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Generation and migration of helium and other point defects under irradiation
causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study
point defect migration and the He equation of state using atomistic simulations due to the
steels’ use in future reactors. A new potential for the Fe-Cr-He system developed by
collaborators at the Lawrence Livermore National Laboratory was validated using
published experimental data. The results for the He equation of state agree well with
experimental data. The activation energies for the migration of He- and Fe-interstitials in
varying compositions of Fe-Cr lattices agree well with prior work. This research did not

find a strong correlation between lattice ordering and interstitial migration energy.
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INTRODUCTION

The growing concern over clean, reliable sources of energy has led our society to
reconsider nuclear energy as part of a more diverse energy portfolio. Wider public
acceptance of nuclear energy as a viable solution can be accomplished by responsible
handling of waste combined with an increase in the reactors’ efficiency as defined in [1].
Current plans to make fission reactors more efficient will require that future reactors
operate at higher temperatures (up to 1200°C) in order to burn more fuel than current
reactors (Fig. 1) [1]. This next generation of more efficient, safer, and more cost effective
reactors is called Generation IV reactors (or Gen IV). The current steels (such as 304
stainless steel) used in reactors are incapable of handling the increased irradiation over
long periods of time, and at elevated temperatures. They exhibit considerable swelling
under the higher temperatures and radiation dose. Therefore new steels are required to
build next generation nuclear reactors. Due to their larger corrosion and swelling
resistance, Fe-Cr (iron-chromium) based ferritic steels are potential structural materials

for the next generation of nuclear reactors.
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Fig. 1. Diagram of the very-high-temperature reactor [1].

Computer simulations of potential materials for nuclear reactors are more desirable
as the cost and production time are typically lower than physical experiments. Radiation
damage in particular is well suited for computer modeling since physical experiments are
traditionally done after radiation is applied to the sample, and this kind of testing omits
detailed examination of processes that might be more apparent if the experiment is
conducted while the material is irradiated. While computer simulations may not be nearly
as accurate as a physical experiment, they do allow for a detailed inspection while radiation
is incident on the material and are typically cost effective in terms of materials and
preparation.

However, computational models are not completely accurate in most situations. For
instance, a complete, accurate description of Fe-Cr ferritic steels is not currently reliable on

the atomistic, mesoscopic, and continuum scale. Information on diffusion, grain boundaries,



and dislocations are obtainable for the Fe-Cr system on the atomistic scale. This is why
quantum and atomistic approaches to gathering information on this Fe-Cr system are
beneficial at this time. The Fe-Cr system is used in this research as a surrogate system for
the more complex Fe-Cr based steels. This is done because the actual steels have about 10
alloying elements, and modeling such a complex system on the atomistic scale is not
practical at this time. Fe and Cr are a large portion of the atomic composition of these
steels, and gaining information about this ideal, surrogate system can give insight into how
the more complex alloy steels behave. Once enough data is collected from these scales and
from physical experiments—mesoscale and eventually continuum scale models of real
ferritic steels can be developed. Such faithful models of the Fe-Cr system will be useful in
describing the material behavior for Fe-Cr based steels under next generation reactor
conditions.

As of right now, point defect migration rates are not documented for different
compositions of Fe and Cr, nor has a study been preformed on the effects of lattice ordering
on the migrations rates of point defects. To this end of developing a more complete model
of Fe-Cr systems, this research focuses on key aspects of point defect formation and
migration energies relevant to irradiation-induced damage at the atomistic scale. The goal
for this research is to gather the migration rates and formation energies of He-interstitials
and Fe-interstitials using molecular dynamics to later be used in larger scale (both spatially

and temporally) simulations.



BACKGROUND
This section provides introductory information on material and terminology
frequently referenced in this research. Topics include: Solid solutions, alloys and the Fe-Cr
system, lattice ordering, point defects, formation energy, migration barrier energy and

diffusion, voids and He-bubbles, and embrittlement.

Solid Solutions, Alloys and the Fe-Cr System

A solid solution is the solid state equivalent of liquid solution. The solute
atoms are dissolved to a solvent to create a solution. This dissolution may take place in a
substitutional or interstitial manner. The solute can “substitute” for the solvent atoms on
lattice sites if the solute atoms are similar to the solvent (Hume-Rothery rules discussed
below). If the solute atoms are dissimilar (i.e. atomic radii differ by more than 15%,
electronegativities are different, coordination numbers are different) from the solvent, then
an interstitial incorporation of the solute atoms can occur where the solute atoms sit in
between lattice sites, such as carbon atoms in steel. In either case, the solute is evenly
dissolved within the solvent lattice. If solubility between the solute and solvent is not
present, then the solute atoms may have a tendency to cluster and become trapped at
defects within the solvent (such as at grain boundaries and dislocations). If solubility is
very low, this clustering behavior is thermodynamically predominating.

Alloys contain several components (Table I for example). These additional elements

(or alloying elements) help to tailor the properties and performance of the material (steel
in this case) to excel under certain conditions. For instance, steels used as structural

materials in nuclear reactors must tolerate much higher radiation dose and higher



temperatures than structural steels used in skyscrapers. Even though these two steels are
used as a structural material, both the type and relative amounts of elements present in
them are different.

Table I. Composition of 304 stainless steel [2].

Composition of SURV 304 Stainless Steel (given in weight percent)
Material C Cr Cu Fe Mn | Mo Ni P S Si
wt% .08 |1838| .18 | Bal. | .89 | .21 | 10.0 |.018 | .020 | .68

Elements in an alloy can dissolve into the host lattice matrix (a-Fe lattice in the case
of the Fe-Cr system) in a variety of ways. One common way that alloys elements mix is
when the alloying element sits at lattice sites of the host lattice. This is called a
substitutional alloy since the alloying element is substituting for some of the original lattice
atoms. The rules for determining the whether or not two element will form a substitutional
alloy are called the Hume-Rothery rules. These rules are:

1. The radii of the host lattice atom and alloying element atom cannot differ by

more than 15%

2. The crystal structures of both elements must be the same

3. The number of bonds of each element must be similar

4. The electronegativities of each element must be similar

The Fe-Cr system forms a substitutional alloy. All of the Hume-Rothery rules are
satisfied by Fe and Cr. The atomic radii of Fe and Cr are 1.27A and 1.284, respectively. Both
have the body-centered cubic (bcc) crystal structure, and due to their close proximity to
one another on the periodic table, they share similar valencies and electronegativities. The
phase diagram for the Fe-Cr system is given in Fig. 2. The a phase in the Fe-Cr system has a

bcce crystal structure like a-Fe. y is an fcc phase that is softer and more ductile than the bcc



phase. Alternating layers of Cr-rich layers and Fe-rich layers distinguish the o phase [3].
This phase diagram is in units of mass (or weight) percent, and since Fe and Cr are so close
to one another in mass, mass percent and atomic percent may be interchanged with
minimal error. The atomic percents used in this research range from 0at%Cr (pure a-Fe) to
~15at%Cr and the temperature range is 300K-1000K. In these ranges, only the bcc a phase
is present. Within this mass-percent range, the y phase starts to appear only after ~850°C
till ~1400°C with a segregation of the « and y phases between 10 and 14 mass percent. The
melting temperature in this range is ~1500°C. The o phase only sets in after 20 mass
percent in the temperatures used in this research.

Iron-Chromium Phase Diagram
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Fig. 2. Phase diagram for the Fe-Cr system [4].



Lattice Ordering
Atoms in substitutional alloys, such as Fe-Cr, order randomly if the probability of
finding either element at a lattice position equals their mole fractions in the alloy [5]. For
example, in an 80at%Fe and 20at%Cr randomly ordered lattice then any lattice position
should reflect this 80-20 split in the surrounding environment. For such a lattice, the
number of bonds between Fe and Cr (mixed bonds) can be shown to be
Proc, =N 2Xp X,

Eqn.1

where N, is Avogadro’s number, z is the number of bonds per atom, and Xr. and X¢,
are the mole fractions of Fe and Cr. So, in this case, z = 8, Xre = .8, and X¢- = .2.

Short range ordering (SRO) occurs when the number of mixed bonds is greater than
that of the randomly ordered Fe-Cr systems (more general conditions must be met for an
arbitrary system)[5]. The degree of ordering can be quantified in the SRO parameter

PFeCr - PFeCr(random)

P, (max) - P, (random)

Eqn. 2

This is the ratio of the difference in the number of actual mixed bonds and number
of mixed bonds in a randomly ordered system over the difference in the maximum number
of possible mixed bonds and actual number of mixed bonds in a randomly ordered system.
Fig. 3 is given as an example. One of the goals of this research is to investigate whether the

ordering of the Fe-Cr lattice influences point defect migration
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Fig. 3. Example of random ordering (left) and SRO (right) [5].

