CDMA Network Design

Robert Akl, D.Sc.

Outline

CDMA overview and inter-cell effects

Network capacity

- Sensitivity analysis
 - Base station location
 - Pilot-signal power
 - Transmission power of the mobiles
- Numerical results

Problem Statement

- How to match cell design to user distribution for a given number of base stations?
 - CDMA network capacity calculation
 - Reverse signal power and power control
 - Pilot-signal power
 - Base station location

CDMA Capacity Issues

- Depends on inter-cell interference and intra-cell interference
- Complete frequency reuse
- Soft Handoff
- Power Control
- Sectorization
- Voice activity detection
- Graceful degradation

Relative Average Inter-Cell Interference

$$I_{ji} = \mathbf{E}\left[\iint_{C_j} \frac{r_j^m(x,y) 10^{\zeta_j/10}}{r_i^m(x,y)/\chi_i^2} \omega_j dA(x,y)\right]$$

m is the path loss exponent. ζ_i is the decibel attenuation due to shadowing, and has zero mean and standard deviation σ_s . $E[\chi_i^2/\zeta_i] = 10^{-\zeta_i/10}$

$$\omega_j = \frac{n_j}{\operatorname{Area}(C_j)}$$

Soft Handoff

 User is permitted to be in soft handoff to its two nearest cells.

Soft Handoff

$$I_{ji} = \iint_{\text{region(a)}} \frac{r_j^m}{r_i^m} \mathbb{E} \Big[10^{\zeta_j/10} \chi_i^2 / r_j^m 10^{\zeta_j/10} < r_i^m 10^{\zeta_i/10} \Big] \omega dA(x,y)$$

$$I_{ki} = \iint_{\text{region(b)}} \frac{r_k^m}{r_i^m} \mathbb{E} \Big[10^{\zeta_k/10} \chi_i^2 / r_k^m 10^{\zeta_k/10} < r_i^m 10^{\zeta_i/10} \Big] \omega dA(x,y)$$

$$I_{ji} = \iint_{\text{region(c)}} \frac{r_j^m}{r_i^m} \mathbb{E} \Big[10^{\zeta_j/10} \chi_i^2 / r_j^m 10^{\zeta_j/10} < r_k^m 10^{\zeta_k/10} \Big] \omega dA(x,y)$$

$$I_{ki} = \iint_{\text{region(c)}} \frac{r_k^m}{r_i^m} \mathbb{E} \Big[10^{\zeta_k/10} \chi_i^2 / r_k^m 10^{\zeta_k/10} < r_j^m 10^{\zeta_j/10} \Big] \omega dA(x,y)$$

Inter-Cell Interference Factor

 κ_{ji} per user inter - cell interference factor from cell *j* to cell *i*. n_j users in cell *j* produce a relative average interference in cell *i* equal to $n_j \kappa_{ji}$.

$$\frac{E_b}{\alpha(n_i - 1)E_b R/W + \alpha \sum_{j=1}^M n_j \kappa_{ji} E_b R/W + N_0} \ge \left(\frac{E_b}{I_0}\right)_{\text{req}}$$
for $i = 1, ..., M$.

$$n_{i} + \sum_{j=1}^{M} n_{j} \kappa_{ji} \leq \frac{W/R}{\alpha} \left(\frac{1}{\left(\frac{E_{b}}{I_{0}}\right)_{\text{req}}} - \frac{1}{\frac{E_{b}}{N_{0}}} \right) + 1 \stackrel{\Delta}{=} c_{\text{eff}}$$

for $i = 1, ..., M$.

Network Capacity

 $\max_{(n_1,\ldots,n_M)}$

 $\sum_{i=1}^{M} n_i$, (network capacity)

subject to

$$n_i + \sum_{j=1}^{M} n_j \kappa_{ji} - c_{eff} \le 0,$$

for $i = 1, ..., M.$

- Transmission power of mobiles
- Pilot-signal power
- Base station location

Power Compensation Factor

- Fine tune the nominal transmission power of the mobiles
- PCF defined for each cell
- PCF is a design tool to maximize the capacity of the entire network

Power Compensation Factor (PCF)

Interference is linear in PCF

$$n_i + \sum_{j=1}^M n_j \frac{\beta_j \kappa_{ji}}{\beta_i} \le c_{eff}(\beta_i) \text{ for } i = 1, \dots, M.$$

• Find the sensitivity of the network capacity w.r.t. the PCF

Sensitivity w.r.t. pilot-signal power

- Increasing the pilot-signal power of one cell:
 - Increases intra-cell interference and decreases inter-cell interference in that cell
 - Opposite effect takes place in adjacent cells

Sensitivity w.r.t. Location

- Moving a cell away from neighbor A and closer to neighbor B:
 - Inter-cell interference from neighbor A increases
 - Inter-cell interference from neighbor B decreases

Optimization using PCF

$$\max_{\underline{\beta}} \qquad \sum_{i=1}^{M} n_i, \quad (\text{network capacity})$$

subject to
$$1 \le \underline{\beta} \le \underline{\beta}^{\max},$$
$$n_i + \sum_{j=1}^{M} n_j \frac{\beta_j \kappa_{ji}}{\beta_i} - c_{eff}(\beta_i) \le 0,$$
for $i = 1, ..., M.$

Optimization using Location

 $\max_{\underline{L}} \qquad \sum_{i=1}^{M} n_i, \quad (\text{network capacity})$ subject to $n_i + \sum_{j=1}^{M} n_j \frac{\beta_j \kappa_{ji}(C_j, L_i)}{\beta_i} - c_{eff}^{(i)} \le 0,$ for i = 1, ..., M.

