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Abstract 

Real-time systems are often designed using preemp-
tive scheduling and worst-case execution time esti-
mates to guarantee the execution of high priority tasks. 
There is, however, an interest in exploring non-
preemptive scheduling models for real-time systems, 
particularly for soft real-time multimedia applications. 
In this paper, we propose a new algorithm that uses 
multiple scheduling strategies for efficient non-
preemptive scheduling of tasks. Our goal is to improve 
the success ratio of the well-known Earliest Deadline 
First (EDF) approach when the load on the system is 
very high and to improve the overall performance in 
both underloaded and overloaded conditions. Our 
approach, known as group-EDF (gEDF) is based on 
dynamic grouping of tasks with deadlines that are very 
close to each other, and using Shortest Job First (SJF) 
technique to schedule tasks within the group. We will 
present results comparing gEDF with other real-time 
algorithms including, EDF, Best-effort, and Guaran-
tee, by using randomly generated tasks with varying 
execution times, release times, deadlines and tolerance 
to missing deadlines, under varying workloads. We 
believe that grouping tasks dynamically with similar 
deadlines and utilizing a secondary criteria, such as 
minimizing the total execution time (or other metrics 
such as power or resource availability that can be 
easily extended) for scheduling tasks within a group, 
can lead to new and more efficient real-time schedul-
ing algorithms.  
 
Keywords: Soft Real-time Systems, Non-preemptive 
Real-time Scheduling, Earliest Deadline First (EDF), 
Shortest Job First (SJF), Best-Effort Scheduling, 
Group EDF. 
 
1.   Introduction 

The Earliest Deadline First (EDF) algorithm is 
the most widely studied scheduling algorithm for 
real-time systems [i]. For a set of preemptive tasks 
(be they periodic, aperiodic, or sporadic), EDF will 
find a schedule if a schedule is possible [ii]. The 
application of EDF for non-preemptive tasks is not as 
widely investigated. It is our contention that non-
preemptive scheduling is more efficient, particularly 
for soft real-time applications and applications de-
signed for multithreaded systems, than the preemp-

tive approach since the non-preemptive model reduc-
es the overhead needed for switching among tasks (or 
threads) [iii, iv]. EDF is optimal for sporadic non-
preemptive tasks, but EDF may not find an optimal 
schedule for periodic and aperiodic non-preemptive 
tasks. It has been shown that scheduling periodic and 
aperiodic non-preemptive tasks is NP-hard [v, vi , 
vii]. However, non-preemptive EDF techniques have 
produced near optimal schedules for periodic and 
aperiodic tasks, particularly when the system is light-
ly loaded. When the system is overloaded, however, 
it has been shown that the EDF approach leads to 
very poor performance (low success rates) [viii]. In 
this paper, a system load or utilization is used to refer 
to the sum of the execution times of pending tasks as 
related to the time available to complete the tasks. 
The poor performance of EDF is due to the fact that, 
as tasks that are scheduled based on their deadlines 
miss their deadlines, other tasks waiting for their turn 
are likely to miss their deadlines also – an outcome 
sometimes known as the domino effect. It should also 
be remembered that Worst Case Execution Time 
(WCET) estimates for tasks are used in most real-
time systems. We believe that, in practice, WCET 
estimates are very conservative, and more aggressive 
scheduling schemes based on average execution 
times for soft real-time systems using either EDF or 
hybrid algorithms can lead to higher performance.  

While investigating scheduling algorithms, we 
have analyzed a variation of EDF that can improve 
success ratios (that is, the number of tasks that have 
been successfully scheduled to meet their deadlines), 
particularly in overloaded conditions. The new algo-
rithm can also decrease the average response time for 
tasks. We call our algorithm group-EDF, or gEDF, 
where the tasks with “similar” deadlines are grouped 
together (i.e., deadlines that are very close to one 
another), and the Shortest Job First (SJF) algorithm 
is used for scheduling tasks within a group. It should 
be noted that our approach is different from adaptive 
schemes that switch between different scheduling 
strategies based on system load; gEDF is used in 
overloaded as well as underloaded conditions. The 
computational complexity of gEDF is the same as 
that of EDF. In this paper, we will evaluate the per-
formance of gEDF using randomly generated tasks 
with varying execution times, release times, dead-



lines and tolerance to missing deadlines, under vary-
ing loads.  

