
Session T1A

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

T1A-1

Intra-Class Competitive Assignments in CS2:
A One-Year Study

Ryan Garlick and Robert Akl

Visiting Assistant Professor and Assistant Professor, University of North Texas, Department of Computer Science and
Engineering, Denton, TX 76205 garlick@unt.edu, rakl@cse.unt.edu

Abstract – The widespread goals of student retention,
introducing larger programming projects, and fostering
collaboration among students in computer science courses
has led to the inclusion of group projects in many
curricula, with task division and collaboration as
motivation for students to complete assignments. This
paper presents a study in a first-year programming
assignment with similar goals, but with methods adopting
the contrarian view – having students directly compete
with one another in a tournament of their respective
software agents. This paper presents the results of a year-
long experiment in an intra-class competitive assignment
in the second C++ programming course at the University
of North Texas in Denton. Metrics of student performance
on the assignment, correlation with course grade, student
surveys of the project, and retention statistics are
presented. Results demonstrating overwhelmingly positive
response and high levels of effort among students are
submitted, along with remarks on application to student
recruiting, retention, and curriculum design.

Index Terms – CS2, Curriculum, Game Programming,
Pedagogy.

INTRODUCTION

Nationwide, from 2003-2004, the number of newly enrolled
students declaring a major in computer science declined by
10%, from 17,706 to 15,950 [1]. This follows a 23% decline in
newly enrolled students from 2002-2003 [2]. As the majority
of students leaving computer science do so by the end of their
freshman year [3], designing assignments for introductory
programming courses during this formative year is a critical
component of student retention. The introduction of recursion,
polymorphism, and other challenging concepts in the second
semester of a computer science program has contributed to
high attrition rates.

The course in question for this paper is the second C++
programming course (hereafter CS2). This course begins with
arrays, pointers, and an introduction to object-oriented
programming and concludes with elementary data structures.
The design of a large programming project for the course
would have to consider that discouraged students have a good
chance of leaving the field altogether.

The goals of student retention, introducing larger
programming projects, and fostering collaboration among
students in computer science courses has led to the inclusion

of group projects in many curricula, with collaboration and
task division as motivation for students to complete
assignments.

This paper presents a study in a first-year programming
assignment with similar goals, but with methods adopting the
contrarian view – having students directly compete with one
another in a tournament of their respective software agents.
This study observes the performance, effort, and feedback of
60 students engaged in a novel CS2 programming assignment
over the course of two academic semesters for evaluation of
the goals outlined in the following section.

Later sections describe the assignment designed to
address these goals, literature relevant to using game
development in introductory CS courses, quantitative results
of student effort on the project, results of a survey to measure
student response, and evaluation of the degree to which the
goals of the assignment were met. Conclusions are presented
along with notes on student retention.

GOALS

In formulating a prospective project for the course, the goals
of an ideal assignment were considered (in no specific order):

• An assignment that students enjoy. This aspect would

be crucial for student retention, word of mouth recruiting
to the department, and course satisfaction.

• An assignment that students will gladly put more
effort into than is strictly necessary. As a corollary to
their enjoyment, the willingness of students to put
significant effort into a project was an important goal. It
would be desirable to include techniques applicable to a
range of real-world problems. The presentation of several
such avenues of further exploration would hopefully
encourage students to pursue one or more.

• Encouraging exploration of areas of computing
outside the scope of the assignment. A project
encompassing a broad range of computer science topics
would be ideal, motivating students to explore those
aspects they find most interesting. This goal would have
to be carefully balanced with the need to not overwhelm
students, or frustrate them by requiring extensive
knowledge outside the scope of the class, while rewarding
self-study.

• A rigorous and beneficial assignment. Enjoyable
assignments can certainly lead to complimentary course
evaluations, but are of questionable value if little benefit

Session T1A

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

T1A-2

is bestowed upon students. Again, stressing the
application of the techniques learned to a variety of
problems would be an important task for the instructor.

• Fostering collaboration among students. Companies
have reported that students graduating with Computer
Science degrees are often under-prepared for group work
[4]. Collaborative work in the early years of a computer
science program for educational and social development
can benefit retention as well [5]. The goal was to create an
assignment that students would complete individually,
while encouraging an environment of collaboration and
idea exchange. As discussed in the evaluation section,
although counter-intuitive, direct competition served to
fulfill both of these aims.

