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Extracting information from a stack of data is a tedious task and the scenario is no 

different in proteomics. Volumes of research papers are published about study of various 

proteins in several species, their interactions with other proteins and identification of protein(s) 

as possible biomarker in causing diseases. It is a challenging task for biologists to keep track of 

these developments manually by reading through the literatures. Several tools have been 

developed by computer linguists to assist identification, extraction and hypotheses generation of 

proteins and protein-protein interactions from biomedical publications and protein databases. 

However, they are confronted with the challenges of term variation, term ambiguity, access only 

to abstracts and inconsistencies in time-consuming manual curation of protein and protein-

protein interaction repositories. This work attempts to attenuate the challenges by extracting 

protein-protein interactions in humans and elicit possible interactions using associative rule 

mining on full text, abstracts and captions from figures available from publicly available 

biomedical literature databases. Two such databases are used in our study: Directory of Open 

Access Journals (DOAJ) and PubMed Central (PMC). A corpus is built using articles based on 

search terms. A dataset of more than 38,000 protein-protein interactions from the Human Protein 

Reference Database (HPRD) is cross-referenced to validate discovered interactive pairs. A set of 

an optimal size of possible binary protein-protein interactions is generated to be made available 

for clinician or biological validation. A significant change in the number of new associations was 

found by altering the thresholds for support and confidence metrics. This study narrows down 
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the limitations for biologists in keeping pace with discovery of protein-protein interactions via 

manually reading the literature and their needs to validate each and every possible interaction.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Extracting information from a stack of data is a tedious task and is an issue that 

researchers face in the field of proteomics, which is the study of protein structures, functions and 

establishment of interactions among proteins. Volumes of published research papers document 

the progress and development about various genes and gene products in several species. This has 

been possible with the advent of an array of biological and computational techniques including 

multidimensional protein identification technology (MudPIT), protein microarray technology, 

and mass spectrometry [1], protein chips, and two-hybrid systems [2]. It is possible now to map 

the entire genome of a species within a time range from weeks to months [3]. Not only do the 

experiments produce a large result dataset, but they also contribute in consuming a large amount 

of time for biologists to manually sift through the data to identify interesting information.  

Biologists are in search of identifying the gene expression patterns, such as which genes 

are expressed or suppressed during onset of a specific disease or in specific cell growth cycle, 

finding out which pair of genes or proteins interacts during biological processes to better identify 

possible biomarkers for diseases and drug discovery.   

Apart from publishing results in papers, there has been a steady pace in creating 

biomedical databases, capturing protein-protein interactions and even genome data of several 

species such as the mustard weed (Arabidopsis thaliana) [4], yeast (Saccharomyces cerevisiae) 

[5] and human [4,6]. Some inherent challenges with these large biomedical databases are that 

they need to be:  

• Scalable – Manual curation cannot be at par with the rate at which the results are 
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being generated  

• Evolution – Results or associations documented would cease to be complete and 

consistent with the passage of time  

• Annotator agreement – It is highly unlikely that two curators agree on manually 

curated results, notwithstanding the vast nomenclature formats used by biologists 

themselves [7] 

It is a challenge in itself for a biologist to keep abreast of the developments by reading through 

the literature or querying for results from a database.  

A simple search on Google Scholar using the search term “protein-protein interactions” 

gives more than 900,000 articles excluding patents. A more specific search for a protein 

associated with breast cancer, HER-2 (human epidermal growth factor receptor 2), returns a 

search result of more than 135,000 articles on Google Scholar. A synonym of the above protein, 

ErbB-2, retrieves more than 50,000 articles. The sheer number of publications limits the effective 

use to extract meaningful information. Hence, there has been a growing relevance on literature-

mining tools by researchers. Several tools have been developed by computer linguists to assist in 

the identification, extraction, and hypotheses generation of proteins and protein-protein 

interactions from biomedical literature and protein databases.  

However, in most cases, access is limited to only abstracts of these papers. Additionally, 

there are innate differences between conventional text mining methods and those when applied 

to biomedical literature – where authors use scientific jargon, non-standard terms and structures, 

and differences in naming conventions followed to refer a gene or gene product [8]. Employing 

text mining methods on full text articles helps identifying a broader list of associations that 

researchers wouldn’t gather from 20 lines of abstracts alone. Moreover, using full text articles 
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make it possible to extract secondary relations or supporting data associations mentioned in the 

article that abstracts might not include. The importance of including such supporting data lies in 

the fact that they may be keys for bridging two sub-classes of research that scientists might 

generally overlook. The challenges are further aggravated by the fact that rigorous efforts are 

needed from non-specialist users to integrate existing tools for clinical evaluation to achieve 

standardized formats or even machine compatibility [9]. 

As discussed in [130], extraction of protein-protein interaction from literature is the one 

of the most studied research areas in biomedical text mining. One of the significant aspects of 

this research is to address the aforementioned challenges by extracting protein-protein interaction 

and elicit possible interactions using associative rule mining of full text articles available 

publicly from biomedical literature databases such as Directory of Open Access Journals (DOAJ) 

and PubMed Central (PMC). A comprehensive compilation of possible binary protein-protein 

interactions generated using apriori algorithm for association rule mining is presented. A better 

realization of the methods is made possible by using captions from figures that are very specific 

to elaborate relations or definitions. Another aspect of this research is to validate the possible 

associations against a publicly available dataset of protein-protein interactive pairs. Known 

interactions are removed and a new set of interactive pairs are elicited, which are later made 

available for biological validation. In other words, the goal is not only identification of all 

possible implicit associations, but also to generate a set of optimal size of unknown associations 

that would be manageable for biological validation. This research presents a simple but efficient 

way of narrowing down the limitations for biologists in keeping pace with the discovery of 

protein interactions and their need to validate each and every possible interaction found in 

research articles or datasets. 
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The rest of this chapter provides a brief overview of some of the key steps in text mining. 

Section 1.2 gives an overview of the biological entities and biomarker discovery in biomedical 

parlance. Section 1.3 elaborates on related information retrieval methods. Once the articles are 

retrieved, the next crucial step is to identify all the instances of an entity that are of interest, 

which will aid in extracting relationships and other information related with the entity. Section 

1.4 introduces information extraction using named entity recognition and relationship extraction. 

Section 1.5 offers a brief discussion about text mining, in particular association rule mining. 

1.2 Genes, Proteins and Biomarker Discovery 

The gene, as we know, is “the basic unit of heredity in a living organism” [10]. And gene 

products are the resultants of gene expression in the form of RNA or proteins. “How much of a 

gene product” is used to determine the nature of a gene? A biomarker is an indicator used to 

measure the presence or stage of a disease. Discovering biomarkers is essential to understanding 

the effectiveness of a drug therapy for a specific disease treated as proteins are mostly affected 

by diseases [11]. Disease-based biomarkers include oncogenes such as p53 for cancer, LDL for 

hypertension and cholesterol for heart disease [12]. Like many other systems, biological systems 

are not devoid of interactions; in particular, we are interested in protein interactions, which 

determine role in biological processes including cell signaling, diseases (e.g. cancer), and 

mutative action on another protein. Methods such as mass spectroscopy and immuno-

histochemical staining [1] are used to discover novel biomarkers in a clinical environment. With 

the availability of computational linguistic tools, much research has focused on biomarker 

discovery using text mining from online sources of publications [99]. This research translates 

gene and gene products as entities that need to be identified and extracted from the biomedical 

corpus generated from DOAJ and PMC.  
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1.3 Information Retrieval    

Information retrieval (IR), the first step in any literature mining process, involves 

retrieving relevant documents from a database based on search terms or keywords provided by 

the user. In most cases, the retrieved documents are ranked in order of relevance to the query 

term(s). Mostly successful methodologies to implement an IR are the Boolean model and vector 

space representation model. 

1.3.1 Boolean Model 

       Boolean model is a simple IR-model based on set theory, in which queries are specified 

as Boolean expressions, such as ‘AND’ or ‘OR’, and thus allow the user to retrieve relevant 

documents pertaining to the combination of query terms specified. However, the Boolean model 

does not support partial matching of terms, and only straight-forward queries can be formulated 

by users using logical expressions. Another disadvantage is that there is no ranking of retrieved 

documents, resulting in either too few or too many documents. 

1.3.2 Vector Space Model  

In the vector space model, each document is represented as a term vector. Binary or non-

binary weights are assigned to these term vectors. Non-binary weights accommodate for partial 

matching of terms too. The weights are determined using term frequency (TF) within a document 

as well as the inverse document frequency (IDF). Thus, in this vector space, both queries and 

documents are represented as weighted vectors and are used to compute the degree of similarity 

between the document and the query. Cosine similarity measure is a common metric used to 

compute similarity between documents. 

1.3.3 Information Retrieval Systems 

Ad hoc information retrieval systems include general-purpose search engines such as 
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Google and AltaVista, and biomedical systems (domain-specific) such as PubMed. PubMed 

system of the National Library of Medicine was the first major resource for online biomedical 

publications [13]. It comprises more than 19 million citations for biomedical articles from 

MEDLINE and life science journals. A list of information retrieval systems is summarized below 

in Table 1.1. 

TABLE 1.1 

LIST OF INFORMATION RETRIEVAL SYSTEMS 

IR system Description 

EBIMed [100] retrieves abstracts from Medline 
GoPubMed [43] knowledge based search engine for biomedical literature [101] 
Google Scholar [102] search portal for scholarly literature; ranked results based on term 

weights, publisher date, author and number of citations 
CrossRef [47] links citations across publishers using DOI 
XplorMed [46] retrieves association between words from an input set of Medline 

abstracts  

This research utilizes the publicly available archives of life science journals such as 

PubMed Central (PMC) and Directory of Open Access Journals (DOAJ).  

The PMC system is maintained by National Institutes of Health’s (NIH) National Center 

for Biotechnology Information (NCBI). PMC allows complete and free access to the full text of 

the journal articles using a search interface and through “E-Utilities.” The latter is a collection of 

programming utilities that allows retrieval of articles including abstracts, full texts, and citations 

to a query term in user requested formats, such as SGML and XML. One major reason to use 

PMC is its role in aggregating data from diverse sources and storing the information in one 

retrievable format [14]. An inherent problem with biomedical domain such as proteomics is the 

large set of synonyms – other common words used to describe the same concept – for biological 

entities such as genes and proteins. This might result in missing key or relevant publications if 
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query term disregards the related terms or synonyms. PubMed system handles this problem by 

query expansion of the search terms using biological thesauri, stemmed tokens and list of 

synonyms and abbreviations [9]. 

