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Background—Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but
torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and
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increased cardiovascular events. Whether the hypertensive effect resulted from CETP inhibition or an off-target action of
torcetrapib has been debated. We hypothesized that common single-nucleotide polymorphisms in the CETP gene could help
distinguish mechanism-based from off-target actions of CETP inhibitors to inform on the validity of CETP as a therapeutic
target.

Methods and Results—We compared the effect of CETP single-nucleotide polymorphisms and torcetrapib treatment on lipid
fractions, blood pressure, and electrolytes in up to 67 687 individuals from genetic studies and 17 911 from randomized trials.
CETP single-nucleotide polymorphisms and torcetrapib treatment reduced CETP activity and had a directionally concordant
effect on 8 lipid and lipoprotein traits (total, low-density lipoprotein, and HDL cholesterol; HDL2; HDL3; apolipoproteins A-I
and B; and triglycerides), with the genetic effect on HDL cholesterol (0.13 mmol/L, 95% confidence interval [CI] 0.11 to
0.14 mmol/L) being consistent with that expected of a 10-mg dose of torcetrapib (0.13 mmol/L, 95% CI 0.10 to 0.15). In trials,
60 mg of torcetrapib elevated systolic and diastolic blood pressure by 4.47 mm Hg (95% CI 4.10 to 4.84 mm Hg) and
2.08 mm Hg (95% CI 1.84 to 2.31 mm Hg), respectively. However, the effect of CETP single-nucleotide polymorphisms on
systolic blood pressure (0.16 mm Hg, 95% CI �0.28 to 0.60 mm Hg) and diastolic blood pressure (�0.04 mm Hg, 95% CI
�0.36 to 0.28 mm Hg) was null and significantly different from that expected of 10 mg of torcetrapib.

Conclusions—Discordance in the effects of CETP single-nucleotide polymorphisms and torcetrapib treatment on blood pressure
despite the concordant effects on lipids indicates the hypertensive action of torcetrapib is unlikely to be due to CETP inhibition
or shared by chemically dissimilar CETP inhibitors. Genetic studies could find a place in drug-development programs as a
new source of randomized evidence for drug-target validation in humans. (Circulation. 2010;121:52-62.)

Key Words: genetics � pharmacology � epidemiology � high-density lipoproteins

Higher concentrations of high-density lipoprotein (HDL)
cholesterol are associated with a lower risk of coronary

heart disease (CHD) independent of low-density lipoprotein
(LDL) cholesterol.1 HDL particles have antiatherogenic actions
in vitro, and experimental elevation of HDL cholesterol concen-
tration in some animal models attenuates atheroma formation.2,3

Inhibitors of cholesteryl ester transfer protein (CETP), which
mediates exchange of lipids between HDL particles and other
lipoproteins, are a new class of drugs developed for their ability
to raise HDL cholesterol. However, when the combination of a
CETP inhibitor (torcetrapib) and a statin (atorvastatin) was
compared with atorvastatin alone in the Investigation of Lipid
Level Management to Understand Its Impact in Atherosclerotic
Events (ILLUMINATE) trial,4 the Data Safety Monitoring
Board terminated the trial prematurely because of an unex-
pectedly higher rate of both cardiovascular and noncardio-
vascular events in the torcetrapib-treated patients.

Clinical Perspective on p 62

Whether the higher rate of cardiovascular events from
torcetrapib treatment was a mechanism-based effect of CETP
inhibition, which would be shared by other members of the
same drug class, or an idiosyncratic (or off-target) action of
the torcetrapib molecule is uncertain. It is important to
distinguish between the two, because at least 2 other CETP
inhibitors, anacetrapib and dalcetrapib, are in advanced stages
of drug development.5–7 Torcetrapib treatment has been
associated with consistent and substantial elevations in blood
pressure,4,8–10 perhaps secondary to a mineralocorticoid-like
effect, which could have contributed to the increased risk of
cardiovascular events.11 Although it has been proposed that
the other CETP inhibitors do not share this blood pressure–
elevating effect,5,12 this is based on evidence from nonran-
domized animal experiments and short-term dose-ranging
studies in humans, both of which have limitations. Large,
randomized outcome trials of anacetrapib or dalcetrapib

would provide a definitive answer but could expose the trial
participants to a potential hazard should the hypertensive
effect be mechanism based rather than off target. On the other
hand, the failure to further evaluate other members of this
class in randomized trials could lead to the abandonment of a
potentially valuable preventive therapy.

An alternative way of obtaining randomized evidence on
the efficacy and safety of CETP inhibition in humans without
the recruitment of new trial participants, prospective follow-
up, or exposure to a drug is to study the effect of carriage of
common alleles of the human CETP gene associated with
reduced CETP levels and activity.13 Genetic association
studies are a type of natural randomized trial, because
maternal and paternal alleles assort at random at concep-
tion.14,15 In effect, a study of alleles of the CETP gene that
reduce CETP activity is akin to a very long-term randomized
intervention trial of a “clean” CETP inhibitor, free from the
off-target effects of individual drug molecules. We therefore
compared the effect of torcetrapib and carriage of common
CETP alleles on lipids and lipoproteins, blood pressure, and
other markers of cardiovascular risk in a large-scale, interna-
tional, collaborative analysis to ascertain whether the increase
in blood pressure seen in the clinical trials of torcetrapib was
mechanism based or off target.

Methods
Search Strategy and Selection Criteria

Randomized Controlled Trials
Randomized controlled trials evaluating the effect of torcetrapib on
markers of cardiovascular risk or clinical outcomes were identified from
PubMed and EMBASE up to the end of November 2007 with the use of
the US National Library of Medicine’s Medical Subject Headings and
the free-text terms “torcetrapib” or “CETP inhibitor” in combination
with “randomized controlled trial.” For inclusion in the main analyses,
studies had to be randomized, parallel-design studies in adults that
examined the effect of treatment with torcetrapib (alone or in combina-
tion) with a suitable comparator. Studies were included if they had been
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published as full-length articles or letters in peer-reviewed journals in
any language. Randomized studies were further subdivided into shorter
dose-finding studies of �1 year’s duration and longer clinical trials of
�1 year’s duration and analyzed separately.

Genetic Studies
PubMed and EMBASE were searched up to November 2007 for
studies in humans evaluating any polymorphism in the CETP gene.
The search included the Medical Subject Headings and free-text
terms “cholesteryl ester transfer protein” or “CETP” in combination
with “polymorphism*,” “mutation*,” “allele*,” “gene*,” “Taq1B,”
“�629C�A,” or “I405V,” with no limits or restrictions. We supple-
mented information from published studies with unpublished genetic
data obtained through a large collaborative network of investigators
that allowed access to information on a wider range of traits of
interest, enabled more precise estimation of genetic effect sizes, and
minimized the scope for reporting and publication bias. (For further
details, see the online-only Data Supplement.)

