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The novel paramagnetic and chiral anion [Fe(C5O5)3]
32 has

been combined with the organic donor BEDT-TTF (= ET =

bis(ethylenedithio)tetrathiafulvalene) to yield the first chirality-

induced a phase and a paramagnetic metal.

The search for multifunctionality in molecular materials, in

particular, the combination of magnetic with electrical properties,

is one of the most active areas in molecular science.1 Major

developments in this field have been the preparation of: (i) the

series of paramagnetic superconductors ET4[H3OMIII(C2O4)3].G

(MIII = Cr, Fe and Ga; G = C6H5CN, C6H5NO2…),1,2 recently

enlarged3 by some of us with G = PhF and PhBr, (ii) the series of

metallic ferromagnets ET3[M
IICr(C2O4)3] (MII = Mn, Fe, Co),4

(iii) the antiferromagnetic superconductors k-BETS2[FeX4] (X =

Br and Cl)1 and (iv) the field-induced superconductor

l-BETS2[FeCl4].
5 A still unexplored modification in the first series

is the change of oxalate by other bidentate similar ligands. A

potentially very interesting one is the croconate dianion (C5O5
22,

Scheme 1), whose coordinating properties, similarities with the

oxalate ligand and ability to mediate magnetic interactions have

been recently revised.6 Here we report the synthesis,{ X-ray

structure,{ magnetic§ and electrical properties" and band structure

calculationsI of two new radical salts obtained with the recently

prepared7 [Fe(C5O5)3]
32 anion and ET. These salts, formulated as

a-ET5[Fe(C5O5)3]?5H2O (1) and b-ET5[Fe(C5O5)3]?C6H5CN (2),

differ only in the packing motif of the ET molecules and in the

solvent molecules. Salts 1 and 2 are the first examples of radical

salts containing the chiral and paramagnetic [Fe(C5O5)3]
32 anion.

Furthermore, salt 1 constitutes, to our knowledge, the first case of

a chirality-induced a phase as well as the first example of a

pentamerized a phase.

The structure{ of a-ET5[Fe(C5O5)3].5H2O (1) consists of layers

of ET donors in the bc plane alternating with layers of

[Fe(C5O5)3]
32 anions and water molecules (Fig. 1a). The organic

layer is formed by parallel stacks of ET molecules along the c

direction, with the molecular planes tilted ca. 22u with respect to

the chain direction. Consecutive chains are tilted in opposite

senses, giving rise to an a phase (called h20 by Mori)8 (Fig. 1b).

Albeit, the ET stacks present a dislocation every five molecules

(following the arrangement of the anions), giving rise to the only

known h51 phase in Mori’s notation.8 The analysis of the bond

distances9 shows that the three crystallographically independent

ET molecules (ET1, ET2 and ET3) bear a charge of +0.3, +0.9 and

+0.9, respectively, giving a total charge of 3.3 ¡ 0.5, in agreement

with the expected value of +3. Note that ET3 lies about an

inversion centre and, therefore, there are two ET1 and ET2

molecules and one ET3 molecule per formula unit. The anionic
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Scheme 1 Croconate dianion.

Fig. 1 Structure of 1: (a) View of the alternating cationic and anionic

layers. (b) View of the ET layer showing the a packing. (c) View of the

anionic layer with the ET molecules above it. The crosses indicate the

locations of the inversion centres in the inorganic layer. (d) View of a

croconate ring and the terminal S and C atoms of the ET molecules above

(black atoms) and below (white atoms).
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layer in 1 is formed by isolated [Fe(C5O5)3]
32 anions (where the

FeIII ion is surrounded by three croconate ligands acting as 1,2-

bidentate, with the Fe ion and one croconate ligand lying on a

twofold axis) packed in zigzag rows along the c direction with

alternating D and L chirality (Fig. 1c).

Although the structure is not chiral, the alternation of the

chirality of the [Fe(C5O5)3]
32 anions in 1 along the b axis

(orthogonal to the ET chains) induces the same kind of alternation

in the tilt angles of the ET molecules due to the presence of short

anion–donor contacts in this salt. This supramolecular interlayer

interaction, together with the steric effects, are clearly evidenced in

the interaction between the ET molecules and one of the croconate

planes. Thus, each D (or L) enantiomer induces a ‘‘right-turned’’

