6, p = 0. (a) Contact graph; (b)
Resulting outbreak graph

3.3. Duration

With a population of size30, the minimum average duration 19 days which occurs with
the smallest neighborhood size and no random contacts,2 andp = 0. This coincides with
the minimum percent infected dR%, which is an indication that the duration of an outbreak is
relatively short when few individuals become infected. Ti@ximum duration i$4 days which
occurs wherk = 10 andp = 0. Although the shortest duration aligns with the fewestdidd,

the longest duration does not align with the most infecteuitially, the duration increases as
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FIGURE 3.2. Example of an ordered graph with= 6, p = 1. (a) Contact graph; (b)
Resulting outbreak graph
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more individuals become infected, however, there appeaog ta point at which concurrency of
secondary infections reduces the duration. Thereforeg tisenot a direct relationship between
outbreak duration and the proportion of the populationated.

Figure 3.3 reveals that limiting the neighborhood size Weldhas a significant impact on the
duration whem < 20%. Larger values of have a fairly consistent duration regardless of the value
of p. This s likely due to the fact that many of the simulationghwi < 6 andp < 20% are unable
to sustain an outbreak. During these simulations, secgridéctions are limited by the small
neighborhood size and the disease dies out quickly. Howasérand/orp increases, the chance
for secondary infections rises, resulting in an increageemumber of sustained outbreaks.

With a population of siz&00, the minimum average duration 26 days which occurs when
k = 2 andp = 0. As with the smaller population, the shortest duration cmies with the fewest
number of infected individuals. The maximum durationl@ days and occurs wheh = 20
andp = 0. Consistent with experiments on a population of sizethe longest duration does not
align with the most infected. Figure 3.4 (a) demonstrates fibr neighborhood sizes éf = 2
through%. = 10 in which all contacts are made within the neighborhopd= 0), the outbreak
either does not occur or does not last long when it occurs.p Axreases the duration of the
outbreak peaks and then falls. A reasonable explanatiothéopeak is as follows: As outside
contacts increase (> 0), there is an increase in the number of simulations thag#lgtproduce a
significant outbreak. This increase in significant outbsdalings up the average duration. As the
number of random contacts is further increased, there sedamiconcurrent secondary infections.
The rise in concurrent secondary infections allows theadiséo move more rapidly throughout
the population, causing a decrease in the duration.

Figure 3.4 (b) illustrates that neighborhood sizes 20 throughk = 100 on average are able
to sustain an outbreak. Similar to the fall after the peak@smaller neighborhoods, as the random
contacts increase, the disease spreads more quickly. Enagavduration of all simulations for

neighborhood sizes = 20 throughk = 100 is 69.2 days with a standard deviation ®8§.25.
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Considering only values gf from 0.5 to 1, the average duration .6 days with a standard
deviation 0f2.46. This indicates that the duration becomes much more stablénareases.

The duration of an outbreak by itself does not appear to bdiable severity indicator. An
extended time period does not necessarily signify thatgelgroportion of the population will
become infected. For example, the longest duratiom66fonly infects38% of the population,
whereas the average over all simulated ruri®§s. Likewise, a reduced time frame may indicate
that the outbreak subsides before it has a chance to takeohdldnay indicate that the disease
rapidly spreads throughout the population infecting mawiduals. This is demonstrated by two
simulations that both have a duration@af days. One, which has a neighborhood sizé@tvith
0 random contacts, infects onfit of the population. The other, which has a neighborhood size
of 80 with 90% random contacts, infec&% of the population. Without additional information,

such as the proportion infected, the duration of an outbdeals not accurately reflect the severity.

3.4. Ry

The value ofR, is measured according to the strict definition by averadgiegniumber of the
secondary infections caused by the first infectious indialdh a primarily susceptible population.
The mathematical expected valueRf is obtained by multiplying the average daily contacts, the
transmission rate, and the infectious period. For the parars shown in Table 3.1, the expected
Ry value is2.4.

TaBLE 3.1. Simulation Parameters for Small Graph Experiments

Parametel Value | Explanation
Loop 100 | Number of times to loop through the simulation
CR 20 | Number of contacts per person, per day
TR 0.03 | Probability that transfer of infection will occur when a ¢act is made
between an infectious person and a susceptible person
DaysL 3 | Number of days in the latent stage
Daysl 4 | Number of days in the infectious stage

For experiments performed on a population siz&8(pthe minimum average value & is 1.3
which occurs whet = 2 andp = 0. The maximum value oR, is 2.59 and occurs whek = 26

andp = 0.7. The average value o is 2.20. Although the average is lower than the expected
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FIGURE 3.3. Outbreak durations on population size 86; 0.0 to 1.0 for (&) £k = 2 to 10
and (b)k = 141030

value, it is not a surprising number considering the smabiytation size and the low values bf
that are included in the average. Figure 3.5 reveals thall sighborhood sizes, accompanied
by a low probability of outside contacts, results in a deseem secondary infections. As the
neighborhood size is increased, the valuégbecomes more stable.

For experiments performed on a population siz&(af, the minimum average value &, is

1.4 which occurs wherk = 2 andp = 0. The maximum value of?, is 2.74 and occurs when
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FIGURE 3.4. Outbreak duration on population size 5@; 0.0 to 1.0 for (a) k = 2t0 10
and (b)k = 20 to 100

k = 100 andp = 0.8. The average value faR, over all simulations i2.29. The average value of
all simulations fork = 2 throughk = 10, as shown in Figure 3.6 (a), &17 which is below the
expected value dt.4. However, the average of all simulatiohs= 20 throughk = 100, as shown

in Figure 3.6 (b), is exactly the expected val@el. As the neighborhood size or the proportion
of outside contacts increase, the valueigfis shown to approximate the expected mathematical
value. Conversely, a small neighborhood size coupled wititdd random contacts reduces the

value of Ry by restricting the number of susceptible individuals thratavailable for contact.




TaBLE 3.2. Comparison oRy and Percent of Infected Population on Ordered Giigph
0) with Small Neighborhood Sizes.

Neighborhood Sizek) R, | Percent Infected
2 14 1
4 1.9 2
6 1.9 4
8 2.0 6
10 2.1 7

A comparison of the data obtained 85 and the proportion of the population infected provides
an interesting observation regarding secondary infestidheoretically, values ak, > 1 should
produce significant outbreaks in a population. Howeverséhexperiments do not support this
theory when neighborhood sizes are 10 or less and no randotaate are permitted. This is
indicated by the very low proportion of the population thatrifected as shown in Figure 3.8 (a)
whenp = 0. See Table 3.2 for a comparison of values. Even though sacpmdfections are
above the threshold value of one, the outbreak is not mamddong enough to infect a substantial
portion of the population. This is likely caused by a satorabf infected individuals within a
neighborhood. The primary case is able to infect more thanidividual in their neighborhood
leading to ank, value greater than unity, but secondary infections by atidviduals are limited
by competition. For example, suppose Naxes the primary case and infects Nodzsnd 4,
resulting in a literalR, value of2. At this point, Nodet is unable to infect two of its immediate
neighbors, Node8 and3, because they are already infected. N@ds limited in the same way.
This leads to asuffocationof the outbreak. While the actual, is greater than one, theffective
value of R, is quickly reduced. In reality, it is possible to cause a Emaffect by reducing the

neighborhood size of susceptible individuals through weaton.
3.4.1. Total Infections

With regard to the population as a whole, the overall praporof individuals infected during
the course of an outbreak is the strongest indicator of ggvhrtervention strategies, such as pub-
lic awareness, vaccination, quarantine measures, etadesigned to reduce secondary infections

with the ultimate goal of lowering the total number of indiuals who become infected. The three
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FIGURE 3.5. Ry values on population size 309,= 0.0 to 1.0 for (a) k = 2 to 10 and (b)
k=141t030

disease-spread indicators examined in this dissertafiaration, Ry, and proportion infected) are
unquestionably interrelated. However, it is the proportid the population infected that provides
the most obvious measure of severity.

With a population of siz&0, the minimum average value of total infection$ig$3, or 18% of
the population which occurs &= 2 andp = 0. The maximum average ist.3, or 81% of the

population which occurs whelh = 18 andp = 70%. Small neighborhoods coupled with few or
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no random contacts significantly reduce the proportion efgbpulation that becomes infected as
demonstrated by Figure 3.7 (a). However, the proportioadtad rises rapidly with an increase
in random contacts. Additionally, if the neighborhood sizdarge enough, i.ek > 14, the

proportion infected is not drastically reduced by a de@éasandom contacts (see Figure 3.7 (b)).

