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Les principes de la Mecanique sont déjà si solidement établis,
qu’on auroit grand tort, si l’on vouloit encore douter de leur verité. 1 2

L. Euler, Reflexions sur l’espace et le tems (1748)

The necessity to depart from classical ideas when one wishes to account for the
ultimate structure of matter may be seen, not only from experimentally estab-
lished facts, but also from general philosophical grounds. 3

P.A.M. Dirac, The principles of quantum mechanics (1930)

1The principles of Mechanics have already been so solidly established that it would
be a great mistake to still question their truth.

2Los principios de la Mecánica han sido ya establecidos tan sólidamente que seŕıa
un gran error pretender aún dudar de su verdad.

3La necesidad de abandonar las ideas clásicas al tratar de dar cuenta de la estructura
última de la materia puede verse no sólo a partir de hechos establecidos experimental-
mente, sino también por motivos filosóficos generales.
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Prefacio

A pesar de carecer actualmente de formulación dinámica, es posible ob-
tener gran cantidad de información sobre la Teoŕıa M, la teoŕıa que se
postula como unificadora de todas las interacciones, a partir de sus sec-
tores perturbativo y de baja enerǵıa. En las regiones perturbativas ade-
cuadas, la Teoŕıa M adopta la apariencia de la Teoŕıa de Cuerdas. Al
considerar su ĺımite de baja enerǵıa, surge la supergravedad en once di-
mensiones. Precisamente, esta Tesis Doctoral, basada en las referencias
[1]–[8], discute algunos aspectos de la Teoŕıa M desde el punto de vista
de la supergravedad once-dimensional. En el caṕıtulo 1 se esboza una
visión de conjunto de la Tesis, y se argumenta la pertinencia del análisis
de supergravedad para el estudio de cuestiones relativas a la Teoŕıa M.
Es en el caṕıtulo 2 donde realmente comienza la discusión.

Esta Tesis ha sido realizada en su mayor parte en el Departamento
de F́ısica Teórica y el Instituto de F́ısica Corpuscular de la Universidad
de Valencia, con ayuda de una beca predoctoral de la Generalitat Va-
lenciana. Reciban mi agradecimiento todas estas instituciones. Quisiera
mostrar mi gratitud hacia mi director de tesis, José A. de Azcárraga, por
haber aprendido de él tantas cosas, y no sólo sobre F́ısica. Particular
mención ha de hacerse también de Igor Bandos, con quien he disfrutado
tantas conversaciones y de quien he recibido tanta ayuda. Estoy suma-
mente agradecido a ambos por su est́ımulo y apoyo. Quisiera expresar mi
reconocimiento a José M. Izquierdo por conversaciones y colaboraciones
y a Dmitri Sorokin por sus comentarios. Los agradecimientos han de
hacerse extensivos a Moisés Picón por conversaciones y colaboraciones,
a Miguel Nebot por conversaciones y a Luis J. Boya por una interesante
discusión cuando esta Tesis estaba ya siendo finalizada.

Parte del contenido de esta Tesis fue llevado a cabo fuera de Valen-
cia. Quisiera agradecer a Michael Duff su amable hospitalidad durante
mi visita al Michigan Center for Theoretical Physics y a James Liu, Alex
Batrachenko y Steve Wen por discusiones y colaboraciones. Asimismo,
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estoy muy agradecido a Kellogg Stelle y Jerome Gauntlett por su ama-
ble hospitalidad durante mi visita a Imperial College, y a J. Gauntlett,
Daniel Waldram y Eoin O’Colgain por tan fruct́ıferas discusiones y co-
laboraciones. Pasé un tiempo entrañable tanto en Ann Arbor como en
Londres, y se lo debo a todos ellos.

Por último, quisiera agradecer el apoyo de mi familia, en especial el
de mis padres Santiago y Antonia, y el amor, apoyo y afecto que recibo
cada d́ıa de Majo Rodŕıguez.

O.V.

Valencia, abril de 2006



Preface

Despite its current lack of a dynamical formulation, a great deal of in-
formation about M Theory, the conjectured theory unifying all interac-
tions, can be retrieved from its perturbative and low energy corners. In
the suitable perturbative regions, M Theory adopts the ten-dimensional
guise of String Theory. When its low energy limit is considered, eleven-
dimensional supergravity arises. As a matter of fact, this PhD Thesis,
based on references [1]–[8], is devoted to the discussion of some topics
about M Theory from the eleven-dimensional supergravity point of view.
A general overview is sketched in chapter 1, where the relevance of su-
pergravity in order to study M-theoretical issues is discussed, and the
contents of the Thesis outlined. It is, however, chapter 2 that really
starts the discussion.

This Thesis has been mostly made at the Departamento de F́ısica
Teórica and the Instituto de F́ısica Corpuscular of the Universidad de Va-
lencia, with the help of a Valencian Government PhD fellowship. All these
institutions are gratefully acknowledged. I am indebted to my supervisor,
José A. de Azcárraga, from whom so much I have learned throughout all
these years, and not only about Physics. Particular mention should also
be made of Igor Bandos, with whom I have also enjoyed many discussions
and from whom I have received so much help. I am extremely grateful
to both of them for their encouragement and support. Discussions and
collaborations with José M. Izquierdo are also gratefully acknowledged,
as well as comments by Dmitri Sorokin. Kind acknowledgements are
extended to Moisés Picón for discussions and collaborations, to Miguel
Nebot for conversations and to Luis J. Boya for a useful discussion in the
last stages of the writing up of this Thesis.

