
A Non-preemptive Scheduling Algorithm for Soft Real-time Systems

Wenming Li, Krishna Kavi1 and Robert Akl
The University of North Texas

1 Please direct all correspondence to Krishna Kavi, Department of Computer Science and Engineering, The University of North Texas,

P.O. Box 311366, Denton, Texas 76203, kavi@cse.unt.edu

Abstract

Real-time systems are often designed using preemp-
tive scheduling and worst-case execution time esti-
mates to guarantee the execution of high priority tasks.
There is, however, an interest in exploring non-
preemptive scheduling models for real-time systems,
particularly for soft real-time multimedia applications.
In this paper, we propose a new algorithm that uses
multiple scheduling strategies for efficient non-
preemptive scheduling of tasks. Our goal is to improve
the success ratio of the well-known Earliest Deadline
First (EDF) approach when the load on the system is
very high and to improve the overall performance in
both underloaded and overloaded conditions. Our
approach, known as group-EDF (gEDF) is based on
dynamic grouping of tasks with deadlines that are very
close to each other, and using Shortest Job First (SJF)
technique to schedule tasks within the group. We will
present results comparing gEDF with other real-time
algorithms including, EDF, Best-effort, and Guaran-
tee, by using randomly generated tasks with varying
execution times, release times, deadlines and tolerance
to missing deadlines, under varying workloads. We
believe that grouping tasks dynamically with similar
deadlines and utilizing a secondary criteria, such as
minimizing the total execution time (or other metrics
such as power or resource availability that can be
easily extended) for scheduling tasks within a group,
can lead to new and more efficient real-time schedul-
ing algorithms.

Keywords: Soft Real-time Systems, Non-preemptive
Real-time Scheduling, Earliest Deadline First (EDF),
Shortest Job First (SJF), Best-Effort Scheduling,
Group EDF.

1. Introduction

The Earliest Deadline First (EDF) algorithm is
the most widely studied scheduling algorithm for
real-time systems [i]. For a set of preemptive tasks
(be they periodic, aperiodic, or sporadic), EDF will
find a schedule if a schedule is possible [ii]. The
application of EDF for non-preemptive tasks is not as
widely investigated. It is our contention that non-
preemptive scheduling is more efficient, particularly
for soft real-time applications and applications de-
signed for multithreaded systems, than the preemp-

tive approach since the non-preemptive model reduc-
es the overhead needed for switching among tasks (or
threads) [iii, iv]. EDF is optimal for sporadic non-
preemptive tasks, but EDF may not find an optimal
schedule for periodic and aperiodic non-preemptive
tasks. It has been shown that scheduling periodic and
aperiodic non-preemptive tasks is NP-hard [v, vi ,
vii]. However, non-preemptive EDF techniques have
produced near optimal schedules for periodic and
aperiodic tasks, particularly when the system is light-
ly loaded. When the system is overloaded, however,
it has been shown that the EDF approach leads to
very poor performance (low success rates) [viii]. In
this paper, a system load or utilization is used to refer
to the sum of the execution times of pending tasks as
related to the time available to complete the tasks.
The poor performance of EDF is due to the fact that,
as tasks that are scheduled based on their deadlines
miss their deadlines, other tasks waiting for their turn
are likely to miss their deadlines also – an outcome
sometimes known as the domino effect. It should also
be remembered that Worst Case Execution Time
(WCET) estimates for tasks are used in most real-
time systems. We believe that, in practice, WCET
estimates are very conservative, and more aggressive
scheduling schemes based on average execution
times for soft real-time systems using either EDF or
hybrid algorithms can lead to higher performance.

While investigating scheduling algorithms, we
have analyzed a variation of EDF that can improve
success ratios (that is, the number of tasks that have
been successfully scheduled to meet their deadlines),
particularly in overloaded conditions. The new algo-
rithm can also decrease the average response time for
tasks. We call our algorithm group-EDF, or gEDF,
where the tasks with “similar” deadlines are grouped
together (i.e., deadlines that are very close to one
another), and the Shortest Job First (SJF) algorithm
is used for scheduling tasks within a group. It should
be noted that our approach is different from adaptive
schemes that switch between different scheduling
strategies based on system load; gEDF is used in
overloaded as well as underloaded conditions. The
computational complexity of gEDF is the same as
that of EDF. In this paper, we will evaluate the per-
formance of gEDF using randomly generated tasks
with varying execution times, release times, dead-

lines and tolerance to missing deadlines, under vary-
ing loads.

We believe that gEDF is particularly useful for
soft real-time systems as well as applications known
as “anytime algorithms” and “approximate algo-
rithms,” where applications generate more accurate
results or rewards with increased execution times [ix,
x]. Examples of such applications include search
algorithms, neural-net based learning in AI, FFT and
block-recursive filters used for audio and image pro-
cessing. We model such applications using a toler-
ance parameter that describes by how much a task
can miss its deadline, or by how much the task’s
execution time can be truncated when the deadline is
approaching.