We believe that gEDF is particularly useful for 
soft real-time systems as well as applications known 
as “anytime algorithms” and “approximate algo-
rithms,” where applications generate more accurate 
results or rewards with increased execution times [ix, 
x]. Examples of such applications include search 
algorithms, neural-net based learning in AI, FFT and 
block-recursive filters used for audio and image pro-
cessing. We model such applications using a toler-
ance parameter that describes by how much a task 
can miss its deadline, or by how much the task’s 
execution time can be truncated when the deadline is 
approaching.  

This paper is organized as follows. In section 2, 
we present related work. In section 3, we present our 
real-time system model. Numerical results are pre-
sented in section 4. Conclusions are given in section 
5.  

 
2.   Related Work 

The EDF algorithm schedules real-time tasks 
based on their deadlines. Because of its optimality for 
periodic, aperiodic, and sporadic preemptive tasks, its 
optimality for sporadic non-preemptive tasks, and its 
acceptable performance for periodic and aperiodic 
non-preemptive tasks, EDF is widely studied as a 
dynamic priority-driven scheduling scheme [v]. EDF 
is more efficient than many other scheduling algo-
rithms, including the static Rate-Monotonic schedul-
ing algorithm. For preemptive tasks, EDF is able to 
reach the maximum possible processor utilization 
when lightly loaded. Although finding an optimal 
schedule for periodic and aperiodic non-preemptive 
tasks is NP-hard [vi, vii], our experiments have 
shown that EDF can achieve very good results even 
for non-preemptive tasks when the system is lightly 
loaded. However, when the processor is over-loaded 
(i.e., the combined requirements of pending tasks 
exceed the capabilities of the system) EDF performs 
poorly. Researchers have proposed several adaptive 
techniques for handling heavily loaded situations, but 
they require the detection of the overload condition. 

A Best-effort algorithm [viii] is based on the as-
sumption that the probability of a high value-density 
task arriving is low. The value-density is defined by 
V/C, where V is the value of a task and C is its worst-
case execution time. Given a set of tasks with defined 
values for successful completion, it can be shown that 
a sequence of tasks in decreasing order by value-
density will produce the maximum value as com-
pared to any other scheduling technique. The Best-
effort algorithm admits tasks based on their value-
densities and schedules them using the EDF policy. 
When higher value tasks are admitted, some lower 

value tasks may be deleted from the schedule or de-
layed until no other tasks with higher value exist. 
One key consideration in implementing such a policy 
is the estimation of current workload, which is either 
very difficult or very inaccurate in most practical 
systems that utilize WCET estimations. WCET esti-
mation requires complex analysis of tasks [xi, xii], 
and, in most cases, the estimates are significantly 
larger than average execution times of tasks. Thus the 
Best-effort algorithms that use WCET to estimate 
loads may lead to sub-optimal value realization. Best-
effort has been used as an overload control strategy 
for EDF.  

Other approaches for detecting overload and re-
jecting tasks were reported in [xiii, xiv]. In the Guar-
antee scheme [xiii], the load on the processor is con-
trolled by performing acceptance tests on new tasks 
entering the system. If the new task is found sched-
ulable under worst-case assumptions, it is accepted; 
otherwise, the arriving task is rejected. In the Robust 
scheme [xiv], the acceptance test is based on EDF; if 
overloaded, one or more tasks may be rejected based 
on their importance. Because the Guarantee and Ro-
bust algorithms also rely on computing the schedules 
of tasks, often based on worst-case estimates, they 
usually lead to underutilization of resources. Thus 
Best-effort, Guarantee, or Robust scheduling algo-
rithms are not good for soft real-time systems or 
applications that are generally referred to as “any-
time” or “approximate” algorithms [x]. 