Some of the work contained in this Thesis was carried out outside Va-
lencia. I would like to thank Michael Duff for kind hospitality during my
visit to the Michigan Center for Theoretical Physics and James Liu, Alex
Batrachenko and Steve Wen for discussions and collaborations. Likewise,
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to all of them.

Last, I should like to thank the support from my family, especially
from my parents Santiago and Antonia, and the love, support and affec-
tion I receive every day from Majo Rodŕıguez.
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Introducción

Pese al extraordinario avance experimentado en las últimas décadas por
nuestro conocimiento de los procesos y leyes fundamentales que rigen el
mundo f́ısico, todav́ıa quedan considerables cuestiones por resolver. Dos
grandes descubrimientos, a saber, la Relatividad General y la Mecánica
Cuántica, perfilaron el desarrollo de la F́ısica del siglo XX. La primera,
que supuso la culminación de la F́ısica Clásica, es una generalización
de la Relatividad Especial, la teoŕıa que revisó las nociones galileanas
y newtonianas de espacio y tiempo para ponerlas en pie de igualdad en
un continuo espaciotiempo. La Relatividad General proporciona una de-
scripción geométrica de la gravedad, además del marco para la formu-
lación de los modelos cosmológicos actuales. La Mecánica Cuántica, por
su parte, se aplica a los fenómenos f́ısicos que ocurren (mayoritariamente)
a escalas subatómicas, y es decisiva para la descripción del resto de inter-
acciones fundamentales. La sustitución del carácter galileano original de
la Mecánica Cuántica para hacerla compatible con la Relatividad Espe-
cial originó el desarrollo de la Teoŕıa Cuántica de Campos. Fue entonces
posible esgrimir argumentos de ı́ndole causal para insistir en una apli-
cación local, en vez de global, de ciertas simetŕıas. Las teoŕıas de gauge,
o de Yang-Mills, resultantes describen todas las interacciones fundamen-
tales (las fuerzas electromagnéticas, débiles y fuertes) excepto la gravedad
y son, junto con cierto contenido material prescrito, las piezas clave del
Modelo Estándar de la f́ısica de part́ıculas.

La ruta hacia la Teoŕıa M

La búsqueda de una descripción unificada de diferentes fenómenos ha sido,
históricamente, uno de los criterios que han guiado el progreso de la F́ısica.
Desde este punto de vista, parece natural buscar una teoŕıa que combine
las cuatro interacciones fundamentales dentro del mismo marco descrip-
tivo. Un argumento de mayor envergadura, que trasciende lo meramente

xiii
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estético, lo proporciona el hecho de que las constantes de acoplamiento de
las interacciones fundamentales, incluso la de la gravedad, parecen con-
verger a muy altas enerǵıas: a la escala de gran unificación de alrededor
de 1016 GeV. Sin embargo, incluso a bajas enerǵıas, las tres interacciones
del Modelo Estándar se pueden describir mediante el mismo lenguaje de
teoŕıa gauge de Yang-Mills. La razón por la que la gravedad no encaja
en este esquema es más grave de lo que podŕıa pensarse a primera vista:
la Relatividad General es una teoŕıa clásica, de la que resulta imposi-
ble extraer resultados consistentes al aplicar los métodos habituales para
dar cuenta de efectos cuánticos; en otras palabras, la Relatividad Gen-
eral es una teoŕıa no-renormalizable. Con todo, la escala de enerǵıa a
la que los efectos cuánticos seŕıan significativos en gravedad, la llamada
escala de Plank, siendo de 1019 GeV resulta relativamente cercana a la
escala de gran unificación. Ello podŕıa interpretarse como un indicio de
la existencia de una teoŕıa unificadora de todas las interacciones.

Tradicionalmente, la investigación en gravitación y en f́ısica de altas
enerǵıas ha seguido caminos distintos, aunque algunos descubrimientos
se han aplicado fruct́ıferamente en ambos campos. Ese ha sido el caso de
la supersimetŕıa [9, 10, 11] (véase [12, 13] para art́ıculos de repaso y [14]
para una colección de reprints), una simetŕıa entre bosones y fermiones
basada en el concepto de superálgebra de Lie, estructura que contiene
generadores de carácter tanto bosónico como fermiónico y en la que, por
tanto, figuran tanto conmutadores como anticonmutadores. Poco después
de su descubrimiento, se hizo notar que las teoŕıas que poséıan super-
simetŕıa local conteńıan automáticamente a la gravedad. A grandes ras-
gos, el argumento es el siguiente: el anticonmutador de dos generadores
de supersimetŕıa es una traslación; la aplicación local de supersimetŕıa
produce entonces una traslación local, que puede identificarse con un
difeomorfismo o transformación local de coordenadas; invariancia bajo
supersimetŕıa local implica, por tanto, invariancia bajo difeomorfismos y,
en definitiva, gravedad. Estas teoŕıas de supersimetŕıa local recibieron,
pues, el nombre de supergravedades (véanse [15, 16, 17, 18]). La primera,
y más simple, teoŕıa de supergravedad en ser construida, fue su versión
en cuatro dimensiones (D = 4) con una sola supercarga (N = 1) y fue
llamada, en consecuencia, supergravedad D = 4, N = 1, o sencilla [19, 20]
(véase el art́ıculo de repaso [15]).