Generation of Tabular Data
Two of the authors (A.D.H. and R.S.) extracted data, and disagree-
ments were resolved by discussion with a third author (J.P.C.). For
randomized controlled trials, information was extracted on treatment
regimen and comparator, as well as pretreatment and posttreatment
measures of a wide range of cardiovascular risk markers (see the
online-only Data Supplement for further details). The relationship
between torcetrapib dose and effect on these variables, if available,
was also recorded from dose-ranging studies. For genetic studies,
study-level information was either extracted from published studies
by 2 authors or requested from principal investigators (see the
online-only Data Supplement).

Statistical Analysis

Randomized Clinical Trials of Torcetrapib
The effect of torcetrapib on different lipid fractions, blood pressure,
and other cardiovascular traits was assessed by calculation of the
difference in the change in mean values between active and control
arms. Study-specific estimates were weighted by the inverse of the
variance and pooled by random-effects meta-analysis to generate
summary estimates.

Genetic Studies
Primary analyses were based on the CETP gene variants commonly
referred to as TaqI B (rs708272) and �629C�A (rs1800775), which
were the most widely typed variants. The 2 are in linkage disequi-
librium (r2 measure of association 0.73 in individuals of European
descent16; online-only Data Supplement Figure I), which allows
information on the 2 variants to be treated jointly in a pooled
analysis. Additional analyses involved the I405V variant (rs5882).
For continuous outcomes, the mean difference and 95% confidence
interval (CI) by genotype category were obtained from each study
and then pooled with a random-effects model to obtain a summary
mean difference and 95% CI. Individuals homozygous for the
common TaqIB (or �629C) allele served as the reference group
throughout, and this group was designated B1B1, with heterozygous
individuals and individuals homozygous for either rare allele desig-
nated B1B2 and B2B2, respectively, to preserve the convention
introduced in prior studies. For binary outcomes, results were
expressed as an odds ratio and 95% CI. To assess the robustness of
the findings, stratified analyses were conducted according to study-
level characteristics. In a subset of studies, predefined stratified
analysis of individual-level data was performed to investigate the
effect of CETP genotype on HDL cholesterol by quartiles of systolic,
diastolic, and pulse pressure and by LDL cholesterol quartile to gain
insight into the potential for effect modification by blood pressure–
lowering or cholesterol-lowering medications. Deviation from
Hardy-Weinberg equilibrium was assessed in each study. Heteroge-
neity was assessed with a �2 test. The I2 measure17 and 95% CI were
used to describe the extent of variability across studies. Additional
information on the statistical analysis is provided in the online-only

Data Supplement. All analyses were conducted with Stata 9.0
(StataCorp LP, College Station, Tex).

Consistency Between CETP Gene Effects and
Equivalent Torcetrapib Dose
To determine the consistency of the observed effect of CETP
genotype on cardiovascular traits with the expected effects for a
comparable dose of torcetrapib, the shape of the dose–effect rela-
tionship for torcetrapib was evaluated from dose-ranging trials by
use of the reported continuous outcomes HDL, HDL2, and HDL3, as
well as apolipoprotein A-I (apoA-I) and apolipoprotein B (apoB).
Despite careful searching, no quantitative information on the rela-
tionship between torcetrapib dose and blood pressure from these
trials was available in a form that could be used in the analysis.
Having confirmed a linear dose–response relationship for the avail-
able variables (Figures 1A through 1C), we used the summary effect

Figure 1. A through C, Relationship between torcetrapib dose
and HDL cholesterol and HDL2 and HDL3 subfractions. P val-
ues refer to the results of a meta-regression, and N refers to the
total number of individuals in the 3 dose-ranging studies that
contributed to this analysis.
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of a 60-mg dose of torcetrapib on HDL cholesterol (the measure with
the most data) from the meta-analysis of randomized trials and the
summary effect of CETP genotype on HDL cholesterol from the
meta-analysis of genetic studies (1) to express the effect of carriage
of the B2 variant as a torcetrapib dose equivalent and (2) to estimate
the effect of this dose of torcetrapib on blood pressure and other
traits. A simulation model that incorporated the variance in the effect
estimates of the genotype and drug effects was used to obtain the CIs
(see online-only Data Supplement for details). The observed gene
effect was compared with the effect of a comparable dose of
torcetrapib by means of a z test.18 More details are provided in the
online-only Data Supplement.

Results
Randomized Controlled Trials of Torcetrapib

Dose–Response Relationship of Torcetrapib on HDL
Three studies (median size 40 participants, range 19 to 162
participants) with a mean study duration of 5.3 (standard
deviation 3.1) weeks enabled the exploration of the effect of
different doses of torcetrapib on HDL cholesterol and its
subfractions (HDL2 and HDL3).19–21 Over the dose range
studied (10 to 240 mg daily), torcetrapib produced a linear,
dose-dependent increase in HDL cholesterol (P�0.001 from
meta-regression), HDL2 (P�0.03), and HDL3 (P�0.003), with
no evidence of a threshold effect (Figures 1A through 1C).

Effect of Torcetrapib on Lipid Profile, Blood Pressure,
and Biomarkers
Four randomized trials (range 752 to 15 067 participants)
with a mean duration of 21 (standard deviation 6) months that
involved 17 911 participants in aggregate with a mean age of
55.4 (standard deviation 6.9) years evaluated the effect of
torcetrapib 60 mg daily (in combination with atorvastatin)
versus atorvastatin alone and were included in the main
analysis.4,8–10 Torcetrapib 60 mg daily increased HDL cho-
lesterol by 0.78 mmol/L (95% CI 0.68 to 0.87 mmol/L),
apoA-I by 0.30 g/L (95% CI 0.30 to 0.31 g/L), and total
cholesterol by 0.18 mmol/L (95% CI 0.10 to 0.25 mmol/L).
The same dose reduced LDL cholesterol by 0.54 mmol/L
(95% CI �0.64 to �0.43 mmol/L), triglycerides by
0.12 mmol/L (95% CI �0.18 to �0.07 mmol/L), and apoB
by 0.11 g/L (95% CI �0.11 to �0.10 g/L; Table 1; Figure IIa

in the online-only Data Supplement). A pooled analysis of all
17 911 participants from the 4 trials indicated that torcetrapib
60 mg daily led to a mean increase in systolic blood pressure
of 4.47 mm Hg (95% CI 4.10 to 4.84 mm Hg) and an increase
in diastolic blood pressure of 2.08 mm Hg (95% CI 1.84 to
2.31 mm Hg). In the ILLUMINATE trial, the elevation in
blood pressure was accompanied by a decrease in plasma
potassium, an increase in sodium, and an increase in aldoste-
rone concentration4 (Table 2). In 3 trials4,9,10 that included
17 159 participants, there was no effect of torcetrapib on
C-reactive protein concentration (online-only Data Supple-
ment Table I).