The combination of SJF and EDF, referred to as 
SCAN-EDF for disk scheduling, was proposed in  
[xv]. In the algorithm, SJF is only used to break a tie 
between tasks with identical deadlines. The work in 
[xvi , xvii ] is very closely related to our idea of 
groups. This approach quantizes deadlines into dead-
line bins and places tasks into these bins. However, 
tasks within a bin (or group) are scheduled using 
First Come First Served (FCFS). The gEDF groups 
that we use are created dynamically instead of stati-
cally as done in [16,17]. 

   One integrated real-time scheduler including 
Best-effort strategy for general-purpose operating 
systems has been proposed in [xviii]. However, this 
approach relies on the preemptive scheduling and 
uses Best-effort as an overload control strategy.  
 
3.    Real-time System Model 
3.1  Definitions 

A job τi in a real-time system or a thread in 
multithreading processing is defined as τi = (ri, ei, Di, 
Pi); where ri is its release time (or its arrival time ); ei 
is either its predicted worst-case or average execution 
time; Di is its deadline. We also maintain a dynamic 
deadline di = ri + Di , which tracks the absolute  time 
before the deadline expires. If modeling periodic 



jobs, Pi defines a task’s periodicity. Note that aperi-
odic and sporadic jobs can be modeled by setting Pi 
appropriately.  

For the experiments, we generated a fixed num-
ber (N) of jobs with varying arrivals, execution times 
and deadlines. We assume that the jobs are mutually 
independent. Each experiment terminated when the 
predetermined experimental time T expired. This 
permitted us to investigate the sensitivity of the vari-
ous task parameters on the success rates of EDF and 
gEDF. We use random distributions available in 
MATLAB to generate the necessary parameters with 
tasks.   

A group in the gEDF algorithm depends on a 
group range parameter Gr. τj belongs to the same 
group as τi if di ≤ dj ≤ (di + Gr*(di – t))2, where t is 
the current time, 1 ≤ i, j ≤ N.  In other words, we 
group jobs with very close deadlines together. We 
schedule groups based on EDF (all jobs in a group 
with an earlier deadline will be considered for sched-
uling before jobs in a group with later deadlines), but 
schedule jobs within a group using shortest job first 
(SJF) approach. Since SJF results in more (albeit 
shorter) jobs completing, intuitively gEDF should 
lead to a higher success rate than pure EDF.   
       We use the following notations for various pa-
rameters and computed values:  
        ρ: is the utilization of the system, ρ = Σei  / T. This is 

also called the load. 
γ: is the success ratio, γ = the number of jobs complet-

ed successfully / N. 
Tr: is the deadline tolerance for soft real-time systems. 

A job τ is schedulable if τ finishes before the 
time (1 + Tr) * D, where Tr ≥ 0. 

µe: is used either as the average execution time or the 
worst case execution time, and defines the ex-
pected value of the exponential distribution used 
for this purpose. 

µr: is used to generate arrival times of jobs, and is the 
expected value of the exponential distribution 
used for this purpose. 

µD: is the expected value of the random distribution 
used to generate task deadlines. We set this pa-
rameter as a multiple of µe. 

ℜ: is the average response time of the jobs. 
∂:  is the response-time ratio, ∂ = ℜ / µe. 
ηγ: is the success-ratio performance factor, ηγ = γgEDF / 

γEDF. This is used to compare gEDF with EDF.  
η∂: is the response-time performance factor, η∂ = ∂EDF 

/ ∂gEDF. This is used to compare gEDF with EDF. 
3.2  gEDF Algorithm  

                                                             
2 We are using the remaining time to a task deadline (called 

dynamic deadlines) in forming groups. We found that 
using static deadlines for defining groups did not signifi-
cantly change the results. 