En los años setenta, la supergravedad se percib́ıa como una firme can-
didata a convertirse en la teoŕıa cuántica de la gravedad, al esperarse
de las contribuciones fermiónicas a las expansiones perturbativas grav-
itatorias que cancelaran las amplitudes de dispersión divergentes. La
supergravedad sencilla no logró materializar completamente estas expec-
tativas puesto que, si bien se demostró su finitud incluso a segundo orden
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en teoŕıa de perturbaciones [21], sus acoplamientos a materia dejaban
de serlo ya a primer orden [22]. Las supergravedades extendidas (car-
acterizadas por N > 1 supercargas) se desarrollaron entonces, siendo
posteriormente explorada la promoción de sus N(N − 1)/2 campos de
gauge abelianos a campos de gauge de SO(N), lo que porporcionaba las
llamadas gauged supergravities. De entre todas las supergravedades exten-
didas, la supergravedad D = 4, N = 8 [23, 24], máximamente extendida,
poséıa atractivas caracteŕısticas: la gravedad, los campos de gauge y la
materia formaban parte del mismo multiplete de supergravedad y, dada la
ausencia de multipletes de materia con N = 8, la teoŕıa (que se esperaba
renormalizable) podŕıa conseguir una verdadera unificación de la materia
y todas las interacciones.

Una de las actividades que originó la investigación en supergravedad
fue la construcción de teoŕıas supergravitatorias en dimensiones espa-
ciotemporales diversas (véase la colección de reprints [25]). En diez
dimensiones pod́ıan existir tres teoŕıas de supergravedad, una de ellas
con supersimetŕıa N = 1 (supergravedad de Tipo I) y dos versiones con
N = 2: las supergravedades de Tipo IIA (no quiral) y la de Tipo IIB
(quiral) (véase [25] y las referencias alĺı contenidas). Por el contrario,
solo una teoŕıa de supergravedad pod́ıa existir en once dimensiones, la
máxima dimensión posible siempre que se pretendiera excluir campos de
esṕın superior [26]. La supergravedad once-dimensional fue entonces con-
struida por Cremmer, Julia y Scherk (CJS) en [27]. Las supergravedades
máximas (aquéllas con un contenido máximo en supersimetŕıa) en di-
mensiones inferiores, como la de Tipo IIA en D = 10 o la N = 8 en
D = 4 resultaron ser reducciones dimensionales (es decir, compactifica-
ciones toroidales) de la supergravedad en once dimensiones4.

Estos descubrimientos provocaron el resurgimiento y actualización de
las viejas ideas de (Nordström y) Kaluza-Klein, al explorarse las com-
pactificaciones en variedades no triviales (véase [29] para un repaso de
estas cuestiones) en las que las caracteŕısticas de las teoŕıas efectivas en
cuatro dimensiones quedaban dictadas por las propiedades de la variedad
de compactificación. Por ejemplo, el grupo de gauge y la supersimetŕıa
preservada en cuatro dimensiones quedaban determinados por el grupo
de isometŕıa y el grupo de holonomı́a [30], respectivamente, de la var-
iedad de compactificación. Once era no sólo la máxima dimensión per-
mitida por supersimetŕıa, sino también la mı́nima dimensión que, tras

4De hecho, una de las mayores motivaciones originales para construir la super-
gravedad en D = 11 [27] era la de evitar las complicaciones técnicas que surǵıan al
aplicar el procedimiento de Noether habitual a la construcción del lagrangiano de su-
pergravedad D = 4, N = 8 [28]; aśı, el lagrangiano N = 8 completo se obtuvo mediante
la reducción dimensional de su correspondiente en D = 11.
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compactificación de las siete dimensiones extra, pod́ıa acomodar el grupo
de gauge SU(3)× SU(2)× U(1) del Modelo Estándar [31]. Además, ex-
ist́ıan compactificaciones ‘espontáneas’ [32], que permit́ıan la aparición
de variedades compactas de siete dimensiones de una forma natural. Sin
embargo, era imposible obtener familias de fermiones quirales [33] a partir
de la compactificación de supergravedad5 en D = 11 (que es no-quiral).
Estos hechos, junto con su carácter no-renormalizable, hicieron decaer el
interés en las teoŕıas de supergravedad como teoŕıas de gravedad cuántica.

Por otro lado, surǵıan nuevos resultados relativos a la formulación
del resto de interacciones. Mientras que las fuerzas electrodébiles eran
descritas con éxito por la teoŕıa de Yang-Mills SU(2) × U(1) espontá-
neamente rota, las interacciones fuertes carećıan de una interpretación
tan clara. Curiosamente, se propuso una descripción mediante una teoŕıa
de cuerdas, puesto que los resultados de las amplitudes de Veneziano y
de las pendientes de Regge sugeŕıan un origen de los hadrones como vi-
braciones de una cuerda fundamental [35]. Esta composición supońıa la
atrevida propuesta de sustituir las part́ıculas puntuales por objetos ex-
tensos unidimensionales. Sin embargo, la exitosa aplicación de la teoŕıa
de Yang-Mills a la descripción de las interacciones fuertes mediante la
Cromodinámica Cuántica (QCD), hizo mermar las simpat́ıas haćıa la de-
scripción cuerd́ıstica, al tiempo que puso la formulación de las interac-
ciones fuertes y electrodébiles en un satisfactorio pie de igualdad.

