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The 2D honeycomb-like layered iron(iii)–nickel(ii) cyanide-
bridged complex [Ni(cyclam)]3[Fe(CN)6]2·nH2O exhibits
ferromagnetic intralayer and antiferromagnetic interlayer
interactions; above 3 K the magnetic properties are typical of
a metamagnet with Hc = 5000 G, whereas below 3 K a
canted structure is formed, leading to a long range ferromag-
netic ordering.

Bimetallic assemblies with Prussian blue-like structure form a
family of materials that exhibit spontaneous magnetization at Tc
as high as 315 K,1 and interesting electro-chemical, opto-
electronic and magneto-optical properties.2 The crystallization
of Prussian blue analogues, however, is very difficult and it has
been only quite recently that Kahn and coworkers3 have
succeeded in growing crystals of [Mn2(H2O)5Mo(CN)7]·nH2O
(a and b forms), which ferromagnetically order at 51 K.

One alternative route to bimetallic cyanide-bridged extended
arrays is that of using hexacyanometalate building blocks with
metal complexes containing polydentate ligands. This hybrid
approach favours the crystallization and then their magneto-
structural study. Depending on the nature of the building blocks
different and fascinating extended network structures can be
obtained, some of which are magnetically ordered.4

On reacting [Ni(cyclam)]2+ and [Fe(CN)6]32 in water using a
1 : 1 molar ratio the compound [Ni(cyclam)]3-
[Fe(CN)6]2·12H2O is obtained as a fine brown precipitate,
however, by using a 1 : 10 molar ratio the complex [Fe(cy-
clam)][Fe(CN)6]·6H2O is obtained.5 Slow diffusion of two
aqueous solutions of the reactants, into a U-tube containing
silica gel, provided two kinds of well formed dark brown block-
like single crystals of formula [Ni(cyclam)]3[Fe(CN)6]2·nH2O
(n = 12 and 22.5). X-ray analysis† reveals that both phases
exhibit similar structures, which only differ in the number of
water molecules (hereafter we shall discuss the results for
n = 22.5, whose structure is more accurately determined).
The structure consists of honeycomb-like layers (Fig. 1) and
crystal water molecules that occupy the interlayer space. To
form the layers, each [Fe(CN)6]32 is coordinated to three
[Ni(cyclam)]2+ cations, at facial positions, through cyanide
bridges, with Fe···Ni distances ranging from 5.037 to 5.202 Å,
whereas each [Ni(cyclam)]2+ cation is linked to two
[Fe(CN)6]32 units in trans positions. The cis-C–Fe–C angles
are close to 90°, whereas the Fe–C distances are in the range
1.934(4)–1.954(4) Å. NiII ions, which are located on centres
of symmetry, exhibit a trans-octahedral geometry; the nickel–
cyanide nitrogen distances [2.123(3)–2.144(3) Å] being longer
than the equatorial ones [2.059(4)–2.070(4) Å]. The Fe–C–N
angles are close to linear and only vary in the small range
174.0(3)–179.1(3)°, whereas the Ni–N–C angles [165.4(3) and
154.9(3)°] deviate significantly from linearity. The layers are

not planar but form an infinite staircase structure and align
along the a axis with shortest interlayer separations of 7.688 Å,
for Fe···Ni(2). This structure is similar to that reported for a
hexacyanochromate(iii) analogue.4k

The cMT vs. T plot per Fe2Ni3 unit (H = 50 G) is shown in
Fig. 2.‡ On cooling, cMT increases reaching a maximum value
of 15 cm3 mol21 K at 8 K, indicating a ferromagnetic interaction
between FeIII (t2g

5) and NiII (eg
2). The cM curve shows a

maximum at ca. 8 K, for H < 5000 G, a clear indication of an
antiferromagnetic interaction between the ferromagnetic
sheets.

Below 6 K, cMT sharply increases again reaching a value of
60 cm3 mol21 K at 2 K, suggesting a canting of the local spins,
which may arise from the local magnetic anisotropy of NiII and
low-spin FeIII ions. This phase transition is confirmed by ac
susceptibility measurements which show an intense signal at 3
K. Above 3 K, the magnetic properties are typical of a
metamagnet with a critical field Hc = 5000 G. For H < 5000 G,

Fig. 1 Views of the asymmetric unit and 2D honeycomb-like layered. Water
molecules are omitted for clarity.
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the (M/Nb) vs. T curves (Fig. 2 inset) display a maximum which
broadens as H is increased and finally disappears for H > 5000
G, demonstrating that a field-induced transition from an
antiferro- to a ferro-magnetic ground state occurs. To confirm
this metamagnetic behaviour, (M/Nb) vs. H was measured at
various temperatures (Fig. 3). As the temperature is lowered, the
isotherms become increasingly sigmoidal and present a crossing
point at ca. 5000 G, corresponding to Hc.

Below 3 K, a canted structure is formed. The magnetization
curves present hysteresis loops with a remanent magnetization
of 0.26 Nb and a coercive field of 600 G at 2 K (Fig. 3 inset).
This canted structure is also broken when H > 5000 G, which
is sufficient to overcome the intersheet interactions, responsible
for the spin canting ground state. The chromium(iii) analogue,4k

does not exhibit any phase transition above 2 K.
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Notes and references
† Crystal structure analysis: [Ni(cyclam)]3[Fe(CN)6]2·22.5H2O,
C42H113Fe2N24Ni3O22.5, Mw = 1606.4, monoclinic, space group A2/n, a
= 17.9384(12), b = 16.7894(12), c = 25.764(2) Å, b = 91.176(9)°, V
= 7757.7(10) Å3, Z = 4, Dc = 1.375 Mg m23, F(000) = 3396, m = 1.157
mm21, T = 223(2) K, 0.50 3 0.50 3 0.40 mm, 7366 independent (Rint =
0.0497) with 4326 [I > 2s(I)] observed data, R1 = 0.0457, wR2 = 0.1326.
[Ni(cyclam)]3[Fe(CN)6]2·12H2O, C42H96Fe2N24Ni3O12, Mw = 1417.3,
monoclinic, space group C2/m, a = 27.384(3), b = 14.3128(11), c =
8.4772(8) Å, b = 90.176(13)°, V = 3322.6(6) Å3, Z = 2, Dc = 1.417 Mg
m23, F(000) = 1496, m = 1.330 mm21, T = 193(2) K, 0.25 3 0.20 3 0.20
mm, 3357 independent (Rint = 0.197) with 1571 [I > 2s(I)] observed data,
R1 = 0.0764 wR2 = 0.1840. Disordered macrocycle, atoms N21 and C21
(atoms A and B, were given an occupancy of 0.5 each). Graphite
monochromatized Mo-Ka radiation, l = 0.71073 Å, STOE Image Plate
diffractometer. No absorption corrections. Solution by direct methods
(SHELXS-97) and refinements on F2 by full-matrix least squares. Non-
hydrogen atoms were refined anisotropically, H-atoms in calculated
positions as riding atoms, except those of the water molecules that were
ignored. CCDC 182/1234. See http://www.rsc.org/suppdata/cc/1999/987/
for crystallographic files in .cif format
‡ Magnetic measurements were carried out on a SQUID-based sample
magnetometer using a Quantum Design Model MPMS instrument.
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Fig. 2 cMT vs. T for H = 50 G. Inset: (M/Nb) vs. T at various fields.

Fig. 3 (M/Nb) vs. H at different temperatures. Inset: hysteresis loop at
2 K.
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