We assume a uniprocessor system. QgEDF is a 
queue for gEDF scheduling. The current time is rep-
resented as t. |Q| represents the length of the queue Q. 
τ = (r, e, D, P) yields the job at the head of the queue. 
      We define groups in gEDF as follows: 
gEDF Group = {τk | τk ∈ QgEDF, dk – d1 ≤ D1 * Gr, 1 ≤ 
k ≤ m, where m ≤ |QgEDF|}, where, D1 is the deadline 
of the first job in  a group. 
Algorithm: 

1. Enqueue(QgEDF, τ) 
       if  ( τ’s deadline d > t ) 
              insert job τ into QgEDF by Earliest Dead-

lineFirst, i.e. di ≤ di+1 ≤ di+2,  
              where τi, τi+1, τi+2 ∈ QgEDF, 1 ≤ i ≤ |QgEDF| - 2; 
       end 
2. τmin = Dequeue (QgEDF) 
      if  QgEDF ≠ φ 
             find a job τmin with emin = min {ek | τk ∈ QgEDF, 
             dk – d1 ≤ Gr*D1, 1 ≤ k ≤ m, where 
             m ≤ |QgEDF|}; 
             run it and delete τmin from QgEDF; 
      end 
 

    Enqueue is invoked on job arrivals and Dequeue is 
called when the processor becomes idle. The algo-
rithm that we presented tends to favor smaller jobs 
and thus it does not always guarantee fairness. Also 
the algorithm needs to sort the jobs in each group, 
which could incur more overhead during execution 
than EDF. However, in most practical systems, the 
number of jobs in a group is small and the added 
runtime overhead will be negligible. 
 
4.   Numerical Results  

MATLAB is used to generate tasks and the gen-
erated tasks are scheduled using EDF, gEDF, or other 
scheduling algorithms. For each chosen set of param-
eters, we have repeated each experiment 100 times 
(each time, generated N tasks using the random prob-
ability distributions and scheduled the generated 
tasks) and computed the average success rate. In what 
follows, we report the results and analyze the sensi-
tivity of gEDF to the various parameters used in the 
experiments, the effects of the percentage of small 
jobs, and how well gEDF performs when compared 
to Best-Effort algorithm. Note that we use the non-
preemptive task model.  
 



4.1  Comparison of gEDF and EDF 
  

4.1.1 Experiment 1 – Effect of Deadline Tolerance 
Figures 1-3 show that gEDF achieves higher 

success rate than EDF when the deadline tolerance 
(i.e., soft real-time nature of the jobs) is varied from 
20%, 50% to 100% (that is, a task can miss its dead-
line by 20%, 50% and 100%).  
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Figure 1: Success rates when deadline tolerance is 0.2. 

 
For these experiments, we generated tasks by 

fixing expected execution rate and deadline parame-
ters of the probability distributions, but varied arrival 
rate parameter to change the system load. The group 
range for these experiments is fixed at Gr = 0.4 (i.e., 
all jobs whose deadlines fall within 40% of the dead-
line of current job are in the same group). It should 
be noted that gEDF’s success rates are consistently as 
good as those of EDF under light loads (utilization is 
less than 1), but higher than those of EDF under 
heavy loads (utilization is greater than 1, see the X-
axis). Both EDF and gEDF achieve higher success 
rates when tasks are provided with greater deadline 
tolerance. The tolerance benefits gEDF more than 
EDF, particularly under heavy loads. Thus, gEDF is 
better suited for soft real-time tasks.  

0.50

0.60

0.70

0.80

0.90

1.00

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

S
uc

ce
ss

 R
at

io

EDF: Tr=0.5

gEDF: Tr=0.5

 
Figure 2: Success rates when deadline tolerance is 0.5. 

Figure 4 summarizes these results by showing 
the percent improvement in success ratios achieved 
by gEDF when compared to EDF. The Y-axis shows 
that higher success rates are achieved by gEDF when 
compared to EDF for different system loads and 
different deadline tolerance parameters. 
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Figure 3: Success rates when deadline tolerance is 1.0. 
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Figure 4: Success-ratio Performance Factor. 

