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The fight against epidemics/pandemics is one of man versus nature.  Technological 

advances have not only improved existing methods for monitoring and controlling disease 

outbreaks, but have also provided new means for investigation, such as through modeling and 

simulation.  This dissertation explores the relationship between social structure and disease 

dynamics.  Social structures are modeled as graphs, and outbreaks are simulated based on a well-

recognized standard, the susceptible-infectious-removed (SIR) paradigm.  Two independent, but 

related, studies are presented.  The first involves measuring the severity of outbreaks as social 

network parameters are altered.  The second study investigates the efficacy of various 

vaccination policies based on social structure.  Three disease-related centrality measures are 

introduced, contact, transmission, and spread centrality, which are related to previously 

established centrality measures degree, betweenness, and closeness, respectively.  The results of 

experiments presented in this dissertation indicate that reducing the neighborhood size along 

with outside-of-neighborhood contacts diminishes the severity of disease outbreaks.  Vaccination 

strategies can effectively reduce these parameters.  Additionally, vaccination policies that target 

individuals with high centrality are generally shown to be slightly more effective than a random 

vaccination policy.  These results combined with past and future studies will assist public health 

officials in their effort to minimize the effects of inevitable disease epidemics/pandemics. 
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CHAPTER 1

INTRODUCTION

Naturally occurring epidemics/pandemics have always plagued mankind, however, increased

population coupled with decreased travel time in the modernera have amplified the cause for con-

cern over such events. Additionally, the cultural environment today is much more diverse than ever

before. An outbreak that once would have affected only a small portion of society might now im-

pact the entire world. Moreover, public health experts agree that future epidemics/pandemics are

inevitable [64]. We should not ask, “When will it happen?” but rather “How will we deal with it

when it happens?” The recent emergence of the H1N1 virus, also known as the swine flu, increased

public awareness regarding the serious nature of a pandemicevent. In fact, as of 17 October 2009,

the World Health Organization (WHO) reports more than414, 000 laboratory confirmed cases and

nearly5, 000 deaths worldwide attributed to the H1N1 virus [2]. In the United States alone, the

Centers for Disease Control and Prevention (CDC) reports4, 958 laboratory confirmed hospital-

izations and292 deaths as a result of the virus during the time period of 30 August 2009 through

10 October 2009 [1]. The breakdown of the US cases by age is shown in Figure 1.1. Disease dy-

namics, i.e. how, where, and to whom a disease will spread, are unpredictable. Emerging viruses

do not necessarily follow the same pattern as previous outbreaks of a similar nature.

Among other concerns, there is often a shortage of vaccines.Shortages may be caused by an

interruption in supply, an increase in demand, or a lack of funding [41]. In the case of the 2009

H1N1 swine flu, delays were attributed to problems in production, packaging, and distribution,

along with the challenge of producing the seasonal flu vaccine at the same time [35]. Regardless

of the reason, a lack of vaccine for an entire population presents the dilemma of who should

receive the available supply. Several options can be considered when vaccine priority decisions are

made. A policy that is best for the individual may not be optimal for the entire population [34].

Highest priority groups for the H1N1 vaccine were health care workers and people who were at
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risk of severe complications if infected. This included pregnant women, young children, people

who lived with or cared for children under six months old, andchildren ages5 to 18 with chronic

medical conditions [28]. A long-standing policy for seasonal influenza includes vaccination of the

elderly, even though schoolchildren and working adults areknown to transfer disease at a higher

rate due to having a higher contact rate [34]. A recent study conducted by researchers at Yale

University School of Medicine and Clemson University foundthat consideration of transmission

is an important factor when developing a vaccination policy. Further, the study concluded that

previous and new CDC recommendations are suboptimal based on five outcome measures: total

infections averted, total deaths averted, years of life lost, contingent valuation (an assumption of

life value based on age), and economic costs [53]. The controversy over who should be eligible to

receive a vaccine when the supply is limited is not one that iseasily resolved.

On the positive side, evolution of technology, such as real-time surveillance, has provided ac-

cess to unprecedented resources that can be used to fight the spread of infectious diseases. Even

the ability to quickly and efficiently disseminate information plays a vital role in preventing an out-

break from getting out of control. However, information alone is insufficient to adequately prepare

for the emergence of new and unknown infectious diseases. Simulation and modeling tools are

needed to better understand disease dynamics and prepare for unseen types of epidemics, thereby

improving methods for disease control. Development of suchtools requires cooperation and co-

ordination among the government, public health agencies, and universities. It further necessitates

a collaborative approach by experts in the fields of biology,medicine, sociology, epidemiology,

technology, computer science, etc. The joint effort of these entities and individuals are crucially

important to compensate for the favorable disease environment that has been created through the

natural progression of mankind. The interest of public welfare is at stake.
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(a)

(b)

FIGURE 1.1. CDC reported H1N1 related hospitalizations (a) and deaths (b) in the United
States [1]

1.1. Disease Definitions and Concepts

Terms associated with disease and disease spread may not be clearly understood by the general

public. Misconceptions that all diseases are infectious orthat all infectious diseases are communi-

cable are common. To appropriately model diseases, it is important to understand basic terminol-

ogy used in the field of epidemiology.
3



DEFINITION 1.1. Disease is an interruption, cessation, or disorder of body functions, systems, or

organs [54].

Infectious diseasesare caused by an invasion of biological agents, collectively referred to as

pathogensthat include bacteria, viruses, or parasites. Pathogens have the ability to enter, survive,

and multiply within a host. If the pathogens additionally have the ability to transfer from a host

to another agent, the disease is consideredcommunicable. The transmission of a communicable

disease can bevertical, host to offspring, orhorizontal, host to peer. Horizontal transmission

may occur through direct contact, may be air-borne, food-borne, or water-borne, or may require a

vector, as with Malaria. Both infectious and noninfectiousdiseases can be classified as eitheracute,

sudden onset with a relatively short duration, orchronic, less severe but much longer lasting [54].

The models developed for this research were designed to simulate infectious, communicable,

acute diseases. While not restricted to influenza, the models discussed herein emphasize influenza-

like illnesses. Four stages of progression, shown in Figure1.2, are generally associated with this

type of disease. The first stage describes the time period prior to the point of infection. This

is thesusceptiblestage. The second stage,presymptomatic, encompasses alatent state and an

incubationperiod. The latent state is the time beginning when an individual is first infected until

they themselves are able to infect others. The incubation period describes the time between the

point when infection occurs and the moment when symptoms emerge. The third stage is that of

clinical diseasewhich begins when symptoms first appear. The final stage is theremovedstate,

which is the result of recovery or death.

1.2. Disease Simulation

When a disease is introduced into a population, certain conditions must be met in order for the

disease to transmit and successfully spread. Both disease and population parameters influence the

course of the potential outbreak. To simulate an infectiousoutbreak it is important not only to use

a valid disease model, but also to recognize the essential role of the underlying social network.

In the initial stage of an outbreak, the majority of the population is susceptible to the disease.

As the disease spreads, the number of individuals who are susceptible decreases and the number
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FIGURE 1.2. Disease progression within a host

of those who become infected/infectious increases. Assuming that the disease is acute rather than

chronic, the progression of the outbreak eventually results in a decrease in the number of infectious

individuals and an increase in the number of those who have recovered from the illness or are

otherwise removed, such as through natural immunity or death. The movement of the population

from states of susceptible, infectious, and removed forms abasis for modeling disease spread.

The susceptible-infectious-removed (SIR) paradigm and its counterparts, such as susceptible-

infectious-susceptible (SIS) and susceptible-latent-infectious-removed (SLIR), are recognized stan-

dards for modeling many infectious diseases. The SIR model (discussed more thoroughly in Sec-

tion 2.2) was first introduced by Kermack and McKendrick in a 1927 paper titled “A Contribution

to the Mathematical Theory of Epidemics” [46]. The basic SIRmodel can be modified as necessary

to more accurately represent the particular disease under question.

Just as the disease model is important to the simulation, so is the underlying social network.

Social networks are complex and graph models used to mimic these networks may vary. Connec-

tions between individuals, and thus disease contacts, are precarious. The research presented in this

dissertation explores the effect of graph structure on the dynamics of disease spread in a simulated

environment.
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1.3. Disease Dynamics

Is it possible to precisely measure the severity of an epidemic or pandemic? What gauge can

be used to determine that an outbreak at a particular time andplace is more destructive than one

at another time and/or location? Because parameters changefrom one occurrence to another, it

may be impossible to make an entirely valid comparison between two distinct outbreaks. There

are, however, indicators that are widely accepted as epidemiologic quantifiers. Even though these

standards may not provide a completely unbiased account forcomparison, they do provide a metric

for classification.

One quantifier often referred to in disease-related literature is the basic reproduction number,

R0 [6, 7, 19, 39, 67].R0, as formally defined in Section 2.3, is the expected average number of

secondary infections by a single infectious individual in acompletely susceptible population. It is

an epidemic threshold that is measured at the beginning of anoutbreak at a time when the majority

of the population is susceptible.R0 provides an indication how quickly an infection will spread.

BecauseR0 is based on secondary infections, larger values ofR0 suggest a higher probability that

an outbreak will progress into an epidemic or pandemic. After an epidemic/pandemic has run its

course, the duration of the outbreak and the total number andproportion of individuals infected

can also be considered. In a simulated environment, these values can be measured and compared

from one outbreak to another.

1.4. Social Networks and Graph Theory

Graphs are exceptionally useful tools for analyzing socialnetworks [79]. In the study of graph

theory, graphs are represented by a set of vertices and a set of edges such that the edges represent

an association between two vertices [82]. In a social network, the vertices represent individuals

or groups of individuals and the edges represent some sort ofconnection between two people or

two groups. There are many advantages to using graphs to analyze social networks, including an

established vocabulary, mathematical operations, and theability to use and prove theorems about

graphs that can be transferred to the social structure [79].
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If the social structure is already known, a corresponding graph can be constructed based on

the existing data. An example of this is Padgett’s Florentine families [79]. This network consists

of sixteen families where the edges represent marriages between pairs of families. Historical data

allows the creation of a representative graph. On the other hand, when a graph is developed for

simulation purposes, the exact nature of the structure may be unknown because the network usually

emerges as a function of a random sequence. The simulated graphs constructed for this research

range from entirely random to completely ordered.

1.5. Problem Statement

The foundation of disease modeling is dependent upon the design of the underlying social

network. The fundamental premise of the research presentedin this dissertation is that network

structure and disease outbreaks are tightly coupled. Results presented here reveal that changes

in social structure affect several aspects of disease spread, including the basic reproduction num-

ber, the outbreak duration, and the proportion of individuals who become infected. Further, it is

demonstrated that intervention strategies within an established social structure affect these figures.

In particular, the following research questions are addressed:

(i) In a simulated environment, how does the particular social network structure predict

R0, the proportion of the population that becomes infected, and the epidemic/pandemic

duration?

(ii) How does the vaccination of key individuals in an established social network, as identi-

fied by centrality measures, affect the progression and outcome of an epidemic in terms of

R0, the proportion of the population that becomes infected, and the epidemic/pandemic

duration?

(iii) Which vaccination strategies are the most effective for specific social network structures

in a simulated environment as measured by a reduction in outbreaks affecting greater

than20% of the population and a reduction in the proportion of the population infected?
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Although the results from simulated environments are not likely to completely transfer to real

life, the insight gained from such research can certainly help direct investigations in applied set-

tings. The questions addressed here are designed to promoteinterest in graph theory as it applies to

disease spread through social networks, particularly as anapproach that can be used to prevent or

impede an epidemic/pandemic. Targeted vaccination policies are explored at the theoretical level

in this research in expectation that the results will have relevance in practice.

1.6. Overview

This chapter has introduced key concepts and provided the motivation for the research pre-

sented herein. The remainder of this dissertation is structured as follows: Chapter 2, where most

of the significant literature is reviewed, establishes the necessary background in the areas of epi-

demiology, disease models, the basic reproduction number,and graph theory. Historical infor-

mation in the field of epidemiology is presented, highlighting several of the main contributors to

this area of interest, followed by an overview of an established disease model, SIR (susceptible-

infectious-removed). Next, the basic reproduction number, R0 is formally defined and discussed.

The remainder of Chapter 2 focuses on graph theory concepts and definitions. Chapter 3 presents

and discusses the experimental results related to the analysis of graph structure and outbreak sever-

ity. The findings in Chapter 3 relate to Research Question i. Chapter 4 illustrates the importance

of key individuals in a disease outbreak. Vaccination methods are simulated to address Research

Questions ii and iii. Chapter 5 presents the main perspectives of this study and summarizes the

research results.
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CHAPTER 2

BACKGROUND

2.1. Epidemiology

Epidemiology is the study of health-related states in an effort to prevent and control health

problems [54]. A primary focus of epidemiology is to determine the cause of disease and the

means by which disease can spread. This assumes that diseases are not randomly distributed,

but rather afflict specific individuals or populations who are at risk [38]. The traditional triangle

of epidemiology, as shown in Figure 2.1, demonstrates that communicable diseases involve an

agent, a host, and an environment. Theagentis the underlying cause of the disease, thehost is

the organism that carries the disease, and theenvironmentis composed of the surroundings and

conditions that make it possible for the disease to propagate over time [51, 54].

FIGURE 2.1. Epidemiologic triangle [54]
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Epidemiology dates back to the time of Hippocrates (460-377BC), who is considered to be the

father of modern medicine and the first epidemiologist [37, 54]. Many of his aphorisms are still in

use today, such as “As to diseases, make a habit of two things—to help or at least to do no harm.”