(or left) ET column in the organic layer below and the opposite in

the inorganic layer above (Fig. 1c, 1d and synopsis). The

disposition of the anions implies that the inversion centre of the

organic layer is located above the interchain space (Fig. 1c). As far

as we know, the salt ET9[H4Co2Mo10O38] is the only known

example of this kind of alternation in the donor stacks induced by

the chirality of the anion,10 although in this salt the big size of the

chiral anion gives rise to alternating ET stacks with a periodicity of

three stacks with each orientation (h33 in Mori’s notation).8

The structure{ of b-ET5[Fe(C5O5)3]?C6H5CN (2) is very similar

to that of 1 (Fig. 2a). The main difference is the packing of the

organic layer since the molecular planes of consecutive stacks are

parallel, giving rise to a b phase (Fig. 2b).11 The analysis of the

bond distances9 also shows an inhomogeneous charge distribution,

with charges of +1.2, +0.9, +0.1, +0.8 and +0.4 for the five

crystallographically independent ET molecules (ET1 to ET5)

respectively, leading to a total charge of 3.4 ¡ 0.5, in agreement

with the expected value of +3. The anionic layer is also formed by

isolated [Fe(C5O5)3]
32 anions, although the anions are disposed in

double rows along the c axis (one with D and the other with L

chirality, giving also rise to a non chiral structure, Fig. 2b). In

contrast to 1, the inversion centre in 2 is located above the chains

and does not impose different orientations of the ET molecules in

consecutive ET stacks (Fig. 2b).

Salt 1 is a semiconductor with a high room temperature

conductivity (ca. 6 S cm21 and an activation energy of 116 meV).

Salt 2 also presents a high room temperature conductivity (ca.

10 S cm21) but shows a metallic behaviour from room temperature

down to ca. 140 K, where a broad minimum in the resistivity plot

can be observed (Fig. 3 (up)). Below this temperature the

conductivity becomes thermally activated but the Arrhenius plot

(Ln r vs. 1/T) shows a continuous change in the slope, suggesting

the presence of a charge localization starting at ca. 140 K (also

observed in the ESR spectra, see below). Below ca. 20 K the

resistivity shows a re-entrance to the metallic state followed by a

transition at ca. 7 K to a semiconducting regime with a low

activation energy of 0.5 meV. The ESR spectra of both salts show

a single line at room temperature with g values of #2.004 and a

line width (DH) of ca. 80 G that can be attributed to the BEDT-

TTF donors with some contribution from the [Fe(C5O5)3]
32

anions. When lowering the temperature the area of this feature

(proportional to the spin susceptibility) shows an increase and a

maximum at ca. 150 K followed by a rapid decrease in both salts,

suggesting the presence of a charge localization, similar to that

observed in some related ET salts of the [Fe(C2O4)3]
32 anion.3

The thermal variation of the molar magnetic susceptibility times

the temperature (xmT) for 1 shows a room temperature value of ca.

4.5 emu K mol21 that remains constant down to ca. 15 K where it

shows an abrupt decrease, due to the zero field splitting (ZFS) of

the S = 5/2 FeIII ion and/or to very weak antiferromagnetic

interactions of dipolar nature (Fig. 3 (down)). In salt 2 the

magnetic behaviour is very similar although there is an extra linear

contribution corresponding to a temperature independent Pauli-

like paramagnetism, typical of metallic systems (Fig. 3 (down)).

Thus, the magnetic behaviour of both salts can be very well

reproduced with a very simple model for an S = 5/2 ion with a

ZFS for both salts,12 including an independent paramagnetic term

(Na) for salt 2, with the following set of parameters: g = 2.0317(4)

and |D| = 2.15(2) cm21 for salt 1 and g = 2.045(2), |D| =

2.85(6) cm21 and Na = 2.37(5).1023 emu mol21 for salt 2 (similar

to those found in many other metallic radical salts with TTF-type

donors)13 (solid lines in Fig. 3b). Note that the sign of D cannot be

determined from powder measurements and the D value may also

include a weak antiferromagnetic coupling between the FeIII ions.

Fig. 2 Structure of 2: (a) View of the alternating cationic and anionic

layers. (b) View of the ET layer showing the b packing and the anionic

layer below. The crosses indicate the locations of the inversion centres in

the inorganic layer.

Fig. 3 (up) Thermal variation of the DC resistivity for 2. Inset; the low

temperature region (down) thermal variation of the xmT product for salts

1 and 2. Solid lines represent the best fit to the model (see text).
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The band structure for 1 suggests that the donor lattice must be

described as a series of trimeric (ET2-ET3-ET2)3+ units and

neutral ET1, in agreement with the structural analysis. The direct

interaction between these trimeric units, though not negligible, is

definitely not strong because the pertinent orbital associated with

the electron hopping is now delocalized over the three donors, and

thus, the trimer–trimer interaction is smaller than when dealing

with single donors. This leads to a localized regime and activated,

even if relatively high, conductivity. The band structure for 2

contains two partially filled narrow bands (mainly based on the

ET4 HOMOs) suggesting a borderline situation between the

localized and delocalized regimes, thus providing a rationale for

the conductivity results. The structural reason for the band

narrowness is the small interaction between ET4 HOMOs through

other donors because of the mismatch in the site energies as a

result of the strong dimerization of ET1 and ET2 and the formal

neutrality of ET3 and ET5.

In conclusion, by using the paramagnetic and chiral anion

[Fe(C5O5)3]
32 with the ET donor, two novel salts with 5 : 1

stoichiometries and peculiar structural and physical properties

have been obtained: a-ET5[Fe(C5O5)3]?5H2O (1) and

b-ET5[Fe(C5O5)3]?C6H5CN (2). Salt 1 is the first example of a

chirality-induced a phase and the only known h51 phase. Salt 2 is

one of the scarce examples of paramagnetic molecular metals and

the only known example out of the tris(oxalate)metalate and

tetrahalometalate series.1 We are now investigating some mod-

ifications of these compounds as the change of the trivalent metal

atom (by Cr, Co, Mn,…), the use of enantiomeric pure forms of

the anions, the substitution of one or more oxygen atoms by sulfur

atoms in the croconate ligand and the use of divalent paramagnetic

metal atoms to induce the formation of extended anionic lattices.

We acknowledge financial support from the European Union

(COST action D35-0011-05 and MAGMANet network of

excellence), the Spanish Ministerio de Educación y Ciencia

(Projects MAT2004-03849 and BFM2003-03372-C03),

Generalitat de Catalunya (2005 SGR 683) and Generalitat

Valenciana.

Notes and references

{ Black prismatic crystals of a-ET5[Fe(C5O5)3]?5H2O (1) and black needle-
like crystals of b-ET5[Fe(C5O5)3]?C6H5CN (2) were prepared by using the
electrocrystallization technique13 and very similar conditions: ET (11.34
and 10.70 mg for 1 and 2, respectively) was placed in the anode chamber of
the electrocrystallization cell. (NBu4)3[Fe(C5O5)3] (240.0 and 120.0 mg, for
1 and 2, respectively) was dissolved in 20 mL of benzonitrile and this
solution was divided into the anode and cathode compartments. The
crystals were grown on a platinum wire electrode applying a current density
of 1 mA cm22 for a period of 60 days (for 1) and 36 days (for 2). Note that
although the synthesis conditions are very similar, the obtaining of two
different phases is quite common in the radical salts of the ET donor.13 In
the present case, the increase in the Fe(III) concentration used for 1 has
unexpectedly led to the same 5 : 1 stoichiometry, although in the anionic
layer the [Fe(C5O5)3]

32 anions are closer, presumably due to the higher
concentration of [Fe(C5O5)3]

32 anions in the crystallization solution.
{ Crystal data for 1: C65H50FeO20S40, Mr = 2489.30, monoclinic, space
group C2/c, a = 42.4125(5) Å, b = 11.2100(3) Å, c = 20.4336(3) Å,
b = 114.8929(10)u, V = 8812.5(3) Å3, Z = 4, T = 150(2) K, rcalcd =
1.876 g cm23, m(MoKa) = 1.189 mm21. Of 21 290 measured reflections,
10 937 were independent and used to refine 574 parameters and 2 restraints.
Nonius Kappa CCD diffractometer (4.6u , 2h , 56.6u), crystal size:
0.20 6 0.10 6 0.05 mm3. No absorption correction was performed. All

non-hydrogen atoms were refined anisotropically. The positions of the H
atoms on the C atoms were added into the calculated positions and refined
with a riding model. The H atoms of the water molecules were not located.
Final R (I . 2s(I)), R1 = 0.0466, wR2 = 0.1104; final R (all data),
R1 = 0.1036, wR2 = 0.1327. Max./min. residual electron density 1.066/
20.584 e Å23. Crystal data for 2: C72H45FeNO15S40, Mr = 2502.34, triclinic
space group P-1, a = 19.591(2) Å, b = 19.395(2) Å, c = 12.9581 (12) Å, a =
103.194(11)u, b = 102.859(11)u, c = 73.680(10)u, V = 4534.1(8) Å3, Z = 2,
T = 170 K, rcalcd = 1.833 g cm23, m(MoKa) = 1.153 mm21. Of 33 942
collected reflections , 12 379 were independent. Stoe IPDS diffractometer
(4.4u , 2h , 51.8u), crystal size: 0.75 6 0.375 6 0.075 mm3. Final R (I .
2s(I)), R1 = 0.0528, wR2 = 0.0745; final R (all data), R1 = 0.1119, wR2 =
0.2029. Max./min. residual electron density 0.467/20.465 e Å23. Structures
1 and 2 were solved and refined using full-matrix least squares on F2 using
the WINGX package programs.14 CCDC 294531 and 269569. For
crystallographic data in CIF or other electronic format see DOI:
10.1039/b610408h
§ Variable temperature susceptibility measurements were carried out in the
temperature range 2–300 K with an applied magnetic field of 1 T on
polycrystalline samples of 1 and 2 with a Quantum Design MPMS-XL-5
SQUID magnetometer.
" D.C. conductivity measurements over the range 2–300 K were performed
with the four contacts method for several crystals of both salts, giving
reproducible results in all the samples. The samples were measured in a
Quantum Design PPMS-9.
I The tight-binding band structure calculations used an extended Hückel
hamiltonian with exponents and parameters taken from previous work.15
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