Point Defects

Point defects are lattice imperfections that only pertain to a single lattice site. These
are classified as vacancies, interstitials, or substitutionals. When a lattice atom is removed
from its position, the empty lattice position left behind is called a vacancy. Interstitials are
atoms that move between lattice atoms and are not located at lattice sites. Interstitials may
be categorized further as self-interstitials when the lattice has only one component and the
interstitial is the same type of atom. Substitutional defects are former vacancies that have
been occupied by non-lattice atoms. For instance, He is attracted to vacancies in the Fe-Cr
system and so tries to occupy vacancies whenever possible.

The formation energy associated with a point defect is the work done create
that defect. It represents the energy of the bonds that must be broken with in the lattice to
accommodate the defect. Formation energies are found by computing the total energy of
the system before and after the defect is present.

Migration barrier energy is the energy required by a point defect to
overcome the local inter-atomic bonds and move to another lattice site in the case of
vacancies and substitutionals or to another location between lattice sites in case of

interstitials. Migration barrier energy is obtained by fitting the motion of the point defect to



the Arrhenius equation (next section). The activation energy in the Arrhenius equation is
the migration barrier energy for point defects.
Diffusion of Point Defects
The Arrhenius equation is often used to quantify migration rate when studying the
movement of point defects. This equation (Eqn. 3) relates the rate constant D (in units of

[length]?/[time]) of a process to the temperature T and activation energy Q.

o
D=Dge “'

Eqn. 3

Dy is the pre-exponential factor and kg the Boltzmann constant. The objective of this
research is to collect atomistic data on the temperature dependence of migration for He-
interstitials and Fe-interstitials so that rate constants for these defects can be used in
kinetic Monte Carlo simulations. For this research to be relevant to the issue of radiation
damage in reactors, finding the dependence of the rate constant on Cr concentration is also
important as different steels have varying amounts of Cr.

To obtain the value of the rate constant from raw displacement data from
simulations, a few steps must be taken. First, the mean-squared displacement (msd) is
calculated for each temperature. Then, a linear slope in fitted to the msd versus time plot.

Einstein’s equation (Eqn. 4) for diffusion is then used to get a value for the rate constant at

that temperature.
d(s*
L, 1)
6 dt
d(s) . .
where 5 is the slope of the mean - squared displacement versus time
t
Eqn. 4



Voids and He-Bubbles

Most real materials are made of several, differently oriented crystals rather than one
large single crystal. The boundaries between these individual crystals within a material are
called grain boundaries. These grain boundaries (GBs) can absorb or generate point
defects. Void swelling (Fig. 6) starts with an energetic radiation knocking an atom from its
lattice position and creating both a vacancy and interstitial atom pair. The interstitial atoms
travel much faster than the vacancy through the lattice, and are often trapped at grain
boundaries (GBs). Due to the drastic difference in migration rates of interstitials and
vacancies, these defect pairs have low statistical probability for recombination. Thus, the
slower vacancies are typically left within the bulk while the faster interstitials are trapped
at the GB. These individual vacancies can eventually coalesce to form much larger voids.
Irradiation-induced void swelling occurs when enough of these void-forming processes

transpire within the material.

Fe’ +He'+H"(Spallation) Fe*+He'+H*(Fusion) Fe’*+He*(Fusion)
| g Samples ot
steel
irradiated
at470°C
Eo 50 dpa

y
different
means
(see
reference

for details)

Swelling=1.2% 3.2% 0,08 %
Fig. 4. Example of void formation in F82H steel [6].

He is an inert, insoluble substance in the Fe-Cr lattice. Radiation from nuclear

reactors introduces He either through a-radiation or through transmutation of the

10



elements present in the steel by a bombardment of neutrons. Hence, from the
aforementioned causes of He in metals, the presence of He in Fe-Cr is typically
accompanied with some form of lattice damage. Temperature, He production rate,
displacement rate, and accumulated He concentration are the factors critical to He bubble
production [7]. A He-substitutional forms when a vacancy traps a former He-interstitial
atom. At sufficient temperatures and vacancy concentration for He this He-vacancy pairing
is the preferred configuration [7]. If conditions are suitable many of these He-vacancy
pairs—some of which have more than one He per vacancy—coalesce to form larger
bubbles. These bubbles (Figs. 11&12) are mobile and tend to congregate at grain
boundaries and dislocations (Figs. 5&6)[8][9]. This tendency to congregate causes large

cavities to form and increases the chance for rupture [10].

e

100 nm

Fig. 5. TEM micrograph of He bubbles at dislocations [8].
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Fig. 6. TEM micrograph of He bubbles at grain boundaries [11].

Embrittlement

A GB can trap larger defect structures, such as voids and He-bubbles. When a GB
traps these defects, it acts to embrittle the material and lower their ductility (Fig. 9). This
detrimental effect occurs because voids and He-bubbles impede dislocation movement.
When a normal metal undergoes plastic deformation, dislocations traverse through the
material to accommodate the strain. However, in embrittled metals, the voids and He-
bubbles act to impede the dislocations from moving. This increases the metal’s yield
strength at the cost of its ductility because the trapped dislocations are unable to relieve

the strain and the metal eventually fractures.
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WHY MIGRATION OF Fe-INTERSTITIALS AND He-INTERSTITIALS ARE RELEVANT TO
HIGH ENERGY NUCLEAR REACTORS
Radiation damage from fusion or from Gen IV fission reactors in ferritic/martensitic

steels creates both swelling and He embrittlement within the steel (see Figs. 4-6) [12].
These two forms of damage degrade the tensile, creep, and fatigue properties of the steel
[13]. These undesirable effects can ultimately over time degrade the structural integrity of
the reactor as much of the supporting structure of the reactor is made of Fe-Cr steel. The
migration rates of self-interstitials, He-interstitials, vacancies, and He-vacancy clusters are
among the most important factors in both swelling and embrittlement [14]. Studying these

factors will help to further quantify the effects of radiation in these alloys.
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Fig. 8. Dependence of swelling on irradiation dose for alloys [4].

Fe-Interstitial Migration in the Fe-Cr System
Fe-interstitial migration in the Fe and Fe-Cr system takes place when an
atom next to the interstitial is displaced just enough so that the center of mass of the lattice
atom and interstitial atom occupy the lattice position. This arrangement is called an
interstitial dumbbell. These dumbbells move along close-packed directions and can rotate

into different close-packed directions when thermally activated.
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In the Fe-Cr system, several studies have shown that a mixed-species dumbbell is
preferred to a pure Fe or Cr dumbbell [16]. This mixed-species dumbbell preference is
supported by the potential used in this research.

He-Interstitial Migration in the Fe-Cr System

He only occurs in metals when forced through “tritium decay, a-injection or by (n,a)
reactions of neutrons with matrix nuclei during neutron irradiation”[7] due to the low
solubility of He in metals. This low solubility results in more He atoms found in vacancy
sites as opposed to interstitial sites (Fig. 9). In formal terms, the formation energy
associated with He-interstitials is always higher than the energy for He-substitutionals

[13]. He interstitials play a large role in embrittlement and He bubble formation despite

being energetically less favorable than He- substitutionals. Fig. 10 shows different types of

He interstitial /substitutional movement.

-

EIS Energy of solution into interstitial sites Graphiea] representation
of the difference in
E;\/I Migration energy of interstitials formation and migration
ED Dissociation energy from vacancy fenerglgs. of He
v interstitials and He-
EB Binding energy between He atom and substitutionals
v vacancy
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Fig. 9. Graph of He migration energy [13].
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Fig. 10. Types of interstitial movement [13]

He-Vacancy Migration, Void Formation, and He Bubbles in the Fe-Cr System

The low solubility of He in metals results in a strong tendency for He to precipitate

or cluster [13]. These clusters of He are typically called He bubbles within the metal and

are a major contributor to degradation of mechanical properties (Figs. 11&12). He bubble

characteristics are discussed in this section.
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Fig. 11. Stress-strain graphs for Manet steel and 316 L steel [17].
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Fig. 12. Swelling due to both thermal aging and irradiation in 304 stainless steel [2].

The equation for the equilibrium pressure (Fig. 14) inside these bubbles is

Eqn. 5

where ris the radius of the bubble and vy is the surface tension of the bubble [8]. Fig. 15

gives a graph of concentrations of He atoms and He bubbles for typical metals.

17



Fig. 13. Simulation of He bubble in a-Fe [18].
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Fig. 15. He interstitial and bubble concentration versus time [13].

It is worth noting two characteristics of these He bubbles in Fe-Cr at high
temperatures [7]. At low displacement dose (<1 dpa) the bubble density has a very weak
dependence on He concentration and time. This indicates at low displacement doses
bubbles nucleate in early stages of irradiation, and each bubble slowly increases in
diameter instead of newer, smaller bubbles forming. Additionally, He production rate has
an inverse and direct relation between bubble size and bubble density, respectively.