Possibly the most important contribution that Hippocratesmade to the field of epidemiology is that

of observation. He believed that as time passed, physicianswould be able to predict the diseases

that would likely affect the local population and when thosediseases could be expected.

John Graunt (1620-1674) added to the field of epidemiology and demographics by studying

death records in London in 1603 [16, 54]. He was the first to estimate life expectancies and thereby

establish the area of vital statistics to the field of epidemiology. Graunt developed a systematic

technique for understanding diseases and causes of death that contributed to the modern methods

that are still in use today.

Thomas Sydenham (1624-1689), sometimes referred to as the English Hippocrates, made ma-

jor contributions to the field of medicine by classifying fevers and identifying diseases along with

methods of treatment [31, 54]. Sydenham, like Hippocrates,endorsed an empirical approach to

medicine. He recognized that science is, and always will be,incomplete. This emphasizes the

need to rely on common sense in addition to pure factual knowledge. He is credited with stating,

“Investigate first, explain afterwards if you like; but remember that nature is always something

very much greater than all your explanations” [31].

Another respected physician who made a major contribution to the field of epidemiology was

John Snow (1813-1858) [54]. In the mid-1800’s, a large cholera outbreak occurred in London. By

spot mapping the cholera cases onto a map of London streets, Snow was able to discern a pattern

in the outbreaks. This pattern led to the conclusion that thecholera infections could be attributed

to the water being drawn from the Broad Street pump. John Snow’s study was instrumental in

demonstrating the importance of tracking diseases by spacial data [49]. Just as with Hippocrates,

Snow’s success came largely due to careful observation and record-keeping, sound epidemiologic

practices that are still relevant today. Current technology is capable of generating similar spot

maps that can be used to track disease outbreaks. The use of dynamic graphics, implemented with

10



global information systems (GIS) software, allows a point pattern analysis to be mapped onto a

case histogram [61]. The histogram can then display the number of cases, both by spacial and

temporal occurrences. This system of disease tracking is comparable to that of Snow’s, as depicted

in Figure 2.2.

(a)

(b)

FIGURE 2.2. (a) Snow’s cholera map [21]; (b) Maptitude GIS system [3]
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The list of contributors to the field of epidemiology is long and varied. The few mentioned

here, along with many others, established the foundation ofthis discipline. Researchers used re-

sources that were currently available to learn about diseases and epidemics. Although the methods

previously established are still valuable, technologicaladvances have provided new tools that ear-

lier scientists could have never imagined. Continued development in the field of epidemiology will

undoubtedly rely heavily on the use of technology. In addition to analyzing historical data, disease

outbreaks can now be studied theoretically through simulation. Computational epidemiology is a

relatively new domain that is certain to become a core component of epidemiologic research.

2.2. Disease Models

To better understand difficult computational systems that model disease outbreaks, it is help-

ful to first look at a widely accepted elementary model known as SIR (susceptible-infectious-

removed) [6, 46]. Initially in the SIR model, the majority ofthe population falls in the susceptible

category. As the disease spreads, individuals move from susceptible to infectious and from in-

fectious to removed, as represented in Figure 2.3. The bell-shaped curve shown in Figure 2.4

demonstrates the rise and fall of the number of individuals in the infectious group over the course

of an epidemic. Attributes of the graph are indicative of theseverity of the outbreak. The du-

ration of an epidemic is measured from the initial infectious case until there are no longer any

infectious individuals. The basic reproduction number, asdiscussed in Section 2.3, is measured

at the beginning of the outbreak. The area under the curve is directly related to the total number

of infectious individuals, however, the area must be divided by the infectious period to obtain an

accurate estimate. The basic SIR model makes the following assumptions:

• The population density remains constant. Births, deaths, and immigration are ignored.

• The population mixes homogeneously. That is, contacts between any two individuals are

equally likely to occur.

• An individual moves directly from the susceptible state into the infectious state.

• Once an individual enters the removed state, they remain in that state.

12



These assumptions form a solid foundation for disease modeling, however, many models are

based on the SIR paradigm to develop more complicated systems that include additional parame-

ters and relationships. It is quite common to find models thatinclude one or more of the modifica-

tions listed below:

• The population mixes in a non-homogeneous manner. Contactsamong individuals are

based on demography and/or geography.

• Additional states are incorporated, such as latent, exposed, or symptomatic.

• Individuals are allowed to become susceptible again after they have recovered from the

illness.

FIGURE 2.3. SIR schematic

FIGURE 2.4. Epidemic curve

The SIS model is a modification of SIR as shown in Figure 2.5 (a). This model is appropriate

when the disease under investigation is such that infected individuals recover, but do not develop

immunity to the disease. The SIS model is a modification of SIRthrough the elimination of the

removed state. Alternately, the SIR model can be extended through the addition of one or more

13



states. Figure 2.5 (b) illustrates the SEIR model which includes anexposedor latentstate. SEIR is

a suitable model for infectious diseases in which individuals enter a latent stage before becoming

infectious. Both SIS and SEIR are valid adaptations of the SIR model [5, 36, 42, 48].

(a)

(b)

FIGURE 2.5. Variations of the SIR model

2.2.1. Computation Models in Epidemiology

The spread of an infectious disease through a population depends, to a large extent, on random-

ness. The chance occurrence between an individual who is infectious with one who is susceptible,

the probability that the disease will transfer, and furtherpropagation to other members of the pop-

ulation lead to an increasingly intractable set of events. AMonte Carlo simulation is a statistical

sampling technique that is applicable to problems that havehigh levels of uncertainty [55, 56].

Monte Carlo methods are well-suited to model disease spreadand have been used extensively in

this area [11, 24, 13, 59, 58].

Implementation of computational models vary; common methods include cellular automata,

agent-based systems, contact models, and hybrid approaches. Cellular automata models (CA) con-

sist of a grid of individual cells, a set of cell states, a neighborhood definition, and a set of transition

rules [69]. Each cell in a CA begins in a particular state and may change state depending on the

transition rules and the state of neighboring cells. Agent-based models are designed with interact-

ing, autonomous agents that each follow a set of rules [50, 68]. The agents can display specific

behaviors and are able to react to their environment and/or other agents in the system. Agent-based
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models are often computationally expensive and may requireparallelization to work efficiently.

Contact models focus on the probability of contacts betweenindividuals. In a contact network,

vertices represent one or more individuals and edges represent contacts between individuals [57].

Hybrid models combine one or more computational models.

Mikler et al. developed a global stochastic cellular automata model (GSCA) which addresses

two of the limitations of the basic SIR model, that of homogeneous mixing and the lack of a latent

period [59]. The implementation of GSCA overcomes the problem of neighborhood saturation

found in classical CA models by allowing global contacts in addition to typical neighborhood con-

tacts. The GSCA has been used to model influenza, conjunctivitis, and the common cold. A hybrid

approach contact simulator, the global stochastic contactmodel (GSCM), was also developed at

the University of North Texas [58]. Like the GSCA, the GSCM includes a latent period and it

also incorporates a symptomatic state which allows a behavioral change to occur once an individ-

ual realizes that they have become infected. Increased contacts between individuals resulted in

an elevation of the number of infected individuals and a decrease in outbreak duration in simu-

lations conducted with the GSCM. Both the GSCA and the GSCM were designed to incorporate

geographic and demographic dimensions of the population under study.

EpiSims, developed in 2004 by researchers at the Universityof Maryland and the Los Alamos

National Laboratory in New Mexico, is another example of a SIR-based computational model [27].

EpiSims is an agent-based system that simulates a population of individuals, each following a

specific daily schedule. The social interaction network is represented as a bipartite graph consisting

of a set of nodes which represents people and a set of nodes which represents locations. Transfer

of disease is only possible between susceptible and infectious individuals when contacts are made

at a particular location during the same time frame.

EpiSimdemics, an SEIR model developed at Virgina Tech as an extension of EpiSims, broad-

ened the scope to include large, realistic social networks by making adjustments to parallelize the

code [10]. The input data set for EpiSimdemics is approximately 100GB and includes data from

the U.S. Census for demographics, NAVTEQ for road network information, Dun and Bradstreet
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(a commercial database) for business, the National Household Transportation Survey for schedul-

ing individuals, and the Digest of Education Statistics forschool locations and enrollment. The

algorithm used to simulate an outbreak is a simple discrete event simulation, which implies that

the system only changes state when an event occurs. The system is composed of both people and

locations. An example of an event is a particular person leaving a specific location at a given time.

If an infectious person and a susceptible person are at the same location at the same time, there

is a possibility for transfer of the disease. The model includes realistic states in addition to the

fundamental SEIR, such as vaccinated and asymptomatic. EpiSimdemics has been used for real

studies by the Department of Homeland Security, the Department of Defense, and the Department

of Health and Human Services.

Closely related to EpiSims and EpiSimdemics, researchers at Virgina Tech have more recently

developed EpiFast, a parallel agent-based SEIR model [13].EpiFast has many of the same features

as EpiSimdemics, but it executes much faster as the model is significantly less complex. Unlike

EpiSimdemics, in which state changes can occur every hour, EpiFast measures discrete time steps

by the day. EpiFast also increases speed by using a pre-constructed people-people contact network,

i.e. social network. Intervention strategies include vaccination, individual behavioral changes,

and facility closures. On similar networks, EpiFast was shown to execute ten times faster than

EpiSimdemics .

2.3. The Basic Reproduction Number

Individuals who become infected at the onset of an outbreak play a key role in the progression

of a disease. For an epidemic or pandemic to occur, the rate ofincrease in the number of newly

infected individuals at the beginning of the outbreak must exceed an epidemic threshold referred

to as the basic reproduction number,R0. The value ofR0 provides an indication of the transfer of

specific disease pathogens as well as the conduciveness of environmental conditions.

DEFINITION 2.1. The basic reproduction number,R0, is defined as the average number of ex-

pected secondary cases produced from a single primary infectious case in a completely susceptible

population.
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R0 is an established epidemiologic indicator used to estimatethe probability that an infectious

disease will create an epidemic or pandemic [6].R0 > 1 indicates that an epidemic or pandemic

is likely to occur because, on average, every infectious person will transfer the disease to more

than one other person; therefore, the disease will continueto spread. A value ofR0 < 1 suggests

that the disease spread cannot be maintained and should die quickly with relatively few individuals

infected.

It is unlikely that the primary infectious case and the secondary infections resulting from that

case can be identified, however, estimates ofR0 are generally based on data collected near the

beginning of an outbreak since the majority of the population is susceptible at that time.R0 pro-

vides an indication of how quickly a disease will spread throughout a population and is related to

a trendline based on initial data from an outbreak. The graphs in Figure 2.6 were created by simu-

lated outbreaks with estimatedR0 values of 2, 6, and 10. Each outbreak curve is accompanied by

a linear graphy = R0

d
x. In this linear equation,d represents the infectious period andx represents

a single day of the outbreak. Because an infectious individual has the potential to create secondary

infections overd days, dividing byd normalizes the trendline to the outbreak curve which mea-

sures infected individualsper day. Note that as theR0-related slope increases, the outbreak curve

becomes taller and the duration of the outbreak decreases. As R0 increases, the disease spreads

more rapidly throughout the population which results in an increase in infectious individuals (a

taller peak) and a decrease in the time it takes the epidemic to run its course (a shorter duration).

2.3.1. The Importance of UnderstandingR0

From a public health point of view, a clear understanding ofR0 is beneficial in determining a

course of action when a disease is introduced into a susceptible population. A valid estimate of

R0 provides an indication of the force of a specific disease. TheR0 estimate can be used to guide

implementation of accepted intervention strategies to prevent the outbreak from progressing into

an epidemic or pandemic. Estimates ofR0 have been calculated for past outbreaks of malaria,

tuberculosis, SARS, and Spanish influenza (see Table 2.1) [20, 19, 67, 71, 77].
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(a)

(b)

(c)

FIGURE 2.6. Outbreak graphs andR0-related slope lines.

The 2002-2003 SARS outbreak was kept under control largely due to early diagnosis and

patient isolation [20]. Chowell et al. used a variation of the SIR model (SEIJR, which includes

exposed and diagnosed individuals) along with regional andglobal data to determine the effects

that model parameters have onR0. In another article, Chowell and others studied the Spanish
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TABLE 2.1. R0 Estimates of Past Outbreaks

Disease R0 Estimate Author

Malaria 1− 3, 000+ Smith [71]
Tuberculosis 1.10− 31.26 Sanchez [67]
SARS 0.24− 2.47 Chowell [20]
Spanish influenza1.20− 7.50 Vynnycky [77]

flu outbreak in Geneva, Switzerland [19]. An epidemic model and hospital records were used to

estimateR0 for the first and second waves of the pandemic spread.

In the paper, “Appropriate Models for the Management of Infectious Diseases,” Wearing et al.

stress the significance of accurately determining the latent and infectious periods in mathematical

models [81]. This paper suggests that common methods for determining these two parameters

are often incorrect, resulting in an underestimate ofR0 and thus misguided efforts to control an

outbreak.

Farrington and Whitaker recognize the significant role of medical intervention in lowering

theeffectivereproduction number,Re(t) [29]. Two sets of serological studies were compared, one

with data from 1987, prior to the introduction of the measles, mumps and rubella (MMR) vaccine

and one in 1996, “post-vaccination”. The results show a marked decrease in the estimate of both

R0 andRe(t).