Genetic Studies

Study Details and CETP Polymorphisms Evaluated
A total of 31 studies (online-only Data Supplement references
S1 to S39) and 67 687 individuals a mean of 55.8 (standard
deviation 9.6) years old contributed information on at least 1
continuous outcome. Twenty-three studies with 60 316 indi-
viduals provided previously unpublished data. Of the unpub-
lished studies, 21 studies (50 908 individuals) provided data
on the rs708272 (Taq1B) polymorphism, and 2 studies (8535
participants) provided data only on the rs1800775
(�629C�A) polymorphism. Where studies provided data on
both �629C�A and Taq1B, the latter was used for the
primary analysis. Seven studies (21 353 individuals) also
provided data on the rs5882 (I405V) polymorphism (online-
only Data Supplement references S8, S10, S15, S16, S18–
S20, S22, S25, S32, and S33), and these results are provided
in the online-only Data Supplement. Study details are pro-
vided in online-only Data Supplement Tables II and III,
respectively.

Effect of CETP Genotypes on CETP Concentration,
CETP Activity, and Lipids
Six studies in individuals of European ancestry (5340 partic-
ipants) provided information on the effect of CETP genotype
on CETP concentration (online-only Data Supplement refer-
ences S7, S8, S15, S28, S30, and S31), and 2 studies (858
participants; online-only Data Supplement references S15

Table 1. Effect of Torcetrapib (60 mg) and CETP Genotype on Lipids and Lipoproteins

Comparison: Lipids
and Lipoproteins

Randomized Controlled Trials,
Torcetrapib 60 mg

No. of Studies (Individuals)
Summary Mean

Difference (95% CI) P

Genetic Studies, B1B2
vs B1B1 No. of

Studies (Individuals)
Summary Mean

Difference (95% CI) P

Genetic Studies, B2B2
vs B1B1 No. of

Studies (Individuals)
Summary Mean

Difference (95% CI) P

HDL cholesterol,
mmol/L

4 (17 911) 0.78 (0.68–0.87) �0.001 30 (54 971) 0.06 (0.05–0.07) �0.001 30 (34 432) 0.13 (0.11–0.14) �0.001

ApoA1,* g/L 1 (15 067) 0.30 (0.30–0.31) �0.001 11 (22 909) 0.03 (0.02–0.04) �0.001 11 (14 739) 0.06 (0.05–0.08) �0.001

Total cholesterol,
mmol/L

4 (17 911) 0.18 (0.10–0.25) �0.001 29 (54 135) 0.01 (�0.01–0.02) 0.48 29 (33 970) 0.05 (0.03–0.07) �0.001

LDL cholesterol,
mmol/L

4 (17 911) �0.54 (�0.64–�0.43) �0.001 27 (51 860) �0.01 (�0.03–0.00) 0.07 27 (32 424) �0.03 (�0.05–0.01) �0.01

Triglycerides, mmol/L 4 (17 911) �0.12 (�0.18–�0.07) �0.001 28 (52 084) �0.04 (�0.06–�0.02) �0.001 28 (32 589) �0.06 (�0.10–�0.02) �0.01

ApoB,* g/L 1 (15 067) �0.11 (�0.11–�0.10) �0.001 11 (22 909) �0.01 (�0.02–0.00) 0.05 11 (14 739) �0.02 (�0.03–0.01) �0.01

HDL2, mmol/L NA NA NA 2 (3086) 0.02 (0.01–0.02) 0.001 2 (1856) 0.03 (0.01–0.04) 0.01

HDL3, mmol/L NA NA NA 2 (3086) 0.04 (0.02–0.05) �0.001 2 (1856) 0.06 (0.02–0.11) 0.01

Apo-AII, mg/L NA NA NA 3 (8661) 0.28 (0.26–0.31) �0.001 3 (5632) 0.29 (0.26–0.32) �0.001

NA indicates not applicable.
Differences between continuous traits are for values reported at the end of the randomized trials unless otherwise indicated.
*Data obtained after 3 months.
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and S18–S20) provided information on the effect on CETP
activity. A further 5 studies (1867 participants) contributed
data from individuals of Japanese origin (online-only Data
Supplement Figure III and references S34 through S39). A
graded effect of genotype on CETP concentration and activity
was evident in both populations. People of European ancestry
who were homozygous for the B2 allele had lower CETP
concentrations (�0.47 �g/mL, 95% CI �0.67 to �0.26
�g/mL) and lower CETP activity (�17.00 nmol · mL�1 · h�1,
95% CI �18.52 to �15.49 nmol · mL�1 · h�1) than people
homozygous for the B1 allele (online-only Data Supplement
Figures IIIa and IIIb). In 31 studies with 67 687 participants,
B2-homozygous individuals had higher concentrations of
HDL cholesterol (0.13 mmol/L, 95% CI 0.11 to 0.14 mmol/L;
Figure 2). The link between genotype and HDL cholesterol
was consistent in analyses stratified by study size, sex,
presence of CHD, and ancestry and across quartiles of LDL
cholesterol, systolic and diastolic blood pressure, and pulse
pressure (online-only Data Supplement Figures IIIc and IV).
In addition, B2-homozygous individuals exhibited higher
concentrations of total cholesterol (0.05 mmol/L, 95% CI

0.03 to 0.07 mmol/L) and apoA-I (0.06 g/L, 95% CI 0.05 to
0.08 g/L) and lower concentrations of LDL cholesterol
(�0.03 mmol/L, 95% CI �0.05 to �0.01 mmol/L), triglyc-
erides (�0.06 mmol/L, 95% CI �0.10 to �0.02 mmol/L),
and apoB (0.02 g/L, 95% CI �0.03 to �0.01 g/L). In 2
studies, individuals homozygous for the B2 allele had higher
circulating concentrations of both the larger HDL2 particles
(0.03 mmol/L, 95% CI 0.01 to 0.04 mmol/L) and smaller
HDL3 particles (0.06 mmol/L, 95% CI 0.02 to 0.11 mmol/L;
Table 1). Heterozygous subjects exhibited lipid and lipopro-
tein concentrations approximately intermediate between
those found in homozygous subjects, consistent with an
additive effect of each copy of the variant allele (Table 1;
per-allele data available on request). The effect of variant
CETP alleles on lipid and lipoprotein profile thus reproduced
the direction of effect of treatment with torcetrapib in clinical
trials for 8 separate lipid and lipoprotein traits (Table 1;
Figure 3A; online-only Data Supplement Figures 2a and 2b).
Using a simulation model and assuming a linear dose–
response relationship (Figure 1), we estimated that the effect
on HDL in B2-homozygous individuals corresponded to a

Figure 2. Effect of CETP genotype on HDL cholesterol in individuals of European ancestry. The B1B1 genotype is used as the refer-
ence group. The numbers refer to the total number of individuals that contribute to the comparisons shown.