The average percent of the population infected foka#t 14 is 74% with a standard deviation of

(b)
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3.1%. Fork > 14 andp > 60%, the percent infected rises 6% with a standard deviation of
2.4%.

With a population of sizé&00, a mean of7f0% of the population becomes infected over all
averaged simulations. The lowest average of total infastist.58, or 1% of the population which
occurs wherk = 2 andp = 0. The highest average &% atk = 100 andp = 80%. Similar to
the results with a population of siz@, Figure 3.8 (a) reveals that simulations with neighborhood
sizes ofk = 2to k = 10 andp = 0 result in a very small proportion of the population becoming
infected, ranging from % to 7%. There is a sharp incline dsandp increase. In fact, for all
values oft > 4 andp > 30% the average remains abov&/, with a mean off'7% and a standard
deviation of3.1%. Figure 3.8 (b) illustrates that, with the exceptionkof 20 andp = 0 at 38%,
the proportion of the population infected remains reldgie®nsistent. For these values, exception
noted, the mean is 77% with a standard deviatiod. @f¢.

Similar results are observed in both the small and largelgsapulations. When the neigh-
borhood size is restricted and the probability of randomtacts is low, the proportion of the
population that is infected is greatly reduced. Moderategases in either one or both of these
parameters greatly increases this proportion. In the sgnafih simulations, approximatebyp %
or more of the population is infected for all valuesiotvhenp > 50%; for all values ofp when
k > 10; and wherk > 6 andp > 30%. In the large graph simulations, approximatéhy, or more
of the population is infected for all values bfwhenp > 40%; for all values ofp whenk > 40;
and whenk > 6 andp > 20%. This implies that small-world graphs are very conducivéhi®
spread of disease, even with relatively small values:fandp. It should be noted, however, that
the parameters selected for these experiments generafie prbbability of producing an epidemic

and no preventative measures are taken during any simmsatio
3.5. Summary

Two groups of experiments were presented and discussesiChiapter. The first involves a
series of simulated outbreaks on a population of 3iz€T his small population size was purposely

chosen to allow visual inspection of the resulting contact@utbreak graphs. The second involves

47



Percentinfected
90%
B0%
-
]
T T0%
= 60%
=
2 so% +— + 7 — k=2
] g /
g Fd -_-—K=4
K] 40%
"5 s / K=6
30% 7
'é o K=8
20% o
g - e | = 10
10%
0%
0% 10% 20% 30% 40% 50% 60% 70% B0% 90% 100%
Percent of Random Contacts (p)
(@)
PercentInfected
90%
- B0%
-
2 70%
=
E 60%
. — =14
s 50%
H - = k=18
5 40%
S 30% k=22
-
E | aaasas =
E 205 k=126
£ 10% — = 30
0%
0% 10%  20% 30% 40% 50% 60% 70% B0% 00% 100%
Percent of Random Contacts (p)

(b)

FIGURE 3.7. Total infected on population size 30= 0.0 to 1.0 for () £k = 2 to 10 and
(b) k =141t0 30

identically constructed experiments on graphs of siz& Even though a size Gf00 is smaller
than the population of most communities, the parameteatran and number of simulations are
prohibitive on larger populations. It is also important tnsider that a node in a graph can be
representative, not only of an individual, but also of a grotiindividuals. Therefore, population
sizeof 500 might represens00 families or500 cities. The results of the first set of experiments
scale nicely to those of the second and it is likely that @amiésults would be observed on larger
data sets.
It is evident that the neighborhood siZze can have a considerable impact on the severity of an

outbreak when both andp are relatively small. However, there appears to be a thiésiatue of
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FIGURE 3.8. Total infected on population size 5¢0-= 0.0 to 1.0 for (a) ¥ = 2 to 10 and
(b) k£ =20to 100

k beyond which there is negligible difference regardlesfiefalue ofp. A probable explanation
for this threshold value is that there is a level of compatitfior susceptible individuals when
contacts among infected individuals overlap. Once thehi®ichood size becomes large enough
to eliminate this competition, there is no longer a gain lyréasing the size even larger.

In the interest of public health, it is beneficial to emplotenvention strategies that effectively

reduce the neighborhood size to a level below the thresAoléd.ccomplish this, there are several
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preventative measures that can be initiated. For exammayumber of daily contacts conducive
to disease transfer can be reduced through hand-washmgsthof anti-bacterial products, and
social distancing. With proper medical treatment of thoke are infectious, it may be possible to
reduce the infectious period, and thereby lower the numbse@ndary infections. Furthermore,
the number of susceptible individuals can be reduced threagcination. Vaccination is a com-
mon preventative strategy and the effectiveness of pdatimaccination strategies is the topic of

discussion in the following chapter.
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CHAPTER 4

VACCINATION STRATEGIES BASED ON CENTRALITY MEASURES

Although epidemics are inevitable, it is possible to redtiw#r impact on society. Ideally,
enough individuals could be vaccinated to stop an outbneak £ver reaching epidemic status, a
concept referred to as herd immunity. In most cases, howiweiis not a practical solution. Herd
immunity is achieved if the effective basic reproductiventoer is brought to a level below unity.
Unfortunately, large intrinsic values dat,, require very high levels of vaccination. In a paper
published inl982 by Anderson and May, it is reported that the proportjgrgf the population that
must be vaccinated to achieve herd immunity is given by Honél9 [8]. Therefore, a disease
with an intrinsicR, = 3 would require that more tha§1 of the population be vaccinated. Data
from the Centers for Disease Control (See Appendix 5.2ditates that even the yearly influenza
vaccine, in anticipation of expected outbreaks, is digtald in much lower quantities. It is highly
unlikely that an adequate vaccine supply would be availmbike event of an unforeseen disease

outbreak.

1
1 1— —
(19) p> e

The experiments in this chapter explore vaccination methi@ded on centrality. The results
found previously imply that small world graphs effectivédyilitate disease spread in a simulated
environment even when the neighborhood size and probabilitontacts outside the neighbor-
hood are relatively small. Discussing similar results,seeech article by Watts and Strogatz states,
“Infectious diseases are predicted to spread much morty easl quickly in a small world; the
alarming and less obvious point is how few short cuts are eeéal make the world small” [80].

In the previously presented experiments, no interventicategies are implemented and a large
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portion of the population became infected. This chaptelyaea the effectiveness of various vac-
cination strategies based on modifications of the centraigasures discussed in Section 2.4.3.
Experimentation follows the steps below which are repeatest various graph structures and

includes several vaccination policies for each distinapgrstructure.

(i) Create a graph-based social network utilizing paramsei&en in Table 4.1.
(i) Vaccinate individuals in the population.
(iif) Simulate multiple outbreaks in the established sbo&twork and collect data to assess

the severity of the outbreaks.

In contrast to the experiments presented in Chapter 3, thacibgraphs are generated prior to
each outbreak to allow targeted vaccination of specific ad@dsed on centrality. The same contact
graphs are utilized for each vaccination policy and outbssaulation. Statistics are recorded for
each simulation, including values &, duration, and the proportion of the population infected.

Comparisons of each indicator are presented in Section 4.4.
4.1. Creating a Social Network Graph

A population of sizeN is represented as a graptV, E') in which each vertex in the graph,
v € V, represents an individual and each edge in the graphw) € E represents a contact
between two individuals. Each individual is labeled withraque identification number between
0 andn — 1, inclusive, and Node — 1 is adjacent to Nodé. Each member of the population has
an assigned neighborhood of sfzesuch that the neighborhood exterid? to the left andk/2 to
the right of that individual.

The contact graph is established based on the parameteibilisTable 4.1. Specific values
for these parameters are discussed in Section 4.3. Thenwtalber of contacts for the entire
population is calculated as the size of the populati¥ntimes the average number of contacts
per person, per day,’R. The procedure of building the contact graph continued timi total
number of contacts has been exhausted. The algorithm faticgethe contact graph is outlined in

Algorithm 1.
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Algorithm 1 CONTACT GRAPH

ContactCount— 0
while ContactCounk TotalContactslo
P1<— random number from O t&/ — 1
rn < random number between 0 and 1
if rn < p then {Contact should be globgl
P2~ index from 0 toN — 1, ¢ neighborhood of P1
else
P2 — index e neighborhood of P1
end if
if ContactGraph HasEdge (P1, RBgn
ContactGraph EdgeWeight(P1, R2) ContactGraph EdgeWeight(P1, P2) + 1
else
ContactGraph AddWeightedEdge(P1, P2, 1)
end if
ContactCount— ContactCount + 2
end while

TABLE 4.1. Contact Graph Parameters

Parameter | Explanation
N Population Size
CR Average number of contacts per person, per day
k Neighborhood size
p Probability of a random contact (contact outside of neighbod)

4.2. Vaccinating Key Individuals

Vaccination policies are often designed with the primamppge of protecting individuals. For
this reason, vaccines are often recommended for the vemgyand the very old. Although it
appears to be rational thought to safeguard the most viddleerthis may not be the best strategy
for protecting a population. In the event of a limited suppfywaccination, the entire population
would likely benefit from a policy that completely restrictsgreatly reduces the disease spread.
This chapter explores targeted vaccination of ten percegpopulation sizes 50, 150, and 250 by
identifying central nodes in a social contact graph.