La Teoŕıa de Cuerdas (véase [36, 37]) se recuperó de este revés tras la
comprensión de que el campo de esṕın dos de su espectro se pod́ıa inter-
pretar como el gravitón [38] (el cuanto del campo gravitatorio), siempre y
cuando la escala de las cuerdas se moviera desde la escala de las interac-
ciones fuertes hasta la escala de la gravedad cuántica. Además, las cuer-
das proporcionaban una teoŕıa renormalizable de la gravedad cuántica,
al interaccionar en una región extensa del espaciotiempo y no sólo en un
punto. La auténtica eclosión de la Teoŕıa de Cuerdas vendŕıa a mediados
de los ochenta, al tener lugar la primera revolución de las supercuerdas.

Se sab́ıa que la teoŕıa clásica de supercuerdas (que incorporaba su-
persimetŕıa) estaba bien definida en 3, 4, 6 y 10 dimensiones espaciotem-
porales [39], casos en los que exist́ıa un término de Wess-Zumino (véase
[40]) capaz de dotar de simetŕıa κ a la acción6 (véase [36]) y, por tanto,
de hacer corresponder correctamente los grados de libertad bosónicos y
fermiónicos. Cuánticamente, se demostró que la teoŕıa solo era consistente
en diez dimensiones [43], al estar libre de anomaĺıas sólo en ese caso. Es

5Esta cuestión fue revisada posteriormente, con el descubrimiento de que los espacios
de compactificación con singularidades admit́ıan fermiones quirales [34].

6En el caso de la part́ıcula, la existencia de una simetŕıa de gauge fermiónica fue
probada en [41], en el caso con masa, y en [42] en el caso sin masa.
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más, la cancelación de anomaĺıas dejaba cinco posibles teoŕıas de cuer-
das diferentes, a saber, Tipo IIA, Tipo IIB, Tipo I, heterótica SO(32)
y heterótica E8 × E8 (véase [36] y las referencias alĺı contenidas). Por
su parte, supergravedad quedaba incorporada en la Teoŕıa de Cuerdas:
según se desprend́ıa del análisis de los modos sin masa (que describ́ıan la
dinámica de baja enerǵıa) del espectro de las diferentes teoŕıas de cuerdas,
estos correspond́ıan a los campos de los distintos multipletes de super-
gravedad, quizá acoplados a multipletes de super Yang-Mills. Para ser
más precisos, se encontró que los ĺımites de baja enerǵıa de las teoŕıas de
cuerdas de Tipos IIA y IIB coincid́ıan, respectivamente, con las super-
gravedades del mismo nombre; y los de la de Tipo I y heteróticas, con la
supergravedad de Tipo I acoplada al multiplete vectorial con N = 1 en
diez dimensiones y grupo de gauge SO(32) (para las cuerdas de Tipo I y
la correspondiente heterótica) o E8×E8 (para la otra cuerda heterótica).

Aunque la signatura lorentziana hab́ıa de imponerse, la consistencia
de las cinco teoŕıas perturbativas de cuerdas proporcionó por vez primera
un argumento para un valor determinado de la dimensión del espaci-
otiempo. Se comenzó a aplicar un programa de tipo Kaluza-Klein a las
compactificaciones de cuerdas, mediante el que se buscaban modelos re-
alistas en los que el espaciotiempo diez-dimensional quedaba escindido
en el espaciotiempo cuatrodimensional ordinario y una variedad eucĺıdea
y compacta de seis dimensiones. Es más, una elección adecuada de la
variedad de compactificación permit́ıa la obtención de modelos realistas
cercanos al Modelo Estándar en cuatro dimensiones. La cuerda heterótica
[44] E8 × E8 se véıa como particularmente adecuada para la búsqueda
del Modelo Estándar, puesto que sus compactificaciones eran capaces
de dar lugar a simetŕıa de gauge7 E6 (un candidato para el grupo de
gauge en teoŕıas de gran unificación). Asimismo, escogiendo una varie-
dad de Calabi-Yau para la compactificación [46], se satisfaćıa el requisito
fenomenológico de conseguir familias de fermiones quirales en D = 4. Es-
tos desarrollos contribuyeron al entusiasmo generalizado que hizo de la
Teoŕıa de Cuerdas la más firme candidata a proporcionar una descripción
unificada de las interacciones fundamentales puesto que, propuesta como
una teoŕıa cuántica de la gravedad, también parećıa incluir el Modelo

7Nótese que las compactificaciones de la cuerda heterótica diez-dimensional en varie-
dades seis-dimensionales no contradicen el hecho mencionado anteriormente de que sólo
las compactificaciones de once dimensiones en variedades de dimensión siete admiten
el grupo de gauge del Modelo Estándar en la teoŕıa cuatro-dimensional resultante. La
simetŕıa de gauge obtenida en las compactificaciones heteróticas es consecuencia de la
presencia de campos de gauge de E8 ×E8 ya en la teoŕıa diez-dimensional, y no de las
isometŕıas de la variedad de compactificación. De hecho, las variedades de Calabi-Yau
carecen de isometŕıas. Véase [45] para una obtención del grupo de gauge del Modelo
Estándar a partir de compactificación en un contexto IIA.
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Estándar como consecuencia de sus propias condiciones de autoconsis-
tencia.