Table 2. Effect of Torcetrapib (60 mg) and CETP Genotype on Blood Pressure and Circulating and Urinary Electrolytes and Creatinine

Comparison

Randomized Controlled Trials,
Torcetrapib 60 mg

No. of Studies (Individuals)
Summary Mean

Difference (95% CI) P

Genetic Studies, B1B2
vs B1B1 No. of

Studies (Individuals)

Summary Mean
Difference/Odds Ratio

(95% CI) P

Genetic Studies, B2B2
vs B1B1 No. of

Studies (Individuals)
Summary Mean

Difference (95% CI) P

Blood pressure, mm Hg

Systolic 4 (17 911) 4.47 (4.10–4.84) �0.001 22 (47 841) �0.27 (�0.64–0.10) 0.15 22 (30 047) 0.16 (�0.28–0.60) 0.46

Diastolic 4 (17 911) 2.08 (1.84–2.31) �0.001 22 (47 841) �0.23 (�0.43–�0.04) 0.02 22 (30 047) �0.04 (�0.36–0.28) 0.80

Pulse pressure NA NA NA 7 (29 411) 0.03 (�0.29–0.35) 0.88 7 (18 574) �0.13 (�1.16–0.91) 0.81

Electrolytes and creatinine

Plasma potassium,
mmol/L†

1 (15 067) �0.14 (�0.15–�0.13) �0.001 6 (13 760) 0.00 (�0.01–0.01) 0.98 6 (8678) �0.01 (�0.03–0.01) 0.39

Plasma sodium, mmol/L† 1 (15 067) 0.61 (0.51–0.71) �0.001 6 (13 583) �0.06 (�0.19–0.07) 0.35 6 (8554) 0.03 (�0.18–0.18) 0.98

Plasma creatinine,
�mol/L†

1 (15 067) �1.15 (�1.15–�0.75) �0.001 4 (12 756) �0.39 (�1.42–0.64) 0.45 4 (7956) 0.31 (�0.72–1.35) 0.55

Plasma bicarbonate,
mmol/L†

1 (15 067) 0.35 (0.24–0.46) �0.001 NA NA NA NA NA NA

Plasma chloride, mmol/L† 1 (15 067) 0.07 (�0.02–0.16) 0.14 NA NA NA NA NA NA

Urinary potassium,
mmol/L

NA NA NA 1 (1599) �1.84 (�5.15–1.47) 0.27 1 (1092) �0.90 (�4.68–2.88) 0.64

Urinary sodium, mmol/L NA NA NA 1 (1599) 2.29 (�2.46–7.04) 0.34 1 (1092) 3.60 (�1.99–9.19) 0.2

Urinary creatinine, mg/L NA NA NA 1 (1599) �0.26 (�0.91–0.39) 0.43 1 (1092) �0.02 (�0.77–0.73) 0.96

NA indicates not applicable.
*Data obtained after 3 months.
†Data from ILLUMINATE only.
Differences between continuous traits are at end of the randomized trials unless otherwise indicated.

56 Circulation January 5/12, 2010

 at Universitat de Valencia/Spain on May 14, 2010 circ.ahajournals.orgDownloaded from 

http://circ.ahajournals.org


dose of torcetrapib of 9.7 mg (95% CI 8.18 to 11.41 mg), and
for heterozygous individuals, it corresponded to a dose of 4.5
mg (95% CI 3.71 to 5.38 mg), ie, to a torcetrapib dose of
approximately 10 and 5 mg, respectively (Figure 3B).

Effect of CETP Genotypes on Blood Pressure
and Electrolytes
Twenty-two studies (58 948 individuals) provided informa-
tion on CETP genotypes and systolic and diastolic blood
pressure, including previously unpublished information from
20 studies (54 936 individuals). CETP genotype had no effect
on systolic and diastolic blood pressure; the mean differences
in comparisons between homozygous subjects were
0.16 mm Hg (95% CI �0.28 to 0.60 mm Hg) and
�0.04 mm Hg (95% CI �0.36 to 0.28 mm Hg) for systolic
and diastolic blood pressure, respectively. Mean differences
in systolic and diastolic blood pressure between heterozygous
individuals (B1B2) and those homozygous for the B1 allele
were �0.27 mm Hg (95% CI �0.64 to 0.10 mm Hg) and

�0.23 mm Hg (95% CI �0.43 to �0.04 mm Hg), respec-
tively (Figure 4A). The null findings were again consistent in
analyses stratified by study size, sex, presence of preexisting
CHD, ancestral origin, and allele types (Figures 4A and 4B;
online-only Data Supplement Figures Va and Vb). The
expected effect on blood pressure of a 10-mg daily dose of
torcetrapib was estimated to be 0.72 mm Hg (95% CI 0.60 to
0.87 mm Hg) and 0.33 mm Hg (95% CI 0.27 to 0.41 mm Hg)
for systolic and diastolic blood pressure, respectively, assum-
ing a linear relationship between torcetrapib dose and blood
pressure, and this was significantly different from the ob-
served genetic effect on blood pressure (Figures 5A and 5B).
Unlike torcetrapib treatment, CETP genotype was not asso-
ciated with serum sodium, potassium, or creatinine concen-
tration or with urinary sodium or potassium concentration
(Table 2; Figures 5C and 5D). Individuals with variant CETP
alleles were also no more likely to receive antihypertensive
medications (odds ratio 0.98, 95% CI 0.80 to 1.21; online-
only Data Supplement Table I).

Figure 3. A, Effect of torcetrapib and
CETP gene variants on 6 lipid traits evalu-
ated in both genetic studies and random-
ized trials. B, Observed effects of the
CETP gene and expected effects of a 5-
and 10-mg dose of torcetrapib dose on
HDL cholesterol.
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Effect of CETP Genotypes on Variables Unrelated
to CETP Inhibition
There was no link between CETP genotypes and variables
unrelated to CETP function, including age, body mass index,
or smoking habit (online-only Data Supplement Table I).
There was also no consistent association with blood glucose
or with C-reactive protein concentration, consistent with data
from clinical trials of torcetrapib (online-only Data Supple-
ment Table I).

Discussion
Main Findings and Interpretation
We found concordance in the effect of common variants in
the CETP gene and pharmacological inhibition of CETP by
torcetrapib on 8 continuous lipid and lipoprotein markers
evaluated in both randomized trials and genetic studies
(HDL cholesterol, HDL2, HDL3, LDL cholesterol, triglyc-
erides, total cholesterol, apoA-I, and apoB). The only
continuous traits for which the effect of genotype and drug
were consistently discordant were systolic and diastolic
blood pressure and the electrolytes sodium and potassium.
This large-scale randomized evidence in humans supports
the interpretation that the blood pressure– elevating effect
of torcetrapib (and the connected effect on electrolytes) is
mechanistically unrelated to CETP inhibition. The findings
have important implications, specifically for the develop-
ment of other CETP inhibitors and more generally for the
potential use of genetic variants to inform drug
development.