This paper is organized as follows. In section 2,
we present related work. In section 3, we present our
real-time system model. Numerical results are pre-
sented in section 4. Conclusions are given in section
5.

2. Related Work

The EDF algorithm schedules real-time tasks
based on their deadlines. Because of its optimality for
periodic, aperiodic, and sporadic preemptive tasks, its
optimality for sporadic non-preemptive tasks, and its
acceptable performance for periodic and aperiodic
non-preemptive tasks, EDF is widely studied as a
dynamic priority-driven scheduling scheme [v]. EDF
is more efficient than many other scheduling algo-
rithms, including the static Rate-Monotonic schedul-
ing algorithm. For preemptive tasks, EDF is able to
reach the maximum possible processor utilization
when lightly loaded. Although finding an optimal
schedule for periodic and aperiodic non-preemptive
tasks is NP-hard [vi, vii], our experiments have
shown that EDF can achieve very good results even
for non-preemptive tasks when the system is lightly
loaded. However, when the processor is over-loaded
(i.e., the combined requirements of pending tasks
exceed the capabilities of the system) EDF performs
poorly. Researchers have proposed several adaptive
techniques for handling heavily loaded situations, but
they require the detection of the overload condition.

A Best-effort algorithm [viii] is based on the as-
sumption that the probability of a high value-density
task arriving is low. The value-density is defined by
V/C, where V is the value of a task and C is its worst-
case execution time. Given a set of tasks with defined
values for successful completion, it can be shown that
a sequence of tasks in decreasing order by value-
density will produce the maximum value as com-
pared to any other scheduling technique. The Best-
effort algorithm admits tasks based on their value-
densities and schedules them using the EDF policy.
When higher value tasks are admitted, some lower

value tasks may be deleted from the schedule or de-
layed until no other tasks with higher value exist.
One key consideration in implementing such a policy
is the estimation of current workload, which is either
very difficult or very inaccurate in most practical
systems that utilize WCET estimations. WCET esti-
mation requires complex analysis of tasks [xi, xii],
and, in most cases, the estimates are significantly
larger than average execution times of tasks. Thus the
Best-effort algorithms that use WCET to estimate
loads may lead to sub-optimal value realization. Best-
effort has been used as an overload control strategy
for EDF.

Other approaches for detecting overload and re-
jecting tasks were reported in [xiii, xiv]. In the Guar-
antee scheme [xiii], the load on the processor is con-
trolled by performing acceptance tests on new tasks
entering the system. If the new task is found sched-
ulable under worst-case assumptions, it is accepted;
otherwise, the arriving task is rejected. In the Robust
scheme [xiv], the acceptance test is based on EDF; if
overloaded, one or more tasks may be rejected based
on their importance. Because the Guarantee and Ro-
bust algorithms also rely on computing the schedules
of tasks, often based on worst-case estimates, they
usually lead to underutilization of resources. Thus
Best-effort, Guarantee, or Robust scheduling algo-
rithms are not good for soft real-time systems or
applications that are generally referred to as “any-
time” or “approximate” algorithms [x].

The combination of SJF and EDF, referred to as
SCAN-EDF for disk scheduling, was proposed in
[xv]. In the algorithm, SJF is only used to break a tie
between tasks with identical deadlines. The work in
[xvi , xvii] is very closely related to our idea of
groups. This approach quantizes deadlines into dead-
line bins and places tasks into these bins. However,
tasks within a bin (or group) are scheduled using
First Come First Served (FCFS). The gEDF groups
that we use are created dynamically instead of stati-
cally as done in [16,17].

 One integrated real-time scheduler including
Best-effort strategy for general-purpose operating
systems has been proposed in [xviii]. However, this
approach relies on the preemptive scheduling and
uses Best-effort as an overload control strategy.

3. Real-time System Model
3.1 Definitions

A job τi in a real-time system or a thread in
multithreading processing is defined as τi = (ri, ei, Di,
Pi); where ri is its release time (or its arrival time); ei
is either its predicted worst-case or average execution
time; Di is its deadline. We also maintain a dynamic
deadline di = ri + Di , which tracks the absolute time
before the deadline expires. If modeling periodic

jobs, Pi defines a task’s periodicity. Note that aperi-
odic and sporadic jobs can be modeled by setting Pi
appropriately.

For the experiments, we generated a fixed num-
ber (N) of jobs with varying arrivals, execution times
and deadlines. We assume that the jobs are mutually
independent. Each experiment terminated when the
predetermined experimental time T expired. This
permitted us to investigate the sensitivity of the vari-
ous task parameters on the success rates of EDF and
gEDF. We use random distributions available in
MATLAB to generate the necessary parameters with
tasks.