 
4.1.2 Experiment 2 - Effect of Deadline on Success 
Rates  

In this experiment we explored the performance 
of EDF and gEDF when the deadlines are very tight 
(deadline = execution time) and when the deadlines 
are loose (deadline = 5 * execution time). Note that 
we generated the deadlines using exponential distri-
bution with mean values set to 1 and 5 times the 
mean execution time µe. We varied the soft real-time 
parameter (Tr, or tolerance to deadline) in these ex-
periments also, but all other parameters are kept the 
same as in the previous experiment. As can be seen in 
Figures 5 and 6, any scheduling algorithm will per-
form poorly for tight deadlines3, except under ex-

                                                             
3 It should be noted that when µD = µe, all jobs should be 

scheduled immediately upon arrival, lest they misses 
their deadlines. The impact of using Least Laxity First 



tremely light loads. Even under very tight deadlines, 
as in Figure 6, the deadline tolerance favors gEDF 
more than EDF. With looser deadlines, as in Figures 
7 and 8, both EDF and gEDF achieve better perfor-
mance. However, gEDF outperforms EDF consistent-
ly for all values of the deadline tolerance, Tr. 
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Figure 5: Tight deadline µD = 1 (Deadline = Execution 
Time) and Tr = 0. 
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Figure 6: Tight deadline µD = 1 (Deadline = Execution 
Time) and Tr = 1.0. 

 
Figures 9 and 10 respectively, highlight the ef-

fect of deadlines on both EDF and gEDF. To more 
clearly evaluate how these approaches perform when 
the deadlines are very tight and loose, we set the 
deadlines to 1, 2, 5, 10 and 15 times the execution 
time of a task. We set µe = 40, Tr = 0.2, (for gEDF 
Gr = 0.4). When µD = 1 and 2, the success ratios of 
EDF and gEDF show no appreciable differences.  
However, when µD becomes reasonably large, such 
as 5, 10, and 15, the success ratio of gEDF is better 
than that of EDF.  

 

                                                                                           
approach is indirectly reflected by EDF when the dead-
lines are very tight.  
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Figure 7: Looser deadline µD = 5 (Deadline = 5* Execu-
tion Time) and Tr = 0 and 0.2. 
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Figure 8: Looser deadline µD = 5 (Deadline = 5* Execu-
tion Time) and Tr = 0.5 and 1.0. 
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Figure 9: Success ratio of EDF when µD = 1, 2, 5, 10, and  
15. 
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Figure 10: Success ratio of gEDF when µD = 1, 2, 5, 10, 
and 15. 
 

Figure 11 summarizes these comparisons. The Y-
axis shows the relative performance improvements 
(or better success ratios) achieved by gEDF over 
EDF. 
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Figure 11: The ratio of success ratio of gEDF vs. success 
ratio of EDF when µD = 1, 2, 5, 10, and 15. 
 
4.1.3 Experiment 3 - Effect of Group Range 

In this experiment, we vary the group range pa-
rameter Gr for grouping tasks into a single group. 
Note in the following figures we do not include EDF 
data since EDF does not use groups. We set µD = 5 
(Deadline = 5* Execution Time) and maintain the 
same values for other parameters as in the previous 
experiments. We set the deadline tolerance parameter 
Tr to 0.1 (10% tolerance in missing deadlines) in 
Figure 12, and to 0.5 (50% tolerance in missing dead-
lines) in Figure 13. The data shows that by increasing 
the size of a group, gEDF achieves higher success 
rates. In the limit, by setting the group range parame-
ter to a large value, gEDF behaves more like SJF. 
There is a threshold value for the group size for 
achieving optimal success rate and the threshold 
depends on the execution time, tightness of deadlines 

and deadline tolerance parameters. For the experi-
ments, we used a single exponential distribution for 
generating all task execution times. However, if we 
were to use a mix of tasks created using exponential 
distributions with different mean values, thus creating 
tasks with widely varying execution times, the group 
range parameter will have more pronounced effect on 
the success rates. Section 4.2 discusses the effect of 
different job classes, generated using different aver-
age execution time parameters. 
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Figure 12: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1). 
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Figure 13: Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5). 