Other Sources of Evidence on the Same Question
Our interpretation that the hypertensive effect of torcetrapib
is off target receives additional support from other lines of

evidence. First, treatment with the CETP inhibitors anac-
etrapib and dalcetrapib has not been associated with blood
pressure elevation, although the studies thus far have been
relatively small in size and of short duration.5,7 Second,
torcetrapib (but not anacetrapib) has been reported to cause a
blood pressure increase in several animal models,12 including
species that do not express CETP. Third, a recent study22

indicated that torcetrapib treatment elevates aldosterone con-
centration, with corresponding effects on sodium and potas-
sium concentration, and these electrolyte changes were not
observed in a short-term dose-ranging study of anacetrapib.7

These findings, from the separate lines of investigation, each
with differing limitations and sources of error, provide
reassurance that the hypertensive effect of torcetrapib is off
target and therefore unlikely to be shared by other CETP
inhibitors.

CETP Inhibition and Prevention of CHD
The higher blood pressure among individuals in the torce-
trapib arm of the ILLUMINATE trial might explain the
higher rate of cardiovascular events, but there may also be
other explanations. CETP inhibition might interfere with
reverse cholesterol transport and generate an HDL particle of
abnormal size and function,23 a mechanism-based adverse
effect. Prior small mechanistic studies have suggested torce-
trapib treatment increased the concentration of both large
HDL2 and small HDL3 particles but that the effect on HDL2
was proportionately greater. However, this differential effect
was only seen at a dose of torcetrapib 4 times as large as the
dose used in the large-scale clinical trials.19 Genetic data on
the effect of CETP genotype on HDL subtype were limited,
but in the present analysis, there was no clear evidence of a

Figure 4. Effect of CETP genotype on systolic (A) and diastolic (B) blood pressure in populations of European descent. Weighted mean
difference is given, with the B1B1 genotype used as the reference genotype. The numbers refer to the total number of individuals that
contribute to the comparisons shown.
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differential effect of CETP genotype on HDL subclasses.
Although we have focused here on the effect of CETP
genotypes on lipids, lipoproteins, and blood pressure to
make direct comparison of the effect of pharmacological
CETP inhibition and carriage of CETP alleles, a recent
meta-analysis of studies that included 27 196 coronary
cases and 55 338 controls and a genome-wide analysis
from the Women’s Genome Health Study both provided
support for the CETP variants studied here being protective
against CHD events.24,25 Although this protective effect has
not been consistent across all studies,26 there has been no
consistent signal for an increase in CHD risk from carriage of
these alleles.

Potential Limitations
Although the findings are robust, our interpretation requires
consideration in light of certain theoretical and practical
limitations of the genetic approach we have used. CETP
alleles are of much smaller effect than the most widely
studied dose of torcetrapib, so it might be argued that the
failure to detect an association between genotype and a
continuous marker such as blood pressure could have arisen
because of inadequate power, or perhaps the effect on blood

pressure requires a suprathreshold degree of CETP inhibition.
We attempted to maximize power and minimize the potential
for a type II error by establishing a large genetic collaboration
that included a substantial amount of previously unpublished
information. Blood pressure was an outcome that had been
widely recorded in the studies included in the present analysis
(22 studies and 59 948 individuals) but was not widely
reported, and so the findings should not be prone to bias.
Although the investigation of the effect of CETP poly-
morphism on blood pressure was not the primary aim of any
of the studies included here, blood pressure measurement was
performed with validated devices and widely accepted meth-
ods. The study was also sufficiently powered to detect a blood
pressure signal of the size expected of a 5- to 10-mg dose of
torcetrapib (see the online-only Data Supplement). Indeed, 3
of these studies (14 109 individuals) contributed to the recent
whole-genome analysis of blood pressure loci that identified
single-nucleotide polymorphisms (SNPs) that altered blood
pressure by �1 mm Hg/0.5 mm Hg, close to the effect size
being sought in the present analysis.27,28 With the available
sample size, we also detected an effect of CETP genotype on
triglycerides that was similar in size to that which would have
been expected for blood pressure were this effect mechanism

Figure 5. A through D, Observed effect of the CETP gene and expected effects of a 5- and 10-mg dose of torcetrapib on systolic (A)
and diastolic (B) blood pressure, serum potassium (C), and sodium levels (D).
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based (online-only Data Supplement Figure IIa). We also
triangulated the findings from randomized controlled trials
with the genetic data (ie, we compared the expected effect of
a 5- and 10-mg dose of torcetrapib with the observed genetic
effect) rather than focusing solely on statistical tests in the
genetic associations. Taken together, these analyses suggest
that the null findings in relation to blood pressure are neither
biased nor explained by inadequate sample size. Although we
were unable to exclude a hypothetical nonlinear (threshold)
relationship between CETP inhibition by torcetrapib and
blood pressure because none of the dose-ranging studies of
torcetrapib reported quantitative data on the dose–response
effect in a form that could be extracted for analysis, the effect
of torcetrapib on all lipid and lipoprotein traits evaluated was
linear over the dose range studied. We therefore made the
assumption that this was also true for blood pressure.

The randomized allocation of alleles in genetic studies
differs from the randomized drug intervention in a clinical
trial in that assignment of genotype occurs at conception and
produces an effect across a lifetime, rather than in mid to late
adulthood, when most randomized controlled trials are con-
ducted. It is conceivable, therefore, that an adverse effect of
a common genetic variant on blood pressure from early life
may have led to developmental compensation by other
systems.15 If this were the case, a null association of CETP
genotype with blood pressure seen in genetic studies might
lead to unreliable inference on the likely effect of modifica-
tion of CETP activity by a drug. However, there was no
evidence that such developmental compensation was operat-
ing in the case of any of the 8 lipid traits we studied, for
which both the lifelong effect of the genetic exposure and the
shorter-term effect of the drug were consistent.