A group in the gEDF algorithm depends on a
group range parameter Gr. τj belongs to the same
group as τi if di ≤ dj ≤ (di + Gr*(di – t))2, where t is
the current time, 1 ≤ i, j ≤ N. In other words, we
group jobs with very close deadlines together. We
schedule groups based on EDF (all jobs in a group
with an earlier deadline will be considered for sched-
uling before jobs in a group with later deadlines), but
schedule jobs within a group using shortest job first
(SJF) approach. Since SJF results in more (albeit
shorter) jobs completing, intuitively gEDF should
lead to a higher success rate than pure EDF.
 We use the following notations for various pa-
rameters and computed values:
 ρ: is the utilization of the system, ρ = Σei / T. This is

also called the load.
γ: is the success ratio, γ = the number of jobs complet-

ed successfully / N.
Tr: is the deadline tolerance for soft real-time systems.

A job τ is schedulable if τ finishes before the
time (1 + Tr) * D, where Tr ≥ 0.

µe: is used either as the average execution time or the
worst case execution time, and defines the ex-
pected value of the exponential distribution used
for this purpose.

µr: is used to generate arrival times of jobs, and is the
expected value of the exponential distribution
used for this purpose.

µD: is the expected value of the random distribution
used to generate task deadlines. We set this pa-
rameter as a multiple of µe.

ℜ: is the average response time of the jobs.
∂: is the response-time ratio, ∂ = ℜ / µe.
ηγ: is the success-ratio performance factor, ηγ = γgEDF /

γEDF. This is used to compare gEDF with EDF.
η∂: is the response-time performance factor, η∂ = ∂EDF

/ ∂gEDF. This is used to compare gEDF with EDF.
3.2 gEDF Algorithm

2 We are using the remaining time to a task deadline (called

dynamic deadlines) in forming groups. We found that
using static deadlines for defining groups did not signifi-
cantly change the results.

We assume a uniprocessor system. QgEDF is a
queue for gEDF scheduling. The current time is rep-
resented as t. |Q| represents the length of the queue Q.
τ = (r, e, D, P) yields the job at the head of the queue.
 We define groups in gEDF as follows:
gEDF Group = {τk | τk ∈ QgEDF, dk – d1 ≤ D1 * Gr, 1 ≤
k ≤ m, where m ≤ |QgEDF|}, where, D1 is the deadline
of the first job in a group.
Algorithm:

1. Enqueue(QgEDF, τ)
 if (τ’s deadline d > t)
 insert job τ into QgEDF by Earliest Dead-

lineFirst, i.e. di ≤ di+1 ≤ di+2,
 where τi, τi+1, τi+2 ∈ QgEDF, 1 ≤ i ≤ |QgEDF| - 2;
 end
2. τmin = Dequeue (QgEDF)
 if QgEDF ≠ φ
 find a job τmin with emin = min {ek | τk ∈ QgEDF,
 dk – d1 ≤ Gr*D1, 1 ≤ k ≤ m, where
 m ≤ |QgEDF|};
 run it and delete τmin from QgEDF;
 end

 Enqueue is invoked on job arrivals and Dequeue is
called when the processor becomes idle. The algo-
rithm that we presented tends to favor smaller jobs
and thus it does not always guarantee fairness. Also
the algorithm needs to sort the jobs in each group,
which could incur more overhead during execution
than EDF. However, in most practical systems, the
number of jobs in a group is small and the added
runtime overhead will be negligible.

4. Numerical Results

MATLAB is used to generate tasks and the gen-
erated tasks are scheduled using EDF, gEDF, or other
scheduling algorithms. For each chosen set of param-
eters, we have repeated each experiment 100 times
(each time, generated N tasks using the random prob-
ability distributions and scheduled the generated
tasks) and computed the average success rate. In what
follows, we report the results and analyze the sensi-
tivity of gEDF to the various parameters used in the
experiments, the effects of the percentage of small
jobs, and how well gEDF performs when compared
to Best-Effort algorithm. Note that we use the non-
preemptive task model.

4.1 Comparison of gEDF and EDF

4.1.1 Experiment 1 – Effect of Deadline Tolerance
Figures 1-3 show that gEDF achieves higher

success rate than EDF when the deadline tolerance
(i.e., soft real-time nature of the jobs) is varied from
20%, 50% to 100% (that is, a task can miss its dead-
line by 20%, 50% and 100%).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.2

gEDF: Tr=0.2

Figure 1: Success rates when deadline tolerance is 0.2.

For these experiments, we generated tasks by

fixing expected execution rate and deadline parame-
ters of the probability distributions, but varied arrival
rate parameter to change the system load. The group
range for these experiments is fixed at Gr = 0.4 (i.e.,
all jobs whose deadlines fall within 40% of the dead-
line of current job are in the same group). It should
be noted that gEDF’s success rates are consistently as
good as those of EDF under light loads (utilization is
less than 1), but higher than those of EDF under
heavy loads (utilization is greater than 1, see the X-
axis). Both EDF and gEDF achieve higher success
rates when tasks are provided with greater deadline
tolerance. The tolerance benefits gEDF more than
EDF, particularly under heavy loads. Thus, gEDF is
better suited for soft real-time tasks.