Based on survey data from two military ships and five Marylandcommunities, White and

Pagano estimate the effective reproductive number each dayof the 1918 influenza outbreak apply-

ing two distinct likelihood methodologies [83]. The first method presented by White and Pagano,

modelsRi (the effective reproduction number on dayi) parametrically as a function of time. The

second method, described by Wallinga and Teunis [78], is expressed as a probability,pij, that case

i was infected by casej, accounting for the time difference between the initial onset of symptoms

for both cases. The first method, based on four parameters, can be generalized to other settings.

The second method produces results that follow the same pattern as the epidemic curve. Estimates

for the Maryland communities range from1.34 to 3.21. The average estimate for the two ships is
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slightly higher at4.97. This higher value ofR0 may be attributed to the close living quarters on

the ships resulting in more frequent contacts.

2.3.2. DerivingR0 Mathematically

The fundamental equations of the SIR model can be used to derive R0 mathematically. The

established differential equations below represent the movement from susceptible to infected to

removed. The constantα is a probability that describes the likelihood of disease transfer. The

constantγ is the removal rate, which is the reciprocal of the average number of days in the Infected

state. The three SIR differential equations are defined as follows:

∆S = −αStIt(1)

∆I = αStIt − γIt(2)

∆R = γIt(3)

The SIR equations correspond directly to Figure 2.4. The negative sign in Equation (1) in-

dicates that as the disease spreads, the number of susceptibles decline. Likewise, the number

of removed individuals, Equation (3), increases. The number of infected individuals initially in-

creases and then decreases following a bell-shaped curve. Equation (2) provides the basis for the

calculation ofR0. If the rate of infection is faster than the rate of removal (∆I > 0), for some time,

t, an epidemic occurs. FactoringγIt from Equation 2, the change in infected individuals over time

becomes:

(4) ∆I = γIt

(

αSt

γ
− 1

)

It is now evident that ifαSt

γ
> 1, the number of infected individuals will increase. The mathe-

matical definition ofR0 is taken directly from Equation 4. BecauseR0 is measured at the beginning

of the outbreak (t = 0), the definition is as follows:
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(5) R0 =
αS0

γ
= (αS0)

(

1

γ

)

In Equation (5),S0 represents the initial population of susceptibles andαS0 represents the

number of new infections per infected individual. This value is then multiplied by the average

duration of infectivity,1
γ
, because an infectious individual can continue to infect others as long as

they remain infectious.

2.3.3. Experimental ExpectedR0

Based on the mathematical definition ofR0 shown in Equation 5, an expected value ofR0 can

be derived to validate computational models. In the mathematical equations of Section 2.3.2,αSt

represents the probability of disease transfer from infected individuals to susceptible individuals

at timet. The computational model used in this research replacesαS0 with a Contact Rate (CR)

multiplied by a Transmission Rate (TR). The number of days infectious (DaysI) is equivalent

to 1
γ
. Equation 6 demonstrates the equivalence between the mathematical value ofR0 and the

experimental expected value.

(6) R0 = (αS0)

(

1

γ

)

= (CR)(TR)(DaysI)

BecauseR0 is a measure of secondary infections, it can be concluded that an infectious indi-

vidual will infect others based on the transmission rate of the disease, how many contacts are made

in a day, and the length of time the individual is infectious.The Ordinary Differential Equations

(ODE) that describe an outbreak can be compared with a computational model based on the contact

rate, transmission rate, and number of days infectious using Equation 6 as a basis. To construct the

comparison,α andγ are calculated as shown in Equations 7 and 8. The daily ODE values of SIR

are then calculated using a spreadsheet. The chart in Figure2.7 is a comparison using the infectious

column from an ODE spreadsheet and the daily infectious count from a comparable simulation.
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TABLE 2.2. Comparable Disease Parameters for ODE and Computational Model

Simulation ODE
N = 500 S0 = 499
CR = 20

TR = 0.03 α = 0.0012
DaysI = 4 γ = 0.25

The simulated outbreak was averaged over100 independent simulations. The parameters used for

this comparison are shown in Table 2.2.

α =
(CR)(TR)

S0
(7)

γ =
1

DaysI
(8)

FIGURE 2.7. Comparison between ODE and computational model

Figure 2.7 illustrates that the infectious curve of the ODE lags behind that of the simulation.

This is likely attributed to the fact that the infectious count is reduced each day byγ in the ODE,

whereas each infectious individual in the simulation remains in the count until after they have been

in the infectious state for DaysI. This causes a discrepancythat becomes apparent early in the

oubreak comparison.
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2.4. Graphs

Many real-world systems naturally correlate to graph structures. Examples include the Internet

and World Wide Web topology [4, 9, 84], mobile devices [18, 75], road networks [25, 45], biolog-

ical systems [30, 73, 76], and a host of other domains. Graph structures are inherently well suited

to describe social networks and have been used extensively in this field [15, 17, 23, 65, 66, 79].

A major benefit to using graphs is the ability to reduce a complex system to a simplified model of

entities and relationships.

DEFINITION 2.2. A graph is formally described as a tupleG = (V, E) in which V is a set of

vertices andE is a set of edges [82].

The vertices of a graph, also referred to as nodes, representa set of entities, such as people,

locations, or objects. The edges in a graph represent a relationship between two nodes. On a map,

the nodes could correspond to cities and the edges, roads. Ina biological system, a graph may

symbolize proteins and protein interactions, metabolic networks, or various other life structures. In

a social network, the nodes of a graph are individuals and thelinks between individuals represent

some sort of relationship. For the research presented herein, the links represent contacts in the

social network and disease transmission in the outbreak graph.

2.4.1. Graph Theory Concepts

Two vertices in a graph areadjacentif an edge exists between them. Anadjacency matrix, Aij

of a graph is ann by n matrix representation of a graph of sizen in which each entry in the matrix

represents a value describing the relationship between nodes i andj. In a non-weighted graph,

each adjacency matrix entry is either a 1 or a 0. A value of 1 indicates that nodei is adjacent

to nodej and a value of 0 signifies that the two nodes are not adjacent. Table 2.3 illustrates the

adjacency matrix of the graph in Figure 8(a). Aloop is an edge that connects a vertex to itself.

Edges that connect the same pair of vertices are referred to asmultiple edges. A graph that contains

no loops or multiple edges is asimple graph. If numerical values are assigned to the edges, the

graph is considered to be aweighted graph. The edge weight may refer to cost, distance, or any
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other relationship between nodes. Asubgraphof G is a graphG′, such thatV (G′) ⊆ V (G) and

E(G′) ⊆ E(G). Figure 2.8 illustrates the relationship between a graph and a subgraph. The

graphs shown in Figure 2.8 areundirected graphs, indicating that the relationship between two

nodes is identical, such as“is a relative of” or “lives in the same neighborhood”. A directed

graph, or digraph on the other hand, suggests a directional relationship, such as “is the child

of” or “passes the disease to”. Undirected graphs and digraphs are both useful tools, but serve

different purposes. In regard to disease simulation, a social network is an undirected graph, but the

transmission of disease from one person to another inherently implies direction. The difference

between an undirected graph and a directed graph is illustrated in Figure 2.9.

TABLE 2.3. Adjacency matrix of graph in Figure 2.8(a)

A B C D E F G
A 0 1 1 1 1 0 0
B 1 0 0 0 0 0 0
C 1 0 0 1 1 0 1
D 1 0 1 0 1 0 1
E 1 0 0 1 0 0 0
F 0 0 1 0 0 0 0
G 0 0 1 1 0 0 0

(a) (b)

FIGURE 2.8. (a) Graph,G; (b) G′, a subgraph ofG

The degreeof a node denotes the number of incident edges. In a digraph, there are both an

in-degreeand anout-degreeindicating edges coming in and edges going out, respectively. Closely
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(a) (b)

FIGURE 2.9. (a) Undirected graph; (b) directed graph

related to the degree of a node is thedensityof a graph. The number of edges,m, in a graph with

n nodes, excluding self-loops, is bounded by Equation (9). The density of a graph,D(G), is the

ratio of the number of edges present,m, to the maximum number of edges possible as shown in

Equation (10). The density of a graph ranges from 0, if no edges are present, to 1, if the maximum

number of edges are present.

(9) m ≤
n(n− 1)

2

(10) D(G) =
m

n(n− 1)/2
=

2m

n(n− 1)

Another important aspect of graphs involves paths between pairs of nodes. The shortest path

between two nodes is referred to as thegeodesicpath. The largest geodesic distance between a

given node and all other nodes in a graph is known as theeccentricityof the node. The largest

geodesic distance between any two vertices in a connected graph is called thediameter. The

diameter can also be described as the largest eccentricity of all nodes in a graph.
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2.4.2. Random Graphs, Ordered Lattices, Hypergraphs, and Small-World Graphs

In 1951, Solomonoff and Rapoport described structures referred to asrandom nets[72]. In

1960, Erd̈os and Ŕenyi continued the investigation ofrandom graphs[26], as shown in Figure 2.10.

Two distinct methods for building random graphs were described. One begins with a fixed number

of vertices,n, and a fixed number of edges,m. The edges are randomly selected out of then(n−1)
2

that are possible. Using this technique, there are

(n(n−1)
2

m

)

equiprobable random graphs that can

be constructed. The alternate definition is one in which the number of vertices are fixed, but the

edges are selected randomly with probabilityp. The number of edges using this technique is a

random variable. Therefore, to develop a graph with an average ofm edges, the value ofp should

be set to m

(n

2
)
. For example, to construct random graph with an average of5 edges in a graph with

10 nodes, the probabilityp that an edge exists between two vertices is1
9

as calculated below:

5
(

10
2

) =
5

45
=

1

9

FIGURE 2.10. Random graph example

Contrary to a random graph, a completely ordered graph (alsocalled a regular graph or a lattice)

is a graph in which each node is linked tok of its immediate neighbors. To visualize such a graph,

it is helpful to think of the vertices in aligned in a circularfashion as demonstrated in Figure 2.11.
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FIGURE 2.11. Ordered graph example

Although regular graphs represent contacts with neighbors, other interactions that are known

to exist in real social networks are not accurately represented. Such interactions are those that

frequently occur in daily life when meetings occur between two people who are not normally in

the same social circle. This includes contacts that take place while in a grocery store, on vaca-

tion, riding in public transportation, standing in line at an event, or a number of other similar

situations. Even in very large social networks, the small-world effect theorizes that any two peo-

ple are connected by a relatively short chain of intermediate contacts [60]. A small-world graph

is a model based on the small-world effect. It is a structure that falls between a random graph

and an ordered lattice, exhibiting the clustering behaviorof an ordered graph while maintaining

the small-world property observed in random graphs. First introduced in the mid-1950’s, small-

world graphs gained scientific popularity after a publication by Watts and Strogatz in 1998 [70].

Since that time, many researchers have explored the properties and applications of small-world

graphs [22, 43, 47, 52, 60].

A small-world graph can be easily constructed from an ordered lattice by rerouting some of the

edges [80]. Each edge may be rerouted to another vertex basedon some probability,p. A value

of p = 0 results in a completely ordered graph and a value ofp = 1 creates a random graph. A
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small-world graph results when0 < p < 1. Figure 2.12 is an example of a small-world graph.

Note that when an edge is rerouted, loops and multiple edges are prohibited resulting in a simple

graph.

FIGURE 2.12. Small-world graph example

A hypergraph, as shown in Figure 2.13, is another way to represent a social network. Hyper-

graphs consider ties among subsets of individual nodes; that is, edges can connect any number of

vertices rather than joining only two nodes [44]. Thus, the formal description of the graph changes.

The graph can now be described asH = (V, Eh) in whichEh refers to a set of hyperedges. Each

hyperedge is a subset of the vertex set. Hypergraphs are appropriate for affiliation networks, or

membership networks, in which the connection among individuals may represent those who be-

long to the same social group or club [79].

The graphs under study for this investigation cover a wide spectrum of those that could be

considered for social network representation. The random graph provides a small degree of sepa-

ration between any two nodes, but does not display the clustering effect typically found in social

networks. Conversely, the ordered lattice captures the clustering effect, but does not maintain the

small degree of separation. Both the small world network andthe hypergraph more accurately

depict the characteristics that are likely to be found in true social networks.
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FIGURE 2.13. Hypergraph example

2.4.3. Centrality Measures

Point centrality, also referred to as node centrality, is used to determine which nodes are the

mostimportantin a graph [33]. Importance, of course, is relative to the purpose of the graph. For

the purpose of this research, importance refers to the ability to transfer a disease. Of four centrality

measures outlined by Wasserman and Faust in “Social NetworkAnalysis” [79], Degree, Close-

ness, and Betweenness were implemented for this research. Although there are other measures of

centrality, these three were selected to represent the structure of a graph. The initial software for

this research was validated using the centrality indices for Padgett’s Florentine families as shown

in [79]. A description and example of each of these centrality measures is outlined below.

Degree Centrality. Degree centrality is the most straightforward to compute because it is

simply a count of the number of edges incident to a node. An individual with more connections to

other individuals may be deemed more important. Degree centrality can be calculated for a point in

a graph of sizen as shown in Equation (11).CD(i), the degree centrality of nodei, is the sum of all

adjacent nodes as indicated byAij , the adjacency matrix. In Figure 2.14, it is easily observedthat

Node4 is of degree 8 and could be regarded as the most important nodein the network. However,

a degree of size 8 in a much larger graph might be comparatively small. It is common to normalize

centrality measures to produce a value that is independent of the graph size. The largest possible

degree of a node in a graph of sizen is n − 1. Therefore, Equation (12) can be used to calculate
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a degree centrality that is normalized to the size of the graph. Since the network displayed in

Figure 2.14 has 11 nodes, each vertex degree is divided by 10 to give the relative degree centrality,

CD́(i), as shown in Table 2.4.