The centrality measures afegree betweennessand closenessvere previously defined in
Chapter2 for unweighted graphs. Recent research suggests that enisfibial to represent so-

cial networks as weighted graphs [12, 62, 63, 74]. This ieigly relevant in the domain of
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disease spread where repeated contacts increase thediathat a disease will transfer from one
individual to another. Outlined below are centrality measulesigned specifically for the purpose

of identifying individuals in a social network who are mom®pe to facilitate disease spread.
4.2.1. Contact Centrality

Contact Centrality measures the number of contacts an individual makes withimtaf time,
including those contacts which are unique and those whiehepeated. Represented in a graph,
an edge with a weight of between two nodes is initially created upon the first conv@tiveen
the two nodes. Each additional contact between the sameddesrincreases the edge weight by
one. The contact centrality for nodeC'y (i), is calculated as a sum of the edge weights between
and all neighbors of. This is easily calculated through the use of an adjacendyixmal;;. Each
entry in 4;; represents the weight of the edge betweandj. This calculation (see Equation 20)
is identical to that of degree centrality presented preslpwith the exception that the adjacency

matrix is weighted rather than binary.

DEFINITION 4.1. Contact centrality is defined as the average numbermhfcts an individual

makes within a specified unit of time.

(20) CN(i): Z Aij

(21) O (i) = 717 _ On(9)

Contact centrality is illustrated in Figure 4.1. In this ginaNode4 has a contact centrality of
16 which is the highest value in this network. The edge weigtioétween nodes and4 implies

that7 contacts are made between these two individuals that aeblEapf disease transfer if one

54



individual is infectious and the other is susceptible. wise, there aré possible opportunities for
transfer between noddsaand8. A measure ohon-weightedlegree centrality in this same network
would identify Node3 as the most central, even though Nadmakes fewer overall contacts than

Node4.

FIGURE 4.1. Contact centrality illustrated by Node

Degree centrality is normalized by dividing each centyalieasure by the number of possible
edges, which iss — 1 in a graph of size:. Because the weight of edges in a weighted graph is
potentially unlimited, contact centrality is normalizeg diividing by the total of all edge weights.
Like standard normalization techniques, this will prodaceentrality value betweehand1, in-
clusive. A normalized contact centrality @indicates that the node is disconnected, as illustrated
by Node3s in Figure 4.2. A normalized contact centrality bindicates that the graph is structured
as a star or wheel, as illustrated by Notlen Figure 4.3. The formula for normalized contact
centrality of Node, C'x (i), is given in Equation 21. This is simply the contact centyadif Node

1 divided by the sum of half of the undirected weighted adjagenatrix.

FIGURE 4.2. Disconnected node with a contact centrality dfustrated by Node3
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FIGURE 4.3. Node4 has a normalized contact centrality valuelof

4.2.2. Transmission Centrality

Transmission Centrality measures the degree to which an individual lies on a poteraizs-
mission path between other individuals. Transmissionreétytis a variation of betweenness cen-
trality such that edge weights are taken into consideratitk Brandes provides an algorithm for
determining betweenness centrality in weighted graphisampaiper “On Variants of Shortest-Path
Betweenness Centrality and their Generic Computation]. [Idansmission centrality, as defined
in this paper, applies this algorithm, as well as the sugglsse of weight inverses to indicate that

stronger weights represent closer ties.

DEFINITION 4.2. Transmission centrality is defined as the likelihoaat #n individual lies on a

randomly selected shortest weighted path between any twer otdividuals in a network.

To determine overall transmission centrality, it is adegetous to calculate partial transmissi-
bility, p« (i), for each node, as shown in Equation 22. In this formglarepresents the number
of geodesic paths from to ¢t and g4 (i) the number of geodesic paths fronto ¢ that contair.
Partial transmissibility represents the probability thaiodei lies on the geodesic path from node
s to nodet for distinct nodes # i # t.

The transmission centrality of a node is the sum of all thégddransmissibilities. Equation 23
displays the calculation for transmission centrality ofilead The double summation is required in

the formula because for each nogall other pointg must be considered in determining whether
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1 lies on one or more geodesic paths frero ¢. If nodei lies on every geodesic path frosrto
t, the transmission centrality for nodés increased by one. If nodeonly lies on a portion of the
geodesic paths fromto ¢, the transmission centrality for nodés increased by that proportion.

The largest possible transmission centrality occurs whaten lies on every geodesic path
between every two nodesandt, s # i # t. In terms of public health, if an individual is in a
position to have maximum transmission centrality, vadiiggthis individual effectively protects
an entire segment of the population. For example, a persgroap of people who bring supplies
to a remote village may have maximum transmission centtaliand from the village. Vaccination
prevents transfer of disease from the greater populatidnetoillage and likewise, transfer from
the village to the greater population.

Since there are — 1 nodes not equal tbandn — 2 nodes not equal toor s, the maximum
possible transmission centrality is one-half- 1 timesn — 2 as shown in Equation 24. Division
by 2 is necessary in an undirected graph since the path fréort is equivalent to the path from
t to s. This maximum value is used to normalize transmission eétis. The normalized value
calculation for nodé, C'7 (i), is shown in Equation 25.

The formulas for transmissibility are identical to thosebetweenness centrality. However,

there is a difference in the definition of the geodesic pativéen two points. In a non-weighted
graph, the path length between poirgnd pointt is measured by the number of edges between the
two points. A geodesic path frorto ¢, therefore, is one that has the fewest edges betwaeadt.
In a weighted graph in which the weight indicates the numibeontacts between two individuals,
it is reasonable to consider a path to be shorter along maelheveighted edges. Thus, the
sum of the inverse of all edge weights along each path frdmt is calculated to determine the
geodesic path.

This calculation of the geodesic path makes a significaferdifice when considering disease
transmission. Consider a situation illustrated by Figureid which the individual represented
by Node0 is infectious and all other nodes are susceptible. Consiglgath length only, Node

3 is most likely to become infected via Node However, if the frequency of contacts is taken
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into account, Nod& is most likely to become infected via Nodésand2. Node4 has a higher

betweenness centrality, whereas Notlesnd2 have higher Transmission centralities.

(22) puli) = ( ! ) (i) = 220

9t

n n

(23) Cr(i) = > pali)

s=1 t=s+1

n — — n2 —
(24) maxCr(i) = ( 1)2(n 2) _ zn +2

(25) Cr(i) =

FIGURE 4.4. Weighted geodesic path example: The geodesic path @roon3 in this
weighted contact graph is— 1 — 2 — 3

4.2.3. Spread Centrality

Spread Centrality measures the social distance between an individual ang etleer indi-
vidual in the population. Spread centrality is based uposeaess centrality with an additional

condition that a larger edge weight value indicates a cleseral distance. The formula used to
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calculate spread centralit§;s (i), is the sum of the geodesic distances frota j, d(i, j), for all
points;j # i as given in Equation 26. The formula for spread centralitiiéssame as that for close-
ness centrality except that geodesic distances are caduda discussed above for transmission

centrality.

DEFINITION 4.3. Spread centrality is defined as the weighted sociamist between an individ-

ual and every other individual in the social network.

Normalization for spread centrality must consider edgeghsiin addition to size of the graph.
Normalization for closeness centrality is achieved by iplyling the raw value by: — 1. This stan-
dardizes across any network size so that the maximum clss@f@ny node is obtained when that
node is connected to every other node and the normalizeé \&lunity. In a weighted graph, a
maximum normalized value of unity for spread centrality idaoned when the unweighted nor-

malization is divided by the maximum weight evenly disttdxi over all other nodes as shown in

Equation 27.
. S
7j=1
1 2 1
27) Cs(z) (n - 1)@ B (n - 1) Cs()

Do Ay XD Ay
i=1 j=i+1 i=1 j=i+1
n—1)

4.3. Simulating an Outbreak on an Established Contact Graph

The third and final stage of the experiments presented hexelre simulation of outbreaks
across an established contact network once central nodesbien vaccinated. Outbreaks are
based on the susceptible-infectious-removed (SIR) mddelidsed in Chapter 2. Disease param-
eters are defined in Table 4.2. The total number of contacthéentire population is calculated

as the size of the populatior\, times the average number of contacts per person, pertay,
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There are two primary components to the outbreak simulatitake Contacts, Algorithm 2, and
Update Population, Algorithm 3. The simulation loops tlgbuahese two modules until there are

no individuals in either the Latent or Infectious state.