DOAJ was created with the goal towards increased user access to publications in various 

“scientific and scholarly journals.” DOAJ currently has a repository of more than 350,000 

articles on various sciences. It encompasses literature even from non-English journals. However, 

the scope of this research focuses only on biomedical literature in English. Almost all the 

publications are available in both pdf and html format. This research uses the articles in html 

format for text processing, while the pdf articles are downloaded for future use. DOAJ comprises 

about 4868 journals, out of which 182 journals are related specifically to biology and life 

sciences [15].  

1.4 Information Extraction    

Information extraction (IE) is one of the vital steps in the text mining process. Simply 

stated, it involves two steps: first, identification of the entities of interest; and secondly, the 

extraction of relationship between a pair of entities of given type.  

1.4.1 Entity Recognition 

 It is a concept borrowed from natural language processing (NLP), where it is known as 

“semantic tagging” or “named entity recognition” (NER). The objective is to recognize all the 

“instances of a name for a specific type of entity,” where the entities are names of genes and 

proteins. Instances of an entity name would mean synonyms, abbreviations, expansions and other 

gene or protein names for that particular entity in question. The principal motivation for entity 

recognition is that it forms the first step to identify the gene and protein names considering all its 

variants and being able to represent them in a standard format to extract relationships from text 
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corpus [17]. It is known that there is an “average of 5.5 different names for every gene of a 

human being” [7].  

 Entity recognition is a mapping mechanism of biological concepts and terms in the text. 

Genes and proteins can be mentioned in the text articles either as full names (human epidermal 

growth factor receptor 2) or as acronyms (ErbB-2) [23]. This identification is challenged by the 

absence of a complete dictionary for most types of genes and proteins. Effectiveness of a simple 

or approximate word matching to detect typographical variations, such as Erbb2 or ERBB-2, 

varies across entities [17]. Although there are standard naming conventions for gene and protein 

nomenclature, authors tend to use deviant patterns to highlight a particular gene or protein 

function [7]. For example, in [21], authors identify yeast genes “SRC1 and YDR458C as HEH1 

and HEH2 to indicate the helix-extension-helix structure” of the yeast.  

 With increasing research catering only to identification of entities, several dictionaries 

have been compiled with almost all the known variations and abbreviations for genes and 

proteins. These dictionaries are mapped to the ontological concepts, which help to identify the 

relevance of the term from text. Examples of such ontologies are GO [18], HUGO [19] and 

UMLS [20]. They provide downloadable versions of gene and protein names along with unique 

identification numbers available in different formats. Most of these databases or files are updated 

on a regular basis to add, delete or update the concepts and descriptions about entities.  

 Another challenge in entity recognition is term variation. Term variation stands for 

expression of a term or concept in number of ways. Several biological entities have different 

names or synonyms. For example, ErbB-2 and HER2 indicate the same biomarker protein 

associated with breast cancer. About 33% of the term occurrences are variants, which mean there 

are many terms that indicate the same entity [22].  
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 Several strategies to recognize entities of interest include lexicon-based methods, manual 

or automatic rule-based methods [17], machine learning techniques [2] or a combination of them. 

So, the result of entity recognition is a set of tags assigned to each term indicating the type or 

nature of entity, similar to the concept of part-of-speech (POS) tagging. An elaborate discussion 

about the methods used for entity recognition is mentioned in Section 2.2 of Chapter 2. 

1.4.2 Relationship Extraction 

This second step in information extraction deals with extracting the relationship between 

a pair of entities. In other words, relationship extraction methods identify structures from the text 

that contain the biological entities or terms using tagging, concept sets and pattern templates 

devised manually or automatically [2]. The nature of relationships can be very general, such as 

biochemical association of CD45 with the T cell receptor, or very precise associations, such as 

regulatory relationships (e.g. regulatory function of Ndd1, a cell-cycle regulator, on Mcm21, a 

kinetochore protein, during normal cell growth [24]).  

One focus of relationship extraction is the detection of protein-protein interaction from 

literature. The extracted information is usually validated by the biologist in task. In most cases, 

the information is manually curated before being stored in a gene-protein interaction (GPI) 

database. Other examples of types of relationships include molecular interactions of proteins, 

conceptual relationship among diseases, genes and ontology terms, dedicated associations with 

protein phosphorylation and so on [9]. Different strategies are employed to extract relationships 

entities and are discussed in Section 2.3 of Chapter 2.  
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A list of information extraction systems is summarized in the following Table 1.2.  

TABLE 1.2 

LIST OF INFORMATION EXTRACTION SYSTEMS 

IR system Description 

iProLink [103] uses protein name dictionaries, protein ontology and tagged 
corpora 

PubGene [104] search Medline abstracts; identifies interactions using co-citation 

ABNER [105] statistics based machine learning named entity recognition system 

GAPSCORE [54] computes a numeric score to assign entity name to a term 

AliasServer [106] handles multiple aliases that are used to identify proteins 

Abbreviation Server 
[107] 

handles multiple abbreviations to identify genes or protein names 

 

1.5        Text Mining    

            The term “text mining” has become one of the most ubiquitous term in the field of 

biomedical natural language processing (BioNLP). Text mining differs from data mining where 

the former finds associations from unstructured data such as text while the latter discovers 

interactions from structured databases such as retail warehouses [35]. A straightforward 

definition would be “the discovery of new, hitherto unknown information by automatically 

extracting associations from diverse sources” [25]. It also is commonly known as “knowledge 

discovery” especially in the field of data mining where hidden information about associations 

among the itemsets in a transaction database is crucial. One application of data mining involves 

retail store transactions. In the field of BioNLP, text mining also is referred to as “hypotheses 

generation.” The name comes from the objective of text mining to infer indirect relationships 

from the already known fact, i.e. to generate a hypothesis. One of the most popular applications 

of text mining in BioNLP is discovery of novel protein-protein interactions. 
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1.5.1 Importance of Text Mining 

Text mining is different from information extraction (IE). The latter is only able to 

extract relationships from text that already has been identified or highlight relations already 

present in the text [2]. Text mining, on the other hand, use the explicit associations extracted 

from multiple sources to infer previously anonymous relationships that are worthwhile to 

investigate [17].   

The proliferation of biomedical literature has resulted in researchers keeping track of only 

a very small research publication and thus, not being even aware of the established results from 

“bibliographically disjointed” fields (topics of interest belonging to two sub areas of research 

domain) [26] to make logical deductions about an inferred association. Contemporary research 

involves cross-over of disciplines that were previously never thought to have any associations. 

There is a high probability that researchers are totally ignorant of the facts from either field [9]. 

The growing urge of researchers to keep pace with latest trends and discoveries in their fields of 

research and the immediate needs to make sense of the piles of data from high-throughput 

experiments compel the importance of text mining [23]. 

1.5.2 Types, Inferences and Evaluations 

 Text mining began out of the idea first postulated by Don Swanson called 

“complementary structures in disjoint literature (CSD)” [27]. This powerful model uses a very 

simple model to discover the hidden relationships from known facts. Swanson proposed “A 

interacts with B, and B interacts with C, therefore A may interact with C” which is now 

famously known as Swanson’s ABC model [28]. Using this model, he found out previously 

unknown relationship between fish oil and Raynaud’s syndrome [29] and role of magnesium 

deficiency for migraines [30] long before both these associations were clinically verified.  
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 Text mining can be classified as using “closed” or “open” framework. In “closed” 

framework, a hypothesis is initially provided by the user and then the literature is mined to 

support this hypothesis. While, in “open” discovery problem, possible hitherto credible and 

undiscovered associations are revealed for a particular entity of interest [9]. 

 Most of the novel relationships discovered might be too superficial or already known to 

be published explicitly, as demonstrated by text mining results on study of yeast interactions. 

This supports the argument to access full text articles than abstracts or citations alone, to know 

whether the implicit association has already been published or not. Another previously stated 

argument for using full text articles is that it helps discover associations even from 

“bibliographically disjointed” areas [9, 26].   

 Generated hypotheses need to be evaluated either manually or by automatic methods. 

Although time consuming, manually reviewing the literature is conducted to evaluate the 

significance and validity of the novel association [17]. Trivial associations can be eliminated by 

validating the results against known data sources encompassing similar types of associations or 

integrating databases that are preferably manually curated [9].  

1.5.3 Association Rule Mining 

 This research presents the implementation of an association rule mining method for text 

mining to detect association among genes and proteins. It is one of the most-popular methods to 

discover relations between various entities in a database.  The problem statement can be defined 

as: “Given a set of transactions T, in a database D, where DT ∈ , find all rules that will predict 

an item’s occurrence based on presence or absence of other item(s) in the transaction.” It is 

usually expressed as an implication: 
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YX →  

where, X and Y are sets of items. The above expression means that a transaction T contains a set 

of items, X, which is likely to contain another set of items, Y. Association rule mining find many 

applications in areas such as “market basket analysis, web usage mining, bioinformatics”  [31] 

and so on.  

 Two metrics that are used to evaluate the newly discovered association rules are support 

(S) and confidence (C). Support of X and Y is defined as the fraction of transactions that contain 

both X and Y; whereas confidence measures how frequently items in Y appear in transactions 

that contain X. Thus, our goal can be narrowed down to finding all rules that have support and 

confidence greater than a threshold specified by the user. The thresholds for support and 

confidence are called minsup and minconf, respectively.  

 A brute force approach would involve listing all possible association rules, compute the 

support and confidence for each rule and discard those rules that are below the threshold values. 

However, this approach is computationally expensive. There are many techniques that are not 

prohibitive for mining association rules. Most popular among them is the apriori algorithm and 

its variations. Apriori algorithm follows a two-step approach: a) frequent itemset generation, 

where all itemsets that have support greater than minsup are considered; and b) rule generation, 

where high confidence rules are generated from each frequent itemset that exceed minconf value. 

Further details about these steps are discussed in Chapter 3. 
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CHAPTER 2 

RELATED WORK 

 There has been significant research in the field of literature mining in the past decade. 

Interestingly, there have been many contributions focusing not only on development of entire 

system for literature mining but also on specific problems from sub-areas involved such as entity 

recognition and relationship extraction. Section 2.1 describes related work in information 

retrieval. Methods employed by researchers for entity recognition and relationship extraction are 

discussed in Section 2.2 and Section 2.3, respectively. A brief overview on contemporary 

methods used for hypotheses generation is discussed in Section 2.4. Systems that integrate 

literature with data from other sources (e.g. experimental datasets and biological databases) are 

discussed in Section 2.5. 