In the context of disease spread, an individual who has a highdegree centrality makes contacts

with more individuals in the population. If an individual with high degree centrality becomes in-

fected with a disease there is greater opportunity for the disease to propagate. The degree centrality

of individuals infected early in an outbreak is of even greater importance as this will have an effect

on the value ofR0 and may determine whether of not an epidemic emerges.

(11) CD(i) =

n
∑

j=1,j 6=i

Aij

(12) CD́(i) =

n
∑

j=1

Aij

n− 1
=

CD(i)

n− 1

FIGURE 2.14. High level of degree centrality illustrated by Node4

Closeness Centrality. Closeness centrality is dependent upon the geodesic path from one ver-

tex to another. It is a measure of the distance from a particular node to every other node in the

graph followed along a geodesic network path. A large closeness value indicates that a vertex can
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TABLE 2.4. Relative degree centrality measures for vertices in Figure 2.14

v CD́(v) v CD́(v)
1 0.2 7 0.4
2 0.2 8 0.1
3 0.3 9 0.3
4 0.8 10 0.5
5 0.1 11 0.3
6 0.4

quickly influence other nodes in the network. Unlike degree centrality, closeness centrality takes

into account indirect as well as direct connections. It is reasonable to expect that the duration of

an outbreak will be influenced if individuals with a high degree of closeness become infected, as

these individuals are tightly connected to the rest of the population. In Figure 2.15, although sev-

eral other nodes have a higher degree centrality, Node5 is at most two hops from any other node

in the network, making it the most important node based upon closeness centrality (see Table 2.5).

Closeness centrality of a node,CC(i), is calculated as shown in Equation (13). In this equation,

d(i, j) refers to the geodesic distance from nodei to nodej. Some formulas for closeness do not

take the reciprocal of the summation of the distances, however when a node is a greater distance

away, the centrality should decrease. Therefore, the geodesic distances should be weighted in-

versely. The maximum closeness value is obtained when a nodeis directly connected to every

other node in the network. In a network of sizen, the maximum closeness is1
n−1

. Thus, a relative

closeness centrality,CĆ(i), is calculated by multiplying byn− 1 as shown in Equation (14).

(13) CC(i) =
1

n
∑

j=1,i6=j

d(i, j)

(14) CĆ(i) =
n− 1

n
∑

j=1,i6=j

d(i, j)

= (n− 1)CC(i)
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FIGURE 2.15. Closeness centrality illustrated by Node5

TABLE 2.5. Relative closeness centrality measures for vertices in Figure 2.15

v CĆ(v) v CĆ(v)
1 0.43 7 0.56
2 0.53 8 0.53
3 0.46 9 0.50
4 0.56 10 0.37
5 0.59 11 0.42
6 0.48

Betweenness Centrality. Similar to closeness centrality, betweenness centrality is based on

network paths. A node has a highbetweenness centralityif it falls on a large proportion of network

paths when all paths are considered. Nodes with a high betweenness centrality assert more control

over the flow of information across a network. Note that in Figure 2.16, Node6 falls on every

path that connects the left side of the graph to the right sideof the graph. If this node is removed

from the network, the graph will become disconnected. Node6, therefore, is central to the flow of

information in this graph and has the highest betweenness measure as shown in Table 2.6.

Individuals or groups in a population who possess a relatively high betweenness centrality pro-

vide important links by which a disease can spread. If these individuals or groups can be identified,

it may be possible to use preventative strategies, such as vaccination or quarantine measures, to ef-

fectively prevent a disease from reaching large portions ofa population. These strategies could

essentially disconnect the population graph and prevent further spread.

Freeman suggests a method for calculating the betweenness of a point that incorporates the

probability that the point will lie on a randomly selected geodesic path [32]. To determine the

partial betweennessof point i on a path that connects pointss andt such thats 6= i 6= t, let gst
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represent the number of geodesic paths froms to t andgst(i) the number of geodesic paths froms

to t that containi. Now the probability,bst(i), that pointi lies on a randomly selected path froms

to pointt is shown in Equation (15).

To consider the overall betweenness centrality of pointi which includes all geodesic paths in

the network,CB(i), the sum of all partial betweenness values is calculated as shown in Equa-

tion (16). SinceCB(i) is simply a count, the relative potential based on the size ofthe network is

not taken into consideration. A relative betweenness value, CB́(i) as shown in (18), can be derived

by expressing this value as a ratio ofCB(i) to the maximum betweenness value possible in a net-

work of sizen. The maximum betweenness value,maxCB(i) as shown in Equation (17), occurs

when a nodei falls on every geodesic path connecting all nodes not including i.

(15) bst(i) =

(

1

gst

)

(gst(i)) =
gst(i)

gst

(16) CB(i) =

n
∑

s=1

n
∑

t=s+1

bst(i)

(17) maxCB(i) =
[n(n− 1)]

2
− [n− 1] =

n2 − 3n + 2

2

(18) CB́(i) =
2CB(i)

n2 − 3n + 2

Information Centrality. Information centrality is based on the same concept as betweenness

centrality, but also considers the degrees of the nodes along each network path. When betweenness

centrality is calculated, it is assumed that two geodesic paths are equally likely to be “chosen” and

therefore the probability of each geodesic path is identical. It may be presumed that vertices along

the path which have a high degree are more likely to be on a “chosen” geodesic path. An even
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FIGURE 2.16. Betweenness centrality illustrated by Node6

TABLE 2.6. Relative betweenness centrality measures for vertices in Figure 2.16

v CB́(v) v CB́(v)
1 0.01 7 0.07
2 0.06 8 0.36
3 0.05 9 0.05
4 0.06 10 0.00
5 0.01 11 0.02
6 0.59

greater generalization is considered in determining information centrality. It is possible that anon-

geodesicpath is of greater significance thanall other paths. Information centrality takes this point

under consideration.All paths, both geodesic and non-geodesic, are weighted when information

centrality is calculated. Information centrality was not implemented in this research.

2.5. Summary

Building computational models for simulating disease spread is challenging, at best. The un-

derlying framework of an outbreak model must emulate complex behaviors without becoming too

computationally expensive. A graph theoretical approach allows this social environment to be rep-

resented in a simple format, i.e. nodes and edges. The nodes of a graph represent the individuals in

a population and the edges in the graph correspond to relationships among individuals. This basic

construct creates a foundation for disease simulation.

The SIR infectious disease model is very compatible with a graph-based social network. This

research explores two methods for implementing a simulateddisease outbreak. The first technique,

implemented in Chapter 3, generates the social network simultaneously as the disease proliferates.

34



Contacts are established between individuals who may be susceptible, infectious, or removed. The

disease transfers from an infectious individual to one who is susceptible with a probability based on

the transfer rate. The second approach, implemented in Chapter 4, creates a static social network

and then simulates a disease spread on the predefined graph.

Dynamically generating a social network may arguably be more realistic because true social

contacts are not restricted or predetermined. This is a reasonable choice for investigating how an

outbreak manifests itself if no intervention strategies are employed. The exploration in Chapter 4,

however, focuses on targeted vaccination. This cannot be accurately tested in dynamically created

social networks because the node attributes must be known inadvance of vaccination. Nodes that

have certain properties in one graph may not exhibit the sameproperties in another graph. Thus,

it is impossible to create the contact graph concurrently with an outbreak. A concession is to

create and save the contact graph first, vaccinate specific individuals, and then allow the outbreak

to evolve.
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CHAPTER 3

GRAPH STRUCTURE AND OUTBREAK SEVERITY

As previously discussed in Section 2.4.2, small-world graphs are considered acceptable models

for representing social networks. In addition to the size ofa small-world network, there are two

parameters that affect the structure of the graph. The first is the neighborhood size,k, and the

second is the probability of a random contact,p. The neighborhood size represents acontactgroup.

The definition ofcontact, however, changes depending on the situation being modeledby the

small-world graph. Even in the same area of research, the size ofk varies. For example, a contact

required for the transfer a sexually transmitted disease isnot equivalent to a contact necessary for

the transfer of influenza. The value ofk, therefore, depends on context. Similarly, the probability

of a random contact,p, is a conditional parameter. The purpose of the experimentspresented in

this chapter is to explore outbreak variation as a result of changes in these two parameters.

3.1. Simulation Method

Based on the SIR model with an additional latent state, each experiment has a number of static

parameters as shown in Table 3.1. The parameters selected for these experiments result in a large

portion of the population becoming infected in most cases. This is intentional and is not a fallacy

of the simulator. Each experiment begins with the primary case in theinfectiousstate and all

other individuals in thesusceptiblestate. Contacts are made each day until the predetermined

number of contacts for the entire population is reached. Thesimulation continues as long as there

are individuals in either the infectious or latent state. A social network is created dynamically

as the simulation progresses; an edge is created between twonodes every time a contact occurs.

Generated contact graphs range from ordered to random. An ordered graph,p = 0, is one in which

contacts areonly allowed within a restricted neighborhood of sizek. A random graph,p = 1, is

one in which contacts are made randomly between any two individuals in the network.
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Initial experiments are conducted on a small network graph of size 30. N nodes are labeled

0 − 29 and node29 is linked back to node0. This population size provides modeling capabilities

that are limited to situations in which a small group of individuals is predominantly self-contained,

such as in a nursing home or on a ship. However, a benefit to sucha small population is that it

allows visualization of the contact and infectious graphs,which is not viable on larger population

sets. For this set of experiments, the neighborhood size increases fromk = 2 to k = 10 in

increments of2 and fromk = 14 to k = 30 in increments of4. For each value ofk, the probability

of a random contact increases fromp = 0.0 to p = 1.0 in increments of0.1. For each unique value

of k andp, the simulation is repeated100 times.

Similar experiments are conducted on a larger population (N = 500) to gauge whether the re-

sults are scalable. Due to the substantial number of simulations (10 values ofk, 10 values ofp, 100

simulations each), larger population sizes are beyond the scope of this research. The neighborhood

size increases fromk = 2 to k = 10 in increments of2 and fromk = 20 to k = 100 in increments

of 20. As with the previous experiments, for each value ofk, the probability of a random contact

increases fromp = 0.0 to p = 1.0 in increments of0.1, and for each value ofk andp, there are100

executed simulations. The complexity of the graphs createdusing a population of size 500 makes

it impractical to include visual representations.

3.2. Results

Figure 3.1 illustrates a representative contact graph and the resulting outbreak graph withk = 6

andp = 0. Note that not all of the nodes(0− 29) are included in the contact graph. This signifies

that during this particular simulation there are some individuals that never make any contacts.

Sincep = 0, all contacts are made within the neighborhood of size six, three to the left and three to

the right. Because the graphs are not weighted, an edge between two nodes signifies one or more

contacts. The contact graph depicted in Figure 3.1 (a) illustrates that Node3 makes at least one

contact with Node1 and the related infectious graph in Figure 3.1 (b) indicatesthat the disease

transfers from Node3 to Node1. It is not evident, however, how many contacts are made before

or after the transfer. Any contacts that occur after diseasetransfer are useless in terms of disease
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propagation since an individual can only be infected one time. In contrast, Figure 3.1 illustrates

a representative contact graph and the resulting outbreak graph withk = 6 andp = 1. For this

particular simulation, the resulting contact graph is a near complete graph. In a random graph, such

as this, contacts are not as likely to be repeated. This implies that there is a higher probability that

the disease will transfer to more individuals in the population. Another point regarding Figure 3.1,

is that the neighborhood size is essentially irrelevant. A value ofp = 1 indicates that every contact

is random. Each individual is allowed to make contact with any other individual in the population,

thereby effectively eliminating the boundaries of a neighborhood.

(a)

(b)

FIGURE 3.1. Example of an ordered graph withk = 6, p = 0. (a) Contact graph; (b)
Resulting outbreak graph

3.3. Duration

With a population of size30, the minimum average duration is19 days which occurs with

the smallest neighborhood size and no random contacts,k = 2 andp = 0. This coincides with

the minimum percent infected of18%, which is an indication that the duration of an outbreak is

relatively short when few individuals become infected. Themaximum duration is34 days which

occurs whenk = 10 andp = 0. Although the shortest duration aligns with the fewest infected,

the longest duration does not align with the most infected. Initially, the duration increases as

38



(a)

(b)

FIGURE 3.2. Example of an ordered graph withk = 6, p = 1. (a) Contact graph; (b)
Resulting outbreak graph
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more individuals become infected, however, there appears to be a point at which concurrency of

secondary infections reduces the duration. Therefore, there is not a direct relationship between

outbreak duration and the proportion of the population infected.

Figure 3.3 reveals that limiting the neighborhood size below 6 has a significant impact on the

duration whenp ≤ 20%. Larger values ofk have a fairly consistent duration regardless of the value

of p. This is likely due to the fact that many of the simulations with k < 6 andp ≤ 20% are unable

to sustain an outbreak. During these simulations, secondary infections are limited by the small

neighborhood size and the disease dies out quickly. However, ask and/orp increases, the chance

for secondary infections rises, resulting in an increase inthe number of sustained outbreaks.