 
4.1.4 Experiment 4 – Effect of Deadline Tolerance 
on Response Time 

 Thus far we have shown that gEDF results in 
higher success rates than EDF, particularly when the 
system is overloaded. Next, we will compare the 
average response times achieved using gEDF with 
the response times achieved using EDF. Intuitively, 
completing shorter jobs first should result in faster 
response times. Our experiments support this. We set 
µe = 40, µD = 5, Gr = 0.4. Figures 14 and 15 show 
that gEDF can yield faster response times than EDF 
when soft real-time tolerance parameter Tr changes 
from 0 to 0.5, respectively. 
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Figure 14:  Response time when deadline tolerance Tr = 0. 
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Figure 15: Response time when deadline tolerance Tr = 
0.5. 

 
Figure 16 summarizes the improvements in re-

sponse times achieved by gEDF when compared to 
EDF. Note that that Y-axis shows the relative re-
sponse times (and smaller number are better). 
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Figure 16: The ratio of response time of gEDF vs. re-
sponse time of EDF. 

4.1.5 Experiment 5 - The Effect of Tight Deadlines 
on Response Time 

Figures 17 and 18 show the change in response 
time of EDF and gEDF when µD changes to 1, 2, 5, 
and 10. For these experiments, we set µr = µe/ρ, µe = 
40, Gr = 0.4, Tr = 0.1. Like the success ratios of EDF 
and gEDF, when µD is 1 and 2 times µe, there is no 
difference between EDF and gEDF. However, when 
µD is larger multiple of µe, gEDF results in faster 
response times.  
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Figure 17: Response time of EDF when µD = 1, 2, 5, and 
10. 
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Figure 18: Response time of gEDF when µD = 1, 2, 5, and 
10.  
 

Figure 19 summarizes the improvements in re-
sponse times achieved by gEDF when compared to 
EDF. Note that that Y-axis shows the relative re-
sponse times (and smaller number are better). 
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Figure 19: The ratio of response time of gEDF vs. re-
sponse time of EDF when µD = 1, 2, 5, and 10. 

 
4.2 The Effect of Multiple Expected Execu-

tion Times 
 
4.2.1 Experiment 6 – The Effect of Multiple µ es on 
Success Ratio 

 The jobs generated in section 4.1 have a single 
average or worst case expected execution time µe. In 
other words, jobs were created using a single expo-
nential distribution. To evaluate the impact of the 
case when jobs come from different classes with 
different mean execution times, we generated tasks 
using multiple exponential distributions with differ-
ent mean values .  

We use the following mean execution times for 
generating tasks. Note that a job class will be desig-
nated as (m, n) where m represent the mean value of 
the distribution used to generate execution times of 
tasks, and n represents the fraction of jobs (out of N) 
that are generated with the mean m.  

Set-1: This is the base line consisting of jobs drawn 
from a single exponential distribution. We generate N 
jobs using an exponential distribution with a mean µ. 
We designate this set of jobs as (µe, N). 
Set-2: Here we have two types of jobs, one generated 
using a mean of (½)*µe, and the second with a mean of 
µe,. Sixty-six percent of the jobs have a mean execution 
time of (½)µe. This set is designated by  (1/2µe, 2/3N) 
and (µe, 1/3N). 
Set-3: This set contains 3 classes of jobs generated us-
ing mean execution times of 1/4µe, 1/2µe, and µe.  We 
designate this set as (1/4µe, 4/7N), (1/2µe, 2/7N), and 
(µe, 1/7N). Remember that the second number in each 
tuple represents the fraction of total number of jobs of 
each class.  
 Figure 20 shows that, when Tr is 0 (hard real-

time), a job stream with more small jobs do not im-
prove the success ratios. On the other hand, when 
dealing with soft real-time jobs (with a deadline tol-
erance Tr of 0.2 and 0.5), job classes do impact suc-
cess ratios of gEDF as shown in Figures 21 and 22. 

Note that Set 2 and Set 3 have larger number of 
smaller jobs than Set 1. As expected gEDF results in 
higher success rates over EDF when there are more 
small jobs.   
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Figure 20: Success ratio of gEDF/success ratio of EDF 
when Tr = 0.  

