

1)
2)
3)
4)

APPROVED:

Jung Hwan Oh, Major Professor
Bill Buckles, Committee Member
Parthasarathy Guturu, Committee Member
Ian Parberry, Chair of the Department of

Computer Science and Engineering
James D. Meernik, Acting Dean of the

Robert B. Toulouse School of
Graduate Studies

EFFECTIVE AND ACCELERATED INFORMATIVE FRAME FILTERING IN

COLONOSCOPY VIDEOS USING GRAPHIC PROCESSING UNITS

Venkata Praveen Karri, B. Tech.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2010

Karri , Venkata Praveen. Effective and Accelerated Informative Frame Filtering in

Colonoscopy Videos Using Graphic Processing Units. Master of Science (Computer

Engineering), August 2010, 55 pp., 7 tables, 32 figures, references, 22 titles.

Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa

of the human colon. Previous methods and software solutions to detect informative frames in

a colonoscopy video (a process called informative frame filtering or IFF) have been hugely

ineffective in (1) covering the proper definition of an informative frame in the broadest sense

and (2) striking an optimal balance between accuracy and speed of classification in both real-

time and non real-time medical procedures.

In my thesis, I propose a more effective method and faster software solutions for IFF

which is more effective due to the introduction of a heuristic algorithm (derived from

experimental analysis of typical colon features) for classification. It contributed to a 5-10%

boost in various performance metrics for IFF. The software modules are faster due to the

incorporation of sophisticated parallel-processing oriented coding techniques on modern

microprocessors. Two IFF modules were created, one for post-procedure and the other for real-

time. Code optimizations through NVIDIA CUDA for GPU processing and/or CPU multi-

threading concepts embedded in two significant microprocessor design philosophies (multi-

core design and many-core design) resulted a 5-fold acceleration for the post-procedure

module and a 40-fold acceleration for the real-time module. Some innovative software

modules, which are still in testing phase, have been recently created to exploit the power of

multiple GPUs together.

 ii

Copyright 2010

by

Venkata Praveen Karri

iii

ACKNOWLEDGEMENTS

The writing of a thesis is not possible without the personal and professional involvement

of numerous people. Starting with my major professor to friends and family, each and everyone

is in some way or the other responsible for encouraging me throughout the journey. I would

like to express my profound gratitude and appreciation to Dr. Jung Hwan Oh for providing me

the opportunity to work on the most exciting technology fields – healthcare IT – in the market

today.

I extend my sincere thanks to my current team-mates at Multimedia Information Group

(MIG) – Ruwan Nawaratna and Kumara Jayantha and last but not the least, my ex team-mate

and a good friend of mine – Avnish Malik Rajbal, for contributing towards my research through

their valuable intellectual inputs. I am also thankful to the National Science Foundation and

Mayo Clinic, Rochester, MN for funding the research and providing me with financial support.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... v

LIST OF FIGURES .. vi

Chapters

1. INTRODUCTION ... 1

2. BACKGROUND AND CONTRIBUTION .. 2

3. RELATED WORK ... 6

4. REQUIREMENTS FOR EFFECTIVE INFORMATIVE FRAME FILTERING 9

4.1 Phase I: Polarization in IFF with Edge Detectors 10

4.2 Phase II: Concept of Connectivity in an Edge Map 13

5. PROPOSED ALGORITHM AND COMPUTATIONAL COSTS 18

6. CUDA-BASED COPROCESSOR – GTX 280 ... 25

7. GPU IFF ALGORITHM: HANDLING BOTTLENECK #1 .. 28

7.1 Stages 1 and 2: Edge Map and Connectivity Map Generation 28

7.2 Stage 3: Block Division and Summation .. 35

7.3 CUDA Kernel Invocations .. 37

8. CPU-GPU COMBO SCHEME: HANDLING BOTTLENECK #2 39

9. EXPERIMENTAL RESULTS .. 42

10. CONCLUSION AND FUTURE DIRECTION .. 52

REFERENCES .. 53

v

LIST OF TABLES

Page

9.1 CANNY WITH PHASE II PARAMETERS.. 44

9.2 SOBEL WITH PHASE II PARAMETERS ... 44

9.3 LAPLACIAN OF GAUSSIAN WITH PHASE II PARAMETERS .. 45

9.4 ALGORITHMS ACCURACY COMPARISON .. 45

9.5 REAL-TIME IFF MODULE RESULTS – DIFFERENT VIDEO INPUTS 47

9.6 POST-PROCEDURE IFF MODULE RESULTS FOR A SINGLE FRAME 49

9.7 POST-PROCEDURE IFF MODULE RESULTS – FOUR VERSIONS .. 50

vi

LIST OF FIGURES

Page

2.1 Examples of Informative Frames .. 2

2.2 Examples of Non-Informative Frames .. 2

3.1 Failure of Previous Algorithm with High-Sensitive Canny Edge Detector 8

3.2 Failure of Previous Algorithm with Low-Sensitive Canny Edge Detector 8

4.1 Example of Good Polarization... 11

4.2 Example of Ineffective Polarization .. 11

4.3 Example of Incorrect Polarization ... 12

4.4 Example Showing No Scope for Polarization .. 12

4.5 Concept of Connectivity .. 15

4.6 Connectivity Map Illustration ... 15

4.7 Examples of Different Block Sizes to Quantify an Edge Map ... 16

4.8 Example of Block Connectivity Graph for Different Block Sizes 17

5.1 Block Diagram of the New Algorithm ... 18

5.2 Effects of Phase-I Parameters on Extremely Informative Frame 19

5.3 Effects of Phase-I Parameters on Ambiguously Informative Frame 20

5.4 Effects of Phase-I Parameters on Ambiguously Non-Informative Frame 21

5.5 Effects of Phase-II Parameters on Informative Frame .. 23

5.6 Computational Costs in Different IFF Modules ... 24

6.1 Hardware and Software Point of Views of GPU and CUDA .. 26

7.1 Global and Texture Memory Views of a 3 X 3 Matrix of Pixels .. 29

7.2 Results of Using Texture Memory to Avoid Non Coalesced Global Memory Access 30

7.3 Comparisons of GPU Memories .. 31

vii

7.4 Performance of Shared and Texture Memory for Separable Convolution 32

7.5 Illustration and Kernel for Row Separable Filter .. 33

7.6 Illustration and Kernel for Column Separable Filter ... 33

7.7 Edge and Connectivity Maps .. 34

7.8 Illustration and Kernel Code Snippet for Stage 3.. 36

7.9 GPU IFF Algorithm: Flow of Kernel Invocations .. 37

8.1 Post-Procedure IFF Module: Using Sequential CPU Coding with GPU 40

8.2 Post-Procedure IFF Module: Using Parallel CPU Coding with GPU 41

9.1 Real-Time IFF Module Speed Graph ... 48

9.2 Post-Procedure IFF Module Speed Graph .. 51

1

CHAPTER 1

INTRODUCTION

Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa

of the human colon. It has contributed to a marked decline in the number of colorectal cancer

related deaths [2]. However, recent data suggest that there is a significant (4-12%) miss-rate for

the detection of even large polyps and cancers [3, 4]. To address this, I, at the Multimedia

Information Group, Dept. of Computer Science and Engineering in collaboration with

Endometric Corporation, Ames, IA have been investigating an automated post-procedure

quality measurement system by analyzing colonoscopy videos captured during colonoscopy.

Another approach is to inform the endoscopist of possible sub-optimal inspection

immediately in order to improve the quality of the actual procedure being performed. To allow

immediate feedback, I need to achieve real-time analysis of colonoscopy videos. A fundamental

step of quality measurement in either post-procedure or real-time mode is to remove non-

informative frames. I call this step informative frame filtering (IFF).

In my thesis, I proposed a new IFF algorithm which is more effective and accurate than

previous algorithms. By utilizing the immense power of many-core graphic processing units

(GPU) and multi-core central processing units (CPU) design philosophies, I created two IFF

modules: one for real-time and the other for post-procedure colonoscopy scenarios.

Code optimizations through NVIDIA CUDA (Compute Unified Device Architecture) for

GPU processing and/or CPU multi-threading concepts embedded in the above two design

philosophies resulted a 5-fold acceleration for the post-procedure module and a 40-fold

acceleration for the real-time module.