Algorithm 2 MAKE CONTACTS

TotalContactCount— 0
while TotalContactCount: TotalContactslo
P1<— random number from O t&/ — 1
P2 — index of neighbor of Person[P1] by weighted selection
Person[P1].ContactCount Person[P1].ContactCount + 1
Person[P2].ContactCount Person[P2].ContactCount + 1
TotalContactCount— TotalContactCount + 2
rn < random number between 0 and 1
if Person[P1].State= Infectious and Person[P2].State= Susceptibléhen
if rn<TRthen
Person[P2].State- Latent
Person[P2].StateCounrt 0
Person[P1].SecondaryInfections Person[P1].Secondarylnfections + 1
InfectiousGraph AddDirectedEdge(P1, P2)
end if
elseif Person[P2].State-= Infectious and Person[P1].State= Susceptiblehen
if rn<TRthen
Person[P1].State- Latent
Person[P1].StateCount 0
Person[P2].SecondaryInfections Person[P2].Secondarylnfections + 1
InfectiousGraph AddDirectedEdge(P2, P1)
end if
end if
end while

TABLE 4.2. Disease Parameters

Parameter | Explanation

N Population Size
CR Average number of contacts per person, per day
TR Transmission rate of the disease

DaysL | Number of days in the latent state
Daysil Number of days in the infectious state

The experiments for this dissertation are conducted usingrams written in Perl. Perl is

selected as the language of choice primarily because itsoffepowerful graph library and has
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Algorithm 3 UPDATE POPULATION

LatentCount— O
InfectiousCount— 0
RemovedCount- 0
fori=0toN —1do
if Person([i].State-= Latentthen
if Person[i].StateCount DaysLthen
Person[i].State— Infectious
InfectiousCount— InfectiousCount + 1
Person([i].StateCount- 0
else
LatentCount— LatentCount + 1
end if
elseif Personli].State-= Infectiousthen
if Person[i].StateCount Dayslthen
Person[i].State— Removed
RemovedCount— RemovedCount + 1
Person([i].StateCount- 0
else
InfectiousCount— InfectiousCount + 1
end if
elseif Person[i].State-= Removedhen
RemovedCount— RemovedCount + 1
end if
Person[i].StateCount- Person[i].StateCount + 1
end for

extensive community support. As open-source softwarecalde is modifiable which is advanta-
geous in meeting the needs of this study. For example, thehGredule in Perl includes not only
the standard functions such as adettex, addedge, etc., but also more complex functions, such
as APSP (All-Pairs Shortest Path) and Betweenness [40].BEhweenness function offered by
the Graph package returns a betweenness value as desgyibeeldman [32]. This open-source
code is modified to create a module for calculating conteamsimission, and spread centralities as
previously described. These three measures are efficiemtipined into a single module because
of the overlap in the required calculations.

Before simulating any outbreaks, statistical analysegar®ormed on social network graphs
to determine if graphs created with the same parametersipecstatistically equivalent network

structures with regard to the distribution of node centiei The Contact Rate (CR) is assigned
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a value of20 and the Neighborhood Size (k) is assigned a valug dfhree population sizes are
tested,N = 50, N = 150, and N = 250. Four values op are tested for each population size,
p=0,p=0.01,p=0.25 andp = 0.5. The valuep = 0 represents an ordered graph. Larger
values ofp represent small-world graphs that approach random graphis axcreased. These four
values are tested to provide a range of graph structuresedébr value o, thirty distinct graphs
are created and for every graph, and the contact, spreadrasinission centrality measures are
recorded for every node. From this information, two groupdaia for each centrality measure
and each distingi value are compared. Data Set 1 is comprised of the first tgrhgrand Data Set

2 is comprised of the last twenty graphs. This division ofdlaé allows: trials to be compared
with 2n trials to ascertain if more than simulations are necessary to generate representative
graph structures. The mean and standard deviation of eatfality measure are calculated for
every graph as well as the average of the means and standaadiales for each data set. The
results of the graph structure analyses are summarizeied4.3, 4.4, and 4.5 and discussed in
Section 4.4.

Disease outbreaks are simulated over ten distinct grapttstes for each set of graph param-
eters. Additionally, ten outbreaks for each vaccinatioategly are simulated within each graph
structure. Experiments are performed on population siz&§,0150, and 250. The value pfis
set to0, 0.01, 0.25, and0.5 for each set of experiments. A structural layout of the expents for

this chapter is depicted in Figure 4.5.
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Figure 4.5 describes the organization of the experimentsetier, it should be noted that each
simulation in the diagram represents distinct outbreaker afach of the following vaccination
strategies: low contact centrality, high contact certiyaliansmission centrality, spread centrality,
and randomness. For comparison purposes, outbreaks aratgthwithout vaccination as well.
This results in a total of, 200 simulated outbreaks (6 strategies, 10 outbreaks on eaph,gta

graphs, 4 values fqs, and 3 values fon).
4.4, Results

From the experiments discussed in this chapter, resultprasented based on observations
regarding graph structure and centrality distributiorgpdr structure and outbreak analyses, and
graph structure and vaccination methods. Observationadh ef these areas provide interesting

findings which will hopefully generate continued researcthis area.
4.4.1. Graph Structure and Centrality Distribution

Prior to outbreak simulations, graph analyses are perfonmgrovide a guideline regarding
the number of simulations necessary for statisticallyifigant results. In addition to increasing
the level of confidence regarding further simulations, #sults from this preliminary study offer
insight regarding the relationship between graph strectund centrality distribution. The results
are summarized in Tables 4.3, 4.4, and 4.5, in which Data $&tdmprised of averages from a
set of 10 graphs and Data Set 2 is comprised of averages frayrapds, such that all 30 graphs
are created using the same set of parameters. The congiftetveeen Data Sets 1 and 2 for
each value ofV andp over all distributions implies that experimentation oven distinct graph
structures should produce reliable results.

The average means and standard deviations for contacaligrwer population sizes 50, 150,
and 250 are presented in Table 4.3. The average contacalifgritas minimal variation across all
values ofp for each specific N value as expected. The graphs are credtea specific number
of edges, (N * CR)/2, therefore, the average contact cetytrsthould be equivalent for a given
population size. Due to normalization, which is a divisignthe total of all edge weights, the

average contact centrality decreases as the populatiemsieases.
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The average means and standard deviations for transmessitnality over population sizes 50,
150, and 250 are given in Table 4.4. Unlike the average cooeatrality, the average transmission
centrality does not remain consistent within a given pojpartesize. As the probability of non-local
contacts increases, the average transmission centradseases. Comparing the transmission
centrality among the three populations sizes, it is notedlwhenp = 0 (all contacts are local),
the transmission centrality is very similar regardlesshef population size. However, for> 0,
these values do not remain consistent over the various abpuilsizes.