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.5

gEDF: Tr=0.5

Figure 2: Success rates when deadline tolerance is 0.5.

Figure 4 summarizes these results by showing
the percent improvement in success ratios achieved
by gEDF when compared to EDF. The Y-axis shows
that higher success rates are achieved by gEDF when
compared to EDF for different system loads and
different deadline tolerance parameters.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=1.0

gEDF: Tr=1.0

Figure 3: Success rates when deadline tolerance is 1.0.

100%

110%

120%

130%

140%

150%

160%

170%

180%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

-r
at

io
 Im

pr
ov

em
en

t Tr=0.2

Tr=0.5

Tr=1.0

Figure 4: Success-ratio Performance Factor.

4.1.2 Experiment 2 - Effect of Deadline on Success
Rates

In this experiment we explored the performance
of EDF and gEDF when the deadlines are very tight
(deadline = execution time) and when the deadlines
are loose (deadline = 5 * execution time). Note that
we generated the deadlines using exponential distri-
bution with mean values set to 1 and 5 times the
mean execution time µe. We varied the soft real-time
parameter (Tr, or tolerance to deadline) in these ex-
periments also, but all other parameters are kept the
same as in the previous experiment. As can be seen in
Figures 5 and 6, any scheduling algorithm will per-
form poorly for tight deadlines3, except under ex-

3 It should be noted that when µD = µe, all jobs should be

scheduled immediately upon arrival, lest they misses
their deadlines. The impact of using Least Laxity First

tremely light loads. Even under very tight deadlines,
as in Figure 6, the deadline tolerance favors gEDF
more than EDF. With looser deadlines, as in Figures
7 and 8, both EDF and gEDF achieve better perfor-
mance. However, gEDF outperforms EDF consistent-
ly for all values of the deadline tolerance, Tr.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0

gEDF: Tr=0

Figure 5: Tight deadline µD = 1 (Deadline = Execution
Time) and Tr = 0.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=1.0

gEDF: Tr=1.0

Figure 6: Tight deadline µD = 1 (Deadline = Execution
Time) and Tr = 1.0.

Figures 9 and 10 respectively, highlight the ef-

fect of deadlines on both EDF and gEDF. To more
clearly evaluate how these approaches perform when
the deadlines are very tight and loose, we set the
deadlines to 1, 2, 5, 10 and 15 times the execution
time of a task. We set µe = 40, Tr = 0.2, (for gEDF
Gr = 0.4). When µD = 1 and 2, the success ratios of
EDF and gEDF show no appreciable differences.
However, when µD becomes reasonably large, such
as 5, 10, and 15, the success ratio of gEDF is better
than that of EDF.

approach is indirectly reflected by EDF when the dead-
lines are very tight.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0
gEDF: Tr=0
EDF: Tr=0.2
gEDF: Tr=0.2

Figure 7: Looser deadline µD = 5 (Deadline = 5* Execu-
tion Time) and Tr = 0 and 0.2.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.5
gEDF: Tr=0.5
EDF: Tr=1.0
gEDF: Tr=1.0

Figure 8: Looser deadline µD = 5 (Deadline = 5* Execu-
tion Time) and Tr = 0.5 and 1.0.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

D=1
D=2
D=5
D=10
D=15

Figure 9: Success ratio of EDF when µD = 1, 2, 5, 10, and
15.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

D=1
D=2
D=5
D=10
D=15

Figure 10: Success ratio of gEDF when µD = 1, 2, 5, 10,
and 15.

Figure 11 summarizes these comparisons. The Y-
axis shows the relative performance improvements
(or better success ratios) achieved by gEDF over
EDF.

100%

105%

110%

115%

120%

125%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

-r
at

io
 Im

pr
ov

em
en

t

D=1
D=2
D=5
D=10
D=15

Figure 11: The ratio of success ratio of gEDF vs. success
ratio of EDF when µD = 1, 2, 5, 10, and 15.

4.1.3 Experiment 3 - Effect of Group Range

In this experiment, we vary the group range pa-
rameter Gr for grouping tasks into a single group.
Note in the following figures we do not include EDF
data since EDF does not use groups. We set µD = 5
(Deadline = 5* Execution Time) and maintain the
same values for other parameters as in the previous
experiments. We set the deadline tolerance parameter
Tr to 0.1 (10% tolerance in missing deadlines) in
Figure 12, and to 0.5 (50% tolerance in missing dead-
lines) in Figure 13. The data shows that by increasing
the size of a group, gEDF achieves higher success
rates. In the limit, by setting the group range parame-
ter to a large value, gEDF behaves more like SJF.
There is a threshold value for the group size for
achieving optimal success rate and the threshold
depends on the execution time, tightness of deadlines

and deadline tolerance parameters. For the experi-
ments, we used a single exponential distribution for
generating all task execution times. However, if we
were to use a mix of tasks created using exponential
distributions with different mean values, thus creating
tasks with widely varying execution times, the group
range parameter will have more pronounced effect on
the success rates. Section 4.2 discusses the effect of
different job classes, generated using different aver-
age execution time parameters.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization
S

uc
ce

ss
 R

at
io

Gr:0.1

Gr:0.2

Gr:0.5
Gr:1.0

Figure 12: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Gr:0.1
Gr:0.2
Gr:0.5
Gr:1.0

Figure 13: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5).