2.1 Information Retrieval 

 Most of the existing systems incorporate vector space model for retrieving relevant 

articles from the database based on the query term provided. Unlike other retrieval systems, 

biomedical information retrieval systems face unique challenges such as term variations, term 

ambiguity and multi-worded term for a particular entity. Solutions include removal of stopwords 

and using thesauri for query expansion. A list of stopwords may be compiled for use in filtering 

out those terms from the articles. A simple search for “ErbB2 role in signal transconduction” 

would retrieve documents from the database containing terms “ErbB2” and “signal 

transconduction” based on tf-idf methods of vector space model. However, there is a greater 

chance that documents containing synonyms of the term “ErbB2” – HER2 – or articles 

mentioning only the expansion of the term would not be retrieved. Moreover, the system should 

be able to understand that “signal transconduction” is a gene ontology term and expand the query 

to retrieve more relevant documents rather matching query terms alone [9].  PubMed is known to 
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use the above techniques in its retrieval system [36-39]. Another major development in 

information retrieval is the study of presentation of the retrieved articles. Migrating from a 

ranked list of retrieved documents as given by Google to improved visualization such as result-

summarization, wheeled or networked display of results have been studied and developed [40-

44]. Examples of the web-based information retrieval systems include E-BioSci [45], XplorMed 

[46], Crossref [47], NPG Search [48]. 

2.2 Entity Recognition 

 There is no contest to the fact that entity recognition is a crucial step for successful text 

mining of the underlying associations [49, 50]. Therefore, it is no surprise that a great amount of 

research in entity recognition is carried out to identify names of genes and proteins from articles 

[17]. Methods to differentiate whether the entity in question is a gene or a protein also are 

studied [9]. However, there is no significant impact on information extraction as there is only a 

narrow line of distinction between genes and proteins as cited in [57-59]. Basically, there are two 

strategies that have evolved for identification of entities – dictionary-based methods and rule 

based methods.  

Dictionary-based methods rely on recognition of terms based on known patterns such as 

presence of letters followed by numbers, terms ending with specific suffixes; or terms which 

match certain biological concepts. Dictionary-based methods also rely upon interpreting 

information from “neighborhood of words” [51]. Building a dictionary of gene or protein names 

thus helps identify entities from free texts. [52] mentions a system that uses a lexicon of names 

and highly frequent terms that appear in conjunction with these names. However, the most-

important challenge is the constant need to revise this dictionary for additions, deletions or 

updates of entity names, which requires curators’ attention for agreement and validation. 

The most-popular identification strategy is employing concepts from natural language 
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processing (NLP), such as parts-of-speech (POS) tagging, or from statistics, such as assigning a 

confidence measure for a term to be of particular type. AbGene [53] is based on modifications of 

Brill-POS tagger, where names of putative genes and proteins are tagged. It also employs 

identification of entities using information from words adjacent to its location. As opposed to 

AbGene, [54] assigns a score to each term in a document based on term morphology and 

boundaries. Machine learning strategies also have been employed for identification of entities 

concurrently with NLP concepts. For example, a hidden Markov model (HMM) was used on 

GENIA corpus and gave a precision of more than 60% [55]. 

2.2.1 Synonyms and Abbreviations 

 It seems highly intuitive to have a gene or protein name synonym list either created 

manually or downloaded from curated databases [60-62]. However, this compiled list would 

soon become incomplete for want of frequent updates or changes available from the databases 

[63-64]. Therefore, automatic strategies have been investigated to extract synonyms from text 

using manual or automated pattern matching rules [65, 66]. Manual and automatic pattern 

matching rules based on position of characters and parentheses in abbreviation compared to 

expanded form [17], statistical determination [67] techniques are used to help identify entities 

expressed in the form of abbreviations. 

In short, entity recognition techniques can be employed to create dictionaries of entity 

names, act as precursor for relationship extraction and be used for “cross-linking literature 

related to genes” [9]. IHOP [56] provides a network of genes and proteins to access abstracts in 

PubMed using hyperlinks and thus, act as web-based tool to bring information under a single 

window.  

2.3 Relationship Extraction 

 One of the most common relationships that biologists like to extract is relation between 
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genes or proteins. These relations are important as they help in “gene expression analysis and 

database annotation” [69]. Stated simply, these relationships give more insights on the functions 

and type of functions among genes and proteins. Some of the strategies used for relationship 

extraction are briefly discussed below: 

• Template-based methods – A template or pattern is created, usually in the form of 

regular expressions, to extract the interactions between entities. Templates can be 

created manually or automatically. Extracting interactions from long sentences by 

pattern matching using manually devised rules [70]; along with complex POS 

rules, syntactic and semantic constraints [71] and on GENIES corpus [72] have 

been investigated. Manually creating patterns for all interactions is unrealistic and 

time-consuming. Hence, researchers have come up with automatically generating 

patterns based on words in the neighborhood of the text containing entities [65- 

66]. [33] describes a dynamic programming algorithm to automatically create 

unique patterns by “aligning relevant sentences” and functional verbs.   

• NLP-based methods – Here techniques borrowed from NLP are employed to 

decompose sentences from text using tokenization, tagging of words and building  

structures such as parse tree [73] and semantic labels [9] from which relationships 

are extracted. NLP methods can be further classified based on the type of parsing 

– Full parsing as in [75, 76] and Partial or shallow parsing as in [77]. Not many 

studies have been able to resolve relationships from multiple sentences – 

anaphora resolution [74]. However, the latter is of less significance as research 

[78, 79] mention that most of the relationships between entities are present in a 

single sentence.  
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• Statistical methods – Co-occurrence is one of the most widely used statistical 

method [81]. It extracts associations by identifying terms that have been observed 

to “co-locate” more than by chance. Although it is a much straightforward way of 

extracting relations, it suffers from following drawbacks – unable to extract 

associations from complex sentences and causality about the relationships [9]. It 

finds greater application in database curation [82].  

[80] describes a system where binary protein-protein interactions are extracted from sentences. 

Some other examples of relationship extraction are finding association between genes or proteins 

and GO codes such as [83] , event of disease [84] and other biological or pathological tasks [85-

87]. 

2.4 Hypotheses Generation 

 Generation of a hypothesis from observations and existing sources of information and 

associations is crucial in a fast, growing field of biology and life sciences. Furthermore, there 

exist inherent challenges in extracting all the implicit relations from the articles themselves for 

need of proper, easy-to-use tools [32]. Therapeutic applications of drugs [88, 89] and biomarker 

discovery are some of the immediate potentials of text mining. 

 Several strategies are used to generate hypotheses. Swanson’s ABC model of association 

discovery uses extensive manual comprehension of literature from diverse backgrounds [35]. His 

research led to the creation of Arrowsmith system [90], which provides a list of words that are 

common to the titles of two literature sets. However, recent trends show interest in automatically 

generating hypotheses from a given corpus or a set of known relationships. Feasibility of mining 

associations NLP techniques such as term frequency, co-occurrence relation between terms are 

demonstrated in [9, 91, 92].  
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Some of the contemporary and available text mining tools are mentioned below: 

TABLE 2.1  

LIST OF TEXT MINING TOOLS 

Text Mining System Description 

LitLinker [108] Use UMLS metathesaurus to identify interesting concepts; employ 
association rule mining 

MANJAL [109] Use information from semantics to extract explicit relationships 

IRIDESCENT [110] Use fuzzy logic to identify new associations; employs multiple 
dictionaries from different sources of knowledge 

 

One of the flip sides of automatic generation of hypotheses is that list of potential 

associations become very large, and hence it is necessary to formulate some evaluations 

strategies. Although time-consuming, a manual search of literature to account for support of the 

novel hypotheses is suggested in [17]. Several evaluation task forces such as knowledge 

discovery and data-mining (KDD) [93] and conference challenges such as BioCreAtIvE (critical 

assessment of information extraction systems in biology) [94] have undertaken many initiatives 

to develop techniques and standards to evaluate various text mining tools [2].  

Apart from discovery of novel relationships, text mining also can help in “assisted 

curation” – management of databases containing gene or protein names, interactions and other 

biomedical terms [95]. GOAnnotator [96] and PreBIND [49] are examples of applications of text 

mining for database curation [7]. 

2.5 Integration Framework 

 There has been rapid interest in bridging the gaps among associated fields of biology and 

computational sciences. One such study is to integrate sources of data from multiple formats into 

a unified framework, which results in a centralized repository of data as well as a one-stop 
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source on which potentially larger set of meaningful and novel associations can be derived [97]. 

It also provides a way to bring researchers working on different models of organisms to connect 

and share or be aware of the discoveries in their sub-areas of research [9]. Some of such studies 

[17] undertaken are summarized in the table below: 

TABLE 2.2  

LIST OF SYSTEMS THAT EMPLOY INTEGRATED FRAMEWORK APPROACH 

System Description 

TXTGATE [111] Information from multiple online databases are integrated to identify 
gene pairs 

PubMatrix [112] A visualization tool to display associations from multiple queries to 
PubMed 

Textpresso [113] A retrieval and mining tool developed for finding gene associations in 
C.elegans (worm) 

 

2.6 Summary 

 It can be observed that most of the existing state-of-the-art systems do not use full text 

articles for relationship extraction and hypotheses generation. Although the current systems 

employ strategies for identification of protein names, they fail to utilize a combination of 

methods to maximize the identification of protein names. A number of methods are available for 

extracting explicit associations from abstracts, but they do not take advantage of those 

associations that are precisely mentioned from captions of figures and experimental results. 

Strategies to produce an optimal sized set of unknown implicit associations that is feasible for 

subsequent clinical validations are not discussed in the literature. This thesis attempts to address 

the above challenges. 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

 This research focuses on identifying novel relationships among genes or proteins from 

publicly available full-text articles using NLP and association rule mining. Figure 3.1 depicts the 

overall structure of this research: 

 

Fig. 3.1 System overview 

Based on search keyword(s), journal databases such as PubMed Central and DOAJ are 

queried, and articles are retrieved in text, html or pdf formats and stored onto a local server. Text 

and images are then extracted from these documents. Implicit relationships between entities are 

discovered using text mining. Information from the images is extracted using techniques 

borrowed from image processing. Evidence for biomarkers or novel associations is hypothesized 

from results of text mining and image analysis. These hypotheses are then submitted to a 

clinician or biologist for clinical validation and verification of results by experiments.  
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Although finding evidence for biomarkers or new pairs of interaction is the ultimate goal 

of this research, biomarker discovery is preceded by a number of intermediate steps. Figure 3.2 is 

a flow chart that presents the various processing steps involved. 