2

CHAPTER 2

BACKGROUND AND CONTRIBUTION

An informative frame in a colonoscopy video can be broadly defined as a frame which is

useful for convenient naked-eye analysis of the colon (Figure 2.1). A non-informative frame has

the opposite definition (Figure 2.2). The non-informative frames are usually generated due to

three main reasons: too-close (or too-far) focus into (from) the mucosa of colon, foreign

substances (i.e., stool, cleansing agent, air bubbles, etc.) covering camera lens or rapid

movements through the intracolonic space. In general, non-informative frames can be

considered out-of-focus frames. My intention is not to increase the sharpness of these frames

(these kind of techniques are commonly termed auto-focusing algorithms), but to just filter

them out.

Figure 2.1 Examples of Informative Frames

Figure 2.2 Examples of Non-Informative Frames

Informative and non-informative frames or images can be loosely termed as clear and

blurry frames respectively. But, these loose definitions are not sufficient for proper frame

filtering in colonoscopy. In a colonoscopy context, my deeper definition of informative and non-

informative frames is slightly different from the conventional definitions of clear and blurry

3

images. I presume that an informative frame in colonoscopy is primarily characterized by

curvaceously - circular or semi-circular - connected vivid lines (not just any lines like horizontal

or vertical lines or broken lines), because that is the typical content of an informative colon

frame (Figure 2.1).

Curvaceous connectivity means more connectivity in diagonal and circular directions.

My intention is to retain frames which satisfy this definition and filter out the rest. The best way

to completely realize this definition is to first detect the presence of such vivid lines and second

measure the amount of curvaceous connectivity they possess. Then with the help of a carefully

chosen threshold, identify frames which exhibit more curvaceous connectivity and classify them

as informative and vice-versa. Hence, my definition is very different from the rough definition

of clear and blurred images which comprise the majority of no-reference blur metric

publications. In this thesis, I propose a highly accurate algorithm for IFF (informative frame

filtering).

In the real world, colonoscopy primarily has two demands from the computing field.

First is to provide automated quality measurement while the procedure is being performed,

and the second is to generate a quality report on videos which were already captured and

reside on disk. I identified that I need separate real-time and post-procedure software solutions

to satisfy these demands, and thus built two separate modules: real-time IFF module and post-

procedure IFF module. IFF is only the first step of automated quality measurement. To provide

automated quality measurement in real-time for colonoscopy videos which are captured at 30

fps, we have only around 33ms window to process each frame and generate quality metrics.

4

As already mentioned, there are several steps to generate quality metrics, and if I want

to design a good real-time system, I have to make sure all these steps are completed in that

33ms time frame. So, the primary design consideration of real-time IFF module is to consume as

much less time as possible below 33ms, leaving the remaining time for other steps to execute.

In the post-procedure module, there are a lot of disk-access operations which introduce

unnecessary delay in report generation. Half of the total execution time to evaluate colon

frames in the post-procedure scenario is consumed for disk-access operations. In this thesis, I

propose very fast software solutions for both post-procedure and real-time scenarios by

employing CPU (central processing unit) multi-threading and/or GPU (graphic processing unit)

co-processing using NVIDIA CUDA (Compute Unified Device Architecture). The main

contributions of this thesis can be summarized as follows:

• Several misconceptions are there about the exact definitions of informative and non-

informative colon frames. They are often confused with conventional sharp and blurry

images. I introduce a new and better definition of an informative colon frame which

explains its meaning more clearly

• The previous edge-based algorithm is very inaccurate due to lack of consideration of the

deeper meaning of informative colon frames. I propose a new edge-based algorithm

with higher accuracy compared to the old one

• IFF is the first among many other steps in automated colonoscopy quality measurement.

Based on my new algorithm, I propose a software solution using GPU to evaluate frame

quality under real-time constraints

5

• Disk read operations consume almost half of the total execution time in post-procedure

IFF modules. I propose a technique to read and process multiple frames simultaneously

using a combination of CPU threads and GPU threads

6

CHAPTER 3

RELATED WORK

Several techniques have been published on blur detection [12-16]. One is related to my

application [12] and has been tested by us, but the results were not satisfactory. According to

[12], I find the difference between intensities of adjacent pixels, calculate the variance of all the

differences, compute block-wise sum of variances, check for blocks with higher variance, then

classify an image with more such blocks as sharp and the rest as blurred. This method failed to

suit my needs because:

• Colon frames look alike; almost all of them belong to same color space (brownish red)

and relying solely on color intensity difference of adjacent pixels can easily lead to

misclassification

• The method in [12] is more applicable to images which stick to conventional definitions

of sharp and blurry images; but the definition of informative and non-informative

frames is slightly different as mentioned in Chapter 2

The poor accuracy experimental results of this method (Table 9.4), once again prove

that the definitions of informative/non-informative colon frames and conventional

sharp/blurred images are not synonymous.

The previous informative frame filtering (IFF) method [5] was based on the detected

edges within the frame, and I used canny edge detector [17] for generating edge maps. Then

the edge map is post-processed, to distinguish the non-informative frames from the

7

informative ones. In the edge map post-processing, two terms, isolated pixel (IP) and isolated

pixel ratio (IPR) were defined for a frame.

An IP is an isolated edge pixel (edge pixel that is not connected to any other edge pixels)

in a frame. IPR is computed as a percentage of the number of isolated edge pixels to the total

number of edge pixels in the frame. A frame with IPR less than a certain threshold is classified

informative and vice versa. Since it was believed according to [5] that non-informative frames

would have more isolated pixels, high-sensitive canny parameters were used to expose every

detail of the original frame in its edge map. This method is not effective enough because:

• Canny edge detector mostly produced a lot of closed contours irrespective of sensitivity

parameters due to its default design; thus it rarely reproduced isolated pixels in the

edge map

• Despite low-sensitive edge detection parameters, IPR logic resulted in misclassification

of frames because it did not consider the intrinsic meaning of an informative frame

In both Figure 3.1 and Figure 3.2, the IPR of informative frame is more than the non-

informative frame, thus resulting in misclassification according to the definition of IPR. I still

agree that edge detection is one of the most suitable ways to expose the connectivity present

in a frame, but I strongly believe that the choice of edge detector, its sensitivity parameters and

method used to post-process the edge map are huge factors and should be carefully chosen to

achieve effective filtering. The previous algorithm went wrong in properly considering all these

factors.

8

Figure 3.1 Failure of Previous Algorithm with High-Sensitive Canny Edge Detector

Figure 3.2 Failure of Previous Algorithm with Low-Sensitive Canny Edge Detector

9

CHAPTER 4

REQUIREMENTS FOR EFFECTIVE INFORMATIVE FRAME FILTERING

As explained in the previous chapters, an informative frame in colonoscopy is primarily

characterized by curvaceously – circular or semi-circular – connected vivid lines because that is

the typical content of an informative colon frame; and curvaceous connectivity means more

connectivity in diagonal and circular directions. The best ways to realize the above explanation

are in the following order:

• Find the edges of the frames such that they reflect information as much as possible

• Measure the amount of curvaceous connectivity amongst the pixels of the obtained

edge map

• Quantify the portion of frame which is connected to make a decision

I call this edge-detection cum connectivity scheme. A more appropriate and new

definition of an informative colon frame would be:

A frame which has vivid lines in its edge map with sufficient amount of curvaceous

connectivity amongst these lines (in other words more connectivity in diagonal directions) is

defined as an informative frame.

My goal is to retain frames which satisfy this new definition and filter out the rest. I lay

two major requirements for effective informative frame filtering (IFF) which can be separated

into two phases:

10

• Phase I: Generate a Polarized Edge Map

Choose an edge detector with optimal thresholds, such that its edge map:

o Leaves a small hint of connected edge pixels in the edge map if there is any real

information

o Polarizes Informative and Non-informative frames as much as possible, so that post-

processing the edge map for subsequent classification becomes much easier

• Phase II: Estimate the Amount of Connectivity in the Edge Map

Design a method to post-process the edge map, such that it calculates the amount of

connectivity possessed by the edge map, and also quantify the portion of edge map

which is sufficiently connected.

4.1 Phase I: Polarization in IFF with Edge Detectors

It has been discussed that a polarized edge map needs to be generated which leaves a

small hint of connected edge pixels in the edge map if there is any real information and which

polarizes informative and non-informative frames as much as possible, so that post-processing

the edge map for subsequent classification (in Phase II) becomes much easier. A few examples

of good and bad polarization can be discussed. Generally, conventional edge detectors with low

sensitivity parameters do the job of classification without any additional efforts for those colon

frames which lie on the extremes i.e., extremely informative or extremely non-informative

(Figure 4.1).