With a population of size500, the minimum average duration is26 days which occurs when

k = 2 andp = 0. As with the smaller population, the shortest duration coincides with the fewest

number of infected individuals. The maximum duration is165 days and occurs whenk = 20

andp = 0. Consistent with experiments on a population of size30, the longest duration does not

align with the most infected. Figure 3.4 (a) demonstrates that for neighborhood sizes ofk = 2

throughk = 10 in which all contacts are made within the neighborhood (p = 0), the outbreak

either does not occur or does not last long when it occurs. Asp increases the duration of the

outbreak peaks and then falls. A reasonable explanation forthe peak is as follows: As outside

contacts increase (p > 0), there is an increase in the number of simulations that actually produce a

significant outbreak. This increase in significant outbreaks brings up the average duration. As the

number of random contacts is further increased, there is a rise in concurrent secondary infections.

The rise in concurrent secondary infections allows the disease to move more rapidly throughout

the population, causing a decrease in the duration.

Figure 3.4 (b) illustrates that neighborhood sizesk = 20 throughk = 100 on average are able

to sustain an outbreak. Similar to the fall after the peak in the smaller neighborhoods, as the random

contacts increase, the disease spreads more quickly. The average duration of all simulations for

neighborhood sizesk = 20 throughk = 100 is 69.2 days with a standard deviation of18.25.
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Considering only values ofp from 0.5 to 1, the average duration is62.6 days with a standard

deviation of2.46. This indicates that the duration becomes much more stable asp increases.

The duration of an outbreak by itself does not appear to be a reliable severity indicator. An

extended time period does not necessarily signify that a large proportion of the population will

become infected. For example, the longest duration of165 only infects38% of the population,

whereas the average over all simulated runs is70%. Likewise, a reduced time frame may indicate

that the outbreak subsides before it has a chance to take holdor it may indicate that the disease

rapidly spreads throughout the population infecting many individuals. This is demonstrated by two

simulations that both have a duration of64 days. One, which has a neighborhood size of10 with

0 random contacts, infects only7% of the population. The other, which has a neighborhood size

of 80 with 90% random contacts, infects82% of the population. Without additional information,

such as the proportion infected, the duration of an outbreakdoes not accurately reflect the severity.

3.4. R0

The value ofR0 is measured according to the strict definition by averaging the number of the

secondary infections caused by the first infectious individual in a primarily susceptible population.

The mathematical expected value ofR0 is obtained by multiplying the average daily contacts, the

transmission rate, and the infectious period. For the parameters shown in Table 3.1, the expected

R0 value is2.4.

TABLE 3.1. Simulation Parameters for Small Graph Experiments

Parameter Value Explanation
Loop 100 Number of times to loop through the simulation
CR 20 Number of contacts per person, per day
TR 0.03 Probability that transfer of infection will occur when a contact is made

between an infectious person and a susceptible person
DaysL 3 Number of days in the latent stage
DaysI 4 Number of days in the infectious stage

For experiments performed on a population size of30, the minimum average value ofR0 is 1.3

which occurs whenk = 2 andp = 0. The maximum value ofR0 is 2.59 and occurs whenk = 26

andp = 0.7. The average value ofR0 is 2.20. Although the average is lower than the expected
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(a)

(b)

FIGURE 3.3. Outbreak durations on population size 30,p = 0.0 to 1.0 for (a) k = 2 to 10
and (b)k = 14 to 30

value, it is not a surprising number considering the small population size and the low values ofk

that are included in the average. Figure 3.5 reveals that small neighborhood sizes, accompanied

by a low probability of outside contacts, results in a decrease in secondary infections. As the

neighborhood size is increased, the value ofR0 becomes more stable.

For experiments performed on a population size of500, the minimum average value ofR0 is

1.4 which occurs whenk = 2 andp = 0. The maximum value ofR0 is 2.74 and occurs when
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(a)

(b)

FIGURE 3.4. Outbreak duration on population size 500,p = 0.0 to 1.0 for (a)k = 2 to 10
and (b)k = 20 to 100

k = 100 andp = 0.8. The average value forR0 over all simulations is2.29. The average value of

all simulations fork = 2 throughk = 10, as shown in Figure 3.6 (a), is2.17 which is below the

expected value of2.4. However, the average of all simulationsk = 20 throughk = 100, as shown

in Figure 3.6 (b), is exactly the expected value,2.4. As the neighborhood size or the proportion

of outside contacts increase, the value ofR0 is shown to approximate the expected mathematical

value. Conversely, a small neighborhood size coupled with limited random contacts reduces the

value ofR0 by restricting the number of susceptible individuals that are available for contact.
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TABLE 3.2. Comparison ofR0 and Percent of Infected Population on Ordered Graph(p =
0) with Small Neighborhood Sizes.

Neighborhood Size (k) R0 Percent Infected
2 1.4 1
4 1.9 2
6 1.9 4
8 2.0 6
10 2.1 7

A comparison of the data obtained forR0 and the proportion of the population infected provides

an interesting observation regarding secondary infections. Theoretically, values ofR0 > 1 should

produce significant outbreaks in a population. However, these experiments do not support this

theory when neighborhood sizes are 10 or less and no random contacts are permitted. This is

indicated by the very low proportion of the population that is infected as shown in Figure 3.8 (a)

whenp = 0. See Table 3.2 for a comparison of values. Even though secondary infections are

above the threshold value of one, the outbreak is not maintained long enough to infect a substantial

portion of the population. This is likely caused by a saturation of infected individuals within a

neighborhood. The primary case is able to infect more than one individual in their neighborhood

leading to anR0 value greater than unity, but secondary infections by otherindividuals are limited

by competition. For example, suppose Node3 is the primary case and infects Nodes2 and4,

resulting in a literalR0 value of2. At this point, Node4 is unable to infect two of its immediate

neighbors, Nodes2 and3, because they are already infected. Node2 is limited in the same way.

This leads to asuffocationof the outbreak. While the actualR0 is greater than one, theeffective

value ofR0 is quickly reduced. In reality, it is possible to cause a similar affect by reducing the

neighborhood size of susceptible individuals through vaccination.

3.4.1. Total Infections

With regard to the population as a whole, the overall proportion of individuals infected during

the course of an outbreak is the strongest indicator of severity. Intervention strategies, such as pub-

lic awareness, vaccination, quarantine measures, etc., are designed to reduce secondary infections

with the ultimate goal of lowering the total number of individuals who become infected. The three
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(a)

(b)

FIGURE 3.5. R0 values on population size 30,p = 0.0 to 1.0 for (a) k = 2 to 10 and (b)
k = 14 to 30

disease-spread indicators examined in this dissertation (duration,R0, and proportion infected) are

unquestionably interrelated. However, it is the proportion of the population infected that provides

the most obvious measure of severity.

With a population of size30, the minimum average value of total infections is5.43, or 18% of

the population which occurs atk = 2 andp = 0. The maximum average is24.3, or 81% of the

population which occurs whenk = 18 andp = 70%. Small neighborhoods coupled with few or
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(a)

(b)

FIGURE 3.6. R0 values on population size 500,p = 0.0 to 1.0 for (a)k = 2 to 10 and (b)
k = 20 to 100

no random contacts significantly reduce the proportion of the population that becomes infected as

demonstrated by Figure 3.7 (a). However, the proportion infected rises rapidly with an increase

in random contacts. Additionally, if the neighborhood sizeis large enough, i.e.k ≥ 14, the

proportion infected is not drastically reduced by a decrease in random contacts (see Figure 3.7 (b)).

The average percent of the population infected for allk ≥ 14 is 74% with a standard deviation of
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3.1%. For k ≥ 14 andp ≥ 60%, the percent infected rises to76% with a standard deviation of

2.4%.

With a population of size500, a mean of70% of the population becomes infected over all

averaged simulations. The lowest average of total infections is6.58, or1% of the population which

occurs whenk = 2 andp = 0. The highest average is84% at k = 100 andp = 80%. Similar to

the results with a population of size30, Figure 3.8 (a) reveals that simulations with neighborhood

sizes ofk = 2 to k = 10 andp = 0 result in a very small proportion of the population becoming

infected, ranging from1% to 7%. There is a sharp incline ask andp increase. In fact, for all

values ofk ≥ 4 andp ≥ 30% the average remains above70%, with a mean of77% and a standard

deviation of3.1%. Figure 3.8 (b) illustrates that, with the exception ofk = 20 andp = 0 at 38%,

the proportion of the population infected remains relatively consistent. For these values, exception

noted, the mean is 77% with a standard deviation of2.9%.

Similar results are observed in both the small and large graph simulations. When the neigh-

borhood size is restricted and the probability of random contacts is low, the proportion of the

population that is infected is greatly reduced. Moderate increases in either one or both of these

parameters greatly increases this proportion. In the smallgraph simulations, approximately65%

or more of the population is infected for all values ofk whenp ≥ 50%; for all values ofp when

k ≥ 10; and whenk ≥ 6 andp ≥ 30%. In the large graph simulations, approximately65% or more

of the population is infected for all values ofk whenp ≥ 40%; for all values ofp whenk ≥ 40;

and whenk ≥ 6 andp ≥ 20%. This implies that small-world graphs are very conducive tothe

spread of disease, even with relatively small values fork andp. It should be noted, however, that

the parameters selected for these experiments generate a high probability of producing an epidemic

and no preventative measures are taken during any simulations.

3.5. Summary

Two groups of experiments were presented and discussed in this Chapter. The first involves a

series of simulated outbreaks on a population of size30. This small population size was purposely

chosen to allow visual inspection of the resulting contact and outbreak graphs. The second involves
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(a)

(b)

FIGURE 3.7. Total infected on population size 30,p = 0.0 to 1.0 for (a) k = 2 to 10 and
(b) k = 14 to 30

identically constructed experiments on graphs of size500. Even though a size of500 is smaller

than the population of most communities, the parameter variation and number of simulations are

prohibitive on larger populations. It is also important to consider that a node in a graph can be

representative, not only of an individual, but also of a group of individuals. Therefore, apopulation

sizeof 500 might represent500 families or500 cities. The results of the first set of experiments

scale nicely to those of the second and it is likely that similar results would be observed on larger

data sets.

It is evident that the neighborhood size,k, can have a considerable impact on the severity of an

outbreak when bothk andp are relatively small. However, there appears to be a threshold value of
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(a)

(b)

FIGURE 3.8. Total infected on population size 500,p = 0.0 to 1.0 for (a)k = 2 to 10 and
(b) k = 20 to 100

k beyond which there is negligible difference regardless of the value ofp. A probable explanation

for this threshold value is that there is a level of competition for susceptible individuals when

contacts among infected individuals overlap. Once the neighborhood size becomes large enough

to eliminate this competition, there is no longer a gain by increasing the size even larger.

In the interest of public health, it is beneficial to employ intervention strategies that effectively

reduce the neighborhood size to a level below the threshold.To accomplish this, there are several
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preventative measures that can be initiated. For example, the number of daily contacts conducive

to disease transfer can be reduced through hand-washing, the use of anti-bacterial products, and

social distancing. With proper medical treatment of those who are infectious, it may be possible to

reduce the infectious period, and thereby lower the number of secondary infections. Furthermore,

the number of susceptible individuals can be reduced through vaccination. Vaccination is a com-

mon preventative strategy and the effectiveness of particular vaccination strategies is the topic of

discussion in the following chapter.
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CHAPTER 4

VACCINATION STRATEGIES BASED ON CENTRALITY MEASURES

Although epidemics are inevitable, it is possible to reducetheir impact on society. Ideally,

enough individuals could be vaccinated to stop an outbreak from ever reaching epidemic status, a

concept referred to as herd immunity. In most cases, however, this is not a practical solution. Herd

immunity is achieved if the effective basic reproductive number is brought to a level below unity.

Unfortunately, large intrinsic values ofR0, require very high levels of vaccination. In a paper

published in1982 by Anderson and May, it is reported that the proportion,p, of the population that

must be vaccinated to achieve herd immunity is given by Equation 19 [8]. Therefore, a disease

with an intrinsicR0 = 3 would require that more than2
3

of the population be vaccinated. Data

from the Centers for Disease Control (See Appendix 5.2.1) indicates that even the yearly influenza

vaccine, in anticipation of expected outbreaks, is distributed in much lower quantities. It is highly

unlikely that an adequate vaccine supply would be availablein the event of an unforeseen disease

outbreak.

(19) p > 1−
1

R0

The experiments in this chapter explore vaccination methods based on centrality. The results

found previously imply that small world graphs effectivelyfacilitate disease spread in a simulated

environment even when the neighborhood size and probability of contacts outside the neighbor-

hood are relatively small. Discussing similar results, a research article by Watts and Strogatz states,

“Infectious diseases are predicted to spread much more easily and quickly in a small world; the

alarming and less obvious point is how few short cuts are needed to make the world small” [80].

In the previously presented experiments, no intervention strategies are implemented and a large
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portion of the population became infected. This chapter analyzes the effectiveness of various vac-

cination strategies based on modifications of the centrality measures discussed in Section 2.4.3.

Experimentation follows the steps below which are repeatedover various graph structures and

includes several vaccination policies for each distinct graph structure.

(i) Create a graph-based social network utilizing parameters given in Table 4.1.

(ii) Vaccinate individuals in the population.

(iii) Simulate multiple outbreaks in the established social network and collect data to assess

the severity of the outbreaks.

In contrast to the experiments presented in Chapter 3, the contact graphs are generated prior to

each outbreak to allow targeted vaccination of specific nodes based on centrality. The same contact

graphs are utilized for each vaccination policy and outbreak simulation. Statistics are recorded for

each simulation, including values ofR0, duration, and the proportion of the population infected.