 

Fig. 3.2 Flow chart of processing steps involved for discovery of novel protein interactions 

3.2  Building the Corpus 

 This research limits the task of information retrieval to downloading the corpus. No 

retrieval system based on Boolean model or vector space model is developed. Instead, publicly 

available search tools of PMC and DOAJ are utilized to retrieve articles. The PubMed system 

uses a mixture of both Boolean and vector space models [9], while the type of model used by 

DOAJ is not known or documented. A GUI called “C-Engine” is created to accept the queries 

from the user and pass them to PMC and DOAJ, and a listing of the results from the databases is 
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displayed and downloads the contents of the articles to a local server. This research uses the 

articles in the form of full-text, abstracts, summary and captions from figures inside the articles; 

whereas the state-of-the-art methods rely mostly on abstracts.  

3.2.1 Web-based Search Interface 

 “C-Engine” is a simple user-friendly web based GUI designed to accept terms from the 

user to query PMC and DOAJ databases. Two text boxes are provided to accept query terms for 

which articles need to be fetched from PMC and DOAJ databases. Query terms could be general 

words (such as proteins, biomarkers, and C.elegans), names of proteins (such as ErbB2 and 

Ste4p) or phrases or sentences (such as “yeast cell cycle” and “Nab2p sequence binding”). The 

GUI also provides capability to combine Boolean operators to enhance or limit the number of 

articles returned related to the query terms. Either one or both of these databases can be used for 

retrieval of articles. Once the query terms are submitted using the “search” button, relevant 

articles from PMC and DOAJ are listed along with details of publication such as author, journal, 

year and volume of publication, if available, are provided. 

3.2.2 C-Engine Crawler 

 When query terms are submitted using GUI of C-Engine, a modified web-crawler is 

invoked. A web-crawler [114], also known as spider, bot or robot, is a program that is used to 

gather pages from World Wide Web (WWW) in order to index them for the purpose of search 

engines. Examples of popular web crawlers are Googlebot [115], Msnbot [116] and Yahoo! 

Slurp [117]. Some of the characteristics of a web crawler are that it must ensure that only latest 

web pages are downloaded to disk for indexing. A crawler must be polite and honor the robot 

exclusion protocols, i.e., it should not crawl or index the page if the robot.txt file of the web page 

disallows or excludes the page to be indexed. Most importantly, crawlers must be resilient to 
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avoid loops and malicious pages while indexing the pages from web.  

 A set of seeds that consists of URLs is used as the starting point by the crawler. The 

crawler fetches the page mentioned in the seed-set, extracts the text and links from that page. The 

text contents are downloaded to a separate file while the child links are stored in a data structure, 

such as hash, to be later visited by the crawler. The crawler avoids a page or link visited recently 

to prevent falling into loops. 

 The C-Engine crawler uses DOAJ URL and/or PMC URL as the seed-set, with the URLs 

affixed with the query terms or keywords that were provided by the user from the GUI. Unlike 

general-purpose web-spiders, the C-Engine crawler limits crawling within DOAJ and/or PMC 

web pages. In other words, all web links that do not belong to DOAJ or PMC are not stored into 

the hash data structure, which is used to keep track of the child links. The C-Engine crawler uses 

a LWP package [118] to extract the contents from the web page (including a list of URLs, title, 

author(s), and the year of publishing) pertaining to the relevant articles matching the query term 

given by DOAJ and/or PMC. The crawler then downloads to the local server the articles in the 

available html, pdf or text format. All images are preserved in the folder that stores the same 

name as the article. The entire list of crawled and indexed links is written to a URL file, which 

also indicates the order in which the crawler traversed through the web pages. A history file is 

created to keep track of the articles that are downloaded and used in building the biomedical 

corpus. 

3.2.3 Extraction of Text and Images 

  Articles that are available in the html format are parsed through scripts to extract text and 

images. Pre-processing steps such as removal of SGML tags, special characters (for example, 

forward and backward slashes, brackets, and comparison operators) and multiple white spaces 
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are invoked to extract text contents and store them in a separate file by the name of the article. 

Images are extracted by referencing html tags: <img> and its attributes ‘src’. In the scenario, 

where links contained only partial references such as “protein_signalling.jpg,” the script keeps 

track of the root link and concatenates it with the image file name to recover the complete link 

and retrieve the corresponding image. Both text and images extracted from articles are saved into 

corresponding files of the same name.  

 The files, consisting of only the text contents from their local copies of articles, constitute 

the corpus necessary to identify genes or proteins, extract explicit interactions between the 

entities (genes or proteins) and use them to discover novel associations that form the goal of this 

research. 

3.3 Image Analysis 

 The scope of this thesis does not include analysis of information from images. 

Information from images such as color, texture and shape are employed to find more similar 

images. In the context of the literature mining, the content of biomedical images depicts the 

results of experiments or data in a better way [119]. Locating salient points of interest, localized 

content-based image retrieval are some of the directions in which analysis and processing of 

images have taken shape. Images also are extracted from the articles in html format and stored in 

folders by the name of same articles. 

3.4 Identification of Protein Names 

 As discussed in Chapter 2, one of the critical steps in text mining is to identify entities of 

interest. Unlike financial or news corpus, biomedical publications are plagued by several names 

to represent a concept, and equally large number of acronyms, and variations in how they are 

represented. Methods, such as those mentioned in Section 2.2, are some of the best strategies 
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employed to circumvent the challenges posed by lack of standardized naming conventions. 

Hence, recognizing the entities, such as gene or protein or disease names, is the first of two steps 

in information extraction.  

 Sentences in an article span one or multiple lines. In order to extract associations among 

entities buried in a sentence, it is important to format the file such that each line contains exactly 

one sentence. This is achieved by borrowing a concept from NLP, namely part-of-speech (POS) 

tagging. Section 3.4.1 describes POS tagging and how it uses Lingua-EN-Tagger [120] to 

identify protein names from text. After the words from the text are tagged, manually coded 

template matching is used to split complex or compound sentences into multiple sentences [121], 

which is discussed in Section 3.4.2.  Other strategies that complemented the identification of 

protein names are presented in Section 3.4.3. 

3.4.1 POS Tagging 

 POS Tagging, also known as grammatical tagging or word-category disambiguation 

[122] is defined as assigning parts of speech to words in a text. Its importance lies in the fact that 

it gives large amount of information about a word and neighboring words. Just as parts of speech 

in English language gives insight about the context of the word used, POS tagging is a NLP 

method to infer contextual information about the word by looking at the tags assigned for that 

word. POS tagging is done using a set of tags that corresponds to 50 or more “parts of speech” 

for NLP. POS tagging can be classified into open and closed classes. 

TABLE 3.1 

TYPES OF POS TAGGING CLASSES 

Class 
Type 

Parts of Speech 

Open Noun, Verb, Adjective, Adverbs 
Closed Preposition, Determinant, Pronoun, Conjunction, Aux. Verb, Participle, Number 
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Several algorithms are developed to implement POS tagging. Some of the commonly used 

strategies are summarized below:  

• Rule based tagging – Rule based taggers use a disambiguation rules set that 

mostly is manually written to resolve ambiguities concerning assignment of parts 

of speech to an unknown word. Most rule based taggers have large datasets of 

words and rule sets. An example of a rule based tagger is the EngCG Tagger, 

which has primarily two stages. In the first stage, all possible parts of speech for a 

word are returned. Then, a set of constraints are applied to prune those parts of 

speech that are ambiguous to the current context of the word. 

• Hidden Markov model tagging – Words are assigned appropriate tags depending 

on the probabilistic measures computed. [123] describes it as a “sequence 

classification task,” where the task becomes assigning a sequence of POS tags.  

• Transformation based tagging – It is based on transformation-based learning 

approach, where principles from rule-based and stochastic systems are used. It has 

a rule set that determines what tags are to be assigned to words and also learns 

rules automatically from the data. Most of the TBL taggers need to be trained 

using a pre-tagged corpus. One most widely used TBL tagger is the Brill POS 

tagger.  

3.4.1.1 Lingua::EN::Tagger 

 Lingua::EN::Tagger is a perl module, available from CPAN, that is developed for POS 

tagging.  Parts of speech tags are assigned to the text using POS tag information made on corpus 

available from Penn Treebank project [124]. It’s a statistical based tagger (HMM), and assigns 

appropriate tags based on the tag assigned to the preceding word. By default, Lingua::EN:: 
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Tagger assigns noun tags to unknown words. In short, the tagger can be used for the following 

purposes : 

• A tagged set of text 

• Breaking paragraphs into individual sentences 

• Extraction of all noun and noun phrases 

• Frequency count of all nouns 

• Extraction of maximal noun phrases 

A list of POS tagset is provided below in Table 3.2:  

TABLE 3.2 

LIST OF POS TAGSET USED IN LINGUA::EN::TAGGER 

Tag Parts of Speech 
CC      Conjunction, coordinating                                            
CD      Adjective, cardinal number                                          
DET    Determiner                                                                
EX      Pronoun, existential there                                           
FW     Foreign words                                                            
IN      Preposition / Conjunction                                            
JJ        Adjective                                                                   
JJR      Adjective, comparative                                               
JJS      Adjective, superlative                                                 
LRB     Punctuation, left bracket                                             
LS       Symbol, list item                                                        
MD      Verb, modal                                                               
NN      Noun                                                                        
NNP    Noun, proper                                                             
NNPS  Noun, proper, plural                                                   
NNS    Noun, plural                                                              
PDT    Determiner, prequalifier                                             
POS    Possessive                                                                
PP       Punctuation, sentence ender                                        
PPC    Punctuation, comma                                                   
PPD    Punctuation, dollar sign                                               
PPL     Punctuation, quotation mark left                                  
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PPR     Punctuation, quotation mark right                                
PPS     Punctuation, colon, semicolon, ellipsis                           
PRP     Determiner, possessive second                                   
PRPS    Determiner, possessive                                             
RB      Adverb                                                                     
RBR    Adverb, comparative                                                  
RBS    Adverb, superlative                                                    
RP      Adverb, particle                                                         
RRB    Punctuation, right bracket                                           
SYM    Symbol                                                                     
TO      Preposition                                                                
UH      Interjection                                                               
VB      Verb, infinitive                                                           
VBD    Verb, past tense                                                        
VBG    Verb, gerund                                                             
VBN    Verb, past/passive participle                                       
VBP     Verb, base present form                                            
VBZ    Verb, present 3SG -s form                                          
WDT    Determiner, question                                                 
WP       Pronoun, question                                                     
WPS     Determiner, possessive & question                             
WRB    Adverb, question                                                       

 

3.4.1.2 Methods Used 

 For each article, the text contents are first tagged using Lingua:: EN::Tagger. Unknown 

words such as protein names (e.g., ACK) are assigned noun tags by default. Other entity names 

such as ErbB2 or its variations such as ErbB-2, erbb2 or erbb-2 are assigned adjective tags for 

cardinality (<cd>). With the aid of regular expressions and tags assigned by Lingua::EN::Tagger, 

the text contents of each article are decomposed into individual sentences spanning each line. 