Pese a todos estos avances, aún quedaban muchos asuntos pendientes.
En primer lugar, las (cinco diferentes) teoŕıas de supercuerdas estaban
definidas únicamente de forma perturbativa. Por otro lado, la existencia
de cinco teoŕıas perturbativas no era demasiado atractiva si la Teoŕıa de
Cuerdas hab́ıa de unificar todas las interacciones. De hecho, entre las
prescripciones habituales para el cálculo de amplitudes de dispersión se
encuentran tanto la suma sobre todas las topoloǵıas posibles que puede
adoptar la hoja de universo de la cuerda (la expansión del geno) como,
en presencia de backgrounds no triviales, la expansión en loops de la con-
stante de acoplamiento α′ de la cuerda, para cada una de esas topoloǵıas.
Aunque este enfoque perturbativo se puede explotar intensamente para
obtener gran cantidad de información sobre la teoŕıa que describe, parece
asimismo evidente la existencia de estructura no-perturbativa fuera del
alcance de esta prescripción.

Efectivamente, eso es aśı. Existen estados que son naturalmente no-
perturbativos y similares, por el contrario, a las soluciones solitónicas
presentes en otras teoŕıas de campos. Aśı, algunas soluciones solitónicas
especiales, llamadas estados de Bogomol’nyi-Prasad-Sommerfield (BPS)8

pueden considerarse, a pesar de ser soluciones clásicas, como soluciones
de la teoŕıa cuántica no-perturbativa. Los multipletes BPS surgen en las
representaciones con masa de las álgebras de supersimetŕıa con N ≥ 1
que saturan la cota de Bogomol’nyi, que relaciona los autovalores del mo-
mento (la masa) y de las cargas centrales. La caracteŕıstica fundamental
de estos multipletes es la de venir caracterizados por menor número de es-
tados que un multiplete con masa ordinario. Aunque tanto la masa como
la carga pueden verse sometidas a renormalización en teoŕıa de pertur-
baciones, la condición de BPS queda protegida de correcciones cuánticas.
Heuŕısticamente, si no fuera aśı, a medida que los efectos cuánticos co-
bran importancia, un multiplete BPS podŕıa convertirse en otro no BPS,
no siendo de esperar tan drástica aparición de estados. En este sentido,
los estados BPS, aun siendo soluciones clásicas, son estables ante correc-
ciones cuánticas y pueden, por tanto, ser ascendidas a soluciones de la
teoŕıa no perturbativa completa. Esta es la razón por la que son tan útiles
para sondear la estructura no-perturbativa de la teoŕıa.

Aśı pues, la noción de estados BPS fue muy importante a la hora de
explorar el régimen no-perturbativo de las cinco teoŕıas de cuerdas. Estas
investigaciones derivaron, a mediados de los años noventa, en importantes
descubrimientos relativos a las relaciones entre ellas. Algunas relaciones
perturbativas entre las compactificaciones de las distintas teoŕıas de cuer-

8La terminoloǵıa viene de [47, 48].
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das, conocidas como T-dualidades (véase [49]), eran ya conocidas en aquél
entonces: se sab́ıa que las teoŕıas de Tipo IIA y de Tipo IIB eran T-duales
(equivalentes) tras compactificación en una circunferencia de radio R y
α′/R, respectivamente, y viceversa. También eran T-duales las dos ver-
siones de la cuerda heterótica. Las S-dualidades [50], por el contrario,
eran de distinta naturaleza y consist́ıan en una generalización de la du-
alidad eléctrica-magnética [51] de la electrodinámica clásica. Aśı, las
S-dualidades relacionaban, por el contrario, el régimen de acoplamiento
fuerte de una teoŕıa de cuerdas (en el que las habituales prescripciones
perturbativas dejan de tener validez) con el régimen de acoplamiento débil
(que admit́ıa un tratamiento en teoŕıa de perturbaciones) de otra de las
teoŕıas de cuerdas. Las teoŕıas de Tipo I y heterótica SO(32) resultaron
ser S-duales, y la de Tipo IIB, S-autodual. Las S y T-dualidades fueron
unificadas bajo el marco de las U-dualidades [52], y la red de dualidades
resultante logró establecer un panorama unificado de todas las teoŕıas de
cuerdas, que fueron entonces reinterpretadas como expansiones pertur-
bativas de la misma teoŕıa no-perturbativa subyacente, en torno a cinco
vaćıos diferentes. La importancia de este hecho motivó el que su des-
cubrimiento fuera señalado como el del inicio de la segunda revolución de
las supercuerdas (véase [53]).