Although the precise functional alleles at the CETP locus
have yet to be identified with certainty, the �629C�A
(rs1800775) and I405V (rs5885) alleles are either likely to be
functional themselves or to be in sufficiently strong linkage
disequilibrium with functional variant(s) so as to be valid
tools for this type of analysis. The �629C�A variant has
been shown to alter binding of Sp transcription factors.29 The
Taq1B allele (rs708272) is intronic and less likely to be
functional itself, but it is in strong linkage disequilibrium with
several promoter polymorphisms (including the �629C�A
variant), and as the present analyses show, it exhibits very
strong association with multiple lipid traits. It is important to
be clear, however, that for the analyses we have conducted, it
is not necessary for functional alleles to have been delineated
precisely provided that an effect of the alleles studied on the
traits of interest can be demonstrated robustly.30 Although
there are likely to be other variants in and around the CETP
gene that are also associated with CETP activity and lipids,
some because they are causal and some because they are
simply associated with causal SNPs by linkage disequilib-
rium, the use of a single SNP in this region does not
compromise the analysis, provided it can be demonstrated
that it provides a reliable index of CETP activity and
differences in the lipid traits of interest (which we have
demonstrated), and on the assumption that the SNP is in
linkage disequilibrium with a causal SNP rather than causal
itself, that the main analyses are grouped according to

subjects of similar ancestry to ensure that the linkage disequi-
librium relationships are consistent across studies. Moreover,
SNPs at the CETP locus, including rs1800775 (�629C�A)
and rs708272 (Taq1B) studied here, have emerged as among
the strongest associated signals with HDL cholesterol in
recent genome-wide association studies25,31–33 (online-only
Data Supplement Figure I).

Wider Implications of This Work
We used the principle that allelic variants in a gene encoding
a specific drug target can be used to model the mechanism-
based effect of modifying the same target pharmacologically.
In the present analysis, this was applied to help distinguish
the mechanism-based from off-target actions of a drug
molecule in advanced development. However, further re-
search should now address whether this principle could be
exploited at earlier phases in the drug-development pathway
to help, for example, with the validation of a promising new
target or to assemble a panel of biomarkers of efficacy to test
in clinical trials. The directional concordance of the effect of
HMGCR SNPs in genetic studies and 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (statin) treatment on
LDL cholesterol and CHD risk in clinical trials lends addi-
tional support to the potential utility of this approach. There
is likely to be wide availability of genetic tools for this
purpose, because the majority of drug targets are proteins,
and regulatory genetic variants acting in cis, located within
100 kb of genes, appear to be a common feature of the human
genome.34

Conclusions
In summary, a novel large-scale genetic approach has pro-
vided evidence that the hypertensive effect of torcetrapib is
likely an off-target action. This provides reassurance that this
particular adverse effect of torcetrapib is unlikely to be shared
by other chemically dissimilar CETP inhibitors, but further
drug development will be required to assess whether these
other agents and the CETP inhibitor class of drugs in general
are likely to be efficacious in the prevention of CHD events
with an acceptable risk–benefit profile. Further research
should investigate whether genetic studies could find use in
drug-development programs as a new source of randomized
evidence for drug-target validation in humans.
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CLINICAL PERSPECTIVE
The inverse relationship between high-density lipoprotein cholesterol and risk of coronary heart disease suggests that
therapeutic elevation of high-density lipoprotein cholesterol may provide an effective means of prevention of coronary
heart disease. Pharmacological inhibition of cholesteryl ester transfer protein (CETP) leads to elevation in high-density
lipoprotein cholesterol, but torcetrapib (the first-in-class CETP inhibitor) increased the risk of cardiovascular events in the
ILLUMINATE trial (Investigation of Lipid Level Management to Understand Its Impact in Atherosclerotic Events), which
may have resulted from an unexpected blood pressure–elevating effect of this agent. We used common genetic
polymorphisms in the CETP gene to distinguish whether the hypertensive action of torcetrapib was mechanism based or
off target, because a genetic study of these variants can be considered to be a type of natural randomized trial of a “clean”
low-dose CETP inhibitor with no off-target actions. Common CETP gene polymorphisms and torcetrapib treatment had
concordant effects on 8 lipid and lipoprotein markers, including high-density lipoprotein cholesterol, but CETP gene
variants had no effect on blood pressure. The blood pressure–elevating effect of torcetrapib appears to be an off-target
action that is unlikely to be shared by chemically dissimilar CETP inhibitors. Genetic studies could be used in
drug-development programs as a new source of randomized evidence for drug-target validation in humans.
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Supplemental material:  

Supplemental Methods  

Search strategy and selection criteria; Genetic studies 

Reference lists of articles identified from the primary search were additionally scanned for relevant 

articles, including previous meta-analyses and systematic reviews. For inclusion, genetic studies had 

to have more than 500 participants, involve unrelated subjects and be published as full length articles 

or letters in a peer reviewed journal. Authors of published studies were contacted (on at least 3 

occasions) to obtain additional information on CETP genotypes and variables of interest, where 

unreported. The collaborative group for the genetic analysis was assembled by direct contact with 

principal investigators of any study known to the authors that involved more than 500 individuals that 

had previously reported at least one genetic finding, in any area, in a peer reviewed journal.   

Twenty two studies were identified from the search and the published meta-analysis and seven were 

either reported after the previously published meta-analysis, or were contacted independently of the 

search as these studies were known to have published on genetic associations in lipids. Where data 

were duplicated in two publications, clarity was sought from the author, and limited tabular data were 

requested on the complete cohort. If there was no response, the larger of the data sets reported were 

included. Four unpublished cohorts were included. 

 

Data Extraction 

Randomised trials: Information was extracted on treatment regimen and comparator, pre- and post- 

treatment concentration of HDL-, LDL- and total cholesterol, triglycerides, apolipoproteins A-I (apoA-I) 

apolipoprotein B (apo-B), C-reactive protein (CRP), sodium, potassium, chloride, and bicarbonate, 

aldosterone, plasma creatinine and estimated glomerular filtration rate, systolic and diastolic blood 

pressure. 

Genetic Studies: Information was obtained on study design, total number of participants and the 

number of individuals by genotype category, gender, ethnic origin and presence or absence of CHD 

at baseline. In addition, summary information on the following variables was obtained (where 

available) for each CETP-genotype group: CETP concentration, CETP activity, HDL-, LDL-, and total 

cholesterol, triglycerides, apoA-I and apoA-II, apoB, HDL sub-fractions 2 and 3, systolic and diastolic 
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blood pressure, blood glucose, CRP, urinary and plasma sodium, potassium and creatinine, body 

mass index, smoking status, age and treatment with anti-hypertensive medications or statins. 

 

Statistical Analysis 

For continuous traits, median values were assumed to be equal to mean values. If the standard 

deviation (SD) was not reported this was calculated from the standard error (SE) by multiplying the 

this by the square root of the sample size or from the inter-quartile range by dividing the width of the 

inter-quartile range by 1.349. For dose ranging studies, the SD was imputed from the largest study if 

unavailable. Where logged values were provided, these were back transformed and geometric means 

were used as means. Where cholesterol and triglycerides were reported in mg/ dl, values were 

converted to mmol/l by multiplying by 0.02586 and 0.01129 respectively. Similarly where glucose was 

reported as mg/dl values were converted to mmol/l by multiplying by 0.055, and creatinine was 

converted to µmol/L by multiplying by 88. We estimated using a MAF of 0.48, a sample size of 14,147 

individuals was required to be able to detect a difference of 0.5 mmHg SBP, with a power of 0.8 at a 

significance of 0.05 (calculated using online genetic power calculator “Quanto” (S40)).  