Comparisons of each indicator are presented in Section 4.4.

4.1. Creating a Social Network Graph

A population of sizeN is represented as a graphG(V, E) in which each vertex in the graph,

v ∈ V , represents an individual and each edge in the graph,e(v, w) ∈ E represents a contact

between two individuals. Each individual is labeled with a unique identification number between

0 andn− 1, inclusive, and Noden− 1 is adjacent to Node0. Each member of the population has

an assigned neighborhood of sizek, such that the neighborhood extendsk/2 to the left andk/2 to

the right of that individual.

The contact graph is established based on the parameters listed in Table 4.1. Specific values

for these parameters are discussed in Section 4.3. The totalnumber of contacts for the entire

population is calculated as the size of the population,N , times the average number of contacts

per person, per day,CR. The procedure of building the contact graph continues until the total

number of contacts has been exhausted. The algorithm for creating the contact graph is outlined in

Algorithm 1.
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Algorithm 1 CONTACT GRAPH

ContactCount← 0
while ContactCount< TotalContactsdo

P1← random number from 0 toN − 1
rn← random number between 0 and 1
if rn < p then {Contact should be global}

P2← index from 0 toN − 1, /∈ neighborhood of P1
else

P2← index∈ neighborhood of P1
end if
if ContactGraph HasEdge (P1, P2)then

ContactGraph EdgeWeight(P1, P2)← ContactGraph EdgeWeight(P1, P2) + 1
else

ContactGraph AddWeightedEdge(P1, P2, 1)
end if
ContactCount← ContactCount + 2

end while

TABLE 4.1. Contact Graph Parameters

Parameter Explanation
N Population Size

CR Average number of contacts per person, per day
k Neighborhood size
p Probability of a random contact (contact outside of neighborhood)

4.2. Vaccinating Key Individuals

Vaccination policies are often designed with the primary purpose of protecting individuals. For

this reason, vaccines are often recommended for the very young and the very old. Although it

appears to be rational thought to safeguard the most vulnerable, this may not be the best strategy

for protecting a population. In the event of a limited supplyof vaccination, the entire population

would likely benefit from a policy that completely restrictsor greatly reduces the disease spread.

This chapter explores targeted vaccination of ten percent of population sizes 50, 150, and 250 by

identifying central nodes in a social contact graph.

The centrality measures ofdegree, betweenness, and closenesswere previously defined in

Chapter2 for unweighted graphs. Recent research suggests that it is beneficial to represent so-

cial networks as weighted graphs [12, 62, 63, 74]. This is especially relevant in the domain of
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disease spread where repeated contacts increase the likelihood that a disease will transfer from one

individual to another. Outlined below are centrality measures designed specifically for the purpose

of identifying individuals in a social network who are more prone to facilitate disease spread.

4.2.1. Contact Centrality

Contact Centrality measures the number of contacts an individual makes within aunit of time,

including those contacts which are unique and those which are repeated. Represented in a graph,

an edge with a weight of1 between two nodes is initially created upon the first contactbetween

the two nodes. Each additional contact between the same two nodes increases the edge weight by

one. The contact centrality for nodei, CN(i), is calculated as a sum of the edge weights betweeni

and all neighbors ofi. This is easily calculated through the use of an adjacency matrix, Aij . Each

entry inAij represents the weight of the edge betweeni andj. This calculation (see Equation 20)

is identical to that of degree centrality presented previously with the exception that the adjacency

matrix is weighted rather than binary.

DEFINITION 4.1. Contact centrality is defined as the average number of contacts an individual

makes within a specified unit of time.

(20) CN(i) =

n
∑

j=1,i6=j

Aij

(21) CŃ(i) =

n
∑

j=1,i6=j

Aij

n
∑

i=1

n
∑

j=i+1

Aij

=
CN(i)

n
∑

i=1

n
∑

j=i+1

Aij

Contact centrality is illustrated in Figure 4.1. In this graph, Node4 has a contact centrality of

16 which is the highest value in this network. The edge weight of7 between nodes1 and4 implies

that7 contacts are made between these two individuals that are capable of disease transfer if one
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individual is infectious and the other is susceptible. Likewise, there are9 possible opportunities for

transfer between nodes4 and8. A measure ofnon-weighteddegree centrality in this same network

would identify Node3 as the most central, even though Node3 makes fewer overall contacts than

Node4.

FIGURE 4.1. Contact centrality illustrated by Node4

Degree centrality is normalized by dividing each centrality measure by the number of possible

edges, which isn − 1 in a graph of sizen. Because the weight of edges in a weighted graph is

potentially unlimited, contact centrality is normalized by dividing by the total of all edge weights.

Like standard normalization techniques, this will producea centrality value between0 and1, in-

clusive. A normalized contact centrality of0 indicates that the node is disconnected, as illustrated

by Node3 in Figure 4.2. A normalized contact centrality of1 indicates that the graph is structured

as a star or wheel, as illustrated by Node4 in Figure 4.3. The formula for normalized contact

centrality of Nodei, CŃ(i), is given in Equation 21. This is simply the contact centrality of Node

i divided by the sum of half of the undirected weighted adjacency matrix.

FIGURE 4.2. Disconnected node with a contact centrality of0 illustrated by Node3
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FIGURE 4.3. Node4 has a normalized contact centrality value of1

4.2.2. Transmission Centrality

Transmission Centrality measures the degree to which an individual lies on a potential trans-

mission path between other individuals. Transmission centrality is a variation of betweenness cen-

trality such that edge weights are taken into consideration. Ulrik Brandes provides an algorithm for

determining betweenness centrality in weighted graphs in the paper “On Variants of Shortest-Path

Betweenness Centrality and their Generic Computation” [14]. Transmission centrality, as defined

in this paper, applies this algorithm, as well as the suggested use of weight inverses to indicate that

stronger weights represent closer ties.

DEFINITION 4.2. Transmission centrality is defined as the likelihood that an individual lies on a

randomly selected shortest weighted path between any two other individuals in a network.

To determine overall transmission centrality, it is advantageous to calculate partial transmissi-

bility, pst(i), for each node, as shown in Equation 22. In this formula,gst represents the number

of geodesic paths froms to t andgst(i) the number of geodesic paths froms to t that containi.

Partial transmissibility represents the probability thata nodei lies on the geodesic path from node

s to nodet for distinct nodess 6= i 6= t.

The transmission centrality of a node is the sum of all the partial transmissibilities. Equation 23

displays the calculation for transmission centrality of nodei. The double summation is required in

the formula because for each nodes, all other pointst must be considered in determining whether
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i lies on one or more geodesic paths froms to t. If node i lies on every geodesic path froms to

t, the transmission centrality for nodei is increased by one. If nodei only lies on a portion of the

geodesic paths froms to t, the transmission centrality for nodei is increased by that proportion.

The largest possible transmission centrality occurs when node i lies on every geodesic path

between every two nodess andt, s 6= i 6= t. In terms of public health, if an individual is in a

position to have maximum transmission centrality, vaccinating this individual effectively protects

an entire segment of the population. For example, a person orgroup of people who bring supplies

to a remote village may have maximum transmission centrality to and from the village. Vaccination

prevents transfer of disease from the greater population tothe village and likewise, transfer from

the village to the greater population.

Since there aren − 1 nodes not equal toi andn − 2 nodes not equal toi or s, the maximum

possible transmission centrality is one-halfn − 1 timesn − 2 as shown in Equation 24. Division

by 2 is necessary in an undirected graph since the path froms to t is equivalent to the path from

t to s. This maximum value is used to normalize transmission centralities. The normalized value

calculation for nodei, C T́ (i), is shown in Equation 25.

The formulas for transmissibility are identical to those ofbetweenness centrality. However,

there is a difference in the definition of the geodesic path between two points. In a non-weighted

graph, the path length between points and pointt is measured by the number of edges between the

two points. A geodesic path froms to t, therefore, is one that has the fewest edges betweens andt.

In a weighted graph in which the weight indicates the number of contacts between two individuals,

it is reasonable to consider a path to be shorter along more heavily weighted edges. Thus, the

sum of the inverse of all edge weights along each path froms to t is calculated to determine the

geodesic path.

This calculation of the geodesic path makes a significant difference when considering disease

transmission. Consider a situation illustrated by Figure 4.4 in which the individual represented

by Node0 is infectious and all other nodes are susceptible. Considering path length only, Node

3 is most likely to become infected via Node4. However, if the frequency of contacts is taken
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into account, Node3 is most likely to become infected via Nodes1 and2. Node4 has a higher

betweenness centrality, whereas Nodes1 and2 have higher Transmission centralities.

(22) pst(i) =

(

1

gst

)

(gst(i)) =
gst(i)

gst

(23) CT (i) =
n

∑

s=1

n
∑

t=s+1

pst(i)

(24) maxCT (i) =
(n− 1)(n− 2)

2
=

n2 − 3n + 2

2

(25) C T́ (i) =
2CT (i)

n2 − 3n + 2

FIGURE 4.4. Weighted geodesic path example: The geodesic path from0 to 3 in this
weighted contact graph is0− 1− 2− 3

4.2.3. Spread Centrality

Spread Centrality measures the social distance between an individual and every other indi-

vidual in the population. Spread centrality is based upon closeness centrality with an additional

condition that a larger edge weight value indicates a closersocial distance. The formula used to
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calculate spread centrality,CS(i), is the sum of the geodesic distances fromi to j, d(i, j), for all

pointsj 6= i as given in Equation 26. The formula for spread centrality isthe same as that for close-

ness centrality except that geodesic distances are calculated as discussed above for transmission

centrality.

DEFINITION 4.3. Spread centrality is defined as the weighted social distance between an individ-

ual and every other individual in the social network.

Normalization for spread centrality must consider edge weights in addition to size of the graph.

Normalization for closeness centrality is achieved by multiplying the raw value byn−1. This stan-

dardizes across any network size so that the maximum closeness of any node is obtained when that

node is connected to every other node and the normalized value is unity. In a weighted graph, a

maximum normalized value of unity for spread centrality is obtained when the unweighted nor-

malization is divided by the maximum weight evenly distributed over all other nodes as shown in

Equation 27.

(26) CS(i) =

n
∑

j=1

1

d(i, j)

(27) C Ś(i) =
(n− 1) 1

CS(i)
n

∑

i=1

n
∑

j=i+1

Aij

(n−1)

=
(n− 1)2 1

CS(i)
n

∑

i=1

n
∑

j=i+1

Aij

4.3. Simulating an Outbreak on an Established Contact Graph

The third and final stage of the experiments presented hereinis the simulation of outbreaks

across an established contact network once central nodes have been vaccinated. Outbreaks are

based on the susceptible-infectious-removed (SIR) model discussed in Chapter 2. Disease param-

eters are defined in Table 4.2. The total number of contacts for the entire population is calculated

as the size of the population,N , times the average number of contacts per person, per day,CR.
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There are two primary components to the outbreak simulation: Make Contacts, Algorithm 2, and

Update Population, Algorithm 3. The simulation loops through these two modules until there are

no individuals in either the Latent or Infectious state.

Algorithm 2 MAKE CONTACTS

TotalContactCount← 0
while TotalContactCount< TotalContactsdo

P1← random number from 0 toN − 1
P2← index of neighbor of Person[P1] by weighted selection
Person[P1].ContactCount← Person[P1].ContactCount + 1
Person[P2].ContactCount← Person[P2].ContactCount + 1
TotalContactCount← TotalContactCount + 2
rn← random number between 0 and 1
if Person[P1].State== Infectious and Person[P2].State== Susceptiblethen

if rn≤ TR then
Person[P2].State← Latent
Person[P2].StateCount← 0
Person[P1].SecondaryInfections← Person[P1].SecondaryInfections + 1
InfectiousGraph AddDirectedEdge(P1, P2)

end if
else if Person[P2].State== Infectious and Person[P1].State== Susceptiblethen

if rn≤ TR then
Person[P1].State← Latent
Person[P1].StateCount← 0
Person[P2].SecondaryInfections← Person[P2].SecondaryInfections + 1
InfectiousGraph AddDirectedEdge(P2, P1)

end if
end if

end while

TABLE 4.2. Disease Parameters

Parameter Explanation
N Population Size

CR Average number of contacts per person, per day
TR Transmission rate of the disease

DaysL Number of days in the latent state
DaysI Number of days in the infectious state

The experiments for this dissertation are conducted using programs written in Perl. Perl is

selected as the language of choice primarily because it offers a powerful graph library and has
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Algorithm 3 UPDATE POPULATION

LatentCount← 0
InfectiousCount← 0
RemovedCount← 0
for i = 0 toN − 1 do

if Person[i].State== Latentthen
if Person[i].StateCount= DaysLthen

Person[i].State← Infectious
InfectiousCount← InfectiousCount + 1
Person[i].StateCount← 0

else
LatentCount← LatentCount + 1

end if
else if Person[i].State== Infectiousthen

if Person[i].StateCount= DaysIthen
Person[i].State← Removed
RemovedCount← RemovedCount + 1
Person[i].StateCount← 0

else
InfectiousCount← InfectiousCount + 1

end if
else if Person[i].State== Removedthen

RemovedCount← RemovedCount + 1
end if
Person[i].StateCount← Person[i].StateCount + 1

end for

extensive community support. As open-source software, thecode is modifiable which is advanta-

geous in meeting the needs of this study. For example, the Graph module in Perl includes not only

the standard functions such as addvertex, addedge, etc., but also more complex functions, such

as APSP (All-Pairs Shortest Path) and Betweenness [40]. TheBetweenness function offered by

the Graph package returns a betweenness value as described by Freeman [32]. This open-source

code is modified to create a module for calculating contact, transmission, and spread centralities as

previously described. These three measures are efficientlycombined into a single module because

of the overlap in the required calculations.