Optimization using Pilot-signal Power

Combined Optimization

$$\max_{\underline{\beta},\underline{L},\underline{T}} \qquad \sum_{i=1}^{M} n_i, \quad (\text{network capacity})$$

subject to
$$1 \le \underline{\beta} \le \underline{\beta}^{\max},$$
$$n_i + \sum_{j=1}^{M} n_j \frac{\beta_j \kappa_{ji}(C_j, L_i)}{\beta_i} - c_{eff}(\beta_i) \le 0,$$
for $i = 1, ..., M$.

Twenty-seven Cell CDMA Network

- Uniform user distribution profile.
- Network capacity equals 559 simultaneous users.
- Uniform placement is optimal for uniform user distribution.

• : Base Station id (): Cell Capacity

Three Hot Spot Clusters

- All three hot spots have a relative user density of 5 per grid point.
- Network capacity decreases to 536.
- Capacity in cells 4, 15, and 19, decreases from 18 to 3, 17 to 1, and 17 to 9.

Optimization using PCF

- Network capacity increases to 555.
- Capacity in cells 4, 15, and 19, increases from 3 to 12, 1 to 9, and 9 to 14.
- Smallest cellcapacity is 9.

- : Base Station id
- (): Cell Capacity

Optimization using Pilot-signal Power

- Network capacity increases to 546.
- Capacity in cells 4, 15, and 19, increases from 3 to 11, 1 to 9, and 9 to 16.
- Smallest cellcapacity is 9.

- : Base Station id
- (): Cell Capacity

Optimization using Location

- Network capacity increases to 549.
- Capacity in cells 4, 15, and 19, increases from 3 to 14, 1 to 8, and 9 to 17.
- Smallest cellcapacity is 8.

: Base Station id
 : Cell Capacity

Combined Optimization

- Network capacity increases to 565.
- Capacity in cells 4, 15, and 19, increases from 3 to 16, 1 to 13, and 9 to 16.
- Smallest cellcapacity is 13.

Combined Optimization (m.c.)

$$\begin{split} \max_{\underline{\beta},\underline{L},\underline{T}} & \sum_{i=1}^{M} n_i, \quad (\text{network capacity}) \\ \text{subject to} & 1 \leq \underline{\beta} \leq \underline{\beta}^{\max}, \\ & n_i + \sum_{j=1}^{M} n_j \frac{\beta_j \kappa_{ji}(C_j, L_i)}{\beta_i} - c_{eff}(\beta_i) \leq 0, \\ & n_i \geq \lfloor n_{\min} \rfloor, \\ & \text{for } i = 1, \dots, M. \end{split}$$

Combined Optimization (m.c.)

- Network capacity increases to 564.
- Capacity in cells 4, 15, and 19, increases from 3 to 17, 1 to 17, and 9 to 17.
- Smallest cellcapacity is 17.

🛃 Cell Sites

Base Station	Antenna
Id 1 Name BS-1	Id 1 Name ANT-1
Easting (x) 9000 meters	Type Sectored 🔽 Gain 🚺 dB
Northing (y) 3250 meters	Direction 60 degrees
Number of Antennas 3	Beam Width 120 degrees
Base Station List:	Forward Power 1 Watts
BS-1	Demand Estimator (Alpha)
BS-3 BS-4	Power Factor (Beta)
BS-5 BS-6	Center Line 30 meters
BS-7	Antenna List:
	ANT-1 (BS-1)
	ANT-3 (BS-1)
New Save Delete Cancel	New Save Delete Cancel
Apply	Close

Parameters	_ 🗆 🗵
Propagation Model Hata 💌	
Handset Sensitivity -120 dBm	
Carrier Frequency 1800 MHz	
Avg. Base Station Height 30.0 meters	
Avg. Mobile Height 1.5 meters	
Path Loss Coeficient 4.0	
Shadow Fading (Std. Dev.) 6.0 dB	
Rayleigh Fading (0 Off) (1 On) 1	
Processing Gain (W/R) 21.10 dB	
Bit Energy to Interference Ratio (Eb/Io)	7 dB
Voice Activity 0.375	
Imperfect Power Control (Std. Dev.) 2.5	dB
Interference/Background Noise (Io/No)	10 dB
Outage Probability 0.01	
Blocking Probability 0.02	
Frequency Allocation per Cell 1	
Erlangs per user 0.025 Erlang	
Grid Size 50 meters	
Accept Default Cano	cel

E

Conclusions

- Solved cell design problem: given a user distribution, found the optimal location and pilot-signal power of the base stations and the reverse power of the mobiles to maximize network capacity.
- Uniform network layout is optimal for uniform user distribution.
- Combined optimization increases network capacity significantly for non-uniform user distribution.