ATOMISTIC SIMULATIONS

Computer simulations that focus on the classical, Newtonian motion of individual
atoms as a whole are called molecular dynamic (MD) simulations. The molecular dynamics
approach does not explicitly work with the wave functions associated with atoms (as in ab-
initio techniques) or large collections of atoms treated as one object (as in rate theory and

finite element approaches). MD approaches the task of simulating several atoms by
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deriving a force from a potential function and integrating that force over time. MD is a
classical approach in that the atoms are point particles and have no internal structure.
The Embedded Atom Method (EAM)

For metallic systems with 102-106 atoms, MD, in conjunction with the embedded
atom method (EAM), is well suited to accurately reproduce bulk properties of the crystal,
and Daw and Baskes developed the EAM method in their seminal paper on the subject [19].
The central idea of this theory is to think of each atom in the lattice as a defect embedded
within an otherwise unperturbed lattice. This way of reasoning is physically plausible
“[b]ecause the energy of an impurity is a functional of the electron density of the
unperturbed host, the cohesive energy of a solid can be calculated from the embedding
energy [19].” The embedding energy of an atom in a solid is the energy of that atom in a
uniform electron gas relative to that same atom separated from the electron gas, and
simply stated is the energy of the atom inside the solid versus outside the solid.

The basic EAM model gives the energy of each atom i as

Epaw))%E%(m)

J=i Jj=i

E, =F,

Eqn. 6

Eqgn. 6 has two terms. The first term is the embedding energy of element a of atom i due to
the total electron density from atoms within a certain cutoff distance. This embedding
energy is calculated from individual electron densities p, evaluated at atom i’s location. The
second term is a pair-wise potential between elements o and {3 at a distance rj; away from

each other.
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Additional modifications to the basic EAM model introduce concentration-
dependant potentials (CD-EAM)[20]. The technical difference in the concentration-
dependent formulation of Eqn. 6 is when dealing with the second term. In the original EAM,
the cross term for the inter-atomic potential for Fe-Cr is implemented as

Grecr (1) = 5 Vi (1) + Vi, (1)

Eqn. 7

The CD-EAM modifies this term to account for local electron densities from

surrounding atoms based on their element type [21].
Veee (1) = h(X)Prec, (1)
x; =35(x;-x;) =l(£+n—’0)
2\n

Eqn. 8

Obviously, if h = 1 then the normal EAM formulation is recovered. x; is the average
partial density of Cr at atoms 7 and j. Because this potential takes the lattice environment
into account when computing forces it more accurately describes multi-component alloys.
Further modifications can be made to optimize this potential’s usage for large-scale
simulations and for use in Monte-Carlo simulations [21].

LAMMPS

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.
LAMMPS open-source software package is developed and maintained at Sandia National
Laboratory. As its acronym implies, LAMMPS allows users to easily run MD parallel
simulations. It is scalable, able to run on one processor as easily as thousands of processors,

feature-rich, and able to output data in several standard format as well as custom output.
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Parallelization

LAMMPS allows for parallelization through a standard interface known as MPI
(Message Passing Interface). In LAMMPS the majority of the MPI standard is implemented
is behind the scenes. However, if modifications to LAMMPS are necessary for a particular
project a rudimentary understanding of MPI is required.

Simulations such as MD are inherently parallel in that they can be spatially
decomposed into domains containing only a few atoms. Initially, a distance (called a cutoff
distance) is chosen so that only atoms within this distance are considered when computing
forces. Most interactions between metal atoms in a crystal are primarily short-range forces,
so a cutoff distance is judiciously chosen to help decrease the amount of computation but
still retain physical accuracy. Forces are then calculated for each atom within a domain.
Then, cross-communication between surrounding domains for the atoms close the edges of
the domain gives the resultant forces on each atom due to all the other atoms within a
certain cutoff distance. This method of parallelization is computationally efficient if the
number of atoms in each domain is optimized so that the tradeoff between single-
processor load and cross-communication is balanced.

Extending the Time Scale: Parallel Replica Dynamics

One of the main shortfalls of the classical MD approach is the short time scale
realizable within any practical computational period. For example, on 24 processors with
2001 atoms and 8 hours of computational time, only 1ns of simulation time can be achieved
using a standard EAM MD approach. Increasing the number of processors makes only a
marginal difference, and eventually, the addition of more processors will degrade

performance as inter-node communication increases compared to computation time. This
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performance degradation sets practical limitations on what type of phenomenon one can
expect to observe using this method. If an event were estimated to take more than 1ps to
occur, the standard MD approach on the aforementioned system would take an impractical
amount of computational time for observation. Several modifications to MD such as
hyperdynamics, temperature-accelerated dynamics, and parallel replica dynamics can
speed-up the accessed time [22][23][24]. Parallel replica dynamics is one such approach
that is currently implemented in LAMMPS.

Parallel replica dynamics (PRD) is a technique that uses statistical mechanics to
sample infrequent events. In statistical mechanics when considering diffusion events,
running one experiment for a great length of time is equivalent to running several, similar
experiments at the same time, and this is the central idea behind PRD. Instead of running a
single simulation for several hours or even days, PRD runs several similar simulations at
the same time and checks for a desired event in all of the simulations—thus working
around the problem by simply increasing the number of processors on a single system. This
method also makes sure that two consecutive events are uncorrelated. Optimizing the
number of processors on a single simulation and creating several similar optimized
systems often drastically reduces the computational time. The modeling of vacancy
diffusion on the Cu(100) surface with only 15 processors yields a 14-fold decrease in
computational time [23].

Kinetic Monte Carlo
Kinetic Monte Carlo (KMC) is a rate theory approach to modeling phenomena given

information on how those phenomena interact and how often they occur. A particular
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adaptation of this scheme called the object kinetic Monte Carlo (OKMC) is used to model
point defects migration [25].
It follows the evolution of a set of objects in time, given the type of events those
objects can perform and the probability for each event to occur. In the case of
radiation the objects of interest are those defects produced during the irradiation,
that is vacancies, self-interstitials, impurities and their clusters. The events these
objects can perform are diffusion events, dissolution from a cluster, interaction
between different defects or defects with other objects such as grain boundaries or
dislocations. The probabilities of these events are given by the migration energies
and binding energies of the defects. [26]
This neatly summarizes the use of OKMC in the study of irradiation-induced defects.
OKMC allows for yet another extension of the time scale when modeling radiation
effect in metals. Typically, the time and length scale encompassed by the OKMC approach is
referred to as the mesoscopic scale. It lies somewhere between the atomistic scale and the
continuum scale and acts to bridge the gap between the two regimes. The ultimate goal of
this research is to eventually help build a complete, quantitative picture of radiation
damage in nuclear reactors’ materials. In keeping with this goal, an OKMC model will
eventually be needed. However, it should be noted that OKMC requires a pre-cataloging of

all the diffusive events and to which we may only hypothesize those events that exist [24].
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SIMULATION TECHNIQUE
Using LAMMPS

LAMMPS is easy to use once it is compiled on a particular machine. To use LAMMPS
to run MD simulations only three key pieces are needed. These key pieces are an input
script, an atom file, and a potential file. While it is true that LAMMPS comes with several
different potentials built in and one can create the atoms in the input script, testing new
potentials and/or complicated materials does require these three pieces.

First, input scripts are text files formatted in a way as to give instruction to the
LAMMPS program. These files give LAMMPS such information as what units to use,
coordinates/velocities of atoms, types of atoms, as well as what to do to the atoms such as
heating the atoms, minimizing energy, and so on, and then finally how long the simulation
will last given in terms of time steps. The typical structure of a LAMMPS script is as follows
(taken from [27]):

1. Initialization

2. Atom Definition

3. Settings

4. Run a Simulation
Initialization tells LAMMPS what units to use, what type of atom potential is used, and how
to parse the use of the processors for parallelization. Defining atoms is done in one of three
ways. Specific LAMMPS commands are either given from the input script to make and load
atoms in to memory, read atom positions and velocities from a specially formatted text file,
or read in a restart file. For any atomic arrangement other than the most basic structures,

atoms are typically not created using the input script. Reading a specifically formatted text
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file containing the information about the atoms’ position and velocities allows flexibility in
creating defects. Reading restart file is valuable if the script is continuing a simulation that
was previously run. LAMMPS restart files are binary files that contain all the information
about a previous simulation. Settings allow the user to adjust several parameters in
simulation such as temperature, pressure, labeling, and tracking certain groups of atoms,
and to specify the format of the output, or constrain the system in many other ways. This is
essentially where the user tells LAMMPS what actions to take. Finally, running the
simulation requires minimize, temper, prd, or run commands. Some of these commands will
be discussed in detail later in the thesis, but for now the run command simply tells
LAMMPS to start evaluating forces on each of the atoms and integrate over time a specified
number of steps. Steps three and four in the overall process may be repeated until a
desired result is obtained.

Secondly, atom files are the text files that specify either just the location of the
atoms or both the location and velocities of the atoms. The first two lines of the atom file
are comment lines that are meant to clarify what the file contains. The next three lines give
the dimension of the simulation box or terms of unit given in the input script. Lines six and
seven tell LAMMPS how many atoms and types of atoms are included in the simulation. The
following lines are the heading followed by the list of atoms. Atoms are specified by their
ID, type, and 3-dimensional location. After the atoms are created, velocities may be
provided with a heading and list similar to the positions.