11

Figure 4.1 Example of Good Polarization

However, ineffective polarization may occur when frames do not belong to either

extreme, like the ambiguous ones in Figure 4.2. Such frames comprise more than 50% of a

typical colonoscopy video. Another problem might be incorrect polarization, where the edge

detector does make a polarization but makes it in places where it is not necessary (Figure 4.3).

Figure 4.2 Example of Ineffective Polarization

12

Figure 4.3 Example of Incorrect Polarization

Finally, increasing the sensitivity of edge detector even slightly might lead to noise

which totally leaves us with no scope for polarization (Figure 4.4).

Figure 4.4 Example Showing No Scope for Polarization

13

So, from this analysis, I observed the following:

• Ability to polarize a frame in its edge map is an important factor in post-processing the

edge map to make the subsequent decision as informative or non-informative

• Using a high-sensitive edge detector totally rules out the possibility of polarizing frames

in the Phase I of IFF

• Using low-sensitive parameters for edge detection produces an edge map with the

display of only minimal features of the colon, but at least leaves us with a chance to

polarize the frames

• Although low-sensitive parameters are considered, the type of edge detector used still

determines whether the polarization is proper, incorrect or ineffective

And, I can infer the following:

• Choose an edge detector which polarizes effectively

• There is no point in using an edge detector which reproduces connected edge maps

irrespective of presence of connectivity in the original frame. (e.g. closed contours of

canny)

4.2 Phase II: Concept of Connectivity in an Edge Map

Let us recall the definition of an informative frame once: An informative frame in

colonoscopy is primarily characterized by curvaceous connectivity (meaning more connectivity

in diagonal directions) because that is the typical content of an informative colon frame.

14

From the above definition, the operations of Phase II would be

• Stage 1: Calculate the amount of connectivity

• Stage 2: Quantify the portion of edge map which is connected

4.2.1 Connectivity Map Generation: Phase II-Stage 1

From the above definition, colon images are considered more informative or connected

if there are more diagonal connections in their edge map. So, if I give the same weight to both

adjacent and diagonal connections in an edge map, it will not properly quantify the amount of

diagonal connectivity a block possesses during Phase II-Stage 2 of the IFF algorithm

requirements. Hence, I give diagonal connection twice the weight of an adjacent connection.

This is the first requirement of connectivity map generation.

The connectivity of a pixel (say ‘q’) in an edge map is calculated based on its connection

to only four of its neighboring pixels (immediate right, immediate bottom, immediate diagonal

left, immediate diagonal right; these are shown with red arrows in Figure 4.5(b)). This is done to

avoid redundancy (redundancy is marked with light green arrows in Figure 4.5(b)) in the

calculation of cumulative connectivity when traversing from top left to bottom right corner of

the image. This is the second requirement. To satisfy both these requirements an optimal non-

redundant connectivity mask is designed (Figure 4.5(a)).

15

Figure 4.5 Concept of Connectivity

From Figure 4.5, it is clear that the pixel connectivity values range from 0 to 6. In other

words 0≤PC≤6. An example of how a connectivity map looks like is shown in Figure 4.6.

Figure 4.6 Connectivity Map Illustration

16

4.2.2 Quantify the Portion of Edge Map which is Connected: Phase II-Stage 2

In order to quantify information, the connectivity map is divided into even number of

blocks of size (say ‘m’), and checked for the number of blocks which have sufficient connectivity

(or information). The block size affects the final decision. An example of how different block

sizes look like is shown in Figure 4.7.

Each block holds the square root of sum of individual values in a connectivity map. It is

called the block connectivity (BC). Based on a threshold for BC a block is decided as informative.

Based on a threshold for the number of informative blocks, a frame is decided as informative.

Figure 4.7 Examples of Different Block Sizes to Quantify an Edge Map

A block connectivity graph (Figure 4.8) helps select suitable values for:

• block size, m

• block connectivity (BC) threshold to decide a block as informative

• Number of informative blocks threshold to decide a frame as informative

17

Figure 4.8 Example of Block Connectivity Graph for Different Block Sizes

To make things much better, Figure 4.8 reveals some interesting and important details

like:

• Passive blocks (BC=0) mostly dominate active blocks (BC>0) if edge map reproduces only

minimal features of a colon frame

• All passive blocks are non-informative blocks, but vice-versa need not be true

• All informative blocks are active blocks, but vice-versa need not be true

18

CHAPTER 5

PROPOSED ALGORITHM AND COMPUTATIONAL COSTS

The new algorithm is designed based on the requirements mentioned in the previous

chapter. While designing the algorithm, several experiments have been conducted (Tables 9.1,

9.2 and 9.3) to choose the right parameters in each phase. A block diagram of the flow of the

new algorithm is shown in Figure 5.1.

Figure 5.1 Block Diagram of the New Algorithm

5.1 Phase I: Generate Edge Map

To satisfy the first requirement, I need an edge detector which can just leave us with a

hint of connected edge pixels in the edge map if there is any real information. Otherwise, it

should not output such edges at all. In other words, I need a very low sensitive edge detector

such that it can polarize information/connectivity and non-information/non-connectivity. Good

polarization is dependent on both sensitivity and type of edge detector chosen to generate the

edge map. So, the parameters that can affect Phase-I are:

• Type of edge detector

• Sensitivity of edge detector

19

Figure 5.2 (below) proves that using either a low-sensitive sobel edge detector or log

edge detector improves the chances to get a correct final decision.

Figure 5.2 Effects of Phase-I Parameters on Extremely Informative Frame

In Figure 5.3 an ambiguous frame is shown which is more inclined towards being an

informative frame. The low-sensitive Laplacian of Gaussian (LoG) edge detector leaves every

possible chance to make the wrong decision here because of very less number of active blocks

in the block connectivity graph. However, the active blocks are slightly more in the block

connectivity graph from sobel edge map. So, the chances of classifying the frame as informative

are more here, which is what I want.

20

Figure 5.3 Effects of Phase-I Parameters on Ambiguously Informative Frame

Another example is shown in Figure 5.4 where the input frame is ambiguous but more

inclined to being non-informative. The block connectivity graph from canny edge map gives

more chances to classify the frame as informative because of more active blocks. But, this is not

the case with sobel. Hence I can see that sobel is a better choice than other edge detectors.

21

Figure 5.4 Effects of Phase-I Parameters on Ambiguously Non-Informative Frame

The edge map is represented by e(q) such that, e(q) = 0, if it is not an edge pixel and e(q)

= 1, if it is an edge pixel.

5.2 Phase II: Generate Connectivity Map to Estimate the Amount of Connectivity

In an 8-connected neighborhood, the connectivity at pixel 'q' by applying the

connectivity mask (Figure 4.5(a)), is given by,

 C x, y = (z6+2z7+z8+2z9) * e (q). (1)

To quantify information, the connectivity map is divided into even number of blocks,

and checked for the number of blocks which have sufficient connectivity (or information). The

22

image is resized to (Mr, Nr), such that the height and width are multiples of block size m. So,

with a block size m x m pixels, the total number of blocks will be, µ = (Mr x Nr)/(m x m). The total

connectivity of a block, Bi, is given by,

 Bi = ∑
=

mm

yx
yxC

,

0,
, , where i = 1, 2, 3…. µ. (2)

If ‘€’ is defined as the block connectivity threshold, then a block is considered as non-

informative if Bi ≤ €. If a connectivity map has β number of non-informative blocks, I define α as

the ratio of non-informative blocks over total blocks, and ф as a threshold for non-informative

block ratio, then α = β/µ; a frame is considered non-informative if α ≥ ф and vice versa.

Figure 5.5 shows how phase II parameters can affect the decision. Several experimental

analyses have been conducted to choose the optimal values for Phase-I and Phase-II

parameters used in this algorithm (Tables 9.1, 9.2, 9.3). The following are the chosen values:

sobel edge detector with threshold 0.33, m = 64, € = 5, ф = 0.75. Also the comparison of

performance metrics of the new algorithm with others (mentioned in Chapter 3) is shown in

Table 9.4.