Simulation of observed gene vs expected torcetrapib dose equivalent effects: Once a linear 

dose response was confirmed for available variables, the summary effect with most data from dose 

finding or randomized trials (60mg) on HDL-C was used for simulation studies. The effect of 60 mg 

torcetrapib on HDL was called βd1(with standard error sd1), and for other i traits, similarly βdi(with 

standard error sdi). The simulation model then incorporated the variance in the effect estimates of the 

genotype and drug effects. This was done as follows: Firstly, a random draw (xd1) of the 60mg drug 

effect on HDL cholesterol was taken from a normal distribution N(βd1,sd1) and of the effect on each 

other trait (random draw xdi from N(βdi,sdi), and of the gene effect on HDL cholesterol (draw xg1 from 

N(βg1,sg1).  The gene effect (xg1) was then expressed as a torcetrapib dose equivalent, calculated as 

doseg=60 xg1/xd1, from which the expected effect of this dose on trait i was estimated as egi=xdixg1/xd1,.  

Random draws were repeated 100000 times, generating a distribution of doseg from which its mean, 

2.5
th
 and 97.5

th
 percentiles were used to estimate the mean (95% confidence interval) for the gene-

dose equivalent.  Similarly the mean of the distribution of expected effects on trait i was estimated 

(m_egi) as well as its standard error (segi) as (97.5
th
-2.5

th
 percentiles)/(2x1.96).  The observed gene 
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effect on trait i (βgi) was compared to the expected effect of a comparable dose of torcetrapib (m_egi) 

using a Z- test, z=( βgi-m_egi )/√( sgi
2
+ segi

2
).   

 

 

Consistency between the CETP gene effects and equivalent torcetrapib dose  

The 95% confidence intervals for the expected effect of a dose of torcetrapib comparable to the effect 

of genotype were obtained by simulation. To incorporate the uncertainty in the effect estimates, one 

hundred thousand replications were generated of the point estimates and standard errors of the 60 

mg dose of torcetrapib. The values of the 2.5 and 97.5 centiles of the simulated distribution were uses 

as the 95% confidence intervals. The simulation process was conducted separately for individuals 

homozygous for the B2 allele and then repeated for heterozygous individuals.  

 

Supplemental Results 

Seven studies with 21, 353 individuals homozygous for the rs5882 (I405V) allele also had higher 

concentrations of HDL cholesterol (0.04 mmol/L; 0.00, 0.09), although the effect is less marked than 

that of rs7082872 (Taq1B). Similarly there was no evidence of a link between the I405V variant and 

blood pressure. 
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Supplemental Tables: 

Table S1: Effect of torcetrapib (60 mg) and CETP genotype on other continuous and demographic variables. 

Differences between continuous traits are those reported at the end of the randomised trial end unless otherwise indicated. Differences in demographic variables for RCTs were those recorded at 

baseline. ** only ILLUMINATE contributed to analysis. 

Comparison 

RCTs, 
Torcetrapib 60 
mg (Number of 

Individuals) 

Summary Mean 
Difference/ Odds 
Ratio  (95% CI) 

P value 

Genetic Studies, 
B1B2 vs B1B1, 
no of studies 
(Individuals) 

Summary Mean 
Difference/ Odds 

Ratio (95%CI) 
P Value 

Genetic Studies, 
B2B2 vs B1B1, no 

of studies 
(Individuals) 

Summary Mean 
Difference/ Odds Ratio 

(95%CI) 
P Value 

Continuous 
traits 

         

C-reactive protein 
(mg/L) 

2 (17,007) 0.02 (-0.04, 0.08) 0.52 13 (34,826) 0.03 (-0.07, 0.13) 0.60 13 (22,049) 0.16 (0.04, 0.29) 0.01 

Glucose (mmol/L) NA NA NA 11 (32,608) 0.00 (-0.02, 0.02) 0.95 11 (20,497) 0.03 (0.00, 0.06) 0.09 

Demographic amd 
other variables 

         

Age 4 (17,911) -0.48 (-1.29, 0.33) 0.25 19 (43,950) 0.00 (-0.20, 0.21) 0.98 19 (27,583) 0.18 (0.00, 0.35) 0.05 

BMI (kg/m
2
) 4 (17,911) -0.06 (-0.22, 0.1) 0.46 19 (40,212) -0.07 (0.15, 0.02) 0.12 19 (25,249) -0.01 (-0.12, 0.10) 0.85 

Treatment with 
statin 

4 (17,911) 
All treated with 

Atorvastatin 
All treated with 

Atorvastatin 
7 (20,600) 1.02 (0.10, 10.74) 0.99 7 (13,005) 0.92 (0.09, 9.79) 0.95 

Treatment anti-
hypertensive 
medication 

3 (2,844) 0.98 (0.07, 13.3) 0.99 7 (20,077) 0.99 (0.83,1.17) 0.87 10 (15,154) 0.98 (0.80, 1.21) 0.85 

Hypertension at 
baseline 

4 (17,911) 1.04 (0.05, 22.5) 0.99 NA NA NA NA NA NA 

Current/ former vs 
never smoked 

NA NA NA 9 (23,420) 0.92 (0.82, 1.03) 0.16 9 (14,649) 0.90 (0.78,1.04) 0.15 
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Table S2. Studies contributing to the CETP analysis  

 

Study                 
Year of 

publication 
Country 

Gender male 

(%) 

Mean age 

(years)

Total 

sample (n)
Study Description

Baseline 

coronary heart 

disease (CHD) 

status

HWE χχχχ² for main 

genotype 

included

CETP SNP(s) typed 

REGRESS
S30* 1998 Netherlands 100 56 807 Cases of CHD from  RCT CHD 0.33 rs708272

Corella D 
S11** 1999 Spain 45 36.6 514 Cross sectional No CHD 1.18 rs708272

Rekyavik 
S13** 2000 Iceland 100 71 1,134

Prospective cohort study - cases of CHD 

only
CHD 4.45 rs708272

Brousseau M  
S9** 2002 United States 100 64 833 Cross Sectional CHD 3.71 rs708272

Atherogene  
S6** 2003 Germany 75 64.4 1,211 Prospective cohort of CHD CHD 1.98 rs1800775

CARE
S12* 2004

Canada, United 

States
86 59.5 3,205 Cases from RCT CHD 1.78 rs708272

PHS 
 S24 ** 2005 United States 100 58.4 768 Prospective cohort Mixed Population 1.01 rs708272

Marschang P  
S31** 2006 Austria 56 64.3 983 Prospective Cohort CHD 0.06 rs708272