Third, a potential file is necessary to be read if LAMMPS does not contain the
potential already built in. There are more than 50 styles of pair potentials that can be read

in to LAMMPS, however, each of these styles must be formatted correctly. LAMMPS
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common design for every potential file is that the potential is tabulated. The reason for this
is computational speed. When a potential is in its analytical form it takes several compute
cycles to evaluate the resultant force. Yet, if the potential is tabulated for values of the
potential the simulation is likely to encounter, all that needs to be done when computing
forces is to look up a value in a table and interpolate for the specific value requested. This
tabulated approach proves to be computationally far faster as LAMMPS has state-of-the-art
interpolating functions.
LAMMPS Commands Relevant to This Research

This section explains in some detail the relevant LAMMPS commands used in this
research.

* units -tells LAMMPS what units to use: e.g. the keyword metal specifies distance in
angstroms, time in picoseconds, pressure in atmospheres, and so on

* atom_style - determines what type of information is associated with each atom

* boundary - specifies what type of boundary to implement on each face of the
simulation box; this can have values of periodic (if an atom goes outside the
boundary it shows up on the opposite side; see Fig. 16), fixed (atoms are lost if they
go past the boundary), or shrink wrapped (non-periodic, but atoms are not lost if
the go outside the boundary)

* newton - specifies whether or not to use Newton’s 3 law (two atoms exert equal
and opposite forces on one another) when evaluating forces; turning this on gives a
slight boost in performance in most circumstances

* read_data or read_restart - these two commands read the atomic data from a text

file or a binary restart file, respectively
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pair_style - tells LAMMPS what type of potential is being used; eam/cd specifies a
concentration dependant EAM potential is to be used

pair_coeff - this simply loads the potential file in to memory and specifies what type
of atoms are used in the potential file

velocity - gives the atoms some initial velocity based on a Gaussian distribution of
speed as determined by the temperature

fix - this command has a variety of purposes: for instance, this command can tell
LAMMPS to raise the temperature from 300K to 600K

unfix - removes the specified fix command

thermo and thermo_modify - tells LAMMPS to print thermodynamic information
and modifies how or what is printed

timestep - specifies the how much simulation time to integrate over

compute - tells LAMMPS to compute certain quantities at every time step

dump - in addition to a standard log file LAMMPS can create custom output files
using this command

run - run a simulation for a specified number of time steps

minimize - adjusts the coordinates of each atom in such a way as to minimize the
total energy of the system (also known as quenching)

prd - runs a parallel replica dynamics simulation with parameters specifying how to
check for infrequent events, and how to partition the processors are done in the

input script and the command line
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Fig. 16. Representation of periodic boundary conditions [28].

Time Scale

Computational times for the simulations in this research range from 4-8 hours.
Simulated times are on the order of .1ns-10ns. In each simulation, the simulated time is
long enough to reach valid statistics for the objects of interest (e.g. enough interstitial
jumps took place). The simulated time for the He interstitial runs were each .2ns while the
simulated times for Fe interstitials were 1ns. The reason for the difference in simulation
time is that the time step for each type of simulation is different. The total number of time
steps for each simulation is the same at 1000000. However, the time step for He-interstitial
simulations is .2ps while Fe-interstitial simulations have a standard 1ps time step. The
difference is due to the how quickly each atom thermally vibrates. Fe is heavier and

vibrates more slowly than He does, hence Fe can have a longer time step than He while still

retaining physical accuracy.
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Computational Environment

Parts of this research were done on various machines. The majority of the work on
self-interstitial dumbbells was done at LLNL on the Zeus supercomputer. The work on He
interstitials was done at UNT on the Teragrid network of computers. The work on parallel
replica dynamics was done at UNT on the Talon supercomputer.

Post-Processing Routines

After each simulation, the raw data needs to be processed to yield meaningful
results. Each simulation outputs an entire snapshot of the positions and types of atoms at
regular intervals. This is the raw data that is to be processed after the simulation is
completed. For the He interstitial simulations all that needs to be done is to track the
location of the helium atom and take the root-mean square average to determine diffusion
coefficients. Both the complexity and time required to post-process the raw data are low.
To correctly analyze the self-interstitial simulations more attention is required, and
accurately tracking the desired object (dumbbell) can be challenging. Samples of post-
processing code are given in the Appendix.

The first step in the processing of the interstitial simulations is to identify either the
He atom (in the case of a He-interstitial) or a Fe self-interstitial dumbbell. For He this is
easy as there is simply only one He atom in the simulation. For the Fe-interstitial a more
lengthy process is required. Since the original additional Fe atom typically becomes a
lattice atom after a few time steps above 400K, simply tracking the atom ID number is not
an option. The key here is to think of each lattice position as being occupied by only one
atom, but at the location of the dumbbell there are two atoms occupying one lattice

position. The precise process of finding this lattice position for each lattice snapshot is
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lengthy both in explanation and post-processing time. The position of the interstitial is
recorded and used to compute the mean-squared displacement. This computation is then
fed into Einstein’s equation of diffusion to yield a value of the rate constant for each
temperature (8 total temperatures). From this data, logarithmic plots (called Arrhenius
plots) are created in order to find the rate equation for that specific composition of Cr.

The post-processing for the He equation of state simulations is much more
straightforward. The data from the simulation is analyzed to find a melting point for the
solid-to-fluid transition and a freezing point for fluid-to-solid transition point. These points
give appropriate thermodynamic information to yield an equation of state relevant to the

temperature and pressure conditions in an actual metal.
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RESULTS
Equation of State for He

The helium found inside cavities within the steel lattice matrix is known to exist in
both a solid and a liquid phase [30][31]. An accurate description of the He inside these
bubbles is vital in reaching a quantitative understanding of radiation damage in these
steels. The ternary potential used in this research is employed to give an estimate for an
equation of state for the He inside the bubbles. This is an important step in checking the
potential we are using for physical accuracy.

The equation of state is a relation between the pressure, density, and temperature of
the He in our potential. Density, in our case, is measured relative to the Fe bcc lattice. So,
one He atom in one Fe vacancy is taken as 1He/Vacancy (p=1). In order to get this equation
of state, He atoms are arranged in a bcc structure with the same lattice spacing as Fe as to
start with a density of one. The simulation starts by holding the temperature fixed at 0K
and either compressing or expanding the volume by a specified amount. Once the desired
density is established, the density is held fixed and the temperature rises from 0K to 1000K
and then lowers back to OK at the same rate while the corresponding pressure is recorded
(Fig. 17). This gives thermodynamic data to construct an equation of state. Fig. 18 gives a
pressure versus density plot determined by the LAMMPS simulations and compares
that with experimental data. The difference in the “Fluid” and “Solid” curves with the
experimental data is due to the finite size effects of the sample and defects that are frozen

during cooling for the “Fluid” and “Solid” data [18].
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The pressure versus temperature
for various densities are labeled in
units of He/Vac. The sudden jumps
in the heating(lower) curves
represent a phase change from
solid to fluid. Upon cooling(upper
curves), significant hysteresis is
apparent due to high rates of
heating/cooling. If the rates of
heating and cooling were slow
enough and no defects developed
in the solid, the heating and cooling
curves would be the same.
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Fig. 17. He EOS thermodynamic data [18].
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Fig. 18. Simulation data compared to experiment [18].

The equation of state sought is of the form

P(p,T) =a,(p)+a,(p)xT+a,(p) x T?

Eqn.9
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The data from the simulation is used to find the coefficients for each polynomial a,(p).

These polynomials are
a,=-598E -01x p’ +329E +00 x p* —=1.76 E+00 x p* + 3.76E =01 x p° —=1.0E -=02 x p

a,=102E -03x p° —424E -03x p* +4.66E -03x p’ +2.19E -03x p* +1.07E -03x p
a,=-649E -07x p° +239E +06 x p* =2.09E +06 x p° —=9.56E —07 x p> +1.20E =07 x p

Eqn. 10

This equation describes a surface in Pressure-Temperature-Density space (Fig. 19).

Fhssme«m%9

Fig. 19. Equation of state for helium in the fluid phase [18].
Formation Energies
The formation energies for Fe-interstitial, He-interstitial, He-substitutional,

and vacancy were calculated using the LAMMPS minimize command. The energy of a pure

a-Fe lattice was compared to the energy of the lattice when a defect is present. Table II lists

the result for the formation energies.
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Table II. Formation energies for point defects.

Formation Energies (eV) for Point Defects in an a-Fe Lattice

He-interstitial Fe-interstitial He-substitutional Vacancy

4.54 3.70 4.03 1.49

He-Interstitial

Point defects in systems with several thousands of atoms are commonly simulated
using MD. The simulations for the He interstitials are analyzed by finding the mean-
squared displacement and then plotting that data to get a linear fit for the slope of a line.
This slope is used to find the diffusion constant for that specific temperature. After, an
Arrhenius plot is made for the range of temperatures (300K-1000K with a 100K increment;
Fig. 20 as an example). This Arrhenius plot yields all the valuable information about
diffusivity (Table III). Fig. 21 gives the plot of the activation energies versus at%Cr. This

graph shows an anomaly around 9%atCr.
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Fig. 20. Arrhenius plot for a He interstitial in an Fe-5.0at%Cr lattice.
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Fig. 21. Activation energy(Q) versus at%Cr.
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Table III. Rate constant data for He in varying compositions of Fe-Cr.