• Innately discouraging code copying. Academic
dishonesty in programming courses is well documented.
Surveys have indicated as many as 80% of students cheat
during their academic careers [6]. An assignment that
intrinsically encourages cooperation yet discourages code
sharing would be ideal.

• Providing experience with larger software projects. An
initial motivation for the assignment was course exit
surveys from previous semesters highlighting the lack of
experience in larger software projects. This has
traditionally been a problem in software development
courses, as time limits prohibit the creation of a project of
the scope and size that one would typically encounter in
the workplace. The solution has often been to incorporate
a group project in which tasks can be divided among
several group members.

In short, an assignment was sought that students would

work harder on, learn more with, and tell you they love. A
different approach to the traditional group project was
undertaken, focusing on incorporating each individual’s work
in extending a given larger project. This was accomplished in
the context of a game engine, with each student creating an
autonomous “player agent” incorporated into the engine. The
focus of this study was the competitive nature of the
assignment, with student’s autonomous agents competing
against one another, two at a time in a single elimination
tournament.

RELEVANT LITERATURE

Incorporating game programming as a method of teaching
introductory programming is well established [7, 8]. Tools
such as Game Maker [9] have been developed to capitalize on
this topic, and several game ideas have appeared in the “nifty
assignments” section of the SIGCSE bulletin [10, 11].

 Although several studies have focused on cooperation in
game development, concentrating strictly on the competitive
nature of game assignments was not found in the existing
literature.

The inter-disciplinary nature of computer games makes
them effective assignments both for introducing direct
application to an industry, and presenting a breadth of
computer science topics [12]. As mentioned in the previous

section, drawing from multiple domains can also influence
retention, as a student may discover an area that peaks his or
her interest.

A survey of the literature also revealed increases in the
level of active participation in gaming related assignments.
This behavior was duplicated in this study, with details
presented later. Gumhold [8] discovered more complex than
expected submissions to a game-related assignment and noted
that, “students were actually doing more homework just for
the fun of it.”

ASSIGNMENT DESCRIPTION

The assignment was to create a C++ class that would interface
with a game engine created by the instructor. The game was
“TankWar,” with each player providing the code to
autonomously operate his or her tank on the field of battle.
The game engine would pass information on the state of the
game to each player in turn (in the form of ‘sensor’ data), and
receive the move of each player’s agent based on this state.
Each player’s tank, in the course of one move, could fire at the
enemy, drop a mine, sweep and remove mines adjacent to the
player, move one space, or sit. There were 2 players in each
match.

Players were awarded points for successfully firing upon
their opponent and sitting in the opponent’s base area
(pillaging). Any shots fired at a certain game grid coordinate
do not land until the opponent has a chance to move. This
requires a player to predict where his or her opponent will be
during the next turn, and allows for more complex behavior by
storing an opponent’s move history and attempting to discern
a pattern so as to more accurately aim.

Points are given to the opponent for moving over
obstacles scattered randomly throughout the field. Each player
has the ability to detect the obstacles so as to avoid the penalty
of occupying the same square, or may choose to “take cover”
in the obstacle. In this case, the player accepts the small
penalty, but significantly reduces their opponent’s chance of
successfully landing a shot. The first player to a pre-defined
point total wins the match. Tournament results were posted on
the web, with daily updates as each match progressed.

The game engine itself was approximately 1250 lines of
code, requiring a reasonable effort to understand the structures
passed to each player, and providing experience in the
interaction between software objects. The game display was
not based on calls to a graphics library, but rather simple text
output (as shown in Figure I), trading off the flash of a
graphical display for promoting familiarity of the code. At the
time of the game’s introduction, all of the code concepts had
been at least tangentially discussed, allowing students to
effectively explore and modify the engine code in its entirety.
Many students found creative and unforeseen ways to gain an
extra edge in the game, even creating some modifications that
were not allowed in the tournament, such as manipulating the
random number generator and creating instances of other
student’s classes in order to call their action methods to see
what they would do with the current world state. These
loopholes were not anticipated by the instructor, but

Session T1A

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

T1A-3

demonstrated the considerable effort students were investing
to explore the game engine.