Before simulating any outbreaks, statistical analyses areperformed on social network graphs

to determine if graphs created with the same parameters produce statistically equivalent network

structures with regard to the distribution of node centralities. The Contact Rate (CR) is assigned
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a value of20 and the Neighborhood Size (k) is assigned a value of6. Three population sizes are

tested,N = 50, N = 150, andN = 250. Four values ofp are tested for each population size,

p = 0, p = 0.01, p = 0.25, andp = 0.5. The valuep = 0 represents an ordered graph. Larger

values ofp represent small-world graphs that approach random graphs asp is increased. These four

values are tested to provide a range of graph structures. Foreach value ofp, thirty distinct graphs

are created and for every graph, and the contact, spread, andtransmission centrality measures are

recorded for every node. From this information, two groups of data for each centrality measure

and each distinctp value are compared. Data Set 1 is comprised of the first ten graphs and Data Set

2 is comprised of the last twenty graphs. This division of thedata allowsn trials to be compared

with 2n trials to ascertain if more thann simulations are necessary to generate representative

graph structures. The mean and standard deviation of each centrality measure are calculated for

every graph as well as the average of the means and standard deviations for each data set. The

results of the graph structure analyses are summarized in Tables 4.3, 4.4, and 4.5 and discussed in

Section 4.4.

Disease outbreaks are simulated over ten distinct graph structures for each set of graph param-

eters. Additionally, ten outbreaks for each vaccination strategy are simulated within each graph

structure. Experiments are performed on population sizes of 50, 150, and 250. The value ofp is

set to0, 0.01, 0.25, and0.5 for each set of experiments. A structural layout of the experiments for

this chapter is depicted in Figure 4.5.
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FIGURE 4.5. Vaccination simulation structure
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Figure 4.5 describes the organization of the experiments, however, it should be noted that each

simulation in the diagram represents distinct outbreaks after each of the following vaccination

strategies: low contact centrality, high contact centrality, transmission centrality, spread centrality,

and randomness. For comparison purposes, outbreaks are simulated without vaccination as well.

This results in a total of7, 200 simulated outbreaks (6 strategies, 10 outbreaks on each graph, 10

graphs, 4 values forp, and 3 values forn).

4.4. Results

From the experiments discussed in this chapter, results arepresented based on observations

regarding graph structure and centrality distribution, graph structure and outbreak analyses, and

graph structure and vaccination methods. Observations in each of these areas provide interesting

findings which will hopefully generate continued research in this area.

4.4.1. Graph Structure and Centrality Distribution

Prior to outbreak simulations, graph analyses are performed to provide a guideline regarding

the number of simulations necessary for statistically significant results. In addition to increasing

the level of confidence regarding further simulations, the results from this preliminary study offer

insight regarding the relationship between graph structure and centrality distribution. The results

are summarized in Tables 4.3, 4.4, and 4.5, in which Data Set 1is comprised of averages from a

set of 10 graphs and Data Set 2 is comprised of averages from 20graphs, such that all 30 graphs

are created using the same set of parameters. The consistency between Data Sets 1 and 2 for

each value ofN andp over all distributions implies that experimentation over ten distinct graph

structures should produce reliable results.

The average means and standard deviations for contact centrality over population sizes 50, 150,

and 250 are presented in Table 4.3. The average contact centrality has minimal variation across all

values ofp for each specific N value as expected. The graphs are created with a specific number

of edges, (N * CR)/2, therefore, the average contact centrality should be equivalent for a given

population size. Due to normalization, which is a division by the total of all edge weights, the

average contact centrality decreases as the population size increases.
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The average means and standard deviations for transmissioncentrality over population sizes 50,

150, and 250 are given in Table 4.4. Unlike the average contact centrality, the average transmission

centrality does not remain consistent within a given population size. As the probability of non-local

contacts increases, the average transmission centrality decreases. Comparing the transmission

centrality among the three populations sizes, it is noted that whenp = 0 (all contacts are local),

the transmission centrality is very similar regardless of the population size. However, forp > 0,

these values do not remain consistent over the various population sizes.

The average means and standard deviations for spread centrality over population sizes 50,

150, and 250 are given in Table 4.5. The average mean spread centrality tends to increase as the

probability of non-local contacts increases from the lowervalues,p = 0 andp = 0.01 to the larger

values,p = 0.25 andp = 0.5, although in every case there is a slight drop in spread centrality

from p = 0.25 to p = 0.5. This is an interesting point, suggesting that spread centrality may reach

a peak in a small-world graph in whichp has a value somewhere betweenp = 1% andp = 50%.

Although outside the realm of this study, this result indicates that further investigation is warranted

in this area.
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TABLE 4.3. Contact Centrality Distribution Statistics

Contact Centrality Average Standard
N = 50 Mean Deviation

p = 0
Data Set 1 0.04000 0.00880

Data Set 2 0.04000 0.00890

p = 0.01
Data Set 1 0.04000 0.00941

Data Set 2 0.04000 0.00912

p = 0.25
Data Set 1 0.04000 0.00934

Data Set 2 0.04000 0.00881

p = 0.5
Data Set 1 0.04000 0.00884

Data Set 2 0.04000 0.00878

N = 150

p = 0
Data Set 1 0.01333 0.00303

Data Set 2 0.01333 0.00300

p = 0.01
Data Set 1 0.01333 0.00301

Data Set 2 0.01333 0.00302

p = 0.25
Data Set 1 0.01333 0.00299

Data Set 2 0.01333 0.00300

p = 0.5
Data Set 1 0.01333 0.00291

Data Set 2 0.01333 0.00299

N = 250

p = 0
Data Set 1 0.00799 0.00181

Data Set 2 0.00800 0.00183

p = 0.01
Data Set 1 0.00800 0.00178

Data Set 2 0.00800 0.00178

p = 0.25
Data Set 1 0.00801 0.00211

Data Set 2 0.00800 0.00210

p = 0.5
Data Set 1 0.00799 0.00247

Data Set 2 0.00800 0.00250
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TABLE 4.4. Transmission Centrality Distribution Statistics

Transmission Centrality Average Standard
N = 50 Mean Deviation

p = 0
Data Set 1 0.09227 0.08425

Data Set 2 0.09151 0.08379

p = 0.01
Data Set 1 0.07304 0.07063

Data Set 2 0.07490 0.06897

p = 0.25
Data Set 1 0.03146 0.02338

Data Set 2 0.03222 0.02439

p = 0.5
Data Set 1 0.02400 0.02113

Data Set 2 0.02399 0.01936

N = 150

p = 0
Data Set 1 0.09568 0.10560

Data Set 2 0.09516 0.10415

p = 0.01
Data Set 1 0.03838 0.03887

Data Set 2 0.03953 0.03950

p = 0.25
Data Set 1 0.01418 0.00895

Data Set 2 0.01421 0.00897

p = 0.5
Data Set 1 0.01086 0.00720

Data Set 2 0.01085 0.00734

N = 250

p = 0
Data Set 1 0.09625 0.11009

Data Set 2 0.09560 0.10919

p = 0.01
Data Set 1 0.02791 0.02749

Data Set 2 0.02805 0.02743

p = 0.25
Data Set 1 0.00968 0.00656

Data Set 2 0.00980 0.00655

p = 0.5
Data Set 1 0.00736 0.00543

Data Set 2 0.00739 0.00568
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TABLE 4.5. Spread Centrality Distribution Statistics

Spread Centrality Average Standard
N = 50 Mean Deviation

p = 0
Data Set 1 0.07994 0.00471

Data Set 2 0.07970 0.00473

p = 0.01
Data Set 1 0.08362 0.00635

Data Set 2 0.08195 0.00584

p = 0.25
Data Set 1 0.09090 0.00636

Data Set 2 0.09121 0.00634

p = 0.5
Data Set 1 0.08811 0.00739

Data Set 2 0.08817 0.00693

N = 150

p = 0
Data Set 1 0.02879 0.00082

Data Set 2 0.02870 0.00086

p = 0.01
Data Set 1 0.04746 0.00421

Data Set 2 0.04674 0.00418

p = 0.25
Data Set 1 0.06735 0.00353

Data Set 2 0.06740 0.00359

p = 0.5
Data Set 1 0.06524 0.00367

Data Set 2 0.06528 0.00387

N = 250

p = 0
Data Set 1 0.01763 0.00050

Data Set 2 0.01741 0.00047

p = 0.01
Data Set 1 0.03918 0.00321

Data Set 2 0.03893 0.00341

p = 0.25
Data Set 1 0.06065 0.00348

Data Set 2 0.06055 0.00354

p = 0.5
Data Set 1 0.05872 0.00398

Data Set 2 0.05893 0.00402
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4.4.2. Graph Structure and Outbreak Analysis

The severity of every simulated outbreak is measured based upon the proportion of the popula-

tion that becomes infected, the value ofR0, and the duration. These findings support similar results

presented in Chapter 3. The results are summarized in Tables4.6, 4.7, and 4.8. Although there

are exceptions as noted in the tables, general trends are observed regarding each of the severity

measures as discussed below.

The proportion of the population that becomes infected during the simulations after implemen-

tation of a vaccination policy (see Table 4.6) ranges from15.4% to 88.7%. The lowest average

occurs atN = 250 andp = 0 under the high contact vaccination policy. The highest average

occurs atN = 150 andp = 0.25 under the low contact vaccination policy. Consistent with ear-

lier experiments, the proportion of infected individuals increases with the number of non-local

contacts regardless of the vaccination policy. This is an indication that restricted contacts have a

tendency to confine the spread of an outbreak. Additionally,the proportion of infected individuals

is found to be considerably higher in smaller populations insimulations in which there are no, or

very few (p = 0 or p = 0.01) outside contacts. This disparity is not observed in simulations with

a larger probability of non-local contacts (p = 0.25 andp = 0.5). The neighborhood size,k = 6,

is held constant for these experiments regardless of the population size which may account for

this discrepancy. In smaller populations, the neighborhood size is proportionally larger, thereby

increasing the probability that the disease will transfer to a higher proportion of individuals in the

population.

Average values ofR0, as shown in Table 4.7 range from2.65 to 4.07 in simulations with

vaccination implementation. The low value of2.65 occurs atN = 50 and p = 0 under the

random vaccination policy. The highest average of4.07 occurs atN = 50 andp = 0.5 under

the low contact vaccination policy. All vaccination strategies are shown to lower the value ofR0.

Regardless of the population size or the type of vaccination, the value ofR0 tends to increase

with the probability of outside contacts. The population size,N , does not appear to have as much

influence overR0 as the probability of non-local contacts and the vaccination method. Perhaps
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TABLE 4.6. Comparison of Percent of Population Infected based on Specific Vaccination
Strategies

Percent of Population Infected
High Contact Vaccination Transmission Vaccination

N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 62.1 66.3 83.3 86.9 50 63.3 65.4 85.1 84.3
150 26.4 47.2 85.7 84.2 150 32.4 41.0 83.2 84.2
250 15.4 36.7 85.7 82.2 250 23.2 28.8 84.7 84.1

Random Vaccination Spread Vaccination
N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 65.6 73.9 86.3 86.3 50 72.6 69.1 83.8 85.9
150 34.4 52.7 86.7 85.4 150 48.6 47.6 83.6 84.4
250 21.3 43.3 85.9 87.5 250 34.2 41.8 84.5 84.1

Low Contact Vaccination No Vaccination
N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 73.9 77.8 87.7 87.7 50 93.7 94.1 96.8 98.7
150 34.6 60.4 88.7 86.1 150 68.3 87.0 96.9 98.9
250 22.2 43.7 88.4 87.9 250 53.1 85.6 97.1 97.9

the most notable finding is that the value ofR0 is not a good predictor of the proportion of the

population that will become infected without additional consideration of the graph structure. This

implies that a given disease with an estimatedR0 value is not likely to manifest itself in the same

manner under different population dynamics.

TABLE 4.7. Comparison ofR0 Values based on Specific Vaccination Strategies

R0 Values
High Contact Vaccination Transmission Vaccination

N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 2.75 2.69 3.04 3.20 50 2.86 2.87 3.17 3.29
150 2.78 2.70 3.29 3.22 150 2.70 2.75 3.92 3.38
250 2.80 2.63 3.21 3.20 250 2.92 2.80 2.85 3.39

Random Vaccination Spread Vaccination
N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 2.65 2.77 3.01 3.31 50 2.97 2.89 3.23 3.11
150 2.84 2.70 3.20 3.43 150 2.96 3.10 3.09 3.22
250 2.85 2.85 3.16 3.53 250 3.02 3.00 3.14 3.19

Low Contact Vaccination No Vaccination
N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 2.83 2.94 3.39 4.07 50 3.18 3.24 3.66 4.05
150 2.94 3.11 3.46 3.58 150 3.02 2.94 3.56 4.15
250 2.73 3.03 3.45 3.67 250 3.09 2.99 3.54 4.05
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The average duration, as shown in Table 4.8 ranges from a low of 30 days which occurs at

N = 50 andp = 0.5 after low contact vaccination, as well as no vaccination, toa high average

value, with vaccination, of145 which occurs atN = 250 andp = 0 after spread vaccination and a

high average value of211 days without vaccination. Under the same vaccination strategy and the

same graph structure, it is observed that larger populations sustain the disease for a longer period

of time, but this is not an indication of the severity of the outbreak. As withR0, there is not a direct

correlation between the duration of the outbreak and the proportion of the population infected.