Arrhenius Equation for He in Fe-a%Cr
0
D=Dge "'
Cr ...
composition Activation Pre Factor
(at%) EnergyQ(eV) | Do(cm?2/s)
0 0.058 0.00095
Short Range Ordering (SRO)

5.0 0.063 0.00087
10.0 0.083 0.00100
10.8 0.084 0.00097
12.2 0.085 0.00094
14.7 0.071 0.00065

Random Ordering

1.9 0.065 0.00096
4.8 0.067 0.00090
8.0 0.071 0.00091
9.2 0.057 0.00069
9.6 0.053 0.00056
10.0 0.072 0.00091
11.0 0.078 0.00094
13.7 0.082 0.00091

Fe-Interstitial

The same procedure used in the He-interstitial case is applied to the Fe-interstitial.
As noted before, finding the dumbbell is much more difficult than locating a He atom
(Appendix). After the dumbbell is located, the path of the center of mass is plotted in Fig.
22.The coordinates in this graph are unwrapped so that the periodic boundary conditions
are taken into account and the absolute distances are shown. The dumbbell follows a
relatively strict path along the <110> family of direction. The paths that are not along these
directions could be because snapshots of the lattice were not taken frequently enough to
capture the motion solely along the allowed directions or the dumbbell moved in a non-

closed-packed direction for a short time. Figs. 23 and 24 show successive snapshots of an
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interstitial dumbbell rotating and a plot of all dumbbells found during one simulation to
illustrate that mixed dumbbells are preferred. Finally, Fig. 25 shows an Arrhenius plot for

an Fe-interstitial, and Table IV gives a summary of the Arrhenius data for the Fe-interstitial.

Y
The path of the
center of mass of the
interstitial dumbbell
in an Fe-10at%Cr
lattice at 700K. The
lattice has some
short-range ordering.
The bluer parts are
the beginning of the
path and redder part
] is the end of the path.
0 Notice that the
| dumbbell almost
| : exclusively travels
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Fig. 22. Center of mass path for an interstitial dumbbell.
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Fig. 23.Interstitial dumbbell rotation.

38



Fig. 24. Interstitial dumbbell composition.
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Fig. 25. Arrhenius plot for a Fe interstitial in an Fe-13.7at%Cr lattice.



Table IV. Arrhenius Fe interstitial data in varying compositions of Fe-Cr.

Arrhenius Equation for an Fe Interstitial in
Fe-a%Cr
_2
D=Dge “"
Cr Activation
composition Energy Pre Factor
Do(cm?/s
(at%) Q(eV) o(cm*/s)
0 0.28 0.000104
Short Range Ordering (SRO)
5.0 0.26 0.000052
10.0 0.21 0.000016
Random Ordering
4.8 0.26 0.000042
9.6 0.21 0.000015
13.7 0.21 0.000013
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CONCLUSION

The He equation of state data matches well with the experimental data. This will
allow for more detailed studies and OKMC models to be developed. Additionally, the
agreement within the experiment is a good check for accuracy for the new ternary
potential being used. The results for the Fe interstitial activation energy are in good
agreement with accepted values (Table V). The He-interstitial activation energy obtained in
this research is somewhat different than values found in [32](Table VI). However, this
research uses a different potential from [32]. Tables 3&4 and Fig. 21 indicate that there is
not a strong correlation between migration energies of interstitials and lattice ordering.

Table V. Comparison of Fe interstitial energies.

Activation Energy for Fe Interstitial in an Fe BCC Lattice, Q(eV)

This work | Resistivity Recovery [33] | ab-initio [34] | Different EAM potential [34]

.28 27 .30 31

Table VI. Comparison of He interstitial energies.

Activation Energy for He Interstitial in an Fe Lattice and Fe10at%(Cr Lattice,
Q(eV)
Pure Fe Lattice Fel0Oat%Cr
This work [32] This work [32]
.058 .078 072 078

The data gathered from this research can be used to further study the Fe-Cr
surrogate system. By studying and cataloging the rates of point defect migration, this
research will aid in developing rate theory models for OKMC simulations by providing the
rates of migration for He-interstitials and Fe-interstitials. The He EOS data will also aid in

making accurate, larger-scale models of the effects of He-bubbles in the Fe-Cr system.
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Altogether, this information will give insight into how real Fe-Cr based steels behave in

reactor conditions and may lead to better steels for the next generation of reactors.
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FUTURE WORK

This Fe-Cr-He potential can be explored in many other ways. Once point-defect
migration data is fully gathered, clusters of point defects and groups of vacancies combined
with helium can be studied. The study of vacancy migration and the He bubble migration
can be achieved through the use of LAMMPS’ “prd” command. Work has indeed already
begun on exploring some of these effects on the atomistic level using MD.

New potentials can be developed in order to encompass more alloying elements
found in real steels. The potential used in this research only considers Fe, Cr, and He
interactions. A more complex potential could take into account elements such as Ni or Mo
in order to gain a more accurate picture of how steel behaves.

Even with accelerated dynamics methods such as PRD, the simulations in this
research are still limited to MD timescales (at most a few pus). The next step is to use a rate
theory approach to these objects such as KMC. Rate theory will allow for better assessment
of general behavior and lead us closer to an accurate description of the way steels behave

during irradiation.
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APPENDEX A

SAMPLE LAMMPS INPUT SCRIPTS
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Fe Interstitial

This is an example script used for running Fe interstitial simulations within a
pure Fe lattice.
###self-interstitial point-defect simulation
###runs several temperatures sequentially
units metal
atom_style atomic
boundary ppp
newton on

read_data  /users/jwh0118/Self_Interstitial/0%Cr/FeOCr-Fe_Sl.dat

pair_style eam/cd
pair_coeff ** /users/jwh0118/fecrhe-CD-EAM-Lammps-v1.fcn Fe Cr He

mass 1 55.8470
mass 2 51.9961
mass 3 4.0026

neighbor 1.0 bin
neigh_modify every 1 delay 10 check yes

thermo 1000

variable  tindex 300400 500 600 700 800 900 1000

label loop
if $t =300 then "undump 1"
variable  pequal v_t-100 ##previous temperature

shell mkdir $tK
velocity  all create $p 87289 rot yes dist gaussian
log $tK/$tlog

fix integrate all nve
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fix T_control all temp/rescale 5 $p $t 10. 0.75
timestep .001

# equilibrate

run 8000
unfix T _control
fix integrate all nve

reset_timestep 0

dump 1 all custom 100 $tK/frames.dat type mass x y z
run 1000000

next t

jump in.SI loop

He Interstitial
This is part of the script used in the He interstitial simulations. This script is

intended to be called from a larger Unix submission script.

units metal

atom_style atomic

boundary pPpPp

newton on

read_data $atomFil

group helium type 3

pair_style eam/cd

pair_coeff * * $potFil Fe Cr He

velocity all create $temperature 4928459 rot yes dist gaussian
fix integrate all nve

fix T_control all temp/rescale 5 $temperature $temperature 10. 0.75
fix press_ctrl all press/berendsen xyz 0 0 100.0
thermo_modify flush yes

thermo 20

46



thermo_style custom step temp pe etotal press Ix ly 1z

timestep 0.0001

run 100000

unfix T_control

unfix press_ctrl

fix diffCoords helium coord/original

fix integrate all nve

compute dis helium displace/atom diffCoords

dump 1 helium custom 50 $HeFile c_dis[12] c_dis[13] c_dis[14] c_dis[15]
run 2000000

Sample Atom File
This is just the heading of an atom file used for the “read-data” command.
He interstitial within an Fe10.8at%Cr lattice with SRO

-14.338 14.338 xlo xhi
-14.3377 14.3377 ylo yhi
-14.3478 14.3478 zlo zhi
2001 atoms

3 atom types

Atoms

12-14.2961 14.3137 -14.3025
21-11.6175-14.312-14.3001
31-8.75495-14.1872 -14.3108
41-5.9223214.286 -14.332
51-2.98819-14.2912 -14.3178
61-0.221085 14.3037 14.343
71290952 14.2107 14.2198
815.8067 14.2376 -14.3389
928.59681-14.3106 -14.3251
10111.6741 14.3282 14.2405
111-14.2695-11.611 14.294
121-11.4255-11.3983 -14.3047
131-8.44187 -11.3968 14.3092
14 1-5.75463 -11.4549 -14.3225
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POST-PROCESSING CODE
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He Interstitial
The following is the post-processing code used to generate the mean-squared

displacement data for He interstitials written by Dr. Srinivasan in C.