4.1.4 Experiment 4 – Effect of Deadline Tolerance
on Response Time

 Thus far we have shown that gEDF results in
higher success rates than EDF, particularly when the
system is overloaded. Next, we will compare the
average response times achieved using gEDF with
the response times achieved using EDF. Intuitively,
completing shorter jobs first should result in faster
response times. Our experiments support this. We set
µe = 40, µD = 5, Gr = 0.4. Figures 14 and 15 show
that gEDF can yield faster response times than EDF
when soft real-time tolerance parameter Tr changes
from 0 to 0.5, respectively.

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

EDF: Tr=0

gEDF: Tr=0

Figure 14: Response time when deadline tolerance Tr = 0.

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

EDF: Tr=0.5

gEDF: Tr=0.5

Figure 15: Response time when deadline tolerance Tr =
0.5.

Figure 16 summarizes the improvements in re-

sponse times achieved by gEDF when compared to
EDF. Note that that Y-axis shows the relative re-
sponse times (and smaller number are better).

50%

60%

70%

80%

90%

100%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e-
tim

e
Im

pr
ov

em
en

t

Tr=0
Tr=0.5
Tr=1.0

Figure 16: The ratio of response time of gEDF vs. re-
sponse time of EDF.

4.1.5 Experiment 5 - The Effect of Tight Deadlines
on Response Time

Figures 17 and 18 show the change in response
time of EDF and gEDF when µD changes to 1, 2, 5,
and 10. For these experiments, we set µr = µe/ρ, µe =
40, Gr = 0.4, Tr = 0.1. Like the success ratios of EDF
and gEDF, when µD is 1 and 2 times µe, there is no
difference between EDF and gEDF. However, when
µD is larger multiple of µe, gEDF results in faster
response times.

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization
R

es
po

ns
e

Ti
m

e

D=1
D=2
D=5
D=10

Figure 17: Response time of EDF when µD = 1, 2, 5, and
10.

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

D=1
D=2
D=5
D=10

Figure 18: Response time of gEDF when µD = 1, 2, 5, and
10.

Figure 19 summarizes the improvements in re-
sponse times achieved by gEDF when compared to
EDF. Note that that Y-axis shows the relative re-
sponse times (and smaller number are better).

50%

60%

70%

80%

90%

100%

110%

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e-
tim

e
Im

pr
ov

em
en

t

D=1
D=2
D=5
D=10

Figure 19: The ratio of response time of gEDF vs. re-
sponse time of EDF when µD = 1, 2, 5, and 10.

4.2 The Effect of Multiple Expected Execu-

tion Times

4.2.1 Experiment 6 – The Effect of Multiple µ es on
Success Ratio

 The jobs generated in section 4.1 have a single
average or worst case expected execution time µe. In
other words, jobs were created using a single expo-
nential distribution. To evaluate the impact of the
case when jobs come from different classes with
different mean execution times, we generated tasks
using multiple exponential distributions with differ-
ent mean values .

We use the following mean execution times for
generating tasks. Note that a job class will be desig-
nated as (m, n) where m represent the mean value of
the distribution used to generate execution times of
tasks, and n represents the fraction of jobs (out of N)
that are generated with the mean m.

Set-1: This is the base line consisting of jobs drawn
from a single exponential distribution. We generate N
jobs using an exponential distribution with a mean µ.
We designate this set of jobs as (µe, N).
Set-2: Here we have two types of jobs, one generated
using a mean of (½)*µe, and the second with a mean of
µe,. Sixty-six percent of the jobs have a mean execution
time of (½)µe. This set is designated by (1/2µe, 2/3N)
and (µe, 1/3N).
Set-3: This set contains 3 classes of jobs generated us-
ing mean execution times of 1/4µe, 1/2µe, and µe. We
designate this set as (1/4µe, 4/7N), (1/2µe, 2/7N), and
(µe, 1/7N). Remember that the second number in each
tuple represents the fraction of total number of jobs of
each class.
 Figure 20 shows that, when Tr is 0 (hard real-

time), a job stream with more small jobs do not im-
prove the success ratios. On the other hand, when
dealing with soft real-time jobs (with a deadline tol-
erance Tr of 0.2 and 0.5), job classes do impact suc-
cess ratios of gEDF as shown in Figures 21 and 22.