The average means and standard deviations for spread litgrakeer population sizes 50,
150, and 250 are given in Table 4.5. The average mean spratdlitg tends to increase as the
probability of non-local contacts increases from the lowadues,p = 0 andp = 0.01 to the larger
values,p = 0.25 andp = 0.5, although in every case there is a slight drop in spread akgtr
fromp = 0.25 to p = 0.5. This is an interesting point, suggesting that spread aktytmay reach
a peak in a small-world graph in whighhas a value somewhere betweges: 1% andp = 50%.
Although outside the realm of this study, this result intksahat further investigation is warranted

in this area.
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TABLE 4.3. Contact Centrality Distribution Statistics

Contact Centrality Average Standard
N =50 Mean Deviation

Data Set1 0.04000 0.00880
Data Set2 0.04000 0.00890
Data Set1 0.04000 0.00941
Data Set2 0.04000 0.00912
Data Set1 0.04000 0.00934
Data Set2 0.04000 0.00881
Data Set1 0.04000 0.00884
Data Set2 0.04000 0.00878

p=0

p=0.01

Data Set1 0.01333 0.00303
Data Set2 0.01333 0.00300
Data Set1 0.01333 0.00301
Data Set2 0.01333 0.00302
Data Set1 0.01333 0.00299
Data Set2 0.01333 0.00300
Data Set1 0.01333 0.00291
Data Set2 0.01333 0.00299

Data Set1 0.00799 0.00181
Data Set2 0.00800 0.00183
Data Set1 0.00800 0.00178
Data Set2 0.00800 0.00178
Data Set1 0.00801 0.00211
Data Set2 0.00800 0.00210
Data Set1 0.00799 0.00247
Data Set2 0.00800 0.00250

p=0.01

p=0.25
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TABLE 4.4. Transmission Centrality Distribution Statistics

Transmission Centrality Average Standard
N =50 Mean Deviation

Data Set 1 0.09227 0.08425

p=0
Data Set 2 0.09151 0.08379
=001 Data Set 1 0.07304 0.07063
Data Set 2 0.07490 0.06897
0=025 Data Set 1 0.03146 0.02338
Data Set 2 0.03222 0.02439
0=05 Data Set 1 0.02400 0.02113
Data Set 2 0.02399 0.01936
N = 150
0=0 Data Set 1 0.09568 0.10560
Data Set 2 0.09516 0.10415
0 =001 Data Set 1 0.03838 0.03887
Data Set 2 0.03953 0.03950
=025 Data Set 1 0.01418 0.00895
Data Set 2 0.01421 0.00897
0=05 Data Set 1 0.01086 0.00720
Data Set 2 0.01085 0.00734
N = 250
0=0 Data Set 1 0.09625 0.11009
Data Set 2 0.09560 0.10919
=001 Data Set 1 0.02791 0.02749
Data Set 2 0.02805 0.02743
0=025 Data Set 1 0.00968 0.00656
Data Set 2 0.00980 0.00655
_ Data Set 1 0.00736 0.00543
p=0.5

Data Set 2 0.00739 0.00568
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TABLE 4.5. Spread Centrality Distribution Statistics

Spread Centrality Average Standard
N =50 Mean Deviation

Data Set1 0.07994 0.00471
Data Set2 0.07970 0.00473
Data Set1 0.08362 0.00635
Data Set2 0.08195 0.00584
Data Set1 0.09090 0.00636
Data Set2 0.09121 0.00634
Data Set1 0.08811 0.00739
Data Set2 0.08817 0.00693

p=0

p=0.01

Data Set1 0.02879 0.00082
Data Set2 0.02870 0.00086
Data Set1 0.04746 0.00421
Data Set2 0.04674 0.00418
Data Set1 0.06735 0.00353
Data Set2 0.06740 0.00359
Data Set1 0.06524 0.00367
Data Set2 0.06528 0.00387

N =250
Data Set1 0.01763 0.00050
Data Set2 0.01741 0.00047
Data Set1 0.03918 0.00321
Data Set2 0.03893 0.00341
Data Set1 0.06065 0.00348
Data Set2 0.06055 0.00354
Data Set1 0.05872 0.00398
Data Set2 0.05893 0.00402

p=0

p=0.01

p=0.25

p=0.5
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4.4.2. Graph Structure and Outbreak Analysis

The severity of every simulated outbreak is measured bgseatihe proportion of the popula-
tion that becomes infected, the valuefyf, and the duration. These findings support similar results
presented in Chapter 3. The results are summarized in Tal8ed.7, and 4.8. Although there
are exceptions as noted in the tables, general trends aeevedsregarding each of the severity
measures as discussed below.

The proportion of the population that becomes infectedrmiyttie simulations after implemen-
tation of a vaccination policy (see Table 4.6) ranges fridm% to 88.7%. The lowest average
occurs atNV = 250 andp = 0 under the high contact vaccination policy. The highest ayer
occurs atV = 150 andp = 0.25 under the low contact vaccination policy. Consistent wlne
lier experiments, the proportion of infected individuatgreases with the number of non-local
contacts regardless of the vaccination policy. This is acation that restricted contacts have a
tendency to confine the spread of an outbreak. Additionthé/proportion of infected individuals
is found to be considerably higher in smaller populationsiinulations in which there are no, or
very few (p = 0 or p = 0.01) outside contacts. This disparity is not observed in sitorhg with
a larger probability of non-local contacis £ 0.25 andp = 0.5). The neighborhood sizé, = 6,
is held constant for these experiments regardless of thalaign size which may account for
this discrepancy. In smaller populations, the neighbodhsine is proportionally larger, thereby
increasing the probability that the disease will transfea higher proportion of individuals in the
population.

Average values of?y;, as shown in Table 4.7 range frop65 to 4.07 in simulations with
vaccination implementation. The low value 265 occurs atN = 50 andp = 0 under the
random vaccination policy. The highest averagel.67 occurs atN = 50 andp = 0.5 under
the low contact vaccination policy. All vaccination stigites are shown to lower the value B§.
Regardless of the population size or the type of vaccinatios value ofR, tends to increase
with the probability of outside contacts. The populatiaresiV, does not appear to have as much

influence overR, as the probability of non-local contacts and the vaccimatiethod. Perhaps
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TABLE 4.6. Comparison of Percent of Population Infected basedparific Vaccination
Strategies

Percent of Population Infected

High Contact Vaccination Transmission Vaccination
N p=0 p=001 p=025 p=05|N p=0 p=0.01 p=025 p=0.,5
50 62.1 66.3 83.3 86.9| 50 63.3 65.4 85.1 84.3
150 264 47.2 85.7 84.2| 150 324 41.0 83.2 84.2
250 154 36.7 85.7 82.2| 250 23.2 28.8 84.7 84.1

Random Vaccination Spread Vaccination

N p=0 p=001 p=025 p=05|N p=0 p=0.01 p=025 p=0.,5
50 65.6 73.9 86.3 86.3| 50 72.6 69.1 83.8 85.9
150 344 52.7 86.7 85.4| 150 48.6 47.6 83.6 84.4
250 21.3 43.3 85.9 87.5| 250 34.2 41.8 84.5 84.1

L ow Contact Vaccination No Vaccination
N p=0 p=001 p=025 p=05|N p=0 p=0.01 p=025 p=0.,5
50 73.9 77.8 87.7 87.7|/50 93.7 94.1 96.8 98.7
150 34.6 60.4 88.7 86.1| 150 68.3 87.0 96.9 98.9
250 222 43.7 88.4 87.9| 250 53.1 85.6 97.1 97.9

the most notable finding is that the value &f is not a good predictor of the proportion of the
population that will become infected without additionahsa@eration of the graph structure. This
implies that a given disease with an estimatgdvalue is not likely to manifest itself in the same
manner under different population dynamics.

TABLE 4.7. Comparison oR?y Values based on Specific Vaccination Strategies

R, Values

High Contact Vaccination Transmission Vaccination
N p=0 p=001 p=025 p=05||N p=0 p=0.01 p=025 p=0.5
50 2.75 2.69 3.04 3.20{50 2.86 2.87 3.17 3.29
150 2.78 2.70 3.29 3.22|| 150 2.70 2.75 3.92 3.38
250 2.80 2.63 3.21 3.20| 250 2.92 2.80 2.85 3.39

Random Vaccination Spread Vaccination

N p=0 p=001 p=025 p=05||N p=0 p=0.01 p=025 p=0.5
50 2.65 2.77 3.01 3.31{50 2.97 2.89 3.23 3.11
150 2.84 2.70 3.20 3.43|| 150 2.96 3.10 3.09 3.22
250 2.85 2.85 3.16 3.53|| 250 3.02 3.00 3.14 3.19

L ow Contact Vaccination No Vaccination
N p=0 p=001 p=025 p=05||N p=0 p=0.01 p=025 p=0.5
50 2.83 2.94 3.39 4.07|50 3.18 3.24 3.66 4.05
150 2.94 3.11 3.46 3.58| 150 3.02 2.94 3.56 4.15
250 2.73 3.03 3.45 3.67|| 250 3.09 2.99 3.54 4.05
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The average duration, as shown in Table 4.8 ranges from a g8 days which occurs at
N = 50 andp = 0.5 after low contact vaccination, as well as no vaccinatioma tugh average
value, with vaccination, of45 which occurs atV = 250 andp = 0 after spread vaccination and a
high average value dfl1 days without vaccination. Under the same vaccinationesjsaind the
same graph structure, it is observed that larger popukasostain the disease for a longer period
of time, but this is not an indication of the severity of thelmeak. As withR,, there is not a direct
correlation between the duration of the outbreak and thpgtmn of the population infected.