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Load

gE
D

F'
s 

SR
/E

D
F'

s 
SR

Set-1

Set-2

Set-3

 
Figure 21: Success Ratio of gEDF/success ratio of EDF 
when Tr = 0.2. 
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Figure 22: Success Ratio of gEDF/success ratio of EDF 
when Tr = 0.5. 

 
4.2.2 Experiment 7 – The Effect of Percentage of 
Small Jobs on Success Ratio 



   Previously, we analyzed the effect of data sets 
with different job classes using different µes, and 
observed that a workload with more small jobs show 
higher gEDF performance when compared to EDF. 
In this section, we will analyze the case where we use 
two different job classes (with two different µes) but 
change the percentage of small jobs in the mix.  

Distribution 1:  all jobs with µe. 
Distribution 2:  1/2jobs with µe; 1/2 jobs with 1/2µe. 
Distribution 3:  2/5jobs with µe; 3/5jobs with 1/3 µe. 
Distribution 4:  1/5 jobs with µe; 4/5 jobs with 1/8 µe. 
 We set Tr = 0.5. Figure 23 shows that the distri-

bution with more small jobs, gEDF obtains higher 
success ratios than EDF. Note the Distribution 4 has 
more small jobs than any other distribution, and the 
data shows that gEDF benefits from this fact. 
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Figure 23: Success ratio of gEDF/success ratio of EDF Tr 
= 0.5. 

 
4.3 Comparisons of gEDF, Best-effort, and 
Guarantee Algorithms 
 
4.3.1 Experiment 8 - Comparison of Success Rati-
os of gEDF and Best-effort 

We have shown that gEDF not only shows better 
performance than EDF under overloaded conditions, 
but shows comparable or better performance than 
EDF when the system is underloaded. Thus, there is 
no need to switch between EDF and gEDF based on 
system load. Researchers have explored adaptive 
algorithms to control the performance when the sys-
tem is overloaded. One such algorithm is called the 
Best-effort Algorithm (see Section 2). In this paper 
we will use the same best effort criteria (i.e., value-
density: V/C) that Locke [8] used. For this experi-
ment we set all jobs to have the same value. The 
Best-effort approach used EDF when the system is 
under-loaded, and attempts to maximize V/C when 
the system exceeds 100% utilization (i.e., overloaded 
conditions). 

The Best-effort relies on the precise estimation or 
prediction of utilization for switching between EDF 

algorithm and the Best-effort. While it may be possi-
ble to predict the system load when the system only 
processes periodic jobs, it is very difficult to compute 
the system load if the system processes a mixture of 
periodic, aperiodic, and sporadic jobs. Recently, 
synthetic utilization bound has been proposed to 
measure real utilization. For the EDF-based schemes, 
however, synthetic utilization and real utilization are 
very close [xix].  The estimated loads are imprecise 
because most real-time systems utilize worst-case 
execution times (WCET), and in most cases the actu-
al utilization of the system is lower than these esti-
mates. Switching to Best-Effort based on such impre-
cise load estimations leads to inefficient utilization of 
the resources. In this paper we use a clairvoyant 
scheme based on actual execution times of the real-
time jobs. Thus the comparisons shown here are 
present the most optimistic scenarios as far as the 
Best-Effort algorithm is concerned. 

We set µr = µe/ρ, µe = 20, µD = 5, Gr = 0.4. Fig-
ures 24 and 25 show that gEDF achieves higher suc-
cess rates than Best-effort when the deadline toler-
ance is varied, Tr = 0.2, 0.5, and 1.0.  

 Considering the need for predicting the precise 
utilization for implementing Best-Effort, any im-
provements gained by gEDF should be viewed in a 
positive light. The performance gains achieved by 
gEDF are even grater when the deadline tolerance is 
as lenient as 50%, as in Figure 25 (even for lighter 
loads).   
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Figure 24: Success rates when deadline tolerance is 0.2. 
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Figure 25: Success rates when deadline tolerance is 0.5. 
 