/ kskskskskskskskskskskkkksk sk sk sk sk sk sk ok ok ok ok ok ok ok ok sk ok okokokok sk ok sk sk sk sk skskskskskskskskskk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok
skkskokokokokok

* He Mean Squared Displacement from LAMMPS output
>k

sorokskorokskokokokskokokskokokskskokokskokskokskokoksokokskskokokskokokskokokokskokokskokoskokskokokskokokokskokokskokokskkokokkokok sk ok
sorokskokokok

* Usage : "HeMSD.x -I [Infile] -0 [outfile] -v"

*

skokokokokskskskskokokokokskskokskokokokskskskskokskokokskskskskokokokskskskskokskokok sk sk ok skokskokskskskskokskoksk sk sk ok skokokok sk sk ok sk ok
skokokokokokoK

* Description: The program reads He LAMMPS He position file and
calculates x

* Mean Squared Displacement of He.

k

skokokokokskskskskokokokokskskskskokokokskskskskokskokokskskokskokokokskskskskokskokskskskokskokokok sk skokskokskoksk sk sk ok skokokok sk sk ok sk ok
sokokokokksk /

#include <stdarg.h>/* variable arg handling x/

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h>/% size_t */

#include <string.h>

#include <math.h>

/*—— e e -
_______ */

externint strcasecmp(constchar *, constchar x);

/*k—— - - - - - - - -
_______ */

#define BUF_SIZE 1024

#define MAX_A 2

/*—- - e -
_______ */

constint FRAME_STEP = 50;

constint TOTAL_STEP = 3000000; /* May need to INCREASE this x/
constdouble PERCENTAGE = 0.2;

/x—= e - —

typedefstruct cm_data{
int tstep;
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double x[MAX_A]l, yI[MAX_A], zI[MAX_A], r[MAX_Al;

} CMdataT;

[ R e -
_______ */

CMdataT *FrameVecP = NULL;

[ R e -
_______ */

/* Global Variables here x/

char IFname [BUF_SIZE];

char OFname [BUF_SIZE];

e T -
_______ */

void Error(char *msg, ...)

{

va_list args;
char bufl[BUF_SIZE];

/* Check if error message fits in buf[]; If the array bounds are not
checked there may be overflow and coredump. */
if( (strlen(msg) ) >= BUF_SIZE )
strcat( bufl," Error Buffer OverFlow. Can't EVEN Print Correct
Msg\0@" );

/* Flush all buffers x/
fflush( stderr );

/* handle variable arguments x/
va_start(args, msg);
vsprintf(bufl, msg, args);
va_end(args);

/* Print the message x/
fprintf(stderr, "\nskkkskskskskkkkk\N%S \ Nxskskskskkkkkkk\n", bufl );
fflush( stderr );

exit( -1 );
} /% void Error(char xmsg, ...) *x/
/x—— e e
______ */

/ Fkksorokskoksotoksokskokoksorokokok ok
% main(): Main function x
sorskotoksorskokoksokokfoksokk ok oKk ok /
int main(int argc, char *argv[])

{
char inp_linE[BUF_SIZE];

FILE *x1ifp = NULL; /* input file ptr
*/

FILE *xofp = NULL; /* output file ptr
*/
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int totsteps, stepsize, maxitrns;

int nAtoms, c, i, j;

int ifFlag, ofFlag, inFlag, isFlag;

int verbose Q; /* Default: NOT verbose mode
*/

int nFrames
int tStep
int istop
double average

i nn
[SAS SRS

.0;

externchar *optarg; /* For getopt()
*/
externint  optind; /* For getopt()
*/

ifFlag
ofFlag
inFlag
isFlag
totsteps

i nnn
(SIS RIS

/* Number of frames: This determined MAX ARRAY SIZE x/
nFrames = TOTAL_STEP/FRAME_STEP;

/* Allocate memory for frames x/
FrameVecP = ((CMdataT*) calloc(nFrames, sizeof(CMdataT)));
if( FrameVecP == NULL ) Error("$$$ main(): calloc FAILED\n");

/* Handle command line args */
while( (c = getopt( argc, argv, "I:0:N:S:v" )) != EOF )
switch (c) {

case'v': /* Verbose mode
*/
verbose = 1;
break;
case'l': /* Input File Name
*/

/* In file name x/
sprintf( IFname,'"%s", optarg );

ifFlag++; /* Input file read
*/
break;
case'0': /* Output File Name
*x/

sprintf( OFname,'"%s", optarg );

ofFlag++; /* output file read
*x/
break;
case'N': /* NSTEPS used in runs
*/
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totsteps = atoi(optarg);

inFlag++; /* Nsteps value read
*/
break;
case'S': /*x STEP SIZE
*/

stepsize = atoi(optarg);

isFlag++; /* STEP SIZE read
*/
break;
default:

(void) fprintf(stderr, "## ERROR in USAGE\n");

Error("1) main():USAGE: '%s -I infile -0 outFil -N totsteps -S
stepsize -v'\n",

argv[16]);
} /x while{switch()} %/

if( ifFlag =1 ) Error("main(): Input file NOT read
correctly\n");

if( ofFlag =1 ) Error("main(): Output file NOT read
correctly\n");

if( inFlag =1 ) Error("main(): Input Nsteps NOT read
correctly\n");

if( isFlag =1 ) Error("main(): Input stepsize NOT read

correctly\n");

if(verbose) fprintf(stderr, "OPENING FILE %s TO READ\n", IFname);
(void) fprintf(stderr, "Input/Output File= (%s, %s)\n', IFname,
OFname) ;

/* OPEN Input file %/
if( !'(ifp = fopen(IFname, "r") ) )
Error("2) main(): Unable to Open InFile: %s\n", IFname );

/* Loop and Read till the end of the file (EOF) x/
i= 0;
/*x for(; !feof(ifp); ) {
while(!feof(ifp)) { x/
maxitrns = totsteps/stepsize;
for(i=0; i < maxitrns; i++) {
double x, vy, z, r;

/* CHECK if ARRAY SIZE SUFFICIENT x/
if( i == nFrames )

Error("3a) main(): INCREASE FrameVecP[] array size to > %d\n",
nFrames) ;

/* "ITEM: TIMESTEP": read and discard x/

52



fgets(inp_linE, sizeof(inp_linE), ifp );

/* "TIMESTEP#": read and save x/
fgets(inp_linE, sizeof(inp_1linE), ifp );
sscanf(inp_linE, "%d", &tStep );
FrameVecP[i]l.tstep = tStep;

/* "ITEM: NUMBER OF ATOMS": read and discard x/
fgets(inp_linE, sizeof(inp_linE), ifp );

/* "NATOMS#": read and save x/
nAtoms = 0;
fgets(inp_linE, sizeof(inp_linE), ifp );
sscanf(inp_linE, "%d", &nAtoms );

if(nAtoms > MAX_A)
Error("3b) main(%d): InterstitialArray handles %d atoms; has %d
now\n",
i, MAX_A, nAtoms);

/x "ITEM: "BOX BOUNDS": read and discard x/
fgets(inp_linE, sizeof(inp_linE), ifp );

/* Values of xlo/xhi: read and discard x/
fgets(inp_linE, sizeof(inp_linE), ifp );

/* Values of ylo/yhi: read and discard */
fgets(inp_linE, sizeof(inp_linE), ifp );

/* Values of zlo/zhi: read and discard x/
fgets(inp_linE, sizeof(inp_linE), ifp );

/* "ITEM: ATOMS c_dis[12] c_dis[13] c_dis[14] c_dis[15]": read/discard
*/
fgets(inp_linE, sizeof(inp_linE), ifp );

/* Scan in interstitial coordinates x/

for(j=0; j < nAtoms; j++) {
fgets(inp_linE, sizeof(inp_linE), ifp );
sscanf(inp_linE, "%lf %1f %1f »s1f", &x, &y, &z, &r );

FrameVecP[i]l.x[j] = x;
FrameVecP[il.y[j] = vy;
FrameVecP[il.z[j] = z;
FrameVecP[il.r[j] = r;

/*———— DEBUG —-———x/

/* fprintf(stdout,
"main(): Itrn(%05d)\tStep(%07d)\tnAtoms(%03d)\tx(%.41f)\n",
i, tStep, nAtoms, x); *x/

/*———— DEBUG ————x/
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} /% for(j) x/
/* INCREMENT RECORD NUMBER x/
/% 1++; x/
} /x for() x/

/* Close opened input file x/
fclose(ifp);

/* Write out output configuration */
if(verbose) fprintf(stderr, "OPENING FILE %s TO WRITE\n", OFname);

/* OPEN OQutput file x/
if( !'(ofp = fopen(OFname, "w") ) )
Error("4) main(): Unable to Open OutFile: %s\n'", OFname );

0.0;
(int) (((double) maxitrns) * PERCENTAGE);

average =
istop =
/* ASK JEFF: (1) logic of the loop and (2) what is istop */
for(i = 0; i < istop; i++) {

int ave_num;

0;
0.0;

ave_num
average

for(j = @; j+i < maxitrns; j++){
double dx, dy, dz, dr;
double dx2, dy2, dz2, dr2;

dx = FrameVecP[j+i].x[16]-FrameVecP[j].x[16];
dx2 = dxxdx;
dy = FrameVecP[j+i].y[16]-FrameVecP[j]l.y[16];
dy2 = dyxdy;
dz = FrameVecP[j+i].z[16]-FrameVecP[j].z[16];
dz2 = dzxdz;

average += (dx2+dy2+dz2);
ave_num++;
} /% for(j) =/
if(ave_num != @) average /= ((int) ave_num);

fprintf(ofp, "%d %1f\n", i*FRAME_STEP, average);
} /% for(i) x/

/* Close opened output file x/
fclose(ofp);
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return(EXIT_SUCCESS);
} /% main() x/

Fe Interstitial
The next post-processing code is written in C++ and is used to identify the Fe
dumbbell and calculate the mean-squared displacement written by the author.