23

Figure 5.5 Effects of Phase-II Parameters on Informative Frame

5.3 Computational Costs

To identify and tackle the computational costs more easily in Chapter 7, the block

diagram has three stages of computation and shows a combination of real-time and post-

procedure versions of IFF. From Figure 5.6, the computational cost of IFF algorithm (bottleneck

#1) can be 15(Mr x Nr) since Stage 1 has 13(Mr x Nr), Stage 2 has (Mr x Nr), and Stage 3 has (Mr

x Nr), which are all numerically intensive sequential iterations. This is a bottleneck for both

post-procedure and real-time modules. A modern day GPU like the NVIDIA® GeForce® GTX 280

GPU has 30 Streaming Multi-processors (SMs) with each SM having the ability to handle 1024

threads [18]. I mitigate bottleneck #1 by using CUDA on GTX 280.

24

The post-procedure version has an overhead operation of reading the frame from disk

and storing raw RGB image data in memory, which is not present in the real-time version where

input is directly fed from a capture card. I call this disk-read overhead cost (bottleneck #2). A

modern day Intel CPU has up to 8 cores; each core having the ability to handle up to 4 threads –

making it a total of 32 threads [1]. I mitigate bottleneck #2 by using multithreading on Intel

Quad Core @ 3.0GHz.

Figure 5.6 Computational Costs in Different IFF Modules

25

CHAPTER 6

CUDA-BASED COPROCESSOR – GTX 280

I used the EVGA 01G-P3-1280-RX GeForce GTX 280 1GB 512-bit GDDR3 PCI Express 2.0

x16 HDCP Ready SLI Support Video Card for this thesis. This graphics card has 1 GB global

memory and 256 KB L1 texture cache. From hardware standpoint, the card is viewed as a

combination of 10 Texture/Thread Processing Clusters (TPCs). Each TPC holds 24 KB L2 texture

cache and evenly distributes it across three Streaming Multi-processors (SMs). Each SM has 8

scalar processors (SPs), 16 KB of shared memory and a 32 KB register file, which is evenly

partitioned amongst resident threads when the device is used for computing.

From programming standpoint, I use the NVIDIA® CUDA™ programming model to run

this device in compute mode with CUDA Compute Capability 1.2. CUDA (Compute Unified

Device Architecture) views the device as a pool of threads and calls it a Grid. It organizes

threads into blocks and delivers them to the SM Controller, which distributes them across the

SMs, each restricted with a 1024 thread and 8 blocks limit in a single run and responsible for

even distribution of blocks across its 8 SPs.

The unit of parallelism in CUDA (i.e., CUDA threads) is an entity with very small creation

cost, resource usage, and switching overhead compared to CPU threads. During its lifetime a

thread can access any location in the global memory or texture cache, and is given access to the

shared memory space of the SM in which it is running, and also given its own set of registers to

use. CUDA threads run data-parallel functions called kernels. After grouping threads into blocks

and launching on an SM, they are executed in an SIMT (single instruction multiple threads)

fashion within individual blocks, commonly termed as 'warp execution'. The smallest unit of a

26

warp execution is 32 threads. Figure 6.1 shows a hardware and software point of view of GPU

and CUDA.

Figure 6.1 Hardware and Software Point of Views of GPU and CUDA

The ultimate goal of an application developer is to obtain best performance from the

NVIDIA® CUDA™ architecture using the CUDA Toolkit [11]. Performance is improved by hiding

latency during memory accesses, ensuring nominal instruction executions and maximizing

memory bandwidth. Instruction Throughput is a performance measure for a compute-bound

kernel because the bottlenecks of such a kernel include instruction overhead and latency.

Memory Bandwidth Utilization is a performance measure for a memory-bound kernel because

effective bandwidth utilization of memory improves speed in such kernels [19].

27

Throughout the GPU algorithm the number of CUDA threads in x-dimension and y-

dimension – TX and TY are chosen 16 and 8 making it 128 threads per block (block size) and 8

blocks per SM. The usage of global memory is limited to only those kernels in which long

latency operations like accessing memory with a stride or multiple threads accessing same

location are not present.

The shared memory and the usage of register file are controlled. This has ensured 100%

device occupancy for all kernels, thus laying a strong platform for further kernel optimizations,

for individual IFF algorithm stages. The variables Mr, Nr and m introduced in Chapter 5 are

designated FRAMEW, FRAMEH and IB_SIZE in the computing platform.

28

CHAPTER 7

GPU IFF ALGORITHM: HANDLING BOTTLENECK #1

7.1 Stages 1 and 2: Edge Map and Connectivity Map Generation

In both stage 1 and 2 at every step the operation is performed on an image, and the

result is an image itself. For example, in stage 1, the input is a grayscale image and the output is

an edge map. The operator is a sobel mask. In stage 2, the input is an edge map, the result is a

connectivity map and the operator is a connectivity mask. So, in both stages, the intermediate

or final result is always another image. The evaluation is done pixel-wise by applying a 3x3

convolution mask in each stage. Which means to evaluate a particular pixel; I need the

neighboring pixel data.

Figure 7.1 shows how the pixels in a 3x3 matrix are stored in the global memory. So,

when I need to find the gradient at a pixel, I need the values of neighbors which are at least one

pixel and at most 4 pixels away from the current pixel on which the operation is performed. In

such operations where neighboring pixels that lie at a certain distance from are main pixel,

threads need to access with an offset. This operation when done on a global memory is called

non coalesced access [19, 21]. Global memory is very slow, so if I start accessing neighboring

pixels which lie far away from the reference pixel, that will take a very long time to fetch.

29

Figure 7.1 Global and Texture Memory Views of a 3 X 3 Matrix of Pixels

Such operations in CUDA (Compute Unified Device Architecture) would enjoy the

benefit of high reference of locality in terms of memory access if a memory with better 2D

locality fetching is used. This is where texture cache comes into play. Texture cache is a great

way of boosting performance in case of 2D locality fetching. GPUs (Graphic Processing Units)

are able to exploit texture memory for high performance in such operations in which an offset

access (means accessing neighboring pixels) is required. Figure 7.2 shows the performance of

memories with respect to offset (also called 'shift').

30

Figure 7.2 Results of Using Texture Memory to Avoid Non Coalesced Global Memory

Access (from [19])

Moreover, from Figure 7.3, I can understand that texture cache is relatively faster than

global memory access. This shows us that texture cache provides a greater performance when

there is an offset copy. Convolution operations are an example where a particular pixel

evaluation requires neighboring pixel data. In other words threads have an offset when

accessing memory.

Texture memory by default is faster than global memory. So, in convolution operations

which obviously involve offset access, texture memory (commonly called texture cache) is

preferred to global memory. Another advantage of using texture memory is that the hardware

provides automatic handling of boundary cases of the image. When the referenced coordinate

31

of texture is out of valid range, the hardware clamps the coordinate to the valid range or wraps

to the valid range depending on the addressing mode set.

Figure 7.3 Comparisons of GPU Memories

Shared memory is another option to perform convolution, but it is useful only when the

offset is large enough. Readers are encouraged to go through the concepts of shared memory

in [7, 20] to understand more. I used separable convolution filters for sobel mask calculation on

CUDA and normal convolution for connectivity mask calculations.

Figure 7.4 shows how shared memory can improve the performance of CUDA

convolution separable kernels in comparison to texture cache with respect to mask radius. In

both stages 1 and 2, the consecutive operations are performed on images with mask radius of

one. Stage 1 has sobel mask with radius one and Stage 2 has connectivity mask. For a mask

32

radius as low as one, I need not seek help of shared memory for performance boost, as shown

in Figure 7.4. Hence, I opted for texture memory for separable convolution in Stage 1 and for

normal convolution in Stage 2.

Figure 7.4 Performance of Shared and Texture Memory for Separable Convolution

The calculation of gradient in x-direction using separable row filter and column filter

kernels is shown in Figure 7.5 and Figure 7.6. The masks are just reversed for y-gradient

calculation during kernel invocation (which will be discussed in Fig. 7.3.1 later). The image

arrays are bound to cu_array, fed to the kernels and accessed using texture fetches. After

calculating the gradients GradX and GradY, they are fed to the EDGE_MAP_KERNEL to

generate the edge map output. In this kernel, threads have neither offset access issue nor a

problem of multiple threads accessing same data. Hence, the perfect bandwidth utilization is

possible in the EDGE_MAP_KERNEL simply with the usage of global memory access as

illustrated in the code snippet in Figure 7.7(a).

33

Figure 7.5 Illustration and Kernel for Row Separable Filter

Figure 7.6 Illustration and Kernel for Column Separable Filter

The CONNECTIVITY_MAP_KERNEL operates on the output generated by

EDGE_MAP_KERNEL by using the connectivity mask mentioned in section 5.2 and Figure 4.5(a).