TABLE 4.8. Comparison of Outbreak Duration (in days) based on Specific Vaccination Strategies

Outbreak Duration (Days)
High Contact Vaccination Transmission Vaccination

N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 61 56 36 34 50 63 57 35 32
150 78 95 50 41 150 89 91 49 41
250 74 116 53 46 250 103 109 53 45

Random Vaccination Spread Vaccination
N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 64 58 37 32 50 68 62 35 33
150 97 102 47 40 150 123 99 47 41
250 101 130 51 44 250 145 122 52 45

Low Contact Vaccination No Vaccination
N p = 0 p = 0.01 p = 0.25 p = 0.5 N p = 0 p = 0.01 p = 0.25 p = 0.5
50 65 60 33 30 50 68 61 32 30
150 99 104 46 38 150 167 123 43 37
250 110 122 51 43 250 211 178 47 41

4.4.3. Graph Structure and Vaccination Methods

All of the investigations presented in this dissertation indicate that the underlying social struc-

ture has an effect on the severity of a disease outbreak. Graphs that are ordered, i.e. contacts are

limited to a specific neighborhood, do not facilitate disease spread as well as small-world or ran-

dom networks. However, the indication that a specific vaccine strategy is always more effective on

a particular graph structure is not supported by experiments presented herein. Nevertheless, based

on the results shown in Tables 4.9, 4.10, and 4.11, vaccination of individuals with low contact cen-

trality is generally not as effective as the other vaccination strategies. This is an important finding
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because this is a strategy that is represented by policies that are directed at vaccinating the elderly

and infants. Among the vaccination strategies of high contact, transmission, spread, and random,

there is no confirmation that any one strategy is markedly more effective than the others, although

a general pattern does appear. High contact and transmission vaccination demonstrate a tendency

to produce a slightly lower proportion of infected population than the other policies, and random

vaccination has a propensity to be more effective than low contact vaccination, but less effective

than the other strategies.

TABLE 4.9. Vaccination Efficacy, Population Size N = 50: Vaccination Method (Percent
of Population Infected, Percent of Outbreaks Infecting20% of Population)

p = 0 p = 0.01

Contact(62.1, 93) Transmission(65.4, 87)
Transmission(63.6, 88) Contact(66.3, 93)
Random(65.6, 91) Spread(69.1, 95)
Spread(72.6, 95) Random(73.9, 95)
Low Contact(73.9, 93) Low Contact(77.8, 96)
No Vaccination(93.7, 99) No Vaccination(94.1, 97)

p = 0.25 p = 0.5

Contact(83.3, 95) Transmission(84.3, 96)
Spread(83.8, 96) Spread(85.9, 98)
Transmission(85.1, 97) Random(86.3, 98)
Random(86.3, 98) Contact(86.9, 99)
Low Contact(87.7, 99) Low Contact(87.7, 99)
No Vaccination(96.8, 98) No Vaccination(98.7, 100)

4.5. Summary

Emerging diseases pose a threat to society. One of the most practical defenses against such a

threat is through vaccination. However, vaccine availability is often a concern that public health of-

ficials must address. Limited supplies create a dilemma regarding who should receive the existing

doses. The purpose of the experiments presented in this chapter is to better understand the effects

of vaccination within various social structures and to determine if any of the particular vaccination

strategies under examination are more effective than the others.
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TABLE 4.10. Vaccination Efficacy, Population Size N = 150: Vaccination Method (Percent
of Population Infected, Number of Outbreaks20%)

p = 0 p = 0.01

Contact(26.4, 57) Transmission(41.0, 73)
Transmission(32.4, 67) Contact(47.2, 75)
Random(34.4, 71) Spread(47.6, 81)
Low Contact(34.6, 74) Random(52.7, 78)
Spread(48.6, 78) Low Contact(60.4, 88)
No Vaccination(68.3, 91) No Vaccination(87.0, 95)

p = 0.25 p = 0.5

Transmission(83.2, 95) Contact(84.2, 96)
Spread(83.6, 98) Transmission(84.2, 96)
Contact(85.7, 98) Spread(84.4, 96)
Random(86.7, 98) Random(85.4, 96)
Low Contact(88.7, 100) Low Contact(86.1, 97)
No Vaccination(96.9, 98) No Vaccination(98.9, 100)

TABLE 4.11. Vaccination Efficacy, Population Size N = 250: Vaccination Method (Percent
of Population Infected, Number of Outbreaks20%)

p = 0 p = 0.01

Contact(15.4, 33) Transmission(28.8, 56)
Random(21.3, 44) Contact(36.7, 65)
Low Contact(22.2, 46) Spread(41.8, 73)
Transmission(23.2, 52) Random(43.3, 71)
Spread(34.2, 66) Low Contact(43.7, 72)
No Vaccination(53.1, 85) No Vaccination(85.6, 94)

p = 0.25 p = 0.5

Spread(84.5, 96) Contact(82.2, 94)
Transmission(84.7, 97) Transmission(84.1, 96)
Contact(85.7, 98) Spread(84.1, 96)
Random(85.9, 97) Random(87.5, 99)
Low Contact(88.4, 100) Low Contact(87.9, 99)
No Vaccination(97.1, 98) No Vaccination(97.9, 99)

In corroboration with the results of Chapter 3, it is observed that outbreak severity is dimin-

ished when social contacts are confined to a specific neighborhood. The severity increases as the

probability of contacts outside of the neighborhood rises.This finding is consistent for all popula-

tion sizes and all vaccination methods. It is additionally observed that the proportion of infected
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individuals in smaller populations is found to be considerably higher than that of larger populations

in simulations in which there are no, or very few, non-local contacts.

All vaccination methods are shown to lower the value ofR0 and the proportion of the infected

population, but no single policy is determined to be significantly more effective than the others.

Alternatively, a vaccination policy based on low contact isconsistently found to be less effective

than the other policies. Implementation in real life is often related to random vaccination, low

contact vaccination, or a combination thereof. Under the specific circumstances of this study, there

is no substantial gain in changing this policy.
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CHAPTER 5

CONCLUSION

Epidemiology has evolved and continues to evolve with the advancement of technology. Con-

tributions to this field by Hippocrates, John Snow, and others created a foundation for current and

future research. It is not only possible, but essential, that the discipline of computer science inte-

grate with epidemiology and public health to combat diseasespread. This dissertation is one effort

of many that is designed to bridge the gap among these fields.

As computational models become more prevalent, it is important to recognize that the structure

used to model a social network has an influence on the results of the simulated outbreak. If the so-

cial network is not accurately modeled, the results obtained may be unreliable. A basic assumption

for the work presented in this dissertation is that there is astrong connection between the under-

lying social network and disease spread. Social networks, made up of individuals or groups who

are connected through family, friendship, work relations,or another type of interdependent bond,

can be modeled as a graph in which each individual or group is represented by a node and each

relationship is denoted as an edge between two nodes. The structure of a graph that accurately rep-

resents a social network is a subject of debate. An ordered graph structure implies that individuals

are only allowed to make contacts within their neighborhood, while a random structure indicates

that contacts can be initiated with anyone in the population. Small-world graphs are those that fall

between ordered and random and are commonly used to represent social networks. Many experts

agree that a small-world graph, as discussed in Section 2.4.2 characterizes two essential properties

of social networks, clustering and the small-world effect.Clustering refers to the tendency of peo-

ple to form groups and the small-world effect theorizes that, on average, there is a relatively short

distance between any two individuals in a population. This study explores ordered, random, and

small-world graphs as underlying social networks.
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Investigations presented herein are the result of multipleanalyses of disease spread in simu-

lated environments. The creation of social networks and subsequent disease outbreaks are based

on graph theoretical concepts. This design allows the established field of graph theory to be ap-

plied to the area of epidemiology. A well-recognized paradigm, the SIR model, is superimposed

onto the social network graph structure. Initial investigations in this dissertation measure changes

in outbreak severity as a result of modifications to the social structure. Subsequent experiments

explore the efficacy of several vaccination strategies.

Several conclusions are drawn from these experiments. As a social network progresses from

ordered to random, the neighborhood size becomes less important. A small neighborhood size with

a low probability for contact outside of the neighborhood has a significant effect on the severity of a

disease outbreak, however, as the neighborhood size or the probability of random contacts increase,

the variation in severity is very minor. In fact, as the neighborhood size approaches the size of the

population, the structure of the graph inherently moves from ordered to random regardless of the

probability of random contacts.

It is also observed that the duration of an outbreak and the initial number of secondary infec-

tions,R0, are not reliable indicators of the severity of an outbreak.A short duration may result due

to the lack of progression of the disease throughout the population, infecting very few individuals,

or it may result because the disease spreads very quickly, infecting many. A value ofR0 > 1

generally indicates that an epidemic is likely to occur, however, this is not always the case. In

circumstances when the neighborhood size is limited and theprobability for random contacts is

low, it is observed thatR0 > 1 is not an accurate indicator. Although duration andR0 are useful in

conjunction with the proportion of population infected, they do not provide enough information to

stand alone.

Chapter 4 explores the efficacy of targeted vaccination policies under the assumption of a

limited supply of vaccine. Unlike the earlier experiments in which the contact graph is created

dynamically as the disease spreads, these experiments firstcreate a social contact graph so that
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key individuals can be identified for vaccination. Vaccination methods include high contact, trans-

mission, spread, random, and low contact. After vaccination of ten percent of the population, an

outbreak is simulated and measurements ofR0, duration, and the proportion of the population

infected are recorded. All vaccination methods are found tolower the value ofR0 and decrease

the proportion of the population infected. Vaccination of individuals who make fewer contacts is

found to be the least effective strategy, but none of the vaccination methods are consistently more

effective than the others. Random vaccination generally attains better results than low contact

vaccination, but is found to be slightly less successful than the other strategies.

5.1. Implications to Public Health and Policy Development

The experiments presented in this dissertation suggest that both reducing an individual’s ef-

fective neighborhood size and limiting the number random contacts have the potential to decrease

the severity of a disease outbreak. This does not necessarily require an alteration of the actual

personal connections, rather a reduction in the ability forthe connections to transfer disease. Pub-

lic awareness, prophylactic use, quarantine, and vaccination are all methods that can effectively

reduce disease transfer. Early intervention may prevent the occurrence of an epidemic/pandemic

or limit the severity of an outbreak. When vaccination methods are employed, the findings herein

suggest that random vaccination is nearly as effective as targeted policies if the proportion of the

population to be vaccinated is low (10% for the studies conducted in this research). Future stud-

ies may reveal that targeted strategies are more effective if the proportion of individuals that are

vaccinated is increased.

5.2. Limitations

It is not possible to simulate a disease outbreak with complete accuracy. The variance in disease

and population parameters along with the random nature of disease spread make it a tremendous

challenge to portray an epidemic/pandemic in a simulated environment. Nevertheless, this is a

challenge that must be addressed in order to advance our knowledge and understanding of disease

dynamics.
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The computational complexity of the graph algorithms implemented in this research restrict

the breadth and depth of the experiments presented in this dissertation. Many of the experiments

presented in Chapter 4 have execution times in excess of30 hours. Therefore, it is impractical

to increase the graph size to a level that simulates a larger population of individuals, such as a

metropolitan area. It should be emphasized, however, that nodes in a graph can represent groups

as well as individuals.

In the experiments conducted for this research, disease attributes are held constant and param-

eter changes are limited to graph structure. Altering the transmission rate, latent period, and/or

infectious period will almost certainly change the rate at which a disease progresses through a

population, but the relationship between graph structure and outbreak severity is likely to be the

same. A more significant limitation of this study is that vaccination policies are only implemented

over ten percent of the population. Vaccination of a larger portion of the population may reveal

a more distinctive pattern among vaccination strategies. Although a more comprehensive study

may provide additional insights regarding the relationship between graph structure and disease

dynamics, the findings in this dissertation are substantialand provide direction for future studies.

5.2.1. Future Work

Computation epidemiology is a growing field with unlimited open questions. From the ex-

periments presented in this dissertation, there is much room for expansion. While population,

neighborhood size, and probability of non-local contacts are altered, many other parameters are

held constant. Changes in these parameters, such as the contact rate, days latent, and days in-

fectious, may produce additional results. Additionally, an increase in population size could be

performed to test scalability. In regard to neighborhood size, it can be argued that an individual

makes approximately the same number of contacts in a day regardless of the population size or,

alternatively, it might be assumed that an increase in population size increases the contact rate. The

experiments involving vaccination (Chapter 4) maintain a constant neighborhood size, leaving a

room for future research involving variable neighborhood sizes. The vaccination simulations pre-

sented in Chapter 4 are designed to model a situation in whichthe vaccine supply is very limited.
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Future studies might include a gradual increase in the proportion of the population vaccinated to

compare the efficacy as more individuals become vaccinated.

Computational epidemiology is becoming increasingly important in our global society. The

vast nature of this field of study requires a concerted effortfrom many agencies and across sev-

eral disciplines. Successful development of reliable models depends on a collaborative effort and

ongoing research such as that presented in this paper. No single endeavor is sufficient, but each

contribution is valuable.
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APPENDIX

CDC VACCINATION TABLE
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FIGURE A.1. CDC vaccination table
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FIGURE A.2. CDC vaccination table
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