//finds an interstitial dumbbell and creates a tecplot file, a file
with the unwraped coords and displacement, and an msd file with D
//this program needs a lammps dump file with x y z type mass csp coord
ack pe

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <vector>

#include <math.h>

usingnamespace std;

constint AT_ARR_LNGT = 2;//for dumbbell calculating
constint FRAME_STEP = 100;//for msd
constfloat PERCENTAGE = .2;//for msd

ifstream infile;

ofstream outfile, outfile2, outfile3;

string trash;

longint tstep,numatoms,t0;

double xlo,xhi,ylo,yhi,zlo,zhi,x,y,z,xi,yi,zi;

struct atom{

double x,y,z,mass,csp,pe;

int type,coord,ack,xln,yln,zln;//xln = x coordinate lattice
number, calculated by correct_int
b
struct coord{

longint tstep;

double x,y,z,r,msd;
b
vector<coord> cm_vec;
vector<coord> unwrap_vec;
vector<coord> msd_vec;

bool share_same_ints(atom&,atom&);
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int nint(double);

double d_abs(double);

coord correct_int(atom&,double,double,double);

coord x_crt_int(atom&,double,double,double);

coord y_crt_int(atom&,double,double,double);

coord z_crt_int(atom&,double,double,double);

coord find_cm(atom&, atom&, double&, double&, double&, double§,
double&, double&);

int main(int argc,char xargv[]){ //needs an input file in the for of a
lammps dump file and creates 3 output files

infile.open(argv([12],io0s::in);
outfile.open("unwraped_data.dat",ios::out);
outfile2.open("reducedZONES.dat",ios::out);
outfile3.open("msd.dat",ios::out);

if( !infile.is_open() ) return -1;
// outfile<<"t-step x y z

outfile2<<"VARIABLES
// outfile3<<"t msd\n";

r r_squared\n";
XY Z TYPE PE\n";

atom dumbbell_atom[AT_ARR_LNGT];
atom prev_dumbbell_atom[AT_ARR_LNGT];

getline(infile,trash);//ITEM: TIMESTEP
while('!'infile.eof()){

getline(infile,trash);//tstep

stringstream(trash)>>tstep;

getline(infile,trash);//ITEM: NUMBER OF ATOMS

getline(infile,trash);//numatoms
stringstream(trash)>>numatoms;

getline(infile,trash);//ITEM: BOX BOUNDS

getline(infile,trash);//xlo xhi

stringstream(trash)>>xlo>>xhi;

double X_BOX = xhi - xlo;

double X_MAX = X_BOX / 2;

double Ax = X_BOX / 10;

getline(infile,trash);//ylo yhi

stringstream(trash)>>ylo>>yhi;

double Y_BOX = yhi - ylo;

double Y_MAX = Y_BOX / 2;

double Ay = Y_BOX / 10;

getline(infile,trash);//zlo zhi

stringstream(trash)>>zlo>>zhi;

double Z_BOX zhi - zlo;

double Z_MAX Z_BOX / 2;

double Az = Z_BOX / 10;
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double MAX_PREV = 2x(Ax+Ay+Az)/3;

getline(infile, trash);

if(cm_vec.size()<1) tO=tstep;

atom atoms[numatoms];

for(longint i = 0; i < numatoms; i++ ){
getline(infile,trash);

stringstream(trash)>>atoms[i].x>>atoms[i].y>>atoms[i].z>>atoms[i].
type>>atoms[i] .mass>>atoms[i].csp>>atoms[i].coord>>atoms[i].ack>>atoms
[i].pe;
coord tempcrd = correct_int(atoms[i],Ax,Ay,Az);
atoms[i].xln = (int)tempcrd.x;
atoms[i].yln = (int)tempcrd.y;
atoms[i].zln = (int)tempcrd.z;
for(longint j = 0; j < i-1; j++){
if(share_same_ints(atoms[i],atoms[j])){

dumbbell_atom[16] = atoms[il;
dumbbell_atom[12] = atoms[j];
} //end if
} //end for

} //end for

outfile2<<"ZONE\n";

for(int i = 0; i < AT_ARR_LNGT; i++){

outfile2<<" "<<dumbbell_atom[i].x<<"

"<<dumbbell_atom[i].y<<" "<<dumbbell_atom[i].z<<"
"<<dumbbell_atom[i].type<<" "<<dumbbell_atom[i].pe<<"\n";

} //end for

coord temp = find_cm( dumbbell_atom[16], dumbbell_atom[12],
X_BOX, X_MAX, Y_BOX, Y_MAX, Z BOX, Z_MAX);

cm_vec.push_back(temp);

int counter = cm_vec.size() - 1;

if(counter == 0){

x = cm_vec[counter].x;
y = cm_vec[counter].y;
z = cm_vec[counter].z;
xi = cm_vec[counter].x;
yi = cm_vec[counter].y;
zi = cm_vec[counter].z;

¥

else{

if(cm_vecl[counter-11.x — cm_vec[counter].x > X_MAX) x +=
X_BOX - cm_vec[counter-1].x + cm_vec[counter].x;

elseif(cm_vec[counter].x - cm_vec[counter-1].x > X_MAX) x -
= X_BOX - cm_vec[counter]l.x + cm_vec[counter-1].x;

else x += cm_vec[counter].x — cm_vec[counter-1].x;

if(cm_vec[counter-1].y - cm_vec[counter].y > Y_MAX) y +=
Y_BOX - cm_vec[counter-1].y + cm_veclcounter].y;
elseif(cm_vec[counter].y - cm_vec[counter-1].y > Y_MAX) y —-= Y_BOX -
cm_vec[counter].y + cm_vec[counter-1].y;
else y += cm_vec[counter].y - cm_vec[counter-1].y;
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if(cm_vec[counter-1].z - cm_vecl[counter].z > Z_MAX) z +=

Z_BOX - cm_vec[counter-1].z + cm_vec[counter].z;
elseif(cm_vec[counter].z - cm_vecl[counter-1].z > Z MAX) z -= Z_BOX -
cm_vec[counter].z + cm_vec[counter-1].z;
else z += cm_vec[counter].z - cm_vec[counter-1].z;

}

coord tempcrd;

tempcrd.tstep = tstep- t0;;

tempcrd.x = Xx;
tempcrd.y = y;
tempcrd.z = z;
tempcrd.r = sqrt(pow(x-xi,2)+pow(y-yi,2)+pow(z-z1i,2));

unwrap_vec.push_back(tempcrd);

getline(infile,trash);//ITEM: TIMESTEP, this is here to set
eofbit if I reach the end of the file
} //end while

infile.close();
outfile2.close();
//average algorithm and print unwraped_data.dat
double stop = unwrap_vec.size() *x PERCENTAGE;
for(unsignedint i = 0; i < unwrap_vec.size(); i++){
if(i < stop){
unsignedint ave_num = 0;
coord temp;
for(unsignedint j = @; j+i < unwrap_vec.size(); j++){
temp.msd += pow(unwrap_vec[j+i].x-unwrap_vec[j]l.x,2) +
pow(unwrap_vec[j+i]l.y-unwrap_vecljl.y,2) + pow(unwrap_vec[j+i].z-
unwrap_vecljl.z,2);
ave_num++;

} //end for
if(ave_num != @) temp.msd /= ave_num;
temp.tstep = ixFRAME_STEP;
msd_vec.push_back(temp);
} //end if

outfile<<unwrap_vec[i].tstep<<" "<<unwrap_vec[i].x<<"
"<<unwrap_vec[i].y<<" "<<unwrap_vec[i].z<<" "<<unwrap_vec[i].r<<"
"<<pow(unwrap_vec[i]l.r,2)<<"\n";
} //end for
outfile.close();

double D = 0;
double ave_num = 0;
for(int 1 = @; i < msd_vec.size(); i++){
double mini_ave = 0;
int mave_num = 0;
for(int j = @; j < msd_vec.size(); j++){
if(it=7){

58



if(abs(msd_vec[j]l.tstep — msd_vec[i]l.tstep) ==
i%FRAME_STEP){
if(j>1i) mini_ave += (msd_vec[j]l.msd -
msd_vec[i].msd)/(ixFRAME_STEP);
else mini_ave += (msd_vec[il.msd -
msd_vec[j].msd)/(ixFRAME_STEP);
mave_num++;