The end result is a collection of documents where each line corresponds to one sentence, and 

each word (including punctuations such as ‘.’,’!’,’?’ and ‘,’) is tagged. 

3.4.2 Processing Non-simple Sentences 

 Depending on the number of occurrences of main and dependent clauses, a sentence can 
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be either complex or compound. Extracting associations among entities, such as proteins, from a 

complex or compound sentence requires complex NLP techniques. However, this need not be the 

case as mentioned in [121, 125]. Rules based on pattern matching and tags assigned to the words 

are used to decompose a complex sentence into two parts. For instance, if parts of a sentence are 

separated by two verbs, the sentence is decomposed into two parts, each having one verb 

connecting them. An example is shown as follows: 

“IL-2 ... stimulating … with the G-CSF granulocyte ... and also stimulates  

GM-CSF interferon gamma ...“ 

This will be split into:  

Sentence 1: “IL-2 ... stimulating … with the G-CSF granulocyte …” 

Sentence 2: “IL-2 also stimulates GM-CSF interferon gamma ...“ 

3.4.3 Recognizing Entities 

 Combinations of strategies have been shown to improve identification of entity names 

[34, 121]. Entity identification uses the following strategies to recognize names of proteins, their 

variations in acronyms and synonyms.  

3.4.3.1 Identification by Word Appearance and Morphology 

 This work considers identification of protein names in the form of abbreviations and 

acronyms. Fukuda et. al. [57] described an exhaustive set of rules to identify protein names and 

their variations. Methods to extract single terms with upper-case and/or lower-case letters, 

numerical values by “core-term extraction method,” are employed in this work. “Core terms” 

generally refer to potential candidates as genes or proteins. Simple regular expressions are used 

to consider qualification such as the presence of “_”, length of the term less than eight characters. 

Heuristics, such as abbreviations, that are highly likely to be enclosed in parentheses also are 
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considered. The above rules are used to trim down the set of terms bearing noun and adjective 

tags (<nn>, <nnp>, <jj> and <cd>). Thus, words which are nouns and adjectives but are not 

essentially names of genes or proteins are removed. 

3.4.3.2 Dictionary of Proteins 

 A local dictionary of protein names and its synonyms for human is created using datasets 

[6] available from a central repository of protein names and functions called UniProt knowledge 

database. The datasets comprise of entries for human chromosomes 1 to 22, X, Y and index of 

human protein with sequence variants. 

Words tagged as nouns and adjectives by Lingua::EN::Tagger are compared against this 

dictionary for faster identification of entity names. Another advantage is that words that were 

missed are captured by this matching of words against protein names in the dictionary. This 

dictionary can be updated for addition or deletion of protein names. It always is recommended to 

keep this local dictionary updated to improve identification of protein names. 

3.4.3.3 Elimination by Comparison 

 Here, common nouns (identified using tags) present in each text document are bumped 

against a standard English lexicon. It uses the heuristic that English lexicons, such as that 

available in “/usr/share/dict/words” folder of UNIX machine, do not contain names of proteins. 

Thus, all non-proper nouns are removed from the list of possible candidates of protein names. A 

global regular expression is used to match words between text and words in UNIX lexicon. Thus, 

using POS tagging and above strategies, almost all protein names and its variations are 

identified.  

3.5 Extraction of Relationship between Entities 

 Relationship extraction among entities helps to understand the nature, type and associated 
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functions of these entities. This work is interested to find out the explicit protein-protein 

interactions from text articles. “A protein’s function can be interpreted by how that protein 

interacts with the multitude of other proteins, which proteins do they mostly interact and 

localization characteristics within a cell. And in most cases, since proteins are the targets of 

attack by diseases and points of interest of therapeutic drug effects against such diseases, protein-

protein interactions are intensely studied” [126]. This work focuses on binary interactions, i.e., 

interaction between two proteins.  

One of the most-common methods used in relationship extraction is using templates 

either manually or automatically created. This work uses a pattern matching rule to identify 

protein-protein interactions. From the previous step of entity recognition, names of proteins have 

already been identified in the texts. In biomedical publications, associations between proteins are 

refereed by a “functional verb” or a “keywords.” There are a host of functional verbs and sub-

classes or synonyms depending on the nature of interactions. For this purpose, a dictionary of 

known functional verbs is created from those available from sources such as Reactome [127] and 

HPRD [128]. 

A set of frequently used functional verbs are listed below in Table 3.3: 

TABLE 3.3 

PARTIAL LIST OF FREQUENTLY USED FUNCTIONAL VERBS 

acetylate, activate, adhere, affect, alter, antagonize, associate, attenuate, augment,... 

impact, impair, inactivate, increase, induce, influence, inhibit, initiate, interact, 

involve,...phosphorylate, potentiate, precede, prevent, produce, promote, raise, 

reactivate,  recognize, recruit, reduce, regulate,... transform, trigger, up regulate 
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 Lines of text are parsed to identify the keywords. In order to avoid difficulties in 

matching, the keywords are stemmed, i.e., broken to their roots, and thus accommodating 

matches for all possible variations of the keywords. For example, any occurrences of words, such 

as activated, activating, activation and activate, will be stemmed to its root and matched. Porter 

stemmer [129] is used for stemming functional verbs. The matched keywords are identified in 

the text articles. Patterns such as [.*protein1.*keyword.*protein2.*] are used to extract lines with 

identified protein names and interaction keyword. Some examples of such associations extracted 

are: 

Bnr1p interacts with Rho4p 

Cdc28 phosphorylates Swe1 

P21 inhibits Cdk2 

P21 inhibits Cdk3 

3.6 Discovering Novel Associations using Text Mining 

 Text mining is employed to find implicit relations between the entities. This work uses 

association rule mining to discover novel associations between two proteins. New rules or 

associations are discovered based on measures of support and confidence. This work uses apriori 

algorithm for implementing association rule algorithm. This section discusses apriori algorithm 

and how it is incorporated to discover novel interactions between proteins. 

 An itemset whose support is greater than or equal to the minimum support threshold is 

called a frequent itemset. One of the key concepts of apriori principle is: “subsets of a frequent 

itemset are also frequent.” This can be mathematically described as the anti-monotone property 

of support. In other words, support of an itemset should never exceed the support of its item 

subsets. The entire problem of association rule mining using apriori algorithm can be 
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summarized in two steps: 

a) Frequent itemset generation, and 

b) Rule generation 

The following explains how to create a frequent itemset using apriori algorithm. 

Step 1: Generate a frequent itemset of length 1 (i.e., 1-itemset). 

Step 2: Using frequent itemsets from step 1, create candidate itemsets of length one more 

than the frequent itemset. 

Step 3: Candidate itemsets having infrequent items of length 1 are eliminated. 

Step 4: Support of each candidate is counted. 

Step 5: Eliminate candidates that are infrequent. 

Step 6: Repeat steps 2 to 6 until no frequent itemsets are identified. 

One of the most computationally expensive steps in the algorithm is counting the support 

for each candidate. Usually the entire database has to be scanned to determine the support of 

each candidate itemset. A hash structure is used to store the candidates and thus, comparison is 

made against hash buckets than each transaction against every candidate. 

 New rules are generated from the frequent itemsets by merging two rules that share the 

same prefix in the rule consequent. Only those rules are kept for which even its subsets have 

higher confidence. Rules that fall below minimum confidence threshold are pruned. 

 A transaction file is created from the list of explicit interactions of proteins. This 

transaction file consists of breakdown of items in a transaction. For example, an interaction such 

as “p21 inhibits Cdk3” is considered as a transaction with items p21 and Cdk3. A frequent 

itemset of length 2 is created. A hash structure is created to store the candidate itemsets. 

Depending on the threshold of confidence, a set of novel associations between proteins are 



 35 

generated. 

3.7 Generating Hypotheses - Strategy 

 One of the most significant attributes of this thesis is using full text articles, along with 

abstracts of articles and captions from figures, to extract explicit interactions between proteins 

and thereby using them to discover possible new protein-protein interactions. The importance of 

this strategy lies in the facts discussed in Section 1.5.2, which is, using full text articles, brings to 

light relationships that are secondary to that particular article, but might be of major importance 

in a sub-class of the same research domain. Thus, it provides a higher probability of finding 

implicit associations among entities that were never thought to interact, had only abstracts been 

used. 

 It is true, that incorporating such large text contents for an article can churn out a 

relatively large set of implicit relations. Also, the likelihood that some of these implicit relations 

are previously known relations or they could be interactions that have no biological significance 

cannot be ignored. In light of these facts, the goal of this thesis is clearly not just to identify all 

possible implicit associations that are precise or biologically significant. On the contrary, the 

methods employed are used to maximize the set of known associations and minimize the set of 

unknown associations that were found by apriori algorithm. In other words, our objective is to 

determine the optimal threshold for support and confidence to achieve a set of manageable size 

of unknown interactions and thus, enhancing feasibility to verify the above implicit associations 

by biological experiments.  
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CHAPTER 4 

EXPERIMENTS AND DISCUSSION 

4.1 Experiments 

 C-Engine is a web interface for entering keywords or query terms to find associated 

protein-protein interactions. Figure 4.1 shows a screenshot of C-Engine. 

 

Fig. 4.1 Screenshot of C-Engine search portal 

The fields “Key1” and “Key2” are used to accept keywords. Again, it is the user’s 

discretion to select the databases from which articles related to the query terms are to be 

retrieved. This thesis uses articles retrieved from DOAJ and PMC databases. Either one or both 

of these databases may be used for retrieval of articles. In all experiments for different query 

terms, the entire list of retrieved articles is used for finding explicit and implicit protein-protein 
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interactions. Once the user submits the query term(s) at the search interface, the C-Engine 

crawler is invoked, which a) produces a list of articles, along with the article name, publication 

date, authors and so on, that are displayed in the result page; and b) downloads the articles in 

html, pdf or text format that is available to the local server. Figure 4.2 is a screenshot of the 

results for a query term. 