FIGURE 1

TANKWAR SCREENSHOT

The assignment was designed to require the use of static

methods, inheritance, stacks, and other topics from the
lectures. A very basic agent was included with the source files
given to each student (albeit one unlikely to do well in the
tournament) as a sample player class. Students then extended
this class, overriding methods to perform their chosen
functionality. The code was carefully designed so as not to
require knowledge of any C++ language constructs outside the
scope of the class, yet suggestions were provided to new areas
that students could explore to enhance the performance of
their agent. Students were encouraged to read about obstacle
avoidance, pattern matching and prediction of opponent
moves, and storage and analysis of move information. These
topics were discussed briefly in class, along with information
on where to look for more details.

Aside from this direction, few guidelines were given for
expected functionality of the finished product. No minimum
acceptable solution was described. Similarly, the details of
grading were undefined at the time of assignment, other than
the assurance that the winner of the tournament would receive
the highest possible score on the assignment and bonus points
on the final exam. Although the grading of assignments was
ultimately independent of tournament placement, students
were told to craft their solution with the goal of winning the
tournament. The competitive nature of the assignment was
stressed throughout, with a popular feature of the game being
the ability to programmatically taunt one’s opponent at the
beginning of the match.

EVALUATIONS

Although evaluations of any classroom assignment are
partially anecdotal, metrics of student effort, survey responses,
and evaluation of the objectives presented previously served
as measures of the degree to which these goals were met and
the success of the project as a whole.

The University of North Texas has a sequence of well
known and popular upper-division game programming
courses. Many students in CS2 are anticipating enrolling in
these classes, and students were generally very receptive to
game programming assignments in CS2. Response to the
project was very positive.

Although the number of lines of code is a poor estimate of
the sophistication, efficiency, or relative performance of a
solution (some short but well-performing submissions were
received), it is a rough estimate of the amount of effort
invested in the assignment. Table I presents statistics for the
submitted programs in terms of code length. For comparative
purposes, the minimally functional agent provided was 51
lines of code and the winning solutions for each semester were
1134 and 1716 code lines, respectively.

TABLE I

STUDENT SUBMISSION METRICS N=60
 Code Length

Mean
Min
Max

St. Dev.

598
86
1922
432

The largest programs received were more code than the

engine itself, and seemed to validate the idea that students
would spend more time than was strictly necessary. The
average submission was a good effort, often encompassing
one or more of the auxiliary techniques described in class.
Figure 2 presents a scatter plot of student project submissions
by lines of source code and eventual overall course grade.

FIGURE 2
STUDENT SUBMISSION SCATTER PLOT.

Survey results were used to measure student opinions and

attitudes toward the project. Results were obtained from 60
students participating in the assignment. The survey consisted

Session T1A

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

T1A-4

of six questions, with a possible score in each ranging from
one (worst) to ten (best). Questions on the survey were as
follows:

Q1. Rate the assignment for improving your
understanding of larger software projects.

Q2. Rate the assignment in terms of programming projects
you have encountered in other classes.

Q3. Rate your exploration of areas of programming that
you were not familiar with in an effort to win the
tournament.

Q4. Rate your motivation to work and learn more due to
the competitive nature of the assignment.

Q5. Rate your overall enjoyment of the assignment.

Q6. Rate the value of the assignment.

Figure 2 presents the results of the non-anonymous
written survey conducted after the assignment was due and
grades were assigned. The overall value of the assignment was
rated a mean value of 8.65 out of 10.

Q1 Larger

Projects

Q2 Relative

to Others

Q3 New

Areas

Q4 Motivated

by

Competition

Q5

Enjoyment

Q6 Value

8.05

8.95 8.658.63

7.83

6.63

0

1

2

3

4

5

6

7

8

9

10

M
ea

n
 R

es
p

o
n

se

Student Survey Responses n=60

FIGURE 2

STUDENT SURVEY RESPONSES N=60.