34

So, it has an offset of one again, which justifies the use of texture fetching as illustrated in the

code snippet of Fig 7.1.7(b). It has to be observed that in all these kernels (which are compute-

bound), for additional performance optimization, I unroll the loops to ensure instruction mix

wherever required (which should be ideally done by the compiler) and achieve 100% instruction

throughput according to the CUDA Visual Profiler [11].

Figure 7.7 Edge and Connectivity Maps – (a) The picture illustrates how an edge map looks like

and how the connectivity map is derived from an edge map in a GPU grid – based on Equation

(1) a particular pixel (magenta) uses the surrounding pixels (green) to get the connectivity

value. The code snippet shows the kernel used for calculation of edge map from the x- and y-

gradients obtained from separable convolution. (b) The picture shows how a connectivity map

looks like. The code snippet shows the kernel used for calculation of connectivity map from the

edge map. The edge map obtained in previous stage is fetched using texture cache and

operated on, to get the connectivity map.

35

7.2 Stage 3: Block Division and Summation

I define a kernel called SUMMATION_KERNEL which is based on parallel reduction

techniques mentioned in CUDA technical training manual [21] and William Kahan’s parallel

summation [22]. The aim of this kernel is to divide the connectivity map into IB_SIZE x

IB_SIZE blocks and calculate the block sums, as per the requirements of Stage 3 of Figure 5.6.

Although the CUDA block size for this kernel is TX x TY (as mentioned in Chapter 6), each

block would handle IB_SIZE x IB_SIZE elements, because I should remember that the

IFF block size is ‘m’ (i.e., IB_SIZE in computing platform).

Hence as the first step, I use "simultaneous copy and add from global to shared"

method. In this step, each thread in x-direction handles summation of IB_SIZE/TX elements

and each thread in y-direction handles summation of IB_SIZE/TY elements during global to

shared memory loading as shown in Figure 7.8. This is done to condense IB_SIZE x

IB_SIZE number of elements to ‘CUDA block size’ number of elements i.e., 128. Hence, this

step produces 128 elements on which parallel reduction is performed in shared memory.

In the second step, I use shared memory parallel summation on the 128 elements with

each thread handling one or more elements. During the course of parallel summation (Fig.

7.2.1) at every level, the number of threads reduces by a factor of 2. The first level requires

128/2 = 64 threads for parallel summation. It is imperative here that all threads pass the barrier

synchronization and thus __syncthreads() function is used to ensure this.

For subsequent levels, the threads required are 32, 16, 8, 4, 2 and 1. Threads in all these

levels are launched by a single warp instruction which need not be synchronized, because

warps operate in SIMT fashion.

36

Figure 7.8 Illustration and Kernel Code Snippet for Stage 3: Values with same color (i.e., white,

black, yellow and red) are added and stored in the shared memory. CUDA blocks are shown

with bold black borders; IFF blocks are filled with different colors (light blue, green, orange and

blue).

This kernel design produces a memory bandwidth of 90GB/s on a GTX280 card for the

largest expected video type (1920 x 1080 frame size). Upon testing the algorithm on an

arbitrary image matrix (a frame is nothing but a matrix of a values) of size 4096 x 4096 elements

(or pixel values), the bandwidth achieved is 132 GB/s on the same card whose designated peak

performance is 145GB/s, thus resulting in 92% memory bandwidth efficiency for this memory-

37

bound kernel. All these bandwidth measurements are reported by the CUDA Visual Profiler

which comes with CUDA Toolkit [11].

Figure 7.9 GPU IFF Algorithm: Flow of Kernel Invocations

7.3 CUDA Kernel Invocations

The complete flow of kernel invocations in the GPU algorithm is presented in Figure 7.9.

From this figure I can see that Stage 1 has three steps in it. In the first step, the gradient in x-

direction is calculated by calling ROW_FILTER_KERNEL and COL_FILTER_KERNEL

38

consecutively with mask1 and mask2 as their respective inputs. In the second step, the

gradient in y-direction is calculated by calling the same kernels consecutively but with mask2

and mask1 as their respective inputs.

In the third step, EDGE_MAP_KERNEL is called to generate the edge map. Further in

the algorithm, CONNECTIVITY_MAP_KERNEL and SUMMATION_KERNEL are called in

stages 2 and 3 to generate connectivity map and calculate block sums respectively. The block

sums are analyzed based on the technique presented in section 5.2 with negligible

computational cost. The results of IFF GPU algorithm will be discussed in the real-time module

analysis of experimental section.

39

CHAPTER 8

CPU-GPU COMBO SCHEME: HANDLING BOTTLENECK #2

As discussed in Chapter 5, the bottleneck in post-procedure version is a combination of

disk read time and IFF (informative frame filtering) algorithm time. Reading frames from disk is

not a numerically intensive operation; instead it is a data-access intensive operation. It should

be noted here that the problem is not with inability to allocate buffers in memory to read and

hold the data of multiple frames, but it is with the ability to read multiple frames in lesser time.

GPU's (graphic processing unit) capabilities do not affect reading multiple frames from disk in a

single time frame. I made functions in C code which read frames from disk, store the RGB (Red-

Green-Blue) color space data in a buffer and serve it to the IFF algorithm.

With a sequential code design, the time taken to read the frame from disk is almost

equal to the time taken to process it using my IFF algorithm on central processing unit - CPU

(Table 9.6). According to Table 9.6, sequential CPU code takes 96ms to read from disk and 96ms

to process it, making the total execution time around 192ms.

Exploiting the power of GPU to process the frame by using GPU IFF algorithm reduced

the algorithm cost to 8ms, but yet the GPU sits idle for 88ms (inefficient GPU occupancy) for

the next frame to be served by CPU (Figure 8.1). Sequential code design with algorithm

processing on CPU or GPU still does not exploit the multi-core capabilities of a CPU.

40

Figure 8.1 Post-Procedure IFF Module: Using Sequential CPU Coding with GPU

In order to ensure maximum GPU occupancy, I explored the multithreading capability of

CPU cores. In this way, on an Intel Quad core workstation which has four cores (in other words

four hardware threads) and each core with the ability to handle four threads [1], I can generate

16 threads. I assigned thread handlers to the functions made in C, such that 16 threads can

simultaneously read 16 frames from disk and serve them to the GPU IFF algorithm. So, in the

same 96 ms I can now read 16 frames and serve it to a single GPU. The GPU returns control

after receiving the frame data, and takes 128 ms to completely process them all.

During this time, the CPU reads the next set of 16 frames and holds them in a pipeline to

serve to the GPU, and is still left with a credit of 32 ms which is utilized to read the subsequent

16 frames.

41

Figure 8.2 Post-Procedure IFF Module: Using Parallel CPU Coding with GPU

This is clearly shown in Figure 8.2. By using such a CPU multi-threaded pipelining

scheme coupled with the GPU's massive parallel processing power, I am able to read and

process more frames per unit of time (Table 9.7). I made different versions in the post-

procedure module exploiting the architectural capabilities of multi-core and many-core

processing units in an increasing order. With each version, I added an extra capability that I

believed would add to the performance. At this point, I have four implementation versions for

the post-procedure IFF module:

• Version 1: Using CPU without multi-threading for disk reads and IFF algorithm

• Version 2: Using CPU without multi-threading for disk reads, and GPU for IFF algorithm

• Version 3: Using CPU with multi-threading for disk reads and IFF algorithm

• Version 4: Using CPU with multi-threading for disk reads, and GPU for IFF algorithm

The execution times and frame processing speeds achieved by running these four

versions of post-procedure module on colonoscopy videos are presented in next chapter.