 

Fig. 4.2 Screenshot of articles retrieved for a query term 

Four different query terms are identified for the experiments. Each query term is used to 

search and retrieve articles from DOAJ and PMC separately. This is done in order to highlight 

the significance of the number of articles retrieved, the number of explicit associations extracted, 

the number of implicit associations discovered and its effectiveness in addressing problems of 

entity identification by respective search engines of DOAJ and PMC. Similarly, query terms are 
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identified that range from very general (English) words to very specific (protein names as 

symbols) terms, from single-word keywords to multi-word keywords, from cellular pathways to 

terms associated with diseases. Following are the query terms for which articles are retrieved 

from PMC and DOAJ and ultimately, novel relations between proteins are found. 

TABLE 4.1 

LIST OF QUERY TERMS USED FOR DOCUMENT RETRIEVAL FROM PMC AND DOAJ  

protein human protein ERBB2 breast cancer IL2 signaling 

 

C-Engine crawler affixes each of the above query terms to PMC URL or DOAJ URL to 

form the seed-set, which serves as the initial webpage from which contents, such as text and 

web-links, are fetched. The LWP package of the C-Engine is used to extract text and links from 

the webpage. The C-Engine crawler downloads all articles and stores them in the local server. 

C-Engine keeps track of all the URLs for each downloaded article and maintains a log file with 

names of articles that are retrieved for a particular query. Table 4.2 shows the number of articles 

used for biomarker discovery for each query term from PMC and DOAJ. 

TABLE 4.2 

NUMBER OF ARTICLES RETRIEVED FROM PMC AND DOAJ FOR EACH QUERY 

TERM 

Query Term Number of Articles 

PMC DOAJ 

Protein 7000 1213 

Human Protein 10000 554 

ERBB2 breast cancer 2238 38 

IL2 signaling  291 4 
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Although both databases retrieve more number of articles than mentioned above, not all 

articles can be used for successive steps in text mining. This is because the articles retrieved 

includes html, pdf and text formats. Only html formats of articles are used in this thesis for text 

mining. Secondly, the retrieved articles consist of non-English publications. Such articles are 

removed as they do not contribute to the current scope of extracting implicit associations. 

Thirdly, it has been found that some retrieved files are empty. This could be caused by the limit 

posted by servers to control the number of articles fed to an individual IP address. Such practice 

is usually used to avoid malicious network jam. All such empty files are removed to build the 

required corpus of size as shown in Table 4.2. Thus, the number of articles for the query term 

“human protein” is greater than that of “protein” from PMC database is attributed to the reasons 

described above.  

Articles in html format are parsed to extract text and images. SGML tags, multiple white 

spaces and special characters are removed using pre-processing steps in the script. The result is 

the creation of a text file with only text contents for each article. Each word and punctuation 

mark in these texts is then tagged with appropriate POS tags using Lingua::EN::Tagger as a pre-

cursor to identify protein names. The tagged text contents are decomposed into individual 

sentence that span each line.  Figure 4.3 illustrates application of POS tagging on parts of text. 

Words tagged with <nnp> and <cd> are potential names of proteins and are highlighted in 

yellow. 

Complex or compound sentences are split into simple sentences using pattern matching 

rules and assignment of tags to each word. Manually written templates, such as presence of a 

conjunction tag connecting sentences that contain at least two nouns and a verb in each part, are 

used to decompose complex or compound statements. 
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Text containing 

sentences spanning 

multiple lines 

 

FXR and SHP protein abundance was induced by FGF-19 and 

repressed after silencing. FGF-19 treatment led to a reduction in ASBT 

expression, whereas silencing increased ASBT levels. 

Each sentence 

spans one line. 

Each word and 

punctuation marks 

are tagged 

<nnp>FXR</nnp><cc>and</cc><nnp>SHP</nnp><nn>protein</n

n><nn>abundance</nn><vbd>was</vbd><vbn>induced</vbn><in

>by</in><cd>FGF19</cd><cc>and</cc><jj>repressed</jj><in>aft

er</in><vbg>silencing</vbg><pp>.</pp> 

<cd>FGF19</cd><nn>treatment</nn><vbd>led</vbd><to>to</to>

<det>a</det><nn>reduction</nn><in>in</in><nnp>ASBT</nnp>

<nn>expression</nn><ppc></ppc><in>whereas</in><nnp>silencin

g</nnp><vbd>increased</vbd><nnp>ASBT</nnp><nns>levels</n

ns><pp>.</pp> 

Fig. 4.3 Application of POS tagging on parts of text article 

As mentioned in Section 3.4.3, a collection of methods is used to maximize identification 

of protein names that are in the form of symbols or acronyms. Rules set by Fukuda et. al. [57] for 

identification of protein symbols or acronyms are used to trim down list of words bearing noun 

and adjective (cardinal) tags. Thus, nouns or adjectives that are not names of proteins are 

removed. A dictionary of human protein names and their synonyms is created from datasets 

available from UniProt. A lexical order of proteins for human chromosomes 1 to 22 and sex 

chromosomes (X and Y) are maintained locally, which may be edited or updated at regular 

intervals. This protein dictionary is created using datasets available from UniProt that were last 

updated on 23rd of March, 2010.  Protein names, such as FOR, IMPACT, HIS and NOT, that 

represent common English words, are deleted. Although such protein names are very few, they 

are removed to avoid ambiguities in extracting associations from text. Thus, this local protein 
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dictionary comprises of 19176 protein names (including their synonyms). Figure 4.4 shows a 

part of the protein dictionary used in the experiments. 

 

Fig. 4.4 Sliced view of the protein dictionary containing protein names and their synonyms 

All words from the text that match with entries in the local protein dictionary are 

identified as protein names. In addition to those words labeled with noun or adjective tags, words 

recognized by the “elimination by comparison” method also are used for matching against the 

protein dictionary. The latter consists of those nouns that are not eliminated by comparison 

against an English lexicon, such as that available in the “/usr/share/dict/words” folder in UNIX 

systems. As a result, all protein names present in those articles are identified. 

Binary protein-protein interactions, such as “P21 inhibits Cdk2”, are extracted from the 
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text using template-based pattern matching. For this purpose, a list of functional verbs or 

keywords, such as activate, adhere, affect, inhibit, interact and regulate, is created from sources 

such as Reactome and HPRD. Porter stemming is used to decompose occurrences of all 

variations of functional verbs (e.g. inducing, induced) into its root. Patterns, such as presence of 

a functional verb between two protein names that are identified, are used for extracting binary 

interactions. Table 4.3 shows a list of explicit associations extracted from text articles for the 

query term “ERBB2 breast cancer”.  

TABLE 4.3 

LIST OF EXPLICIT PROTEIN-PROTEIN INTERACTIONS FOR QUERY TERM “ERBB2 

BREAST CANCER” 

Article : Modeling ERBB receptor-regulated G1S transition to find novel targets for de 
novo trastuzumab resistance  
 
CDK2 increase CDK4 
EGF signaling AKT1 
ERBB2 activate AKT1 
ERBB2 resulted EGFR 
CDK4 targeting MEK1 
ERK1 targets ERBB1 
ERBB2 resulted EGFR 
ERBB2 potentiates KIP1 
 
Total interactions found: 8 
Article : Site-specific relapse pattern of the triple negative tumors in Chinese breast 
cancer patients  
 
Total interactions found: 0 
Article : Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and 
regulates erbB2 protein stability  
 
HER2 result ERBB2 
Ren suppresses HER2 
 
Total interactions found: 2 
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A list of all explicit binary protein-protein interactions and the number of articles that cite 

these associations are consolidated. The list of explicit associations is further used to create a 

transaction file, which treats each binary association as items belonging to one transaction. This 

transaction file is the input to discover novel associations between proteins. One of the most 

widely used association rule mining techniques, apriori algorithm, is employed to: a) create 

frequent itemsets of size-2, where all itemsets that have support greater than a threshold; and b) 

generate rules or possible new interactions between proteins using a threshold of confidence 

extracted from articles.  

During candidate itemset generation, a hash structure is used to store the candidate items. 

It serves two purposes: a) an efficient way of storing candidate items; and b) a speedy access and 

faster computation of support for each candidate item than line-by-line comparison for every 

candidate item in each transaction. Size of transaction files varies depending on the number of 

explicit associations that were extracted from articles for each query. Table 4.4 shows a fraction 

of a transaction file.  

TABLE 4.4 

A VIEW OF A TRANSACTION FILE 

Transaction  
File-id 

Entity name 
(Item name) 

1 AHR   
1 ARNT  
2 AHR   
2 AHRR  
3 AHR   
3 ERBB2 
4 AHR   
4 ERBB2 
… … 

184 ERBB1 
184 ERBB3 
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185 FBS   
185 SST   

 

Experiments are run for varying threshold of support and confidence using each query 

term. Tables 4.5 and 4.6 show the number of unknown associations discovered for each query 

term run against PMC and DOAJ databases.  

TABLE 4.5 

NUMBER OF UNKNOWN ASSOCIATIONS FOR EACH QUERY TERM FOR ARTICLES 

RETRIEVED FROM PMC 

Database Used : PMC 
Threshold for Support and Confidence 

(msup – minimum support, 
mconf – minimum confidence) 

Total number of unknown associations  
 

protein human 
protein 

ERBB2 breast 
cancer 

IL2 
signaling 

msup = 1, mconf = 0.5 1247 1484 1125 501 
msup = 1, mconf = 0.75 663 804 670 334 
msup = 1, mconf = 1 632 764 654 331 
msup = 2, mconf = 0.5 290 290 121 43 
msup = 2, mconf = 0.75 83 101 54 20 
msup = 2, mconf = 1 52 61 38 17 
msup = 3, mconf = 0.5 172 171 54 14 
msup = 3, mconf = 0.75 52 57 29 6 
msup = 3, mconf = 1 33 17 13 3 
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TABLE 4.6 

NUMBER OF UNKNOWN ASSOCIATIONS FOR EACH QUERY TERM FOR ARTICLES 

RETRIEVED FROM DOAJ 

Database Used : DOAJ 
Threshold for Support and Confidence 

(msup – minimum support, 
mconf – minimum confidence) 

Total number of unknown associations  
 

protein human 
protein 

ERBB2 breast 
cancer 

IL2 
signaling 

msup = 1, mconf = 0.5 624 560 79 51 
msup = 1, mconf = 0.75 367 332 45 39 
msup = 1, mconf = 1 352 316 42 39 
msup = 2, mconf = 0.5 128 137 18 1 
msup = 2, mconf = 0.75 55 55 6 1 
msup = 2, mconf = 1 40 39 2 1 
msup = 3, mconf = 0.5 67 72 13 0 
msup = 3, mconf = 0.75 29 32 5 0 
msup = 3, mconf = 1 14 16 2 0 

 

4.2  Evaluations and Observations 

 In order to eliminate some of the already known protein-protein interactions from the list 

of implicit associations, a set of binary protein-protein interactions are created from a file 

available from the Human Protein Reference Database (HPRD), version 8, last updated on July 

6, 2009. The set consists of symbols for interacting pairs of proteins. There are 38,088 known 

associations mentioned in this dataset. Table 4.7 shows a slice of the binary protein-protein 

interaction dataset.  