TABLE II
CORRELATION BETWEEN SURVEY RESPONSE AND COURSE GRADE

 Q1 Q2 Q3 Q4 Q5 Q6
Mean
St. Dev.
r2
P

8.05
1.6
0.04
0.116

8.95
1.9
0.11
0.009

6.63
2.7
0.01
0.811

7.83
2.4
0.06
0.051

8.63
1.7
0.05
0.073

8.65
1.8
0.09
0.017

Table 2 presents the results of correlating survey

responses with the overall course grades for each student.
Course grades were assigned a numerical equivalent with
A=5, B=4, etc. to obtain the correlation figures. P-Values less
than 0.05 are highlighted in boldface. Students with a higher
course grade generally rated the project higher relative to
assignments in other classes, and gave the assignment higher

scores on overall value. Correlation between course grades
and other survey questions was not established.

Anonymous feedback from the end of semester course
evaluations relating to the assignment was positive without
exception, with one student remarking, “This was the only
programming assignment I have worked on after it was
already turned in.”

At the conclusion of the project, goals from section 2
were revisited in evaluation of the assignment.

• An assignment that students enjoy. Survey results

indicate a median enjoyment rating of 8.63 / 10. During
the weeks leading up to the tournament, discussions
before class among students were dominated by strategy
comparison. Students also preferred the assignment
relative to more traditional lab-style programming
assignments encountered in their academic careers.

• An assignment that students will gladly put more
effort into than is strictly necessary. The survey
question regarding motivation based on competition
received a mean score of 7.83 / 10. Although effectively
provided with an answer to the assignment, submissions
from students ranged from 86 to 1922 lines of code. This
seemed to validate the initial goal of eliciting high levels
of effort from students.

• Encouraging exploration of areas of computing
outside the scope of the assignment. Despite being the
lowest rated survey question, many student submissions
included some reasonably sophisticated techniques for
attempting to predict the moves of the opponent.

Several students placing highly in the tournament
rated Q3 lower, despite incorporating strategies outside
the scope of CS2. A possible explanation for this response
is students’ desire to over-represent the degree of their
experience.

After the assignment was due, several students
voluntarily modified the game engine to include sound,
graphics, and extended features. Some student
modifications are now incorporated into the engine, and
these updates render existing player agents obsolete,
preventing the extant code base from being passed around
and “shortening the development cycle” in future
semesters.

• A rigorous and beneficial assignment. Along with a
high median effort on the project, and some truly
exceptional submissions, survey results were positive in
this regard as well. The value of the assignment was the
second highest rated survey questions, with an average of
8.65/10.

• Fostering collaboration among students. Observations
for this goal are strictly anecdotal. Although students in
this study and other studies have expressed misgivings
about group work [4, 13], students were encouraged to
test their agent by challenging classmates before the due
date (and many did). Agents were then fine tuned based
on mistakes made in these preliminary matches.

Session T1A

San Juan, PR July 23 – 28, 2006
9th International Conference on Engineering Education

T1A-5

• Innately discouraging code copying. MOSS (Measure
of Software Similarity) is software for detecting
plagiarism from a corpus of source files [14]. MOSS
found no significant similarities between any programs
submitted for this assignment. As a deterrent to copying
code, students knew MOSS was in use at the beginning of
the course. The nature of the assignment discourages code
sharing, as no one wants to reveal the inner workings of
their strategy and give their opponents a competitive
advantage.

• Providing experience with larger software projects.
Students learned to read the existing classes and extend
them via inheritance. The process of reading existing
software is often overlooked as a valuable tool for
teaching the effective writing of software [15, 16].
Students rated the assignment 8.05/10 for improving their
understanding of larger software projects.

CONCLUSIONS

This study has presented a non-traditional competitive CS2
programming assignment that was successful in motivating
quality work, fostering collaboration, and minimizing code
sharing. Based on anecdotal evidence, student performance on
the assignment, and survey responses, students in this study
expended considerable effort to win the tournament. Although
extrapolation to larger groups is difficult, the assignment was
successful among the sampled students, some of whom are
anticipating a career in game programming. Demonstrations of
the game have also been used as a visual aid at recruiting
events for high school students.