El descubrimiento de la red de dualidades trajo consigo dos hechos im-
portantes. El primero fue la comprensión de la necesidad de incluir en la
teoŕıa p-branas [54] (véase también [55]), objetos supersimétricos extensos
que recorren un volumen de universo con p dimensiones espaciales [56].
Estas branas son soluciones clásicas a las ecuaciones de supergravedad
y, al poseer cargas topológicas [57] (véase también [58]), asociadas a las
cargas centrales del álgebra de supersimetŕıa, siguen siendo soluciones en
el régimen cuántico. Esa es la razón por la que son tan valiosas para
sondear los sectores no-perturbativos de la teoŕıa. La existencia de es-
tos objetos extensos en Teoŕıa de Cuerdas implica una democracia de
p-branas [59], según la cual estas han de tratarse en pie de igualdad con
las mismas cuerdas. El segundo hecho fue el descubrimiento de que las
teoŕıas de cuerdas de Tipo IIA y heterótica E8 × E8 eran duales a una
teoŕıa no-perturbativa en once dimensiones [60, 61], llamada posterior-
mente Teoŕıa M (véase [53] para un repaso y [62] para una colección de
reprints). Las constantes de acoplamiento de esas teoŕıas de cuerdas se
tomaban como funciones crecientes de un radio de compactificación de
modo que, en el régimen de acoplamiento fuerte, surǵıa una undécima
dimensión. Otros hechos veńıan a respaldar esta dualidad; como ya se ha
mencionado, se sab́ıa que la supergravedad de Tipo IIA correspond́ıa a
la reducción dimensional de supergravedad en once dimensiones, y que la
cuerda IIA derivaba de la membrana once-dimensional [63]. Todas estas
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razones permitieron conjeturar la supergravedad once-dimensional como
el ĺımite de baja enerǵıa de la Teoŕıa M.

Once es, de hecho, la máxima dimensión del espaciotiempo que la su-
persimetŕıa espaciotemporal local permite (como ya se ha mencionado),
y que puede contener objetos supersimétricos extensos (véase [64]). A su
vez, el supermultiplete correspondiente en once dimensiones, que deter-
mina el contenido en campos de la supergravedad en D = 11, es único
y mucho más sencillo que sus análogos diez-dimensionales. Sólo contiene
tres campos: la métrica (o gravitón) gµν , su compañero supersimétrico
ψα, y una tres-forma A3. Desde este punto de vista, once dimensiones
resultan ser más naturales que diez, aunque los argumentos de autocon-
sistencia proporcionados por la Teoŕıa de Cuerdas eran irrefutables. A
partir de mediados de los noventa, no obstante, se redefinió el lugar que
la Teoŕıa de Cuerdas deb́ıa ocupar, desde una teoŕıa de objetos exten-
sos unidimensionales en vibración a una teoŕıa de objetos extensos en
general. Más que teoŕıas fundamentales por śı mismas, las teoŕıas de
cuerdas surǵıan como cinco sectores perturbativos y diez-dimensionales
de una nueva y verdaderamente fundamental teoŕıa en once dimensiones,
la Teoŕıa M.

Esta percepción de los sectores no-perturbativos de la teoŕıa acarreó
nueva actividad. Por ejemplo, las D-branas [65] (véase [66]) desbancaron
a las compactificaciones heteróticas en la búsqueda del Modelo Estándar
(véase [67]). Por otro lado, tuvieron lugar otros descubrimientos rela-
tivos a los sectores no-perturbativos de la teoŕıa. Ese fue el caso de la
correspondencia AdS/CFT [68] (véase [69] para un repaso), formulada
originalmente en un contexto de Tipo IIB. Según la correspondencia, la
Teoŕıa de Cuerdas en un background diez-dimensional que contiene el es-
pacio cinco-dimensional de Anti-de Sitter, AdS5, es dual a una teoŕıa
superconforme de campos (CFT) en el borde conforme de AdS5, a saber,
el espacio de Minkowski cuatro-dimensional M4. La formulación origi-
nal de la correspondencia relacionaba la teoŕıa de cuerdas de Tipo IIB
en el background máximamente supersimétrico AdS5×S5, donde S5 es la
cinco-esfera ordinaria, con la teoŕıa de super Yang-Mills con N = 4. Otras
generalizaciones fueron propuestas con posterioridad; en particular, si se
reemplaza S5 por una variedad de Sasaki-Einstein, se obtiene mediante
la correspondencia una teoŕıa de campos superconforme con N = 1 [70].

El conocimiento actual de la Teoŕıa M comprende las dualidades no-
perturbativas que muestra, y el hecho de que su ĺımite de baja enerǵıa
es la supergravedad en once dimensiones. Algunas propiedades, como la
estabilidad de los estados BPS, permiten explorar la Teoŕıa M completa a
partir de soluciones de supergravedad: las conocidas branas de la super-
gravedad en once dimensiones pueden ser descritas tanto por sus acciones
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en el volumen de universo [71, 72], como por soluciones de supergravedad
[73, 74] (véanse los art́ıculos de repaso [64, 75]) que, no obstante, siguen
siendo soluciones de la Teoŕıa M no-perturbativa completa. La soluciones
de branas preservan la mitad de la cantidad máxima de supersimetŕıa
(véase [57]), y sus intersecciones preservan fracciones menores [76]. Llegar
a conocer más soluciones supersimétricas de supergravedad, que preser-
varan diferentes fracciones ν de supersimetŕıa, podŕıa proporcionar una
visión más profunda de la teoŕıa.

Aunque se conocen soluciones de supergravedad en D = 11 que con-
tienen campos tanto bosónicos como fermiónicos (véase [77]), la búsqueda
ha estado restringida generalmente, por simplicidad, a configuraciones
puramente bosónicas. Siendo configuraciones bosónicas, los campos fer-
miónicos pueden ponerse a cero en las ecuaciones de movimiento, y el req-
uisito de que la solución sea supersimétrica se alcanza siempre y cuando la
transformación de los fermiones bajo supersimetŕıa también se anule. Las
soluciones puramente geométricas, en las que la métrica es el único campo
no nulo, se pueden clasificar mediante la holonomı́a riemanniana. Las
soluciones bosónicas de supergravedad más generales pueden describirse
de forma sugerente con una extensión de la noción de holonomı́a rieman-
niana mediante holonomı́a generalizada [78, 73], G-estructuras [79, 80], o
geometŕıa espinorial [81]. Se discutirán cuestiones relacionadas en esta
Tesis.

Otra información muy valiosa sobre la Teoŕıa M que se puede obtener
también a partir de supergravedad, proviene del estudio de su álgebra de
simetŕıa [82, 59]. Las soluciones de branas de supergravedad en D = 11
suelen verse como los objetos fundamentales de la Teoŕıa M, del mismo
modo que las cuerdas eran los objetos básicos de la Teoŕıa de Cuerdas.
En particular, las cargas topológicas [57] de las branas M5 [58] y M2 se
pueden incluir de forma natural en el álgebra de supersimetŕıa, que pasa
de esa forma a llamarse álgebra de la Teoŕıa M. La falta de un principio
de acción para la Teoŕıa M se puede suplir en cierta medida mediante
métodos de teoŕıa de grupos y, de esta forma, el estudio de las repre-
sentaciones de la superálgebra de la Teoŕıa M sugiere que los estados que
preservan 31 supersimetŕıas podŕıan tratarse como fundamentales, mien-
tras que el resto estaŕıa compuesto de ellos. Estos estados, introducidos
en [83] y llamados preones, podŕıan ser considerados como los consti-
tuyentes fundamentales de la Teoŕıa M. Como se probará en esta Tesis,
estas nociones conducen de manera natural a la consideración de superes-
pacios agrandados [8] y supertwistors (véase el art́ıculo de repaso [84]);
véase [85] para las ideas tempranas sobre superbranas y superespacios
agrandados y [86] para un repaso en este contexto.

El estudio de las simetŕıas de supergravedad es una herramienta muy
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útil para investigar la estructura de la Teoŕıa M. La simetŕıa local (bosó-
nica) obvia de supergravedad en D = 11 es el grupo de Lorentz SO(1, 10)
y, por tanto, las derivadas covariantes Lorentz de los campos de super-
gravedad aparecen de forma natural en el lagrangiano. Sin embargo,
otra derivada supercovariante que toma valores sobre el álgebra de Lie de
SL(32,R) [87] aparece en la expresión de la variación bajo supersimetŕıa
local de su campo de gauge, el gravitino ψα. Se ha especulado [87], en
consecuencia, con que la supergravedad en D = 11 posee una simetŕıa
oculta SL(32,R), que podŕıa cobrar importancia en Teoŕıa M9.

Estos comentarios son de aplicación a la formulación original de CJS
de la supergravedad en D = 11 y, en particular, suponen un carácter fun-
damental de la tres-forma A3 de supergravedad once-dimensional. Según
se observó en [92], la falta de una formulación clara del grupo de simetŕıa
de supergravedad en D = 11 podŕıa achacarse, precisamente, a la presen-
cia de A3. Siendo una tres-forma, A3 no admite una interpretación como
potencial de gauge de algún grupo de simetŕıa. En consecuencia, se pro-
puso [92] que A3 fuera un compuesto de uno-formas de gauge potenciales
de grupos adecuados, que podŕıan ser importantes [6, 7] en la formulación
completa de la Teoŕıa M. Esta formulación conduce de forma natural a
álgebras de supersimetŕıa más grandes que las álgebras de superPoincaré
estándares. Otro marco natural en el que formular las simetŕıas de las
teoŕıas de supergravedad lo proporcionan las teoŕıas de Chern-Simons
(CS) [91, 93], en las que los lagrangianos se obtienen como formas de CS
de grupos adecuados.

En resumidas cuentas, el análisis de su ĺımite de baja enerǵıa, la su-
pergravedad en D = 11, es capaz de proporcionar gran cantidad de infor-
mación sobre la Teoŕıa M. Las simetŕıas y estructura de la supergravedad
merecen, pues, un mayor estudio. Es objeto de esta Tesis el contribuir
modestamente al progreso hacia una formulación de estas simetŕıas y ha-
cia la identificación de los constituyentes fundamentales de la Teoŕıa M,
desde el análisis de la supergravedad en D = 11.

Contenidos de esta Tesis

A continuación se resume el contenido de la Tesis.
El caṕıtulo 1 contiene la versión inglesa de esta introducción. En

el caṕıtulo 2 se repasan los elementos de la supergravedad de CJS en
D = 11 necesarios para el resto de la Tesis. Se presenta el álgebra de
superPoincaré, y se extiende en la superálgebra de la Teoŕıa M, que con-
tiene los generadores asociados a las cargas centrales que se acoplan a las