TABLE 4.7 

A VIEW OF PROTEIN INTERACTION PAIRS 

AATF => TSG101 
ABAT => ABAT 
ABCA1 => 
ARHGEF11 
ABCA1 => 
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ARHGEF12 
ABCA1 => DLG2 
ABCA1 => DLG3 
ABCA1 => DLG5 
ABCA1 => GOPC 
… 
… 
… 
ZWINT => MIS12   
ZWINT => ZW10    
ZXDC => NR1H2    
ZXDC => RORA     
ZYG11B => CUL2   
ZYG11B => TCEB1  
ZYX => ACTN1     
ZYX => VASP      
ZYX => VAV1      

 

4.2.1  Evaluating Explicit Associations 

 One of the most-common methods to evaluate an information retrieval task is to compare 

the results against a gold standard. Performance metrics, such as precision, recall and F-measure, 

are commonly used for evaluation in such cases. Precision (P) can be defined as the fraction of 

associations that were relevant. Recall (R) can be defined as the fraction of relevant associations 

that were retrieved. F-measure is defined as the harmonic mean of precision and recall. 

 However, finding performance metrics for this work is extremely hard for the following 

reasons. Firstly, it requires an expert to label all explicit associations present in a retrieved article 

and indicate their relevance. This is a tedious work, and to our best knowledge, there is no such 

reference data available. Therefore, it is not possible to compute recall. Secondly, as mentioned 

in [9], the values for these metrics depend on number of positive samples in the corpus to be 

evaluated. [130] shows different evaluation corpora provides large variation in the performance 

metrics and proves comparison against a tagged corpora yield better evaluation methods. 
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However, a manually tagged corpus for the articles used in this thesis is unavailable. Although 

precision is the fraction of relevant association in the articles retrieved, it may be modified as the 

fraction of explicit associations that found a match in the dataset of binary protein interactions. 

Table 4.8 shows computation of a measure for explicit associations extracted for each query term 

against the HPRD dataset of 38,088 interactions.  

TABLE 4.8 

NUMBER OF EXPLICIT ASSOCIATIONS – EXTRACTED AND MATCHED 

Query Term PMC DOAJ 

  Number of 
Explicit 

associations  
extracted 

Number of 
Explicit 

associations  
matched 

Ratio of 
matched 

associations 
to total HPRD 

interactions 
(%) 

Number of 
Explicit 

associations  
extracted 

Number of 
Explicit 

associations  
matched 

Ratio of 
matched 

associations 
to total HPRD 

interactions 
(%) 

Protein 7320 321 0.84 1054 47 0.12 

Human 
protein 

10918 386 1.01 1055 21 0.06 

ERBB2 breast 
cancer 

3323 144 0.38 91 12 0.002 

IL2 signaling 677 33 0.09 31 2 0.005 

  

Another observation that follows is the time taken to identify protein names in an article. 

While the intermediate steps of text mining are rather efficient (an average of 10 minutes), 

identification of protein names may take hours to complete the step. Table 4.9 shows the 

approximate time taken for protein name identification.  
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TABLE 4.9 

TIME TAKEN FOR IDENTIFICATION OF PROTEIN NAMES 

Query Identification of protein names 
PMC DOAJ 

Time taken Time taken 
Protein ~28 hrs ~8 hrs 
Human protein ~27 hrs ~5 hrs 
ERBB2 breast 
cancer 

~7 hrs ~20 min 

IL2 signaling ~30 min ~2 min 
  

It is straightforward to deduct that larger the corpus, the more time it takes for the step to 

complete. 

4.2.2 Evaluating Associations from Abstracts 

 In order to show the effectiveness of the text mining methods, it is essential to show how 

this method performs on abstracts alone. Abstracts from PMC for the same four query terms are 

downloaded, tagged and listed the number of explicit interactions. Table 4.10 compares the 

explicit interactions identified for the same query terms over the same documents crawled. 

TABLE 4.10 

COMPARISON USING ABSTRACTS AND FULL TEXTS 

Query Term PMC (Full Texts) PMC (Abstracts) 

  Number of 
Explicit 

associations  
extracted 

Number of 
Explicit 

associations  
matched 

Number of 
Explicit 

associations  
extracted 

Number of 
Explicit 

associations  
matched 

Protein 7320 321 188 11 

Human protein 10918 386 251 16 

ERBB2 breast 
cancer 

3323 144 72 8 

IL2 signaling 677 33 7 0 
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 Extending text mining methods on the explicit associations using abstracts, number of 

novel associations for the four query terms can be derived as shown in Table 4.11. 

TABLE 4.11 

NUMBER OF MATCHED AND NOVEL ASSOCIATIONS BETWEEN PROTEINS FROM 

PMC - ABSTRACTS 

Database Used : PMC (Abstracts) 
Threshold for  
Support and 
Confidence 

protein human protein ERBB2 breast 
cancer 

IL2 signaling 

Novel  Matched Novel  Matched Novel  Matched Novel  Matched 

msup = 1,  
mconf = 0.5 266 23 356 24 70 7 14 2 

msup = 1,  
mconf = 0.75 202 18 275 18 56 6 10 1 

msup = 1,  
mconf = 1 198 18 268 15 56 6 10 1 

msup = 2,  
mconf = 0.5 33 4 66 30 22 2 0 0 

msup = 2,  
mconf = 0.75 25 3 47 4 18 1 0 0 

msup = 2, 
 mconf = 1 21 3 40 1 18 1 0 0 

msup = 3,  
mconf = 0.5 12 0 19 3 8 1 0 0 

msup = 3,  
mconf = 0.75 10 0 17 3 6 0 0 0 

msup = 3, 
 mconf = 1 6 0 10 0 6 0 0 0 

 

It can be observed that number of explicit interactions found is significantly less for all 

the four query terms. Moreover, as the query terms become more specific, the number of explicit 

associations using abstracts significantly drops or there are no associations. Hence, it can be 

confidently stated that abstracts are specific and associations extracted from full text articles are 

larger and contain secondary information. 

4.2.3  Evaluating Implicit Associations  

 Bumping the dataset of known associations of interacting pairs of proteins results in 
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eliminating some of the hitherto relations that were identified as novel. Thus, a hypotheses set of 

novel binary protein-protein interactions is generated. Tables 4.12 and 4.13 show the number of 

unknown associations that had a match, when compared against local dataset of known protein 

associations and the number of candidate novel (unknown) associations. 

TABLE 4.12 

NUMBER OF MATCHED AND NOVEL ASSOCIATIONS BETWEEN PROTEINS FROM 

PMC 

Database Used : PMC 
Threshold for  
Support and 
Confidence 

protein human protein ERBB2 breast 
cancer 

IL2 signaling 

Novel  Matched Novel  Matched Novel  Matched Novel  Matched 

msup = 1,  
mconf = 0.5 1195 52 1419 65 1082 43 474 27 

msup = 1,  
mconf = 0.75 639 24 775 29 655 15 317 17 

msup = 1,  
mconf = 1 614 18 739 25 639 15 314 17 

msup = 2,  
mconf = 0.5 266 24 260 30 111 10 39 4 

msup = 2,  
mconf = 0.75 74 9 90 11 53 1 19 1 

msup = 2, 
 mconf = 1 49 3 54 7 37 1 16 1 

msup = 3,  
mconf = 0.5 156 16 149 22 50 4 12 2 

msup = 3,  
mconf = 0.75 44 8 48 9 29 0 6 0 

msup = 3, 
 mconf = 1 19 14 13 4 13 0 3 0 
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TABLE 4.13 

NUMBER OF MATCHED AND NOVEL ASSOCIATIONS BETWEEN PROTEINS FROM 

DOAJ 

Database Used : DOAJ 
Threshold for  
Support and 
Confidence 

protein human protein ERBB2 breast 
cancer 

IL2 signaling 

Novel  Matched Novel  Matched Novel  Matched Novel  Matched 

msup = 1,  
mconf = 0.5 

596 28 540  20 71 8 47 4 

msup = 1,  
mconf = 0.75 

349 18  321 11 42 3 36 3 

msup = 1,  
mconf = 1 

335 17  307 9 39 3 36 3 

msup = 2,  
mconf = 0.5 

123 5 131 6 12 6 1 0 

msup = 2,  
mconf = 0.75 

52 3 53 2 5 1 1 0 

msup = 2, 
 mconf = 1 

38 2 39 0 2 0 1 0 

msup = 3,  
mconf = 0.5 

64 3 67 5 11 2 0 0 

msup = 3,  
mconf = 0.75 

27 2 30 2 5 0 0 0 

msup = 3, 
 mconf = 1 

13 1 16 0 2 0 0 0 

 

4.2.4  Visualization 

 Using visualization tools, such as NodeXL [131], different interactions among proteins 

can be easily identified than comprehension by data alone. Another advantage of using 

visualization tools is that it brings out the hidden network of interactions that would have been 

difficult to observe otherwise.  Also, it can be used as a method to evaluate some of the novel 

interactions found using text mining.  

 Several visualizations of protein interactions for the query terms “ERBB2 breast cancer” 

are created and evaluated. Figures 4.5 and 4.6 show the network of explicit protein-protein 

interactions for the query term “ERBB2 breast cancer”. The red points indicate unique proteins 
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mined for the above search term and the black lines indicate the interaction among those 

proteins. Irrespective of different shapes of the network model, it is observed that the network is 

highly complex to comprehend and decipher hidden interactions. 