Note that Set 2 and Set 3 have larger number of
smaller jobs than Set 1. As expected gEDF results in
higher success rates over EDF when there are more
small jobs.

0.99

1.00

1.01

1.02

1.03

1.04

1.05

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

SR
/E

D
F'

s
SR

Set-1

Set-2

Set-3

Figure 20: Success ratio of gEDF/success ratio of EDF
when Tr = 0.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

SR
/E

D
F'

s
SR

Set-1

Set-2

Set-3

Figure 21: Success Ratio of gEDF/success ratio of EDF
when Tr = 0.2.

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

SR
/E

D
F'

s
SR

Set-1

Set-2

Set-3

Figure 22: Success Ratio of gEDF/success ratio of EDF
when Tr = 0.5.

4.2.2 Experiment 7 – The Effect of Percentage of
Small Jobs on Success Ratio

 Previously, we analyzed the effect of data sets
with different job classes using different µes, and
observed that a workload with more small jobs show
higher gEDF performance when compared to EDF.
In this section, we will analyze the case where we use
two different job classes (with two different µes) but
change the percentage of small jobs in the mix.

Distribution 1: all jobs with µe.
Distribution 2: 1/2jobs with µe; 1/2 jobs with 1/2µe.
Distribution 3: 2/5jobs with µe; 3/5jobs with 1/3 µe.
Distribution 4: 1/5 jobs with µe; 4/5 jobs with 1/8 µe.
 We set Tr = 0.5. Figure 23 shows that the distri-

bution with more small jobs, gEDF obtains higher
success ratios than EDF. Note the Distribution 4 has
more small jobs than any other distribution, and the
data shows that gEDF benefits from this fact.

1.00

1.50

2.00

2.50

3.00

3.50

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s

SR
/E

D
F'

s
SR

Distribution 1
Distribution 2
Distribution 3
Distribution 4

Figure 23: Success ratio of gEDF/success ratio of EDF Tr
= 0.5.

4.3 Comparisons of gEDF, Best-effort, and
Guarantee Algorithms

4.3.1 Experiment 8 - Comparison of Success Rati-
os of gEDF and Best-effort

We have shown that gEDF not only shows better
performance than EDF under overloaded conditions,
but shows comparable or better performance than
EDF when the system is underloaded. Thus, there is
no need to switch between EDF and gEDF based on
system load. Researchers have explored adaptive
algorithms to control the performance when the sys-
tem is overloaded. One such algorithm is called the
Best-effort Algorithm (see Section 2). In this paper
we will use the same best effort criteria (i.e., value-
density: V/C) that Locke [8] used. For this experi-
ment we set all jobs to have the same value. The
Best-effort approach used EDF when the system is
under-loaded, and attempts to maximize V/C when
the system exceeds 100% utilization (i.e., overloaded
conditions).

The Best-effort relies on the precise estimation or
prediction of utilization for switching between EDF

algorithm and the Best-effort. While it may be possi-
ble to predict the system load when the system only
processes periodic jobs, it is very difficult to compute
the system load if the system processes a mixture of
periodic, aperiodic, and sporadic jobs. Recently,
synthetic utilization bound has been proposed to
measure real utilization. For the EDF-based schemes,
however, synthetic utilization and real utilization are
very close [xix]. The estimated loads are imprecise
because most real-time systems utilize worst-case
execution times (WCET), and in most cases the actu-
al utilization of the system is lower than these esti-
mates. Switching to Best-Effort based on such impre-
cise load estimations leads to inefficient utilization of
the resources. In this paper we use a clairvoyant
scheme based on actual execution times of the real-
time jobs. Thus the comparisons shown here are
present the most optimistic scenarios as far as the
Best-Effort algorithm is concerned.

We set µr = µe/ρ, µe = 20, µD = 5, Gr = 0.4. Fig-
ures 24 and 25 show that gEDF achieves higher suc-
cess rates than Best-effort when the deadline toler-
ance is varied, Tr = 0.2, 0.5, and 1.0.

 Considering the need for predicting the precise
utilization for implementing Best-Effort, any im-
provements gained by gEDF should be viewed in a
positive light. The performance gains achieved by
gEDF are even grater when the deadline tolerance is
as lenient as 50%, as in Figure 25 (even for lighter
loads).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Best-effort

gEDF

Figure 24: Success rates when deadline tolerance is 0.2.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Best-effort

gEDF

Figure 25: Success rates when deadline tolerance is 0.5.

4.3.2 Experiment 9 – Comparison of Response
Times of gEDF and Best-effort

Figures 26 and 27 compare the average response
times achieved using gEDF with that achieved using
Best-effort. We set µr = µe/ρ, µe = 20, µD = 5, Gr =
0.4.

20
30
40
50
60
70
80
90

100
110
120

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Best-effort

gEDF

Figure 26: Response time when deadline tolerance is 0.

20
30
40
50
60
70
80
90

100
110
120

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Best-effort

gEDF

Figure 27: Response time when deadline tolerance is 0.2.