4.3.2 Experiment 9 – Comparison of Response 
Times of gEDF and Best-effort 

Figures 26 and 27 compare the average response 
times achieved using gEDF with that achieved using 
Best-effort. We set µr = µe/ρ, µe = 20, µD = 5, Gr = 
0.4.  
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Figure 26: Response time when deadline tolerance is 0. 
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Figure 27: Response time when deadline tolerance is 0.2. 
 

4.3.3 Experiment 10 – Comparison of Success 
Ratios of gEDF and Guarantee   
        Although Guarantee algorithm is inappropriate 
for soft real-time systems, we include a comparison 
of gEDF with the Guarantee scheme here for the sake 
of completeness. When the system is underloaded, 
Guarantee uses EDF; when the system is overloaded, 
Guarantee uses a specific policy to choose real-time 
jobs and guarantees execution of the jobs by their 
deadlines. In the simulation used here, incoming jobs, 
are accepted based on FCFS policy, if they can be 
scheduled (along with all jobs already guaranteed) by 
the deadline. 

   We set µr = µe/ρ, µe = 20, µD = 5, Gr = 0.4.  Fig-
ures 28 and 29 show the success ratios of all the real-
time scheduling algorithms discussed in this paper, 
including the Guarantee algorithm, Best-effort, EDF, 
and gEDF. 
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Figure 28: Success ratio when deadline tolerance is 0.2. 
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Figure 29: Success ratio when deadline tolerance is 0.5. 
 



4.3.4 Experiment 11 – Comparison of the Re-
sponse Times of gEDF and Guarantee  

  We set µr = µe/ρ, µe = 20, µD = 5, Gr = 0.4. Fig-
ure 30 compares the response times of the real-time 
algorithms considered in this paper.  
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Figure 30: Response times when deadline tolerance is 0.2. 

 
5.   Conclusions and Future Work 

In this paper, we presented a new real-time 
scheduling algorithm that combines Shortest Job First 
scheduling with the Earliest Deadline First schedul-
ing. We grouped tasks with deadlines that are very 
close to each other, and scheduled jobs within a 
group using SJF scheduling. We have shown that 
group EDF results in higher success rates (that is, the 
number of jobs that have completed successfully 
before their deadline) as well as in faster response 
times. 

  It has been known that while EDF produces an 
optimum schedule (if one is available) for systems 
using preemptive scheduling, EDF is not as widely 
used for non-preemptive systems. We believe that for 
soft real-time systems that utilize multithreaded pro-
cessors, non-preemptive scheduling is more efficient. 
Although EDF produces practically acceptable per-
formance even for non-preemptive systems when the 
system is underloaded, EDF performs very poorly 
when the system is heavily loaded. Our gEDF algo-
rithm performs as well as EDF in terms of success 
ratio when a system is underloaded. Even on systems 
that are underloaded, gEDF shows higher success 
rates than EDF when dealing with soft real-time tasks 
(using higher deadline tolerances). And gEDF con-
sistently outperforms EDF in overloaded situations.  

 In this paper we also compared our gEDF with 
schemes that adapt EDF when the system is over-
loaded. Among the adaptive algorithms, we consid-
ered the Best-Effort and Guarantee algorithms. In 
general, gEDF, which can be used in both overloaded 
and under-loaded situations, performs as well as or 
better than EDF, Best-Effort and Guarantee schemes. 

It should be remembered the last two adaptive algo-
rithms require the ability to accurately measure sys-
tem loads so that the overloaded conditions can be 
detected. In most cases this is very difficult, particu-
larly if the workload consists of periodic, aperiodic 
and sporadic jobs, or if the system consists of both 
real-time and non-real-time jobs. Moreover, estimat-
ing system load based on worst-case execution times, 
leads to under-utilizations, thus predicting overloaded 
conditions incorrectly. These problems are not en-
countered by gEDF, since there is no need to estimate 
system load or to switch between EDF and Best-
Effort on overloads. 

In future work, we plan to explore the impact of a 
variety of parameters on the performance gEDF, and 
evaluate gEDF for real workloads.  
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