42

CHAPTER 9

EXPERIMENTAL RESULTS

9.1 Accuracy Results

As mentioned in Chapter 5, several tests have been performed to choose the right

parameters for the new algorithm during its design. Performance metrics are calculated based

on the following parameters:

• ti = No. of True Informative Frames

• fi = No. of False Informative Frames

• tn = No. of True Non-informative Frames

• fn = No. of False Non-informative Frames

Four performance metrics are chosen to evaluate the performance of the accuracy tests

with integrity:

• Precision = ti/(ti+fi)

• Sensitivity = tn/(fi+tn)

• Specificity = ti/(ti+fn)

• Accuracy = (ti+tn)/(ti+tn+fi+fn)

The following parameter sets have been considered for experiments to finalize the

algorithm's final parameters (mentioned in Chapter 5):

• Phase I parameters: (thresholds used ensure low-sensitivity)

o Sobel Edge Detector – threshold = 0.33

43

o LoG Edge Detector – threshold = 0.008, sigma =2

o Canny Edge Detector – Lower threshold = 0.08, Upper Threshold = 0.2, Sigma =1.2

• Phase II parameters:

o Set 1

 Block Size, m = 32 x 32

 Block Connectivity Threshold, BCth = 4

 Informative Blocks Ratio Threshold, Irth = 0.25

o Set 2

 Block Size, m = 64 x 64

 Block Connectivity Threshold, BCth = 5

 Informative Blocks Ratio Threshold, Irth = 0.33

o Set 3

 Block Size, m = 80 x 80

 Block Connectivity Threshold, BCth = 8

 Informative Blocks Ratio Threshold, Irth = 0.4

The test results of combinations of the above parameters are shown in Tables 9.1, 9.2

and 9.3. It can be noted that sobel edge detector (Phase I parameters) with set 2 (Phase II

parameters) show the highest performance metrics.