} //end if
} //end if
} //end for
if(mave_num != @) mini_ave /= mave_num;

D += mini_ave;
ave_num++;

} //end for

if(ave_num != @) D /= ave_num;

D /= 6; //from Einstein's equation of diffusion

outfile3<<"D = "<<D<<" (length units)”2 / (time step * frame
step)\n";

for(int i = @; i < msd_vec.size(); i++){
outfile3<<msd_vec[i].tstep<<" "<<msd_vec[i].msd<<"\n";

}
outfile3.close();
return@;

} //end main

bool share_same_ints(atom& a,atom& b){

if(a.xln == -10) a.xln *x= -1;
if(a.yln == -10) a.yln *x= -1;
if(a.zln == -10) a.zln *x= -1;
if(b.xln == -10) b.xln *= -1;
if(b.yln == -10) b.yln *x= -1;
if(b.zln == -10) b.zln *= -1;

if(a.xln !'= b.xln || a.yln != b.yln || a.zln != b.zln)
returnfalse;

returntrue;

}

double d_abs(double x){
if(x <@) return -1xx;
elsereturn x;

¥

int nint(double x){ //nearest integer, modf returns fractional part
of X and stores integer part in 'integer'
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double integer;

if(x>0){
if(modf(x, &integer) <.5) return (int) integer;
elsereturn (int) integer + 1;

b

else{
if(modf(x, &integer) > -.5) return (int) integer;

elsereturn (int) integer - 1;

}
¥
coord correct_int(atom& a, double ax, double ay, double az){

coord temp;
double xint, yint, zint;

double x = 2*a.x/ax;
double y = 2*a.y/ay;
double z = 2*a.z/az;
float xdis, ydis, zdis; //displacements from normalized

lattice site

if(d_abs(modf(x, &xint)) <.5) xdis = d_abs(x) - abs(nint(x));
else xdis = abs(nint(x)) - d_abs(x);
if(d_abs(modf(y, &yint)) <.5) ydis = d_abs(y) - abs(nint(y));
else ydis = abs(nint(y)) - d_abs(y);
if(d_abs(modf(z, &zint)) <.5) zdis = d_abs(z) - abs(nint(z));
else zdis = abs(nint(z)) - d_abs(z);

if(xdis < ydis){ //choose direction with smallest displacement to
start
if(xdis < zdis) temp = x_crt_int(a, x, y, 2);
else temp = z_crt_int(a, x, y, 2);
} //end if
else{
if(ydis < zdis) temp = y_crt_int(a, x, y, z);
else temp = z_crt_int(a, x, y, z);
} //end else

return temp;

}

coord x_crt_int(atom& a,double x,double y,double z){
coord temp;
if(nint(x)%2 == 0){
if(nint(z)%2 == 0){
temp.z = nint(z);

} //end if
else{
if(z >0){
if(nint(z)>z) temp.z = nint(z) - 1;

else temp.z = nint(z) + 1;
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} //end if
else{
if(nint(z)<z) temp.z = nint(z) + 1;
else temp.z = nint(z) - 1;
} //end else
} //end else
if(nint(y)%2 == 0){
temp.y = nint(y);
} //end if
else{
if(y >0){
if(nint(y)>y) temp.y = nint(y) - 1;
else temp.y = nint(y) + 1;
} //end if
else{
if(nint(y)<y) temp.y = nint(y) + 1;
else temp.y = nint(y) - 1;
} //end else
} //end else
temp.x = nint(x);

} //end if
elseq{
if(nint(z)%2 == 0){
if(z >0){

if(nint(z)>z) temp.z = nint(z) - 1;
else temp.z = nint(z) + 1;
} //end if
elseq
if(nint(z)<z) temp.z = nint(z) + 1;
else temp.z = nint(z) - 1;
} //end else
} //end if
elseq
temp.z = nint(z);
} //end else
if(nint(y)%2 == 0){
if(y >0){
if(nint(y)>y) temp.y = nint(y) - 1;
else temp.y = nint(y) + 1;
} //end if
elseq
if(nint(y)<y) temp.y = nint(y) + 1;
else temp.y = nint(y) - 1;
} //end else
Y //end if
elseq
temp.y = nint(y);
} //end else
temp.x = nint(x);
} //end else
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return temp;
b
coord y_crt_int(atom& a,double
coord temp;
if(nint(y)%2 == 0){
if(nint(x)%2 == 0){

x,double y,double z){

elseq{

if(x >0){
if(nint(x)>x)
else temp.x =

elseq{
if(nint(x)<x)
else temp.x =

if(nint(z)%2 =

elseq{

if(z >0){
if(nint(z)>z)
else temp.z =

elseq{
if(nint(z)<z)
else temp.z =

temp.x = nint(x);
} //end if
temp.x = nint(x) - 1;
nint(x) + 1;
} //end if
temp.x = nint(x) + 1;
nint(x) - 1;

} //end else
} //end else

= 0){

temp.z = nint(z);

} //end if

temp.z = nint(z) - 1;
nint(z) + 1;

} //end if
temp.z = nint(z) + 1;
nint(z) - 1;

} //end else
} //end else
temp.y = nint(y);

} //end if

elseq{

if(nint(x)%2 == 0){

if(x >0){
if(nint(x)>x)
else temp.x =

elseq{

if(nint(x)<x)
else temp.x =

elseq{

temp.x = nint(x) - 1;
nint(x) + 1;

} //end if
temp.x = nint(x) + 1;

nint(x) - 1;
} //end else

if(nint(z)%2 == 0){

if(z >0){
if(nint(z)>z)

} //end if
temp.x = nint(x);
} //end else
temp.z = nint(z) - 1;
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else temp.z = nint(z) + 1;
} //end if
else{
if(nint(z)<z) temp.z = nint(z) + 1;
else temp.z = nint(z) - 1;
} //end else
} //end if
else{
temp.z = nint(z);
} //end else
temp.y = nint(y);
} //end else
return temp;
}
coord z_crt_int(atom& a,double x,double y,double z){
coord temp;
if(nint(z)%2 == 0){
if(nint(x)%2 == 0){

temp.x = nint(x);
} //end if
elseq
if(x >0){
if(nint(x)>x) temp.x = nint(x) - 1;
else temp.x = nint(x) + 1;
} //end if
elseq
if(nint(x)<x) temp.x = nint(x) + 1;
else temp.x = nint(x) - 1;
} //end else
} //end else
if(nint(y)%2 == 0){
temp.y = nint(y);
Y //end if
elseq
if(y >0){
if(nint(y)>y) temp.y = nint(y) - 1;
else temp.y = nint(y) + 1;
¥ //end if
elseq
if(nint(y)<y) temp.y = nint(y) + 1;
else temp.y = nint(y) - 1;
} //end else
} //end else
temp.z = nint(z);

} //end if
elseq{
if(nint(x)%2 == 0){
if(x >0){

if(nint(x)>x) temp.x = nint(x) - 1;
else temp.x = nint(x) + 1;
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} //end if
else{
if(nint(x)<x) temp.x = nint(x) + 1;
else temp.x = nint(x) - 1;
} //end else
} //end if
else{
temp.x = nint(x);
} //end else
if(nint(y)%2 == 0){
if(y >0){
if(nint(y)>y) temp.y = nint(y) - 1;
else temp.y = nint(y) + 1;
} //end if
else{
if(nint(y)<y) temp.y = nint(y) + 1;
else temp.y = nint(y) - 1;
} //end else
} //end if
else{
temp.y = nint(y);
} //end else
temp.z = nint(z);
} //end else
return temp;

}

coord find_cm(atom& a, atom& b, double& xb, double& xm, double& yb,
double& ym, double& zb, double& zm){
coord cm;
//should multiply by a.mass and b.mass and divide by sum
if(a.x=b.x > xm) cm.x =
(a.x*a.mass+(b.x+xb)xb.mass)/(a.mass+b.mass);
elseif(b.x-a.x > xm) cm.x =
(b.xxb.mass+(a.x+xb)*a.mass)/(a.mass+b.mass);
else cm.x = (b.xxb.mass+a.x*a.mass)/(a.mass+b.mass);
if(a.y-b.y > ym) cm.y =
(a.y*xa.mass+(b.y+yb)xb.mass)/(a.mass+b.mass);
elseif(b.y-a.y > ym) cm.y =
(b.yxb.mass+(a.y+yb)*a.mass)/(a.mass+b.mass);
else cm.y = (b.yxb.mass+a.y*xa.mass)/(a.mass+b.mass);
if(a.z-b.z > zm) cm.z = (a.z*xa.mass+(b.z+zb)*b.mass)/(a.mass+b.mass);
elseif(b.z-a.z > zm) cm.z =
(b.zxb.mass+(a.z+zb)*a.mass)/(a.mass+b.mass);
else cm.z = (b.zxb.mass+a.z*xa.mass)/(a.mass+b.mass);

return cm;
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