4.3.3 Experiment 10 – Comparison of Success
Ratios of gEDF and Guarantee
 Although Guarantee algorithm is inappropriate
for soft real-time systems, we include a comparison
of gEDF with the Guarantee scheme here for the sake
of completeness. When the system is underloaded,
Guarantee uses EDF; when the system is overloaded,
Guarantee uses a specific policy to choose real-time
jobs and guarantees execution of the jobs by their
deadlines. In the simulation used here, incoming jobs,
are accepted based on FCFS policy, if they can be
scheduled (along with all jobs already guaranteed) by
the deadline.

 We set µr = µe/ρ, µe = 20, µD = 5, Gr = 0.4. Fig-
ures 28 and 29 show the success ratios of all the real-
time scheduling algorithms discussed in this paper,
including the Guarantee algorithm, Best-effort, EDF,
and gEDF.

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Guarantee
Best-effort
EDF
gEDF

Figure 28: Success ratio when deadline tolerance is 0.2.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

Guarantee
Best-effort
EDF
gEDF

Figure 29: Success ratio when deadline tolerance is 0.5.

4.3.4 Experiment 11 – Comparison of the Re-
sponse Times of gEDF and Guarantee

 We set µr = µe/ρ, µe = 20, µD = 5, Gr = 0.4. Fig-
ure 30 compares the response times of the real-time
algorithms considered in this paper.

0

20

40

60

80

100

120

140

160

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e
Ti

m
e

Guarantee
Best-effort
EDF
gEDF

Figure 30: Response times when deadline tolerance is 0.2.

5. Conclusions and Future Work

In this paper, we presented a new real-time
scheduling algorithm that combines Shortest Job First
scheduling with the Earliest Deadline First schedul-
ing. We grouped tasks with deadlines that are very
close to each other, and scheduled jobs within a
group using SJF scheduling. We have shown that
group EDF results in higher success rates (that is, the
number of jobs that have completed successfully
before their deadline) as well as in faster response
times.

 It has been known that while EDF produces an
optimum schedule (if one is available) for systems
using preemptive scheduling, EDF is not as widely
used for non-preemptive systems. We believe that for
soft real-time systems that utilize multithreaded pro-
cessors, non-preemptive scheduling is more efficient.
Although EDF produces practically acceptable per-
formance even for non-preemptive systems when the
system is underloaded, EDF performs very poorly
when the system is heavily loaded. Our gEDF algo-
rithm performs as well as EDF in terms of success
ratio when a system is underloaded. Even on systems
that are underloaded, gEDF shows higher success
rates than EDF when dealing with soft real-time tasks
(using higher deadline tolerances). And gEDF con-
sistently outperforms EDF in overloaded situations.

 In this paper we also compared our gEDF with
schemes that adapt EDF when the system is over-
loaded. Among the adaptive algorithms, we consid-
ered the Best-Effort and Guarantee algorithms. In
general, gEDF, which can be used in both overloaded
and under-loaded situations, performs as well as or
better than EDF, Best-Effort and Guarantee schemes.

It should be remembered the last two adaptive algo-
rithms require the ability to accurately measure sys-
tem loads so that the overloaded conditions can be
detected. In most cases this is very difficult, particu-
larly if the workload consists of periodic, aperiodic
and sporadic jobs, or if the system consists of both
real-time and non-real-time jobs. Moreover, estimat-
ing system load based on worst-case execution times,
leads to under-utilizations, thus predicting overloaded
conditions incorrectly. These problems are not en-
countered by gEDF, since there is no need to estimate
system load or to switch between EDF and Best-
Effort on overloads.

In future work, we plan to explore the impact of a
variety of parameters on the performance gEDF, and
evaluate gEDF for real workloads.

6. References

[i] F. Balarin, L. Lavagno, P. Murthy, and A. S. Vin-

centelli, “Scheduling for Embedded Real-Time Sys-
tems”, IEEE Design & Test of Computer, January-
March, 1998.

[ii] C. L. Liu and J. W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard-Real-Time
Environment”, Journal of the ACM, Vol. 20. No. 1,
pp. 46-61.

[iii] R. Jain, C. J. Hughes, and S. V. Adve, “Soft Real-
Time Scheduling on Simultaneous Multithreaded
Processors”, In Proceedings of the 23rd IEEE Inter-
national Real-Time Systems Symposium, December
2002.

[iv] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled
Dataflow: Execution Paradigm, Architecture, and
Performance Evaluation”, IEEE Transactions on
Computers, Vol. 50, No. 8, August 2001.

[v] K. Jeffay and C. U. Martel, “On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks”, Pro-
ceedings of the 12th IEEE Real-Time Systems Sym-
posium, San Antonio, Texas, December 1991, IEEE
Computer Society Press, pp. 129-139.

[vi] M. R. Garey, D. S. Johnson, “Computer and Intrac-
tability, a Guide to the Theory of NP-
Completeness”, W. H. Freeman Company, San
Francisco, 1979.