44

TABLE 9.1 EXPERIMENTAL RESULTS OF PHASE I CANNY WITH PHASE II – SETS 1, 2, 3

Video ID

Canny

32 x 32 block 64 x 64 block 80 x 80 block

PREC SENS SPEC ACC PREC SENS SPEC ACC PREC SENS SPEC ACC

1_ff_8_3_09
96.71

%
98.31

%
68.71

%
85.91

%
86.74

%
89.87

%
91.81

%
90.69

%
97.20

%
98.52

%
71.05

%
87.01

%

6_ff_8_4_09
96.55

%
99.42

%
39.25

%
81.81

%
80.43

%
93.04

%
69.16

%
86.05

%
94.79

%
99.03

%
42.52

%
82.49

%

8_ff_8_5_09
98.81

%
99.80

%
45.60

%
85.32

%
69.91

%
86.37

%
86.81

%
86.49

%
98.06

%
99.60

%
55.49

%
87.81

%

15_ff_8_5_09
93.60

%
96.88

%
20.86

%
44.68

%
90.94

%
79.69

%
93.05

%
88.86

%
95.06

%
96.88

%
27.45

%
49.20

%

34_ff_8_7_09
96.03

%
98.59

%
46.81

%
76.73

%
67.68

%
68.36

%
90.72

%
77.80

%
92.71

%
96.61

%
58.99

%
80.73

%
49_ff_8_10_0

9
98.96

%
99.00

%
53.57

%
69.92

%
88.87

%
78.93

%
94.55

%
88.93

%
99.08

%
99.00

%
60.53

%
74.37

%

50_ff_8_10_0
9

97.70
%

99.07
%

51.90
%

78.65
%

84.71
%

87.59
%

90.11
%

88.68
%

96.56
%

98.45
%

57.05
%

80.53
%

20080729_P0
6

79.10
%

75.29
%

71.30
%

73.03
%

72.11
%

51.76
%

95.07
%

76.34
%

78.80
%

72.94
%

76.68
%

75.06
%

capture0310
89.36

%
96.48

%
59.15

%
84.04

%
69.47

%
79.58

%
92.96

%
84.04

%
90.20

%
96.48

%
64.79

%
85.92

%

test_4_3201
94.25

%
99.03

%
38.32

%
81.26

%
80.32

%
92.84

%
70.56

%
86.32

%
93.62

%
98.84

%
41.12

%
81.94

%

Average
94.11

%
96.19

%
49.55

%
76.14

%
79.12

%
80.80

%
87.48

%
85.42

%
93.61

%
95.64

%
55.57

%
78.51

%

TABLE 9.2 EXPERIMENTAL RESULTS OF PHASE I SOBEL WITH PHASE II – SETS 1, 2, 3

Video ID

Sobel

32 x 32 block 64 x 64 block 80 x 80 block

PREC SENS SPEC ACC PREC SENS SPEC ACC PREC SENS SPEC ACC

1_ff_8_3_09 100.00
%

100.00
%

57.31
%

82.11
%

97.43% 98.10% 99.71% 98.77% 99.55% 99.79%
64.33

%
84.93

%

6_ff_8_4_09 100.00
%

100.00
%

53.74
%

86.46
%

95.54% 98.07%
100.00

%
98.63%

100.00
%

100.00
%

58.88
%

87.96
%

8_ff_8_5_09 100.00
%

100.00
%

23.08
%

79.44
%

94.29% 98.00% 90.66% 96.04%
100.00

%
100.00

%
32.97

%
82.09

%

15_ff_8_5_0
9

100.00
%

100.00
%

39.39
%

58.38
%

99.28% 98.44% 98.04% 98.16%
100.00

%
100.00

%
52.94

%
67.69

%

34_ff_8_7_0
9

98.99% 99.86%
18.96

%
65.71

%
94.18% 96.05% 87.62% 92.49% 97.96% 99.58%

27.85
%

69.31
%

49_ff_8_10_
09

100.00
%

100.00
%

37.97
%

60.29
%

98.10% 96.66% 96.80% 96.75% 99.22% 99.33%
47.93

%
66.43

%

50_ff_8_10_
09

99.65% 99.90%
38.48

%
73.31

%
96.81% 97.52% 98.64% 98.01% 99.71% 99.90%

47.29
%

77.13
%

20080729_P
06

100.00
%

100.00
%

51.57
%

72.52
%

98.65% 98.24% 98.21% 98.22%
100.00

%
100.00

%
54.71

%
74.30

%

capture0310 100.00
%

100.00
%

22.54
%

74.18
%

100.00
%

100.00
%

100.00
%

100.00
%

100.00
%

100.00
%

32.39
%

77.46
%

test_4_3201 100.00
%

100.00
%

53.74
%

86.46
%

95.54% 98.07%
100.00

%
98.63%

100.00
%

100.00
%

59.81
%

88.24
%

Average 99.86% 99.98%
39.68

%
73.89

%
96.98% 97.92% 96.97% 97.57% 99.64% 99.86%

47.91
%

77.55
%

45

TABLE 9.3 EXPERIMENTAL RESULTS OF PHASE I LAPLACIAN OF GAUSSIAN WITH PHASE II – SETS
1, 2 AND 3

Video ID

LoG

32 x 32 block 64 x 64 block 80 x 80 block

PREC SENS SPEC ACC PREC SENS SPEC ACC PREC SENS SPEC ACC

1_ff_8_3_0
9 98.85% 99.79% 25.15% 68.50%

95.37
% 97.26%

78.36
%

89.34
%

100.00
%

100.00
%

28.36
%

69.98
%

6_ff_8_4_0
9 100.00%

100.00
% 20.56% 76.74%

93.29
% 97.87%

71.50
%

90.15
%

100.00
%

100.00
%

24.30
%

77.84
%

8_ff_8_5_0
9 100.00%

100.00
% 16.48% 77.68%

90.37
% 97.39%

67.03
%

89.28
%

100.00
%

100.00
%

21.43
%

79.00
%

15_ff_8_5_
09 100.00%

100.00
% 7.66% 36.60%

98.87
% 98.44%

62.21
%

73.56
%

100.00
%

100.00
%

15.69
%

42.11
%

34_ff_8_7_
09 98.75% 99.86% 15.28% 64.16%

97.13
% 98.87%

52.42
%

79.27
% 98.44% 99.72%

24.37
%

67.92
%

49_ff_8_10
_09 100.00%

100.00
% 27.63% 53.67%

96.57
% 95.99%

63.53
%

75.21
%

100.00
%

100.00
%

32.89
%

57.04
%

50_ff_8_10
_09 100.00%

100.00
% 26.29% 68.09%

94.79
% 97.31%

64.09
%

82.93
%

100.00
%

100.00
%

31.98
%

70.56
%

20080729_
P06 100.00%

100.00
% 45.29% 68.96%

96.07
% 95.88%

76.68
%

84.99
%

100.00
%

100.00
%

47.98
%

70.48
%

capture031
0 100.00%

100.00
% 16.90% 72.30%

83.33
% 92.96%

70.42
%

85.45
%

100.00
%

100.00
%

22.54
%

74.18
%

test_4_320
1 100.00%

100.00
% 18.69% 76.20%

97.22
% 99.23%

65.42
%

89.33
%

100.00
%

100.00
%

25.23
%

78.11
%

Average 99.76% 99.97% 21.99% 66.29%
94.30

% 97.12%
67.17

%
83.95

% 99.84% 99.97%
27.48

%
68.72

%

TABLE 9.4 COMPARISON OF NEW ALGORITHM WITH OLD ALGORITHM AND A THIRD-PARTY
ALGORITHM

Video Name
Previous Algorithm Current Algorithm Third-Party Algorithm

PREC SENS SPEC ACC PREC SENS SPEC ACC PREC SENS SPEC ACC

1_ff_8_3_09
91.23

%
83.71

%
79.79

%
78.26

%
97.43

%
98.10

%
99.71

%
98.77

%
93.38

%
91.76

%
90.04

%
90.46

%

6_ff_8_4_09
92.25

%
86.92

%
76.24

%
84.52

%
95.54

%
98.07

%
100.00

%
98.63

%
90.22

%
65.61

%
91.37

%
80.19

%

8_ff_8_5_09
87.26

%
85.44

%
73.58

%
81.24

%
94.29

%
98.00

%
90.66

%
96.04

%
90.88

%
89.24

%
91.94

%
90.70

%
15_ff_8_5_0

9
90.45

%
89.62

%
78.42

%
83.43

%
99.28

%
98.44

%
98.04

%
98.16

%
95.66

%
89.35

%
92.10

%
89.49

%
34_ff_8_7_0

9
86.14

%
90.46

%
72.15

%
79.07

%
94.18

%
96.05

%
87.62

%
92.49

%
94.13

%
90.07

%
87.11

%
88.56

%
49_ff_8_10_

09
88.23

%
88.35

%
71.84

%
80.66

%
98.10

%
96.66

%
96.80

%
96.75

%
93.34

%
86.33

%
90.33

%
87.45

%
50_ff_8_10_

09
93.78

%
87.01

%
77.68

%
75.46

%
96.81

%
97.52

%
98.64

%
98.01

%
93.15

%
93.85

%
83.17

%
90.44

%
20080729_P

06
90.65

%
87.75

%
75.72

%
81.49

%
98.65

%
98.24

%
98.21

%
98.22

%
85.68

%
88.37

%
84.01

%
85.63

%

capture0310
89.84

%
90.26

%
74.99

%
77.86

%
100.00

%
100.00

%
100.00

%
100.00

%
89.41

%
88.94

%
81.19

%
85.54

%

test_4_3201
88.63

%
84.64

%
79.11

%
86.55

%
95.54

%
98.07

%
100.00

%
98.63

%
88.22

%
84.55

%
80.24

%
84.11

%

Average
89.85

%
87.42

%
75.95

%
80.85

%
96.98

%
97.92

%
96.97

%
97.57

%
91.41

%
86.81

%
87.15

%
87.26

%

46

These results from Table 9.4 show that my new algorithm (with sobel – set 2 parameters

of Chapter 3) is far better in terms of accuracy and effectiveness compared to other algorithms.

9.2 Speed and Acceleration Results

As discussed in Chapter 5, there are two bottlenecks, each one belonging to a different

version of the IFF module. In a real-time scenario, where frames coming from a capture-card

are processed, the only constraint is the speed of the IFF algorithm. In a post-procedure

scenario, apart from the algorithm cost, there is an additional overhead cost of reading the

frame from disk to memory and serving it to the algorithm. I presented my solutions to handle

the bottlenecks pertaining to both these versions in the previous chapters.

My experiments of different versions of the IFF modules are deployed on a machine

having an Intel Quad Core CPU @ 3.0 GHz with 3 GB RAM and an NVIDIA GTX 280 card with 1

GB GDDR3. For convenience, I classify the results as real-time IFF module results and post-

procedure IFF module results. Firstly, I present a comparative analysis of GPU and CPU versions

of the real-time IFF module – which in other words is nothing but the IFF algorithm alone,

without any disk-read operations, on different frame types. By different frame types, I mean,

frames having different resolutions due to different video input sources. This analysis is done to

present a plausible comparison in the real-time scenario.

I chose six different video input sources with different frame resolutions and fed them

to my CPU and GPU IFF algorithm versions. Each algorithm is run over more than a 100 frames

of every video type. To accurately measure the elapsed time of the sequence of all CUDA calls

in the GPU algorithm, I used CUDA event API [19]. The CPU algorithm time is measured using

47

the high-resolution CPU timer functions – QueryPerformanceCounter and

QueryPerformanceFrequency.

Table 9.5 shows the average processing times taken by the CPU/GPU IFF algorithms to

process a single frame belonging to each of these video inputs. A logarithmic graph is plotted

(Figure 9.1) to show the acceleration achieved by a GPU compared to the CPU. As seen in Table

9.5 and Figure 9.1, with the increase in the frame size, the CPU processing time increases

rapidly. On the other hand, the GPU processing time increases minimally.

TABLE 9.5 REAL-TIME IFF MODULE RESULTS FOR A SINGLE FRAME FROM DIFFERENT
VIDEO INPUTS

Video Type Frame Size GPU (ms) CPU (ms) Speed Up

VGA 640 x 480 6.73 85.76 12.74

DVD 720 x 480 8.00 94.46 11.81

HD 576 720 x 576 9.53 121.99 12.80

XGA 1024 x 768 12.70 236.29 18.61

HD 720 1280 x 720 11.58 268.81 23.22

HD 1080 1920 x 1080 14.88 595.12 40.00

48

0.83 0.90 0.98 1.10 1.06 1.17

1.93 1.98 2.09
2.37 2.43

2.77

0.00

0.50

1.00

1.50

2.00

2.50

3.00

640 x
480

720 x
480

720 x
576

1024 x
768

1280 x
720

1920 x
1080

VGA DVD HD 576 XGA HD 720 HD 1080

Lo
ga

rit
hm

ic
 S

ca
le

 o
f E

xe
cu

tio
n

Ti
m

es

Video Type

Log(GPU Time)
Log(CPU Time)

Figure 9.1 Real-Time Iff Module Speed Graph

Secondly, I have tested the post-procedure IFF module described in Chapter 8 and Fig.

5.3.1, on Fujinon videos (frame resolution: 720 x 480) with the four different versions of codes.

As mentioned before, this module has an additional ‘frame-read from disk’ operation. Table 9.6

shows the average disk-read time and average IFF algorithm time on CPU and GPU for a single

frame of size 720 x 480 (DVD Resolution). These values show that, on a CPU the algorithm time

is almost same as disk-read time, while on a GPU, the algorithm time is very less, almost

negligible. Since the disk read time consumes half of the total execution time, even if I reduce

the algorithm execution time to a negligible value, the total execution time decreases only to

half the original time, in other words, the acceleration is about two-fold. This table is presented

to exemplify the fact that disk-read time plays a major role in the total execution time of the

post-procedure IFF module.

49

TABLE 9.6 POST-PROCEDURE IFF MODULE RESULTS FOR A SINGLE FRAME – SHOWS DISK READ
AND ALGORITHM TIMES

Frame

Size

Avg. Disk Read Time

(ms)

Avg. Algorithm Time

(ms)

Total Execution Time

(ms)

CPU GPU CPU GPU

720 x 480 94.14 94.46 8.00 188.6 102.14

The four versions of code I made start from a basic level implementation (Version 1) to

an advanced level implementation (Version 4). These versions are targeted at explaining the

roles played by CPU in accelerating the post-procedure module’s disk-read operations, and by

GPU in accelerating the IFF algorithm operations. The versions emerge by permuting and

combining the two solutions provided in Chapter 7 and Chapter 8 for the two bottlenecks

mentioned at the end of Chapter 5. Currently, in the post-procedure scenario, I am working

only on videos with DVD resolution. The four versions are tested on 10 Fujinon videos.

The results are tabulated in Table 9.7. The frame processing speed of each version is

calculated as number of input frames over total execution time of that particular version. In this

table, the total execution time, based on the version, includes frame reading and loading time,

algorithm execution time and for versions using GPU-based IFF algorithm, the memory copy

time from CPU to GPU and vice-versa is also included.