TABLE 4.8. Comparison of Outbreak Duration (in days) based onip®@accination Strategies

Outbreak Duration (Days)

High Contact Vaccination Transmission Vaccination
N p=0 p=0.01 p=025 p=05|N p=0 p=0.01 p=025 p=05
50 61 56 36 34 |50 63 57 35 32
150 78 95 50 41 || 150 89 91 49 41
250 74 116 53 46 | 250 103 109 53 45

Random Vaccination Spread Vaccination

N p=0 p=0.01 p=025 p=05|N p=0 p=0.01 p=025 p=05
50 64 58 37 32 |50 68 62 35 33
150 97 102 a7 40 | 150 123 99 a7 41
250 101 130 51 44 | 250 145 122 52 45

L ow Contact Vaccination No Vaccination
N p=0 p=001 p=025 p=05|N p=0 p=001 p=025 p=0.>5
50 65 60 33 30 |50 68 61 32 30
150 99 104 46 38 |[150 167 123 43 37
250 110 122 51 43 | 250 211 178 47 41

4.4.3. Graph Structure and Vaccination Methods

All of the investigations presented in this dissertatiotidgate that the underlying social struc-
ture has an effect on the severity of a disease outbreak.nGthpt are ordered, i.e. contacts are
limited to a specific neighborhood, do not facilitate digesgread as well as small-world or ran-
dom networks. However, the indication that a specific vaestnategy is always more effective on
a particular graph structure is not supported by experisgrasented herein. Nevertheless, based
on the results shown in Tables 4.9, 4.10, and 4.11, vacomafiindividuals with low contact cen-

trality is generally not as effective as the other vaccorastrategies. This is an important finding
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because this is a strategy that is represented by polickatb directed at vaccinating the elderly
and infants. Among the vaccination strategies of high adnteansmission, spread, and random,
there is no confirmation that any one strategy is markedlyeneffective than the others, although
a general pattern does appear. High contact and transmissigination demonstrate a tendency
to produce a slightly lower proportion of infected popubatihan the other policies, and random
vaccination has a propensity to be more effective than lowmami vaccination, but less effective

than the other strategies.

TABLE 4.9. Vaccination Efficacy, Population Size N = 50: VaccioatMethod (Percent
of Population Infected, Percent of Outbreaks Infecti2tijs of Population)

Contact(62.1, 93) Transmissior{65.4, 87)
Transmissior{63.6,88)  Contact(66.3, 93)
Random(65.6,91) Spread69.1, 95)
Spread 72.6, 95) Random(73.9,95)

Low Contact(73.9,93)  Low Contact(77.8,96)
No Vaccination(93.7,99) No Vaccination(94.1,97)

p=0.25 p=05
Contact(83.3,95) Transmissior{84.3, 96)
Spread83.8,96) Spread 85.9,98)
Transmissiori85.1,97)  Random(86.3, 98)
Random(86.3, 98) Contact(86.9,99)

Low Contact(87.7,99) Low Contact(87.7,99)
No Vaccination(96.8,98) No Vaccination(98.7, 100)

4.5. Summary

Emerging diseases pose a threat to society. One of the naxtiqad defenses against such a
threat is through vaccination. However, vaccine avaiighig often a concern that public health of-
ficials must address. Limited supplies create a dilemmadaggawho should receive the existing
doses. The purpose of the experiments presented in thisechapo better understand the effects
of vaccination within various social structures and to detee if any of the particular vaccination

strategies under examination are more effective than therst

72



TABLE 4.10. Vaccination Efficacy, Population Size N = 150: VactioraMethod (Percent
of Population Infected, Number of Outbreak8%)

p=0 p=0.01
Contact(26.4, 57) Transmissior{41.0, 73)
Transmissior{32.4,67)  Contact(47.2,75)
Random(34.4, 71) Spread47.6, 81)

Low Contact(34.6,74)  Random(52.7, 78)
Spread48.6, 78) Low Contact(60.4, 83)
No Vaccination(68.3,91) No Vaccination(87.0, 95)
p=025 p=0.5
Transmissiori83.2,95)  Contact(84.2,96)
Spread 83.6,98) Transmissior{84.2,96)
Contact(85.7, 98) Spread 84.4,96)
Random(86.7, 98) Random(85.4, 96)

Low Contact(88.7,100) Low Contact(86.1,97)
No Vaccination(96.9,98) No Vaccination(98.9, 100)

TABLE 4.11. Vaccination Efficacy, Population Size N = 250: VactioraMethod (Percent
of Population Infected, Number of Outbreak8%)

p=0 p=0.01
Contact(15.4, 33) Transmissior{28.8, 56)
Random(21.3,44) Contact(36.7, 65)

Low Contact(22.2,46)  Spread41.8,73)
Transmissior{23.2,52)  Random(43.3,71)
Spread34.2, 66) Low Contact(43.7, 72)
No Vaccination(53.1,85) No Vaccination(85.6, 94)

p=0.25 p=05
Spread84.5,96) Contact(82.2,94)
Transmissior{84.7,97)  Transmissior{84.1, 96)
Contact(85.7, 98) Spread 84.1,96)
Random(85.9,97) Random(87.5,99)

Low Contact(88.4,100)  Low Contact(87.9,99)
No Vaccination(97.1,98) No Vaccination(97.9, 99)

In corroboration with the results of Chapter 3, it is obsdrtleat outbreak severity is dimin-
ished when social contacts are confined to a specific neigbbdr The severity increases as the
probability of contacts outside of the neighborhood rigédss finding is consistent for all popula-

tion sizes and all vaccination methods. It is additionalhgerved that the proportion of infected
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individuals in smaller populations is found to be consitdyraigher than that of larger populations
in simulations in which there are no, or very few, non-loaattacts.

All vaccination methods are shown to lower the valuggfand the proportion of the infected
population, but no single policy is determined to be sigaifity more effective than the others.
Alternatively, a vaccination policy based on low contactassistently found to be less effective
than the other policies. Implementation in real life is oftelated to random vaccination, low
contact vaccination, or a combination thereof. Under tleeiie circumstances of this study, there

is no substantial gain in changing this policy.
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CHAPTER 5

CONCLUSION

Epidemiology has evolved and continues to evolve with theadement of technology. Con-
tributions to this field by Hippocrates, John Snow, and atleeeated a foundation for current and
future research. It is not only possible, but essentiat, ttiadiscipline of computer science inte-
grate with epidemiology and public health to combat dissasead. This dissertation is one effort
of many that is designed to bridge the gap among these fields.

As computational models become more prevalent, it is ingmbtb recognize that the structure
used to model a social network has an influence on the redulie simulated outbreak. If the so-
cial network is not accurately modeled, the results obthmay be unreliable. A basic assumption
for the work presented in this dissertation is that therestr@ng connection between the under-
lying social network and disease spread. Social networkslenup of individuals or groups who
are connected through family, friendship, work relatiamrsanother type of interdependent bond,
can be modeled as a graph in which each individual or grouppeesented by a node and each
relationship is denoted as an edge between two nodes. Tiotst of a graph that accurately rep-
resents a social network is a subject of debate. An ordegahgstructure implies that individuals
are only allowed to make contacts within their neighborhauldile a random structure indicates
that contacts can be initiated with anyone in the populat8mall-world graphs are those that fall
between ordered and random and are commonly used to repseséa networks. Many experts
agree that a small-world graph, as discussed in Sectio? @ aracterizes two essential properties
of social networks, clustering and the small-world effé€iustering refers to the tendency of peo-
ple to form groups and the small-world effect theorizes,tbataverage, there is a relatively short
distance between any two individuals in a population. Thislyg explores ordered, random, and

small-world graphs as underlying social networks.
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Investigations presented herein are the result of mulapkyses of disease spread in simu-
lated environments. The creation of social networks andegirent disease outbreaks are based
on graph theoretical concepts. This design allows the kst field of graph theory to be ap-
plied to the area of epidemiology. A well-recognized pagadithe SIR model, is superimposed
onto the social network graph structure. Initial invedtigras in this dissertation measure changes
in outbreak severity as a result of modifications to the $atracture. Subsequent experiments
explore the efficacy of several vaccination strategies.

Several conclusions are drawn from these experiments. Asialietwork progresses from
ordered to random, the neighborhood size becomes lesstimp.oA small neighborhood size with
a low probability for contact outside of the neighborhood aaignificant effect on the severity of a
disease outbreak, however, as the neighborhood size ordhalplity of random contacts increase,
the variation in severity is very minor. In fact, as the néigthood size approaches the size of the
population, the structure of the graph inherently movesfavdered to random regardless of the
probability of random contacts.