EARS
S16+ 1999

Estonia, Belgium, 

Denmark, Finland, 

Germany, Greece, 

Italy, Portugal, Spain, 

Switzerland, United 

Kingdom 

100 23 794 Cross sectional No CHD 0.00 rs708272, rs5882

OPERA
S18,S19,S20⁺ 2000 Finland 49 51.4 524 Prospective cohort Mixed Population 0.02 rs708272, rs158477

Framingham 

Offspring
S29⁺ 2000 United States 48.4 51.3 2,916 Prospective cohort Mixed Population 1.84 rs708272

Arca M
S4⁺ 2001 Italy 65.4 58.7 798

Case control, additional group of population 

controls
Mixed Population 0.88 rs708272

ECTIM
S10,S15,S22⁺ 2002

France, United 

Kingdom
78 55.5 2,540 Case control Mixed Population 1.27

rs708272, rs5882, 

rs1800775, G-971A

NPHS
S26⁺ 2002 United Kingdom 100 55.9 2,589 Prospective Cohort No CHD 3.4 rs708272

WOSCOPS
S14⁺ 2003 United Kingdom 100 57 1,604 RCT Mixed Population 0.28 rs708272

ACCESS
S25⁺ 2005 United states 60 60.3 2,106 RCT Mixed Population 0.01

72 SNPs incuding 

rs708282, rs5882, 

rs1800775

Sorli
S27⁺ 2006 Spain 31 45.5 549 Cross sectional Mixed Population 0.99 rs708272

PREVEND
S8⁺ 2006 Netherlands 50.5 49.4 8,166 Prospective cohort Mixed Population 1.56

rs708272, rs1800775, 

rs5882

SAPHIR
S28⁺ 2008 Austria 68 52.7 1,503 Prospective Cohort No CHD 0.31 rs708272

Busselton
S1⁺ 2007 Australia 45 49 1,574 Cross sectional Mixed Population 1.05

rs708272, rs1800775, 

rs12149545

CUDAS
S1⁺ 2007 Australia 50 53 1,109 Cross sectional Mixed Population 0.01

rs708272, rs1800775, 

rs12149546

CUPID
S1⁺ 2007 Australia 87 50 556

Cohort of patients presenting for coronary 

catheters
CHD 0.12

rs708272, rs1800775, 

rs12149547

Intermountain
S17⁺ 2007 United States 69 56 9,371

Cohort of patients presenting for coronary 

catheters
Mixed Population 1.22

32 SNPs incuding 

rs708282, rs5882, 

rs1800775

Health 

Professionals 

Study
S23⁺

2007 United States 100 60 2,193 Prospective cohort study No CHD 0.945 rs708272

Nurses Health 

Study
S5⁺ 2007 United States 0 57.4 1,291 Prospective cohort study No CHD 1.3 rs708272

Rotterdam
S33⁺

2007 Netherlands 41 68.8 6,421
Prospective cohort study

Mixed Population 0.48 rs5882, rs1800775

British Womens' 

Heart and Health 

Study
S21⁺⁺

Unpblished United Kingdom 0 68.9 3,570 Prospective cohort study Mixed Population 2.58 rs708272

EPIC-Norfolk
S7⁺⁺ Unpublished United Kingdom 63 65.3 2,114 Prospective cohort study No CHD 2.2 rs1800775

Whitehall II
S3⁺⁺

Unpublished United Kingdom 73 49.8 5,049 Prospective cohort study Mixed Population 0.61 rs708272

ELSA 
S2⁺⁺

Unpublished United Kingdom 46 63.6 5,541
Prospective cohort study

Mixed Population 1.35
rs708272

Erasmus
S32

 ⁺⁺ Unpublished Netherlands 40.7 53.12 873 Prospective cohort study Mixed Population 0.024 rs5882

*Published studies with blood pressure,  **studies that did not respond to data request

⁺Studies with unpublished data on blood pressure, ⁺⁺⁺⁺unpubublished studies
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Table S3.Traits included from studies evaluating CETP Taq1B and -629C>A genetic variant in European descent individuals (“0” for not included and “1” for 

included)  

Study                 

HDL-C LDL-C Total Cholesterol Triglycerides HDL2 HDL3 ApoA1 ApoB SBP DBP PP Glucose BMI CRP

Electrolyte

s and renal 

measures

Use of 

antihypertensive 

medication

Smoking 

status

Use of 

Statin

REGRESS 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1

Corella D 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rekyavik 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Brousseau 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Atherogene 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

CARE 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

PHS 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Marschang P 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

EARS 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0

OPERA 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0

Framingham 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0

Arca M 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0

ECTIM 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0

NPHS II 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0

WOSCOPS 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1

ACCESS 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Sorli 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

PREVEND 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

SAPHIR 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0

Busselton 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

CUDAS 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1

CUPID 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1

Intermountain 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Health 

Professionals 

Study 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nurses Health 

Study 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BWHHS 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

EPIC 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Rotterdam 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0

Whitehall II 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0

ELSA 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0  
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Supplemental Figures and  Figure Legends: 

Figure S1 LD structure of the CETP gene. r
2
 values are given from the ACCESS study. The main 

SNPs evaluated in this study were Taq1B (rs708272) and -629C>A (rs1800775) which are in LD 

(r
2
=0.73). SNPs contributing to variance in HDL cholesterol identified from genome wide association 

scans are also shown (rs12596776, rs2217332, rs3764261, rs1800775, rs711752, rs1864163, 

rs7205804, s5880, rs5882, rs1800777, rs1566439). Data provided by J F Thompson, ACCESS 

study
16

 

 

Figure S2a and S2b Standardised mean differences in lipid and lipoproteins between individuals 

homozygous for CETP variants in populations studies (a) and and those receiving torcetrpaib 60mg 

(b) daily as compared to placebo in clinical trials  

 

 

Figures S3a-c Effect of CETP genotype on (a) CETP concentration, (b) CETP activity and (c) HDL 

cholesterol concentration. Forest plots indicate weighted mean difference and 95% confidence 

intervals. Results are stratified by ancestral origin, study size, and prevalent coronary heart disease, 

gender and polymorphism typed. (*the B1B1 genotype grouped is used as the reference group 

throughout) 

 

Figure S4: Association between CETP genotype (B2B2 vs B1B1) and HDL-cholesterol level stratified 

by systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP) and LDL-

Cholesterol. Data from 6 studies, (12,983 individuals) 

 

Figure S5a-b Effect of CETP genotype on (a) systolic and (b) diastolic blood pressure in populations 

of European descent only. Forest plots show weighted mean difference and 95% confidence intervals. 

Results are stratified by study size, prevalent coronary heart disease, gender, polymorphism typed, 

and strata of LDL cholesterol. (The B1B1 genotype is used as the reference group, see text for 

details) 
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Figure S1 
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Figure S2a 
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Figure S2b  
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Figure S3a 
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Figure S3b 
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Figure S3c 
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Figure S4 
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Figure S5a 
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Figure S5b 
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