I. Notes on Retention

Although much focus is given to recruiting students to
engineering, as the statistics in the introduction demonstrate,
retaining existing students is also critical. A goal of any large
assignment is to present worthwhile practice to a student,
ideally encouraging retention through enjoyment and practical
application to a range of computer science topics. If a student
is interested in graphics, algorithms, simulation, artificial
intelligence, or gaming in general, the assignment presented
herein can offer something to keep him or her interested.
Statistics were gathered in the semesters following this study
to compare retention rates among students exposed to gaming
curricula compared to the departmental and overall University
retention rates.

Table III presents statistics for those students participating
in this study in comparison to the Department of Computer
Science and Engineering and University student bodies as a
whole. Retained students for the department are defined as
those who graduated from the College of Engineering or were
still active in the College as of the writing of this paper. Other
students had switched to non-Engineering majors, transferred
to another school, or quit school altogether. Some of these
students may have transferred to an engineering program at
another institution - tracking students across multiple
institutions is difficult, and thus these figures are approximate.

TABLE III
RETENTION STATISTICS FALL 2003 – SPRING 2005 N=60

Measure Quantity
Freshman Retention Rate

University Freshman Enrollment
Departmental Retention Rate

Mean Departmental Enrollment
Study Participant Retention Rate

Study Participant Enrollment

74.3%
3534
71.4%
734
82.4%
60

REFERENCES

[1] Zweben, S., “2003-2004 Taulbee Survey”, Computing Research News,
May 2005.

[2] Zweben S. and Aspray, W., “2002-2003 Taulbee Survey”, Computing
Research News, May 2004.

[3] Seymour, E, and Hewitt, N., “Talking about leaving: why
undergraduates leave the sciences”, Westview Press, 2000.

[4] Waite, W., and Leonardi, P., “Student culture vs. group work in
computer science”, Proceeding of the thirty-fifth SIGCSE technical
symposium on computer science education, 2004, pp. 12-16.

[5] Chase, J. D., and Okie, E. G., “Combining cooperative learning and peer
instruction in introductory computer science.” Proceedings of the thirty-
first SIGCSE technical symposium on Computer Science Education,
2000, pp 372-376.

[6] Sheard, J., Dick, M., Markham, S., Macdonald, I, and Walsh, M.,
“Cheating and plagiarism: perceptions and practices of first year IT
students.” Proceedings of the seventh annual conference on innovation
and technology in computer science education, 2002, pp. 183-187.

[7] Lewis, M. C. and Massingill, B., “Graphical Game Development in
CS2: A Flexible Infrastructure for a Semester Long Project”, SIGCSE
2006.

[8] Gumhold, M. and Weber, M., “Motivating CS Students with Game
Programming”, Proceedings of the 6th International Conference on New
Educational Environments (ICNEE), Sept. 2004.

[9] Overmars, M., “Teaching Computer Science through Game Design”,
Computer, Vol. 37, No. 4, April 2004, pp. 81-83.

[10] Parlante, N., Popyack, J, Reges, S., Weiss, S., Dexter, S. et al, Nifty
Assignments. Proceedings of the 34th SIGCSE technical symposium on
Computer Science education, 2003, pp. 353-354.

[11] Parlante, N., Matuszek, D, Lehman, J., Reed, D., Estell, J. K., et al, Nifty
Assignments. Proceedings of the 35th SIGCSE technical symposium on
Computer Science education, 2003, pp. 46-47.

[12] Claypool, K. and Claypool, M., “Teaching Software Engineering
Through Game Design”, Proceedings of the Conference on Innovation
and Technology in Computer Science Education (ITiCSE), June 2005.

[13] Drury, H., Kay, J. M. and Losberg, W., “Student satisfaction with
groupwork in undergraduate computer science: do things get better?”,
Proceedings of the fifth Australasian conference on computing
education, 2003, pp. 77-85.

[14] Schleimer, S., Wilkerson, D. S., and Aiken, A., “Winnowing: local
algorithms for document fingerprinting.” Proceedings of the 2003 ACM
SIGMOD international conference on data management, 2003, p. 76-85.

[15] Deimel, L. E., “The uses of program reading.” SIGCSE Bulletin, VOl
17, No. 2, 1985, pp 5-14.

[16] Raymond, D. R., “Reading source code”, Proceedings of the 1992
conference on the Centre for Advanced Studies on Collaborative
Research, 1992, pp. 3-16.