It is also observed that the duration of an outbreak and tlhialinumber of secondary infec-
tions, Ry, are not reliable indicators of the severity of an outbrékhort duration may result due
to the lack of progression of the disease throughout thelptipa, infecting very few individuals,
or it may result because the disease spreads very quickégting many. A value of?y > 1
generally indicates that an epidemic is likely to occur, beer, this is not always the case. In
circumstances when the neighborhood size is limited angbtbleability for random contacts is
low, it is observed thak, > 1 is not an accurate indicator. Although duration dfdare useful in
conjunction with the proportion of population infectedeytdo not provide enough information to
stand alone.

Chapter 4 explores the efficacy of targeted vaccinationcigsliunder the assumption of a
limited supply of vaccine. Unlike the earlier experimentsahich the contact graph is created

dynamically as the disease spreads, these experimentsréege a social contact graph so that
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key individuals can be identified for vaccination. Vaccioatmethods include high contact, trans-
mission, spread, random, and low contact. After vaccimatioten percent of the population, an
outbreak is simulated and measurements?gf duration, and the proportion of the population
infected are recorded. All vaccination methods are founidweer the value ofR, and decrease

the proportion of the population infected. Vaccinationmdividuals who make fewer contacts is
found to be the least effective strategy, but none of theimation methods are consistently more
effective than the others. Random vaccination generatbiret better results than low contact

vaccination, but is found to be slightly less successfuhttine other strategies.
5.1. Implications to Public Health and Policy Development

The experiments presented in this dissertation suggesbtita reducing an individual’s ef-
fective neighborhood size and limiting the number randomtacts have the potential to decrease
the severity of a disease outbreak. This does not necgssegilire an alteration of the actual
personal connections, rather a reduction in the abilitytierconnections to transfer disease. Pub-
lic awareness, prophylactic use, quarantine, and vacomate all methods that can effectively
reduce disease transfer. Early intervention may prevenbtcurrence of an epidemic/pandemic
or limit the severity of an outbreak. When vaccination methare employed, the findings herein
suggest that random vaccination is nearly as effectivergstid policies if the proportion of the
population to be vaccinated is low (10% for the studies cotetlin this research). Future stud-
ies may reveal that targeted strategies are more effedtthe iproportion of individuals that are

vaccinated is increased.

5.2. Limitations

Itis not possible to simulate a disease outbreak with cotalecuracy. The variance in disease
and population parameters along with the random naturesefde spread make it a tremendous
challenge to portray an epidemic/pandemic in a simulatetr@mment. Nevertheless, this is a
challenge that must be addressed in order to advance ouldaigevand understanding of disease

dynamics.

77



The computational complexity of the graph algorithms impdated in this research restrict
the breadth and depth of the experiments presented in $8emation. Many of the experiments
presented in Chapter 4 have execution times in exce88 bburs. Therefore, it is impractical
to increase the graph size to a level that simulates a largulation of individuals, such as a
metropolitan area. It should be emphasized, however, tdgsin a graph can represent groups
as well as individuals.

In the experiments conducted for this research, diseadieud#ts are held constant and param-
eter changes are limited to graph structure. Altering thagmission rate, latent period, and/or
infectious period will almost certainly change the rate &icki a disease progresses through a
population, but the relationship between graph structaceautbreak severity is likely to be the
same. A more significant limitation of this study is that Vaation policies are only implemented
over ten percent of the population. Vaccination of a largatipn of the population may reveal
a more distinctive pattern among vaccination strategiei$hofigh a more comprehensive study
may provide additional insights regarding the relatiopghetween graph structure and disease

dynamics, the findings in this dissertation are substaatidiprovide direction for future studies.
5.2.1. Future Work

Computation epidemiology is a growing field with unlimitedem questions. From the ex-
periments presented in this dissertation, there is muchrfms expansion. While population,
neighborhood size, and probability of non-local contacesatered, many other parameters are
held constant. Changes in these parameters, such as tleetcate, days latent, and days in-
fectious, may produce additional results. Additionally, iacrease in population size could be
performed to test scalability. In regard to neighborhoae sit can be argued that an individual
makes approximately the same number of contacts in a daydiega of the population size or,
alternatively, it might be assumed that an increase in @djoul size increases the contact rate. The
experiments involving vaccination (Chapter 4) maintairoastant neighborhood size, leaving a
room for future research involving variable neighborhozés. The vaccination simulations pre-

sented in Chapter 4 are designed to model a situation in vih&kaccine supply is very limited.
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Future studies might include a gradual increase in the ptimpoof the population vaccinated to
compare the efficacy as more individuals become vaccinated.

Computational epidemiology is becoming increasingly imgat in our global society. The
vast nature of this field of study requires a concerted efforh many agencies and across sev-
eral disciplines. Successful development of reliable nsodepends on a collaborative effort and
ongoing research such as that presented in this paper. Nl ndeavor is sufficient, but each

contribution is valuable.
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APPENDIX
CDC VACCINATION TABLE
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TABLE: Self-reported influenza vaccination coverage trends 1989 - 2008 among adults by age group, risk group, race/ethnicity, health-care
worker status, and pregnancy status, United States, National Health Interview Survey (NHIS)

Survey Year
Characteristics 1989 1991 1993 1994 1995 1997 1998 1999 2000 2000 2002 2083 2004 2005 2006 2007 2008
Age Group
18-48 33202 6104 10206 121207 131407 143305 155206 164207 171807 151206 163207 168407 17907 104205 155508 177408 00209
(54664) (36000}  (120%4) (L1903} (10757)  (233I8)  (10%46)  (18231)  (19400)  (20031)  (18437)  (18033)  (I8030)  (I7653)  (13861)  (13030) (11856)
50-84 104204 15010 23014 156£16 170218 319214 33.1=14 341213 MElS  321x13 340213 368£14 350:14 12911 331215 36.2=17 30514
(15655) (7612) (3620} (3443) (3000} {6513} (6104) (6110)  (6403) (6204) (6424} (6668) (6033} (7251} (5471) (5402) (5185}
285 304+11 41716 52014 553+18 38118  631+14 63314 65715 643214 630=14 656215 65514 64 6=14 M+l 5 641218 664=15 67018
{14244) (8453) {4198} (3971) (3442) {6878} (6257) (5887 (6001} (6048 {5757} (5662} (5013) (5940} {4573) (4474) {4358)
Age by Risk Status
13-40
High Risk HiA HA MiA HiA A 0716 17«18 126219 247220 209217 131220 M1 26021 18117 M55 737 108£16
(3263) (2758) (2508)  (3676)  (3009) (2457) (1341) (3558) (2580) (1872) (1670) (1713
Mot High Risk Hia Hia A HIA HiA 161405 144205 15408 160=07 140405 153207 158207 16.6+0.7 0145 141208 163208 18410
(13203)  (16673) {1640}  (16627)  (16814)  (15891)  (1S654)  (15442)  (1S03L) (L1954} (11338} (10123)
50-84
High Risk WA WA A HiA HiA 40518 434228 450217 430225 400423 436224 463216 455225 330412 444231 460231 406431
(2003) {1826) (1775)  (1920)  (147) (1960} (1006) (2104) (2352 (1705) (1641) (1620)
Mot High Risk HiA HiA HiA HIA Hia 18214 28014 19715 61T 281216 gl S 31716 32116 178411 B8 31310 35219
{4416) (4280) (4274) (4411) (4568) (4431) (4637} (4807) {4888) (3745} (3749) {3538)
Age by Race/Ethnicity
13-40
White Mot Hispanic 33202 5605 10007 174208 129400 151407 16108 17.1:09 18100 155208 1602038 18000 19800 11106 16.6=10 190211 114611
(40196)  (19655) (9525} (8715) (6961)  (13831)  (12162)  (11249) (11739)  (12100)  (11033) (10725} (10533 (10306) (7312) (6905) (6455}
Black Not Hispanic 39405 8111 10817 100=19 15642 4 13213 13116 15518 140=13  150=1% 157217 16016 143+18 0314 148210 146210 174412
{7523} (3726) {1720} (1551) {1394) {3313) (2735) (2688) (2901) (1881} {2601} (2581) (2710) (2504 (2468) (2181} {1923y
Hispanic 30206 §8+11 01222 108+£12 11117 103+11 131213 110416 134214 110412 124212 118213 11612 78:10 11013 130216 140417
(4653) (2477) (1048} (11313) (1900} (4294) (3884) (3583)  (3970)  (4161) (3808) (3960) (4015) (4005) (3108) (3004} (2559
APl 18211 75E11 113:18 148230 14847 144435 175434 177241 1211235 174220 107234 18130 215440 00£31 02241 D543 13851
{1392) (695) (417) (369) (312) (713) (504} (517} (607) (675) {633) (370) (370 (3s0) (574) (s05) (534)
50-64
White Not Hispanic 111207 154211 13818 26818 184221 338417 350214 358215 3TD=lT 346216 358215 388216 B3l M3 348217 381221 41510
{11252) (6031} {2892) (2606) (2108) {4612) {4511) (4412) (4530 (4825) (4654) (4738) (4848) (5105) (3754} (3661} {3490}
Black Not Hispanic 85x15 114226 150+32 175240 1954 125431 47436 173238 23B230 233439 JB0£3 5 284233 250234 W30 252+39 012346 35841
(2060) (1011} (458) {#45) (349) (890} (811} {786) {878) (966} {78s) (874) {931} (997) (218) {817) (208)
Hispanic 77424 143234 19173 11776 13851 128334 4142 16034 213535 121234 157538 73437 17738 154427 250238 27042 29441
(856} (382) (178} {194) 1348} (800) (693) (774) (783) (811) {790) (B47) (916) (891} (647) {659) (617)
APl *. 161288 336£101 1232116 270+159 336285 312283 12283 35506 20627 310285 317107 337807 D768 TTe04 3142105 33005
(142 (54) (58) (54) (140) (131 (115) (148) (134) (151) (78} (113 (121) (130) (137) (128)
265
White Mot Hispanic  31.1+13 43417 4017 B1EL9 60720 658+15 656%15 67916 666516 G54=15 65 6£16 68714 67 315 63216 67221 69.0=10 695420
(11871) (7184 (3585) (3333) (1761} {5481) (4934) (4581)  (4784)  (4601) (4485) (4401) (4562) (4600} (3267) (3117) (3113}
Black Net Hispanic 178413 75 314649 390£50 390455 448344 458244 40744 4BD=4S  4B1=4S 40 fixd 5 4802456 454244 397442 46524 5 55446 506547
{1606} {904} 423} 1414) (361) 1774) (BET) (642} {678) (663} (626) {609) (647} {660} (661) 1584) (583)
Hispanic 138+48 340286 4732128 379281 400178 527450 50351 551251 557£50  510=52 485250 454251 54651 417450 448250 511=50 54 5558
(464} {259) (121} (145} (245} (520) (531) (543) (568) (567} (51 {518) (584) {511} (410} {449) (438}
APl 194285 301402 54 T£181 4314321 S00=1fE 5122111 671106 TL7a04 601=110 5752116 578111 8344155 5272168 56.1x141 614111 627113 5882121
(123) (74} (30) (35} (50} (80} (23) (87) (82} (20} (96) (58} 1) 168} (106) (103} (101}