[vii] L. Georges, P. Muehlethaler, N. Rivierre, “A Few
Results on Non-Preemptive Real-time Scheduling”,
INRIA Research Report nRR3926, 2000.

[viii] C. D. Locke, “Best-effort Decision Making for
Real-Time Scheduling”, CMU-CS-86-134 (PhD
Thesis), Computer Science Department, Carnegie-
Mellon University, 1986.

[ix] J. K. Dey, J. Kurose, and D. Towsley, “Online
Processor Scheduling for a Class of IRIS
(Increasing Reward with Increasing Service) Real-
Time Tasks”, Tech. Rep. 93-09, Department of
Computer Science, University of Massachusetts,
Amherst, Jan 1993.

[x] S. Zilberstein, “Using Anytime Algorithms in Intel-
ligent Systems”, AI Magazine, fall 1996, pp.71-83.

[xi] R. Heckmann, M. Langenbach, S. Thesing, and R.

Wilhelm, “The Influence of Processor Architecture
on the Design and the Results of WCET Tools”,
Proceedings of IEEE July 2003, Special Issue on
Real-time Systems.

[xii] G. Bernat, A. Collin, and S. M. Petters, “WCET
Analysis of Probabilistic Hard Real-Time Systems”,
IEEE Real-Time Systems Symposium 2002, 279-
288.

[xiii] G. Buttazzo, M. Spuri, and F. Sensini, Scuola Nor-
male Superiore, Pisa, Italy, “Value vs. Deadline
Scheduling in Overload Conditions”, 16th IEEE Re-
al-Time Systems Symposium (RTSS’95) December
05-07, 1995.

[xiv] S. K. Baruah and J. R. Haritsa, “Scheduling for
Overload in Real-Time Systems”, IEEE Transac-
tions on Computers, Vol. 46, No. 9, September
1997.

[xv] A. L. N. Reddy and J. Wyllie, “Disk Scheduling in
Multimedia I/O system”, In Proceedings of ACM
multimedia’93, Anaheim, CA, 225-234, August
1993.

[xvi] B. D. Doytchinov, J. P. Lehoczky, and S. E. Shreve,
“Real-Time Queues in Heavy Traffic with Earliest-
Deadline-First Queue Discipline”, Annals of Ap-
plied Probability, No. 11, 2001.

[xvii] J. P. Hansen, H. Zhu, J. P. Lehoczky, and R. Raj-
kumar, “Quantized EDF Scheduling in a Stochastic
Environment”, Proceedings of the International Par-
allel and Distributed Processing Symposium, 2002.

[xviii] Jason Nieh, and Monica S. Lam, “A SMART
Scheduler for Multimedia Applications”, ACM
Transactions on Computer Systems, Vol. 21, No. 2,
May 2003.

[xix] T. Abdelzaher, V. Sharma, and C. Lu, “A Utiliza-
tion Bound for Aperiodic Tasks and Priority Driven
Scheduling”, IEEE Trans. On Computers, March
2004.

 Wenming Li received BS in com-
puter science from Sichuan University, China, MS in com-
puter engineering from Institute of Computing Technology
of Chinese Academy of Sciences, and MS in computer
science from University of North Texas in 1985, 1990, and
2001 respectively. He was a senior researcher in Chinese
Academy of Sciences and a computer engineer in Atmel
Corporation and Tarrant Appraisal District. He is currently
a PhD candidate in computer science in University of North
Texas. His current research interests are computer architec-
ture, real-time, and embedded systems.

 Krishna Kavi is currently a pro-
fessor and the Chairman of Computer Science and Engi-
neering department at the University of North Texas. Pre-
viously he held the Eminent Scholar Chair professorship at
the University of Alabama in Huntsville, and a professor-
ship at the University of Texas at Arlington. He was a
Scientific Program Director at the US National Science
Foundation between 1993-1995.

His research interests are primarily in the various as-
pects of Computer Architecture. He also conducted re-
search on formal methods for the design and verification of
software systems, agent-based formalisms, performance
and reliability analyses of computer systems using Petri
nets. He authored or co-authored more than 150 technical
publications.

 Robert Akl received the B.S. de-
gree in computer science from Washington University in
St. Louis, in 1994, and the B.S., M.S. and D.Sc. degrees in
electrical engineering in 1994, 1996, and 2000, respective-
ly. He also received the Dual Degree Engineering Out-
standing Senior Award from Washington University in
1993.

Dr. Akl is currently an Assistant Professor at the Uni-
versity of North Texas, Department of Computer Science
and Engineering. In 2002, he was an Assistant Professor at
the University of New Orleans, Department of Electrical
and Computer Engineering. From October 2000 to Decem-
ber 2001, he was a senior systems engineer at Comspace
Corporation, Coppell, TX. His research interests include
wireless communication and network design and optimiza-
tion.