 

Fig. 4.5 Network of explicit protein-protein interactions for query – ERBB2 breast cancer 
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Fig. 4.6 Another visualization of explicit protein-protein interactions for ERBB2 breast cancer 

Despite the complex view of the protein-protein interactions, there is not much 

information can be gathered from the above networks, except for the fact that most of the 

interactions among proteins limited to the center. A network of explicit protein interactions but 

with degree of freedom equal to 3 and above is shown in Figure 4.7. Degree of freedom is the 

number of interactions a protein has with other proteins. Biomarkers for breast cancer ERBB2 

and its synonym HER2 are shown as solid yellow diamonds. 
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Fig. 4.7 Network of explicit interactions with limited degree of freedom 

Figure 4.8 shows the network of ERBB2 and HER2 and shows the effect of term 

variations in biomedical literature. An interesting observation is found when all the interactions 

for proteins ERBB2 and HER2 are mapped. Although ERBB2 and HER2 refer to the same 

entity, it is observed that some of the proteins are found to have correlation only with ERBB2 or 

HER2 alone and remaining proteins have been correlated with both the synonyms. It is possible 

that this visualization provides an insight into interacting pairs that were not identified earlier 

with breast cancer.  
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Fig. 4.8 Network of ERBB2 and HER2 – case of synonyms 

Another visualization of the network of ERBB2 and HER2 proteins validates the above 

inference. Figure 4.9 shows a different network of both synonyms. 
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Fig. 4.9 Another visualization of ERBB2 and HER2 network – case of synonyms 

Different types of networks can be obtained through visualization tools. A grid structure 

is used here to demonstrate the effectiveness of the text mining methods. Below is a grid network 

of interacting proteins for the query term  “ERBB2 breast cancer” and the novel interactions 

identified using text mining are mapped onto this network. The goal is to back trace the hidden 

or novel associations using the grid network. Figure 4.10 shows the grid network of interacting 

pairs with novel associations marked in red. Biomarkers ERBB2 and HER2 are shown as solid 

red diamonds. 
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Fig. 4.10 Grid-network of explicit protein-protein interactions 

 In order to reduce the complexity of the network, a grid network of proteins with degree 

of freedom greater than or equal to 3 is shown in Figure 4.11. 
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Fig. 4.11 Grid-network with reduced degree of freedom 

A grid of novel association among proteins alone is shown in Figure 4.12. Upon this network, 

explicit interactions are back tracked step by step as shown in Figures 4.13, 4.14 and 4.15. 

Finally, a network of interest is identified and verified for its novelty. 
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Fig. 4.12 Grid-network with only novel associations 
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Fig. 4.13 Grid-network – tracing explicit associations 1 
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Fig. 4.14 Grid-network – tracing explicit associations 2 
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Fig. 4.15 Grid-network – tracing explicit associations 3 

 

Following figures 4.16 and 4.17 are examples of types of networks of interested 

identified combining explicit and implicit associations among proteins of interest. 
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Fig. 4.16 Extracting network of interest 1 

 

 

Fig. 4.17 Extracting network of interest 2 

Another advantage of using visualization is to validate generated hypotheses using an 

extension of Swanson’s ABC model [27]. Consider the generated hypothesis: ACE => HER2 as 

observed in Figure 4.14. Using Swanson’s ABC model, it can be validated as follows: 

ACE     => AGTR2 [Proof: Entry in HPRD binary protein interactions database] 

 AGTR2  => ERBB3   [Proof: Entry in HPRD binary protein interactions database] 

 ERBB3  =>  ERBB2  [Proof: Entry in HPRD binary protein interactions database] 

 ERBB2  =   HER2      [Proof: Synonym] 

Hence, the novel hypothesis is valid.  

Consider another example of a generated hypothesis: ACK1 => EGF as observed in Figure 4.15. 

Using Swanson’s model, it can be validated as follows: 

 ACK1  =   TNK2 [Proof: Synonym] 

 TNK2  => EGFR [Proof: Entry in HPRD binary protein interactions database] 

 EGFR  => EGF [Proof: Entry in HPRD binary protein interactions database] 
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Hence, the novel hypotheses are valid.  

4.3  Discussions 

 Figures 4.18 and 4.19, generated from the above tables, show the variation in the number 

of unknown associations by varying support thresholds for transaction file generated for each 

query term. The red bar indicates the number of associations that are identified as already known 

interactions, with varying thresholds for support and confidence. 
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a) Database Used : PMC 

 

Support-confidence-number of associations  Support-confidence-number of associations 
 

for query term “protein”     for query term “human protein” 
 

   

Support-confidence-number of associations  Support-confidence-number of associations 
 

for query term “ERBB2 breast cancer”  for query term “IL2 signaling” 
 

Fig. 4.18 Support-confidence-association rule plots for different query terms (PMC) 
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b) Database used : DOAJ 

  

Support-confidence-number of associations  Support-confidence-number of associations 
 

for query term “protein”   for query term “human protein” 

  

Support-confidence-number of associations  Support-confidence-number of associations 
 

for query term “ERBB2 breast cancer”  for query term “IL2 signaling” 
 

Fig. 4.19 Support-confidence-association rule plots for different query terms (DOAJ) 
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TABLE 4.14 

DECREASE IN NUMBER OF UNKNOWN ASSOCIATIONS WHEN MINSUP CHANGES 

FROM 1 TO 2 

Query Term Number of unknown associations 

PMC DOAJ 

minsup = 1 minsup = 2 minsup = 1 minsup = 2 

Protein 639 74 349 52 

Human protein 775 90 321 53 

ERBB2 breast cancer 655 53 42 5 

IL2 signaling 317 19 36 1 

 

 

 

         

Fig. 4.20 Number of unknown associations for general query against specific query term  
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TABLE 4.15 

DECREASE IN NUMBER OF UNKNOWN ASSOCIATIONS WHEN MINCONF CHANGES 

FROM 0.5 TO 0.75 

Query Term Number of unknown associations for minsup = 1 
PMC DOAJ 

minconf = 0.5 minconf = 0.75 minconf = 0.5 minconf = 0.75 

Protein 1195 639 596 349 
Human protein 1419 775  540  321 
ERBB2 breast cancer 1082 655 71 42 
IL2 signaling 474 317 47 36 

 

The following can be observed from the experiments and above graphs: 

• The larger the corpus of articles to be mined, the bigger the number of unknown 

associations extracted. A significantly larger number of articles are retrieved from 

PMC than DOAJ, thereby having less number of unknown associations for DOAJ 

compared to PMC for the same query term. This seems advantageous as it 

provides a smaller set for clinical validation. However, there are no novel 

associations found for “IL2 signaling pathway” when articles are retrieved for 

higher support thresholds from DOAJ. Therefore, there is a trade-off in choosing 

the size of the corpus. 

• The number of novel associations is very sensitive to changes in threshold of 

support than that of confidence. Table 4.14 shows there is an average of 10-fold 

decrease in number of unknown associations when threshold for support is 

increased from 1 to 2. This can be attributed to the large number of explicit 

associations (almost 70%, when considering articles from PMC) that have a 

support count equal to 1, i.e., such interactions are mentioned in only one article. 
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Hence, greater the support, explicit associations that are rarely mentioned may be 

avoided and thereby reducing the set of novel associations to a smaller size. 

• There is a significant drop of nearly 50% (Figure 4.20) in the number of unknown 

associations when the query terms used are very specific to cellular pathways or 

diseases. 

• There is almost 50% (Table 4.15) decrease in the number of novel associations 

when confidence is increased from 0.5 to 0.75. However, there is less or no 

prominent change in the number of such associations when confidence is 

increased from 0.75 to 1. This would seem a very crucial observation when users 

need to set confidence threshold for a pre-determined threshold of support. 

• Although the number of known associations eliminated from the list of unknown 

associations seems to be small compared to the novel interactions generated, they 

prove to be benchmark for selecting optimal thresholds for support and 

confidence. Appropriate thresholds for support and confidence will enable to 

generate an optimal set of unknown interactions of manageable size for clinical 

validation and maximize the likelihood of at least some of them being biological 

significant. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 Based on the search terms provided at the C-Engine web portal, the crawler successfully 

downloads all articles in html, pdf or text formats from publication databases, such as PMC and 

DOAJ, to the local server. Effective identification of protein names in form of symbols or 

acronyms is made possible by employing a combination of strategies such as Fukuda rule sets, 

referencing a dictionary of protein names that is maintained locally, and elimination of words 

(non-proper nouns) that are present in English lexicon. Once the proteins are successfully 

identified from the text, manually devised templates are used for pattern matching along with a 

list of functional verbs, to extract binary protein-protein interactions from text. The list of 

explicit protein associations are used to create a transaction file that is used as input for 

association rule mining by apriori algorithm. Depending on the thresholds of support and 

confidence, the number of implicit associations varies. This list of hypotheses on associations 

can be reduced by eliminating known interactions from it. Since our objective is to elicit novel 

protein-protein interactions, the generally large set of implicit associations can be trimmed down 

by choosing an optimal value for minimum support and confidence, for a particular query term. 

Thus, a manageable set of novel relations are obtained, which can be validated in biology 

laboratories. 

The following can be concluded from this research work: 

• This thesis demonstrates the effectiveness of using full text articles, abstracts and 

captions from figures as opposed to other existing methods where only abstracts 

of articles are employed for explicit and implicit association discovery.  
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• It increases the likelihood that associations from the same or different sub-classes 

of research are discovered. All datasets, such as protein dictionary, function verbs 

list and binary protein interaction file, are able to identify maximum number of 

proteins and their interactions.  

• From the experiments, it can be learnt that the number of implicit associations 

generated are more sensitive to changes in thresholds for support than confidence. 

Hence, it can be concluded that most of the query terms in experiments gave a 

manageable size of novel associations for combination of minimum support at 1 

and minimum confidence at 0.75 and minimum support at 2 and minimum 

confidence at 0.5. 

• Visualization techniques provide insights into nature of interactions that are 

usually not identified by tabular representation of data alone. Backtracking 

explicit associations from novel associations show the novelty of these implicit 

associations. 

 With subsequent laboratory validation of unknown associations from these optimal sets, 

it is possible that a hitherto anonymous relation could prove as an evidence for biomarker. This 

biomarker discovery would be very helpful to understand the effectiveness of a drug therapy for 

disease and so on. 

5.2 Future Work 

 One important challenge in methodology, especially in entity identification, is the time 

taken to scan the entire corpus and recognize the protein names. And, it is not advisable to 

locally store multiple copies of the same article refereed by multiple queries. Also, it is a waste 

of space by storing multiple copies of locally tagged files, list of proteins identified and so on. A 
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solution could be using the history file to find out if that particular article has been stored, tagged 

its entities identified, relationships extracted or not. 

 Another possible extension of this work is to identify expansion of protein names along 

with symbols or acronyms for larger identification of entities and relationship extraction. 

Manually or automatically tagged corpora of full text articles could be used for text mining, and 

it helps in better evaluations of the entire system. A strict adherence to standardized 

nomenclature of protein names henceforth could ease the challenges in entity identification. 

Automatic template generation is suggested for extracting associations from sentences that have 

multiple phrases connecting the entities. A visualization tool would better help demonstrate 

pictorially the implicit associations from a network of explicit interactions. 

 Finally, it is the collective participation of biologists, computer linguists and database 

curators that would bring far-reaching changes in highly potential field of biomarker discovery 

and validation.  
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