50

TABLE 9.7 POST-PROCEDURE IFF MODULE RESULTS FOR ALL FOUR VERSIONS TESTED ON 10
FUJINON VIDEOS

From Table 9.7, I can see that the most unsophisticated version is Version 1. It does not

use the multi-core capability of CPU to multi-thread disk-reads and neither does it use the GPU

for implementing the IFF Algorithm. This is the most basic version. Version 2 moves a step

ahead and leaves the algorithm processing task to a GPU. But it does not use CPU cores to

multi-thread the frame serving process yet. However, I see a speed up of around 2x in Version 2

compared to Version 1. In version 3, the CPU cores are exploited. CPU Multi-threading for

frame reads is introduced in this version, but the IFF algorithm still runs on CPU. So, the CPU

Video

ID

Number

of

frames

Version 1 -

Total

Execution

Time (sec)

Version 1 -

Frame

Processing

Speed

(frames/sec)

Version 2

- Total

Execution

Time

(sec)

Version 2 -

Frame

Processing

Speed

(frames/sec)

Version 3

- Total

Execution

Time

(sec)

Version 3 -

Frame

Processing

Speed

(frames/sec)

Version 4

- Total

Execution

Time

(sec)

Version 4 -

Frame

Processing

Speed

(frames/sec)

1 816 165.03 4.94 89.02 9.17 61.42 13.29 37.21 21.93

2 1277 258.59 4.94 137.67 9.28 86.50 14.76 44.17 28.91

3 1327 268.88 4.94 142.00 9.35 98.17 13.52 50.54 26.26

4 3539 775.36 4.56 411.92 8.59 296.94 11.92 173.56 20.39

5 2381 522.33 4.56 288.75 8.25 192.53 12.37 120.09 19.83

6 731 147.86 4.94 79.48 9.20 56.11 13.03 27.80 26.29

7 1419 287.11 4.94 154.11 9.21 93.45 15.18 63.54 22.33

8 681 137.75 4.94 73.05 9.32 52.05 13.08 25.62 26.58

9 2148 466.20 4.61 257.65 8.34 175.66 12.23 105.39 20.38

10 1344 271.78 4.95 146.43 9.18 104.34 12.88 51.11 26.30

Average Frame Processing Speed 4.83 8.99 13.23 23.92

51

serves several frames but it processes these frames itself by still maintaining the sequential

flow of the algorithm. Version 3 gives a speed up of around 2.8x compared to Version 1. Version

4 exploits both CPU multi-core capability and GPU many-core architecture together. This

version uses all possible resources available and achieves a speed up of around 5x compared to

Version 1. A graph is plotted showing the speed comparison amongst the four versions of the

post-procedure IFF module (Figure 9.2).

4.94

9.71

13.08

26.58

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Version 1 Version 2 Version 3 Version 4

Fr
am

e P
ro

ce
ss

in
g

Sp
ee

ds

Post-Processing IFF Module Versions

Speed Slope

Figure 9.2 Post-Procedure IFF Module Speed Graph

52

CHAPTER 10

CONCLUSION AND FUTURE DIRECTION

I have two versions for informative frame filtering – post-procedure and real-time. It is

clear (from Table 9.7) that, in the post-procedure version the disk read time is almost half of the

total execution time. So, although I am able to reduce the algorithm time to negligible value

using a GPU, the maximum overall acceleration I can achieve is only two fold (compare Table

9.7, versions 1 and 2). However, when CPU (central processing unit) multi-threading capability

is used to read frames from disk to memory and serve these to the GPU (graphic processing

unit), I achieved up to a five-fold acceleration (compare Table 9.7, versions 1, 3, and 4).

In the real-time version, all compute constraints reside within the algorithm time

because there is no disk read. To estimate the effect on high definition video streams, I used

different frame sizes, and calculated that the maximum acceleration I can achieve with a many-

core GPU algorithm for future HD (high- definition) 1080 colonoscopy video frames is 40 fold

compared to a modern day CPU alone (Table 9.5). The future work will be focused on

combining multiple GPUs together to further accelerate colonoscopy video analysis.

I made a module which uses multiple GPUs. NVIDIA’s primary requirement is to

associate each CPU core with a GPU. It means on a 4 core machine, I can generate only 4

threads and link them with the GPU cards. So, I cannot generate 16 multiple threads like in my

CPU-GPU combo scheme (Chapter 8). This module has not shown any significant performance

boost yet. So, the future of this research would be to improve the performance with multiple

GPUs. Accuracy-wise this algorithm is sufficient enough.

53

REFERENCES

[1] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors, Morgan

Kaufmann, San Francisco, 2010.

[2] American Cancer Society, “Colorectal Cancer Facts and Figures” 2008,

http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_Figures_2008.asp

[3] C. D. Johnson, J. G. Fletcher, R. L. MacCarty, et al, “Effect of slice thickness and primary 2D

versus 3D virtual dissection on colorectal lesion detection at CT colonography in 452

asymptomatic adults”. AJR American Journal of Roentgenology, 2007.

[4] A. Pabby, R. E. Schoen, J. L. Weissfeld, R. Burt, J. W. Kikendall, P. Lance, E. Lanza, and A.

Schatzkin, “Analysis of colorectal cancer occurrence during surveillance colonoscopy in the

dietary prevention trial". Gastrointestinal Endoscopy, 2005.

[5] JungHwan Oh, Sae Hwang, JeongKyu Lee, Tavanapong, W., Piet C. de Groen, Johnny Wong,

“Informative Frame Classification for Endoscopy Video”. J. Medical Image Analysis , 2007.

[6] Yong Han An, JungHwan Oh, Sae Hwang, Wallapak Tavanapong, Piet C. de Groen and

Johnny Wong, “Informative-Frame Filtering in Endoscopy Videos". SPIE International

Symposium, Medical Imaging, 2005.

[7] NVIDIA CUDA Programming Guide 3.0-beta1, 2009, www.nvidia.com

[8] Yuancheng Luo, R. Duraiswami, "Canny Edge Detection on NVIDIA CUDA". IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops, 2008.

[9] Seung In Park, Sean P. Ponce, Jing Huang, Yong Cao and Francis Quek, "Low-cost, high-speed

computer vision using NVIDIA's CUDA architecture". 37th IEEE Applied Imagery Pattern

Recognition Workshop, 2008.

http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_Figures_2008.asp�
http://www.nvidia.com/�

54

[10] Zhiyi Yang, Yating Zhu, Yong Pu, "Parallel Image Processing Based on CUDA",

International Conference on Computer Science and Software Engineering, 2008.

[11] NVIDIA CUDA Toolkit v3.0-beta1 (includes CUDA Visual Profiling Tool), 2009,

www.nvidia.com

[12] Elena Tsomko, Hyoung Joong Kim, “Efficient Method of Detecting Globally Blurry or

Sharp Images”. Ninth International Workshop on Image Analysis for Multimedia Interactive

Services, 2008.

[13] Frederique Crete, Thierry Dolmiere, Patricia Ladret, Marina Nicolas, "The Blur Effect:

Perception and Estimation with a New No-Reference Perceptual Blur Metric". SPIE

Electronic Imaging Symposium Conf Human Vision and Electronic Imaging, San Jose, 2007

[14] Zhang Hua, Zhu Wei, Chen Yaowu, "A No-Reference Perceptual Blur Metric by using

OLS-RBF Network", IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial

Application, Vol. 1, 2008.

[15] EePing Ong. Weisi Lin, Zhongkaiig Lu, Xiaokang Yang, Susir Yao, Feng Pan, Lijilrn Jiarrg,

and Fulvio Moscheni, "A no-reference quality metric for measuring image blur ". Seventh

International Symposium on Signal Processing and Its Applications, 2003.

[16] Pina Marziliano, Frederic Dufaux, Stefan Winkler and Touradj Ebrahimi, "A no-reference

perceptual blur metric", International Conference on Image Processing, Proceedings Vol. 3,

2002.

[17] J. F. Canny, “A Computational Approach to Edge Detection", IEEE Trans. Pattern Analysis

and Machine Intelligence, Nov. 1986.

[18] NVIDIA GeForce GTX 200 Technical Brief, www.nvidia.com

http://www.nvidia.com/�
http://www.nvidia.com/�

55

[19] CUDA Programming Best Practices Guide 3.0-beta1, 2009, www.nvidia.com

[20] V. Podlozhnyuk, “Image Convolution with CUDA”, White Paper, June 1, 2007,

www.nvidia.com

[21] CUDA Technical Training, Vol. I: Introduction to CUDA Programming, 2008,

www.nvidia.com

[22] http://en.wikipedia.org/wiki/Kahan_summation_algorithm

http://www.nvidia.com/�
http://www.nvidia.com/�
http://www.nvidia.com/�
http://en.wikipedia.org/wiki/Kahan_summation_algorithm�

