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 ABSTRACT 
 

 The global population growth, as well as the social and economic 

importance that the agricultural sector has in many regions of the world, makes 

it very important to develop methods to monitor the status of crops, to 

improve their management, as well as to be able to make early estimates of the 

agricultural production. One of the main causes of uncertainty in the 

production of crops is due to the weather, for example, in arid and semiarid 

regions of the world, periods of drought can generate big losses in agricultural 

production, which may result in famine. Thus, FAO, during their summit in 

June 2008, stressed the need to increase agricultural production as a measure to 

strengthen food security and reduce malnutrition in the world. 

 Concern for increasing crop production, has generated, during the 

last decades, significant changes in agricultural techniques. For example, there 

has been a widespread use of pesticides, genetically modified crops, as well as 

an increase in intensive farming. In turn, the market influences crop rotations, 

and as a consequence, changes in the spatial distribution of crops are very 

common. Therefore, in order to make estimates of agricultural production, it is 

also necessary to map regularly the crop fields, as well as their state of 

development. 

 The aim of this thesis is to develop methods based on remote sensing 

data, in the radar and optical spectral regions, in order to monitor crops, as 

well as a to map them. The results of this thesis can be combined with other 

techniques, especially with models of crop growth, to improve the prediction 

of crops. 



viii 

 The optical remote sensing methods for classifying and for the 

cartography of crops are well established and can be considered almost 

operational. The disadvantage of the methods based on optical data is that they 

are not applicable to regions of the world where cloud coverage is frequent. In 

such cases, the use of radar data is more advisable. However, the classification 

methods using radar data are not as well established as the optical ones, 

therefore, there is a need for more scientific studies in this field. As a 

consequence, this thesis focuses on the classification of crops using radar data, 

particularly using AIRSAR airborne data and ASAR satellite data. 

 The monitoring of crops by remote sensing is based on the 

estimation of biophysical parameters and their evolution over time. These 

parameters are, among others, LAI (leaf area index), chlorophyll and biomass. 

In this thesis, satellite data from LANSAT-TM are used for the inversion of 

LAI, and ENVISAT-MERIS data for estimating LAI and chlorophyll. Finally, 

ENVISAT-ASAR radar data are used to investigate its potential in the 

estimation of the biomass of cereals. 

 Chapter 1 of the thesis introduces the context of this study and its 

scientific objectives. 

 Chapter 2 presents the theoretical basis of optical remote sensing. 

 Chapter 3 is dedicated to the inversion of LAI in the region of Barrax 

(Castilla-La Mancha, Spain) using 12 LANDSAT-TM images acquired during 

the same agricultural season. The LAI is calculated using LUTs (Look Up 

Tables) to invert the radiative transfer model SAIL, which is coupled to the 

model of leaf reflectance PROSPECT. The results are validated with 

experimental measurements acquired during the field campaign ESA SPARC-

2003, showing a good correlation. 
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 Chapter 4 proposes a method to invert, at the same time, LAI and 

chlorophyll data from ENVISAT-MERIS. This method involves an inversion 

of the same model, PROSPECT + SAIL, which was used in Chapter 3, but 

with the special addition of a temporal constraint. Thus, instead of inverting a 

single value of LAI and chlorophyll for each date, a curve for the entire crop 

cycle is inverted. This method seeks to take as much information as possible 

from the temporal dimension of the data. The results show that the 

multitemporal method works better than the inversions on a single date. 

However, the inversion of chlorophyll still requires further study. 

 Chapter 5 introduces the concepts related to the radar remote 

sensing, which will be used along the second part of this thesis. 

 In Chapter 6 a method of hierarchical classification of crops is 

developed. It uses polarimetric data in C band, from the airborne instrument 

AIRSAR. The method is applied to images in Flevoland (Netherland) and is 

validated with field observations. 

 Chapter 7 investigates the use of ENVISAT-ASAR data for 

agricultural applications in the region of Toulouse. The first part discusses the 

possibilities for classification of crops. The second part investigates the 

potential of the polarization ratio HH / VV to estimate the biomass of wheat. 

It is confirmed that there is a clear link between this ratio and the biomass of 

wheat, however, this relationship depends on many other factors and seems to 

be dependent on the experimental site. Therefore, more studies needs to be 

conducted. 

 The findings of this study, as well as their prospects are outlined in 

greater detail in Chapter 8. 
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 To sum up, this thesis investigates the use of optical and radar remote 

sensing to the monitoring of agricultural areas. Four different instruments, 

three on board satellites (LANDSAT-TM, ENVISAT-MERIS, and 

ENVISAT-ASAR) and 1 airborne instrument (AIRSAR) are used, in three 

areas of study in Europe (Barrax, Toulouse and Flevoland), as well as an 

important number of field measurements. This study highlights the importance 

of the multi-temporal aspect in agricultural studies using remote sensing. 
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RESUMÉ 
 
 À cause de l'importance sociale et économique que le secteur agricole 

a dans des nombreuses régions du monde, il est très important de développer 

des méthodes pour surveiller l'état des cultures, pour améliorer leur gestion et 

pour pouvoir faire une estimation précoce de la production agricole. L'une des 

principales causes d'incertitude dans la production des cultures est due aux 

conditions météorologiques, par exemple dans les zones arides et semi-arides 

du monde, des longues périodes de sécheresse peuvent générer des grandes 

pertes dans la production agricole, ce qui, parfois, provoque des famines. Ainsi, 

la FAO, au cours du sommet de juin 2008, a souligné la nécessité d'accroître la 

production agricole comme une mesure visant à renforcer la sécurité 

alimentaire et réduire la malnutrition dans le monde. 

 Le souci d'améliorer la production agricole a suscité, au cours des 

dernières décennies, des changements importants dans les techniques agricoles. 

Par exemple, il y a eu une utilisation généralisée des produits phytosanitaires, 

une augmentation des cultures génétiquement modifiées, ainsi qu'une 

augmentation de l'agriculture intensive. Quant à, la rotation des cultures, elle 

est de plus en plus influencée par le marché. En conséquence, des 

changements dans la répartition spatiale des cultures sont très fréquents. Ainsi, 

afin de faire des estimations de la production agricole, il est nécessaire de 

pouvoir produire, régulièrement des cartes des cultures ainsi que leur état de 

développement. 

 L'objectif de cette thèse est de développer des méthodes basées sur 

des données de télédétection, radar et optiques, afin d'assurer le suivi des 

cultures, ainsi que leur cartographie. Les résultats de cette thèse pourront être 
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combinés avec d'autres techniques, notamment avec des modèles de croissance 

des cultures, pour améliorer la prévision des récoltes. 

 Les méthodes de télédétection optique pour classifier et cartographier 

les cultures sont bien établies et peuvent être considérées comme quasi 

opérationnelles, mais leur inconvénient est qu'elles ne sont pas applicables à 

des régions du monde où la couverture nuageuse est fréquente. Dans ce cas, 

l'utilisation des données radar est plus souhaitable. Toutefois, les méthodes de 

classification basées sur des données radar n’étant pas aussi bien établies que 

celles qui sont basées sur l'optique, il y a donc un besoin de plus d'études 

scientifiques dans ce domaine. En conséquence, cette thèse porte sur la 

classification des cultures utilisant des données radar, en particulier des 

données aéroportées AIRSAR  et de données ASAR du satellite ENVISAT. 

 La surveillance des cultures par télédétection est basée sur l'estimation 

des paramètres biophysiques et de leur évolution au fil du temps. Ces 

paramètres sont, entre autres, le LAI (indice de surface foliaire), la chlorophylle 

et la biomasse. Dans cette thèse, les données satellitaires LANSAT-TM sont 

utilisées pour l'inversion du LAI et les données ENVISAT-MERIS sont 

utilisées pour l'estimation combinée du LAI et de la chlorophylle. Enfin, le 

potentiel des données radar ENVISAT ASAR pour étudier leur potentiel dans 

l'estimation de la biomasse des céréales est évalué. 

 Le premier chapitre de la thèse présente le contexte de cette étude et 

ses objectifs scientifiques. 

 Le deuxième chapitre présente les fondements théoriques de la 

télédétection optique. 

 Le troisième chapitre est consacré à l'inversion du LAI dans la région 

de Barrax (Castilla-La Mancha, Espagne) à l'aide de 12 images LANDSAT-TM 

acquises au cours du même cycle de culture. Le LAI est calculé en utilisant des 
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LUTs (Look Up Tables) pour inverser le modèle de transfert radiatif SAIL, qui 

est couplé au modèle de réflexion des feuilles PROSPECT. Les résultats sont 

validés avec des mesures expérimentales acquises au cours de la campagne sur 

le terrain ESA SPARC-2003, montrant une bonne corrélation. 

 Le Chapitre 4 propose une méthode inverser à la fois le LAI et la 

chlorophylle avec les données ENVISAT-MERIS. Cette méthode implique 

une inversion du même modèle, PROSPECT + SAIL, utilisé dans le Chapitre 

3, mais avec une contrainte temporelle. Ainsi, au lieu d'inverser une valeur 

unique du LAI et de la chlorophylle pour chaque date, une courbe pour 

l'ensemble du cycle de culture est inversée. Cette méthode cherche à tirer parti, 

autant que possible, de la dimension temporelle des données. Les résultats 

montrent que la méthode multitemporelle fonctionne mieux que les inversions 

sur une date unique. Toutefois, l'inversion de la chlorophylle nécessite encore 

une étude plus approfondie. 

 Le Chapitre 5 présente les concepts liés à la télédétection radar, qui 

seront utilisés le long de la deuxième partie de cette thèse. 

 Dans le Chapitre 6, une méthode de classification hiérarchique des 

cultures est développée. Elle utilise des données polarimétriques en bande C de 

l'instrument aéroporté AIRSAR. La méthode est appliquée à des images dans le 

Flevoland (Pays-Bas) et est validée avec des observations sur le terrain. 

 Le Chapitre 7 examine l'utilisation des données ENVISAT ASAR 

pour les applications agricoles dans la région de Toulouse. La première partie 

examine les possibilités offertes pour obtenir une classification des cultures. La 

deuxième partie étudie le potentiel du rapport de polarisation HH / VV pour 

estimer la biomasse du blé. Il est confirmé qu'il existe un lien entre ce rapport 

et la biomasse du blé, cependant, cette relation dépend de nombreux facteurs 
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et semble être dépendante du site d’expérimentation. Par conséquent, une 

étude plus approfondie est nécessaire. 

 Les conclusions de cette étude, ainsi que ses perspectives, sont 

décrites plus en détail dans le Chapitre 8. 

 En résumé, la thèse porte sur la télédétection optique et radar pour le 

suivi des zones agricoles. Quatre instruments différents, 3 satellitaires 

(LANDSAT-TM, ENVISAT-MERIS, ENVISAT-ASAR) et 1 aéroporté 

(AIRSAR) sont utilisés dans trois régions d'étude en Europe (Barrax, Toulouse 

et Flevoland), ainsi qu'un nombre important de mesures sur le terrain. Cette 

étude souligne l'importance de l'aspect multitemporel dans les études agricoles 

au moyen de la télédétection. 
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RESUMEN 
 

 El aumento de la población mundial, así como la importancia social y 

económica que el sector agrícola tiene en muchas regiones del mundo, hace 

que sea muy importante desarrollar métodos que permitan hacer un 

seguimiento del estado de los cultivos, mejorar la gestión de los mismos, así 

como poder realizar una estimación temprana de la producción. La principal 

causa de incertidumbre en la producción de las cosechas es debida a las 

condiciones meteorológicas, por ejemplo, en las regiones áridas y semiáridas 

del mundo los períodos de sequía generan grandes pérdidas en la producción 

agrícola, la cuales se traducen en hambrunas. Así, la FAO, durante su cumbre 

de Junio 2008, insistió en la necesidad de aumentar a producción agrícola 

como una medida para reforzar la seguridad alimentaria y reducir la 

desnutrición en el mundo.  

 La preocupación por aumentar la producción de cultivos, ha 

generado, durante las últimas décadas, importantes cambios en las técnicas 

agrícolas. Por ejemplo, se ha producido un uso generalizado de productos 

fitosanirios, de cultivos modificados genéticamente, así como un aumento de la 

agricultura intensiva. A su vez, la rotación de cultivos está cada vez más 

influenciada por el mercado, siendo los cambios en la distribución espacial de 

los cultivos muy frecuentes. Por lo tanto, para poder hacer estimaciones de la 

producción agrícola, es necesario producir periódicamente mapas de cultivos, 

así como cartografiar su estado de desarrollo. 

 La presente tesis doctoral tiene como objetivo desarrollar métodos 

basados en datos de teledetección, en la región del óptico y en la región del 

radar, que permitan realizar un seguimiento de los cultivos, así como una 
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cartografía de los mismos. Los resultados de esta tesis pueden combinarse con 

otras técnicas, especialmente con los modelos de crecimiento de cultivo, para 

mejorar la predicción de las cosechas.  

 Los métodos de teledetección para la clasificación y la cartografía de 

cultivos utilizando datos en la región del óptico están bien establecidos y 

pueden considerarse casi operacionales. La desventaja de estos estudios 

basados en datos ópticos es que no pueden aplicarse a regiones donde la 

cobertura nubosa es frecuente. En esos casos, la utilización de datos radar es 

más recomendable. Sin embargo, los métodos de clasificación utilizando datos 

radar no están tan bien establecidos y es necesario realizar más estudios 

científicos en este campo. Es por ello, que esta tesis se centra en la clasificación 

de cultivos mediante datos radar, concretamente datos aerotransportados 

AIRSAR y datos ASAR del satélite ENVISAT.  

 El seguimiento de los cultivos mediante teledetección se basa en la 

estimación de parámetros biofísicos y su evolución en el tiempo. Estos 

parámetros son, entre otros, LAI (índice de área foliar), clorofila y biomasa. En 

esta tesis se han utilizado datos del satélite LANSAT-TM para la inversión de 

LAI, y datos ENVISAT-MERIS para la estimación de LAI y clorofila. 

Finalmente, se ha investigado el uso de datos radar ENVISAT-ASAR para 

investigar su potencial en la estimación de la biomasa de los cereales. 

 El Capítulo 1 de la tesis presenta el contexto y los objetivos 

científicos de este estudio. 

 El Capítulo 2 presenta las bases teóricas sobre la teledetección en el 

óptico.  

 El Capítulo 3 está dedicado a la inversión de LAI en la región de 

Barrax, en Castilla-La Mancha, utilizando 12 imágenes LANDSAT-TM 

adquiridas durante la misma temporada agrícola. El LAI se ha calculado 
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utilizando LUTs (Look Up Tables) para invertir el modelo de transferencia 

radiativa SAIL acoplado al modelo de reflectividad de hoja PROSPECT. Los 

resultados se han validado con medidas experimentales adquiridas durante la 

campaña de campo de ESA, SPARC-2003, mostrando una muy buena 

correlación. 

 El Capítulo 4 propone un método para invertir a la vez LAI y 

clorofila a partir de datos ENVISAT-MERIS. Este método consiste en una 

inversión de mismo modelo PROSPECT+SAIL que se utilizó en el Capítulo 3, 

pero con la particularidad de que se añade una ligadura temporal. De esta 

forma, en vez de invertir un único valor de LAI y clorofila para cada fecha, se 

invierte una curva válida para todo el ciclo del cultivo. Este método intenta 

aprovechar al máximo la dimensión temporal de los datos. Los resultados 

obtenidos muestran que el método multitemporal da mejores resultados que 

las inversiones fecha a fecha. Sin embargo, la inversión de clorofila todavía 

requiere más estudio. 

 El Capítulo 5 introduce los conceptos relacionados con la 

teledetección radar que se manejan a lo largo de la segunda parte de esta tesis.   

 En el  Capítulo 6 se ha desarrollado un método de clasificación de 

cultivos jerarquizado, que utiliza datos polarimétricos en banda C, del 

instrumento aerotransportado AIRSAR. El método se ha aplicado a imágenes 

en Flevoland (Paises Bajos) y se ha validado con observaciones de campo.  

 El Capítulo 7 se investiga el uso de los datos ENVISAT-ASAR para 

aplicaciones agrícolas en la región de Toulouse. En la primera parte se analizan 

las posibilidades para la clasificación de cultivos. Finalmente se investiga el 

potencial del cociente de polarizaciones HH/VV para estimar la biomasa del 

trigo. Se ha confirmado que hay una relación clara entre este cociente y la 
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biomasa del trigo, sin embargo, dicha relación depende de muchos otros 

factores y parece ser dependiente del lugar de estudio. Por lo tanto, los 

algoritmos de inversión necesitan mucho más análisis.  

 Las conclusiones de este estudio, así como sus perspectivas, están 

expuestas con mayor detalle en el Capítulo 8.  

 En resumen, esta tesis doctoral ilustra las aplicaciones de la 

teledetección en el óptico y en el radar para el estudio de zonas agrícolas. Se 

han utilizado cuatro instrumentos distintos, tres a bordo de satélites 

(LANDSAT-TM, ENVISAT-MERIS, ENVISAT-ASAR y uno 

aerotransportado (AIRSAR) en tres zonas de estudio europeas (Barrax, 

Toulouse y Flevoland), así como una serie importante de medidas de campo. 

Este estudio pone de manifiesto la importancia del aspecto multitemporal en 

los estudios agrícolas mediante teledetección. 
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    -Adiós -dijo Ana, 
reteniendo la mano de Levin y mirándole a los ojos con 

una mirada que le conturbó-. Me siento muy dichosa 
de que la glace soit rompue. 

 
Leon Tolstoi, Ana Karenina 

 

 

 

CHAPTER 1:  

INTRODUCTION 

 

1.1. Scientific context. 
 

1.1.1. Need for an agricultural monitoring. 

 

The economic and social importance of the agricultural sector in 

many regions of the world, together with the concern about world population 

increase, economic development and the uncertainty in the changes of 

production caused by climate change, made necessary the development of 

procedures and techniques to monitor the conditions of crops, to improve the 

crop field management and also to be able to make early prediction of crop 

production. This need for an efficient crop monitoring and management, as 

well as, the prediction of crop production is thus enhanced by climate change 

issues and by the changes in agriculture related to human activities.  

Regarding human activities, the Food and Agricultural Organization 

of the United Nations (FAO) states that the world population will increase at a 

rate of 43 millions per year in the period 2045-2050 (Bruinsma, 2003). This rise 

of human beings in the world will be a consequence of the population growth 
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in developing countries (45 millions), and prognosis is that half of this 

accruement will occur in the sub-Saharan Africa (23 millions). In those 

developing countries, especially in Africa, the increase of population will 

aggravate even more the current world undernourished state. It is expected 

that industrial countries will have some reactions for increasing food 

production in concordance to this population growth. Thus, there is a matter 

of fact that it exists a general concern about increasing agricultural production.  

Furthermore in the frame of what is also known as food security 

strategies, there is an interest in predicting problems like pest infections and 

drought periods than can damage the crop production. In the large arid and 

semiarid regions of the world droughts are frequent and they commonly cause 

a decrease or a total failure of crop production, important economic losses in 

developed countries, and famine in undeveloped countries. An increase of 

some of these problems is expected with climate change, mainly in the 

Mediterranean region, which might be one of the most vulnerable regions to 

global change in Europe. Climate change projections for the Mediterranean 

region show a reduction of agricultural areas and losses of agricultural potential 

during the twentieth century (Schröter et al., 2005) due to the pronounced 

decrease in precipitation that is predicted (Giorgi and Lionello, 2008). 

The current change of alimentary habits in some important emerging 

countries, like India and China is increasing the demand for agricultural 

products. In these countries, a growing sector of the population is becoming 

wealthy enough to change from a mostly vegetarian diet, based on rice and 

other cereals, to a diet that includes more meat. Livestock needs to be fed with 

cereals, which increases the demand and, therefore, market prices. 

Furthermore, some developed countries are increasing their production of 

biofuels, which diminishes the quantity of crops used for human consumption. 

This is also helping to increase the prices of cereals. Last, but not least, the 
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upward trend of prices is attracting speculators to the markets.  This increase 

of prices is causing political tensions, as happened during the spring of 2008 in 

countries like Haiti, where the prime minister had to resign, Cameroon, 

Senegal, but also Egypt or Thailand. A means for limiting price increases 

would be to increase production, which would need an increase of agricultural 

productivity. In fact, during the FAO summit of June 2008, it was stated that 

more investments should be done to increase agricultural productivity. 

The need for an increase of production has induced important 

changes in the agricultural practises during the last decades. For example the 

use of fertilizers has been extended worldwide and genetically modified crops 

are used as a solution for a “sustainable” production increase (Qaim and 

Wilberman, 2003). There is also a concern about the impacts associated with 

these new agricultural practises. The expansion of agriculture needs to be done 

in a sustainable way as the generalized use of fertilizers or over exploitation of 

water resources represents environmental risks and can even have 

consequences for human health. The increase intensive processes like irrigation 

and/or the abuse of fertilizers also might produce some negative consequences 

on water quality and the degradation of irrigated lands for instance as a 

consequence of salinisation. 

Finally, another noticeable change in modern agriculture is that more 

and more frequently crop rotations are decided by market fluctuations and 

policy regulations (especially in the E.U.). This introduces an additional 

dynamics in crop distribution, which make necessary to update crop maps with 

a high temporal frequency. 

The other important issue that requires a system for crop monitoring 

is the impacts of climate change in agriculture. Studies conducted over the last 

decades have provided evidence about the modifications of several climatic 

parameters (Solomon et al., 2007). For instance, noticeable trends in surface 
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temperatures have been recorded during the twentieth century at the global 

scale (Jones and Moberg, 2003). Satellite observations using AVHRR and 

ATSR data confirmed an increase in global sea temperature (+0.13ºC in a 

decade). An increase of extreme events such as hot waves, droughts and 

extreme precipitation events has also been recorded in different regions (Karl 

and Easterling, 1999). The existing models of climate agree on the increase of 

global surface temperatures for the second half of the 21st century. For 

instance, after a doubling of the concentration of CO2, the increase in 

temperature is likely to be in a range that goes from 2 to 4.5°C, with a best 

estimate of about 3°C. Nevertheless, although this is the general pattern 

predicted at the global scale, models indicate an important spatial diversity in 

the manifestation of the effects of climate (Räisänen, 2007). 

The feedback effect of climate change on agriculture is complex. The 

increase in temperature and the increase in the concentration of atmospheric 

CO2 could affect the plant biological processes (photosynthesis, respiration, 

growth, etc) (Barnes et al., 1995; Booker et al., 2005). The fertilizing effect of 

the atmospheric carbon could produce a general increase of the vegetation 

activity and production (Long et al., 2005). Nevertheless, the positive response 

of vegetation activity and production to climate change is only expected in 

areas with an adequate availability of water, on the contrary, the areas affected 

by an increase of temperatures and evapotranspiration together with a decrease 

of precipitation will suffer from a higher water stress in vegetation, which, in 

turn, would cause a decrease of the production (Vicente-Serrano et al., 2006). 

Finally, extreme events (hot waves, droughts, extreme rainfalls) have a negative 

effect in crop production (Vicente-Serrano, 2007). The undesirable impacts 

that climatic change can have in crop production show the strong requirement 

for the monitoring of crops at present and to be maintained in the future.  
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1.1.2. Crop monitoring. 

 

In the previous section it was highlighted that the relationship 

between agriculture and climate and the important changes in agriculture 

practises during the last part of the 20th century shows that agricultural 

monitoring systems are necessary. To be efficient, such systems should satisfy 

at least the three requirements listed hereafter: they should be able to provide a 

map of crops timely, to survey the growth of crops and if possible to predict 

the yields. Below, each of these requirements is discussed in more detail.  

 

Crop mapping. 

The substantial increase of intensive agriculture together with the 

influence of the policy regulations and market demands leads to frequent 

changes in the surface meant to agriculture and in the distribution of crops 

within the land devoted to agriculture. Therefore, the timely identification, 

inventory and cartography of crops becomes necessary for estimations of crop 

yield. In addition to the crop production assessment, crop mapping is also 

useful for the management of water resources or the estimations of 

sequestration of carbon by the soil, among others.  

 

Crop growth survey. 

Crop growth survey consists in the monitoring during the growth 

period of several crop and soil parameters, which are indicators of the plant 

condition, together with the actual plant phenological stage. Those parameters 

are for example plant height, LAI (Leaf Area Index), biomass or nitrogen 

content. Typically, the survey of crop growth is focused in the following issues, 

which are in-turn interconnected: 
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- Phenology development: which is the succession of biological 

events during the plant life. The survey of phenology implies, for example, the 

observation of the exact moment in which certain crop organs appear (ex. 

wheat ears). Phenology is often simulated in terms of the sum of degree-days 

and crop specific characteristics, for instance vernalisation factors.  

- Canopy development: it can be quantified by the measurement 

of the LAI, the plant biomass of the plant height. In terms of biological 

processes, canopy development is the result of photosynthesis, respiration and 

biomass allocation. The amount of energy received and the capacity of the 

plant to use this energy will determine the biomass production. The amount of 

intercepted radiation is a function of the LAI. Only a part of the intercepted 

radiation, denoted as fPAR, is efficiently used by the crop and will be used for 

biomass accumulation. The way in which biomass partitioning is performed is 

specific to each cultivar type. In the modelling of canopy development the high 

vegetative structural diversity is controlled by genetic variables that intervene in 

this partitioning.  

- Roots growth and uptake ability: the function of plant roots is 

to uptake water and nutrients from the soil. This is closely related to the soil 

chemical and physical properties as well as the soil moisture conditions. Any 

lack of nutrients, especially nitrogen, or any water deficiencies would negatively 

impact the plant development. The shortages in mineral content or basic 

nutrients in the soil can be detected with periodical analysis of soil samplings 

and compensate with fertilization. The monitoring of moisture conditions is 

also necessary. Regarding biological aspects, there is a big difference between 

the root system of annual crops (ex. wheat, corn, potatoes…) and perennial 

crops (ex. vineyards).  

- Water balance among the plant, the soil and the atmosphere. 

The water requirements of a crop in a particular moment depend on the 



  

7 

environmental variables (ex. air temperature), the soil conditions and the crop 

phenology. The processes involved in the water balance include evaporation 

and transpiration, both in the soil and in the plant. The list of variables that 

take part in the water balance, mainly describing the soil status and soil water 

behaviour, can be very extensive (soil albedo, drainage coefficients, etc….) but 

the most important is soil moisture. 

- Nitrogen balance in the soil and in the plant. The content of 

nitrogen in the soil can change as a result of organic decompositions, 

fertilisation, etc. Crops absorb nitrogen through the roots system and fix it in 

their elements. The nitrogen content in the leaves is related to the chlorophyll 

content, which is easier to measure than nitrogen content.  

The information obtained from the survey of the previous points 

through the quantification of several parameters is of great valuable for the 

management of fields and are the basis of the human interventions like the use 

of fertilizers or a particular irrigation schedule. However, the monitoring of the 

parameters of crops along a growing season is expensive and time consuming, 

and therefore, there is a need for developing remote sensing techniques that 

will be useful in this context.  

 

Prediction of crop yield. 

Several techniques have been used to obtain an early prediction of 

crop production, most of them based on previous climate conditions 

summarised by means of drought indices, vegetation indices obtained from 

remote sensing data (e.g., Mkhabela et al., 2005; Kalularme et al., 2003; Royo et 

al., 2003) and both of them (Vicente-Serrano et al., 2006). These methods are 

based on regression models between the final crop yields, the climate data and 

vegetation indices. Although these methods are widely used, they have the 

problem that predictions are site specific from local measurements and 
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sometimes the spatial extrapolation is difficult, as a consequence of the 

geographic and topographic diversity and the different crop types. To solve 

these problems, more complex models, based on biophysical processes, can 

also be used. These are likely to be more general than the statistical methods 

based on local regressions. A model of crop growth describes how a plant 

grows, that is, how the carbon is allocated in the plant. These models require 

daily meteorological data: incoming solar radiation, temperature and 

precipitation. Many models have been developed or adapted to a unique 

cultivar, a reduced number of them or to particular crop conditions like water 

stress, nitrogen stress, salinity conditions, etc. and make use of many 

parameters. Thus, the benefits of using a monitoring system that provides crop 

parameters describing canopy development, for instance LAI would be very 

important for model calibration, forcing, etc.  

A huge diversity of crop growth models exists in the scientific 

literature. Some well-known models and their related ‘families’ are SUCROS 

(Simple and Universal Crop Growth Simulator) (Spitters et al., 1989), CERES 

(Crop Environment Resource Synthesis) (Jones and Kiriny, 1986; Ritchie et al., 

1985) that was developed for cereals, CROPGRO (Hoogenboom, 1992) is a 

family of grain legumes models  and STICS (Simulateur mulTIdisciplinaire 

pour les Cultures Standard) (Brisson et al., 1998) developed at the INRA, 

France. There are also software “packages” like DDSAT (Decision Support 

System for Agrotechnology Transfer) (Jones et al., 2003) and APSIM 

(Agricultural Production Systems sIMulator) (McCown, 1986) that integrate 

several of the previously cited models.  

Nevertheless, despite the great usefulness of these models, there are 

noticeable limitations concerning its calibration. Crop parameters describing 

canopy development and dynamic are commonly needed for the calibration of 

the models. This involves time and cost consuming field samplings and very 
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often there is a lack of spatial representation, mainly in areas in which spatial 

diversity of crops, soil characteristics and climate are important.   

Therefore, due to these limitations, there is a need to develop 

methods based on remote sensing data, which allow the monitoring of crop 

parameters over large areas, to improve the yield prediction. 

 

1.2. The role of remote sensing in crop monitoring. 

 

The monitoring of crops can be done by means of ground survey at 

the local scale. However, at a regional scale, remote sensing appears 

appropriate booth in terms of spatial and temporal coverage.  

 

Crop mapping. 

As it was said before, crop mapping is necessary in land change 

studies, climate change, hydrological studies and other applications like yield 

prediction and the efficient management of water resources, the later usually 

based in the estimates of evapotranspiration (Simonneaux et al., 2008). Crop 

maps are usually used in combination with crop growth models for yield 

prediction or to model for example soil carbon sequestration (Doraiswamy et 

al., 2007). 

Because of the amount of applications, the classification of crops 

using remote sensing images is an important topic in remote sensing research. 

The advantages of using remote sensing techniques, instead of field survey, are 

the lower cost and the possibility of covering large areas. Another important 

reason is that it is easier to update the classifications, due to the possibility of 

repeated time frequency of the data. 
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The use of optical remote sensing data is well established for crop 

mapping and the methodologies have been proved to be quasi operational. 

Crop classification using optical data is often performed with data with a 

spatial resolution compatible with the field size: in general Landsat-TM or 

SPOT-HRV data at regional scale are used. Medium-resolution data (200 Km - 

1Km) and coarse resolution data (> 1Km) are often considered as insufficient 

with regard to the size of the fields. Those data (AVHRR, MODIS, MERIS, 

SPOT-VGT) are mostly used for multi-year temporal surveys, and to obtain 

land use/land cover maps at continental or global scales (Loveland et al., 2000; 

Strahler et al., 1999; Bartholomé and Belward, 2005). A well-known limitation 

of optical data is the presence of the cloud cover that prevents the acquisition 

of images at the desiderate time. Radar data, in contrast, has the advantage of 

being independent from cloud cover and thus show a high potential for crop 

classification. It may also happen that vegetation needs to be monitored at a 

specific phenology stage. This is the case, for example, when two crops have 

similar behaviour during the growing season except for a specific development 

stage. However, satellite radar data have not often been used for this purpose, 

(Saich and Borgeaud, 2000; Schotten et al., 1995; Tso and Mather, 1999) 

mainly because, until very recently, satellites were only able to measure single 

linear polarisations at a single frequency: ERS-1 and ERS-2 operate at C Band 

at VV polarisation, RADARSAT operated at C band and HH polarisation, 

JERS operated at L Band, HH polarisation. Future missions will measure the 

complete scattering matrix at a single frequency and there is a need for 

developing adequate classification methods. 

Several algorithms use radar data for the classification of crops. In a 

general way, they can be classified into knowledge-based approaches, 

classification by scattering mechanism and statistical data-driven methods 

(Oliver and Quegan, 1998). Knowledge-based approaches are based on the 
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analysis of the physics that determines the measured backscattering for each 

crop type. Those classifiers have the advantage of being more robust and easier 

to adapt to the specific conditions of the area to classify.  

 

Crop condition and growth survey using remote sensing data. 

Remote sensing data can be used to estimate biophysical parameters, 

which are indicators of the crop condition along the growing season. Multi-

temporal estimations of these parameters contribute to the growth survey. 

Biophysical variables like LAI, fraction of photosynthetically active radiation 

(fPAR), biomass or nitrogen content are important because they contribute to 

the understanding of the crops dynamics and environmental dynamic at any 

spatial scale. In spite of the availability of radar data under any weather 

conditions, the retrieval of biophysical parameters is more frequently done 

using optical data, mainly because the interaction between the radar signal and 

the vegetation is more complex than with the optical signal and it is more 

difficult to establish the biophysical relationships. Generally they can only be 

established for one type of crop, because it has a particular structure. In 

addition it is complex to handle radar data compared with optical data. A large 

amount of papers were published on the derivation of biophysical parameters 

at leaf and canopy level from optical data. Many examples can also be found 

for LAI (Turner et al., 1999; Weiss et al. 2000; Combal et al, 2002a), Duchemin 

et al., 2006), fPAR, canopy water content and leaf chlorophyll content. For 

agricultural crops, for which temporal changes are more rapid than for instance 

forest surfaces, multi-temporal observations are very important. Few papers 

have addressed the effective inversion of multi-temporal and high-resolution 

satellite images for various crop types. Thus, more work needs to be done on 

the retrieval of biophysical parameters using multi-temporal data. 
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In the radar domain, multi-angular, polarimetric and interferometric 

data have been shown to be of interest for the retrieval of biogeophysical 

parameters like crop height, plant water content, LAI and biomass (Le Toan et 

al., 1984). Those studies were mainly conducted with the X and C Bands. It has 

been demonstrated that if the vegetation cover has components with specific 

orientations, the penetration depth, the volume scattering, and the attenuation 

may be different at different polarisation states (Ferrazzoli et al., 1999; Picard 

et al., 2003, and Mattia et al. 2003). This phenomenon was the base used to 

develop an algorithm to map rice fields (Le Toan et al., 1989).  

As with crop mapping the retrieval of biophysical parameters using 

radar satellite data have been limited by type of data. The ASAR sensor 

onboard ENVISAT allowed, for the first time, to measure two simultaneous 

polarisations HH/VV, HH/HV and VV/HV at different non-simultaneous 

incidence angles in Band-C. This motivated studies on the use of polarimetry 

for biomass retrieval of wheat (Mattia et al., 2003). This work studies the 

potential of polarized radar data in the derivation of biomass for small grain 

cereals using ENVISAT-ASAR data.  

 

The role of Remote Sensing in combination with crop growth models for 

crop yield prediction. 

It is difficult for the models to account for the spatial heterogeneity in 

vegetation and soil conditions as well as the inherent difficulties of phenology 

modelling. Crop growth depends on many factors (weather, species, soil status, 

soil characteristics and management strategies) and, as a result, models need 

many parameters. For instance STICS v3.0 depends on 132 parameters (Ruget 

et al., 2002). It is frequent that some of these parameters, like the sowing date, 

are unknown, or need to be adjusted for each crop type or geographical 

location. One solution consists in calibrating the models using measurements 
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of biophysical parameters (e.g. Brisson et al., 1998; Spitters et al., 1989; 

Bondeau et al., 1999; Launay and Guerif; 2005). LAI, which accounts for the 

leaf surface intercepting in-coming radiation, and biomass are key variables to 

calibrate crop growth models. 

The calibration can be done with in-situ measurement of biophysical 

parameters. However, in-situ measurements are expensive and time consuming 

and generally can only be done at a limited number of fields. Thus, calibration 

has the risk of becoming site and cultivar-specific. In this context satellite 

remote sensing is useful when integrated in the models of crop growth as it 

provides spatial information on actual vegetation status. Remote sensing can 

be used to estimate key variables in the models: LAI, aboveground biomass 

and other crop characteristics like chlorophyll or nitrogen content. This 

information can be integrated in the calibration process using for example 

forcing methodologies (Clevers and van Leeuwen, 1996; Moulin et al., 1998).  

 

1.3. Objectives of this study. 

 

The general objective of this thesis is the assessment and 

development of methods based on remote sensing data, which are useful to the 

monitoring of crops, and can contribute, when combined with other methods, 

to improve yield prediction. The thesis focuses on two main topics: the 

classification of crop types and the retrieval of vegetation parameters. 

Furthermore, a relevant aspect addressed in this thesis is the benefits of using 

multi-temporal data. To achieve the goals of this study it has been necessary to 

deal with the complexity of using many different instruments, data types, test 

sites and ground measurements.  



14 

This study is based on two types of remote sensing data: optical and 

radar. The satellite optical instruments that are used are LANDSAT-TM and 

ENVISAT-MERIS. The radar data come from the satellite instrument, 

ENVISAT-ASAR, as well as from an airborne sensor, JPL-AIRSAR. More 

details about these sensors and satellites are commented in the following 

chapters.  

For agricultural applications, the use of both optical and radar data is 

needed to overcome the limitations that each type of data have on their own. 

For example, although there are operational methods for the classification of 

crops using optical data, these methods cannot be applied in regions with a 

frequent presence of clouds. In this sense, this study is a demonstration of the 

complementarities of both types of data in crop studies. Optical data are used 

to perform a multi-temporal LAI monitoring, and to retrieve LAI & 

Chlorophyll. Forthcoming and recent satellite radar data are used for crop 

mapping. Finally, the retrieval of biomass using radar data is also investigated. 

Concerning the retrieval of biophysical parameters, the objectives of 

this study are three: 

- The derivation of seasonal LAI variations from LANDSAT 

images the different crops in an agricultural area.  

- The development of multi-temporal method for the inversion 

of LAI & Chlorophyll using MERIS-FR data. 

- To investigate the crop monitoring of small grain cereals with 

ASAR-APP data and the possibilities of biomass retrieval of small grain 

cereals.  

Regarding crop mapping the objective in this thesis is the development 

of a hierarchical classification method and its validation. In view of 

applications to present and future satellite data fully polarimetric C-Band 
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AIRSAR data are used. The potential of ENVISAT-ASAR data is also 

investigated in the last part of this work. 

 

This study has been developed in three agricultural areas in Europe: 

- Barrax in Castilla-La Mancha, Spain. Chapter 3 describes more 

in detail the region as well as the ground measurements acquired during the 

ESA/SPARC-2003 campaign.  

- Flevoland, North of The Netherlands. More details are given in   

Chapter 6. 

- Toulouse, South of France. The description of the experiment 

developed in a wheat field for the collection of wheat biomass and other 

measurements is done in Chapter 7. 

 

1.4 Organisation of the thesis report. 

 

The present thesis has been organised in two parts: optical and radar. 

The thesis will provide background information needed for the understanding 

of the remote sensing signal with respect to the agricultural crops. Chapter 1 is 

a general introduction.  

Part I presents the results obtained from the optical data in the area 

of Barrax.  

- Chapter 2 gives the physical basis of the optical remote 

sensing. A description of the models used for the inversion of optical data is 

presented, as well as a review of existing algorithms for LAI, Chlorophyll and 

biomass retrieval is presented. The atmospheric correction method that was 

applied to the optical data is also described.  
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- Chapter 3 focus on the retrieval of LAI using LANDSAT-TM 

data. The study was conducted in the region of Barrax. LAI was inverted using 

images at twelve dates during year 2003 and validated with ground 

measurements from the ESA/SPARC-2003 campaign.  

- Chapter 4 gives results on the retrieval of LAI & Chlorophyll 

with MERIS-FR from multi-temporal inversion. The study was also in the 

region of Barrax. 

Part II refers to the work done using radar data. The three study 

areas are involved. Chapters 5 to 7 are organised as follows: 

- Chapter 5 gives the theoretical context or radar remote sensing 

necessary for Chapters 6 and 7. 

- Chapter 6 reports the performance of a hierarchical crop 

classification method, based on C-Band polarimetric measurements from 

synthetic aperture radar. AirSAR data collected on the Flevoland site in the 

frame of the ESA MAC-Europe campaign, and the European RAdar-Optical 

Research Assemblage (ERA-ORA) library (http://eraora.disp.uniroma2.it/) 

were used. The results obtained in classifying 5 types of crops and a soil class 

were validated with a ground truth map of the site. Some of the algorithm rules 

were also tested in the region of Barrax. 

- Chapter 7 deals with the applications of ASAR-APP data in 

crop classification, and the retrieval of biomass for small grain cereals using 

ENVISAT ASAR data, in the Toulouse region. The field campaing that was 

conducted in Toulouse to measure the biophysical parameters of a wheat field 

is presented. Results on the use of ASAR-APP data in Barrax for crop 

classification are also shown. Finally, the processing applied to ENVISAT-

ASAR data is also described in that chapter.  

- Chapter 8 contains the general conclusions and perspectives 

of this work. 

http://eraora.disp.uniroma2.it/
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¿Dónde está mi ciencia? He sido un testarudo, 

he perseguido un simulacro de orden, cuando debía saber 
muy bien que no existe orden en el universo. 

-Pero, sin embargo, imaginando órdenes falsos 
habéis encontrado algo... 

 
Umberto Eco, El Nombre de la 

Rosa 
 

 

 

CHAPTER 2:  

BIOPHYSICAL PARAMETERS AND 

OPTICAL DATA 

 
Prior to the assessment of optical remote sensing methods, this 

chapter gives a brief introduction to the conceptual basis of optical remote 

sensing. Those are presented as the background relevant to the thesis, with the 

aim of understanding the relationships between the signal measured by the 

optical sensors and the vegetation properties. First, a general scheme of the 

remote sensing problem is outlined.  The effect of the atmosphere on the sun 

radiation is explained and the atmospheric correction method that has been 

applied to the data is presented. The models that have been used in this work 

to describe the interaction of solar radiation with the vegetation canopy are 

also presented. The chapter ends with a review of bibliography concerning the 

derivation of biophysical parameters, LAI and Leaf Chorophyll Content using 

optical data.  

 

 



2.1. Physical definitions. 
 

In this section the definition of some physical magnitudes used in 

radiometry are given. They will be used along this work. 

 

18 

ΦFlux, (W):  Energy coming from or arriving to a 

surface per unit of time. It is also 

called power. 

Intensity, (W· sr-1): I Flux per unit of solid angle.  

Irradiance, (W· m-2): E  The incident flux on a surface.  

Radiance, (W· sr-1· m-2): L  Flux per unit solid angle per unit 

projected source area. 

 L =
d 2φ

dAdΩcosθ
                   [Eq. 2.1] 

Spectral radiance,  

(W· sr-1· m-2 · μm-1): 

Lλ  It is the radiance at a single 

wavelength. The radiance is the 

integral of all spectral radiances from 

a surface. 

Reflectance,(unit-less): ρ The reflectance is the ratio between 

the incident flux (irradiance) and the 

reflected flux (reflected irradiance) 

from a surface. It is a unit-less 

quantity.  

ρ =
E(reflected )

E(incident )

                        [Eq. 2.2] 

 

 

 



  

BRDF, (sr-1): 

 
  f r (

r 
Ω r ,

r 
Ω i)  The bidirectional reflectance 

distribution function (BRDF) is the 

ratio of reflected radiance coming 

from a surface in a particular direction 

 
r 
Ω r to the irradiance incident on the 

surface from direction   . It is 

dimensionless. 

r 
Ω i

Spectral BRDF , 

(sr-1nm-1): 

 

  fr (λ;
r 
Ω i,

r 
Ω r ) The spectral BRDF describes the 

BRDF as a function of wavelength. 

 

 For a much more complete summary of radiation related magnitudes 

see, the classical reference Nicodemus (1977).  

 
2.2. Optical remote sensing system. 
 

 

Figure 2.1. Basic scheme of the remote 
sensing system. 

(Source : http://landsat.usgs.gov/) 

The elements involved in 

the observation of vegetation using 

an optical remote sensing system are 

outlined in Figure 2.1. Basically, the 

system is composed of the following 

elements: the sun, the atmosphere, 

the observed surface and the satellite 

sensor. The solar radiation is 

transmitted through the atmosphere 

before interacting with the surface. 

Part of the solar radiation that 
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reaches the surface is reflected and transmitted back through the atmosphere 

towards the sensor. 

The sun is the source of energy of the system. The sun radiation on 

top of the atmosphere is close to the radiation emitted by a black body with a 

surface temperature of around 5900 K (see, Figure 2.2).  The sun radiation on 

top of the atmosphere is well characterised. It is strongly directional and in the 

remote sensing problem it is considered as a punctual source of energy placed 

in the infinite. Thus, the geometry of the sun is defined with the sun zenith and 

azimuth angles.  

Before reaching the surface, the sun radiation crosses the atmosphere, 

in which absorption and dispersion processes occur. The absorptions 

produced by the atmospheric gases are well known (see Figure 2.3). The main 

spectral regions for which atmospheric absorption is small are called the 

atmospheric windows.  The part of the radiation that is absorbed will be re-

emitted in another wavelength range. The constituents of the atmosphere also 

diffuse part of the solar radiation in all directions. The angular distribution of 

atmospheric radiance is difficult to be described; it depends on the particles 

size, quantity and shape, and can be very variable spatially.  

The sunlight reaching the surface can be reflected or absorbed. There 

are two types of reflection: diffuse and specular. In remote sensing, specular 

reflection of sunlight is not frequently observed, it may occur for instance on a 

free water surface. Most of the natural surfaces show diffuse reflection. In 

diffuse reflection, the returning reflection of the directional incoming radiation 

flux is scattered in many directions. Diffuse reflectance is often characterised 

by means of the bidirectional reflectance distribution function (BRDF). A 

particular case of diffuse reflection is that of a Lambertian surface. The 

intensity of light scattered from a point on a reflecting lambertian surface 

follows a cosine relationship:  



  

  Ι θs( )∝ Ι0 cosθs   [Eq. 2.3] 

where  is the incident light intensity and Ι0 θsis the angle of the scattered light. 

In lambertian surfaces, no dependence on azimuthal angle of the incident or 

scattered light is assumed. The lambertian case is the ideal case corresponding 

to a rough surface, in which many random reflections occur before the light 

leaves the surface. 

Finally, the reflected light reaches the remote sensing sensor. In the 

solar domain there are many sensors having different spatial and temporal 

resolutions as well as a different spectral bands configuration.  

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2.2. Solar irradiance curve on top of the atmosphere, at see level and blackbody 
emission. The principal atmospheric gases absorptions are also indicated. Source: 

http://msis.jsc.nasa.gov/. 
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Figure 2.3. Atmosphere transmission. The spectral  
regions with a high transmission are the so-called atmospheric windows. The principal 

atmospheric gases absorptions are also indicated. Source: 
http://tncweeds.ucdavis.edu/. 

 
2.3. Satellite and sensors characteristics.  
 

As explained in Chapter 1, in this work we make use of LANDSAT-

TM and ENVISAT-MERIS sensors. The basic characteristics of these 

instruments are resumed below.  

 

LANDSAT/TM:  

The NASA Landsat program (http://landsat.gsfc.nasa.gov/) has been 

providing earth observation data for more than 30 years. The first satellite of 

the family (Landsat-1) was launch in 1972 ant the most recent (Landsat-7) in 

1999. Up to day there are two Landsat satellites operational: Landsat-5 (only 

TM instrument) and Landsat-7 (although in 2003 there was a failure of the 

Scan Line Corrector, SLC). The continuation of the program will be the 

Landsat Data Continuity Mission (LDCM). 

 

Landsat-5 and Landsat-7 Orbital characteristics: 

Orbit: Polar, sun-synchronous 

Altitude: 705 Km 
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Repeat coverage: 16 days 

Instruments: 

Landsat-5: Thematic Mapper (TM), Multispectral Scanner (MSS) 

Landsat-7: Enhanced Thematic Mapper Plus (ETM+) 

Scene size: 

Landsat-5 : 185km x172km 

Landsat-7 : 183km x170km 
 

The spectral bands and Instantaneous Field Of View (IFOV) of TM 

and ETM+ sensors are detailed in Tables 2.1 and 2.2. 

 

Band Number µm Resolution (m)
1 0.45-0.52 30  
2 0.52-0.60 30  
3 0.63-0.69 30  
4 0.76-0.90 30  
5 1.55-1.75 30  
6 10.4-12.5 120  
7 2.08-2.35 30  

Table 2.1. TM Bands.  Band 5 is for termal infrared radiation, acquired at night. 

Band Number µm Resolution (m)
1 0.45-0.515 30 m 
2 0.525-0.605 30 m 
3 0.63-0.69 30 m 
4 0.75-0.90 30 m 
5 1.55-1.75 30 m 
6 10.4-12.5 60 m 
7 2.09-2.35 30 m 
8 0.52-0.9 15 m 

 
Table 2.2. ETM+ Bands. New features on Landsat 7 are a panchromatic band with 

15 m spatial resolution. 
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ENVISAT/MERIS:  

ENVISAT satellite was launched in March 2002.  
 

ENVISAT Orbital characteristics:  

Source: http://www.esa.int/esaEO/SEMWYN2VQUD_index_0_m.html. 

Orbit:    Sun synchronous 

Mean Altitude:  800 km 

Repeat cycle:   35 days.  

Instruments: 

ASAR   Advanced Synthetic Aperture Radar. C Band 

GOMOS  Global Ozone Monitoring by Occultation of Stars 

LRR   Laser Retroreflector (Passive array of corner cubes for 

satellite ranging) 

MIPAS  Michelson Interferomter for Passive Atmospheric 

Sounding (measures stratospheric chemistry and 

cimatology) 

MERIS   MEdium Resolution Imaging Spectrometer Instrument 

MWR  Microwave Radiometer  (measure the integrated 

atmospheric water vapour column and cloud liquid 

water content, as correction terms for the radar 

altimeter signal). 

RA-2   Radar Altimeter. 

AATSR  Advanced Along Track Scanning Radiometer. 

    (Measures surface temperatures). 

DORIS  Doppler Orbitography and Radioposition Integrated by 

Satellite. (Trackig ystem to  provides orbit accuracy on 

order of centimeters). 
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SCIAMACHY  SCanning IMaging Absorption SpectoMeter for 

Atmospheric CHartographY (measures traces gases in 

atmosphere). 

In depth information can be found at ESA, 2006 

http://envisat.esa.int/instruments/. 

MERIS is a 68.5º field-of-view pushbroom imaging spectrometer that 

measures the solar radiation reflected by the Earth, in 15 spectral bands, in the 

visible and near infra-red. The bands are progamable in position, width and 

gain, but expect for particular experiments, the instrument is set to the bands 

shown in Table 2.3. In Full Resolution mode (FR), MERIS has an spatial 

resolution of 300 m, and in Reduced Resolution (RR) of 1200 m. MERIS 

allows global coverage of the Earth in 3 days. MERIS was designed for 

measuring ocean color.  

Band Number Band center (µm) Bandwith (nm) 
1 412.5 10 
2 442.5 10 
3 490 10 
4 510 10 
5 560 10 
6 620 10 
7 665 10 
8 681.25 7.5 
9 708.75 10 
10 753.75 7.5 
11 760.625 3.75 
12 778.75 15 
13 865 20 
14 885 10 
15 900 10 

Table 2.3. MERIS spectral bands characteristics. (Source: : 
http://earth.esa.int/envisat/instruments/meris/descr/concept.html). 
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2.4. The atmospheric effect and its correction. 
 

In the optical region of the electromagnetic spectrum, the 

constituents of the atmosphere affect both the downward radiation, coming 

from the sun, and the upward radiation reflected on the soil. A classical 

reference describing the atmospheric effect and its correction is Kaufman 

(1989). Atmospheric gases, aerosols and clouds absorb incoming radiation and 

scattered radiation, not coming from the observed target, into the sensor field 

of view. The surroundings of a target can contaminate the measured signal, as 

atmospheric diffuse radiation arrives to the sensor field of view. This 

phenomenon is known as adjacency effect or ‘blurring’ effect. As a 

consequence of adjacency, images losses part of its contrast: dark surfaces will 

appear brighter because photons from the surroundings arrive to the sensor 

field of view, while bright areas will appear darker as the photons that are 

diffuse out of the sensor field of view are not compensate by those coming 

from the surroundings. Adjacency effects are second order effects that depend 

on the target size, its homogeneity and its surroundings. The atmosphere 

turbidity and the surface heterogeneity will control the magnitude of this 

phenomenon. Effects are more important in homogeneous than in 

heterogeneous areas and in atmospheres with high aerosols concentration than 

in clear atmospheres. The spatial distance in which adjacency effects are 

important is considered to be about 1 km (Richter, 1997). At the spatial 

resolutions of sensors like MODIS (1Km pixel size) or MERIS Reduced 

Resolution (1.2 Km) adjacency can be neglected. At middle spatial resolutions 

like MERIS-FR (300m pixel size) adjacency may still have some impact. The 

effect will be more important at the high spatial resolution of Landsat or 

SPOT. Adjacency is generally modelled by means of spatial filters, for instance 

circulars spatial convolution filters (Tanré et al. 1981, Verhoef and Bach, 2003). 



  

3-D radiative transfer modelling would be necessary for an accurate treatment 

of this phenomenon.  

In respect to clouds the usual procedure consists on using a cloud 

detection method for masking all those pixels in the image affected by clouds. 

The main difficult is the detection of sub-pixel clouds.  

The absorptions produced by gases depend on their molecular 

structure. They are very well characterised and their behaviour is invariant. 

Among all the gases in the atmosphere, the only one with an important spatial 

and temporal variation is water vapour.  

Molecular scattering is described by Rayleigh theory. In this theory 

the contribution of the molecules to the optical path is described with an 

optical thickness τ that depends on . The difficulties in the atmospheric 

correction come from aerosols and clouds, as both are variable in time.  The 

effects of aerosols can be very different depending on the origin of the aerosol, 

its physical properties (size, shape and concentration) and its chemical 

composition. This high variability makes the quantification of aerosols effects 

difficult. A usual approach to simplify the description of aerosols is their 

classification into models (for instance, maritime, urban, rural or continental 

models). The Mie theory describes, for the case of homogeneous and spherical 

particles, the optical properties of an aerosol as a function of its physical 

properties. In a more general way the attenuation of the radiation produced by 

aerosols is characterized with the aerosols optical thickness (AOT).  The 

physical properties of aerosols, such as the size distribution or concentration, 

can be inferred from the wavelength dependence on the aerosol optical 

thickness (Estelles et al., 2006). 

4−λ

There are several methods that have been adopted for atmospheric 

correction of remote sensing data. Some of them are empirical and consist in 

finding a linear relationship between ground measured spectra and the 
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corresponding spectra in the images. More accurate methods make use of 

radiative transfer theory to calculate the contribution of the atmosphere in a 

particular condition, and afterwards, invert the measured radiances to obtain 

surface reflectance. For computing this contribution it is necessary to 

characterise the atmosphere status at the image acquisition time (knowing the 

atmosphere parameters). The most frequently used radiative transfer 

atmospheric models for remote sensing atmospheric corrections are the 

MODTRAN code (Berk et al., 1999) and the Second Simulation of the Satellite 

Signal in the Solar Spectrum 6S code (Vermote et al., 1997).  

Related to the atmospheric correction is the correction of 

topographic effects. The topographic correction is also known as “illumination 

correction”. It consists on using a Digital Elevation Model from which the 

elevation of a pixel and the surrounding slopes can be obtained. This allows 

calculating the deviations between the astronomical solar zenith angle and the 

actual zenith angle for a given pixel.  Illumination effects can be as important 

as atmospheric effects. 

Many surfaces show anisotropic reflectance behaviour for off nadir 

viewing geometries. The way in which a surface reflects incident radiation in a 

particular direction is described by its bidirectional reflectance distribution 

function (BRDF). BRDF effects can be important for sensors with a large 

range of view angles. In general, for atmospheric corrections, it is sufficient to 

assume Lambertian (isotropic) behaviour. 

The MERIS-FR Level 1b images used in this work have been 

atmospherically corrected using the method of L. Guanter specifically 

developed for hyperspectral/multispectral (Guanter et al., 2007) remote 

sensing data. This algorithm obtains the atmospheric parameters needed for 

the correction from the image itself and has been implemented using IDL 

(Interactive Data Language). The method has been validated using ground-



  

29 

based measurements from the SPARC campaigns and also compared with 

aerosols and water vapour measurements from the Aerosol Robotic NETwork 

(AERONET) (Holben et al., 1998). It has also been applied to the atmospheric 

correction of the Compact High Resolution Imaging Spectrometer (CHRIS) 

data (Guanter et al., 2005). 

 

The atmospheric correction methodology of Guanter involves the 

following phases: 

 

a) Cloud masking. The method can use both the cloud mask algorithm 

implemented in the Basic ERS&ENVISAT (A)ATSR MERIS (BEAM) 

Toolbox (Fomferra and Brockmann, 2005) and a cloud detection 

method based on image thresholds. Cloud masking is important to 

avoid cloudy pixels being involved in the retrieval of AOT. 

b) Retrieval of atmospheric parameters.   

- b1. AOT retrieval. For the derivation of the AOT, the 

atmosphere is considered invariant across 30 × 30 km 

windows, while the surface reflectance is allowed to vary from 

pixel to pixel, and it is assumed to be represented as a linear 

combination of two vegetation and soil end-members.  An 

inversion of the top of atmosphere (TOA) radiances in 5 

reference pixels is performed to obtain the aerosol optical 

thickness (AOT), and the proportions of vegetation and soil in 

the 5 pixels. For the inversion, TOA synthetic data are 

generated using MODTRAN-4 code. As MERIS data do not 

have enough information to estimate the aerosols model over 

land, the aerosol model is set to the standard rural model. A 

mid-latitude summer atmospheric profile and a lambertian 
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surface behaviour are assumed.  MERIS bands 11 and 15 are 

not used in this inversion because they are affected by strong 

absorptions (water vapour and ozone) and might be sources of 

errors in the AOT retrieval. 

-  b2. Water vapour retrieval. It is based on the inversion of 

the ratio of MERIS bands 14 and 15. 

For the topographic corrections the method uses the Global Earth 

Topography And Sea Surface Elevation at 30 arc second resolution 

(GETASSE30) Digital Elevation Model (DEM) that is included in the BEAM 

Toolbox. 

c) Surface reflectance derivation. The estimated atmospheric component 

concentrations from the previous step are used to convert the 

measured TOA radiance to surface reflectance. Bands 11 and 15 are 

interpolated or extrapolated from the nearest bands. Finally adjacency 

effects correction is done with the simple approach of Vermote et al, 

1997. 

d) Geometrical correction. This is an optional step performed after the 

atmospheric correction. The geometrical correction makes use of the 

BEAM orthorectification algorithm.   

Landsat images have been corrected using a simplification of the 

method previously described (steps b) and c)). Water vapour is inverted at the 

same time that AOT. 

The MERIS instrument is a CCD camera. The spectral measurements 

of each pixel along an image line are made by a different set of CCD sensors. 

This causes small variations of the spectral wavelength of each pixel along the 

image, the so-called "smile effect".  MERIS Level 2 data are smile corrected in 
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the ESA processing chain, but this is not the case for Level 1b data. Smiling 

correction can affect bands with strong gases absorptions (MERIS bands 11 

and 15) but it is not critical for other bands. An algorithm for the smile 

correction algorithm can be found in D’Alba and Colagrande (2005). In this 

work, we have not performed any smiling correction of our images. 

For the inversion of vegetation parameters from vegetation surface 

reflectances an atmospheric correction is necessary. The accuracy of this 

correction may have an impact in the quality of the retrieved biophysical 

parameters, mainly because a good atmospheric correction can remove part of 

the temporal noisy.  

 

2.5. Vegetation reflectance and biophysical 
parameters. 

 
2.5.1.   Leaf optical properties. 
 

Leaves are the elements of a plant where light is collected for making 

the photosynthesis, the chemical reaction in which CO2 and water are 

transformed into sugar and used by the plant to live on. Optical remote 

sensing provides non-destructive methods to obtain information on the 

photosynthetic characteristics of a plant, its biochemical constituents and plant 

status, which are needed to support the modelling of photosynthesis and crop 

growth monitoring. Those methods are based on the optical properties of the 

vegetation. When light interacts with a leaf, different mechanisms of reflection, 

absorption and scattering happen. These will determine the optical properties 

of the leaf: reflectance, transmittance and absorption. Part of the absorbed 

light can be re-emitted at longer wavelengths by fluorescence. The different 

leaf biochemical constituents carry out absorption. Absorption can be due to 



electron transitions in the pigment molecules or to changes in the vibration 

and rotational states of the molecules as in the case of water. Scattering 

depends on the internal structure of the leaf. Figure 2.4 shows schematically 

the internal structure of a leaf. The different elements that can be found are: 

cuticle (serves to prevent water looses), epidermis (layer of plate cells), 

mesophyll (contains the chloroplast and other photosynthetic cells), stoma 

(permit the exchange of water and carbon dioxide between the leaf and the 

atmosphere), guar cells (control the opening of the stoma), and vascular bundle 

(in which xylem serves to transport water and minerals from the roots and 

phloem transport the photosynthesis product). This structure varies for 

different species (see Figure 2.5). 

 

 

 

 

 

 

 
 

Figure 2.4. Scheme of the Leaf internal structure. Source wikipedia (copyright free). 

 
 
 
 
 
 
 
 
 

 
Figure 2.5. a) Zea leaf cross section b) Lilac leaf cross section. Images from: 

http://www3.baylor.edu/~Darrell_Vodopich/Botany%20Book%20Photos/ 
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The reflectance and transmittance of a fresh leaf and a dry leaf are 

shown in Figure 2.6. The reflectance of a fresh green leaf is characterized by a 

strong absorption of the chlorophyll in the visible region, centered on 650 nm, 

a plateau of high reflectance in the near-infrared, around 850 nm, and water 

absorptions in the middle infrared region at 1450 nm and at 1950 nm. The 

transition from the strong chlorophyll absorption in the visible to the high 

reflectance in the near-infrared is known as red-edge. These spectral 

characteristics of the leaf are maintained at canopy level. The red-edge feature 

is the most important characteristic of vegetation, and it is the basis of many 

vegetation indexes. The point of maximum slope in the leaf reflectance, the 

inflexion point of the red-edge feature, occurs at wavelengths between 690 and 

740 nm. The red-edge position and the red-edge slope have been shown to be 

correlated to chlorophyll concentration (Curran et al., 1990; Gitelson et al., 

1997). When the leaf dries (see Figure 2.6b), it losses chlorophyll and the 

absorptions due to other leaf constituents such as lignin can be observed. A 

dry leaf absorbs much less radiation than a fresh leaf. Table 2.4 resumes the 

most important spectral features in leaves. 

Figure 2.6. Reflectance and transmittance of a fresh and a dry leaf. From Jacquemoud 
et al., 2001. 
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Waveband 
Waveband 
width (nm) 

Characteristics 

Ultraviolest/blue 350-500 Strong chlorophyll and carotene 
absorption 

Green 500-600 Reduced level of pigment absorption 
Red 600-700 Strong chlorophyll absorption 

Red edge 700-740 Transition between strong absorption 
and strong reflectance 

Near-infrared 740-1300 High vegetation reflectance 
Middle-infrared 1300-2500 Water, cellulose and lignin absorption 

 
Table 2.4. Characteristic spectral features of foliar biochemicals. (Table from Curran 

and Dash, 2005, MERIS ATBD: Chlorophyll Index). 
 

In the visible electromagnetic region of the spectrum there are 4 types 

of pigments that absorb part of the incident radiation: 

- Chlorophyll: this is the pigment that makes leaves look green, 

and it is fundamental for the photosynthesis.  There are several types of 

chlorophyll, where chlorophyll a and chlorophyll b are the most important in 

leaves. Chlorophyll absorbs radiation in the range from 550-700 nm. 

- Carotenoids: they give leaves the yellow or orange colours. 

They are always present in the leaf but only become visible when chlorophyll 

disappears. They absorb radiation in the region between 400-500 nm. 

- Anthocyanins: they give leaves a red colour. They are not 

always present in the leaf. Xantophyll is an example of anthocyanin. They 

absorb radiation in the region from 530-620 nm. They protect the leaf from an 

excess of light. 

- Tannins: they give leaves a brown colour.  They are always 

present in the leaf but become visible when chlorophyll and carotenoids are 

not dominant. Tannins absorb radiation also in the infrared. 
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In the mid-infrared electromagnetic spectrum region absorbers are 

water, lignin, cellulose, proteins, sugar, etc. A complete list of the absorption 

features of foliar biochemical constituents can be found in Curran (1989).   

 

2.5.2.  Leaf models. 
 

There are several models in the literature that describe the reflectance 

and transmittance of the leaf. Among them, the simplest models are the so-

called plate models. They describe the leaf as a stack of several layers 

characterised by the refraction index and the absorption coefficient. 

Nowadays, the most commonly plate model used is the PROSPECT model 

(Jacquemoud and Baret 1990), in which the leaf absorption coefficient is 

expressed in terms of the leaf biochemical constituents. Another well known 

model, also on the basis of biochemistry, is LIBERTY (Leaf Incorporating 

Biochemistry Exhibiting Reflectance and Transmittance Yields) by Dawson et 

al., (1998) and LEAFMOD (Leaf Experimental Absorptivity Feasibility 

MODdel) by Ganapol et al., (1999). The particularity of LIBERTY is that it 

has been developed for needle-shaped leaves, and thus can be used for forestry 

applications. The advantage of those simple radiative transfer leaf models is 

that they are invertible. 

Other theoretical approaches are ray tracing models such as 

RAYTRAN (Govaerts et al. 1996; Govaerts & Verstraete, 1998), or stochastic 

models like SLOP (Maier et al., 1999).  

 

 

 



2.5.3.  The PROSPECT model. 
 

The PROSPECT model has been used to simulate the optical 

properties of the leaf. In this study, we used the ‘4 inputs’ version, 

PROSPECT v. 3.01 (5 May 1998), which is available from 

http://teledetection.ipgp.jussieu.fr/opticleaf/models.htm. This version has 

been widely used in the literature:  for instance Jacquemoud and Baret, 1990; 

Haboudane et al., 2004. The model was calibrated with the LOPEX dataset 

(Hosgood et al., 1995; Jacquemoud, et al., 1996). 
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PROSPECT simulates the reflectance and transmittance of a leaf in 

the region from 400 to 2500 nm. The model assumes that the leaf is a stack of 

N elementary layers separated by N-1 air spaces, and that the biochemical 

components are mixed homogeneously in the leaf. The absorption coefficient 

of the leaf λk is then given by the following equation: 

  ∑+=
i

ii

N
kC

kk
)(

)()( 0
λ

λλ   [Eq. 2.4] 

where, N is the structural mesophyll parameter, λ is the wavelength, the 

concentration of the constituent,  the specific absorption coefficient of the 

constituent and  the absorption of an albino leaf under 500 nm (see Figure 

2.7). The specific absorption coefficient of each constituent can be determined 

through calibration. The first studies that used PROSPECT proposed a 

relation between the N parameter and the SLW (specific leaf weight), but this 

relation was later discarded. 

iC
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Inputs to the PROSPECT model are Leaf Chlorophyll Content (CC), 

Leaf Water Content (CW), Leaf Dry Matter Content (DM) and the Leaf 

Structural Parameter, N (see Table 2.5).  
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PROSPECT Inputs 
Leaf Chlorophyll Content (CC)
Leaf Water Content (CW) 
Leaf Dry Matter Content (DM)
Leaf Structural Parameter (N) 

Table 2.5. Inputs to the PROSPECT model. 

There is also a 5 inputs version of PROSPECT that includes the so-

called brown pigments or senescent pigments concentration (Demarez et al., 

1999 and Zhang et al., 2005). However this version of the model has not 

benefit from an extensive calibration. 

The different pigments on a leaf have absorption coefficients, which 

are superposed. This makes the determination of the absorption coefficients 

difficult, and it is the origin of the existence of several versions of the model. 

Between distinct versions of PROSPECT the absorption coefficients may 

differ (see Figure 2.7b and 2.8). The main difference between them is related 

to the dry matter in the NIR (see Figure 2.9).  

Le Maire et al., (2004), found inaccuracies in the PROSPECT specific 

absorption coefficients. The work by Jackquemoud further analyzed these 

issues and proposed a new calibration of PROSPECT, which was recently 

published (Jacquemoud, 2008).  

 

The assumptions made by the PROSPECT model can be 

summarized as follows: 

 

- The internal structure of the leaf is simplified to a stack of plate 

layers, controlled by the parameter N that can change between species or leaf 

status. 



- Later versions of the model only consider three biochemical 

absorbers: chlorophyll, water and dry matter. The specific absorption 

coefficients of these absorbers have been obtained from calibration.  

- No distinction between adaxial side (upper side) and abaxial 

side (underside) of the leaf. 

 

During this thesis work, some numerical inconsistencies were found 

in the model: erroneous values for the reflectances for some wavelengths are 

obtained when inputs have very high CW content and DM content. However, 

those values of CW and DM are not found in nature so this does not represent 

a problem for our posterior analysis. 

 
 

 

 

 

 

 

 

 

Figure 2.7. Absorption coefficients in the PROSPECT model of 4 inputs. 
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Figure 2.8. Absorption coefficients in 
the PROSPECT model of 5 inputs. 

 Figure 2.9. Zoom on the dry matter in the 
near infrared region for two versions of 

PROSPECT.  

 
 
Effect on the reflectance of the PROSPECT model variables. 
 

The effect of each one of the PROSPECT variables on the 

reflectance and transmittance of leaves is shown in Figure 2.10. Similarly, 

Figure 2.11 displays the effect on the absorption. The N parameter has no 

impact in the absorption but it controls the level of reflectance and 

transmittance. Absorption in the visible depends in a non-linear way on the 

chlorophyll concentration. Absorption in the near infrared is only controlled 

by the DM content, and for wavelengths >900 nm. DM content and CW 

content have an effect in the absorption. Absorption due to water is highly non 

linear. At canopy level is the absorption which plays an important role.  
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Figure 2.10. Reflectance and transmittance as a function of the PROSPECT variables: 
N (top left), Chlorophyll Concentration (top right), Water Content (bottom left) and 

Dry Matter Content (bottom right). 
 
 



  

2.5.4. The SAIL model for canopy reflectance. 
 
Radiative Transfer theory: 
 

The interaction of electromagnetic radiation with a medium follows 

Maxwell’s equations. When the medium is complex in terms of its structure, as 

it is for instance vegetation, Maxwell’s equations are too complicated to be 

solved analytically and different approximations are needed. An alternative to 

study this electromagnetic problem is the Radiative Transfer (RT) theory. 

Radiative Tranfer is based on the principle of conservation of energy and 

describes how the energy propagates through a medium. RT was developed by 

astrophysicist at the beginning of 20th century but has applications in many 

different fields ranging from atmospheric sciences to nuclear physics.  

 

The RT equation results from establishing the energy balance in an 

elementary element of length ds  which can absorb, emit and scatter radiation. 

The equation shows the variation in the intensity I per unit of solid angle Ω  

(then Wm-2sr-1) of an electromagnetic wavelength in the point rr along the 

direction . The integro-differential equation of the RT is thus: sr

 )(sin),(),(),(),( sJddsrIissrI
ds

srdI
ee

rrrrrrr
rr

++−= ∫ φθθψκ   [Eq. 2.5] 

 The first term represents the energy losses by absorption and scattering 

in the medium. Those losses are determined by the extinction coefficient eκ . 

The extinction coefficients can be expressed as the sum of the absorption 

coefficient aκ  and the scattering coefficient, sκ  ( sae κκκ += ). The second 

term of the RT equation is the energy scattered in the direction sr . This energy 
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depends on the phase function** ψ  and the energy that comes from all the 

directions (thus the integral to the solid angle). 

 

Figure 2.11. Absorption as a function of the PROSPECT variables: N (top left), 
Chlorophyll Concentration (top right), Water Content (bottom left) and Dry Matter 

Content (bottom right). 
 

                                                 
* Citing Goel, 1988 : The name phase function has its origin in astronomy where it refers to lunar 
phases. It has no relation to the phase of a wave’’
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The last term represents the thermal emission. RT theory can be 

applied to any region of the electromagnetic spectrum if certain hypothesis 

concerning the medium hold. RT theory cannot explain interferometric 

phenomena, as the phase of the electromagnetic field does not intervene in the 

formulation. That means that the elements in the medium must be spaced 

enough with respect to the wavelength to assure that electromagnetic fields are 

de-correlated. The elements should neither be distributed in a regular spatial 

pattern, which could generate interference patterns. In a vegetation medium, 

these assumptions correspond very well to the optical range (wavelength of 
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mμ ) and it is less applicable to the radar case (wavelengths of cm  or more). 

The RT equation in its integro-differential form has not an analytical solution. 

When applied to a particular wavelength range different approximations can be 

made in this equation. For instance in optical and radar remote sensing the 

thermal emission is neglected but in addition other approximations need to be 

done. The main difficulty to solve Equation 2.5 is the calculation of the phase 

function and the extinction coefficient in terms of the properties of the 

vegetation. Different approximations based on the medium characteristics and 

wavelength are done (approximations regarding the orientation, spatial 

distribution and size relatively to the wavelength of the scatters in the canopy). 

RT models can be classified as homogeneous or heterogeneous depending on 

how the medium is described.  In the homogeneous models, the canopy 

elements (leaves, stems, ears, branches, etc) are distributed uniformly in the 

horizontal plane, while in the heterogeneous models the canopy elements are 

distributed non-uniformly in a three dimensional space. Examples of 

homogeneous models are the SAIL model (Verhoef, 1984) or the model of 

Kuusk, (Kuusk, 1995). Non homogeneous models are for instance DART 

(Gastellu-Etchegorry et al., 2004). Although the assumption of homogeneity is 

sometimes too strong, homogeneous models (also referred to as turbid 



models) depend on a small number of variables and they are easy to invert. For 

these reasons, in this work we use the SAIL model, described in a following 

section. 

The second way of classifying RT models attends to the numerical 

method use to solve the equation (after doing the approximations relative to 

the medium). The most frequent methods are adding-doubling, discrete 

ordinates, ray tracing, successive approximations, etc. 
 
Kubelka-Munk (KM) approximation for a parallel-plane medium. 
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The Kubelka-Munk approximation is a simplification of the RT 

equation is for a parallel-plane medium. This approximation is common in 

optical remote sensing. In the KM theory the light propagation is described 

with a limited number of ascending and descending fluxes. The diffuse 

radiation is in turn represented by an ascendant flux , and a descending 

flux . The direct radiation (collimated in a particular direction) is represented 

by an ascending flux and a descending flux . The variations in those 

fluxes depend on: 
−

α  and γ , which are the absorption and scattering 

coefficients for the diffuse flux, Κ , the absorption coefficient for the direct 

flux, and the two coefficients, 1Λ and 2Λ , the scattering coefficient for the 

direct flux into the same direction and into the opposite direction respectively. 

Those scattering and absorption coefficients depend on the solar and viewing 

directions. The ratio between the upward radiation leaving the top of the 

canopy and the downward radiation constitutes the canopy reflectance. The 

KM approximation is then a set of linear differential equations:  
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τIn Equation 2.6 to Equation 2.9 In Equation 2.6 to Equation 2.9 is the optical path in the z 

direction. This optical distance is related to the density of the canopy (LAI or 

biomass). The Equations 2.6 to 2.9 mean that the descending diffuse flux 

decreases along an optical path due to the absorption and scattering produced 

by the medium, and it is increased with the scattered ascending diffuse flux and 

the scattered ascending and descending direct fluxes.  

 

The evolution of the SAIL model. 
 

The original SAIL (Verhoef, 1984) was a turbid-medium vegetation 

reflectance model that consisted in an improvement of the Suits model (Suits, 

1972). In the Suits model, leaves could only be distributed vertically or 

horizontally. The improvement in the first version of SAIL consisted in the 

possibility of any inclination distribution. The SAIL model is based in the 

approximation of Kubelka et Munk for the radiative transfer. Since the first 

formulation, SAIL has evolved dealing to several versions. SAILH (Verhoef, 

1998) incorporated the hot spot effect following the theory of Kuusk. 

GeoSAIL (Bach, Verhoef and Schneider, 2001) was a 2 layers model in which a 

sub-model of soil reflectance was incorporated. In GeoSAIL it was possible to 

distinguish between green and brown leaves. The main characteristics of 

SAIL++ (Verhoef, 2002) were the improvements in the multiple scattering 

calculations using the N+2 stream method. The version called 4SAIL (Verhoef 

et al., 2007) is a one-layer version that was improved numerically and 
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computationally and also adapted to thermal applications. Up to date the most 

recent version of SAIL is the 4SAIL2 that is a 2 layers model and includes soil 

BRDF (Hapke type) and clumping effects (Begiebing and Bach, 2004).   

Moreover different multi-layers/multi-elements modifications to the 

SAIL model can be found in the literature, for instance the SAIL-2 (Zhang et 

al., 2005), which accounts for stems and leaves) and the multi-layer version 

named 2M-SAIL (Weiss et al., 2001) that distinguish between leaves, ears and 

stems of wheat. There are also 2-Dimensional versions of SAIL (Major et al., 

1992). 

In the SAIL model, the contributions due to single scattered solar 

radiation and multiple scattered fluxes are separated. Since SAILH, the single 

scattering contribution takes into account the hot spot and thus does not 

follows strictly the turbid model approximation. The contribution due to 

multiple scattering follows a turbid medium approach. Thus, although SAIL is 

not “rigorously” a turbid medium model, many authors refer to it as a turbid 

medium model with the inclusion of hot spot or also as a hybrid model.  

The SAIL version available for this study is the 4SAIL developed by 

Verhoef et al., (2007). available for the FluorMod project (Miller et al., 2004). A 

version of FluorMod is available from: http://www.ias.csic.es/fluormod/. 

4SAIL is a version of the original SAIL model (Verhoef, 1984), which includes 

the hot spot effect and has been improved numerically and computationally 

with respect to previous versions.  

 

Variables in the SAIL model and their effect in the reflectance. 
 

Inputs to the SAIL model are structural parameters that include LAI, 

a, and b, two parameters that describe the Leaf Angle Distribution (LAD), as 

explained in Verhoef, 2002, the Hot Spot parameter, h, the background soil 

http://www.ias.csic.es/fluormod/
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spectrum and the geometry of observation. Both, parameter a and parameter b 

can vary between -1 and 1, but the sum of their absolute values has to be 

always less than or equal to 1. Parameter a controls the average leaf inclination 

angle (ALA), which in the SAIL model can range from 8.52 degrees (a=1) to 

81.48 degreess (a=-1). Parameter b characterises the bimodality of the LAD. 

High values of b correspond to a high frequency of both horizontal and 

vertical leaves (Verhoef, 2002). Figure 2.12 and Figure 2.13 show the effect 

on the reflectance of the variables to which the model is more sensitive. The 

following table (Table 2.6) summarizes the inputs to the SAIL model: 
 

SAIL Inputs 
Leaf Area Index (LAI) 
Hot Spot parameter (h) 
Leaf Angle Distribution (a, b) 
Solar zenith angle (θsolar) 
Solar azimuth angle (φsolar) 
Relative azimuth (φrelative) 
Background soil spectrum (ρsoil)

Table 2.6. Inputs to the SAIL model. 

 

2.5.5.  Model inversion. 
 

In remote sensing, RT is used to relate the physical magnitudes 

measured by the sensor (i.e. radiance, brightness temperature, power) to the 

physical properties of the observed surface (i.e. extinction coefficient, 

emissivity, temperature, dielectric constant). Those physical properties are in 

turn related to other physical magnitudes or variables that describe the current 

status of the surface (LAI, height, temperature, moisture, etc) and are the 

inputs to the RT models. In addition, depending on the wavelength, the RT 

also needs to be applied to the atmosphere.  



 The forward modelling consist of simulate the sensor measurements, 

while the inverse modelling consists of predicting the vegetation characteristics 

that correspond to the sensor measurements (Figure 2.14). For instance, when 

the SAIL model is used in the forward modelling, the reflectance is calculated 

as a function of its inputs (LAI, hot spot, etc. ). The inverse modelling can be 

considered as the opposite of forward modelling. By measuring the reflectance 

and by using the inverse scheme it is possible to obtain the estimations of the 

inputs of the model. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12. Reflectance variation in the SAIL model as a function of the different 
parameters: a) variation with N parameter, b) variation with CC, c) variation with WC 

content and d) variation with DM content. 
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Figure 2.13. Reflectance variation with LAI according to the SAIL model for two 
different cases of Leaf Angle Distribution functions.  

 
 

Due to its complexity, RT models cannot be inverted by means of an 

analytical expression. Thus, in practice, the solution of the inverse problem 

relies on different numerical techniques, such as the minimization between the 

simulated reflectances and the sensor measurements. The inverse solution can 

also be searched among pre-defined solutions implemented in the form of 

look-Up Tables. Other techniques very common in the model inversions are 

for instance Neural Networks or genetic algorithms. In general numerical 

methods are time consuming because a large space of possible solutions is 

explored. A review of bibliography concerning the approaches used for the 

retrieval of LAI and Chlorophyll are given in Section 2.6. 

The problem of inverting a RT model is not usually a simple task. 

The reason is that the problem is, in general, ill-posed. On one hand, it may 

happen that several combinations of the inputs to the model gave the same 

solution. On the other hand, because of the non-linearity of the problem, small 

variations of the reflectances may result in a low precision of the desired 
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parameter. Several approaches can be used to overcome the ill-posed problem, 

such as the use of a-priori information or temporal constraints. 

In this study, to approaches have been used for the inversion of the 

PROSPECT+SAIL model. In the first approach, presented in Chapter 3, the 

LAI is inverted by using Look-Up Tables and a-priori information. In the 

second approach, presented in Chapter 4, the inversion of LAI and 

Chlorophyll is investigated by using a numerical inversion method and 

temporal constraints.  

Vegetation characteristics 
 

LAI, height, elements orientation, 
Biomass. Roughness, Temperature 

Moisture, Emissivity, …etc 
+ 

Atmosphere properties 

Sensor measurements 
 

* Radiance  
   (or derived reflectance)  
* Received Power 
   (or derived Backscattering)  
* Brightness Temperature 

RT

FORWARD MODELLING  

INVERSE MODELLING  

 
 

 
Figure 2.14. Radiative Transfer applied to Remote Sensing. 

 

2.6 Current capabilities to retrieve biophysical 

parameters.  

 

To conclude this chapter a review of bibliography concerning the 

retrieval of biophysical parameters using remote sensing data is done. As the 

objective of this PhD focuses on LAI and Chlorophyll only those two 

parameters are addressed.  
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LAI: 

In recent decades, a large amount of studies on the derivation of LAI 

and other biophysical parameters (for example, fraction of photosynthetically 

active radiation, chlorophyll content and water content) from optical data have 

been published.  Two main approaches have been used: empirical and 

physically-based approaches.   

The empirical approaches are based on the experimental relationships 

between combinations of reflectances in different spectral bands (indices) and 

the parameter to be retrieved. This approach has been frequently applied to 

various satellite data to calculate the LAI of large classes or categories of 

vegetation. In particular, Turner et al. (1999) used Landsat data with empirical 

relationships to derive the LAI of grassland, shrubland, hardwood and 

coniferous forest; Chen et al. (2002) used AVHRR, SPOT VGT and Landsat 

data to retrieve the LAI of forests and crops. In a similar way, this approach 

was applied to particular crop types, such as wheat, with Landsat-TM data 

(Duchemin et al., 2006) and with SPOT HRV data (Clevers et al., 2002a, 

among others).  

A drawback is that the general applicability of these empirical 

approaches is reduced because the vegetation indices (VI) are affected by many 

factors, including atmospheric effects, leaf structure, canopy geometry, 

vegetation developmental stage, geometry of observation, understory 

vegetation and soil conditions (Baret and Guyot, 1991; Turner et al., 1999; 

Gitelson et al., 2005; Boegh et al., 2002). 

Physically-based approaches (e. g. Kimes et al., 2000) are based on the 

application of Radiative Transfer models. These models describe the physical 

processes of radiative transfer in the soil vegetation system, connecting the 

canopy biophysical variables and the canopy reflectance. These approaches, 

though more complex, are more general in application because they can 
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account for the different sources of variability, although in many cases the 

information needed to constrain model inputs is not available.  

Among physically-based approaches, the most widely used consists of 

the inversion of a simple canopy radiative transfer model coupled with a leaf 

model. Regarding inversion techniques different approaches have been used: a) 

direct numerical inversion (Gao and Lesht 1997; Bicheron and Leroy, 1999), b) 

Look Up Tables (Weiss et al. 2000; Combal et al, 2002(a)), c) neural network 

techniques (Weiss and Baret, 1999; Qi et al., 2000; Fang and Liang, 2003) and 

d) genetic algorithms (Fang et al., 2003). 

The retrieval of LAI in agricultural areas has been the subject of many 

studies. However, these studies have not often shown the applications of LAI 

retrieval methods for a variety of crops, along a complete season and in 

extensive agricultural areas. This study has the objective of assessing the 

applicability and accuracy of LAI inversion over a complex agricultural 

landscape. To this aim, a physically-based model has been preferred, because 

in-situ measurements were available and can be used to constrain the inputs of 

the model. The PROSPECT+SAIL models are thus used to generate Look Up 

Tables (LUTs). Those LUTs are subsequently used to invert Landsat-TM and 

Landsat-ETM+ images. The research dealing with the retrieval of LAI will be 

presented in the next chapter of this manuscript.  

 

Chlorophyll: 
 
As it was discussed in Chapter 1, the information of biophysical 

parameters, like LAI, biomass or chlorophyll, is very useful for the monitoring 

of crop growth. The chlorophyll content of the plant is related to its nitrogen 

content (Yoder and Pettigrew-Crosby, 1995), which is a limiting factor for crop 

growth. Furthermore, the total chlorophyll in the canopy, which can be 
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estimated by the product of the chlorophyll content in the upper leaves 

multiplied by the LAI, is closely related to the gross primary production 

(Gitelson et al., 2006). Thus, the research on the retrieval of chlorophyll 

content is of high interest for crop studies.  

As it was already commented in this chapter, the chlorophyll content 

of the leaf is linked to its reflectance. This relationship is established through 

spectral indices, and spectral derivatives, mainly in the red edge spectral region 

(Curran et al., 1990; Clevers et al., 2002b; Cho and Skidmore, 2006).  

As it is done for LAI, spectral indices (Yoder and Pettigrew-Crosby, 

1995) and the inversion of radiative transfer models (Demarez et al., 1999; 

Weiss et al., 2000; Jacquemoud et al., 2000) are the main methodologies used 

to estimate the chlorophyll content. There is a long list of indices for the 

derivation of the chlorophyll content. A review of the most common 

chlorophyll indices can be found in Bannari et al., (2007). The same indices 

that were developed for the estimation of chlorophyll at the leaf level are 

sometimes used to derivate chlorophyll at canopy level (Gitelson and Merzylak, 

1997), but there are also indices specifically derived for the canopy cover, like 

MCARI, OSAVI, etc., (Broge and Leblanc, 2001; Haboudane et al., 2002). 

In the physically-based approach, leaf reflectance and transmittance 

are simulated using a leaf reflectance model, which is later used as input to the 

model of canopy reflectance. The advantage of this approach is that it is more 

general than the spectral indices. The drawback is that the models do 

simplifications in the number of pigments present in the leaves. In addition, 

changes in the specific absorption coefficients along the crop cycle (from 

emergence to senescence stage) are not usually taken into account. This 

approach was applied using field spectrometry data (Jacquemoud et al., 1995), 

simulated data (Jacquemod, 1993; Weiss et al., 2000; Demarez et al., 1999), 

AVHRR, and VEGETATION/SPOT data (Weiss and Baret 1999). 
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Many of the previous studies agree in that, without a-priori 

information, it is not possible to invert the PROSPECT+SAIL model to 

obtain, at the same time, several variables with accuracy. These studies also 

paid attention to the compensations between the variables. The inversion of 

both LAI and chorophyll appears to be particularly difficult (Combal et al, 

2002a). Recent studies, inverted the product of LAI and chlorophyll from 

TOA MERIS, using neural networks (Bacour et al., 2006). 

The multi-temporal aspect has not been much explored in the context 

of the inversion of biophysical parameters. One of the few studies that 

investigates this issue is Koetz et al., (2005), who proposed a multi-temporal 

method for the retrieval of LAI. This method is based on the coupling of a RT 

model and a semi-mechanistic canopy structure dynamic model. In their 

approach, the semi-mechanistic model is used to fit the results of the RT 

inversion, and, later, this result is used as the initial conditions of a new 

inversion.  

Most of the literature related to the estimation of chlorophyll content 

reports results for forest (Zarco-Tejada et al., 2004) or for a particular crop, 

mainly corn (Daughty et al., 2000), wheat (Wang et al., 2004) or soybean 

(Gitelson et al. 2005), and using a limited number of datasets. Few studies 

report results on several crops. Thus, the inversion of chlorophyll content in 

agricultural areas requires further studies.  

In Chapter 6, the possibilities of using the multi-temporal dimension, 

in order to invert at the same time, LAI and Chlorophyll are investigated. The 

analysis is done in the agricultural area of Barrax (Spain) and focuses on small 

grain cereal fields.   
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[…] Por esta Mancha-prados, viñedos y molinos— 
que so el igual del cielo iguala sus caminos […] 

 por este seco llano de sol y lejanía, 
en donde un ojo alcanza su pleno mediodía […] 

por esta tierra, lejos del mar y la montaña, 
el ancho reverbero del claro sol de España, 

anduvo un pobre hidalgo ciego de amor un día […] 
 

Antonio Machado, Campos 
de Castilla (1907-1917) 

 

CHAPTER 3:   

SEASONAL VARIATIONS OF LEAF AREA 

INDEX OF AGRICULTURAL FIELDS 

RETRIEVED FROM LANDSAT DATA #. 

 
This chapter is dedicated to the assessment of a LAI model inversion 

approach applied to multitemporal LANDSAT-TM data. The method has 

been applied over the agricultural region of Barrax. The chapter is organised as 

follows: first, the study area, ground measurements and satellite dataset used in 

this work are described. Second, the methodology, which includes the 

derivation of a land use map and an inversion of the selected model, is 

described. Finally results and validation are presented followed by a discussion. 

 
#   The contents of this chapter have been published in the following paper: 

González-Sanpedro, M. C., Le Toan T., Moreno, J., Kergoat L. and E. Rubio. 
Seasonal variations of leaf area index of agricultural fields retrieved from Landsat 
data. Remote Sensing of Environment 112, (2008), 810-824, 
doi:10.1016/j.rse.2007.06.018. 
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3.1. Introduction. 
 

Monitoring agricultural crops during the growing season becomes 

increasingly important in order to adjust the management (e.g. irrigation, 

fertilizers) and to provide information for obtaining yield predictions before 

harvest time. Crop growth models and soil-vegetation-atmosphere process 

models are more and more used for such monitoring activities. However, it is 

difficult for the models to account for the spatial heterogeneity in vegetation 

and soil conditions as well as the inherent difficulties of phenology modelling. 

One solution consists in calibrating the models using measurements of 

biophysical parameters (e.g. Brisson et al., 1998; Bondeau et al., 1999; Launay 

and Guerif, 2005; Spitters et al.; 1989).    

For calibrating crop growth models, a key variable is the leaf area 

index (LAI), which accounts for the leaf surface intercepting in-coming 

radiation. LAI stands out because it takes part in functioning processes 

through the allocation of carbon to leaves. LAI is also involved in the 

description of soil-vegetation-atmosphere exchanges like evapotranspiration, 

photosynthesis and biogenic emissions. For instance, in irrigation management, 

LAI is required to model the surface resistance when calculating 

evapotranspiration (ET) by direct application of the Penman-Monteith’s 

equation (Allen, 2000). ET models based on surface energy balance and 

hydrological models that take into account the role of vegetation also require 

LAI as input for partitioning ET into evaporation and transpiration (Montaldo 

and Albertson, 2003; Norman et al., 1995; see also Hadria et al., 2006). 

In crop monitoring studies conducted in recent years in the region of 

Barrax, Spain (Berger et al., 2001; Moreno et al., 2004), in situ LAI 

measurements have been performed during specific remote sensing 

experiments and can be used to calibrate crop growth models and coupled 
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vegetation and hydrological models. However, given the large number of crop 

types, the large differences in crop calendar and the diversity of field 

management in the region, in situ LAI measurements appeared insufficient, as 

they are usually available for only a limited number of fields and dates.   

Multitemporal high resolution optical remote sensing is considered an 

advantageous alternative to infer both spatial and temporal LAI, provided that 

the retrieval of LAI from satellite data is effective for the diversity of crop 

types in the region. 

Methodologies to derive LAI from satellite optical data have been the 

subject of a large amount of work. In contrast, few papers have addressed the 

effective model inversion of high resolution satellite images for a complete 

temporal series of data for various crop types in a given region. The crop types 

present in the region of Barrax include: cereals, corn, alfalfa, sugar beet, onion, 

garlic, papaver.  Some of the crop types (onion, garlic, papaver) have not been 

addressed in previous studies. 

In the present study, we focused on the assessment of a LAI model 

inversion approach applied to multitemporal optical data over the region of 

Barrax. Both the inversion approach and data sources are chosen because of 

their wide use: the inversion makes use of the PROSPECT+SAIL model and 

the satellite data are LANDSAT images. First, the PROSPECT+SAIL model 

benefits from in situ measurements of crop biophysical properties used as 

constraints on the model parameters; second, we use a model inversion 

technique consisting of a Look Up Table to invert a complete time series of 

Landsat-TM and ETM+ scenes acquired all along the crop growth period in 

the Barrax area (i.e. from March to September). The image data used here 

consisted of twelve Landsat-TM and ETM+ scenes. Our objective is to obtain 

temporal LAI curves for the diversity of crops in the area of Barrax.  
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3.2. Site description and datasets. 
 
3.2.1. Site description. 
 

The area of Barrax (Castilla-La Mancha, Albacete, Spain) is located on 

a central plateau at 700 m above sea level. Relevant characteristics of this 

region are its flat topography and the presence of large uniform land-use units. 

Castilla-La Mancha is one of the driest regions of Europe with mean annual 

precipitation of about 400 mm, which is mostly concentrated in spring and 

autumn. The study site covers an area of 51 km × 38 km. Vegetation in this 

site is representative of the crop types and agricultural practices of Castilla-La 

Mancha. Two thirds of the study area is dry land with dominant winter/spring 

cereals (60%) and bare soil/fallow land (30%), and the rest is irrigated land 

cropped with corn, wheat, barley, sunflower, alfalfa, onion and vegetables. 

 

3.2.2. Ground biophysical measurements. 
 

Biophysical parameters and ground information used in this work 

were collected in the 2003 growing season in the framework of two different 

activities: the experimental campaigns of ESA/SPARC-2003 (Moreno, et al., 

2004), and the field activities planned in the DEMETER project (Jochum and 

Calera, 2006).  

Intensive field measurements of biophysical properties were collected 

during the period 11-15 July 2003. These measurements were concentrated in a 

10 km × 10 km site within the "Las Tiesas" experimental facilities of the 

Diputación Provincial de Albacete. The measured biophysical parameters 

comprised the following: LAI, Leaf Chlorophyll content CC, Leaf Water 

Content WC Leaf Dry Matter DM and Fraction of Vegetation Cover FVC. 

The measurements were taken in fields of alfalfa (Medicago sativa L.), corn 
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(Zea mays L.), garlic (Allium sativum L.), onion (Allium cepa L.), papaver 

(Papaver somniferum L.), potato (Solanum tuberosum L.) and sugar beet (Beta 

Vulgaris L.). The Leaf Chlorophyll Content was measured using the CCM-200 

Chlorophyll Content Meter, which was calibrated through laboratory analysis 

of specific samples (Gandía et al., 2004). Leaf Water Content and Leaf Dry 

Matter were determined by weighing the wet and dry samples and by 

estimating the leaf area through the analysis of digital pictures. LAI 

measurements were made using the Plant Canopy Analyser, LAI-2000 (LI-

COR Inc., Lincoln, NE, USA). LAI measurements were carried out under 

uniform clear diffuse skies at low solar elevation to prevent the effects of direct 

sunlight on the sensor. The fraction of vegetation cover was measured using 

directional hemispherical photographs (DHP), (Martínez et al., 2005) Figure 

3.1 shows a Landsat close-up of the “Las Tiesas” site with the measured fields 

highlighted in colour, and the location of the individual samples that were 

collected. In this figure, the circular fields have diameters that range between 

300 m and almost 2 km. These circular fields correspond to irrigation units 

known as “pivot”. The figure shows that a large part of the image is not 

covered by vegetation at the date of July 15. The non vegetated areas include 

mainly harvested cereal fields with variable reflectances, whereas bare soil 

surfaces have higher reflectance. The nomenclature chosen in this paper for 

the fields is Fn, where F is a letter denoting the field type (A stands for Alfalfa, 

C for Corn, G for Garlic, ON for Onion, P for Potato, PA for Papaver and SB 

for Sugar Beet) and n is a digit corresponding to the field number. For 

consistency with other analyses using the same datasets (Moreno et al., 2004), 

the numbering of the fields from the original dataset is maintained. Table 3.1 

lists the mean and standard deviation values of DM, WC, CC and FVC 

measured for each crop. LAI measurements for each individual field are given 

in Table 3.2. Here, an average value was calculated for each individual field 
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from the sets of measurements performed on the various samples measured 

within every given field. For a more detailed description of the ground data-set 

of the SPARC-2003 campaign, see Moreno et al. (2004). The different 

parameters in Tables 3.1 and 3.2 were found weakly correlated (with r2 of the 

order of r2~0.25), except LAI and Dry Matter Content (r2 ~0.5) (Gandía et al., 

2004). In particular, for the same Fraction of Vegetation Cover, e.g. 0.6 for 

corn, onion and alfalfa in Table 3.1, additional information is contained in 

LAI, e.g LAI values range from 1.4 to 3.5 in Table 3.2. Phenology 

observations (e.g. on potato and onion) made by the Irrigation Advisory 

Service (IAS) of ITAP (Instituto Técnico Agronónomico Provincial) were also 

available.  

 

Spatial sampling strategy: 

The spatial sampling strategy was designed to represent the variability 

of the fields in the area. Following this criterion, several sampling units were 

selected inside the fields. Each sampling unit had a size of 20 m x 20 m. The 

position of the sampling units was georeferenced by using a portable GPS. For 

LAI measurements, 60 statistically representative sampling units were 

measured. The exact number of sampling units inside each field was:  A1 (4 

points), A9 (4 points), A10 (3 points), C2 (4 points), C3 (3 points), C6 (3 

points), C7 (3 points), G1 (7 points), ON1 (6 points), ON2 (3 points), PA1 (4 

points), P1 (11 points), SB2 (5 points). For each one of these sampling units 

the LAI-2000 measurements result from averaging three replications consisting 

of one measurement above and eight below the canopy. The replications were 

distributed randomly within the area (Martinez et al., 2005).  

The sampling strategy for the photographs used for calculating the 

FVC was adopted from the VALERI methodology (Baret et al., submitted). A 

total number of 53 sampling units were selected for the measurement of the 
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FVC. The mean value for each sampling unit was the average of 12 DHP 

distributed according two different schemes depending on the canopy spatial 

distribution. For homogeneous crops the 12 DHP were distributed in a pseudo 

regular grid inside the unit, while for row crops, they were distributed 

following a diagonal transect (Martinez et al., 2005).  

 

Crop Dry Matter  
(DM) 
(g m-2) 

Water Content 
(WC) 

(g m-2) 

Chlorophyll 
Content CC)

(mg cm-2) 

Fraction of 
Vegetation 

Cover (FVC) 
Corn 61±6 180±18 50.6±0.8 0.63±0.08 
Potato 43±3 223±21 35.6±0.5 0.96±0.04 
Sugar beet 72±11 400±120 44.3±1.4 0.94±0.02 
Garlic 130±30 600±140 15±2 0.12±0.09 
Onion 83±7 680±150 20±2 0.64±0.05 
Alfalfa 89±23 140±70 48.5±1.2 0.59±0.04 
Alfalfa 65±19 130±50 48.5±1.2 0.59±0.04 
Sunflower 77±5 390±50 42.7±0.4 0.16±0.05 
Vine 90±10 190±30 34.6±0.7 NA 

 
Table 3.1. Mean and standard deviation values of the Leaf Dry Matter (DM), Leaf 
Water Content (WC), Chlorophyll content (CC) and Fraction of Vegetation Cover 
(FVC) measured during the field campaigns for each crop. Data correspond to the 
SPARC-2003 campaign except for sunflower and vine that were measured in SPARC-
2004 campaign. Chlorophyll content and FVC of alfalfa fields was assigned the same 
as it was measured only once. 
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3.2.3. Remote sensing data. 
 

Table 3.3 lists the twelve Landsat 5 and 7 acquisition dates and the 

illumination geometries. Pre-processing of the Landsat images comprised first 

their geo-coding, then calibration and finally the atmospheric correction 

providing surface reflectance images. The geo-coding of the twelve images was 

performed by using a total of more than 100 ground control points (GCPs) 

distributed over the Landsat scenes and measured in-situ with GPS. The 

images were first rectified using a polynomial transformation with an error 

lower than 1 pixel, and then resampled at 30 m spatial resolution by using the 

nearest neighbour algorithm. The images were subsequently calibrated by 

calculating the at-sensor radiance, and the surface reflectances were retrieved 

by performing the atmospheric correction following Guanter et al. (2007). In 

this step, the atmosphere is considered invariant across 30 × 30 km windows, 

while the surface reflectance is allowed to vary from pixel to pixel, and it is 

assumed to be represented as a linear combination of two vegetation and soil 

endmembers. An inversion of the top of atmosphere (TOA) radiances in 5 

reference pixels is performed to obtain aerosol optical thickness (AOT), water 

vapor and the proportions of vegetation and soil in the 5 pixels. The estimated 

atmospheric component concentrations are then used to convert the TOA 

radiances to surface reflectances. This atmospheric correction method has 

been validated with MERIS and sun-photometer data (Guanter et al., 2007). 
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CROP/ID LAI 

Alfalfa       A1 1.36±0.13 
Alfalfa       A9 2.99±0.16 
Alfalfa       A10 1.90±0.08 
Corn          C2 3.5±0.4 
Corn          C3 3.3±0.3 
Corn          C6 3.85±0.13 
Corn          C7 3.3±0.6 
Garlic         G1 0.56±0.10 
Onion        ON1 1.8±0.3 
Onion        ON2 1.7±0.2 
Papaver      PA1 1.6±0.2 
Potato        P1 5.4±0.4 
Sugar beet SB2 4.2±0.4 

 
Table 3.2. Mean LAI-2000 measurements during the SPARC-2003 for each measured 

field. Spatial distribution of the measurements is shown in Figure 3.1. 
 

 
Date DOY Satellite Solar zenith  Solar zenith 

used in the 
LUT 

LUT 
reference 

10/03 69 Landsat-7 49.20  49.00 1 
27/04 117 Landsat-7 32.05  32.00 2 
20/05 140 Landsat-7 26.97 27.00 3 
29/05 149 Landsat-7 25.88 27.00 3 
29/06 180 Landsat-5 28.00 29.00 4 
08/07 189 Landsat-5 29.00 29.00 4 
15/07 196 Landsat-5 29.00 29.00 4 
24/07 205 Landsat-5 31.00 32.00 5 
31/07 212 Landsat-5 32.00 32.00 5 
09/08 221 Landsat-5 33.00 32.00 5 
25/08 237 Landsat-5 37.00 37.00 6 
17/09 260 Landsat-5 42.72 43.00 7 

 
Table 3.3. List of Landsat-7 & Landsat-5 data acquisitions, solar zenith angle 

(degrees) at satellite pass time and solar zenith angle (degrees) used as input of SAIL 
for generating the LUTs. A total number of 7 Look Up Tables were generated (for 

each crop). 
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7.50 Km 
 

 
Figure 3.1. Landsat false colour (15 July 2003) close-up of “Las Tiesas” experimental 
facilities site with the location of the monitored fields (highlighted in colours) and the 

points where individual samples were measured. 
 
 
3.3. Methodology. 

 

Land use map: 

The time series of Landsat images was first used to generate a land 

use map of the area. The classification method was based on a multitemporal 

supervised algorithm that takes advantage of the different phenological 

development of the crops in the area. The resulting classification has eleven 

general classes initially defined for irrigation management purposes. Apart 
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from urban areas and water/wet areas, the land use and land cover classes 

include: Natural vegetation, Spring irrigated crops (mostly small grain cereals), 

Summer irrigated crops (mostly corn and sugar beet, locally other crops), 

Double harvest (cereals in spring followed by irrigated summer crops), Alfalfa, 

Fallow/Bare Soil (in this area fallow is equivalent to bare soil), Dry crops 

(mainly non irrigated cereals), Other crops (unknown), Vineyard (Vitis vinifera 

Lin.)/Fruit trees. The validation was done with 519 plots. The Kappa 

coefficient, K, which is an indicator of the overall accuracy of the classification 

was K=0.92. The producer’s accuracy is respectively of 80% for Natural 

Vegetation, 100% for Spring irrigated crops, 98% for Summer irrigated crops, 

79% for Double harvest, 100% for Alfalfa, 100% for Fallow/Bare Soil, 88% 

for Dry crops and 83% for Vineyard. A further classification step has been 

done, based on more detailed information that was available for some fields 

through field survey, to partition the land use/land cover classes into crop 

types. This information was overlaid to the general classification giving refined 

classes for corn, sugar beet, wheat (Triticum L.), barley (Hordeum vulgare L.), 

onion, garlic, sunflower (Helianthus annuus L.), peas (Pisum sativum L.), potatoes, 

oat (Avena sativa L.), pepper (Capsicum annuum), rye-grass (Lolium L.), kenaf 

(Hibiscus cannabinus L.) and papaver fields. Figure 3.2 shows the final land use 

map of the study area. Therefore, the classification of Figure 3.2 contains 

general classes (class 1 to class 11) and detail classes for a subset of fields (class 

12 to class 21). For purposes of LAI retrieval, some categories such as Urban 

areas, Water/wet areas and Fallow fields, were masked in the Landsat images 

prior to inversion. 
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General Classes: 
1. Natural vegetation;  
2. Spring irrigated crops 
3. Summer irrigated crops 
4. Double harvest  
5. Alfalfa  
6. Bare soil/Fallow  
7. Dry crops (non irrigated)  
8. Vineyard/fruit tress  
9. Urban areas  
10. Water/wet areas  
11. Other  
Field Observation Classes: 
12. Corn 
13. Sugar beet  
14. Wheat  
15. Barley  
16. Onion  
17. Garlic  
18. Sunflower  
19. Potatoes  
20. Papaver  
21. Others field observations (Peas, 
Oat, Kenaf, Ray-Grass, Pepper) 

CLASSIFICATION 

38 Km 

51 Km 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2. Land use map of the study area. Classes 12 to 21 are local refinements of classes 2 to 7. The black rectangle corresponds 

to Figure 3.1.



  

Choice of the models and approach: 

A discussion about the advantages and disadvantages of physically-

based approaches and semi-empirical approaches has been done in Section 2.6 

of Chapter 2. For the objective of this study, which is to investigate the 

applicability and accuracy of LAI inversion over a complex agricultural 

landscape, we retain a physically-based approach, taking the benefit of having 

experimental data to be used as model constraints. Nevertheless, we will 

compare the results from a physically-based approach to those obtained using 

an empirical approach. 

Among the available models and inversion techniques, we retained 

models which have been widely applied and an inversion technique which is 

easy to implement: the model is PROSPECT+SAIL and the inversion is based 

on Look Up Tables (LUTs). The models have been described in Section 2.5.3 

and 2.5.4 of Chapter 2. 

 

Description of the chosen inversion approach: 

Even in the case of simple radiative transfer models, the estimation of 

LAI through inversion of reflectance data is an ill-posed problem, as the 

number of unknown parameters is higher than the spectral information. The 

problem can be solved by using a-priori information (Combal et al., 2002b), for 

instance using in-situ measurements to limit the range of parameters values. 

Thus, taking advantage of the vegetation biophysical measurements that were 

acquired for our study area, the more general physically-based approached has 

been preferred to a semi-empirical approach.  

In a probabilistic description of the inverse problem (Tarantola, 

2005), the cost function K describing the discrepancies between the 

simulations and the measurements will be proportional to the term: 

67 



  
K ∝

r 
ρ LANDSAT −

r 
ρ LUT( )T

C−1 r 
ρ LANDSAT −

r 
ρ LUT( )    [Eq. 3.1] 

where,  is the covariance matrix of the measurements accounting for 

measurement errors. The elements off-diagonal are not null when errors are 

correlated between bands. Usually, correlations are unknown, and a first 

approximation to the problem consists in neglecting them. The inversion of 

our Look Up Tables consisted in finding which spectrum from the Look Up 

Table minimizes the following expression: 
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∑
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b

LUT
b

LANDSAT
b ρρ      [Eq. 3.2] 

The latter equation implies that measurement errors are assumed 

equal (as the same weight has been given to all bands) and without correlations 

(elements off-diagonal are zero).  

Due to the lack of information to quantify the covariance matrix, it 

has been chosen to give the same weight to all bands. Moreover, in this sort of 

methodology, measured reflectances are compared with “ideal” simulated 

reflectances, as it is assumed that the model has no errors. Errors in the model 

are indeed very difficult to quantify, also they may be comparable or even 

higher than measurements errors.   

The inversion following Equation 3.2 is applied to each of the 

Landsat images, on a pixel by pixel basis, for each specific crop type according 

to the land use map (see Figure 3.2). 

The inversion method consists in using crop-specific Look Up Tables 

(LUTs) which have been created using the outputs of PROSPECT+SAIL 

models. The PROSPECT model computes the leaf reflectance and 

transmittance needed for running the SAIL model. 

Both PROSPECT and SAIL models were run by steps of 2.5 nm 

wavelength. To simulate Landsat-like spectra, the SAIL model was run in the 
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range 400 to 2500 nm. The atmospheric parameters needed for this version of 

SAIL (extraterrestrial solar irradiance, direct solar transmittance, atmospheric 

spherical albedo and diffuse solar transmittance) were calculated in the full 

range from 400 nm to 2500 nm using MODTRAN-4. The 2.5 nm step 

simulated hyperspectral reflectance is then aggregated using Landsat sensor 

filters to give a 6 bands spectrum. Look Up Tables adapted to solar zenith 

angle for each Landsat date (see Table 3.3) were generated for alfalfa, corn, 

garlic, onion, sugar beet, potato, sunflower, vineyard/fruit trees, wheat/barley 

and natural vegetation. In addition, a general LUT was created for the rest of 

crops (peas, pepper, etc).  

Inputs to the PROSPECT+SAIL models are experimental data, when 

available, completed by information from literature. The structural parameters 

a and b are established based on our knowledge of the plant structure 

(erectophile, planophile, extremophile …) and the related LAD 

parameterisation values in SAIL. Table 3.4 and Table 3.5 list these parameters 

and their ranges of values. In a first approximation, the ranges of values 

centered on in situ measurements collected in July 2003 (and also in July 2004) 

were applied to the whole season assuming that the ranges measured at these 

dates are sufficiently large to cover all plausible values. One exception 

concerns chlorophyll content, which commonly varies within the plant cycle. 

The distribution of chlorophyll has been widened for dates other than June 29 

to July 15.  To run the models, we choose to give discrete values within the 

interval with a regular step. The exact number of steps used for each crop is 

indicated in Tables 3.4 and 3.5. Typical values in the LUT are at 5 μg.cm-2 

steps for CC; 100 μg.m-2 for CW; 10 mg.cm-2 for DM; and 0.1 steps for a, h 

and LAI. The LAI range is between 0.1 and 6.0 for all crops except for 

vineyards which varies from 0.1 to 2.5. Vineyard in the region has low 

fractional cover (<5%), (Lanjeri et al., 2001) and low LAI. For the LAD 
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parameter b, and the leaf structural parameter N, a unique value was given for 

each crop type, as it is frequently done in literature (e.g., Combal et al., 2002(a); 

Jacquemoud et al., 1995; Haboudane et al., 2004).  

We use as input to SAIL, the soil spectrum extracted from a HyMAP 

airborne hyperspectral sensor image at nadir, acquired simultaneously to the 

SPARC campaign in Barrax, in July 2003. The spectrum has been chosen to 

have finer spectral resolution than Landsat: 2.5nm wavelength resolution 

interpolated from the original spectrum. The Hymap spectrum is found very 

close to the mean spectrum derived from bare soil/fallow class in the Landsat 

July image (Table 3.6). We use a fixed soil spectrum in the SAIL model, 

because the Barrax study site is a dry area, with low variability in soil type. This 

assumption may not hold for irrigated fields. However, since the 

evapotranspiration rates are high, we consider that the effect of irrigation is not 

resilient. The effect will be important for crops that have been irrigated a few 

hours prior to the image acquisition, and at low stage development (crops with 

low FCV). 

 

3.4. Results and validation. 

LAI mapping: 

A map of LAI was generated for every Landsat image, which are 

listed in Table 3.3. Figure 3.3 shows the LAI map for July 15. For this date, 

non vegetated pixels (bare soil/fallow fields, and already harvested small grain 

cereal fields) have been masked out. LAI values range from 0.1 to 6.  The 

lowest LAI values (in light pink colour) correspond mainly to vineyards, and 

the highest LAI values (dark violet and black colour) to summer-irrigated crops 

(sugar beet, corn, potatoes) and alfalfa. The mean value of LAI for vegetated 

pixels is 1.1, and the standard deviation (STD) is 1.2. The LAI distribution is as 

follows: 80% of the vegetation pixels have LAI<2, 16% have a LAI in the 
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range [2-4] and 4% of the pixels have LAI>4. If we exclude vineyard and 

natural vegetation, the mean LAI value for crops is LAI=1.8 with a STD=1.4, 

with 59% of the pixels having LAI<2, 33% in the range [2-4] and 7% having 

LAI>4. The low mean value of LAI, and the large LAI range (0.1 to 6) are 

typical of semi arid agricultural regions where irrigation allows sustained 

growth despite a rather dry climate. The twelve LAI images denote a dynamic 

patchy landscape with high contrasts among three vegetation categories 

(natural vegetation, spring crops and summer crops) and bare soil surfaces. It 

can be foreseen that the temporal monitoring of crops in such a region is 

difficult to be done with low resolution data (e.g. MODIS or MERIS), for 

which a pixel can contain several fields. 

 

LANDSAT BANDS LANDSAT 
HyMAP filtered 

reflectance 
B1 0.12 ± 0.03 0.07 
B2 0.20 ± 0.04 0.17 
B3 0.27 ± 0.05 0.25 
B4 0.37 ± 0.06 0.31 
B5 0.48 ± 0.06 0.49 
B7 0.42 ± 0.07 0.38 

Table 3.6. Average soil spectrum reflectance and standard deviation in the image of 
July the 15th and the HyMAP soil spectrum used in the LUTs filtered to the 

LANDSAT bands for comparison. 
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Figure 3.3. Landsat derived LAI map in July the 15th, showing contrast between 

crops. 
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N CC (μg cm-2) WC (g m-2) DM (g m-2)  LAI a b h 

CORN 1.6 50.0 [100, 200] i=3 [50, 70] i=3 [0.1, 6.0] 
i=60 

[-0.4, -0.6] 
i=3 -0.4 [0.1, 0.3] i=5 

SUGAR BEET 1.6 
 

44.0 
 

[300, 600] i=4 
 [50, 80] i=7 [0.1, 6.0] 

i=60 
[-0.2, 0.0] 

i=3 0.8 [0.3, 0.6] i=7 

POTATO 1.6 
 

36.0 
 

[200, 300] i=3 
 [40, 50] i=3 [0.1, 6.0] 

i=60 Spherical [0.1, 0.2] i=3 

SUNFLOWER 1.6 
 43.0 [300, 600] i=7 [60, 90] i=7 [0.1, 6.0] 

i=60 
[0.7, 0.9] 

i=3 0.0 [0.1, 0.25] i=4 

ALFALFA 1.7 
 49.0 [120, 160] i=5 [30, 80] i=6 [0.1, 6.0] 

i=60 
[0.8, 1.0] 

i=3 0.0 [0.05, 0.12] i=8 

GARLIC 1.6 
 15.0 [500, 700] i=5 [50, 200] i=4 [0.1, 6.0] 

i=60 
[-0.1, 0.1] 

i=3 0.5 [0.05, 0.07] i=3 

ONION 1.6 
 20.0 [500, 800] i=4 [50, 90] i=5 [0.1, 6.0] 

i=60 
[-0.1, 0.1] 

i=3 0.5 [0.05, 0.07] i=3 

NATURAL 
VEGETATION 

1.5 
 

[20.0, 50.0] 
i=4 [50, 200] i=4 [10, 90] i=5 [0.1, 6.0] 

i=60 Spherical [0.05, 0.15] i=3 

VINEYARD-
FRUIT TREES 

1.6 
 36.0 [150, 250] i=3 [80, 100] i=3 [0.1, 2.5] 

i=25 Spherical [0.08, 0.12] i=5 

OTHERS 1.6 [10.0, 50.0] 
i=5 [100, 800] i=8 [40, 200] i=17 [0.1, 6.0] 

i=60 Spherical [0.01, 0.10] 
i=10 

Table 3.4. Range of values and number of values inside this range (i)  that have been used in the Landsat  Look Up Table generation for each crop on June the 29th,, July the 8th and 
July the 15t
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 N CC 
(μg cm-2)

WC (g m-2) DM (g m-2)  LAI a b h 

CORN (b) 1.6 (11) [35, 60] (1)

i=6
[100, 200] i=3 [50, 70] i=3 [0.1, 6.0] 

i=60
[-0.4, -0.6] 
(11)   i=3

-0.4 [0.1, 0.3] (4), (5), 

(12) i=5 
SUGAR BEET (b) 1.6 [40, 50] i=3 [300, 600] (9) 

i=4
[50, 80] i=7 [0.1, 6.0] 

i=60
[-0.2, 0.0] (13)

i=3
0.8 [0.3, 0.6] (7) i=7 

POTATO (b) 1.6 [25, 45] i=5 [200, 300] i=3 [40, 50] i=3 [0.1, 6.0] 
i=60

Spherical [0.1, 0.2] i=3 

SUNFLOWER (b)  1.6 [38, 48] i=3 [300, 600] i=7 [60, 90] i=7 [0.1, 6.0] 
i=60

[0.7, 0.9] i=3 0.0 [0.10, 0.25] i=4 

ALFALFA 1.7 [45, 55] i=3 [120, 160] i=5 [30, 80] i=6 [0.1, 6.0] (10)

i=60
[0.8, 1] i=3 0.0 [0.05, 0.12] i=8 

GARLIC (b) 1.6 [15, 55] i=3 [500, 700] i=5 [50, 200] i=4 [0.1, 6.0] 
i=60

[-0.1, 0.1] 
i=3

0.5 [0.05, 0.07] i=3 

ONION (b) 1.6 [10, 20] i=3 [500, 800] i=4 [50, 90] i=5 [0.1, 6.0] 
i=60

[-0.1, 0.1] 
i=3

0.5 [0.05, 0.07] i=3 

NATURAL VEGETATION 1.5 [20, 50] i=4 [50, 200] (14) 
i=4

[10, 90](14) i=5 [0.1, 6.0] 
i=60

Spherical (2), (3) [0.05, 0.15] i=3 

VINEYARD-FRUIT TREES 1.6 [25, 45] i=5 [150, 250] (15) 
i=3

[80, 100] i=3 [0.1, 2.5] 
i=25

Spherical  [0.08, 0.12] i=5 

OTHERS 1.6 [10.0, 50.0] 
i=5

[100, 800] i=8 [40, 200] i=17 [0.1, 6.0] 
i=60

Spherical [0.01, 0.10] 
i=10 

WHEAT, BARLEY (a) 1.6 [5, 50](8)

i=10
[100, 500] i=5 [40, 60](6) i=3 [0.1, 6.0] 

i=60
[-0.3, 0.3] 
i=7

-0.4 [0.01, 0.03] (4) 
i=3 

Table 3.5. Range of values and number of values inside this range (i) that have been used in the Landsat Look Up Table generation for each crop for dates others than June the 29th,, 
July the 8th and July the 15th.  a) Applied from March the 10th to May the 29th.b) Applied from June the 29th to September the 17th. (1) Viña et al. 2004 ; (2) Fang et al., 2003 ; (3) Fang and 
Liang, 2003 ; (4), Qin et al., 2002 ; (5), España et al., 1999 ; (6) Verhoef & Bach, 2003 ; (7) Andrieu et al., 1997 ; (8) Kneubühler, 2002 ; (9) Combal et al, 2002(a), (10) Confalonieri & Bechini, 

2004 ; (11) Koetz et al., 2005 ; (12) Combal et al, 2002(b), (13) Duke and Guérif, 1998, (14)  Weiss & Baret., 1999, (15) Fourty, 1996.
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Figure 3.4. Validation of Landsat derived LAI with LAI-2000 measurements. A 
stands for Alfalfa, C for Corn, G for Garlic, ON for Onion, P for Potato, PA for 
Papaver and SB for Sugar Beet. 
 

Validation using ground data: 

The LAI values retrieved for July 8 and July 15 were validated against 

in-situ LAI measurements, which were both averaged over the fields where 

ground data have been collected (Cf. fig.1). Ground measurements were taken 

during 5 consecutive days (11 to 15 July), thus the retrieved LAI values were 

interpolated between the two image dates. Figure 3.4 presents the comparison 

for the 13 fields of different crop types. LAI-retrieved error bars correspond to 
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the standard deviation of the pixels in the field. Ground data error bars 

correspond to the standard deviation of the point measurements in each field 

(around 5). 

The comparison shows a high linear correlation (r2=0.97) for the 13 

data points of 7 crop types, being: LAIretrieved=0.83*LAIobserved+ 0.70. The results 

do not show any saturation in the whole LAI range (0 to 6), although these 

results, obtained using only one field with LAI>4 (potato), do not prove that 

saturation does not exist in the range (4-6). The standard deviation of the 

inverted LAI ranges from 1% (alfalfa field A2) to 30% (garlic field G1 and 

papaver field PA1) reflecting field heterogeneity.   

A similar agreement is obtained for the July validation when using the 

LUTs designed for the inversion along the season (larger chlorophyll range).  

 

LAI temporal monitoring: 

Temporal curves of the retrieved LAI for different crop types were 

analysed with respect to their development and phenological stages to assess 

the performance of the LAI estimations throughout the crop cycles. Figures 

3.5 through 3.10 present examples of temporal LAI curves for fields of 

different crop types. When available, the phenology observations and LAI-

2000 measurements for the same field are also displayed.  

Figure 3.5 shows the results for two potato fields with shifted 

calendars and different cycle length. P2 has a longer cycle than P3: emergence 

is two weeks earlier and harvest is two months later. The retrieved temporal 

LAI variation follows well the observed phenology. It can also be noted in 

Figure 3.5 that the standard deviation is large during period from flowering to 
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potato growing. This may result from the heterogeneity of the field during this 

fast varying period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Retrieved LAI for two potato fields (P2 and P3) with different calendar. 
Phenological observations are indicated on top. P2 has a longer cycle than P3: 
emergence is earlier and harvest is later than for P2. E stands for Emergence, VD for 
Vegetation Development, F for Flowering, PG for Potato Growing, R for Ripening 
an H for Harvest.   
 

Figure 3.6 shows the temporal LAI curve for an onion field, which 

also shows consistency with the in situ observed phenology. Figure 3.7 

presents the temporal LAI curves for two alfalfa fields. The curves clearly 

reveal at least two cuts (field A10) and 3 cuts (field A9) between March and 

September 2003, which are consistent with standard practices in the region. 

Figure 3.8 presents the temporal curves for two corn fields from June 29 (no 

Landsat data was available during the first part of the development stage which 
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is from end of May to mid July). The temporal variation does not appear very 

consistent with respect to the development stage. Field C7 has unexpectedly 

low LAI for a standard corn crop, but it would be more consistent with a 

sweet corn which usually has low LAI values in the region. Unfortunately 

additional ground information that could be used to verify this hypothesis was 

not available. Field C2 (but also for fields C3 and C6, not presented) has large 

fluctuations during the reproductive phase, where LAI is expected to be the 

highest. Similar fluctuations have also been observed with sugar beet fields 

during the peak period. As a consequence, the inversion for those summer 

irrigated fields with high LAI will need further studies. Figures 3.9 and 3.10 

show the temporal curves for papaver and garlic fields. Although few data have 

been acquired during the key development stage of the crops, the temporal 

variation appears smooth. In addition, for these crops with low fractional 

vegetation cover (onion, garlic and papaver), the changes in soil conditions 

(mainly soil moisture) can affect the retrieval results. The smooth behaviour is 

consistent with the approximation of not considering soil moisture variations 

in our study area. 

 

In summary, the inversion results shown in Figures 3.5 to 3.10 

indicate the following: a) the results seem correct except for corn and sugar 

beet, b) the retrieved values are consistent with specific LAI values for each 

crop; c) the temporal variation of the retrieved LAI is smooth, meaning that 

the date by date retrieval is consistent. 
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Figure 3.6. Retrieved LAI for an onion field. Error bars correspond to the standard 
deviation for the pixels in the field. Phenological observations for this field are 
indicated on top: E stands for Emergence, 4-5L for 4-5 leaves, B for bulb growing, R 
for Ripening and H for Harvest.   
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Figure 3.7. LAI curves for alfalfa field A9 and field A10. Ground measurements with LAI-2000 instrument are also displayed. 
Regular cuts of alfalfa are clear. Field A10 had one less cut than field A9 during year 2003. 
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Figure 3.8. Retrieved LAI for two corn fields (C2 and C7). The 
average phenology of corn in the region is indicated on top: D 
stands for Development, RE for Reproduction and R for 
Ripening. 
 

Figure 3.9. Retrieved LAI for a papaver field. Phenology for 
papaver in the region is indicated on top: D stands for 
development, RE for reproduction and R for Ripening.   
 
 

 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Retrieved LAI for a garlic field. Phenological observations for this field 
are indicated on top: D stands for development, BG for bulb growing and R for 
Ripening.   
 

To better understand these results, we examine the different sources 

of errors in the methodology. Those include:  

 

a) Radiometric quality of the satellite data (due to absolute 

miscalibration or temporal radiometric calibration instability, radiometric 

sensitivity and residual errors after atmospheric corrections). This problem is 

more important in NIR-SWIR for which temporal instability in the case of 

Landsat is higher (sinusoidal variation of the calibration coefficients). NIR is 

the part of the spectra which is the most sensitive to LAI. Crops with high 

vegetation density, such as corn, require accurate calibration in all bands as 
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LAI retrievals are also affected by total canopy water content. The poor results 

obtained with corn and sugar beet could be explained by the radiometric 

quality of the data. 

b) Error and uncertainties linked to the a-priori parameters for 

crop characteristics used in LUT generation. The small retrieval errors as 

compared to in situ LAI (Figure 3.4) can be explained by the use of in situ 

crop parameters measured at the same date to create the LUT. Greater errors 

are expected for the other dates where input parameters are not measured, as 

the parameters space is under-sampled.  

c) Limitation of the inversion method. Even though we have 

reduced the space of possible solutions when constructing the LUTs with a 

limited range of variation in the parameters, the inversion problem may still be 

ill-posed. For instance compensation between LAI and other parameters can 

bias LAI retrievals. This may occur in the inversion for corn and sugar beet. In 

this study, solutions for individual pixels in a field have been averaged to 

reduce the error. Further improvement could be to use the temporal 

dimension for the search of a better solution, adding a temporal dependent 

term (a temporal constraint) in the merit function to be minimized. The work 

of Koetz et al., (2005) showed improvements in corn LAI retrievals when 

taking into account the temporal dimension by using the phenological LAI 

dynamics to better define the a-priori information in a refined LUT based 

inversion method. Other studies also explored the spatial aspects (Atzberger, 

2004) and both temporal and spatial dimension (Lauvernet and Baret, 2005). 

d) Model limitations. Both PROSPECT and SAIL models apply to 

“average” vegetation properties, some particularities of crop canopies not 

being taken into account. For instance a 1-D model like SAIL can not describe 
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accurately structural differences in crops (foliage clumping, row effects). 

PROSPECT, on the other hand, considers cumulative spectral responses of 

different leaf pigments (absorbers), which are assumed to be invariable from 

one leaf to another. This may explain the differences in the results of different 

crop types. The work by Le Maire et al., 2004, discusses the necessity of re-

calibration of PROSPECT. It could be interesting to re-calibrate PROSPECT 

specifically for agricultural crop leaves or for each crop type in our study at the 

expense of generality of the method. 

e)  The specific crop parameters used in the LUTs: the LUT 

inversion requires knowledge of crop parameters ranges in the area under 

study. When applying this methodology to other regions, the question is 

whether these parameters should be adapted locally. In the literature, there is a 

lack of documentation about the parameters that have been used in the 

PROSPECT+SAIL models for LAI inversions. In particular, dry matter 

content is often poorly documented. Surprisingly the largest uncertainties were 

found in well-studied crops like corn, rather than crops like onion or garlic. 

For these last crops, a priori parameters are readily different (e.g. large leaf 

water content) but the inversions are correct. Further field work could help to 

properly characterize crop parameters and their temporal variation to be used 

as a-priori in simple RT modelling inversion. 

f) Soil variability (soil type and soil moisture).  When a single soil 

spectrum is used, the soil variability caused by soil type or soil irrigation can 

give errors in the simulated vegetation spectra, propagating to errors in LAI 

inversion. Simulations show that the effect of soil background is more 

important for erectophile than for planophile vegetation, at lower fraction 

cover than at higher fraction cover (not shown). Also, a brighter soil reduces 
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the dynamic range of reflectance in the NIR as a function of LAI. This case is 

less favourable to LAI inversions. However, as the reflectance variation with 

LAI is different with the wavelength, it is not clear how this could actually 

affect the inversions using the full spectra. To quantify the background effect 

on the inversion, we used two soil spectra, the fixed spectrum used in the LUT 

multiplied by brightness factor 1.1 and 0.9 (+/- 10%) for LAI retrieved from 

date 29/06 to date 09/08 in the inversion of alfalfa and corn surfaces. We 

found that the effect on alfalfa was negligible, whereas the retrieved LAI of 

corn field differs by +/- 0.3. For the Barrax region, the effect of soil 

background variability does not appear to be a major source of error. The 

particular cases of recent rainfall and recently irrigated fields could not be taken 

into account in this study, except through the a posteriori examination of the 

time profiles. 

 

3.5. Discussion. 

In this study, we have retrieved LAI from Landsat data, on a pixel 

basis, for 12 images from March to September 2003 in the agricultural region 

of Barrax, a semi arid region with a diversity of crop types and crop growth 

cycles.  

The results are compared with in situ LAI measurements available in 

mid July, with very good agreement but a slight bias. The LAI temporal 

variation of the analysed fields shows consistency with the crop phenological 

stages for most crop types with the exception of corn and sugar beet fields 

where some fluctuations in the retrieved LAI are found during a period when 

LAI is typically high.  

Several issues are discussed below in a broader context: 
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- Effective LAI: 

Green LAI is defined for flat leaves as the sum of the one-sided green 

leaf area per unit ground area (Chen and Black, 1992). In plants, leaves are 

usually grouped together rather than distributed uniformly: this is known as the 

foliar clumping. The LAI (also called true-LAI) is the “effective” LAI 

corrected for clumping (Chen, 1996; Lacaze et al., 2002). The LAI “seen” by 

optical instruments (i.e. LANDSAT and LAI-2000) is the effective LAI. The 

scope of this work is to give an estimation of the effective green LAI. 

Furthermore, optical instruments, which measurements are based on light 

absorption, are sensitive not only to leaves but also to other plant elements 

(stems). Thus we have been abusively using LAI in place of plant area index 

(Bréda, 2003). 

When comparing total LAI destructive measurements with optically-

retrieved LAI, discrepancies will be found, in particular for canopy with high 

LAI. This is due to the clumping effect, and due to the physical saturation of 

the reflectances in the optical region. The effective LAI is directly linked to the 

light absorption processes, photosynthesis and evapotranspiration, whereas 

true LAI is related to carbon allocation and growth processes.  

- Empirical relationships (NDVI-LAI) versus model inversion: 

To assess the possibility to retrieve LAI using empirical relationships 

between LAI and vegetation indices, e.g. NDVI, LAI for different fields 

retrieved at different dates are analysed against NDVI derived from the 

Landsat images. Figure 3.11a shows the retrieved LAI as a function of NDVI 

for different fields and Figure 3.11b shows the curves fitted for a few crop 

types, together with the LAI-2000 measurements. Figure 3.12 shows the 

NDVI-in situ LAI relationships (all data). Figures 3.11 and 3.12 confirm that 
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 a) the NDVI-LAI relationships are dependent on crop type, because 

the relationships between reflectances and LAI are affected by the plant 

structure and leaf properties  

b) for a given crop, the sensitivity of NDVI to LAI decreases 

significantly when LAI exceeds 2 or 3.  

Secondly, in the NIR band, the vegetation spectra are affected by other 

vegetation parameters such as leaf dry matter content, leaf angle distribution 

and other factors (i.e. soil background, angular configuration) causing large 

uncertainties to the retrieval. Using a model with sufficient spectral bands, we 

may preserve the sensitivity to LAI of NIR band to access to higher values of 

LAI compared to NDVI, and separate the effects of different parameters to 

reduce uncertainties in the retrieval. 

The graphs indicate that large uncertainties can be expected when 

deriving LAI from NDVI using a non crop-specific relationship, especially at 

high values of NDVI (0.6 to 0.8).  

The main advantage of model inversion in comparison with empirical 

NDVI-LAI relationship is that LAI can be inverted in a higher range (Figure 

3.4 and Figure 3.12). This is important for agriculture as crops can reach high 

LAI values (Table 3.2). One possibility to combine the two approaches is to 

use the crop-specific NDVI-LAI relationships derived from model simulations 

(such as in Figure 3.11.) for a given region. The approach would benefit from 

the prior crop classification using the time series of satellite data. For our study 

site, the simulated NDVI-LAI relationships need to be further validated for the 

whole growth cycle and for their inter-annual variation, before their use in such 

a semi-empirical retrieval scheme.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.11. a) NDVI-LAI relationships for several crops. LAI is the Landsat derived 
LAI. b) Crop-specific NDVI-LAI relationships derived from model simulations for 
some crops and in-situ LAI measurements. 
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Figure 3.12. Relationship between NDVI and in-situ LAI.  A stands for Alfalfa; C 
stands for Corn; G stands for Garlic; ON stands for Onion; P stands for Potato; PA 
stands for Papaver and SB stands for Sugar Beet.  
 
-Instrument requirements: 

To benefit from the whole potential of model inversion techniques, a 

sufficient number of appropriate spectral bands (i.e. with appropriate central 

wavelengths and narrow bandwidths) are necessary. The information provided 

by these bands has to be radiometrically accurate and as much spectrally 

uncorrelated as possible. The spectral information should be sufficient for 

aerosol correction and for decoupling the contribution of chlorophyll and 

water content. This means that the performance of the model inversion 

techniques would also depend on the satellite data used. Other current sensors 

with more and narrower bands (i.e. MODIS or MERIS) have, in return, the 

problem of spectral signal mixing due to their lower spatial resolution over 
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most agricultural mosaics (heterogeneous landscapes). They may be used to 

monitor the largest fields but will have a majority of mixed pixels at the 

regional scale. As the relationship between reflectance and LAI is non-linear, 

inversions using coarse resolution data under the assumption of spatially 

homogeneous pixel will introduce a bias on the LAI (Tian et al., 2003; 

Garrigues et al., 2006). The spatial resolution of Landsat (30m) is adequate 

enough to ensure accurate retrievals of LAI in our study area. 

For the type of heterogeneous landscape we studied, high spatial 

resolution is necessary to avoid mixed pixels. Higher temporal frequency is also 

necessary in the period of fast development of the plants. For instance, in our 

dataset, a critical period (beginning of May) was missed. The presence of 

clouds ultimately represents a major limitation for multitemporal studies. A 

higher frequency of acquisitions for optical data to compensate for potential 

loss of images due to cloudiness would have a major impact on the 

applicability of the methodology described in this paper. 

In particular, this methodology can be suitable for future missions 

(GMES Sentinel-2, FORMOSAT-2, VENUS, etc…) which will have better 

radiometric stability and narrower bands than Landsat but, more importantly, 

will ensure both the high spatial and temporal resolution necessary for most 

agricultural landscapes.  
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CHAPTER 4:  

LAI AND CHLOROPHYLL RETRIEVAL 

USING MULTITEMPORAL MERIS DATA 

 
 

In Chapter 3 the LAI was obtained by applying a simple inversion 

method to the PROSPECT+SAIL model and LANDSAT-TM data, with good 

results. As it was discussed the use of the temporal dimension could be a 

further improvement in the retrievals. The objective of this chapter is to 

investigate the possibilities of retrieving, jointly, LAI and Leaf Chlorophyll 

content in agricultural fields, taking profit as much as possible, of the 

information contained in multi-temporal data. This is done, by adding a 

temporal constraint in the inversion procedure. Among the possible inversion 

methods, a direct search numerical method was selected because the temporal 

constraint was easy to implement in such a method. ENVISAT-MERIS data 

were preferred to other data like LANDSAT-TM because of its higher 

temporal frequency in spite of its lower spatial resolution. The method is 

applied to the area of Barrax (Spain) with a focus on small grain cereal fields.  



4.1. Description of the methodology with multi-
temporal constraints.  
 

Formalism of the approach: 

The methodology developed in this chapter consists of introducing 

temporal constraints on the parameters to be inverted. A temporal constraint is 

an additional condition in time that the inverted variables must follow to be 

considered as a valid inversion result. In this way, the use of the temporal 

dimension is done during the inversion procedure. This approach is different 

of Koetz et al., (2005). In their approach, the temporal constraint (a semi-

mechanistic model of LAI) is applied as a refinement of the inversion of the 

radiative transfer model.  

In the case of LAI the constraint that was adopted is a curve that is a 

function of the date of the year (DOY) and five parameters (Figure 4.1): 

 ⎟
⎠

⎞
⎜
⎝

⎛
+

−
+

= −− )()(1
5432 1

1
1

1
pDOYppDOYp ee

pLAI  [Eq. 4.1] 

 

Similar LAI curves have 

been used by Koetz et al., (2005) 

but as a function of the degree-

day instead of the DOY. 

Analogously to the LAI case, 

other temporal curves can be 

used for the rest of variables to 

invert.  
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Figure 4.1. LAI typical curve In the multi-temporal 
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approach, a merit function (cost function) is constructed using all the MERIS 

spectra acquired along the season. For instance, if the temporal constraint is 

only applied to LAI, this would result in the following merit function, K  (the 

function to minimize during the inversion): 

  K = (ρiλ
MODEL −

λ=1

11

∑
i=1

n

∑ ρiλ
MERIS )  [Eq. 4.2] 

where  ρiλ
MODEL = f (Ni,cmi

,cwi
,Chli, p1, p2, p3, p4, p5,DOY )  

 

In  Equation 4.2, the sum in  is done for the number of dates, and 

the sum in 

i

λ is done for the MERIS bands. Only 11 of the 15 MERIS bands 

were used, rejecting those bands that are less accurate because of noise. 

Equation 4.2 shows explicitly that with the inclusion of the constraint, instead 

of inverting a LAI value for each date, the inversion is done for the 5 

parameters that determine the curve followed by the LAI during the crop 

season.  

The last part of the methodology consists in a minimization of the 

merit function of Equation 4.2 using a numerical algorithm. In this study, the 

Powell’s algorithm, described afterwards, was used. 

The use of a temporal constraint is justified for LAI and Chlorophyll, 

as both variables show a smooth temporal behaviour (Figures 4.2 and 4.3).  
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Figure 4.2. Leaf Chlorophyll content of wheat at Barrax in 2003 (Eva Rubio et al., 
unpublished data)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. LAI and Leaf Chlorophyll measurements in a wheat and barley field 

(Kneubühler, 2002). 
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Selected numerical inversion method: 

Iterative numerical techniques have been widely used in remote 

sensing (Privette et al., 1996; Pinty et al., 1990; Bacour et al, 2002). The most 

commonly used methods are the downhill simplex method or AMOEBA 

(Press et al., 1992), the conjugate direction set method, or Powell’s method 

(Press et al., 1992) and the quasi-Newton method from the NAG algorithm 

(Numerical Algorithm’s Group 1990). Those methods are relatively easy to 

implement and do not require any additional training as for instance needed in 

Neural Networks. The disadvantages are that these methods are time 

consuming and thus not very convenient for operational implementation. Also, 

depending on the initial conditions, these algorithms may find a local minimal, 

instead of the global minimum.  

Among the direct-search methods, we have chosen the Powell 

method as it is said to have a fast convergence and allows for minimization of 

a high number of variables.  The Powell’s method searches for the minimum 

of a function in N dimensions through successive minimization. The basic idea 

behind Powell’s method is to threat the N dimensional minimization as 

separate one-dimensional minimization problems. The minimization of the N 

dimensional function is done in one dimension at a time using a method of 

one-dimensional minimization, such as Brent’s Method. Powell’s minimization 

method starts from a set of directions in the multidimensional space, finds the 

minimum in each direction and evaluates the good performance of each 

direction. Then, starting from the minimum found in the previous direction, it 

chooses new search directions. An adjustable parameter in Powell’s method is 

the fractional tolerance, τ. This parameter determines the convergence criteria: 

failure to decrease the gradient by the fractional tolerance the algorithm will 
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stop. Setting the fractional tolerance to a very small value can extremely 

increase the computation time without improving the results.  The appropriate 

τ will depend on each problem. 

 
4.2. Test with simulated data. 
 

The methodology was tested first with synthetic data, previously to 

the application to MERIS data. In this section the results corresponding to a 

particular case are shown as an example. Synthetic data were generated using 

the LAI and Chlorophyll profiles from Figure 4.2 and Figure 4.3, generating 

13 dates of MERIS-like spectra (Figure 4.4). Inversions were done in the 

following way: 

 

- A temporal constraint for LAI is assumed. 

- No temporal constraint is applied to the Chlorophyll. 

- All the other variables of the PROSPECT+SAIL model were 

fixed. 

- Two cases or initial conditions were chosen for LAI, named IC-

1 and IC-2. The case IC-1 corresponds to an unfavourable situation (IC far 

from the solution), while the case IC-2 is closer to the real solution.  

- Initial conditions (IC) for Chlorophyll were set to Chl=40 for 

all dates. 

 

A total number of 18 variables were inverted (5 from LAI curve, and 

13 for Leaf Chlorophyll Content) using 13x11=148 MERIS spectral bands. 

Results are displayed in Figure 4.5. 
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Figure 4.4. Simulated spectra using measurements of LAI and Leaf Chlorophyll 
Content. 
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Figure 4.5. LAI curves and Chlorophyll values at each date inverted from MERIS-like 
simulated spectra, assuming a temporal constraint for LAI. 



 
In the ideal case, the method performed very well. The 18 variables 

are well retrieved, even in the case in which initial conditions were far for the 

solution. 

In order to test the sensitivity of the method to possible 

perturbations, the same example was analysed adding noise to the data.  A 10% 

of Gaussian noise was added to the data, both in an additive and multiplicative 

way. Those two noise terms were correlated. This corresponds to a very 

unfavourable situation (see Figure 4.6 in comparison with Figure 4.4). 
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Figure 4.6. Simulated noisy spectra to be inverted.  
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Figure 4.7. Three initial conditions (CI-1, CI-2, C1-3) and real solution (soil) 
corresponding to the simulation with noisy data. 

 

Inversions were done with a constraint on the LAI and without 

constraint for the Chlorophyll, as in the example without noise. The initial 

conditions for the Chlorophyll were set to 40ug/cm2 for all dates. Three cases 

of LAI initial conditions (those shown on Figure 4.7) were tested. Figure 4.7. 

Figure 4.8 presents the obtained results. In Figure 4.8 Chlorophyll is well 

retrieved with a very good accuracy, with the exception of the fist date, and for 

the three tested cases of LAI IC. LAI curves are also well retrieved, but the 

results are more influenced by the LAI IC than Chlorophyll does.  

This analysis using synthetic data has permitted to test the 

methodology. Two main conclusions can be given: first, the method appears to 

be robust to the presence of noise. The second conclusion is that with noisy 

data the choice of initial conditions may affect the results, although the results 

obtained with a very unfavourable situation were still satisfactory. In summary 

the results for LAI and Chlorophyll retrievals using simulated data, were 

encouraging. 
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Figure 4.8. LAI curves and Chlorophyll values at each date inverted from nosy 
simulated spectra, assuming a temporal constraint for LAI. 

 

4.3. Analysis of the first results with MERIS data. 
 

In this section results using MERIS data are presented. Table 4.1 lists 

the complete series of MERIS-FR images used in this study. Results with the 

multi-temporal method are compared to date-to-date inversions. 

 

4.3.1 Selection of “pure” vegetation pixels. 
 

For the application of the method we need to detect homogeneous 

pixels corresponding to agricultural fields. Even though in the area of Barrax 

the fields have a dimension of more that 1Km long, co-registration errors 

made difficult to find pixels that could be considered homogeneous. MERIS 

spectra to be inverted were selected on the basis of the NDVI. Only pixels that 

showed a smooth NDVI profile were analysed.  Some examples are shown in 
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Figure 4.9 together with the corresponding Landsat NDVI profile from the 

same field.  

Date DOY Date DOY
12/03/2003 71 17/07/2003 198 
06/04/2003 96 26/07/2003 207 
13/04/2003 103 30/07/2003 211 
02/05/2003 122 08/08/2003 220 
12/05/2003 132 09/08/2003 221 
14/05/2003 134 12/08/2003 224 
27/05/2003 147 14/08/2003 226 
31/05/2003 151 18/08/2003 230 
12/06/2003 163 25/08/2003 237 
18/06/2003 169 31/08/2003 243 
19/06/2003 170 12/09/2003 255 
01/07/2003 182 16/09/2003 259 
05/07/2003 186 18/09/2003 261 
11/07/2003 192 05/10/2003 278 
14/07/2003 195   

Table 4.1. List of MERIS-FR data used in this study. 

  

 
 
 
 
 

 
 
 
 
 

 
Figure 4.9. Examples of MERIS NDVI profiles. MERIS spectra to be inverted have 
been have been selected with the criteria of smooth NDVI profiles. Landsat NDVI 
for the same field is also plotted for comparison. DC is a non irrigated small grain 

cereal and SPR is a spring irrigated small grain cereal. 
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4.3.2 Background soils. 
 

The geometry of observation for MERIS acquisitions can be very 

different from date to date, thus angular effects in the reflectance can be very 

important (Figure 4.10). The phase angle (sun-observation) explains the 

biggest part of the variability of the reflectance along the year. Variations in 

surface reflectance from one date to another can be due to changes in 

roughness, soil moisture and pixel miss-registration. In order to take into 

account these possible changes in the image brightness, which is due to the 

different geometries of acquisitions, a soil spectrum was extracted from a 

MERIS image at each date. These spectra are used as background soil in SAIL 

model (Figure 4.11).  

 

A more accurate treatment for the changes on brightness of the soil 

background, would be to couple a BRDF soil model, for instance the Hapke or 

Minaert models. However, as we have seen in Chapter 3, a soil spectrum 

extracted for each image is still a good approximation in this region.  
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Figure 4.10.  Reflectance as a function of the phase angle (angle sun-observation)  for 
a MERIS soil  pixel for two wavelength (750 nm and 659 nm).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. MERIS spectra used as soil background in the inversions. 
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4.3.3 Date-by-date inversions. 

 

In order to compare with the multi-temporal inversions, date-by-date 

inversions were also done. In this section we present some examples. 

Additionally, those date-by-date inversions are used to illustrate the problems 

related to variable compensations. An example corresponding to a spring 

irrigated small cereal crop (named SPR1) is shown. Inversions were done in 

this way: 

- Inversion is done for LAI and Chlorophyll using 11 MERIS 

bands. The rest of the model parameters have been fixed to the following 

variables: N=2.0, dm=0.005, h=0.02, LAD is assumed spherical. Leaf water 

content does not have any influence in the wavelength range of MERIS so it 

was fixed to an arbitrary value. 

- LAI maximum value is fixed to 6 and Chlorophyll maximum 

value is fixed to 60ug/cm2. This was implemented by adding a penalty in the 

merit function. 

- Tolerance in Powell was fixed to τ=10-06. An τ=10-03 was 

also tested giving similar results.  

- The initial directions in Powell method were set to the unit 

directions. Several initial conditions where tested giving the same results for 

LAI (Figure 4.12). Chlorophyll retrievals appeared dependent on the initial 

conditions only for the first date, where LAI values are very low. 

 

The temporal evolution of LAI obtained form the date-by-date 

inversion has the expected behaviour, but the Chlorophyll retrievals do not 

appear to have the appropriate temporal evolution (Figure 4.12).  Also, LAI 
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shows saturation for DOY 122 to 134 4, as well as Chlorophyll for many of 

dates after DOY 150. 
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 Figure 4.12. Date by date inversion for LAI and Chlorophyll.  N=2.0, dm=0.005, 

h=0.02, LAD is assumed spherical. 
 
Effect of parameter N: 
 

The same inversion was done changing the N parameter from 2.0 to 

1.5. Contrary to the findings of Jacquemoud et al., (1995), Chlorophyll 

retrievals are affected by changes in N parameter. However LAI is not very 

sensitive to those changes (see Figure 4.13). Another observation is that the 

compensation between LAI and Chlorophyll shows up. For days 4 to 7 is not 

as evident as LAI is saturated to the maximum value of 6.   

 
Effect of Dry Matter: 
 

Dry matter was changed from 0.005 mg/cm2 to 0.004 mg/cm2. 

Small changes in dry matter may affect specially the inversions of LAI in the 

medium range of LAI values (Figure 4.14). 
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Figure 4.13. Date by date inversion for LAI and Chlorophyll.  Solid line corresponds 
to N=1.5, dashed line to N=2.0.  Dm=0.005, h=0.02, and LAD is assumed spherical. 
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Figure 4.14. Date by date inversion for LAI and Chlorophyll.  Solid line corresponds 
to dm=0.004 mg/cm2, dashed line to dm=0.005 mg/cm2. N=2, h=0.02, and LAD is 

assumed spherical. 
 
Effect of Leaf Angle Distribution Function parameters: 
 

Finally, the effect of LAD function was analysed, comparing with the 

moderate planophile and erectophile cases (a=0.5, and a=-0.5 respectively). 
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LAD is the parameter that has the most important effect on LAI and 

Chlorophyll inversions (Figure 4.15).   
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Figure 4.15. Date-by-date inversion for LAI and Chlorophyll.  Solid line corresponds 
to parameter a=0.5, dashed line (triangle symbol) to a spherical LAD and dashed 

(square symbol) to parameter a=-0.5.  N=2, h=0.02. 
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Figure 4.16. Examples of different solutions found during the inversions. Solid line is 
MERIS spectrum, the other two spectra the solutions found during the inversion. 

 

Main difficulties in the inversions are found at early dates. For very 

low LAI values, the sensitivity of the reflectance to Chlorophyll is very low: 



high Chlorophyll concentrations or very low Chlorophyll concentrations give 

almost the same spectrum (see Figure 4.16).  An example of compensation 

between dry matter and LAI is shown in Figure 4.16b and effect of LAD is 

shown in Figure 4.17. 

It is noticeable that the model does not seem to be able to properly 

simulate reflectance in the 753 nm band (red-edge), as can be observed in 

Figures 4.16 and Figure 4.17. 

Finally, for comparison with the next section, an inversion case for 

field DC1 is presented in Figure 4.18. 
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Figure 4.17. Examples of different solutions found during the inversions for different 
LAD distributions. Solid line is MERIS spectrum, the other two spectra found as 

solutions. 
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Figure 4.18. Date by date inversion for LAI and Chlorophyll for field DC1.  N=2.0, 
dm=0.005, h=0.02, LAD is assumed spherical. 

 

4.3.4 Results with the multi-temporal method. 

 
Temporal constraint for LAI and Chlorophyll: 

 

A temporal constraint of the type showed in Equation 4.1 was 

forced for LAI and for Chlorophyll. All the other parameters of the model 

were fixed to N=2.0, dm=0.005, h=0.02. The number of variables to invert 

was 10. Inversions were done for DOY 71 to 186 (13 dates).  Tolerance in 

Powell was fixed to τ=10-06. The initial directions in Powell method were set 

to the unit directions. 

 
Dependence with LAD: 

 Six different cases of LAD functions, as shown in Table 4.2 have 

been analysed.  
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 LAD a 
Case 1 27° 0.5
Case 2 63° -0.5
Case 3 Spherical 
Case 4 56° -0.3
Case 5 34° 0.3
Case 6 45° 0

Table 4.2. Different LAD used for the inversions 
 

Results are shown for a non-irrigated field of small grain cereal 

(named DC-1) and 1 spring irrigated field of small grain cereal (named SPR1). 

Inverted LAI and Chlorophyll are shown in Figure 4.19, and the product of 

both variables is shown in Figure 4.20. In those figures, and the following, the 

initial conditions used are also plotted as well as the LAI inversions from 

Landsat LUT. 

 

In comparison with the date-by-date inversion (cf. Figure 4.12 and 

Figure 4.18) we conclude the following: 

- in the case of LAI results are not significantly improved. The 

date of maximum LAI is always well identified. For irrigated cereals it is 

around DOY 130 (end of tillering, in agreement with phenology observations 

of the area). 

- in the case of Chlorophyll, the fact of adding the temporal 

constraint avoids the divergences that occurred for field DC1 (DOY 163 and 

170) and SPR1 (DOY 172 to 186). However, it seems that the obtained values 

in the senescence period are still overestimated.  
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The beginning of the cycles is not well described for Chlorophyll 

case. This can be due to the small number of images in that part of the cycle. 

Probably another type of curve would be better for describing the 

Chlorophyll behaviour. A logarithm type and polynomials of different degrees 

(from 3 to 5) were tested but results were not improved. Polynomials were 

found not to be stable for being inverted, as coefficients tend to correlate 

among them. 

Table 4.3 gives the values of the merit function for the solution. It 

can be seen that the problem is ill-posed as differences in the merit functions 

are very small.   

 

LAI and Chlorophyll inversion are very dependent on the LAD. The 

compensation effect between LAI and Chlorophyll is very clear in Figure 4.19. 

The product LAIxChlorophyll is then more stable (Figure 4.20) but changes 

in LAD still affected the results.  

 

DC SPR1 
 LAD Function 

value 
Function 

value 
C 2ase 1 7° 0.517720 0.353249
C 6
C
C 5
C 3 1
C 4

ase 2 3° 0.468370 0.381167
ase 3 Spherical 0.472978 0.377690
ase 4 6° 0.475671 0.358981
ase 5 4° 0.497038 0.35322
ase 6 5° 0.486375 0.354048
Table 4.3. Values of the Merit Function 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Multi-temporal inversions for different LAD functions. 
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Figure 4.20. LAIxChl as resulting from the multi-temporal inversions for different 
LAD functions. 

 

For the case of a spherical LAD we have also analysed the effect of, 

dry matter, the N parameter and the hot spot parameter 

The results for the inversions in two fields, DC-1 and SPR-1, are 

shown in Figures 4.21 to Figure 4.24. The results are compared to the LAI 

inversion (at four dates) obtained for the same field with the methodology of 

Chapter 3.  

Temporal constraint for LAI and LAIxChl: 
 

As it is difficult to choose a temporal constraint for Chlorophyll, it 

was preferred to apply a temporal constraint for the product LAI x 

Chlorophyll. That means that the inversion is done for two variables: LAI and 

LAI x Chlorophyll. A number of ten dates were used for the inversions. 

Figure 4.25 shows the results obtained for this multi-temporal 

inversion on LAI and LAIxChl. The Chlorophyll was obtained dividing LAI x 

Chl and LAI. For dates before DOY 71 (first image acquisition) results should 

not be taken into account as they are extrapolated.  



 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 
 

Figure 4.21. Efect of dry matter changes in the LAI, Chlorophyll and 
LAIxChlorophyll inversions. 
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Figure 4.22. Efect of parameter N changes in the LAI, Chlorophyll and 
LAIxChlorophyll inversions. 

 



 

 

 
 

 
Figure 4.23. Efect of  hot spot parameter  changes in the LAI, Chlorophyll and 

LAIxChlorophyll inversions. 

116  
 



  

117  

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.24. Inversion using LAI and LAIXChlorophyll constraint for a summer 
irrigated spring cereal. 

 
In summary, the results obtained with the multi-temporal method 

were better than those obtained by the date-by-date inversions. However, at 

early dates Chlorophyll still seems underestimated. With a higher temporal 

frequency on that part of the cycle the results would be probably improved. 

Inversions could be dependent on the initial conditions (see Figures 4.25 and 

Figure 4.26). For a better performance of the method, initial condition should 

not be very far from the final inverted value. For instance, initial conditions 

where LAI and LAI x Chlorophyll maxima are shifted should be avoided. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.25. Inversion using LAI and LAIXChlorophyll constraint for a summer 
irrigated spring cereal for another set of initial conditions. 

   

Another conclusion of this analysis is that the knowledge of the LAD 

parameter is very important. It has been shown that the LAD is the parameter 

that has the higher influence on the LAI and Chlorophyll inversions. The use 

of a priori information for characterising an appropriate value of this 

parameter of the PROSPECT+SAIL is strongly recommended. A better 

characterisation of this parameter would be of great value for reducing errors 

in the inversions”. 
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Figure 4.26. Inversion using LAI and LAI x Chlorophyll constraint for a summer 
irrigated spring cereal for a non-adapted set of initial conditions. 

 
 

4.4 Discussion and perspectives. 
 

The results on the use of a multi-temporal method to perform 

inversions of LAI and Chlorophyll are encouraging and present advantages in 

respect to date-by-date inversions. However, to improve this analysis, some 

issues related to the retrieval of biophysical parameters using medium-

resolution need to be further investigated. 
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The first issue is related to pixel size. As it was already discussed in 

Chapter 3, the PROSPECT+SAIL model cannot take into account the 

inhomogeneities of the MERIS pixels.  Although the SAIL model, by means of 

the leaf angle distribution function (LAD), takes into account the influence of 

the soil spectrum in the vegetation reflectance, this kind of treatment is not 

sufficient to describe a real MERIS pixel. For instance, it is not possible to take 

into account a situation in which the canopy covers only half of the pixel. At 

the resolution of MERIS, SAIL is not able to realistically simulate the spectral 

mixing between the soil and the vegetation. As a consequence, to be coherent 

with the assumptions of PROSPECT+SAIL, spectral un-mixing techniques 

should be applied before the inversions. If, prior to the inversion, the spectra 

have not been un-mixed, the results of the inversion should be corrected. In a 

first approximation, the correction could be done by means of the Fraction of 

Vegetation Cover (FVC) of the pixel. However, this second option would 

introduce additional errors, due to the non-linearity of the processes. In this 

study, the un-mixing problem was not addressed, nevertheless the pixels were 

selected to be as homogeneous as possible. Further research on the use of 

MERIS data acquired over agricultural areas more homogeneous than Barrax, 

would allow us to confirm the quality of the methodology, compared to date-

by-date inversions. 

In this study it was also seen that the co-registration of the images is 

an important source of noise in the methodology.  

Even though the Powell method should be able to invert many 

variables, it was still necessary to fix the parameters of the model that were not 

inverted. As it was already discussed in Chapter 4, a better selection of the 

fixed parameters (N parameter, dry matter and LAD) would improve the 
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results. This could be done if detailed information coming from in-situ data is 

available.  

A further improvement might be obtained by using a different 

inversion method, for instance, neural networks, even though it is not obvious 

how the temporal constraint would be introduced in such a method. However, 

the use other inversion methods would not significantly improve the results if 

the issues mentioned before, which are more important, are not solved first. 
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CHAPTER 5:  

PHYSICAL BASIS OF ACTIVE RADAR 

REMOTE SENSING 

 
This chapter gives a brief introduction to the fundamentals of radar 

remote sensing and to the concepts used in Chapter 6 and Chapter 7.  

 

5.1. Active Radar systems in Earth Observation. 
 

Active Radar Remote sensing measurement: 

The most important difference between an active radar remote 

sensing system (Figure 5.1) and an optical passive system (Figure 2.1) is that 

the source of energy is not the sun but a radar antenna placed in a satellite or 

airplane. Furthermore, the radars are coherent systems. Due to this coherent 

nature, the radar measurements are the result of constructive and destructive 

interferences between the signals scattered from individual elements within a 

resolution cell.  As shown in Figure 5.1 the radar instrument illuminates the 

observed surface with a radar beam, then the surface scatters the radiation in 



many directions and part of it goes back to the radar antenna. Usually, radar 

systems are mono-static, meaning that the same antenna is used for emission 

and reception. The spaceborne and airborne systems used for Earth 

Observation use the aperture synthesis technique and are named SAR’s 

(Synthetic Aperture Radar’s). The advantage of the SAR technique, which is 

based on the Doppler effect, is that it is possible to obtain high spatial 

resolution in Earth Observation from satellite platforms without using very 

large antennas.  

 

Figure 5.1. Active radar remote sensing system.

 

 

 

 

 

 

 

 

Radar frequency range: 

Radar instruments transmit and receive radiation in the microwave 

electromagnetic spectrum region, which ranges approximately from 0,3 GHz 

to 100 GHz in frequency (Figure 5.2) or from 100 cm to 0.3 cm in 

wavelengths. Traditionally, the microwave region has been divided in 

frequency bands. The radar bands used in Earth Observation are the following: 

X (centred at around 9.4 GHz, 3.2 cm in wavelength), C (centred at around 5.3 

GHz, 5.6 cm in wavelength), L (centred at around 1.25 GHz, 24 cm in 

wavelength) and P (centred at around 0.5 GHz, 60 cm in wavelength). 
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Figure 5.2. Electromagnetic spectrum and location of the microwave bands. (Source: 
http://earth.esa.int/). 

 

Atmospheric effects: 

An important difference between the optical and the microwave 

region is that, at microwave wavelengths the effects of the atmosphere can be 

usually neglected. Microwave radiation is insensitive to atmospheric aerosols 

and only weakly affected by atmospheric constituents, like water vapour. The 

presence of clouds or precipitation may also affect the microwave signal, 

depending on the frequency. In general, the effects of the atmosphere are not 

important for frequencies below the X band. This is an advantage of radar 

sensors compared to optical sensors: backscattering measurements are 

independent of weather conditions (clouds, rain) or changes in the 

characteristics of the atmosphere (aerosols variability or water vapour 

changes). However, atmospheric constituents have an effect on the phase of 

the signal, which is measured in radar interferometry.  

http://earth.esa.int/


Wave polarisation: 

The polarisation is an important property of electromagnetic 

radiation, which influences scattering. To describe polarisation it is necessary 

to consider the vector nature of electromagnetic fields. Electromagnetic 

radiation consists of an electrical field, which is vibrating in a plane 

perpendicular to the direction of propagation, and a magnetic field, which is 

perpendicular to the electrical field. In a general case, when the electric vector 

of a plane wave is propagating in the  
r 
k  direction, the electrical field vector will 

lie in the X-Y plane perpendicular to  
r 
k . The propagating field therefore 

consists of two components: a X component and a Y component, and can be 

expressed as: 

     
r 
E (k) = EX (k)x + EY (k)y     [Eq. 5.1] 

The electrical field vector    describes an ellipse in the X-Y plane while 

propagating. For certain values of 

r 
E (k, t)

EX  and  the ellipse degenerates into a 

circle or a straight line. In these cases the polarisation is said to be circular or 

linear. Otherwise it is elliptical. 

EY

Linear and circular polarisations are the most used polarisation states 

in radar remote sensing. When the electric field is vibrating perpendicularly to 

the incidence plane (which is defined by the direction of propagation and a 

vector normal to the Earth’s surface) the wave is said to be linear polarized in 

H polarisation. If the electric field is vibrating parallel to the incidence plane 

the wave is said to be linear polarized in V polarisation. In physical sciences, 

this fields were originally called parallel and perpendicular, but in remote 

sensing is it usual to use the terms vertical and horizontal. When the electric 

field is rotating clockwise, as seen by an observer towards whom the wave is 
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moving, the wave is said to be right-hand circularly polarized. If it is rotating 

counter-clockwise, it is left-hand circularly polarized (see Figure 5.3).  

a) b) 

c) d) 

 

 

 

 

 

 

 
 
 
 

 
 

Figure 5.3 a) Propagation of a linear polarized wave b) Propagation of a Circular 
polarized wave c) Horizontal and vertical linear polarisations as seen by an observer 

placed perpendicularly to the direction of propagation d) Left and right circular 
polarisations as seen by an observer placed perpendicularly to the direction of 

propagation. 
 

 

The polarisation state of a plane wave can be parameterised in a 

number of different ways, for instance using the geometric parameters of the 

ellipse described by the electrical field: the orientation angle, ψ and the 

ellipticity angle, χ  (Figure 5.4).  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Polarisation ellipse. 

 

An alternative representation of the polarisation state is the Stokes 

formulation, which is very common in optics and radar. The Stokes vector is 

defined as: 

 S =

I
Q
U
V
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   [Eq. 5.2] 
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where E H  and EV  are the components of the electric field in the   
r
h v  and   

 
 

direction respectively.  

r
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Scattering matrix: 

iEThe polarisation state of a wave arriving to a surface, 
r

, and the 

polarisation state of the wave scattered by the surface, sE
r

 ,  can be related as 

follows: 

E H
s

EV
s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

f11   f12

f21   f22

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

E H
i

EV
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    [Eq. 5.3] 

 

The matrix relating the two states depends on the characteristics of 

the surface in the directions of incidence and scattering, as well as to the 

distance to the observer. For waves propagating in the far field, the electric 

field has the behaviour of a spherical wave and then, its dependence with the 

distance is of the form: 

 
kr

e)r(G
ikr−

=    [Eq. 5.4] 

Then, the previous equation can be expressed as: 

 

 
E H

s

EV
s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = G(r)

SHH    SHV

SVH    SVV

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

E H
i

EV
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   [Eq. 5.5] 

 

The matrix of elements is named scattering matrix. It is 

dimensionless and does not depend on the distance. It can also be expressed 

using the Stokes formulation. If the scattering matrix is known it is possible to 

compute the response of the target to any combination of incident and 

received polarisations. For instance, circular polarisations can be expressed as 

follows (Henderson, 1998): 

iS



 

SRR = jSHV +
1
2

SHH − SVV( )

SLL = jSHV −
1
2

SHH − SVV( )

SRL =
j
2

SHH + SVV( )

   [Eq. 5.6] 

 

Covariance matrix: 

Different matrices can be derived from the scattering matrix, for 

example, the covariance or the coherency matrices. The covariance matrix, C , 

represents the average properties of a group of resolution elements. For a 

natural surface, reciprocity is applied, that is SHV = SVH , and then, the 

covariance matrix is defined as follows: 

 

 C =

SHH SHH
* SHH SHV

* SHH SVV
*

SHV SHH
* SHV SHV

* SHV SVV
*

SVV SHH
* SVV SHH

* SVV SVV
*

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
  [Eq. 5.7] 

 

In Eq. 5.7, the symbols  denote averaging, and * denotes the complex 

conjugation. Smn

m n

 is the complex scattering amplitude for transmit polarisation 

 and receive polarisation .  

 

Coherency matrix: 

The coherency matrix, T , results from a linear combination of the 

elements of the scattering matrix (Cloude and Pottier, 1997): 

 T = ww H      [Eq. 5.8] 

where  denotes conjugate transpose, and  is: H w
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 w = (SHH + SVV ,SHH − SVV ,2SHV )    [Eq. 5.9] 

The eigenvalues and eigenvectors of the coherency matrix are the basis of 

several polarimetric features: entropy (Η ), angle alfa (α ), and anisotropy ( ), 

which are not used in this study. 

Α

 

Frequency and polarisation in SAR systems. 

A SAR is usually designed to transmit and receive horizontally or 

vertically polarized signals, combined as HH, VV or HV: the first refers to the 

polarisation state of the emitted wave and the second to the received wave. 

The case HV is also named as cross-polarisation. Non-fully polarimetric radars 

only measure the amplitude of the signal. Fully polarimetric radars receive and 

transmit SAR data in two orthogonal polarisation states and, at the same time, 

they measure the relative phase between the states. In this way fully 

polarimetric instruments measure the scattering matrix. 

The amplitude and the phase, as it will be explained later, are a 

function of the dielectric and geometric properties of the scattering medium.   

Until recently, radar satellites measured only single linear polarisation 

states (see Table 5.1). Polarimetric instruments were only available in airborne 

systems like JPL-AIRSAR.  

Frequency is an important characteristic of the radar signal because 

scattering interactions depends on the relation between the wavelength, the 

scatters size and the number density of the scatters. Frequency also determines 

the penetration distance, longer wavelengths being more penetrating than 

shorter.  

In vegetation studies, the choice of wavelength is done according to 

the dimensions of the observed scatters (leaves, branches, stalks) from which 
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information is to be retrieved. For example, to obtaine information on the 

biomass in trunks and branches of forest trees, L band (24 cm) and P band (60 

cm) are used. X and C bands ( 3-5 cm wavelength) are more suitable than L 

and P bands for agricultural applications because the typical size of leaves and 

stems is of the order of several centimetres. As satellite X band was not 

available till 2007 (see Table 5.1) this sutdy focuses on the C-Band region. 

 

SAR radar satellites: 

Table 5.1 presents the frequency and polarisation characteristics of 

the present satellite systems as well as the mission nationality and dates. When 

the polarisation is not indicated it refers to a fully polarimetric system. 

 

Mission Frequency-
polarisation 

Nationality/agency and mission 
dates 

PALSAR     L                          Japan, January 2006 
JERS-1     L-HH                 Japan, 1992-1998 
SIR-C     L                          NASA, Apr & Oct 1994 
ERS-1     C-VV                 ESA, 1991-2000 
ERS-2     C-VV                 ESA, 1995- 
Envisat/ASAR     C-dual pol.         ESA, 2002- 
RADARSAT-1     C-HH                  Canada, 1995- 
RADARSAT-2     C                         Canada, Dec 2007 
SIR-C     C                         NASA, Apr & Oct 1994 
Sentinel-1     C                       ESA Earth Watch, under 

development 
TerraSAR-X     X                      Germany, 2007- 
Cosmo 
SkyMed 

    X                        Italy, June 2007- 

X-SAR     X-VV               Germany, Apr & Oct 1994 (with 
SIR-C) 

Table 5.1. Major spatial SAR missions since 1990. 
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5.1.1 Concepts related to a SAR system. 
 

The objective of this section is to give a simple overview of the most 

important concepts related to SAR systems. The detailed description of SAR 

signal processing and other technical information can be found in specific 

literature. 

 

Radar image acquisition: 

The imaging geometry 

of a radar system is illustrated in 

Figure 5.5. The antenna is 

carried by a platform (airplane 

or satellite) that moves forward 

in the flight direction, following 

a trajectory, in the along-track 

or azimuth direction (A), being 

(B) de nadir. Radar instruments do not observe the nadir. The instrument is 

side looking: it transmits and receives obliquely at right angles to the direction 

of flight. With the movement of the platform, a two dimensional image is 

acquired. The portion of earth surface that is observed by the radar is the 

swath (C). The energy transmitted by the radar is pulsed, which means that it is 

confined to a very short interval of time (pulse time duration). A radar 

instrument measures the amount of energy scattered by the observed object, 

the phase, and distances. The radar measures the distances between the 

antenna and the observed object, this line determines the slant range image. 

The across-track dimension perpendicular to the flight direction is called range 

(D). Distances are measured as a function of the time that the signal travels 

Figure 5.5. Geometry of radar observation. 
Source:http :/envisat.esa.int/ 

Slant range 



between the moment it is emitted and the moment it is received by the 

antenna. In order to be able to track the emitted pulse and the received signal, 

the radar instrument uses a sampling frequency, which provides sufficient time 

to an emitted pulse to return to the antenna before the next pulse is emitted.  

 

The concepts of angle of incidence and local incidence angle are 

explained in Figure 5.6 and Figure 5.7. The angle of incidence is the angle 

defined by the incident radar signal and the vertical. The incidence angle 

changes across the radar image swath, increasing from near range to far range. 

The near range is the portion of the image closest to the nadir, and the far 

range is the farthest from the nadir. The local incidence angle is the angle 

defined by the incident radar signal and the normal to the observed surface. If 

the surface is flat, both angles are the same. The ground range distances are the 

horizontal distances corresponding to each point measured in slant range. 
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Figure 5.6. Slant range versus ground range. 
Adapted from : http://history.nasa.gov/ 

Near Range  

 Far Range 
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Figure 5.7. Incidence angle and local incidence angle. 

Source: http://history.nasa.gov/ 
 

 

Synthetic Aperture Radar: concept and spatial resolution: 

The Synthetic Aperture Radar uses a technique in which it is possible 

to achieve a longer aperture than the actual physical antenna. This technique 

consists in the integration of the backscattered signal over the entire time that a 

given surface target is viewed by the radar. In this way, higher azimuth 

resolutions are obtained.  

The spatial resolution of a radar system indicates the ability of the 

radar instrument to distinguish between two point targets on the ground in the 

range or azimuth direction. The range resolution (see Figure 5.6) of a radar 

system depends on the duration of the radar pulse, τ , and the angle of 

incidence, θ . The range resolution Rr  is: 

  Rr =
cτ

2sinθ
   [Eq. 5.10] 

This range resolution can be improved by frequency modulations. 

The SAR technique is based on the Doppler effect. Two targets 

separated in azimuth at any time have different speeds relative to the platform. 

Therefore the radar pulse backscattered from the two targets, has two distinct 

Doppler frequency shifts. The analysis of the Doppler frequency spectrum 



allows resolving the two targets, even though the targets are at the same range 

and in the beam at the same time. The achievable azimuth resolution for a 

SAR system is: 

 RA ,SAR =
La

2
   [Eq. 5.11] 

With the SAR the achievable azimuth resolution only depends on the 

antenna length, and it is independent of the wavelength, the satellite speed 

and the satellite altitude. 

La

P

 

5.2. Radar equation, backscattering cross-section 
and backscattering coefficient. 

 

The radar equation describes the relationship between the power 

transmitted, T , by an isotropic radiating radar antenna characterized with a 

gain , and the power received by a radar antenna, , from an isotropic 

scattering target. If the same antenna is used for transmission and reception 

(monostatic case) the radar equation is:  

G PR

  PR =
PTG2λ2σ c

4π( )3 R4
    [Eq. 5.12] 

where, λ  is the wavelength of the signal, R is the radial distance (range) from 

the antenna to a target with backscattering cross-section σ c  .  The 

backscattering cross-section of a target is the area of that target that, if were 

considered as an isotropic scatter, would return the same amount of power as 

the target (which in reality is non isotropic).  

The above equation can be generalized for an extended target as 

follows: 
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 dPR =
PTG2λ2

4π( )3 R4
dσ c     [Eq. 5.13] 

 

The backscattering coefficient σ , or normalized radar cross section, is 

defined as the average backscattering cross section per unit area. It is a 

dimensionless quantity, and it is usually expressed in dB. The backscattering 

coefficient is a quantification of the ability of the target to scatter radiation. 

The study of vegetation using radar remote sensing is thus based in the 

relationships between the backscattering coefficient and biophysical properties.  

The backscattering coefficient at polarisation  can be obtained 

from the  elements of the scattering matrix: 

pq

Spq

 σ pq = SpqSpq
*    [Eq. 5.14] 

where  denotes a spatial average and *  denotes complex conjugate. 

 

5.3. Backscattering measurements used to describe 
polarimetric properties. 
 

Many polarimetric parameters can be derived from the covariance 

matrix. These parameters can be classified between those that require the 

phase relationships, present in polarimetric measurements (coherent 

parameters), and those that do not involve the phase information (non-

coherent parameters or non-polarimetric). The most common incoherence 

parameters are the backscattering coefficients, which are spatially averaged: 

σ HH , σVV Η, etc. Examples of coherent parameters are the entropy ( ), angle 

alfa (α ) or the correlation coefficient, ρHH−VV . 



The following table summarises the parameters used in this work.  

 

Feature Definition 

Backscattering coefficient σ pq = SpqSpq
* , e.g. σVV ,σRL  

σ σPolarisation ratio σ mn

σ pq

 e.g. HH

σVV

, RR

σ RL

 

Correlation coefficient 
ρHH −VV =

SHH SVV
*

SHH SHH
* SVV SVV

*
 

Table 5.2. Polarimetric parameters used in Chapter 6 and 7. 

 
5.4. The speckle phenomenon in a SAR image. 

 

The speckle is a phenomenon that results from the coherent nature of 

the radar measurement. When a coherent electromagnetic radiation interacts 

with a rough surface, the different scatters generate return signals with random 

phases, which interact with each other. The interferences are the cause of the 

grainy appearance of the generated image. As a consequence, the image of a 

homogenous surface shows pixels values with a high dispersion. These local 

variations of the amplitude make difficult for an observer to resolve the details 

of the image. In that sense, speckle is considered as noise, although physically 

it is not. The effect of speckle is illustrated in Figure 5.8. Individual pixels on a 

radar image are not direct measurements of the backscattering properties of 

the observed surface. 
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Figure 5.8. Example of speckle effect in an ENVISAT-ASAR image, VV polarisation, 
date 03/05/2003 (left image) compared to an optical SPOT-HVR image, band-4, date 
23/05/2003 (right image), showing the forest of Bouconne, near Toulouse. 
 

The problem of speckle can be overcome to some degree by 

producing multi-look images. During the SAR processing the signal is sampled 

to generate L  looks. Each look represents an independent observation of the 

same scene. A limited number of looks, generally 3 or 4, are averaged 

incoherently. Thus, the image that is generated shows a reduction in speckle. 

The variance of the image is reduced by a factor L . The mean of L  

independent random variables with the same statistical distribution is the mean 

of the variables, and the variance is the variance of each variable divided by L . 

The multi-looking is usually done in azimuth.  

 

The statistical properties of speckle in a SAR image: 

The speckle is a source of variation in the pixel radiometry of a SAR 

image. In addition to the speckle, there are other variations related to the 



nature of the surface. For instance, the image of an agricultural field, which can 

be considered as a relatively homogenous surface, shows an internal variability.  

 In the ideal case of an homogeneous area, the variability of the 

intensity image formed pixels of coordinates x, y( ) can be described by a 

multiplicative model: 

I(x, y) = A(x, y) ⋅ η(x, y)   [Eq. 5.15] 

The variable η x, y( ) is a random variable, and it is assumed to be 

independent of the scene. Its mean value is equal to 1 and its variance is 

inversely related to the number of looks of the image, L . The natural 

distribution of the pixels in a SAR scene is not known. Therefore, several 

distributions have been used in the literature as approximations, for example, 

the gamma, the K or the Pearson distribution. The interest of knowing the 

distribution function of the pixels in a SAR image is that it allows to determine 

the uncertainties in the backscattering measurement.  

 

Characterisation of the variability in a SAR image: 

To characterize the variability in backscatter of a SAR image different 

parameters can be used for instance, the equivalent number of looks (ENL) or 

the spatial correlation. These parameters are usually unknown, and have to be 

estimated from the image itself. Selecting a homogenous region in the image, 

and calculating the mean and standard deviation can give an estimation of the 

equivalent number of looks: 

ENL =
〈μ〉 2

std 2   [Eq. 5.16] 

〈μwhere 〉

std

 is the average value of the backscattering for the pixels in the 

region, and is the standard deviation. As explained before, for non-
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textured areas, the ENL will be the same as the uncorrelated looks used to 

generate the SAR image, provided that no other method to reduce the speckle 

in the image has been applied. The change in the ENL in a homogenous 

region is a good indicator of the improvement of the radiometric quality of an 

image after applying a speckle filter.  

In order to reduce, even more, the speckle many filters have been 

developed which are based in the statistical properties of the SAR images. In 

this study, specific speckle filters have been applied to AIRSAR and ASAR 

images. The details are given in next chapters.  

 

Reduction of speckle effects: 

As explained before, due to the coherent addition of the signals 

coming from the many randomly distributed point scatters that constitute an 

observed target, the intensity measured by the radar is not a unique value, but 

follows a distribution function. Thus, the backscattering coefficient has a 

statistical uncertainty.  The radiometric resolution of a SAR image is a 

measurement of its ability to distinguish between targets with different 

backscattering coefficient. A quantification of the radiometric resolution can 

be done using confidence intervals. The confidence intervals give the 

probability that the measurement lies between certain error bounds. Those 

confidence intervals can be calculated by integrating the probability density 

function of the measurements.  

When increasing the ENL of an image, the distribution function 

narrows, thus, the radiometric resolution of the image increases. For many 

applications multi-looking is not sufficient to achieve the required radiometric 

resolution. For instance, in the case of ERS1 PRI products, generated with a 
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ENL=3, the confidence level for ±0.5 dB accuracy bounds is 15% (Bally and 

Fellah, 1995), which is very low.  

Speckle filters can be used to improve the radiometric resolution. In 

general, the speckle filters can be classified in: 

 

a) Mono-canal filters (Lee, 1986; Frost et al., 1982; Kuan et al., 1987). 

They are usually based on the averaging over the N pixels of a region, 

which reduce the uncertainties in the backscattering measurement of a 

target. This is based on the assumption that many of those pixels are 

uncorrelated.  

b) Multi-temporal filters. In this study the series of ENVISAT images 

have been filtered with the multi-temporal speckle filter developed and 

described in Lopes et al., (1993), Beaudoin et al., (1994), Le Toan et al., 

(1997), Bruniquel and Lopes, (1997), Quegan et al., (2000), Quegan and 

Yu, (2001). 

c) Polarimetric filters (Goze and Lopes, 1993; Lopes and Sery, 1997; Lee 

et al., 1999). The team of the University of Wageningen filtered 

AIRSAR images used in this study using the polarimetric filter of Shou 

and Skriver, 2001.  

 

5.5 Scattering mechanisms in natural surfaces. 
 

The scattering phenomenon is produced when radiation encounters 

changes in the media through its propagation. Scattering occurs inside a 

medium, like the vegetation, when radiation interacts with a particle that has a 

size similar or larger than the radiation wavelength. The density of the medium 

and the dielectric constant of the vegetation elements will affect the scattering. 



  

143  

The scattering also happens when radiation arrives to a boundary between two 

media. In this case, the scattering will depend on the differences between the 

dielectric constants of the two media. The larger the difference, the stronger 

the scattered field will be in comparison to the absorbed or transmitted field.  

Thus, in general, in a natural surface it is possible to distinguish 

between two main types of scattering: surface and volume scattering. Surface 

scattering occurs on natural surfaces, such as, soil and water, while volume 

scattering occurs on vegetation and snow. The third type of scattering present 

in natural surfaces is the interaction between volume and surface, including 

double bounce scattering, which occurs in corner reflectors having 

perpendicular surfaces (tree trunks in flooded areas). 

 

5.6 Surface scattering. 
 

The roughness of the surface is the parameter that determines the 

types of surface scattering. Surface roughness can be characterised with 

statistical parameters that are measured in units of wavelengths. Thus, the same 

surface may appear rough for optical radiation and smooth for radar.  The 

standard deviation of the surface height, , is the most widely used parameter. 

Another common parameter is the surface correlation length, 

m

l, which is 

defined as the length in which the autocorrelation equals 1 e. /

When radiation interacts with a very smooth surface, specular 

reflection is produced. If the surface is perfectly smooth, the radiation is 

reflected forwards, with a reflection angle, θs, equal to the angle of incidence, 

θi , (Snell’s law). The particular case is the nadir incidence for which radiation 



is reflected backwards. The angular pattern of the perfect specular reflection is 

a delta function.  

If the surface is not perfectly smooth diffuse reflection occurs. In this 

case, the scattered radiation has two components: a diffuse component and a 

specular component also referred as coherent component. The diffuse 

component consists on radiation scattered in all directions. The coherent 

component is only important for incidence angles close to the nadir. The 

reflection for a slightly rough surface is explained by the Fresnel equations. As 

the surface becomes rougher, the specular component decreases and almost all 

the scattered radiation is diffuse (Figure 5.9). A special case of rough surface, 

the Lambertian surface, is shown in Chapter 2.  

According to this, the backscattering coefficient σ , measured in the 

radar direction, will be close to zero if the surface is very smooth, low if the 

surface is slightly rough and high if the surface is very rough. For the ideal 

lambertian case the backscattering coefficient is proportional to the cosine of 

the incident angle: σ ∝cosθ . 
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Smooth surface σ ≈ 0         Slightly rough surface, low σ      Rough surface, high σ   

Figure 5.9. Scattering for different surface roughness conditions. 

 

In addition to the surface roughness the second important parameter 

affecting surface scattering is the dielectric constant.  
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In this study there is an interest in the behaviour of natural soil 

surfaces observed by radar systems at C Band, as soils are the underlying 

surface under crop canopies. In general the backscattering from a bare soil 

includes also a contribution from volume scattering. However, if the 

penetration depth is not significant, only the scattering of the surface needs to 

be considered. The soil state will influence the backscattering measured in crop 

surfaces as will be explained in Section 5.7. In Figure 5.9 and 5.10, the 

backscattering dependency of soil surfaces with surface roughness and 

dielectric constant is illustrated. 

 

Dependence of the soil backscattering coefficient on surface roughness: 

In general, for smooth surfaces the backscattering coefficient 

decreases rapidly with increasing angle of incidence. The variation with the 

incidence angle in the case of rough surfaces is gentler. The effect of roughness 

in the backscattering can be illustrated with Figure 5.10 (Ulaby et al., 1986).  

 

Dependence on the dielectric constant: 

The microwave dielectric constant of the soil has a strong 

dependence on soil moisture content and, in a lesser extent, on the soil type. 

The variation of the relative dielectric constant is illustrated in Figure 5.11 

(Ulaby et al., 1986) at C Band.  

 

Soil backscattering models: 

The problem of soil scattering is complex due to the diversity of 

conditions (texture, moisture, roughness) and high variability that are present 

in nature. The more precise solution of the problem can be obtained 
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numerically, by using the method of moments, but this method is not useful 

for practical applications, because of its complexity. The problem is usually 

approximated with more simple models. The disadvantage is that simple 

models are only valid at a certain range of roughness parameters. The most 

widely used of these simple models are the small perturbation model (SPM), 

the Physical Optics (PO) approximation and the Geometrical Optics (GO) 

approximation. The PO and GO are first order solutions and cannot be used 

to describe cross polarisation. A quite general solution for the soil 

backscattering is also is the Integral Equation Method (IEM) (Fung, 1994). 

 

5.7 Volume scattering. 
 

The type of scattering that occurs in a vegetation layer is the volume 

scattering, which is the scattering within a medium that contains several 

scattering elements. At radar wavelengths, the vegetation is seen as a volume 

formed by scatterers: branches, leaves, stems, etc. The signal returned comes 

from multiple scatterers and it is the result of the multiple bounces and 

reflections from the elements within the volume. The ratio between the 

scatterer dimension and the wavelength determines the contributions from the 

individual scatterers. When the scatter dimension is approximately the size of 

the wavelength the shape of the scatterer has an important role in the resulting 

backscattering and will also determine a particular polarimetric behaviour. 

When the dimensions of the scatterers are much smaller than the wavelength 

the scatterer shape is not important.  

Inside the volume, there will be losses due to the scattering and the 

absorption. Thus, the radar signal suffers attenuation when passing through 

the volume (see Figure 5.12).  
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Figure 5.10. Backscattering coefficient behaviour at C 
Band as a function of the incident angle for a smooth 
surface (a) and a rought surface (b) and for two 
different volumetic moisture content.-  

Figure 5.11. Backscattering coefficient measurements at 
C Band showing the relationship between the dielectric 
constant (imaginary and real part) of a soil and its 
volumetric moisture. 
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 Figure 5.12 Attenuation of the signal 
produced by the vegetation volume.  

The description of a vegetation medium involves the characterisation 

of all the scatterers. Due to the huge amount of scatterers in any vegetation 

media, in practise, it is not possible to obtain an exact description of the media, 

therefore electromagnetic models need to do approximations. One of those 

approximations consists on considering that the elements of vegetation have 

simple shapes: spheres, cylinders, discs or plate ellipsoids for instance. In 

general, the radar cross section of simple scatterers depends on the angle of the 

incident wave and the polarisation of the incident wave. The exact solution of 

the scattering for those simple scatterers is known, although its computation 

usually involves infinite series, and it is solved using numerical methods. The 

dimensions of the scaterers, their shape, orientation, position and dielectrical 

properties, determine the radar backscattering coming from a volume of 

scatterers. Figure 5.13 shows the backscattering coefficient from a layer of 

cylinders randomly oriented. The figure clearly shows the dependence with the 

scatterer dimension to wavelength ratio.  
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Figure 5.13. Backscattering from a half-infinite layer of cylinders randomly oriented as 
a function of the radius (more exactly as a function of the ratio between the perimeter 

and the wavelength inside the scatterers). (Figure extracted from Picard, 2002). 
 

Finally, the distribution of shape and orientation of the scatterers will 

determine a polarimetric behaviour. Although the interaction of a polarized 

wave with a volume is complex, some statements can be made. For example, if 

the target is composed mainly of vertical components, the VV backscattering 

will be higher than HH. Another important characteristic of volume scattering 

is the depolarisation of the incident wavelength, which is much more 

important than in the surface scattering case (see Figure 5.14).  

In conclusion, multipolarized radar measurements provide more 

information than single polarized measurements, and hence the high interest of 

polarimetry in agricultural studies.  
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Figura 5.14. Depolarisation effects in volume scattering. 

 

5.8 Scattering of agricultural crops. 
 

In general, the signal backscattered from a cop canopy consists of 

three types of contributions, which are shown in Figure 5.15. 

 

- Volume scattering from the plants 

- Surface scattering from the underlying soil surface (this has 

crossed the vegetation layer twice before arriving to the sensor) 

- Vegetation-Soil multiple scattering contributions 

 

The magnitude of each of the contributions described on Figure 5.15 depends 

on crop characteristics and radar characteristics. Both are detailed in next 

sections. 
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Figure 5.15. Sources of radar backscattering from a crop: 1) Volume scattering from 
the plants, 2) Surface scattering from the underlying soil moisture (two-ways 

attenuated) and 3) Vegetation-Soil interaction. 
 
 

5.8.1. Radar characteristics affecting the scattering of crops. 

 

The radar characteristics that will determine the backscattering 

measured from a crop surface are the frequency, the incident angle and the 

polarisation.  

 

Frequency: 

The penetration of the signal into the crops increases as frequency 

decreases. Thus, for higher frequencies like X Band the signal is dominated by 

canopy scattering while for lower frequencies like P or L Band the most 

significant contribution to the total backscattering will come from the soil. 

Also, when frequency decreases, the sizes of the crop scatterers (leaves, stems, 

etc) relative to the wavelength are smaller.  As it has already been said, this 
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study is focused on the C band because the dimension of the elements present 

in crops is comparable to the wavelength signal in C band . 

 

Angle of incidence: 

At high incident angles, the path length through the crop is higher. 

Thus, the attenuation of the signal by vegetation will be higher at higher 

incident angles. The effects of the angle of incidence on the measured 

backscattering are illustrated in Figure 5.16.  This figure shows VV 

backscattering measurements over an alfalfa canopy at two different stages of 

growth as a function of the incident angle and for a frequency or 13 GHz. The 

moisture conditions are very similar in both cases. Several observations can be 

made about the figure. First, it is shown that backscattering changes with the 

incident angle. Secondly, for the same crop type, this behaviour changes with 

the development stage. This is a consequence of the changes in the 

contributions of soil and vegetation. For the short canopy, the dominant term 

in the total signal is the soil contribution. When alfalfa is developed, vegetation 

maskes the underlying soil surface. The angular behaviour at C band for the 

same alfalfa field is expected to be different because the C band has a higher 

penetration. Thus, at C band, the contribution of the soil will still be important 

in a higher incident range than that shown in Figure 5.16. 

The angular behaviour of other crops will be shown and interpreted 

in Chapter 6. This angular behaviour changes with the crop type and crop 

phenology.  
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Polarisation: 

As has been discussed previously the polarimetric behaviour of a 

vegetation volume will depend on the shape and orientation of the different 

vegetation scatterers. An example of the polarisation response in agricultural 

crops is the different attenuation at HH and VV polarisation in a wheat 

canopy. This example is shown in Figure 5.17 where changes with phenology 

and the angle of incidence can also be observed.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 5.16. Measured backscattering coefficient of an alfalfa canopy at two stages of 

growth. (From Ulaby et al., 1986). 
 

5.8.2. Characteristics of crops. 

 

The characteristics of crops that affect the backscattering measured 

by a radar system can be listed as follows: 

 



- The canopy density: density of plants, row direction, plant 

height. 

- The canopy structure: size, shape and orientation of the plant 

elements.  

- The water content of the plant (dielectric constant). 

- The roughness and moisture (dielectric constant) of the 

underlying soil. 

 

The first three elements vary with the crop type. Also, for a particular 

crop type they change with the growth stage (crop phenology) and 

development conditions.  

 
Figure 5.17. Model simulations of the attenuation of the signal produced by a wheat 

canopy, along the growing season, for the cases of vertical and horizontal polarisation 
at two incident angles, 23º and 40º. (From Picard, 2002). 
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Canopy Biomass  

The amount of vegetation material of the canopy will determine the 

attenuation and absorption along the path. Figure 5.18 shows an example of 

the one-way attenuation at 10.2 Ghz for a soybean canopy (Ulaby et al., 1986). 

The changes in the attenuation due to the phenology can be observed.  

The amount of biomass in a medium can be characterised with the 

fractional volume, which is the ratio between the volume occupied by 

vegetation matter and the volume of the canopy. For instance a wheat canopy 

is much denser than a corn canopy.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Temporal variation of the measure one-way attenuation for a soybean 
canopy. (From Ulaby et al., 1986). 

 

The structure of vegetation: 

The structure of vegetation influences the penetration of the wave 

into the canopy. The penetration increases with increasing wavelength and may 
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be dependent on polarisation if the canopy has components with specific 

orientations such as vertical needles, leaves or stalks (case of wheat and rice). 

For a particular wavelength, the attenuation coefficient depends on the 

fractional volume and the permittivity of the vegetation. Consequently, the 

penetration depth is, in general, more important in a forest canopy than in 

agricultural vegetation covers.  

In some models, vegetation is considered as a multilayer media. 

Cereals are approached by a two-layer medium (soil + stalks) before heading, 

and a three-layer medium after heading (soil + stalks + heads). 

 

The water content of the plant 

The water content of the plant will affect the dielectric constant of 

the vegetation and thus the scattering and attenuation. The water content in 

the plant is mostly constant during the growing season, except in the 

senescence phase. When the plant is dry, it becomes almost transparent for the 

radar, producing very little attenuation.  

 

Underlying soil 

The characteristics of the soil depend on the cultural practices 

(irrigation, plough practices) and meteorology. For the same external 

conditions, the characteristics of the soil may differ with the soil type, 

particularly soil moisture. Examples describing the influence of soil roughness 

and soil moisture in the backscattering coefficient of bare soils have been 

shown in Section 5.5.  
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Conclusion: 

In this chapter it has been explained how radar signal from a 

vegetation crop canopy depends on many factors. There are factors related to 

the radar instrument itself, frequency, polarisation and incident angle, and 

factors related to the vegetation canopy. The latter can be summarised as 

follows: 

- canopy. dielectric constant, which depends on the biomass and 

plant water content 

- plant elements structure: size, shape, orientation and number 

density of the elements 

 - canopy structure: row, plant number density 

 - underlying soil contribution, which mainly depends on the 

moisture and roughness. 

  

All those factors are responsible of a particular polarimetric 

behaviour, which usually changes along the growing season. This thesis focuses 

on the study of the polarimetric backscatter of crops at C band as a function of 

the structural differences between the agricultural crop types. In Chapter 6 

polarimetric radar data are used for developing a method for classification of 

crops. In Chapter 7 the possibility of retrieving wheat biomass by using the 

ratio between the HH and VV polarisation is investigated. 
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CHAPTER 6:  

C BAND POLARISATION DATA FOR THE 

CLASSIFICATION OF CROPS.  
 

As already discussed in Chapter 1, methods for the classification of 

crops using optical data are well established. However, in cloudy agricultural 

areas, like the North of Europe, there is a need of developing methods based 

on radar data.  

In this chapter a crop classification method using C band polarimetic 

radar data is developed. In Chapter 5 it was argued that C band data are more 

adapted to agriculture studies that other radar wavelengths. The choice of 

wavelength was also done in view of application to present satellite data 

(ENVISAT/ASAR, RADARSAT-2) and future satellite missions 

(SENTINEL-1). 

A difficulty for the development of this kind of study is the lack of 

multi-temporal polarimetric C band satellite or airborne images together with a 

detailed crop map, necessary to the analysis and validation of the results. 

Consequently, the study has been performed on the NASA JPL- AIRSAR 
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airborne images acquired in 1991 July in Flevoland (The Netherlands), which 

constituted a complete dataset with corresponding ground data.  

The first part of the chapter is dedicated to the analysis of AIRSAR 

data from the ERA-ORA database. The analysis results will be used to develop 

the classification method. Good results, shown in Section 6.5, have been 

obtained. Finally, AIRSAR data corresponding to the area of Barrax (Spain) 

have also been analysed in order to evaluate the performance of the algorithm 

rules in a different region. 

 

6.1 SAR classification. 

 

This Chapter treats the problem of determining the crop type of 

agricultural fields in a region using polarimetric radar data. Many authors have 

addressed the problem of classifying agricultural fields during the last decades, 

and several classification algorithms have been developed. Classification 

approaches are applied in a pixel basis or in an area basis. It is very common to 

perform image segmentation as a pre-processing step to classification. 

Segmentation algorithms (Lombardo et al., 2003; Dong et al., 2001) will divide 

the image into regions or objects with similar statistical properties that will be 

later classified. The problem in segmentation is that those regions can be 

found in an image at different scales, and it is not always possible to determine 

the correct scale of analysis (Arbiolo et al., 2006).  

In general, the different classification algorithms can be divided in 

three main groups (Oliver and Quegan, 1998): Knowledge based approaches 

(Ferrazzoli et al., 1999; Pierce et al., 1994; Skriver et al., 2005), statistical 

methods and classification by scattering mechanisms. In the classification by 
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scattering mechanisms (van Zyl, 1989; Freeman and Durden, 1998) the data 

are classified according to their resemblance to the dominant scattering 

mechanism that occur in natural media, like double-bounce. The objective of 

the knowledge-based approaches is to classify the image into a several broad 

classes such as bare soil, water, urban areas, etc. The classification is based on 

the scattering properties of these classes. These scattering properties are used 

to define the classification rules of the algorithm. One of the most important 

works in this type of classifiers is the work of Ferrazzoli et al., 1999, which 

study the classification of crops using C, L and P band AIRSAR data several 

agricultural sites: Montespertory (Italy) and Flevoland (The Netherlands). The 

different crops were classified as belonging to broad classes defined by its 

structure and biomass, for instance, small stem crops. The statistical 

approaches cover a high variety of methods that make use of the maximum 

likehood (ML), (Hoekman and Quinones, 2000; Ranson and Suan, 2000), the 

ML based on the Wishart distrubution (Lee et al., 1994; Dong et al., 2001), 

polarimetric decomposition (Cloude and Pottier, 1997) or neural networks 

(Chen et al., 1996) among others.  

The advantage of statistical approaches such as neural network is that 

they can be applied in cases where there is no knowledge about the scattering 

properties of the surface to be classified. The number of classes that can be 

determined using knowledge based approaches is usually smaller than when 

using statistical methods. On the other hand, the statistical methods are usually 

well adapted to a specific dataset but they are difficult to adapt to other 

datasets (Skriver, 2007).  Knowledge based approaches are thus more robust 

and can be easily adapted to different regions. Furthermore the knowledge 

based approaches are appealing because they are based in the physics of the 
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scattering mechanisms.  In this study a knowledge based classification 

algorithm is proposed for the classification of C-Band polarimetric data.  

 

6.2 Test site and dataset. 

6.2.1 Test site.  
 

The test site is located in Southern Flevoland (The Netherlands), a 

polder reclaimed from lake Ijssel in 1966. The land surface is flat and lies ±3 m 

below sea level. The soil is homogeneous over the large area. The site has 

rectangular-shaped parcels of ±80 hectares. Farmers have subdivided these 

parcels into smaller fields, growing mainly sugar beets, potato and wheat. 

Secondary crops include barley, pea, onion, grass and corn. Some parcels in the 

area, belong to the "Directie Flevoland" who originally cultivated the polder, 

these are not subdivided, and have rapeseed, stem bean, flax and barley as the 

most common crops. 

 

6.2.2 Ground data. 
 

The acquisition of ground data at Flevoland was coordinated by ESA. 

Quantitative ground data include crop cover (%), crop height and plant 

number density on a limited number of fields of wheat, corn, potato and sugar 

beet. Soil moisture was also measured for some fields. Figure 6.1 shows the 

mean crop cover and crop height at 4 dates. The figure indicates that on June 

15, sugar beet and corn were in early stages of growth, and corn exhibits 

significant change during the last 2 weeks in July. 
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6.2.3 SAR images. 
 

In the framework of the ESA MAC-Europe project, airborne 

campaigns using the multifrequency polarimetric NASA/JPL AIRSAR were 

conducted over selected test sites in Europe. In 1991, the campaign was 

planned for a six-week period on a multi-temporal basis starting on the last 

week of June until last week of July. The period coincided with a substantial 

part of the growing season. The Flevoland site was visited four times (June 15, 

July 3, July 12, and July 28). A C-band AIRSAR image from the 12th of July of 

the Flevoland site is shown in Figure 6.2 (RGB: σ HH  , σ σVV  and V ). H

The SAR data under study are C-band single look complex data at 

incidence angle from 26° to 65°. The images analysed in this study were 

obtained from the University of Wageningen (Dr. Hoekman). 

 

6.2.4 ERA-ORA database.  
 

The Flevoland/AIRSAR database was available through the 

Concerted Action European project ERA-ORA, co-ordinated by the 

University of Tor Vergata (Prof. Solimini). The data were covariance matrices, 

calculated on a per field basis, available for the following crop types: 

 

- potato (406 fields) 

- wheat (394 fields) 

- sugar beet (317 fields) 

- grass (186 fields) 

- barley (101 fields) 



- small numbers of fields of oats, maize, rapeseed, beans peas, alfalfa, 

oat, onion, flax, grass and fruit trees. 
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Figure 6.1. Average Fraction of vegetation cover (left) and average crop height 

(right) of the main crops in Flevoland. 
 

The Flevoland dataset has a large number of crop types and fields of 

large size, distributed in a large range of incidence angle. The dataset is suitable 

for analysis of the frequency, angular, polarimetric and temporal behaviour of 

crop types prevailing in North Europe. The dataset is suitable for studying the 

temporal change during the peak period in June and July of the growing 

season, and less suitable for defining a classification scheme to be applied to a 

monthly temporal series of future satellite data. The weakness of the databases 

is the lack of biomass and structure information of the plants for quantitative 

interpretation and modelling work. 



  

165  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Flevoland study area. RGB composite using the three bands (HH, VV and 
HV) of C-Band AIRSAR data in July 12. 

 

6.3 Angular variation of polarisation features. 

 

This section is dedicated to analyse the variation of backscattering 

features with the incident angle. The database contains a sufficient number of 

fields for only four crop types: wheat, barley, sugar beet, potato and grass 

fields.  

As explained in Chapter 5, the dominant scattering mechanisms in an 

agricultural field depends on the crop type and crop stage. The scattering 

mechanisms will determine different angular behaviours. 



6.3.1 Single intensity measurements (HH, VV and HV). 
 

a) If the volume scattering from the vegetation layer is the prevailing 

interaction mechanism, the angular variation is of type cosθ . This is 

the case for: 

σo HV  at dates when the crops are well developed crops (July 

dates at Flevoland). Clear examples are sugar beet and potatoes 

(Figure 6.3c, d).  

o For σVV  and σ HH  when crops are well developed and the soil 

contribution is small. This occurs for instance for potato and 

sugar beet (see Figure 6.3a, b).  

b) When the soil backscatter is dominant (at early and late stages), the 

attenuation by the crop goes as 1/cosθ , but the overall variation 

depends on the soil backscatter angular variation, which depends on 

surface roughness. This is the case for potato at C band in June, when 

two types of angular variation are observed, depending on the look 

angle with respect to the row direction (Figure 6.3b) or sugar beet at 

C in June (Figure 6.3a), with large dispersion in the angular variation, 

depending on the soil contribution in the backscatter. 

c) When the soil-vegetation interaction is important, the angular 

variation may display quite different behaviour. This is the case for 

wheat and barley at C band σVV where the signal increases at 

incidence angles greater than 45° (Figure 6.4a, b). 
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d) When the crop class is not defined by the same interaction 

mechanisms, because of inter-field variability in phenological stage or 

because the class taxonomy corresponds to different canopy types, 

very large dispersions in inter-field backscatter can be observed. This 
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is true for most crops in June, when the growth rate is high and there 

is field-to-field variability in scattering mechanisms, resulting in large 

data dispersion. It is also the case for "grass" fields (Figure 6.5), 

which are herbaceous areas having a large range of height and plant 

number density. In these cases, the large class variance will be against 

the generality and robustness of any classification procedure. 

 

6.3.2 Polarisation ratios of single intensity measurements 
(HH, VV and HV). 

 
The angular behaviour of the polarisation ratios HH/VV, HV/VV 

and HV/HH is very different for small stem cereals (wheat and barley) and 

broad leaf crops (sugar beet and potatoes).  

As seen before, for well-developed broad leaf crops (sugar beet and 

potatoes) the volume scattering is dominant for both HH, VV and HV which 

results in little angular variation of the single intensity polarisation ratios 

(Figure 6.6a, b). In addition, the data show little dispersion, indicating that the 

interaction mechanism is well defined.  Row effects may cause the wave shape 

in the HH/VV for the potato case (Figure 6.6a). 

In contrast, small stem cereals show a decreasing angular variation for 

HH/VV and HV/VV (Figure 6.6c, d). A higher dispersion is observed 

among the different fields. For the HV/HH case, the scattering is too high to 

conclude about a variation trend. Due to this high dispersion it is difficult to 

apply the inversion methodologies.  

 



 

a) b)

c) d)

 
Figure 6.3. Angular Behaviour for sugar beet (left column) and potato (right column) 

at VV, VV and HH polarisations 
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a) b) 
b)

Figure 6.4 Angular Behaviour for wheat (left column) and barley (right column) at 
VV, HV and HH polarisations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Angular Behaviour grass at VV polarisation. 



 

a) b) 

c) d) 

 

Figure 6.6. Angular behaviour of polarisation ratios for broad leaf crops (left) and 
small stem crops (right). 
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6.3.3 Circular Polarisation (RR and LL). 
 

The angular behaviour of RL and LL (not shown) was found very 

similar to that of VV and HH. The ratio RR/RL do not show variation with 

the incident angle, except for the case of potato at beginning and mid-July. In 

general, the RR/RL angular behaviour was found very similar to that of 

HV/VV. 

 

6.3.4 HHVV correlation. 
 

The angular behaviour of the HH_VV correlation (not shown) was 

found inversely correlated to that of RR/RL. 

 

6.3.5 The issue of the angle of incidence.  
 

The scattering mechanisms and their relative importance in the total 

backscattering change as a function of the incidence angle. This is observed for 

different measurements or combinations of measurements (Figures 6.7 and 

6.8). Figures 6.7 and 6.8  show that in passing from 35°-45° to 45-55° the 

scatterplots of  σ RR  versus σ HV  or σRR /σRL versus σ HV /σVV for barley, wheat, 

sugar beet, potatoes and grass can change noticeably. The same was observed 

for all four June-July dates. The difference is more noticeable where a lower 

range (<35°) is compared to a higher range of incidence (>55°).  

 

In summary, γ = σ /cosθ  can be used to compensate for variations of 

the angle of incidence only for HV backscatter at C bands in July. For HH and 

VV, the incidence angle range should be restricted (for example, by excluding 

data at low (<30°) and high (>50°) incidence angles), or by experimentally 



assessing the angular variations specific to the case where soil backscatter is 

significant. 
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σ RR  versus σ HV  for the 35°-45° incidence angle range. b) Idem for the 

45º-55º incidence angle range. 
Figure 6.7. a) 
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As a consequence, the data analysis and classification scheme should 

be applied over small ranges of incidence angle, i.e. 25-35°, 35-45°, 45-55° and 

>55°. A problem usually encountered with airborne data is that crop types are 

not evenly distributed across the incidence angle range. In the ERA-ORA 

database, many of the fields fall in the range 45-55°; few fields are available at 

near or far range. 

In many studies, classification schemes were developed for this typical 

range of incidence. In Ferrazzoli et al. (1999), the data were at 50° of incidence 

(Montespertoli data at June 22, June 29, July 14, 1991) and at 40-50° range 

(Flevoland in August 1989). The applicability of the methods and algorithms 

derived from airborne datasets to future satellite datasets should be considered 

with care, since for polarimetric mode, incidence angles will be restricted to the 

lower range (polarimetric PALSAR mode onboard ALOS will be restricted to 

<28° of incidence). 

 

6.4 Analysis of the backscatter measurements in 

view of crop classification. 

 
This section presents an analysis of the backscatter measurements to 

be selected as classifiers. The Flevoland test area includes a large range of crop 

types and fruit trees. To reduce the confusion, which can be found at a single 

date, permanent cover type such as fruit trees (or grassland) can be masked out 

if a priori knowledge (map) is available. Multi temporal data can also be used to 

pre-classify such cover types. In Flevoland, grass may be distinguished from 

other crops in October-November, when the fields are bare soil. Fruit trees 

could be separated from the other crops by their stable temporal values. Thus, 



in the following analysis, grass and fruit trees as well as other crops which are 

present in few fields (flax, oats) are not always included. 
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Figure 6.8. a) σRR / /σRL  versus σ HV σVV ratios  for the 35°-45° incidence angle range. 

b) Idem for the 45º-55º incidence angle range. 
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6.4.1  HV versus VV. 
 

It is interesting to analyse σ HV and σVV  (or σ σHV  and HH ), which are 

available from ENVISAT/ASAR. Figure 6.9 shows σ HV  o versus σVV  for the 

four dates. This analysis includes data at all incident angles. As expected, σ HV  

and σVV  are correlated, but differences can be observed between crops and 

between dates. 

a) Rapeseed has very high σ HV  and σVV  backscatter except on July 

28, caused by high volume scattering and probably by the high biomass of the 

pods. The backscatter decreases drastically on July 28, very likely due to 

harvesting. 

b) Sugarbeet and potato exhibit large spreads in backscatter in June, 

due to the effect of soil backscatter, which varies among fields and across 

incidence angle ranges. On July 3, the two crops have the same σ V  and H

σVV backscatter. On 12 July, they correspond to separate clusters, which 

become closer again on July 28. 

c) Wheat and barley exhibit significant temporal change in their 

relative backscatter: closer on June 15 and July 3, and separated on July 12 and 

28. On July 3, wheat and barley can be easily discriminated from sugarbeet and 

potato. On July 12, wheat has lower backscatter than barley, which also shows 

more spread in the data. 

d) Corn fields have lower backscatter than sugarbeet and potato 

before July 12, and have similar backscatter at the end of July. 

e) In general, beans have lower backscatter with large spread, 

probably because of different cultural practices and growth stage. 

  



In summary, using σ HV  and σVV , wheat, barley, sugarbeet, potato, 

and rapeseed can be separated in July. It should be noted that the 

discrimination based on scattering mechanisms should take into account the 

significant variation of these mechanisms during July (early, mid and late July). 

Also, the crop development calendar may vary by +/- 2 weeks from one year 

to the next, depending on the weather. 

 

6.4.2 HV versus Correlation between HH and VV. 
 

Figure 6.10 shows σ HV  versus ρHH−VV . On June 15, large spread in 

the data and overlap in the clusters are observed, with the exception of 

rapeseed. On July 3, the clusters change drastically, with separation of 

potato/sugarbeet, corn, wheat/barley, and rapeseed. On July 12, wheat and 

barley, potato and sugarbeet form separate clusters. However, it should be 

difficult to identify barley and corn, which have large spread. A combination of 

July 3 and July 12 could be used to separate most crops. The July 28 data show 

more compact clusters, corresponding to a more homogeneous growth stage 

for spring crops. However, the clusters are close to one another. 

 

6.4.3 HV/VV versus Correlation between HH and VV. 
 

Results similar to those in the previous figures are observed: there is a 

large spread of data in June, there are distinctive clusters for wheat/barley and 

sugar beet/potato on July 3, and the clusters are less separated on July 28. 
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6.4.4 RR/RL versus HV/VV. 
 

Figure 6.8 and 6.11 plots σ RR

σ RL

 versus 
σ HV

σVV

. According to Ferrazzoli 

et al (1999), small stem crops can be separated from wide leaf crops using 

these measurements. This is observed at the later dates (July 12 and more 

clearly on July 28), whereas there is more confusion on June 15. Nevertheless, 

these parameters appear interesting for separating crops. 

 

6.4.5 HH/VV versus HV/VV. 
 

The analysis of σ HH

σVV

 versus σ HV

σVV

 is presented in Figure 6.12. For 

the date in June, there is an overlap of the clusters corresponding to each class. 

The day for which the clusters show the higher separation is July 3, on the 

HV/VV axis. At that day HH/VV could discriminate some of the barley fields 

from the wheat fields. In July 12 and July 28 there is also a high confusion 

between classes, but the most important observation is the different behaviour 

observed for wheat fields in the HH/VV axis. The ratio HH/VV increases 

significantly from most of the wheat fields from July 12 to July 28. This is 

interpreted as an effect of the vertical structure of wheat: VV is more 

attenuated than HH, and the attenuation is higher for higher biomass values. 

This property, and the possibility to relate the HH/VV ratio to the wheat 

biomass will be studied in Chapter 7. 



 

 
σ V  versus σVV for the 4 dates of AIRSAR data in Flevoland. Figure 6.9. H
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σ V  versus ρHH−VV  for the 4 dates of AIRSAR data in Flevoland. Figure 6.10. H
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σ RR

σ RL

versus 
σ HV

σVV

 for three dates of AIRSAR data in Flevoland. Figure 6.11. 
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Figure 6.12. 
σ HH

σVV

 versus 
σ HV

σVV

 for the 4 dates of AIRSAR data in Flevoland. 

 



6.5 Selection of backscatter measurements for crop 

classification. 

 

6.5.1 Discrimination between vegetation and bare soils. 
 

To reduce the confusion caused by responses of a large number of 

crops, spring and winter crops can be separated early in the growing season, 

based on the difference in surface and volume scattering. Late in the season, 

(e.g. late July for the test sites), harvested fields can be separated from non-

harvested fields, also based on volume and surface scattering. Polarimetric 

parameters that are expected to have potential for discriminating between bare 

and vegetated fields are those, which maximise the difference between surface 

and volume scattering. These are: 

σσa) The cross-polarized backscatter coefficient V  , and the H
HV

σVV

 

ratio (or  σ HV

σ HH

ratio) , the latter having higher values for volume scattering than 

surface scattering. Ferrazzoli et al. (1999) propose the use of σ HV

VVσ
and σ HV

HHσ
for 

discriminating bare soils and vegetation. 

σ HH  and σVV , ρHH−b) The correlation coefficient between VV , is 

high for a bare surface with roughness prevailing in agricultural fields for 

surface scattering. The correlation is low for vegetation, i.e., when: 

σ HH  and σVV result from differences in relative importance of 

interaction mechanisms (e.g. at C band for vertical crop 

structure, the dominant mechanism could be attenuated soil 

- 
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scattering with σ HH  and canopy scattering with σVV ),  

σ HH  and σVV result from the same mechanism but generated 

from different parts of the canopy. 

- 

ρHH−VV  is thus mainly 

affected by the plant structure. 

 

6.5.2 Separation between broad leaf and small stem crops. 
 

Ferrazzoli et al. (1999) showed in their simulations an appreciable 

difference between σ RR  and σRL  backscatter when crops with small stem were 

compared with crops of wide leaves. The difference was interpreted as due to 

cylinder scattering compared with disc scattering. However, small stem crops, 

such as wheat and barley, have stems that are predominantly vertical, whereas 

broad leaf plants like sugar beet and potatoes contain more randomly oriented 

scatterers, and the difference may be due to the plant structure, in addition to 

the scatterer size and shape. Figure 6.8 shows σ RR

σ RL

 versus σ HV

σVV

ratios (in dB) 

at the Flevoland site on July 28. Wheat, barley and grass have a limited range of 

σrr σrl, whereas potato and sugar beet have lower values. The separation is also 

clear on July 12 (Figure 6.11c), but less so on July 3 (Figure 6.11b) and not at 

all on June 15 (Figure 6.11a).  

 

6.5.3 Separation of plants with different biomass levels. 
 

σ HV is a good discriminator of different biomass levels. At Flevoland, 

separation between rapeseed, barley, wheat and beans is possible with σ HV . 

Figure 6.10c shows also that sugar beet and potato can be separated using 

ρHH−VV  at this mid-July date. 



6.6 Summary of the Flevoland database analysis. 

 

The analysis carried out on the Flevoland dataset indicates the 

following: 

a) The variation of the radar parameters with the angle of 

incidence is important and needs careful consideration when: 

- Defining the optimum incidence angle for spaceborne SAR 

data, 

- Applying classification methods to airborne SAR data, and  

- Transferring conclusions based on airborne SAR data to 

spaceborne systems. 

b) The various SAR parameters that can be derived from 

polarimetric SAR data vary significantly over intervals of 9-18 days in June-

July. The temporal variations could be interpreted in terms of scattering 

mechanisms, using detailed crop and soil geometric and dielectric properties, if 

the relevant ground data were available. However, to derive robust 

classification methods based on scattering mechanisms, the crop calendar at a 

given test site must be known.  

c) It may be possible to discriminate between broad leaf crops and 

small stem crops using acquisitions later in the growing season (mid to late 

July) using σ RR

σ RL

. 

d) Small stem crops with different biomass level can be 

discriminated uisng σ V . H

e) An interesting observation was the high increase of the 

HH/VV ratio that occurs for wheat fields from July 12 to July 28, which is a 
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consequence of the vertical structure of wheat.  

 

6.7 Physical based crop classification. 

 

The analysis of the previous sections was based on field-averaged 

data. The study presented in this section makes use of pixel-based methods on 

Flevoland data. Because we are dealing with pixel data, but comparing with a 

ground cover map, some additional radiometric and geometric processing is 

necessary. In order to smooth the data, they were first filtered using methods 

developed at DTU (Technical University of Denmark), (Schou and Skriver, 

2001). This MAP filter for multi-channel data introduces a bias into some of 

the covariance terms, which needs to be taken into account when setting 

thresholds based on field-averaged or unfiltered data. A geometrical correction 

was applied after the classification. Images were converted from slant to 

ground range geometry, and all the images were superposed by means of 

ground control points, using the image from July 12 as a reference.  In order to 

validate the classifications, the crop map was scanned and superposed on the 

July 12 ground range image using ground control points. This digital map was 

then used for masking borders and all the parts of the images outside the 

ground truth map. 

 

6.7.1 Proposed classification scheme. 
 

The hierarchical classification method is based on the analysis of the 

Flevoland field-averaged database of the previous sections and on the work of 

Ferrazzoli et al., (1999). The algorithm, developed for the July 12 data, uses C-

band and is described in Figure 6.13. The algorithm starts with a decision rule 



that separates soil from vegetation. A second rule separates broad leaf and 

small stem crops usingσRR /σRL . These two main classes are then separated 

into subclasses by using ρHH _ VV for the broad leaves and σ HV  for the small 

stems. For the broad leaf class, two subclasses are defined: potatoes and sugar 

beets. For the small stem class, we define three subclasses: winter wheat, barley 

and rapeseed. The algorithm therefore contains five decisions rules, each of 

which requires the selection of a threshold, as indicated on Figure 6.13. 
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Figure 6.13. Hierarchical Classification Scheme of the proposed algorithm.  

 

6.7.2 Results for July 12. 
 

The effectiveness of the second decision in the algorithm, which uses 

σ /σRR RL  to separate broad leaf and small stem crops, is shown in Figure 6.14. 

The upper image shows broad leaf (red) and small stem (yellow) results while 
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the lower image displays the crop map with the 13 classes. It can be seen that 

potatoes and sugar beet are mainly assigned to the broad leaf class, while 

barley, wheat and rapeseed are labelled as small stem. Other fields, such as flax, 

are classified in the small stem class. Grass fields are labelled as broad leaf in 

the upper part of the image, but as small stem in the lower part. Alfalfa fields 

are also split between the two classes. Table 6.1 summarises these results, and 

shows that 98% of the broad leaf fields and 95% of the small stem fields are 

correctly classified.  
 

CROP/ID No. of fields No. of fields well classified 
Small Stems    174 165 (95%) 
Broad Leaves  217 212 (98%) 

Table 6.1. Results of classifying the July 12 image into broad leaf and small stem 
classes 

 

The classification of the July 12 image is shown in Figure 6.15 (top), 

and should be compared with the crop map below it. Only a small number of 

pixels are assigned to the bare soil class, including those in one small barley 

field at the top of the image and some regions inside the biggest wheat fields. 

An effective way to visualise the spatial structure of the classification errors is 

by displaying the omission and commission errors for each class, where the 

omission errors for a given class are those pixels that belong to the class but 

are not assigned to it, and the commission errors are those pixels that do not 

belong to the class but are assigned to it. Figure 6.16 and 6.17 respectively 

show, in white, the omission and commission errors for each class and for the 

five classes together. These figures indicate that there are no large-scale 

misclassifications of any of the crop types. Regarding systematic errors, from 

the ‘sugar beet’ panel in Figure 6.16b and the ’potato’ panel in Figure 6.16c  it 
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can be seen that the boundaries of many of the sugar beet fields are 

misclassified as potatoes. Some barley fields at the top of the image are 

classified as rapeseed, and some sections of wheat fields together with one 

whole rapeseed field are assigned to the ‘residual’, i.e. bare soil class. 

Summary statistics for the classification are given in terms of 

confusion matrices, accuracies and kappa coefficients, and overall omission 

and commission errors.  

In the confusion matrix, columns correspond to the ground truth and 

rows to the assigned classes. Hence element (i, j) gives the number of pixels in 

ground class j that are assigned to class i. The omission error for class k is the 

sum of all the non-diagonal terms in column k divided by the column-sum. 

The commission error for class j is the sum of all the nondiagonal terms in row 

j divided by the row-sum.  

Table 6.2 shows the confusion matrix in percentage. As inferred 

from Figures 6.16b and 6.16c, many of the sugar beet (30.99 %) fields are 

confused with potato and only 62.10% of the sugar beet pixels are correctly 

classified. The main errors in the wheat class are due to assignment of 13.62% 

of the wheat pixels to potato (compare the ‘wheat’ panel of Figure 6.16b with 

the ‘potato’ panel of Figures 6.16c) and 12.37% to soil. The confusion matrix 

shows that, apart from potato, significant proportions (exceeding 12%) of each 

of the crops are assigned to one or more of the other crop types.  

Overall commission and omission errors are shown in Table 6.3. 

Potato has the biggest commission error (36.40%), while the biggest error of 

omission corresponds to sugar beet (37.90%). This is because almost all 

misclassified sugar beet pixels are labelled as potato. The overall accuracy is 

73%. 
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Figure 6.14. (Top) Broad leaf/small stem separation for the July 12 image. (Bottom) 
Crop map. 
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Figure 6.15. Classification results for July 12 (top) and ground truth (bottom). Six 

classes are distinguished: Potatoes (Siena), Sugar beets (Red), Rapeseed (Blue), Wheat 
(Yellow), Barley (Pale Yellow) and Bare Soil (Green). The other classes have been 

masked. 
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Figure 6.16. Error of omission for each class and total error for the July 12 image. 

A ) POTATO B) SUGAR BEET 

C) WHEAT D) BARLEY

F) TOTAL
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 F) TOTAL E) RAPESEED 

 
Figure 6.17. Error of commission for each class and total error for the July 12 image. 
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Overall accuracy: 72.92%, Kappa Coefficient: 0.66 
 

 GROUND TRUTH (PERCENT) 
CLASS Potato Sugar beet Wheat Barley Rapeseed Total 
Potato 87.03 30.99 13.62 2.70 13.18 31.85 
Sugar beet 4.79 62.10 2.01 1.88 1.71 13.34 
Wheat 3.10 2.12 69.79 7.69 0.89 23.65 
Barley 4.44 1.12 2.18 72.11 13.45 16.02 
Rapeseed 0.09 0.01 0.03 14.85 70.55 10.46 
Soil 0.55 3.67 12.37 0.77 0.22 4.68 
Total 100.00 100.00 100.00 100.00 100.00 100.00 

Table 6.2. Confusion matrix for Algorithm 2 (July, 12) [%] 
 

 
Class Commission (%) Omission (%)

Potato        36.40 12.97 
Sugar beet 16.80 37.90 
Wheat 10.77 30.21 
Barley 21.14 27.89 
Rapeseed 25.17 29.45 

Table 6.3. Commission and omission errors for Algorithm 2 (July,12). 
 
6.7.3 Results for July 28. 
 

In this case the percentage of correctly classified fields is 98% for 

broad leaf and 63% for small stems (Table 6.4). 

 

CROP/ID No. of fields No. of fields well classified 
Small Stems    166 105 (63%) 
Broad Leaves  217 213 (98%) 

Table 6.4. Results of classifying the July 28 image into broad leaf and small stem 
classes. 

 

As it can be seen in Figure 6.18, on July 28 many of the rapeseed 

fields are labelled as bare soil. Others are classified as potato and sugar beet. 
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None of the fields is classified as rapeseed, although the class is considered in 

the algorithm. The ground truth map does not contain a bare soil class, so the 

confusion matrices have been constructed by equating soil with rapeseed. The 

confusion matrix (Table 6.5 and 6.6) shows that the percentage of well-

classified potato fields is 73.73%, but 19.35% are confused with sugar beets. 

We can see in Figure 6.20a that this mainly occurs for fields located towards 

the top of the image. The lowest accuracy is for the soil class (0.73%). For 

barley, 62.18% of the pixels are well classified, with 29.83% being confused 

with wheat. The highest error of commission is 50.38% corresponding to 

potatoes, and the lowest 6.57% corresponding to barley. This is because 

30.51% of the sugar beet pixels, 24.76% of wheat pixels and 37.43% of the 

rapeseed pixels are wrongly labelled as potato. 

 

Class Commission (%) Omission (%)
Potato        50.38 26.27 
Sugar beet 32.07 35.57 
Wheat 25.03 36.00 
Barley 6.57 37.82 
Soil 37.31 43.78 

Table 6.5. Commission and omission errors for Algorithm 2 (July,28). 

Overall accuracy: 65.27%, Kappa Coefficient: 0.55 
 

 GROUND TRUTH (PERCENT) 
CLASS Potato Sugar beet Wheat Barley Rapeseed Total 
Potato 73.73 30.51 24.76 5.56 37.43 35.78 
Sugar beet 19.35 64.43 0.63 1.17 3.39 16.90 
Wheat 4.09 1.66 64.00 29.83 2.84 26.10 
Barley 1.00 0.45 1.28 62.18 0.12 11.03 
Rapeseed 1.11 2.43 9.15 1.01 5.22 9.82 
Soil 0.73 0.52 0.18 0.25 0.00 0.37 
Total 100.00 100.00 100.00 100.00 100.00 100.00 

Table 6.6. Confusion matrix for Algorithm 2 (July, 28) [%] 
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6.7.4 Results for July 3. 
 

The results for the direct hierarchical classification Algorithm 2 are 

given in Table 6.7 and Figure 6.8. The classification and the total error are 

displayed in Figure 6.19 and 6.20b, respectively . They are clearly valueless: 

only rapeseed is well classified, while barley and sugar beet are lost as classes 

and many of the potato and wheat pixels are misclassified. This is exactly what 

was expected, given that the structuring of the data in the feature space is very 

different in early July compared to the later dates. 

 

Overall accuracy: 65.27%, Kappa Coefficient: 0.55 

 
 GROUND TRUTH (PERCENT) 

CLASS Potato Sugar beet Wheat Barley Rapeseed Total 
Potato 62.02 79.63 4.75 2.09 3.56 29.97 
Sugar beet 2.64 2.87 0.28 0.24 1.14 1.35 
Wheat 6.27 3.50 49.04 11.67 0.87 19.12 
Barley 27.39 12.04 1.11 0.49 1.91 8.93 
Rapeseed 0.02 0.02 0.02 0.42 91.91 10.91 
Soil 1.65 1.95 44.81 85.10 0.62 29.72 
Total 100.00 100.00 100.00 100.00 100.00 100.00 

Table 6.7. Confusion matrix for Algorithm 2 (July, 3) [%] 
 

Class Commission (%) Omission (%)
Potato        53.05 37.98 
Sugar beet 63.69 97.13 
Wheat 22.10 50.96 
Barley 99.02 99.51 
Rapeseed 0.84 8.09 

Table 6.8. Commission and omission errors for Algorithm 2 (July,3). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.18. Classification results for the July 28 (top) and ground truth (bottom). Six 
classes are distinguished: Potatoes (Siena), Sugarbeets (Red), Rapeseed (Blue), Wheat 

(Yellow), Barley (Pale Yellow) and Bare Soil (Green). The other classes has been 
masked. 
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Figure 6.19. Classification results for the July 3 image (top) and ground truth 

(bottom). Six classes are distinguished: Potatoes (Siena), Sugar beets (Red), Rapeseed 
(Blue), Wheat (Yellow), Barley (Pale Yellow) and Bare Soil (Green). The other classes 

have been masked. 
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28 July July 3

 
Figure 6.20. Total error for classification using algorithm 2 for a) July, 28 and  

b) July, 3. 
 
Conclusions on the classification of the Flevoland fields: 
 

Multi-temporal C-band polarimetric SAR data over Flevoland were 

analysed, with the aim to select optimum parameters for crop classification. 

The Flevoland dataset contains a large amount of measurements derived from 

AIRSAR data, acquired on June 15, and July 3, 12 and 28, 1991. The data 

analysis shows very strong temporal variation in the intensity and polarimetric 

measurements during June and July. Relatively invariant features for different 

dates in July appear to be the RR/RL ratio to discriminate crops with vertical 

from those with random structure, the correlation between HH and VV to 

separate structure in sugar beet and potatoes, HV to separate crops with 

different biomass levels, and the HH/HV ratio to separate vegetation from 

bare soil (or harvested fields). 
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6.8 Discrimination of crops using AIRSAR data in 
the area of Barrax. 
 

This section presents an analysis of the AIRSAR data acquired in 

Barrax in order to evaluate the applicability or the proposed classification 

algorithm in a different area. The Barrax site was described in Chapter 3. 

AIRSAR data were acquired in the framework of the MAC-Europe campaign, 

at two dates: 19 June 14 July, in year 1991. 

At mid-June, the small grain cereals (mainly wheat and barley) were in 

senescence stage and corn was at an early stage. The cereal fields were 

harvested between mid-June and mid-July. From mid-June to mid July the corn 

fields developed, but they were still far from the full development stage. 

A field survey was conducted during the experiment to generate a 

crop field map (no-digital version available). These observations were used to 

identify the fields in the radar images, and extract the scattering signatures. 

Backscattering was averaged inside each field. 

This dataset is not optimal for crop discrimination in the area using 

radar data, because at the current crop phenological situation (early stage for 

corn and senescence stage for cereals), the structural effects are hard to be 

detected. It would have been better to select dates at the beginning of May and 

beginning of August.  

 

6.8.1 Data analysis. 

The three steps of the classification algorithm developed for 

Flevoland were tested in the Barrax area. 

 



Soil vegetation discrimination: 

It was shown in Section 6.4.1 that HV/HH and HV/VV ratios were 

able to discriminate between soil and vegetation. This ratios are interpreted as 

follows: the scattering of the vegetation volume gives high values of HV/HH 

and the scattering of the soil surface gives low values of HV/VV. A threshold 

of -8 dBs was found to be adequate for the Flevoland area. 

The scatter plots comparing the HV/HH and the HV/VV ratios for 

June and July dates are shown in Figure 6.21.  Small grain cereals (referred in 

the figure as cereals) and fallow have a large dispersion. For fallow fields, 

because of the dry conditions of the soils in the area, this spread is mainly due 

to differences in the surface roughness of the fields. From Figure 6.21 it is 

deduced that, in June, this test is not able to discriminate the fallow fields from 

senescent cereals. Also many of the corn fields are confused. This result is not 

surprising because, during the senescent phase, cereals are almost transparent 

to radar signal in C band, especially if the soil is dry. The corn fields that are 

confused are probably in a very early phenological stage. The second 

observation that can be done is that the HV/HH, and HV/VV ratios allow us 

to detect cereal fields that were harvested in July (compare the two areas within 

squares in the two plots of Figure 6.21). In July, a threshold of -8dB/-9dB 

appears good for discriminating cereals and fallow fields from the rest of 

crops: corn, sunflower, garlic and alfalfa.  

ρSimilar results are obtained with the HH-VV correlation, HH _ VV . 

Figure 6.22 shows that in June cereal fields cannot be discriminated from 

fallow fields and as with the HV/HH, HV/VV ratios most of the corn fields 

are confused. It is interesting to compare Figure 6.22b with Figure 6.10c (12, 
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July Flevoland). In the Barrax region fallow fields present very high values of 

ρHH _ VV  (>0.7). 
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Figure 6.21. HV-HH versus HV-VV scatter plot for crop fields in the area of Barrax 

during June a) and July b). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 
Figure 6.22. HV versus HH-VV correlation scatter plot for crop fields in the area of 

Barrax during June a) and July b). 
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Vegetation structure: 
 

Figure 6.23 shows that, as expected, the structural effects are not 

clear in this case, neither in June or July. This is a consequence of the 

phenological stage of crops. However, structural changes in corn fields from 

June to July are well detected.   

 

Biomass level: 

 

 Biomass level is given by HV. Figure 6.24 shows the growing of corn 

and sunflower fields from June to July. 

 

HV/HH versus HV/VV 

 

The scatter plot resulting from comparing HV/HH versus HV/VV is 

shown in Figure 6.25. For the date in June these polarimetric ratos are not 

able to discriminate any cluster of type of crops. In July 14 distribution of 

clusters of this scatter plot is similar to that of HV versus HHVV correlation 

(Figure 6.21). The HH/VV ratio is slightly higher for wheat fields than for 

fallow fields, but both clusters are very mixed. The small values of HH/VV are 

a consequence of the phenological stage of wheat (ripening).  

 



  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.23. RR-RL versus HV/VV scatter plot for crop fields in the area of Barrax 

during June a) and July b). 
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Figure 6.24. HV versus VV scatter plot for crop fields in the area of Barrax during 
June a) and July b). Cereals in are harvested between June and July. 
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Figure 6.25. HV/HH versus HH/VV scatter plot for crops fields in the area of Barrax 
during June a) and July b). 
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Conclusion on the Barrax analysis 

 

The analysis at the Barrax site confirms, as in the case of Flevoland, 

that the methods of classification based on scattering mechanisms need to take 

into account the crop calendar for a particular site. In the case of Barrax the 

acquisition time of the images was not optimal for the type of crops present in 

the area. Thus, the hierarchical classification method proposed for Flevoland 

could not be applied with success in this area for the two AIRSAR images 

available for this study. However, the analysis shows that the algorithm rules 

are quite robust and better results would be obtained with an image acquired at 

the end of July/beginning of August and at the beginning of May.   

 

6.9 General conclusion. 
 

The principal conclusions of this study are: 

 

 a)  The radar data used for the classification of crops need to be 

adapted to the crop calendar of the area under study. The AIRSAR data 

available for this study were acquired during the MAC-Europe campaign in 

July, 1991. This period was well adapted to the characteristics of Flevoland, but 

it was not the case for Barrax. As a consequence, the same method that gave 

good results in Flevoland could not be applied in Barrax. 

 b) A limited set of polarimetric measurements carry the 

information needed to classify the crops present under northern European 

agricultural conditions. The most effective set of features appear to be the RR-

RL ratio, the HH-VV correlation and the HV backscattering coefficient, 

together with the HV-VV and HV-HH ratios when bare soil (or harvested 
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crops) needs to be taken into account. These polarimetric measurements 

indicate the relevant biophysical characteristics of the crops.  

 c) The behaviour of these backscattering measurements varies 

markedly through the growing season, as a consequence of variation in the 

scattering mechanisms. For Flevoland, mid-July was clearly best suited to 

classification, with well-separated classes in the measurement space. The 

situation was not as good in late July, and, in early July. 

 d) In mid and late July, at Flevoland, the proposed classification 

algorithm was quite successful, with accuracies of around 73% in mid-July and 

65% in late July. 

 e)  This methodology could be adapted to other sites based on the 

knowledge of crop type and calendar.  
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CHAPTER 7:  

USE OF ENVISAT ASAR-APP DATA FOR 

CROP STUDIES.  
 

 This chapter is dedicated to the analysis of ENVISAT/ASAR data in 

agricultural regions. The first part describes the experimental measurements 

done in a wheat field in the area of Toulouse during the year 2003, the 

available radar data and the processing applied. The second part of this chapter 

explores the possible application and limitations of the algorithm of crop 

classification presented in Chapter 6 using data form the region of Toulouse 

acquired at several dates in 2003 and data acquired at one date in Barrax. The 

possibility of retrieving wheat biomass using ASAR data is also investigated. 



7.1 Test site and dataset. 
 

The test site of La Masquère (Toulouse) is located in the Midi-

Pyrénées region of France (Figure 7.1). In Toulouse, the climate is considered 

as a transition between the Mediterranean and oceanic climates. The mean 

annual precipitation is higher than in Barrax (>650 mm). Although the dry 

season is recorded in summer, the seasonal variability is low. The number of 

rainy days is high but extremes are unusual. However, summer 2003 was 

atypical in terms of climatology. The growing period (March-September) was a 

period of pronounced drought with high temperatures. 
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Figure 7.1. Geographic location of the Toulouse area and La Masquère. 
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The Bouconne forest, of approximately 2200 ha and constituted of 

broadleaved and coniferous trees, is an important feature of the Northern part 

of the area. In the South, East and West, the landscape is hilly. 

In the Toulouse region, meadows represent approximately 20% of 

the total surface. The forests correspond to 10% being mainly deciduous. This 

area is mainly dedicated to agriculture: crops represent about 65% of the 

surface. In 2003, the most important crops grown in the area were sunflower, 

wheat and corn. Other plantations, which were less important in surface, were 

rapeseed, sorghum, barley, soybean and peas. About 15% of the agricultural 

surface was let as fallow (Figure 7.8). Summer crops in the area need 

irrigation.  

Within the Toulouse region the agricultural site of La Masquère was 

selected for field work.  

 

La Masquère: 

Figure 7.2. Wheat fields emplacement in La 
Masquère site. 

The test-site is located near the 

town called La Masquère, (Figure 

7.2) where the Agricultural 

Engineering School of Purpan, 

(l’Ecole Supérieure d’Agriculture 

de Purpan, ESAP) has its farm 

(270 ha). The experiment took 

place in the Tourasse farm, which 

has its own drainage and its soil is 

clay. 



7.1.1 Description of the field measurements. 
 

As opposite to the experiments that took place in the Barrax site, the 

field measurements in Toulouse did not take place in an intensive one-week 

campaign but during the whole growth season and only for a wheat field.  

Vegetation measurements consisted on: a) Fresh Biomass b) Dry 

Biomass, c) Plant Height, d) Stem Density and e) Plant density. Soil moisture 

was also measured.   

Vegetation sampling was done in coincidence with ENVISAT 

overpasses. Sampling was done along 1 linear meter. Plat height was measured 

4 or 5 times at different points along the 1 linear meter. The number of stems 

and the number of plants was counted before cutting the sample. Once cut, 

the sample was put in a plastic bag, closed, and kept in coolers for avoiding 

water losses. Samples were weighted fresh and after drying in an oven. For that 

purpose the facilities of the University Paul Sabatier were used. The number of 

samples was ten for dates 13/03 (DOY 72) to 17/04 (DOY 107) and five for 

the rest of days. This choice was done for practical reasons (space limitation in 

the oven).  
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rn

75.6

Values of wheat parameters per squared meter were obtained by 

multiplying the 1 linear m measurements by the number of rows in 1 m, . 

The number of rows was estimated counting the number of rows in five 

meters at several emplacements in the field. The average value obtained is 

. Table 7.1 resumes the measurements and the corresponding 

standard deviations. For biomass, the standard deviation is higher after the 

period of stem elongation. Plant density values are very variable, as it is more 

difficult to estimate than stems density. Figure 7.3 shows the biomass curves 

and height during the season. Before heading, there was a high correlation 

=rn
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between biomass and height (see Figure 7.4).  Stems density decreases along 

the season, probably due to plant competition (Figure 7.5a). Finally, from 

Fresh and Dry Biomass vegetation water content has been estimated and it is 

displayed in Figure 7.5b.  

 

Date DOY Phenology Fresh 
Biomass 
 (g/m2) 

Dry 
Biomass 
(g/m2) 

Height 
(cm) 

Stem 
Density 
(nº/m2) 

Plant 
Density 
(nº/m2) 

13/03 72 Beginning 
of Tillering 

230±80 43±15 18±3 800±100 138±13 

22/03 81 Tillering 530±90 120±70 15.8±1.3 820±120 83±17 
1/04 91 Tillering 1000±160 170±30 22±3 740±90 90±8 
7/04 97 End of 

Tillering 
1100±180 210±30 28.5±1.3 750±60 110±20 

17/04 107 Stem 
Elongation 

1500±240 330±60 38±3 660±80 110±30 

26/04 116 Booting 2500±900 900±400 55±3 500±200 78±15 
12/05 132 Heading 2700±900 700±300 70±4 380±130 78±14 
22/05 142 Milky 

Grain 
2100±300 740±120 76.2±0.9 350±150 80±15 

10/06 161 Dough 
Grain 

1900±300 1070±180 79±4 380±50 92±16 

16/06 167 Hard 
Grain 

1180±180 1040±110 69±3 370±30 100±18 

Table 7.1. Vegetation measurements during 2003. 
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Figure 7.3. Fresh Biomass, Dry Biomass and height for wheat during 2003. 
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Figure 7.4. Relationship between height and Fresh Biomass for wheat before heading. 
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Figure 7.5. Stems density (a) and Plant water content (b) along year 2003. 

 
 

In addition to these measurements, each date, the average sample was 

decorticated in leaves, stems and ears (when present) and weighted before and 

after drying. Table 7.2 and Figure 7.6 resume the obtained values.   

 
Date DOY Fresh Biomass 

(g/m2) 
Dry Biomass 

(g/m2) 
  Leaves Stems Ears Leaves Stems Ears 
13/03 72 90±30 160±50 - 12±4 39±13 - 
22/03 81 360±60 170±30 - 70±10 30±4 - 
1/04 91 630±50 380±80 - 93±7 69±12 - 
7/04 97 560±90 650±110 - 110±18 120±20 - 
17/04 107 690±110 870±140 - 160±30 290±50 - 
26/04 116 800±300 1600±600 - 180±70 800±300 - 
12/05 132 410±140 1400±500 480±160   140±60 
22/05 142 290±40 1290±190 699±90 150±20 460±80 210±30 
10/06 161  830±140 1060±180  480±80 610±100 
16/06 167  560±90 600±100  500±60 570±60 
Table 7.2. Distribution of biomass in the plant elements (leaves, stems and ears) for 

wheat along year 2003. 
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Figure 7.6. Fresh Biomass(a) and Dry Biomass (b) for wheat elements (leaves, stems 

and ears) during 2003. 
 

Soil moisture , was measured using the gravimetric method. For 

that, ten cylindrical pots, distributed along a transect, were filled with 2-3 cm 

depth soil. Soil was weighted wet, , and after drying,  , allowing to soil 

moisture estimation as follows : 

ws

w =100 sw − sd

sw

%  [Eq. 7.1] 

  

 Date DOY Moisture
(%)  

13/03 72 14.2±1.4
 22/03 81 8.6±0.8 

1/04 91 11.9±1.2 
7/04 97 5.5±0.8 

 

 

 

 

 

Table 7.3. Soil moisture measurement values. 

17/04 107 5.3±0.6 
26/04 116 17.7±0.9
12/05 132 12.4±1.5
22/05 142 6.0±1.2 
10/06 161 4.1±0.6 
16/06 167 3.3±0.1 
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The values of soil moisture in 2003 are unusually low for the region, 

due to the drought period. All moisture values are below 12%, with the 

exception of the first measurement date, and a rainfall the 26th of April. Since 

the beginning of May no precipitations were registered, and soil moisture 

decreases progressively (see Figure 7.7). 
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DOFigure 7.7. Soil moisture measurements values corresponding to the wheat field under 
study. 

 

 
7.1.2 Radar Images. 
 

ENVISAT ASAR data characteristics: 

 

ASAR is an advanced SAR (Synthetic Aperture Radar instrument) at 

C-Band (5.331 GHz) and operating in 5 distinct measurements modes: Image 

Mode (IM), Alternating Polarisation Mode (AP), Wide Swath Mode (WS), 

Global Monitoring Mode (GM) and Wave Mode (WV). From all the possible 

ASAR modes the most adequate to the purpose of this study was the 

Alternating Polarisation.  
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The Alternating Polarisation products contain two co-registered 

images corresponding to one of the three possible polarisation combinations: 

HH & VV, HH & HV or VV & HV and one of the seven selectable swaths. 

Each swath corresponds to an incident angle range (see Table 7.4). These 

products are acquired and processed on request and have a spatial resolution 

of approximately 30m (except swath 1). 

Alternating Polarisation products are multi-look, ground range images 

and can be geo-located (ASAR-APG-1P) or non-geolocated (ASA_APP_1P). 

In this study, Level 1B Alternating Polarisation Precision Images products 

were used. In order to preserve as much as possible the radiometric quality of 

the data, the non-geocoded ASAR-APP products were preferred, because they 

have minimal geometrical corrections. The pre-processing done by ESA 

includes, among others, data decompression, and engineering corrections, as 

antenna elevation pattern compensation and range spreading loss. From now, 

these data will be referred as ASAR-APP. ASAR-APP products are generated 

with a technique in which half of the looks of the image are acquired in 

horizontal polarisation and the other half in vertical polarisation. This leads to 

a lower radiometric quality compared to the ASAR Image mode, but two 

polarisations are available.  

 

ASAR-APP images used in this study: 

During the growth season of 2003 a number of 7 ASAR-APP images 

were acquired in the Toulouse area. Among those 7 images, 5 were acquired in 

HH & VV polarisations and the rest in HV & VV polarisations (see Table 

7.5). Images out of the wheat season, as well as images from year 2004, were 

used for speckle filtering. During 2003, more images were requested to ESA 
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from March to September but unfortunately some of the acquisitions were 

cancelled. 

 

Swath Swath with 
(Km) 

Near Range Incidence 
angle 

 (degrees) 

Far Range Incidence 
angle 

(degrees) 
S1 108.4 - 109.0 14.1 – 14.4 22.2 – 22.3 
S2 107.1 – 107.7 18.4 - 18.7 26.1 – 26.2 
S3 83.9 – 84.3 25.6 - 25.9 31.1 – 31.3 
S4 90.1 – 90.6 30.6 - 30.9 36.1 – 36.2 
S5 65.7 – 66.0 35.5 - 35.8 39.2 – 39.4 
S6 72.3 – 72.7 38.8 - 39.1 42.6 – 42.8 
S7 57.8 – 58.0 42.2 - 42.6 45.1 – 45.3 

 
Table 7.4. ASAR_APP_1P characteristics. Information from ESA web page 

(http://earth.esa.int). 
 

  

 Date Polarisation Swath 
 13/03/2003 HH & VV S6 
 22/03/2003 HH & VV S1 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7.5. ASAR-APP images over the study area during year 2003. 

29/03/2003 VV & HV S7 
17/04/2003 HH & VV S6 
26/04/2003 HH & VV S1 
03/05/2003 VV & HV S7 
16/06/2003 HH & VV S2 
26/06/2003 HH & VV S6 
29/06/2003 VV & HV S4 
05/07/2003 HH & VV S1 
12/07/2003 VV & HV S7 
21/07/2003 HH & VV S1 
31/07/2003 HH & VV S6 



7.1.3 Ancillary data. 
 
A classification of crops from the Toulouse region was used (see 

Figure 7.8). This classification is based in a maximum likehood multi-temporal 

classification method applied to 7 SPOT images (Gouaux et al., pers. comm.). 

 

68 Km 

1. Boadleaved forest 
2. Coniferous forest 
3. Eucaliptus 
4. Wheat 
5. Colza 
6. Barley 
7. Corn 
8. Sunflower 
9. Sorghum 
10. Soybeans 
11. Peas 
12. Fallow 
13. Non-cultivated 
14. Prairies 
14. Free Water 
16. Lake 
17. Urban (buildings) 
18. Pavement 

70 Km 

Bouconne forest  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.8. Land use classification in the area of Toulouse at 20 m resolution for year 

2003 (Gouaux et al., pers. comm.).  
 

7.2 Image processing. 

 Bouvet et al. (2008) implemented the image processing applied to the 

ASAR-APP images used in this study. The processing consists on five steps: 

extraction of the study region, calibration, resizing, co-registration and speckle 

filtering. The processing was applied following this sequence, as co-registration 

is a requirement for applying the speckle filtering method. The general scheme 
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of the processing is illustrated in Figure 7.9. Below, some details concerning 

the processing steps are given. 

 

 

 Geographical 
coordinates

Extraction of a 
subset region 

Resizing of the 
subsets 

Calibration  

Co-registration 

Multi-temporal 
speckle filtering  

 

 

 

 

 

 

 

 Calibration constant 
and incidence angle   

 

 

 

 

 

 

 ENL of the 
individual images   

 

 

Figure 7.9. Image processing scheme. 

 



Extraction of the region of study: 

The extraction of the region of study is done on the SAR images, in a 

first approximation, using the geographic coordinates of the region. To make 

the extraction more precise, coordinates of tie-points available in the image 

header were interpolated.  

 

Calibration: 

Calibration is needed to transform the Digital Number (DN) counts 

of the image into backscattering coefficient,σ . To obtain the backscattering 

coefficient of a distributed target, following the ESA ASAR Product 

Handbook (ESA, 2007), it is necessary to know the image calibration constant 

and the incidence angle for each pixel. The calibration is done using the 

following equation: 

σ =
A2

K
sinθ   [Eq. 7.2] 

where K  is the absolute calibration constant, A  is the average pixel intensity 

and θ  is the incidence angle. The calibration constant is included in the header 

of each ASAR image. It is different for every swath and also depends on the 

image processor used by ESA.  Table 7.5 gives the calibration constants that 

has been applied to the data in this study.  
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Date Polarisation Swath Processing 
version 

Acquisition 
center 

Processing 
center 

Calibration 
constant 

13/03 VV / HH S6 PF-ASAR 
v3.05

PDAS-F PDHS-E 944449.9

22/03 VV / HH S1 PF-ASAR 
v3.03

PDAS-F PDHS-E 518800.03

29/03 VV / HV S7 PF-ASAR 
v3.05

PDAS-F PDHS-E 1130383.9

17/04 VV / HH S6 PF-ASAR 
v3.03

PDAS-F PDHS-E 1044720.25

26/04 VV / HH S1 PF-ASAR 
v3.05

PDHS-K UK-PAC 426351.38

03/05 VV / HV S7 PF-ASAR 
v3.05

PDHS-K UK-PAC 1130383.9

16/06 VV / HH S2 PF-ASAR 
v3.05

PDAS-F PDHS-E 543250.3

26/06 VV / HH S6 PF-ASAR 
v3.05

PDAS-F PDHS-E 944449.9

05/07 VV / HH S1 PF-ASAR 
v3.05

PDHS-K UK-PAC 426351.38

12/07 VV / HV S7 PF-ASAR 
v3.06

PDAS-F UK-PAC 1130383.9

21/07 VV / HH S2 PF-ASAR 
v3.06

PDAS-F UK-PAC 543250.3

31/07 VV / HH S6 PF-ASAR 
v3.05

PDHS-E I-PAC 944449.9

 
Table 7.5. Calibration constants used in the calibration of  the ASAR images. 

 

Resizing of the subset images: 

The subsets extracted from the SAR images had nearly the same 

dimensions, differing only in 1 or 2 rows or samples. Before registration, the 

images were resized to have exactly the same dimensions (a few lines and 

samples are removed from bigger images). 
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Co-registration: 

Co-registration was done by an automatic method. For images that 

had the same satellite track and the same incident angle, that is exactly the 

same acquisition geometry, co-registration could be performed with simple 

translations. Those translations were done on the basis of an optimum set of 

GCPs (Ground Control Points). From all the subset images to filter, one was 

selected as reference image (by default, the first one). Then, ground control 

points (GCPs) were selected on this reference image. The default GCPs were 9 

pixels, equally distributed in the image. The GCPs were chosen to be those 

that showed the higher correlation between a GCP in the reference image and 

every pixel in the neighbourhood of the same GCP in each image of the same 

polarisation. 

The advantage of this co-registration method is that the image 

radiometry is not altered. However, the method fails to co-register images with 

multiple swaths. For images with a different geometry of acquisition (that 

results in a different ground pixel size), co-registration cannot be done with 

simple translations. Some difficulties were also found when the subsets 

extracted from the original images are big. Co-registration of the Toulouse data 

was done using only images of the same swath.  

 

Speckle filtering: 

ASAR images were speckle filtered using the method developed and 

described by Lopes et al., (1993), Beaudoin et al., (1994), Le Toan et al., (1997), 

Bruniquel and Lopes, (1997), Quegan et al., (2000), Quegan and Yu, (2001). 

This filter, originally developed for ERS images, is a multi-temporal filter.  The 

explicit form of the filter is:  
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where,  is the radar intensity of the input image,  at pixel (x,y), ), yx i(Ii

), yx i

),( yx

(Ii is the local average intensity of the input image  at pixel (x,y) and 

is the radar intensity of the output image Jk k  at pixel (x,y). The filter 

should be applied over uncorrelated images, but it is only slightly suboptimal 

for correlated channels. Multi-temporal filtering was applied on all registered 

images (all dates and all polarisations together). 

In principle, the temporal filtering should not degrade the spatial 

resolution, but the estimates of ),( yxIi require to do an spatial averaging 

within a window in each image. The loss of resolution inherent to the 

), yx(Ii estimation was minimized using an adaptive processing window.  

The main objective of removing the speckle is to reduce the 

uncertainties in the backscattering value estimation by increasing the ENL 

(Equivalent Number of Looks). Furthermore, it also facilitates visual 

interpretation of the images. 

If there are M  uncorrelated multi-temporal images, each consisting 

of L -look data, then the filtered data will ideally have M × L  looks. However, 

in practice, errors in the estimates of the ),( yxIi results in lower L -look 

value than would correspond to the ideal case. 

In the case of ASAR data, the number of range looks for each image, 

before filtering, also depends on the swath and the original ESA processing. 

Some versions of ESA processors applied range multi-looking on high 

incidence swaths. That leads to different ENL among the images, having high 



incidence angles a higher ENL. The images used in this study, corresponding 

to swaths 6 and 7, are 3 looks, except that of the 17/04/03 that was processed 

with an older processing version. Details are shown in Table 7.6. As a 

consequence, S6 and S7 look clearer than low incidence angle swaths images.  

 
Date Swath ENL 

Figure 7.10 and Figure 7.11 

show the subset image corresponding to 

La Masquère region, before and after 

filtering respectively. The 4 available 

swaths S1, S2, S6 and S7 are displayed 

clockwise. Each swath was filtered 

separately. S6 shows an artefact on the 

right side because one of the images is 

smaller than the rest and there are no data. 

13/03 S6 3 
22/03 S1 1 
29/03 S7 3 
17/04 S6 1 
26/04 S1 1 
03/05 S7 3 
16/06 S2 1 
26/06 S6 3 
05/07 S1 1 
12/07 S7 3 
21/07 S2 1 
31/07 S6 3 

Table 7.6. Equivalent number of looks 
for each one of the ASAR images. 

 

The uncertainty in the backscattering of ASAR images depends on 

the Equivalent Number of Looks. For images with an original ENL=3, an 

ENL=240 can be achieved by applying pixel averaging to an area of interest 

(AOI) of about 240 pixels, depending on the AOI location in range 

(radiometric resolution is higher at far range than at near range). The related 

confidence level is of 90% for radiometric resolution bounds of ±0.5 dB.  

The backscattering measurements used in this study have been field 

averaged (with sizes of the order of 200 pixels). In addition the original ENL 

of the images (Table 7.6) were increased thanks to the multitemporal speckle 

filtering. 
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Figure 7.10. Area of La Masquere before filtering. The figures are RGB multi-date 
composites: a) R(26/04-VV), G(22/03-VV), B(05/07-VV, b) R(16/06-VV), G(21/07-

HH), B(21/07-VV) c) R(26/06-VV), G(31/07-VV), B(13/03-VV) and d) R(12/07-
VV), G(03/05-VV), B(29/03-VV). 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.11. Example showing the area of La Masquere after filtering. The number of 
bands used are x,x,x,x from swath 1 to swath 7. The figures are RGB multi-date 
composites: a) R(26/04-VV), G(22/03-VV), B(05/07-VV, b) R(05/07-VV), G(22/03-
HH), B(26/04-HH) c) R(29/03-VV), G(03/05-VV), B(12/07-VV) and d) R(05/07-
VV), G(22/03-VV), B(26/04-VV). 
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7.3 Evaluation of the consistency of the 
measured backscattering. 
 

In order to evaluate the consistency of the ASAR-APP data from 

Toulouse, the backscattering behaviour of a forest is analysed in this section. 

The temporal, angular and polarisation behaviour of a forest is usually well 

known. A cover of dense forest is expected to have a stable temporal variation. 

The Bouconne forest, that was included in almost all the scenes, was 

selected. This forest is mainly composed of oaks and there are also other tree 

species, like beech trees, pine and chestnut trees. Finally, the backscattering 

values were also compared with ERS measurements in 1998.  

   

Temporal evolution: 

The backscattering from a forest depend on its structural and 

biophysical characteristics, as well as on the soil background, being the soil 

contribution to the total signal higher in the case of low fraction of vegetation 

cover. Roughness and soil moisture are parameters that can introduce 

variations in the temporal signal. Biomass and vegetation moisture are 

parameters controlling the scattering. The vegetation moisture can introduce 

variations in the dielectric constant of the vegetation, although, it does not vary 

significantly, except for the periods of leaves fall. As biomass can be 

considered constant, and vegetation dielectric constant is relatively stable we 

expect the Bouconne signal to be also stable, except in the case of a strong 

contribution of the soil. Figure 7.12a shows that the signal is relatively stable 

but, at the same time, it shows a decreasing trend of the backscattering along 

the year, in all swaths. The reason for this decrease may be the particular 

conditions of year 2003, which was characterised by a strong drought.  It may 
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also be due to a reduction of water content in the trees cover, and under-store, 

also as a consequence of the drought.  

 

Angular behaviour: 

The angular behaviour shown in Figure 7.12a seems to deviate 

slightly from a cosines law, decrease of 1dB from 20° to 40° incidence angle. 

However it is difficult to ensure this statement, as multi-angular acquisitions 

are not simultaneous.  

 

Polarisation behaviour: 

The polarisation response was as expected. The C band waves 

interact with the tree elements: leaves and small stems. If leaves and small 

stems are randomly oriented in the space, i.e. there is not a predominant 

structural orientation. HH and VV response should be similar. The medium 

will also introduce a de-polarisation of the signal giving a significant cross 

polarisation (HV) backscattering. An important characteristic of the forest 

surfaces at C band is that the ratio HH/VV is very stable for all incidence 

angles (Figure 7.12b). 

 

Comparison with ERS data: 

In terms of absolute value, ASAR measurements in VV polarisation 

are in agreement with previous ERS observations. Figure 7.12a shows that 

VV backscattering for low incidence angles (S1) were comparable to those 

measured by ERS-2 (23° incidence angle) in May 1996 and April/May 1998, 

being around -7 dB. The ratio HV/VV was higher than -8 dB, which confirms 
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that the dominant phenomenon was not the surface scattering, but volume 

scattering (Ferrazzoli et al., 1999).  

 

a) 

 

 

 

 
 
 
 
 
 
 
 
 
 
b) 

 
 
 
 
 

 
 
 
 

 
 

 
 

 
 
 

 
Figure 7.12. a) ASAR Backscattering at HH, VV and HV polarisations in the 

Bouconne Forest, year 2003.  b) HH/VV and HV/VV ratios. 
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7.4 Analysis of ASAR temporal backscattering 

measurements of crops.  

 

In Chapter 6, a crop classification algorithm for the area of 

Flevoland, which used fully polarimetric radar data, was presented. This 

algorithm cannot be directly applied using data acquired with the ASAR 

instrument, because ASAR can only measure two polarisations at the same 

time, and therefore it is not a fully polarimetric instrument.  

The analysis in Chapter 6 showed that, from the non-fully 

polarimetric features, HV and HV/VV ratios were very interesting to 

discriminate crops. HV was found useful to discriminate crops with different 

level of biomass and the ratio HV/VV was found to be a good 

vegetation/non-vegetation discriminator. It was also shown that, the structural 

effects could also be the basis of a rule for crop separation.  

The objective of this section is to confirm the findings of Chapter 6 

using ASAR data. To this aim ASAR data acquired over Toulouse were used 

(see Table 7.4). An image from in the region of Barrax was also used.  

 

Extraction of the crop backscattering: 

The average backscattering of agricultural fields identified in the 

ASAR images was extracted. In the area of Toulouse, three sub-regions were 

selected in order to cover a variety of spring and summer crops. The 

identification of the fields in the ASAR images was done with the help of the 

SPOT based classification of Figure 7.8. Analogously, in the Barrax image, the 

crop backscattering was extracted with the help of the Landat based 

classification that was shown in Chapter 3.  
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In Toulouse, colza, wheat sunflower and corn fields were analysed, as 

well as some areas of deciduous forest. The later were selected in order to 

evaluate the degree of confusion with crops.  

In Barrax, alfalfa, small grain spring cereals (non irrigated cereal and 

spring irrigated cereal), summer irrigated crops (mainly corn and sugar beet), 

double harvest fields (cropped with cereals in sprint) and some bare soil fields 

were identified.  

 

Vegetation-non/vegetation: 

Figure 7.13 corresponds to the scatter plots HV versus HV/VV in 

swath 7, for two different dates, 29/03 (Figure 7.13a) and 03/05 (Figure 

7.13b).  

In that figure, it can be observed that HV/VV separates two clusters 

of points: spring crops (colza and wheat) from non-cropped fields (labelled 

with sunflower and corn) at the end of March. A threshold value around -7 dB 

could be used for separating the two clusters. At the beginning of May the 

same was observed, with the exception of a colza field that was confused with 

the fields that would be cultivated with summer crops. The same threshold 

could be used.  

The situation in mid-July was less favourable for the discrimination of 

crops (see Figure 7.14). The ratio HV/VV could not discriminate between 

summer crops (sunflower and corn) from harvested wheat and colza. A 

threshold value around -7dB could separate most of the corn fields. A poor 

development of sunflower fields, due to the very dry conditions of year 2003, 

may be the reason for the confusion between sunflower and harvested cereals. 



 

a) 

 

 

 

 
 
 
 
 
 
 
 
 
b) 
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Figure 7.13. HV 
versus HV/VV ratio in swath 7, corresponding to crops in the area of Toulouse at 

two different dates a) 29/03/2003 and b) 03/05/2003. 
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 When displaying HV versus HV/VV in Barrax on the 20/04/200 a 

clear separation between spring crops (labelled as alfalfa, spring irrigated and 

non irrigated cereals) and bare soils (labelled as bare soils and and summer 

irrigated) is obtained in the X axis (see Figure 7.15). A threshold of around 

8dB could be used. The alfalfa field out of the cluster corresponds to an alfalfa 

field that was harvested.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.14. HV versus HV/VV ratio in swath 7, corresponding to crops in the area 

of Toulouse at 12/07/2003. 
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Figure 7.15. HV versus HV/VV ratio in swath 7, corresponding to 
crops in the area of Barrax at 20/04/2003. 

 
Level of biomass:  
 

In Chapter 6, HV was used to separates crops with different levels of 

biomass. The same capability was found with ASAR data. The situation at the 

beginning of May was very interesting (Figure 7.13b). It corresponds to the 

moment in which rapeseed pods were present. This was also observed at 

Flevoland (Figure 6.9). At the end of March (Figure 7.13a) colza and wheat 

had similar levels of biomass. In mid-July sunflower and corn fields could not 

be discriminated with HV because of the same reason. 

In Barrax (Figure 7.15) on the 20/04/2003 cultivated fields (spring 

cereals, non irrigated cereals, and alfalfa) had similar levels of biomass. The 

alfalfa field with a lower level of biomass, due to harvest, was detected.   
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Deciduous forest: 
 

Deciduous forest showed a relative stability in the HV signature 

(Figures 7.3 and 7.14). This temporal stability could be used to mask forested 

areas in a classification method.   

 
Structural effects: 

 

At it will be shown in Section 7.5 of this chapter, the vertical 

structure of small grain cereals contributes to a higher attenuation of VV 

compared to HH. This physical phenomenon can also be used for a 

classification. Figure 7.16 shows the high increase in the HH/VV ratio at high 

incident angles for crops with vertical structure (wheat and rapeseed) from mid 

March (very low biomass level) to mid April (high biomass level). It is 

important to remark that not, only wheat fields, but also rapeseed fields show 

the same behaviour. At low incident angles, the same effect occurs. Thus, in 

Figure 7.17a the higher HH/VV ratios correspond to wheat and rapeseed 

fields.  

In July (Figure 7.17b) no structural effects are observed.  

 

This analysis shows that the HH/VV ratio could be used as a 

discriminator for crops with vertical structure, provided they are well 

developed (April in Toulouse). At early stages (13/03 in Toulouse) some 

confusion with non vegetated fields was still observed. In our dataset, high 

incident angles appeared more useful than low incident angles. However this is 

also a consequence of the acquisition date.   



 

a) 

 

 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.16.  VV 
versus HH/VV ratio in swath 6 for different crops in the area of Toulouse at two 

dates, a) 13/03/2003 and b) 17/04/2003. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 

 
b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.17. VV 
versus HH/VV ratio in swath 6 for different crops in the area of Toulouse at two 

dates, a) 16/06/2003 and b) 21/07/2003. 
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Conclusion on the analysis of the backscattering measurements of 
crops: 

 
At it was concluded in Chapter 6, for a particular area, the crop 

calendar is critical for the success in crop discrimination. In this sense, the time 

distribution of the dataset in Toulouse was good. However, the mixture of 

polarisations and swaths made the analysis of crops signatures difficult.  

The analysis using ASAR data in Toulouse confirms that the ratio 

HV/VV can be used for discriminating between cropped fields and non-

cropped fields. 

Better results were obtained with high incident angles. 

For crop classification studies, there is a need of operational data 

acquisition with ENVISAT-ASAR, which was not achieved in the area of 

Toulouse. Future missions like Sentinel-1 will accomplish this requirement.  
 

7.5 Relationship between biomass and the 

backscattering coefficient for wheat canopies. 

 

The radar signal is sensitive to biomass or other related vegetation 

parameters such as plant water content or LAI of agricultural fields. Early 

studies using a ground based radar, showed the correlations between plant 

water content and the radar basckcattering coefficient, allowing the monitoring 

of the growth of crops such as corn or wheat (Ulaby and Bush, 1976, Ulaby et 

al 1984). Higher incidence angles (40° or more) were found more appropriate 

for an effective monitoring of crop growth.  

For the case of wheat, past studies using X-Band scatterometer 

(Figure 5.18) data demonstrated the possibilities of biomass monitoring (Le 
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Toan et al., 1989). Mattia el al, (2003) concluded that the C-Band HH/VV 

ratio (with a preference for high incidence angles) can be an indicator of wheat 

biomass. At some wheat stages VV is strongly attenuated by stems and not 

HH, as a consequence of the stems vertical structure. This attenuation is 

stronger at high incidence angles. Biomass can be detected by the attenuation 

of the soil signal that the canopy produces, rather than by the direct 

contribution of the canopy to the total measured backscattering. However 

scattering mechanisms are different at each wheat stage and affect differently 

VV and HH polarisations. A significant change in the scattering mechanisms 

occurs when ears appears. In addition the changes on soil moisture and soil 

roughness affect the temporal backscattering.  

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Measured temporal patterns of backscattering coefficient and LAI of a 
spring wheat in France. (From LeToan et al., 1983). 

 

Before heading, HH and VV, at low and at high incidence angles, are 

related to biomass but, after heading, a unique polarisations does not show a 

relationship with biomass. The ratio HH/VV was found to enhance sensitivity 
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to biomass. At low incidence angles, HH/VV was not very correlated with 

biomass, but at high incidence angles the relationship was clear. Furthermore, 

it was not sensible to soil moisture. A strong linear correlation between 

HH/VV and biomass at 40° incidence angle was reported. 

 

Practical applications for the retrieval of wheat biomass using satellite 

data were not achieved, due to the lack of appropriate multitemporal SAR data 

over agricultural surfaces. The ESA ASAR sensor onboard the ENVISAT 

satellite can measure two simultaneous polarisations HH/VV, HH/HV, 

VV/HV at different incidence angles (not simultaneous) from space. This 

motivated the study conducted in this work.  In this chapter, the capabilities of 

ENVISAT/ASAR data to monitor wheat biomass, taking advantage of the 

differences between the HH and VV polarisation measurements that occurs 

over wheat surfaces, were investigated. 

 

7.6 Backscattering coefficient from a wheat canopy. 

 

The interpretation of the temporal evolution of the backscattering 

coefficient of a wheat canopy is still a research issue due to the complexity of 

the phenomena involved. Recently, experimental studies have been conducted 

to understand the different scattering mechanisms contributing to the 

backscattering described in Figure 5.14 of Chapter 5. For instance, the work 

of Brown et al., (2003) using a 3-D radar system of high resolution, permitted 

to localize the scattering sources within a mature wheat canopy. Their 

measurements showed that, at HH polarisation, soil dominates the 

backscattering for all incidence angles. At VV polarisation the soil 
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backscattering is only dominant for angles less than 35°. For angles >35° 

contribution of the upper canopy is the dominant term at VV, due to the 

interaction with ears and flag leaves. The cross-polarized return, HV, is mainly 

due to the soil and the volume scattering is not the dominant term. An 

analogous experiment by Gomez-Dans et al, (2006) which used polarimetric 

interferometry, corroborated the results of Brown et al., (2003). 

The previous experiments were done at a particular wheat stage 

(mature wheat, already with ears). As the structure of wheat changes along the 

growing season, mutitemporal studies are necessary for the development of 

retrieval methods. In this sense, the HH and VV backscattering coefficient in 

C-Band was investigated in an experiment at the Matera site (Italy) for 

different wheat phenological states and different incident angles, using 

scatterometer data (Mattia et al., 2003). This work is a very valuable 

documentation of wheat temporal scattering.  

Recent experiments revealed discrepancies with current wheat 

models, in particular the model of Marliani et al., (2002). This is probably 

because many of the existing models overestimate the attenuation caused by 

wheat stems (Cookmartin et al., 2000). The work of Picard et al., (2003) 

demonstrated the important role of multiple scattering in a wheat canopy and 

provided a more realistic calculation of the canopy attenuation. However, in 

this model, the canopy is described only as stems, which has limitations to 

describe the stages of wheat in which ears and leaves could contribute to the 

total scattering.  

In conclusion, although in the recent years theoretical works for crops 

have significantly improved (Shriver et al., 1999; Saich and Borgeaud, 2000; 

Cookmartin et al., 2000; Picard et al., 2003), the quantitative description of the 
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scattering phenomena in wheat canopies is not yet achieved.  Thus, possible 

inversions methods need to be based on empirical relationships.  

 
7.7 Study of the backscattering coefficient of a 
wheat canopy. 
 
7.7.1 ASAR measurements in a wheat field in the Toulouse 

area. 

The experimental field of La Masquere was monitored with ASAR 

during year 2003. ASAR measurements have been done at thirteen different 

dates (see Table 7.4). The field was planted with wheat from the acquisition of 

date 13/03 to the acquisition of date 26/06 (DOY 170). In that period, 8 

images were available, at different polarisations and incidence angles:  

- -6 images were acquired at HH&VV polarisations, from 

which 3 correspond to swath 6, 2 swath 1 and 1 swath 2. 

- -2 images were acquired at VV&HV polarisations in swath 7.  

The wheat field was harvested after date 26/06. After harvest, 5 more 

images were acquired and were used for speckle filtering.  

The soil roughness of a wheat field does not change significantly 

along the growing season. Thus it is not taken into account in the analysis.  

 

Temporal variation of HH and VV scattering:  

Figure 7.20 reports the HH and VV backscattering measured by the 

ASAR instrument. Because there were few measurements for each angular 

range, low incidence angles (swath 1 and swath 2) were grouped, as well as 

high incidence angles (swath 6 and swath 7), even though this adds some 
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fluctuations to the temporal profile. When the field was planted with wheat, 

the backscattering at low incidence angles was higher than at high incidence 

angles, due to the longer path through vegetation and to the higher attenuation 

that occurs in the case of high incident angles. These angular differences were 

affected by the phenology of wheat. After harvest (DOY > 170) the 

differences of the backscattering among swaths 1-2 and swath 6-7 were more 

constant.  

The soil was relatively dry during the season (see Figure 7.7) with the 

exception of a rainfall event on DOY 116 (26/04). However, soil moisture 

during that event (18%) was not very high, comparing to other years.  

Figure 7.20 confirms the following statements: 

 

a) During the cereal season HH and VV polarisations behaved 

differently. VV was more attenuated than HH for all incidence 

angles.  

b) The attenuation was different for low and high incidence angles, 

being also affected by crop phenology. 

 

At high incidence angles, VV decreased due to the growth of wheat: 

from March 13 (DOY 72) to April 17 (DOY 107) there is a decrease of 5 dBs 

in the measured backscattering at swath 6, while HH decreases less than 1 dB. 

On May 3 (DOY 123) VV at swath 7 also showed this strong attenuation.  

At low incidence angles, VV also showed a decrease along the season, 

but it was less important than at high incidence angles: 0.1 dBs from March 22 

(DOY 81) to April 26 (DOY 116), and 2.5 dBs from March 22 (swath 1) to 

June 16 (DOY 167, swath 2). HH increased 3 dBs from March 22 to April 26, 



which is explained by the higher soil moisture, and decreases 3 dBs form 

March 22 to June 16.  

After harvest, the behaviour of HH and VV polarisations 

corresponds to a slightly rough soil surface. The effect of polarisation was 

weak, being VV slightly higher than HH for all the angles of incidence. 
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Wheat Soil
 

 
 

Figure 7.20. HH and VV Backscattering for the experimental site in 2003 at high 
(swath 6) and low (swath1&2) incidence angles. 

 

Figure 7.21 displays the backscattering ratio HH/VV in dBs, for 

swaths 1-2 and swaths 6-7, together with the wheat phenological stage. The 

figure confirms, as shown in Mattia et al., (2003), that the ratio HH/VV 

follows the development of wheat. 
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Soil

17//04 – 26/04 Stem Ellongation 

13/03 Beginning of Tillering 

22/03 Tillering 

16/06 Hard Grain 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.21.  Ratio HH-VV for the experimental site in 2003 at high (swath 6) and low 
(swath1&2) incidence angles. 

 

 

   

 

 
 
 
 
 
 
 

 
 
 

 
 

 
 

Figure 7.22.  Ratio HH/VV for wheat fields in 2003 distributed in two regions of the 
ASAR images, named as EXT-1 and EXT-2.  
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The same behaviour has been observed for other wheat fields in the 

region (Figure 7.22). 

 

7.7.2 Biomass relationship. 

 

The biomass relationship obtained for La Masquère site is shown in 

Figure 7.23. It can be observed that the HH/VV ratio follows the biomass 

curve, both in the case of small incident angles (swath 1 & 2) and high incident 

angles (swath 6). However, this behaviour may be affected by the rain event of 

April 26. This, together with the limited number of ASAR acquisitions 

available for this study does not allow obtaining a meaningful regression 

between the biomass and the HH/VV ratio.  

 

The swath 6 measurements in Toulouse were compared to other 

radar measurements that were also acquired at a high incidence angle over 

wheat. Two kinds of measurements were used. The first set of data are 

scatterometer measurements from Mattia et al., (2003), acquired in a field in 

the Matera site (Italy), and from Brown et al., (2003), acquired by the ground-

based SAR indoor system of the University of Sheffield in the UK. The second 

set of measurements used for this comparison are also from the Matera site, 

but were acquired by ENVISAT-ASAR during 2003 and 2004. The later were 

extracted from (Mattia et al., 2005). The comparison is shown in Figure 7.24.   

The comparison of measurements of Figure 7.24 confirms that there 

is a relationship between the HH/VV ratio and biomass for high incident angle 

measurements. It also indicates that the relationship is different for each site, 

which makes the inversion of biomass difficult. 
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Figure 7.23.. HH/VV and biomass relationship for data in La Masquere 2003. 

 

7.7.3 Discussion and conclusion on the retrieval of wheat 

biomass. 

 

Unfortunately, this study was limited by the few ASAR images that 

were possible to acquire in the area of Toulouse. In spite of the few 

acquisitions, it was shown that the HH/VV ratio can be used to monitor the 

growth of wheat (Figures 7.22 and 7.23). This study also confirmed that the 

HH/VV ratio increases with biomass (Figure 7.24). However, the relationship 

could be site specific and it is dependent on many factors, including, soil 



moisture, wheat density, plant structure and external factors, like wind, that 

affects the vertical structure of the plant. Theoretical modelling would be very 

useful to better understand the effect of those factors in the relationship. If 

more data were available, the biomass could have been established, but, due to 

the number of external factors that affect the relationship, the robustness of 

the method seems questionable. Therefore, more research is necessary on this 

subject. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.24. HH/VV and biomass relationship for data in La Masquere 2003 (LM), 
Matera (MAT) and UK. 

 

Another aspect that should be taken into account is the need of 

developing angular compensation methods. In the case of ENVISAT-ASAR, 
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these methods are necessary because, to observe the wheat cycle with a 

temporal resolution higher than 35 days, the ASAR measurements should be 

acquired with more than 1 swath. In conclusion, due to the dependence of the 

angular compensation with the phenology of wheat, as was reported by Mattia 

et al., (2003), more temporal measurements over wheat sites are needed, as 

they would be very valuable to develop angular compensation methods.  

 



252  
 

 



  

253  

           
 
 
 
 
 
 

 

 

CHAPTER 8:  

SUMMARY AND CONCLUSIONS 

 

The objective of this study was the development and assessment of 

methods for the classification of crops and the estimation of LAI, Chlorophyll 

and biomass, which are based on the use of optical and radar remote sensing 

data, with the aim to assist the operational or quasi-operational systems of crop 

monitoring in agricultural applications. 

 

After an introduction given in Chapter 1, the first part of this study 

starts with an overview of the retrievals of biophysical parameters from optical 

data given in Chapter 2.  Chapter 3 is dedicated to the estimation of LAI in 

Barrax, an area with diversity of crop types and crop growth cycles. The LAI 

was retrieved, in a pixel-by-pixel basis, for 12 LANDSAT-TM images covering 

the agricultural season of year 2003. The PROSPECT+SAIL models were 

inverted using a technique based on LUTs (Look Up Tables). The results were 

successfully validated with in situ LAI measurements taken in July. The use of 

in-situ measurements (leaf chlorophyll content, leaf dry matter, leaf water 

content) together with other a-priori information (soil background spectra 
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type, soil background variability, LAI range of variation, plant structure, 

literature values) was an essential part of the methodology. This information 

was used as input to the models to construct the LUTs. It was shown that 

relatively simple methods driven with adequate ground information allow 

obtaining LAI estimations for many different crops with good accuracy.  

For the Barrax region, the assumptions on the soil background 

variability were valid and did not appear to be a major source of error. 

Nevertheless, in view of applications to other regions, the effect of the soil 

background variability (due to soil moisture or soil type) on the LAI retrievals 

needs to be further investigated.  

The comparison of the physically based method with the empirical 

relationships relating LAI and NDVI allowed us to conclude that these 

relationships are more dependent on crop type than the physically based 

approach. Furthermore, the inversion method allowed us to access to higher 

values of LAI than with the NDVI-LAI relationship, which saturates at smaller 

values of LAI.  

This study was focused on the retrieval of effective LAI, but, in 

future work, it would be desirable to use clumping corrections to try to obtain 

the true LAI, in particular, for the case of corn (Duthoit, 2006). Another 

improvement to the LAI inversion methodology applied in this study would be 

to add a temporal dependent term in the function that is minimized during the 

inversions. In Chapter 4 this aspect was investigated using MERIS data. 

Chapter 4 was dedicated to the development of a multi-temporal 

method to retrieve LAI and chlorophyll using MERIS-FR data, in the area of 

Barrax. The method also inverts the PROSPECT+SAIL model, with the 

particularity that temporal dependent terms (temporal constraints) were 
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introduced in the merit function, which is minimized using an iterative 

algorithm. The method was applied to small grain cereal fields and the results 

were compared with date-by-date inversions, which used the same model and 

iterative inversion method. The comparison showed that the multi-temporal 

method performed better. Different terms were investigated, and the best 

results were obtained with a constraint in the temporal evolution of the 

product LAI x Chlorophyll.  

The use of MERIS data for the monitoring of crops in the region of 

Barrax had serious limitations because of the spatial resolution of MERIS and 

the field sizes. The accuracy of the results could be improved by correcting the 

inversions for the percent of soil present in the MERIS pixels. This could be 

done by means of parameters like the fraction of vegetation cover.  However, 

to be coherent with the SAIL model assumptions (the pixel is homogeneous), 

the correction should be done previously to the inversion. Un-mixing 

techniques for MERIS data were proposed by Zurita-Milla et al., (2007) and 

could be introduced as a previous step in our algorithm. Better results would 

also be obtained with a higher spectral sampling similar to that of CHRIS-

PROBA.  

The hypotheses of the models were one of the main limitations of the 

methodologies used in Chapter 3 and 4. These hypotheses are the main source 

of error, as it was discussed previously, and the quantification of this source of 

error requires further study. In this sense, the last version of PROSPECT 

(Feret et al., 2008) is expected to improve the Chlorophyll estimations. 

However, the retrieval of leaf Chlorophyll Content from satellite data is a 

difficult task and we believe that much more work is needed at the same time 

in modelling and inversion techniques. 
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To observe crops in Northern Europe, radar data were preferred to 

optical data, due to the high presence of clouds in that region.  

 The classification of agricultural crops using C-Band polarimetric 

airborne data was addressed in Chapter 6, where a hierarchical algorithm 

based on five physical rules was proposed. The algorithm rules were developed 

using the scattering mechanisms and scattering behaviour of the different crop 

fields. The first rule of the algorithm separates vegetation and non/vegetation 

using the HV/VV and HV/HH ratios. The second rule separates broad leaf 

from small stem crops with a condition on the circular polarisation ratio 

RR/RL. Finally the cross-polarised backscattering, HV, is used to discriminate 

different levels of biomass in the small stem class and the HH_VV correlation 

is used to separate subclasses in the broad leaf class. The algorithm was 

developed for the region of Flevoland, The Netherlands, and validated with a 

crop map obtaining good results. Accuracies of 73% in mid-July and 65% in 

late July were obtained. 

 This classification work permitted to conclude that a limited number 

of polarimetric measurements had sufficient information content to perform a 

classification of crops present under northern European agricultural areas. The 

algorithm could not be applied with success to the area of Barrax (Spain) 

mainly because the images acquired in that area were not adapted to the actual 

crop calendar of the region. However, the analysis in Barrax proved that the 

algorithm rules are robust. HV/HH and HV/VV ratios served to detect the 

harvest of small grain cereal from June to July. The changes in the structure of 

crops were detected with the RR/RL ratio, as well as the changes in the 

biomass level, using HV. Better result could be expected for Barrax with an 

image acquisition schedule more adapted to the particularities of the region. 
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Also, in this area of South Europe, were the presence of clouds is not a 

limitation, classification algorithms using optical data would give much better 

results.  

  The main conclusion is that the methodology proposed seems robust 

and can be adapted to other sites provided there is a knowledge of the crop 

calendar and the crop types present in the area. 

 The final part of this work, presented in Chapter 7, consisted of the 

analysis or ENVISAT-ASAR images acquired in Toulouse. The mixture of 

polarisations and swaths limited the analysis of the ENVISAT-ASAR images 

for crop discrimination. Nevertheless this analysis confirmed that the HV 

backscattering coefficient was a good discriminator of biomass level. Also the 

HV/VV ratio was found robust for discriminating between cropped and non 

cropped fields. In Toulouse, better results were obtained in terms of 

discrimination of crop fields when using high incident angles.  

 Another advantage of radar data compared to optical is that they 

contain information useful for the retrieval of biomass. The second objective 

of Chapter 7 was to investigate the estimation of wheat biomass by means of 

the HH/VV polarisation ratio. To this aim a dedicated campaign for the 

acquisition of ground measurements in a wheat field was conducted in year 

2003. This study permitted to confirm previous investigations (Le Toan et al., 

1998; Mattia et al., 2003), which showed that HH/VV ratio increases with 

biomass. The results with ENVISAT-ASAR show that the HH/VV ratio can 

be used for the monitoring of wheat growing. However, the inversion of wheat 

biomass encountered a limitation, which was the lack of a sufficient number of 

acquisitions with the same incident angle. The comparison of our results with 

other studies shows that the HH/VV and biomass relationship could be site 
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specific and much more work is needed for the development of a biomass 

inversion method. The relationship depends on many factors: soil moisture, 

density of wheat, plant structure. Also, a precise knowledge or the wheat 

phenological is very important for the interpretation of the backscattering 

measurements. A recommendation for future work is to guarantee the best 

possible characterisation of all the relevant parameters related with the wheat 

structure and phenology. More work is also needed for developing angular 

compensation methods.  

In this work, the relationship between backscattering and biomass 

was investigated for one type of crop. But certainly other types of relationships 

may hold (as suggest Chapter 6) for different crops and backscattering 

measurements. Particularly interesting appears the cross polarisation, HV.  

 

General conclusions: 

 This study showed the importance of using multi-temporal datasets 

for crop studies. Remote sensing of biophysical parameters is by essence an 

inverse problem. The monitoring of biophysical parameters requires the 

acquisition of images with high temporal resolution and an adequate spatial 

resolution. This is often a limitation in the application of remote sensing 

methods, due to the lack of this kind of data for a given site. This work 

benefited from an un-usual dataset (12 LANDSAT images along the same 

year) and demonstrated the practical applicability of LAI inversion in a large 

area. It was also shown, by using a temporal constraint in the LAI & 

Chlorophyll inversion from MERIS data, how the temporal dimension itself 

could be used to improve the biophysical parameter retrieval. Recent missions 

like FORMOSAT and future VENUS, that will be able to provide a high 
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temporal frequency and spatial resolution, will offer new perspectives for the 

methods explored in this work.  

 With respect to crop classification using radar data the same 

conclusion applies. Classification methods benefit from multi-temporal 

acquisitions. If the temporal resolution is not sufficient, it is not possible to 

observe some important changes in the structure of crops. Indeed, the 

experience in Flevoland demonstrated that, to optimize the results, it is 

required to use weekly observations due to the dynamics of crops. 

Furthermore, it was shown that the use of C-band polarimetry is a good mean 

to improve the classification of crops. The algorithm proposed in this study is 

particularly suitable for application to the new RADARSAT-2 data.  

 Finally, this is one of the few studies that show in practice the 

possibilities offered by the combination of different types of data (radar and 

optical), in order to obtain the maximum information useful for crop 

monitoring.  The combination of optical and radar data provides estimations 

of LAI and biomass, which are two key variables for the understanding and 

modelling of crop growth. Nevertheless, the acquisition of simultaneous 

optical and radar satellite data with an adequate spatial resolution is not yet a 

reality. However, current satellite data offer many perspectives for the synergy 

of both types of data.  
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RESUMEN EXTENSO EN CASTELLANO  

 

 

Esta memoria se ha redactado originalmente en inglés. El presente 

anexo, en castellano, es un resumen extenso de la misma y se ha introducido 

para cumplir con la normativa de la Universidad de Valencia. La versión 

original en inglés es mucho más completa y contiene todos los detalles del 

trabajo científico que se defiende en esta tesis doctoral. 

 

INTRODUCCIÓN 

 

A.1.  Contexto científico. 

 

A.1.1.  Necesidad de una monitorización agrícola. 

 

El aumento de la población mundial, la incertidumbre en los cambios 

de producción causados por el cambio climático, así como la importancia 

social y económica que el sector agrícola tiene en muchas regiones del mundo, 

hace que sea muy importante desarrollar métodos que permitan hacer un 

seguimiento del estado de los cultivos, mejorar la gestión de los mismos, así 

como poder realizar una estimación temprana de la producción. Esta necesidad 

se ve reforzada por cuestiones referentes al cambio climático y a la evolución 

de las prácticas agrícolas. 
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En cuanto a las actividades humanas, la Organización de las Naciones 

Unidas para la Agricultura y la Alimentación (FAO) señala que la población 

mundial aumentará a un ritmo de 43 millones por año en el período 2045 -

2050 (Bruinsma, 2003). Este aumento de población será consecuencia del 

crecimiento en los países en vías de desarrollo (45 millones), y el pronóstico es 

que la mitad de este aumento se llevará a cabo en el África sub-sahariana (23 

millones). En los países en vías de desarrollo, especialmente en África, el 

aumento de población agravará aún más el estado actual de desnutrición en el 

mundo. Se espera que los países industrializados reaccionen para aumentar la 

producción de alimentos de acuerdo al crecimiento de la población. Es un 

hecho que existe una preocupación general por la necesidad de aumentar la 

producción agrícola. 

 

Además, en el marco de lo que se conoce como estrategias de 

seguridad alimenticia, hay un interés en la predicción de problemas como las 

plagas y las infecciones en los períodos de sequía, que pueden dañar la 

producción de cultivos. En las regiones áridas y semiáridas del mundo los 

frecuentes períodos de sequía generan grandes pérdidas en la producción 

agrícola, las cuales se traducen en hambrunas así como en importantes pérdidas 

económicas en los países en vías de desarrollo. Se espera que estos problemas 

aumenten con el cambio climático, principalmente en la región del 

Mediterráneo, que podría ser una de las regiones más vulnerables al cambio 

global. Los estudios para la región mediterránea muestran una reducción de las 

zonas agrícolas y pérdidas de potencial agrícola durante el siglo XX (Schröter 

et al., 2005) debido a la disminución pronunciada de las precipitaciones tal 

como predicen Giorgi y Lionello (2008). 
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El cambio de hábitos alimentarios que se está produciendo en la 

actualidad en países emergentes importantes, tales como India y China, está 

aumentando la demanda de productos agrícolas. En estos países, un sector de 

la población cada vez mayor tiene suficientes recursos económicos para 

cambiar una dieta vegetariana, principalmente a base de arroz y otros cereales, 

por una dieta que incluye más proteínas de origen animal. El ganado debe ser 

alimentado con cereales, lo que aumenta la demanda y, en consecuencia, los 

precios de mercado. Por otra parte, algunos países desarrollados están 

aumentando su producción de bio-combustibles, lo cual disminuye la cantidad 

de los cultivos destinados al consumo humano. Esto también contribuye a 

incrementar los precios de los cereales. Por último, pero no por ello menos 

importante, la tendencia al alza de los precios está atrayendo especuladores a 

los mercados. El aumento general de los precios está causando tensiones 

políticas, como ocurrió durante la primavera de 2008 en países como Haití, 

donde el primer ministro tuvo que dimitir, Camerún, Senegal, pero así mismo, 

Egipto o Tailandia. Un modo de limitar el aumento de los precios sería 

aumentar la producción, lo que también requeriría aumentar la productividad 

agrícola. De hecho, durante la cumbre de la FAO de junio de 2008, se afirmó 

que se necesitan más inversiones para aumentar la productividad agrícola. 

 

La necesidad de un aumento de la producción ha inducido cambios 

importantes en las prácticas agrícolas durante las últimas décadas. Por ejemplo, 

el uso de fertilizantes se ha extendido en todo el mundo y los cultivos 

modificados genéticamente se utilizan como una solución para un aumento 

"sostenible" de la producción (Qaim y Wilberman, 2003). También existe una 

preocupación por los impactos asociados a estas nuevos prácticas agrícolas. La 
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expansión de la agricultura debe hacerse de forma sostenible ya que el uso 

generalizado de fertilizantes o la sobre-explotación de los recursos hídricos 

representa riesgos para el medio ambiente y puede incluso tener consecuencias 

para la salud humana. El aumento de los procesos intensivos tales como la 

irrigación y / o el uso indebido de fertilizantes también puede producir 

consecuencias negativas sobre la calidad del agua y la degradación de tierras de 

regadío, por ejemplo, como consecuencia de la salinización. 

 

Por último, otro cambio notable en la agricultura moderna es que, 

cada vez con más frecuencia, las rotaciones de los cultivos son decididas por 

las fluctuaciones del mercado y por reglamentos en materia de política (sobre 

todo en la UE). Esto introduce una nueva dinámica en la distribución de 

cultivos que hace necesaria una actualización frecuente de los mapas de 

cultivos. 

 

La otra cuestión importante por la cual se requiere un sistema de 

seguimiento de los cultivos es el impacto del cambio climático en la agricultura. 

Los estudios realizados durante las últimas décadas han aportado pruebas 

acerca de las modificaciones de varios parámetros climáticos (Salomón et al., 

2007). Por ejemplo, durante el siglo XX se han observado tendencias claras en 

las temperaturas de la superficie a escala mundial (Jones y Moberg, 2003). Las 

observaciones de satélite realizadas con datos AVHRR y ATSR han 

confirmado un aumento de la temperatura global del mar (+0,13 º C en una 

década). También se ha registrado un aumento de fenómenos extremos como 

olas de calor, sequías y eventos de precipitación extrema en diferentes regiones 

(Karl y Easterling, 1999). Los modelos climáticos actuales están de acuerdo 
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sobre el aumento de las temperaturas de la superficie del planeta durante el 

segundo semestre del siglo XXI. Por ejemplo, con una duplicación de la 

concentración de CO2, el aumento de la temperatura estará probablemente en 

un rango que va desde 2 a 4,5 ° C, con la mejor estimación en 3 ° C. Sin 

embargo, aunque esta es la pauta general prevista a escala global, los modelos 

indican una diversidad espacial importante en la manifestación de los efectos 

del clima (Räisänen, 2007). 

 

El efecto retroactivo del cambio climático sobre la agricultura es 

complejo. El aumento de la temperatura y el aumento en la concentración de 

CO2 atmosférico podrían afectar a los procesos biológicos de la planta 

(fotosíntesis, respiración, crecimiento, etc) (Barnes et al., 1995; Booker et al., 

2005). El efecto fertilizante del carbono en la atmósfera podría producir un 

aumento general de la actividad de la vegetación y de la producción (Long et 

al., 2005). Sin embargo, la respuesta positiva de la actividad de vegetación y de 

la producción con el cambio climático sólo se espera en zonas con una 

adecuada disponibilidad de agua, por el contrario, las zonas afectadas por un 

aumento de la temperatura y la evapotranspiración, junto con una disminución 

de las precipitaciones, van a sufrir de un mayor estrés hídrico en la vegetación, 

que, a su vez, causaría una disminución de la producción (Vicente-Serrano et 

al., 2006). Por último, los fenómenos extremos (olas de calor, sequías, 

precipitaciones extremas) tiene un efecto negativo en la producción de cultivos 

(Vicente-Serrano, 2007). Los efectos indeseables que el cambio climático puede 

tener en la producción de cultivos muestran que actualmente hay una 

importante necesidad de realizar un seguimiento de los cultivos, que debe 

mantenerse en el futuro. 



302  
 

A.1.2.  Seguimiento de cultivos. 

 

En la sección anterior se puso de relieve que la relación entre la 

agricultura y el clima, y los cambios importantes en las prácticas agrícolas que 

se han producido durante la última parte del siglo XX, muestran que los 

sistemas de seguimiento de cultivos son necesarios. Para ser eficaces, esos 

sistemas deben satisfacer al menos los tres requisitos enumerados a 

continuación: deberían ser capaces de proporcionar un mapa de cultivos 

regularmente, realizar un seguimiento del crecimiento de los cultivos y, si es 

posible, predecir el rendimiento. A continuación, cada uno de estos requisitos 

se examina con más detalle. 

 

Cartografía de cultivos. 

 

El aumento sustancial de la agricultura intensiva, junto con la 

influencia de los reglamentos en materia de política, y las demandas del 

mercado, se traduce en cambios muy frecuentes en la superficie que se destina 

a la agricultura y en la distribución de los cultivos dentro de la tierra dedicada a 

la agricultura. Por lo tanto, para poder realizar estimaciones del rendimiento es 

necesaria una identificación regular de los cultivos, un inventario y una 

cartografía. Además de ser útil para la evaluación de la producción, la 

cartografía de cultivos también es útil para la gestión de los recursos hídricos o 

para realizar estimaciones del carbono fijado por el suelo, entre otros. 
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Seguimiento del crecimiento de los cultivos. 

 

El seguimiento del crecimiento de los cultivos consiste en 

monitorizar, durante el período de crecimiento, varios parámetros de la planta 

y del suelo, que son indicadores del status de la planta, junto con su estado 

fenológico. Estos parámetros son, por ejemplo, la altura de planta, el LAI 

(Índice de Área Foliar), la biomasa o el contenido en nitrógeno. Normalmente, 

la monitorización del crecimiento de los cultivos se centra en las siguientes 

cuestiones, que están a su vez interconectadas: 

 

-  Desarrollo fenológico: que es la sucesión de eventos biológicos 

durante la vida de la planta. El estudio de la fenología implica, por ejemplo, la 

observación del momento exacto en el que determinados órganos del cultivo 

aparecen (por ejemplo, las espigas del trigo ). La fenología se suele simular en 

términos de la suma de grados-día y características específicas de los cultivos, 

como son por ejemplo los factores de vernalización. 

 

-  Desarrollo de la cubierta vegetal: puede ser cuantificada 

mediante la medición del LAI, la biomasa o a la altura de la planta. En 

términos de procesos biológicos, el desarrollo de la cubierta vegetal es el 

resultado de la fotosíntesis, la respiración y la repartición de biomasa. La 

cantidad de energía recibida y la capacidad de la planta para utilizar esta energía 

van a determinar la producción de biomasa. La cantidad de radiación 

interceptada es una función del LAI. Sólo una parte de la radiación 

interceptada, denominado fPAR, es utilizada de forma eficiente por los cultivos 

para la acumulación de biomasa. La forma en que se realiza la repartición es 
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específica a cada tipo de cultivo. En la modelización del desarrollo de la 

cubierta vegetal, la diversidad estructural está controlada por variables 

genéticas que intervienen en esta repartición. 

 

-  Crecimiento de las raíces y capacidad de absorción: la función 

de las raíces de las plantas es la absorción de agua y nutrientes del suelo. Esto 

está estrechamente relacionado con las propiedades químicas y físicas del suelo, 

así como sus condiciones de humedad. Cualquier carencia de nutrientes, 

especialmente nitrógeno, o cualquier deficiencia en agua tiene un impacto 

negativo en el desarrollo de la planta. La escasez de minerales o nutrientes 

básicos en el suelo puede detectarse con análisis periódicos de muestras de 

suelo y compensarse mediante fertilización. El seguimiento de las condiciones 

de humedad también es necesario. En cuanto a aspectos biológicos, hay una 

gran diferencia entre el sistema racinal de los cultivos anuales (por ejemplo, 

trigo, maíz, patatas...) y el de los cultivos perennes (por ejemplo, los viñedos). 

 

-  Balance de agua entre la planta, el suelo y la atmósfera. Las 

necesidades de agua de un cultivo en un determinado momento dependen de 

variables ambientales (por ejemplo, la temperatura del aire), las condiciones del 

suelo y la fenología de los cultivos. Los procesos que intervienen en el balance 

hídrico incluyen la evaporación y transpiración, tanto en el suelo como en la 

planta. La lista de variables que intervienen en el balance de agua, 

principalmente describiendo la situación del suelo y el comportamiento del 

agua en el suelo, puede ser muy extensa (albedo del suelo, coeficientes de 

drenaje, etc....) pero lo más importante es la humedad del suelo. 
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-  Balance de nitrógeno en el suelo y en la planta. El contenido de 

nitrógeno en el suelo puede cambiar como resultado de descomposiciones 

orgánicas, fertilización, etc. Los cultivos absorben nitrógeno a través del 

sistema racinal y lo fijan en sus diferentes elementos. El contenido de 

nitrógeno en las hojas se relaciona con el contenido en clorofila, el cual es más 

fácil de medir que el contenido de nitrógeno. 

 

La información obtenida mediante el seguimiento de los puntos 

anteriores a través de la cuantificación de varios parámetros es de gran valor 

para la gestión de los campos, y es la base de las intervenciones humanas, 

como el uso de fertilizantes o la aplicación de un calendario de regadío 

concreto. Sin embargo, el seguimiento de los parámetros de los cultivos a lo 

largo de una temporada de cultivo es caro y consume mucho tiempo. Por lo 

tanto, hay una necesidad de desarrollar técnicas de teledetección que sean de 

utilidad en este contexto. 

 

Predicción del rendimiento de los cultivos. 

 

Varias técnicas han sido utilizadas para obtener una predicción 

temprana de la producción de cultivos, la mayoría de ellas basadas en 

observaciones de las condiciones climáticas que se sintetizan por medio de 

índices de sequía, índices de vegetación obtenidos a partir de datos de 

teledetección (por ejemplo, Mkhabela et al., 2005; Kalularme et al., 2003; Royo 

et al., 2003) y una combinación de ambos índices (Vicente-Serrano et al., 2006). 

Dichos métodos se basan en modelos de regresión entre el rendimiento final 

de las cosechas, datos climáticos e índices de vegetación. Aunque estos 
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métodos son ampliamente utilizados, tienen el problema de que las 

predicciones son dependientes de las medidas locales en la zona de estudio y a 

veces la extrapolación espacial es difícil, como consecuencia de la diversidad 

geográfica y las diferencias entre los cultivos. Para resolver estos problemas, 

también se pueden utilizar modelos más complejos, basados en procesos 

biofísicos. Estos modelos tienden a ser más generales que los métodos 

estadísticos basado en regresiones locales. Un modelo de crecimiento de los 

cultivos describe cómo una planta crece, es decir, la forma en que el carbono 

se ha fijado en la planta. Estos modelos requieren datos meteorológicos 

diarios: radiación solar, temperatura y precipitaciones. Muchos modelos se han 

desarrollado o adaptado a un único cultivo, a un número reducido de ellos o 

condiciones particulares de los cultivos tales como estrés hídrico, estrés de 

nitrógeno, condiciones de salinidad, etc. y hacen uso de muchos parámetros. 

De este modo, los beneficios de la utilización de sistema de seguimiento de 

cultivos que proporcione parámetros capaces de describir el desarrollo de la 

cubierta vegetal, por ejemplo el LAI serían muy importantes para la calibración 

del modelo, forzado, etc. 

 

En la literatura científica existe una gran diversidad de modelos de 

crecimiento de cultivos. Algunos de éstos modelos bien conocidos y sus 

correspondientes «familias» son SUCROS (Simple y Universal Simulador de 

crecimiento de los cultivos) (Spitters et al., 1989), CERES (Crop Medio 

Ambiente Recursos de síntesis) (Kiriny y Jones, 1986; Ritchie et al., 1985) que 

fue desarrollado para los cereales, CROPGRO (Hoogenboom, 1992) es una 

familia de modelos para leguminosas y STICS (Simulateur mulTIdisciplinaire 

pour les Cultures estándar) (Brisson et al. 1998) desarrollado en el INRA, 
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Francia. También hay "paquetes" de software como DDSAT (Decisión 

Sistema de Apoyo para Agrotechnology Transfer) (Jones et al., 2003) y APSIM 

(la Producción Agrícola Simulador de Sistemas) (McCown, 1986) que integran 

varios de los modelos anteriormente citados. 

 

Sin embargo, a pesar de la gran utilidad de estos modelos, hay 

notables limitaciones en relación a su calibración. Los parámetros de cultivo 

que describen el desarrollo de la cubierta vegetal y su dinámica son en general 

necesarios para la calibración de los modelos. Esto implica tiempo y toma de 

muestras sobre el terreno, con el consecuente coste económico. 

Desgraciadamente, muy a menudo hay una falta de representación espacial, 

principalmente en áreas en las cuales la diversidad espacial de los cultivos, así 

como la diversidad en las características del suelo y el clima, son importantes. 

Por lo tanto, debido a estas limitaciones, hay una necesidad de desarrollar 

métodos basados en datos de teledetección, que permitan el seguimiento de 

parámetros de cultivo en áreas extensas, para mejorar la predicción del 

rendimiento. 

 

A.2.  El papel de la teledetección en el seguimiento 

de los cultivos. 

 

El seguimiento de los cultivos se puede hacer por medio 

observaciones sobre el terreno a escala local. Sin embargo, a escala regional, la 

teledetección es más adecuada, tanto en términos de cobertura espacial como 

cobertura temporal. 

 



308  
 

Cartografía de cultivos. 

 

Como se dijo antes, la cartografía de cultivos es necesaria para los 

estudios de cambio de usos de suelo, el cambio climático, estudios hidrológicos 

y otras aplicaciones, como la predicción del rendimiento y la gestión eficiente 

de los recursos hídricos, ésta última se basa en estimaciones de la 

evapotranspiración (Simonneaux et al., 2008). Los mapas de cultivos se suelen 

utilizar en combinación con modelos de crecimiento de cultivos para la 

predicción de la cosecha o para la predicción del carbono fijado en el suelo 

(Doraiswamy et al., 2007).  

Debido a la cantidad de aplicaciones, la clasificación de los cultivos 

mediante imágenes de teledetección es un tema de investigación importante 

dentro del campo de la teledetección. Las ventajas de utilizar técnicas de 

teledetección, en lugar de las observaciones sobre el terreno, son un coste 

económico más bajo y la posibilidad de cubrir áreas extensas. Otra razón 

importante es que las clasificaciones son más fáciles de actualizar, debido a la 

posibilidad de repetir las adquisiciones de datos a lo largo del tiempo. 

 

Las metodologías para la cartografía de cultivos basadas en el uso de 

datos de teledetección procedentes de sensores ópticos están bien establecidas 

y han demostrado ser casi operacionales. La clasificación de cultivos utilizando 

datos ópticos es a menudo realizada con datos de una resolución espacial 

compatible con el tamaño del campo: en general a escala regional se utilizan 

Landsat-TM o SPOT-HRV. Los datos de resolución media (200 Km - 1 

kilómetro) y los datos de baja resolución espacial (> 1 kilómetro) se consideran 

a menudo como insuficiente en relación con el tamaño de los campos. Esos 
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datos (AVHRR, MODIS, MERIS, SPOT-VGT) se utilizan sobre todo para 

seguimientos temporales multi-anuales, y para obtener mapas de usos de suelo 

o de cobertura del suelo a escala continental o mundial (Loveland et al., 2000; 

Strahler et al. 1999; Bartholomé y Belward, 2005). Una limitación conocida de 

los datos ópticos es la presencia de nubes, que impide la adquisición de 

imágenes en el momento deseado. Los datos de radar, por el contrario, tienen 

la ventaja de ser independientes de la cobertura nubosa y, por tanto, presentan 

un alto potencial para la clasificación de cultivos. También puede suceder que 

la vegetación necesite ser observada en un momento fenológico concreto. Este 

es el caso, por ejemplo, cuando dos cultivos tienen un comportamiento similar 

durante su ciclo de vida, excepto en una fase concreta de desarrollo. Sin 

embargo, los datos de satélite radar no han sido utilizados a menudo para este 

propósito, (Saich y Borgeaud, 2000; Schotten et al., 1995; GRT y Mather, 1999) 

principalmente porque, hasta hace muy poco tiempo, los satélites sólo eran 

capaces de medir una única polarización lineal y en una sola frecuencia: ERS-1 

y ERS-2 operan en banda C con polarización VV, RADARSAT en banda C y 

polarización HH y JERS en la banda L, polarización HH. Las misiones futuras 

medirán la matriz completa de dispersión en una única frecuencia y es 

necesario desarrollar métodos de clasificación adecuados. 

 

Varios algoritmos utilizan los datos radar para la clasificación de 

cultivos. De manera general, pueden clasificarse en métodos basados en una 

base de conocimientos (knowledge-based approaches), clasificación por 

mecanismos de dispersión, y métodos estadísticos (Oliver y Quegan, 1998). 

Los métodos basados en una base de conocimientos se fundamentan en en el 

análisis de la física que determina la retrodispersión medida para cada tipo de 
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cultivo. Estos clasificadores tienen la ventaja de ser más robustos y fáciles de 

adaptar a las condiciones específicas de la zona que se clasifica. 

 

Seguimiento de la condición y del crecimiento de los cultivos por medio 

de datos de teledetección. 

 

Los datos de teledetección pueden ser utilizados para estimar 

parámetros biofísicos, los cuales son indicadores de la condición en que se 

encuentran los cultivos a lo largo de su ciclo de crecimiento. Las estimaciones 

multi-temporales de estos parámetros contribuyen al seguimiento del 

crecimiento. Las variables biofísicas como el LAI, fracción de radiación 

fotosintéticamente activa (fPAR), la biomasa o el contenido de nitrógeno son 

importantes porque contribuyen a la comprensión de la dinámica de los 

cultivos y de la dinámica medioambiental a cualquier escala espacial. A pesar de 

la disponibilidad de los datos de radar independientemente de las condiciones 

meteorológicas, la inversión de parámetros biofísicos se realiza con mayor 

frecuencia utilizando datos ópticos, principalmente debido a que la interacción 

entre la señal radar y la vegetación es más compleja que en el caso de la señal 

en el óptico, y por lo tanto es más difícil establecer relaciones biofísicas. En 

general, éstas sólo pueden ser establecidos para un tipo de cultivo, porque tiene 

una estructura particular. Además, el manejo de datos radar es más complejo 

que el de datos ópticos. Se ha publicado una gran cantidad de artículos sobre la 

obtención de parámetros biofísicos de la cubierta vegetal mediante datos 

ópticos. Así, pueden encontrarse muchos ejemplos para el LAI (Turner et al., 

1999; Weiss et al. 2000; Combal et al, 2002a; Duchemin et al., 2006), fPAR, 

contenido en agua de la cubierta vegetal y contenido en clorofila de la hoja. En 
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el caso de los cultivos agrícolas, en los cuales los cambios temporales son más 

rápidos que, por ejemplo, en las superficies forestales, las observaciones multi-

temporales son muy importantes. Sin embargo, pocos trabajos se han referido 

a la inversión efectiva de imágenes de satélite multi-temporales y de alta 

resolución espacial para diversos tipos de cultivos. Por lo tanto, es necesario 

realizar más estudios para la inversión de parámetros biofísicos utilizando 

datos multi-temporales. 

 

En la región radar, los datos multi-angulares, polarimétricos e 

interferométricas han demostrado ser de interés para la inversión de 

parámetros bio-geofísicos de cultivos, tales como la altura de la planta, el 

contenido en agua, el LAI y la biomasa (Le Toan et al., 1984). Estos estudios se 

realizaron principalmente con las bandas X y C. Se ha demostrado que si la 

cubierta vegetal tiene componentes con orientaciones específicas, la 

profundidad de penetración, el volumen de dispersión, y la atenuación puede 

ser diferente para los diferentes estados de polarización (Ferrazzoli et al., 1999; 

Picard et al., 2003, y Mattia et al. 2003). Este fenómeno fue la base utilizada 

para desarrollar un algoritmo de clasificación de campos de arroz (Le Toan et 

al., 1989). 

 

Al igual que ocurre con la cartografía de cultivos la inversión de 

parámetros biofísicos utilizando datos de satélite radar se han visto limitados 

por el tipo de datos disponibles. El sensor ASAR a bordo de ENVISAT 

permitió, por primera vez, la medida simultánea de dos polarizaciones: HH / 

VV, HH / HV y VV / HV , para varios ángulos de incidencia no simultáneos, 

todo ello en banda C. Esta fue la motivación de estudios sobre el uso de la 
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polarimetría para la inversión de la biomasa del trigo (Mattia et al., 2003). El 

presente trabajo estudia el potencial de los datos radar polarizados para la 

inversión de la biomasa de cereales de grano pequeño utilizando datos 

ENVISAT-ASAR. 

 

El papel de la Teledetección en combinación con los modelos de 

crecimiento de cultivos para la predicción de la cosecha. 

 

En los modelos de crecimiento de cultivos es difícil tener en cuenta la 

heterogeneidad espacial de la vegetación y de las condiciones de suelo, así 

como las dificultades inherentes a la fenología. El crecimiento de los cultivos 

depende de muchos factores (clima, especies, el estado del suelo, las 

características del suelo y las estrategias de gestión) y, en consecuencia, los 

modelos necesitan muchos parámetros. Por ejemplo STICS v3.0 depende de 

132 parámetros (Ruget et al. 2002). Es frecuente que algunos de estos 

parámetros, tales como la fecha de siembra, no se conozcan, o tengan que ser 

ajustados para cada tipo de cultivo o ubicación geográfica. Una solución 

consiste en calibrar los modelos utilizando las mediciones de parámetros 

biofísicos (por ejemplo, Brisson et al., 1998; Spitters et al., 1989; Bondeau et 

al., 1999; Launay y Guerif, 2005). El LAI, que representa la superficie de hoja 

que intercepta la radiación incidente, y la biomasa, son variables clave para 

calibrar los modelos de crecimiento de cultivos.  

La calibración se puede hacer con la medida in-situ de parámetros 

biofísicos. Sin embargo, las mediciones in-situ son caras, requieren mucho 

tiempo y, en general, sólo puede hacerse en un número limitado de campos. 

Así, la calibración corre el riesgo de convertirse en dependiente de la zona de 
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estudio y del cultivo. En este contexto la teledetección por satélite es útil 

cuando se integra con los modelos de crecimiento de los cultivos, ya que 

proporciona información espacial sobre la vegetación. La teledetección se 

puede utilizar para estimar variables claves de los modelos: LAI, la biomasa 

aérea de cultivos y otras características, como la clorofila o contenido en 

nitrógeno. Esta información se puede integrar en el proceso de calibración 

utilizando, por ejemplo, métodos de forzado (Clevers y van Leeuwen, 1996; 

Moulin et al., 1998). 

 

A.3.  Objetivos del estudio. 

 

El objetivo general de esta tesis doctoral es la evaluación y el 

desarrollo de métodos basados en datos de teledetección, que sean útiles para 

el seguimiento de los cultivos, y puedan contribuir, cuando se combinen con 

otros métodos, a la mejora de la predicción del rendimiento. La tesis se 

centrará en dos temas principales: la clasificación de los tipos de cultivos y la 

inversión de parámetros de vegetación. Por otra parte, uno de los aspectos 

relevantes que se aborda en esta tesis es el beneficio que puede derivarse de 

utilizar datos multi-temporales. Para lograr los objetivos de este estudio ha sido 

necesario tratar con la complejidad añadida de la utilización de diferentes 

instrumentos, tipos de datos, zonas de estudio y medidas de campo. 

 

Este estudio se basa en dos tipos de datos de teledetección: óptico y 

radar. Los instrumentos de satélites ópticos que se utilizan son LANDSAT-TM 

y ENVISAT-MERIS. Los datos radar provienen del instrumento a bordo del 

satélite ENVISAT-ASAR, así como de un sensor aerotransportado, JPL-
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AirSAR. En los capítulos siguientes se darán más detalles acerca de estos 

sensores y satélites. 

 

En el caso de las aplicaciones agrícolas, el uso de ambos datos ópticos 

y de radar es necesario para superar las limitaciones que cada uno de los tipos 

de datos tienen por separado. Por ejemplo, aunque existen métodos operativos 

para la clasificación de los cultivos utilizando datos ópticos, estos métodos no 

pueden ser aplicadas en regiones cubiertas frecuentemente por nubes. En este 

sentido, este estudio es una demostración de la la complementariedad de 

ambos tipos de datos en los estudios de cultivos. Los datos ópticos se utilizan 

para llevar a cabo un seguimiento multitemporal del LAI, y para invertir LAI y 

clorofila. Datos de satélites recientes, y datos similares a los que se obtendrán 

mediante satélites futuros, se utilizan para la cartografía de cultivos. Por último, 

la inversión de la biomasa utilizando datos de radar también se investiga. 

 

En cuanto a la inversión de parámetros biofísicos, los objetivos de 

este estudio son tres: 

 

- La estimación de las variaciones de LAI a lo largo de un ciclo, a 

partir de imágenes LANDSAT, para los diferentes cultivos de una misma zona 

agrícola. 

- El desarrollo de un método multi-temporal para la inversión de 

LAI y clorofila utilizando datos MERIS-FR. 

- La investigación del seguimiento de cereales de grano pequeño 

con datos ASAR-APP, así como las posibilidades de invertir la biomasa de este 

tipo de cereales. 
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En cuanto a la cartografía de los cultivos, el objetivo de esta tesis es el 

desarrollo de un método de clasificación jerárquico y su validación. En vista de 

las aplicaciones a datos de satélites actuales y disponibles en un futuro reciente, 

se utilizan datos polarimétricos en banda C del instrumento AirSAR. En la 

última parte de este trabajo, también se investiga el potencial de los datos 

ENVISAT-ASAR. 

 

Este estudio se ha desarrollado en tres zonas agrícolas de Europa: 

 

- Barrax en Castilla-La Mancha, España. El capítulo 3 describe 

más detalladamente la región , así como las medidas de campo adquiridas 

durante la campaña ESA/SPARC-2003. 

- Flevoland, al norte de los Países Bajos. En el capítulo 6 se dan 

más detalles sobre esta zona. 

- Toulouse, al sur de Francia. La descripción del experimento 

llevado a cabo en un campo de trigo, con el objetivo de medir la biomasa del 

trigo, así como otras medidas se realiza en el capítulo 7. 

 

A.4  Organización de la memoria. 

 

La presente tesis doctoral se ha organizado en dos partes: óptico y 

radar. La tesis proporcionará los conceptos básicos necesarios para la 

comprensión de la señal de teledetección con respecto a los cultivos agrícolas. 

El capítulo 1 es una introducción general. 
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En la Parte I se presentan los resultados obtenidos a partir de los 

datos ópticos en la zona de Barrax. 

 

- El capítulo 2 da las bases físicas de la teledetección en el óptico. 

Se presenta una descripción de los modelos utilizados para la inversión de 

datos ópticos, así como una revisión de los algoritmos utilizados para la 

inversión de LAI, clorofila y biomasa. El método de corrección atmosférica 

que se se aplica a los datos ópticos también se describe en este capítulo. 

 

- El capítulo 3 se centra en la inversión de LAI usando datos 

LANDSAT-TM. El estudio se lleva a cabo en la región de Barrax. El LAI se ha 

invertido a partir de imágenes en doce fechas repartidas a lo largo del año 2003 

y se ha validado con las medidas de campo pertenecientes a la campaña 

ESA/SPARC-2003. 

 

- El capítulo 4 presenta los resultados de la inversión de LAI y 

clorofila a partir de datos MERIS-FR utilizando un método multi-temporal. El 

estudio también se ha realizado en la región de Barrax. 

 

La parte II expone el trabajo realizado utilizando datos radar. Las 

mismas tres áreas de estudio están involucradas. Los capítulos 5 al 7 se 

organizan de la siguiente manera: 

 

- El capítulo 5 da el contexto teórico de la teledetección radar 

necesario para los capítulos 6 y 7. 
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- El capítulo 6 expone un método jerárquico de clasificación de 

cultivos, basado en datos polarimétricos de radar de apertura sintética en banda 

C. Se han utilizado datos AirSAR acquiridos sobre la región de Flevoland, en el 

marco de la campaña de la Agencia Espacial Europea, MAC-Europe, así como 

datos de la biblioteca del proyecto ERA-ORA (European RAdar-Optical 

Research Assemblage, http://eraora.disp.uniroma2.it/) financiado por la 

Unión Europea. Los resultados obtenidos en la clasificación de 5 tipos de 

cultivos y una clase de suelo se han validado con un mapa de cultivos de la 

zona realizado mediante observaciones sobre el terreno. Algunas de las reglas 

del algoritmo también han sido examinadas en la región de Barrax. 

 

- El capítulo 7 trata sobre la aplicación de datos ASAR-APP para 

la clasificación de cultivos, y sobre la inversión de la biomasa de cereales de 

grano pequeño utilizando datos ENVISAT-ASAR, en la región de Toulouse. 

En este capítulo se describe la campaña de campo que se llevó a cabo en 

Toulouse, para medir los parámetros biofísicos de un campo de trigo. También 

se exponen los resultados sobre el uso de datos ASAR-APP para la 

clasificación de cultivos en Barrax. Por último se describe el tratamiento 

aplicado a los datos ENVISAT-ASAR. 

 

- El capítulo 8 contiene las conclusiones generales y las 

perspectivas de este trabajo. 
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CAPÍTULO 1: Introducción 

 

El capítulo 1 de esta tesis doctoral es una introducción al tema de 

estudio y se ha trascrito íntegramente en castellano en la sección precedente. 

 

 

CAPÍTULO 2: Parámetros biofísicos y datos ópticos. 

 

En este capítulo se da una breve introducción a la base conceptual de 

la teledetección óptica, antes de proceder a la evaluación de los métodos de 

teledetección. Estos conceptos se presentan como los antecedentes pertinentes 

a la tesis, con el fin de entender las relaciones entre la señal medida por los 

sensores ópticos y las propiedades de la vegetación. En primer lugar, se 

describe un esquema del problema general de teledetección. Se explica el efecto 

de la atmósfera sobre la radiación solar y se presenta el método de corrección 

atmosférica que se ha aplicado a los datos. Los modelos que han sido utilizados 

en este trabajo para describir la interacción de la radiación solar con la cubierta 

de vegetación son también presentados. El capítulo termina con una revisión 

de bibliografía relativa a la obtención de parámetros biofísicos, LAI y 

contenido en clorofila de la hoja utilizando datos ópticos. 
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CAPÍTULO 3: Variaciones del Indice de Area Foliar a 

lo largo de un ciclo en cultivos agrícolas mediante 

datos LANDSAT. 

 

El cálculo del índice de área foliar (LAI) mediante datos de satélites 

ópticos ha sido objeto de una gran cantidad de estudios. Por el contrario, son 

pocos los trabajos que han realizado una inversión multi-temporal efectiva 

utilizando imágenes de satélite de resolución espacial alta para los distintos 

cultivos de una determinada región. El presente estudio se centra en la 

evaluación de un método de inversión de LAI basado en un modelo físico y 

aplicado a datos multi-temporales ópticos, adquiridos sobre una región agrícola 

con una diversidad de cultivos y de calendarios agrícolas. Tanto el método de 

inversión como el tipo de datos se han seleccionado por su amplia utilización. 

Los cultivos en la región de estudio (Barrax, Castilla-La Mancha, España) son 

los siguientes: cereales, maíz, alfalfa, remolacha, cebolla, ajo, adormidera. 

Algunos de los tipos de cultivos (cebolla, ajo, adormidera) no se han abordado 

en trabajos previos. 

    En este estudio se usan medidas in-situ y valores obtenidos de la 

literatura científica para establecer los a priori que se utilizan en el modelo 

PROSPECT+SAIL con el que se generan Look Up Tables (LUTs). Estas 

LUTs se utilizan posteriormente para invertir las imágenes Landsat-TM y 

Landsat ETM+ (12 fechas de marzo a septiembre de 2003). Las LUTs se han 

adaptado a los cultivos presentes en la zona, los cuales se han identificado en 

las imágenes gracias a una clasificación LANDSAT de la región. El LAI 

obtenido se ha comparado con las medidas in-situ, que se realizaron durante la 
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campaña de campo que se llevó a cabo a mediados de julio del 2003. Se ha 

obtenido un buen acuerdo (una alta correlación lineal) para valores de LAI 

comprendidos entre 0.1 y 6.0. Por lo tanto se han producido mapas de LAI 

para cada una de las 12 fechas. La variación temporal del LAI manifiesta una 

gran coherencia con el estado fenológicos de los cultivos. El método de 

inversión se ha comparado de forma favorable con un método de inversión de 

LAI basado en la relación empírica existente entre el LAI y el NDVI a partir de 

datos LANDSAT. Esto ofrece perspectivas para los futuros datos de satélite 

ópticos, que garantizarán una resolución espacial y una frecuencia temporal 

altas. 

 

 

CAPÍTULO 4: Inversión de LAI y Clorofila utilizando 

datos multi-temporales. 

 

En el capítulo 3, el LAI se obtuvo mediante la aplicación de un 

método simple para la inversión del modelo PROSPECT+SAIL y datos 

LANDSAT-TM, con buenos resultados. Como se discutió, la utilización de la 

dimensión temporal podría ser una nueva mejora en la inversión. El objetivo 

de este capítulo es investigar las posibilidades de inversión, de LAI y contenido 

en clorofila de la hoja, conjuntamente, en campos agrícolas, aprovechando, en 

la medida de lo posible, la información contenida en los datos multi-

temporales. Esto se hace mediante la adición de una ligadura temporal en el 

procedimiento de inversión. Entre los posibles métodos de inversión, se ha 

seleccionado un método numérico de búsqueda directa, puesto que la ligadura 
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temporal era fácil de implementar en este tipo de método. Así mismo, se ha 

preferido el uso de datos ENVISAT-MERIS frente a los datos LANDSAT-

TM, debido a su mayor frecuencia temporal, a pesar de tener una resolución 

espacial menor. El método se aplica a la zona de Barrax (España) con especial 

interés en los campos de cereales de grano pequeño. 

 

   

CAPÍTULO 5: Bases físicas de la teledetección radar 

activa. 

 

En este capítulo se da una breve introducción a los fundamentos de la 

teledetección por radar y los conceptos utilizados en el capítulo 6 y el capítulo 

7. 

 

CAPÍTULO 6: Datos de Polarización en banda C para 

la clasificación de cultivos. 

 

Como ya se ha discutido en el capítulo 1, los métodos para la 

clasificación de cultivos utilizando datos ópticos están bien establecidos. Sin 

embargo, en las zonas agrícolas con cobertura nubosa frecuente, como ocurre 

en el Norte de Europa, hay una necesidad de desarrollar métodos basados en 

datos de radar. 

 

En este capítulo se ha desarrollado un método de clasificación de 

cultivos utilizando datos radar polarimétricos en banda C. En el capítulo 5 se 
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afirmó que los datos en banda C son los más adaptados a la agricultura frente a 

otras longitudes de onda de radar. La elección de longitud de onda se ha 

realizado en vistas a las aplicaciones a datos de satélite radar existentes 

(ENVISAT / ASAR, RADARSAT-2) y a las aplicaciones en las misiones 

futuras de satélites (Sentinel-1). 

 

Una dificultad para el desarrollo de este tipo de estudio es la falta de 

datos polarimétricos multi-temporales en banda C, ya sea adquiridos desde 

satélite como desde avión, junto con un mapa de cultivos detallado, el cual es 

necesario para el análisis y la validación de los resultados. En consecuencia, el 

estudio se ha llevado a cabo con los datos aerotransportados del sensor 

AirSAR, imágenes adquiridas en 1991 de julio en Flevoland (Países Bajos), que 

constituye un conjunto completo de datos con sus correspondientes 

observaciones de campo. La primera parte del capítulo está dedicado al análisis 

de datos AirSAR de la base de datos ERA-ORA. Los resultados de este análisis 

se utilizarán para desarrollar el método de clasificación. El método proporciona 

buenos resultados, como se indica en la sección 6.5 de esta memoria. Por 

último, los datos AirSAR correspondientes a la zona de Barrax (España) 

también han sido estudiados con el fin de evaluar las reglas del algoritmo en 

una región diferente. 
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CAPÍTULO 7: Uso de datos ENVISAT-ASAR APP 

para el estudio de cultivos. 

 

Este capítulo está dedicado al análisis de datos ENVISAT / ASAR en 

regiones agrícolas. En la primera parte se describen las medidas experimentales 

realizadas en un campo de trigo, en la zona de Toulouse, durante el año 2003, 

los datos de radar disponibles y el tratamiento aplicado a dichos datos. La 

segunda parte de este capítulo analiza las posibles aplicaciones y las 

limitaciones del algoritmo de clasificación de cultivos presentado en el capítulo 

6, utilizando datos de la región de Toulouse, que fueron adquiridos en varias 

fechas a lo largo de año 2003, así como datos obtenidos para una fecha en 

Barrax. También se ha investigado la posibilidad de invertir la biomasa de trigo 

utilizando datos ASAR. 

 

 

CAPÍTULO 8: RESUMEN Y CONCLUSIONES 

 

El objetivo de este estudio fue la elaboración y la evaluación de 

métodos para la clasificación de cultivos y para la estimación de LAI, clorofila 

y biomasa, basados en el uso de datos de teledetección ópticos y radar, cuyo 

interés es ayudar a sistemas operativos, o quasi-operativos, de seguimiento de 

cultivos en aplicaciones agrícolas. 

 

 Después de la introducción que figura en el capítulo 1, la primera 

parte de este estudio se inicia con un panorama sobre la inversión de 
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parámetros biofísicos con datos ópticos, expuesta en el capítulo 2. El capítulo 

3 se dedica a la estimación del LAI en Barrax, un área con una diversidad de 

tipos de cultivos y de ciclos de crecimiento. El LAI se invirtió, para 12 

imágenes LANDSAT-TM, que cubren la temporada agrícola del año 2003. El 

modelo PROSPECT+SAIL se invirtió utilizando una técnica basada en LUTs 

(Look Up Tables). Los resultados fueron validados con éxito utilizando 

medidas in-situ de LAI en julio. El uso de medidas in situ (contenido de 

clorofila en la hoja, materia seca en la hoja, contenido de agua en la hoja), junto 

con otra información a-priori (espectro del tipo de suelos, variabilidad del 

suelo, rango de variación del LAI, estructura de planta, valores obtenidos de la 

literatura científica) es un parte esencial de la metodología. Esta información 

fue utilizada como input de los modelos para la construcción de las LUTs. Se 

demostró que los métodos relativamente simples ayudados de suficiente 

información terreno, permiten obtener estimaciones de LAI para diferentes 

cultivos con buena precisión. 

 

En la región de Barrax, las hipótesis sobre la variabilidad del suelo 

eran válidas y no parecen ser una fuente de error importante. No obstante, en 

vista de las aplicaciones a otras regiones, el efecto de la variabilidad del suelo 

(debido a la humedad del suelo o al tipo de suelo) en la inversión de LAI 

necesita más investigaciones. 

 

La comparación del método físico con el método basado en 

relaciones empíricas entre el LAI y el NDVI permitió concluir que estas 

relaciones son más dependientes de tipo de cultivo que el método físico. Por 

otra parte, el método de inversión permite el acceso a mayores valores de LAI 
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que la relación el NDVI-LAI, la cual se satura para valores más pequeños de la 

LAI que el método físico. 

 

Este estudio se centró en la inversión del LAI efectivo, pero, en 

trabajos futuros, sería deseable utilizar correcciones de clumping para tratar de 

obtener el LAI verdadero, en particular, para el caso de maíz (Duthoit, 2006). 

Otra mejora para la metodología de inversión de LAI aplicada en este estudio 

sería añadir una ligadura temporal en la función que se minimiza durante el 

inversiones. En el capítulo 4 se investigó este aspecto mediante el uso de datos 

MERIS. 

 

El capítulo 4 se dedica al desarrollo de un método multi-temporal 

para inversión de LAI y clorofila, utilizando datos MERIS-FR en la zona de 

Barrax. El método también invierte el modelo PROSPECT+SAIL, con la 

particularidad de que los términos temporales dependientes (limitaciones 

temporales) se introdujeron en la función de mérito, que se minimiza usando 

un algoritmo iterativo. El método se aplicó a campos de cereales de grano 

pequeño y los resultados se compararon con los resultados de las inversiones 

fecha a fecha, que utilizan el mismo modelo y el mismo método iterativo para 

la inversión. La comparación reveló que el método multi-temporal funcionó 

mejor. Se investigaron diferentes términos de ligadura, y los mejores resultados 

se obtuvieron para una ligadura temporal sobre la evolución del producto LAI 

x clorofila. 

 

El uso de los datos MERIS para el seguimiento de cultivos en la 

región de Barrax tiene serias limitaciones debido a la resolución espacial de 
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MERIS y los tamaños de los campos. La precisión de los resultados de las 

inversiones podría mejorarse mediante la corrección del porcentaje de suelo 

presente en los píxeles de MERIS. Esto podría hacerse por medio de 

parámetros como la fracción de la cubierta vegetal. Sin embargo, para ser 

coherente con las hipótesis del modelo SAIL (el píxel es homogéneo), la 

corrección debe hacerse previamente a la inversión. Zurita-Milla et al., (2007) 

han propuesto técnicas de unmixing para datos MERIS y podrían ser 

introducidas como un paso previo a nuestro algoritmo. También podrían 

mejorarse las inversiones con un mayor muestreo del espectro similar al de 

CHRIS-PROBA. 

 

La hipótesis realizadas por los modelos son una de las principales 

limitaciones de las metodologías utilizadas en el capítulo 3 y 4. Estas hipótesis 

son la principal fuente de error, como se discutió anteriormente, y la 

cuantificación de esta fuente de error requiere un estudio más a fondo. En este 

sentido, se espera que la última versión de PROSPECT (Feret et al., 2008) 

mejore las estimaciones de clorofila. Sin embargo, la inversión del contenido de 

clorofila de la hoja mediante datos de satélite es una tarea difícil y requiere más 

investigaciones, dedicando esfuerzos, al mismo tiempo a la elaboración de 

modelos y a las técnicas de inversión. 

 

Para observar los cultivos en el norte de Europa, los datos radar son 

preferibles a los datos ópticos, debido a la alta presencia de nubes en esa 

región. La clasificación de cultivos agrícolas utilizando datos aerotransportados 

polarimétricos en banda C fue abordada en el capítulo 6, donde se propuso un 

algoritmo jerárquico basado en cinco reglas físicas. Las reglas del algoritmo 
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fueron desarrolladas en base a los mecanismos de dispersión y el 

comportamiento de la dispersión de los diferentes cultivos. La primera regla 

del algoritmo separa entre vegetación y no / vegetación utilizando los 

cocientes HV / HV y VV / HH . La segunda regla separa los cultivos de hoja 

ancha de los cultivos de tallo pequeño, mediante una condición sobre el 

coeficiente de polarización circular RR / RL. Por último, el coeficiente de 

retrodispersión de polarización cruzada, HV, se utiliza para discriminar 

diferentes niveles de biomasa en la clase de cultivos de tallo pequeño, y la 

correlación HH_VV se utiliza para separar las subclases en la clase de hoja 

ancha. El algoritmo ha sido desarrollado para la región de Flevoland, Países 

Bajos, y se ha validado con un mapa de cultivos obteniéndose buenos 

resultados. Se ha obtenido una precisión del 73% a mediados de julio y del 

65% a finales de julio. 

 

Este trabajo de clasificación permite concluir que un número limitado 

de las medidas polarimétricas contiene información suficiente para realizar una 

clasificación de los cultivos presentes en las zonas agrícolas del norte de 

Europa. El algoritmo no pudo aplicarse con éxito a la zona de Barrax 

(España), principalmente porque las imágenes adquiridas en esa zona no 

estaban adaptadas al calendario de cultivos real de la región. Sin embargo, el 

análisis en Barrax ha demostrado que las reglas de algoritmo son robustas. Los 

cocientes HV / HH y HV / VV han servido para detectar la cosecha de 

cereales de grano pequeño, de junio a julio. Los cambios en la estructura de los 

cultivos se detectaron con el cociente RR / RL, así como los cambios en el 

nivel de biomasa, utilizando HV. Un mejor resultado se podría esperar en 

Barrax con un calendario de adquisición de imagen más adaptado a las 
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particularidades de la región. Así mismo, en esta zona del sur de Europa, 

donde la presencia de nubes no es una limitación, los algoritmos de 

clasificación utilizando datos ópticos darían resultados mucho mejores. 

 

La principal conclusión es que la metodología propuesta es sólida y se 

puede adaptar a otros sitios siempre que exista un conocimiento del calendario 

agronómico y del tipo de cultivos presentes en la zona. 

 

La última parte de este trabajo, presentada en el capítulo 7, consistió 

en el análisis de imágenes ENVISAT-ASAR adquiridas en Toulouse. La mezcla 

de polarizaciones y swaths ha sido una limitación en el análisis de las imágenes 

ENVISAT-ASAR para la discriminación de cultivos. No obstante, este análisis 

confirma que el coeficiente de retrodispersión HV era un buen discriminador 

de la biomasa. Así mismo, el cociente HH / VV se ha encontrado robusto en 

la discriminación entre campos cultivados y no cultivados. En Toulouse, se 

obtuvieron mejores resultados en la discriminación de cultivos cuando se 

utilizan ángulos de incidencia elevados. Otra ventaja de los datos de radar en 

comparación con los datos ópticos es que contienen información útil para la 

inversión de la biomasa. El segundo objetivo del capítulo 7 es investigar la 

estimación de biomasa de trigo por medio del cociente de polarizaciones HH / 

VV. Con este objetivo, en el año 2003 se realizó una campaña dedicada a la 

adquisición de mediciones de terreno en un campo de trigo. Este estudio ha 

permitido confirmar las investigaciones anteriores (Le Toan et al., 1998; Mattia 

et al., 2003), que mostraron que el cociente HH / VV aumenta con la biomasa. 

Los resultados con ENVISAT-ASAR muestran que el cociente HH / VV 

puede utilizarse para la monitorización del crecimiento de trigo. Sin embargo, 
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la inversión de la biomasa del trigo se vio limitada por la falta de un número 

suficiente de las adquisiciones con el mismo ángulo de incidencia. La 

comparación de nuestros resultados con otros estudios muestran que la 

relación entre el cociente HH / VV y la biomasa podría ser dependiente de la 

zona de estudio y el desarrollo de un método de inversión de la biomasa 

requiere más trabajo. La relación depende de muchos factores: la humedad del 

suelo, la densidad de trigo, la estructura de la planta, etc. Por otra parte, para la 

interpretación de las mediciones de retrodispersión es muy importante un 

conocimiento exacto de la fenología del trigo. Una recomendación para futuros 

trabajos es garantizar la mejor caracterización posible de todos los parámetros 

relacionados con la estructura de trigo y su fenología. También, más estudio es 

necesario para el desarrollo de métodos de compensación angular. 

 

En este estudio, la relación entre la biomasa y de retrodispersión fue 

investigado por un único tipo de cultivo. Pero, ciertamente, otros tipos de 

relaciones pueden existir (como sugiere el capítulo 6) entre los diferentes 

cultivos y las medidas de retrodispersión. Especialmente interesante parece la 

polarización cruzada, HV. 

 

Conclusiones generales: 

 

Este estudio ha demostrado la importancia de utilizar datos multi-

temporales en el estudio de cultivos. La teledetección de parámetros biofísicos 

es en esencia un problema inverso. El seguimiento de parámetros biofísicos 

requiere la adquisición de imágenes con alta resolución temporal y una 

adecuada resolución espacial. Esto es a menudo una limitación en la aplicación 
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de métodos de teledetección, debido a la falta de este tipo de datos en un 

determinado sitio. Este trabajo se benefició de una serie de datos inusual (12 

imágenes LANDSAT a lo largo del mismo año) y demostró la aplicación 

práctica de la inversión de LAI en una zona amplia. También se mostró, 

mediante una ligadura temporal en la inversión de LAI y clorofila con datos 

MERIS, cómo la dimensión temporal en sí misma puede ser utilizada para 

mejorar la inversión de parámetros biofísicos. Las misiones recientes como 

FORMOSAT y la futura misión Venus, que será capaz de ofrecer una 

frecuencia temporal y resolución espacial muy altas, ofrecen nuevas 

perspectivas para los métodos explorados en este trabajo. 

 

En lo que respeta a la clasificación de cultivos utilizando datos radar, 

la misma conclusión se aplica. Los métodos de clasificación de cultivos se 

benefician de las adquisiciones multi-temporales. Si la resolución temporal no 

es suficiente, no es posible observar algunos cambios importantes en la 

estructura de los cultivos. De hecho, la experiencia en Flevoland ha 

demostrado que, para optimizar los resultados, es necesario hacer 

observaciones semanales, debido a la dinámica de los cultivos. Por otra parte, 

se ha demostrado que el uso de la polarimetría en banda C es un buen medio 

para mejorar la clasificación de cultivos. El algoritmo propuesto en este estudio 

es particularmente adecuado para su aplicación a los datos del nuevo satélite 

RADARSAT-2. 

 

Por último, este es uno de los pocos estudios que demuestran en la 

práctica las posibilidades que ofrece la combinación de diferentes tipos de 

datos (radar y óptico), con el fin de obtener la máxima información útil para el 
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seguimiento de cultivos. La combinación de datos ópticos y de radar 

proporciona estimaciones de LAI y de la biomasa, que son dos variables clave 

para la comprensión y la modelización del crecimiento de los cultivos. Sin 

embargo, la adquisición simultánea de datos ópticos y de radar, con una 

resolución espacial adecuada, mediante satélite, no es todavía una realidad. Sin 

embargo, los datos de satélite actuales ofrecen muchas perspectivas para la 

sinergia de ambos tipos de datos. 
 