FIGURE A.1. CDC vaccination table
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18-43 High Risk by Race/Ethnicity

White Mot Hispanic  M/A HiA A WA NiA 123219 228431 104433 25215 J10e20 230424 M0+15 16416 184420 MBa3] 200435 304431
(2153) {1812) (1650)  (1789) (2013 (1591} (1464) [1584) {1633) (1078) (256) {1058}
Black Not Hispanic A HIA A WA A 173435 221448 104453 I16s43  200e40  130e5]  M3a54 I1IEeE 1S943E 13655 10655 19 8467
(519) (4511 (4a1) 426) (494) (410) 37) (434) (427} (370 (302) (304)
Hispanic ~ MiA WA WA WA NiA 126437  221a50 M21451 21743 102238 21248 200848 112640 I04ad4 206250 MEST 137250
(498) (434) (396) (410 (493) (394) (433) (468) (452) (331) (31 (281)
APl MIA WA A HiA A * . . ' 25541 052155 . 4472202 . 3952173 . 3142186
(56) (42) (30) (47) (34)
50-64 High Risk by Race/Ethnicty
White Not Hispanic M4 Wik NiA WA NiA 418431 448430 471431 461230 438228 452427 470430 470430 354416 452237 467437 491438
{1359} {1294) (1234)  (1281)  (1478) (1382) (1406) (1411) (1649) (1137) (1044) (1048}
Black Not Hispanic  HiA Wik A Wik A 344258 353474 41471 355260 304254 31475 I0Ta66 330464 3161 435463 446266 487474
(332) (271 (143) (344) (359) (281) (285) (319) (350} (208) (310 (138}
Hispanic M4 WA WA HiA WA 331465 383480 3B14T0 345280 2BD47 346482  I0THT2 3BSe66  MSaSS 413185 35674 477493
(153} (211 (148) (242) (258) (244) (270) (274 (200) (207) (218) (114}
APl WA WA WA HiA NA 4514711 4612185 . . . 4662187 . 3882170 ‘ . . S70s11
(30) (33) (41} 134) (31)
Age by Diabetes Status
12-48
With Diabetes  MN/A WA N WA NA 151447 312453 317455 315653 IB6S43 319453 364456 340406 195447 350254 300ess 370260
(477) (434) (419) (483) (542 (4886) (461) (553) (571) (470) (408) (388)
Without Diabetes  M/A WA NiA Wi A 141205 15105 160s07 16807 14706 150207 164207 174407 98405 40208 174208 10500
(11617)  (18981)  (17724) (18203)  (10374)  (17825)  (17567) (17477}  (17073)  (13381) (12610} (11465)
50-64
With Diabetes  MN/A WA N Wi NiA 432848 474248 0046 466581 477D 46Ba44  SLORSD 480437 403235 510250 454e47 537246
(671) (604) (621) (678) (765) {744) (770) (B35) (936) (718) {717) (737)
Without Diabetes  M/A WA NiA Wi A 308+14 315414 321213 331el6  301el4 324413 350815 343415 205211 306215 340418 37317
(5731) (5494) (5410)  (5647)  (5938) (5670) (5891) (6099) (6313) (4746) (4687) (4443}
Age by Asthma Status
13-40
With Asthma  HiA WA NA WA NiA 132431 215435 133437 2M1€30 266233 130431 290443 1440 115234 M4 304e53 30749
(901) (762 (703) (734) (580) (763) (675) (667) (728) (534) (528) (468)
Without Asthma ~ M/A Wik Nia WA WA 139205 15206 16107 167#07 146206  146sD6 164207 175407 99s05  152:08 171408 196209
(11414)  (18739)  (I7516) (18661}  (19031)  (19031)  (17345) (17357} (16911) (13314} (11504) (11378)
50-64
With Asthma  FiA WA A WA NiA 460267 552267 03478 551473 410266  S10s67 479470  S14a64 402463 468478 570476 508281
(250) (257) (126} (247} (279) {263) {275) (292} (310} (258) {138) (231)
Without Asthma /A WA N Wi NiA 313215 312414 335413 338216 31B=13 31Be13 363414 353214 20211 31515 354elB 391414
(6248) {5919) (5875)  (6145)  (6514) (6514) (6376) (6624) (6931) (5205) (5173) (4950)
HCW Status
Health-Care Workers 10009 167217 257435 314410 1935210 340421 370435 364416 376224 361225 384425 401535 410215 329421 417232 453s30 480419
(4849) (2646) (1387) (12079 (1153) (2387) (2120) (0m3) (2165 (2270) (1066) (1145) (2031) {2143) (1586) (1643) (1608}
Other Workers 46203 77204 12307 138208 149208 173:06 180207 10107 203:07 151a06 172aD5 209208  104:08  102:035 172408 198s00 122210
(49585)  (13526)  (11319)  (10535)  (®S71)  (19715) {17769y (18821) (1779}  {18826)  (18B2&)  (I&SOD) (16216}  (I6181)  (12636) (11910} (10798)
Pregnancy Status
Pregnant MiA WA WA HiA A 111246 84231 74433 100:34 104236 124230  118e44 120s50 15650 138440 153s40 19.147.1
(372) (335) (331} (317) (204) (319) (315) (263) (303) (240) (254) (187)
Mot Pregnant  MUA Wik A Wi NiA 119208 14309 44410 153210 13500  152all  158£11 1741} 105209 155212 171+13 10014
(B515) (7139) (6982)  (7408)  (73P1) (6956) (6775) (6657) (6511) (5189} (4874) (4379}

Table cell entries are % reporting infuenza vaccination in the past 12 months, +the 85% conddence interval haif-width (SE), with the unweighted sample size (n).

A asterix (") indicates the estimate was unreliable due to the n being less than 30 or the SE relative ta the estimate was greater than 0.3 (n<30 or RSE>0.3).
MNi& (mot available) indicates the years when the characteristic was not included in the survey. Nasal spray was incheded starting with 2006

FIGURE A.2. CDC vaccination table
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