9Otros grupos pueden tener también relevancia, como el grupo de Kac-Moody E11

de rango 11 [88], OSp(1|64) [89, 90] o OSp(1|32) (véase [91]).
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M-branas básicas. La acción de la supergravedad en D = 11 se introduce
a continuación, en un formalismo de primer orden que trata como campos
dinámicos al vielbein, al gravitino y a la tres-forma del correspondiente
multiplete de supergravedad. La conexión de esṕın está compuesta de
ellos, y también se emplea una cuatro-forma auxiliar adicional que pasa a
ser, sobre la superficie de las ecuaciones de movimiento, la curvatura de la
tres-forma. Se discuten las diferentes simetŕıas de la acción, con particular
énfasis en la supersimetŕıa. La variación del gravitino bajo supersimetŕıa
local permite introducir una conexión generalizada que toma valores en
el álgebra de Lie de SL(32,R). Sin embargo, la simetŕıa local (bosónica)
de la supergravedad es (al menos cuando la tres-forma se ve como funda-
mental) sólo su subgrupo SO(1, 10), de ah́ı el nombre de conexión gen-
eralizada. No obstante, la analoǵıa se puede llevar más allá, pudiéndose
definir una curvatura generalizada y su holonomı́a correspondiente como
herramientas útiles para la discusión de soluciones supersimétricas. Se
demuestra asimismo que, curiosamente, la curvatura generalizada codi-
fica las ecuaciones de movimiento bosónicas de supergravedad en D = 11,
no sólo en el ĺımite puramente bosónico sino también en presencia de un
gravitino no nulo [1].

En el caṕıtulo 3 se estudian aspectos adicionales de la holonomı́a gen-
eralizada. Se suele decir que la holonomı́a de una conexión sobre un fi-
brado dado está generada por la curvatura. Una afirmación más precisa,
sobre la que no suele hacerse hincapié, es que el álgebra de holonomı́a
en un punto p está generada por la curvatura en p y en otros puntos
que se puedan alcanzar desde el primero mediante transporte paralelo.
El efecto de la curvatura en puntos vecinos de p se puede medir con las
derivadas covariantes sucesivas de la curvatura en p. La definición del
álgebra de holonomı́a involucra, por tanto, estas derivadas covariantes de
la curvatura. Trasladado al problema del cómputo de supersimetŕıas de
un vaćıo, esto significa que, en general, la integrabilidad de primer orden
de la ecuación de espinores de Killing (que determina las supersimetŕıas
preservadas por una solución de supergravedad) podŕıa no ser suficiente
para asegurar que la ecuación se satisfaga, siendo en este caso necesarias
condiciones de integrabilidad superior para resolver la ecuación.

Haciendo uso de estas ideas, se examina en el caṕıtulo 3 la holonomı́a
generalizada de diversas soluciones supersimétricas de supergravedad. La
holonomı́a generalizada de las branas usuales [94] se repasa demostrando
que, en estos casos, las derivadas covariantes sucesivas de las curvaturas
generalizadas correspondientes sólo cierran el álgebra obtenida de la cur-
vatura. En este sentido, la integrabilidad de orden superior para las M
branas no añade nueva información significativa al álgebra de holonomı́a.
Las compactificaciones de Freund-Rubin, por el contrario, proporcionan
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ejemplos en los que las derivadas supercovariantes de la curvatura gener-
alizada son fundamentales para determinar el álgebra de holonomı́a. De
hecho, el álgebra de curvatura para la compactificación de Freund-Rubin
sobre la squashed S7 resulta ser el álgebra de Lie de G2. Se argumenta
que este no puede ser el resultado correcto, puesto que una holonomı́a
G2 no describe correctamente la supersimetŕıa de las soluciones. Por el
contrario, los generadores que proporciona la derivada supercovariante
de curvatura generalizada realzan el álgebra de holonomı́a a so(7) [95, 2],
que es el resultado correcto por argumentos de supersimetŕıa.

Nuestro estudio de la holonomı́a generalizada continúa en el caṕıtulo
4 desde una perspectiva diferente, en el contexto de la hipótesis preónica
[83]. Se argumenta que los estados BPS que preservan k supersimetŕıas
de un total de 32 están compuestos de un número ñ = 32− k de preones,
número que coincide con el de supersimetŕıas rotas, de modo que k = 32
indica un vaćıo máximamente supersimétrico. Los mismos preones están
caracterizados por k = 31: son estados ν = 31/32 y preservan todas las
supersimetŕıas excepto una. Se demuestra que se puede introducir un
conjunto de ñ espinores bosónicos para describir estos estados. Por sim-
plicidad, se supondrá que los estados preónicos son puramente bosónicos
de modo que, siendo k-supersimétricos, también vienen caracterizados
por k espinores de Killing. Se demuestra que los espinores preónicos y
de Killing son ortogonales y, por tanto, proporcionan una descripción al-
ternativa de las supersimetŕıas preservadas. De hecho, se puede explotar
todav́ıa más esta ortogonalidad [3]: el conjunto de espinores preónicos,
por un lado, y el de espinores de Killing, por otro, pueden completarse,
respectivamente, a dos bases del espacio de espinores, dual la una de la
otra.

Cualesquiera de estas dos bases define un G-frame solidario [3], donde
G es un grupo que puede elegirse convenientemente. La superálgebra de
la Teoŕıa M, cuyo análisis conduce a, y puede hacerse en términos de, la
conjetura preónica, tiene un grupo máximo de automorfismos GL(32,R)
y, por tanto, resulta natural escoger G = GL(32,R). No obstante, otros
grupos son posibles, pudiéndose también adoptar las opciones más restric-
tivas G = SL(32,R) (el grupo relevante en el enfoque de holonomı́a gen-
eralizada) o G = Sp(32,R). El método del G-frame se aplica entonces a la
caracterización del álgebra de holonomı́a de soluciones preónicas de super-
gravedad, a saber, soluciones de supergravedad hipotéticas que preservan
31 supersimetŕıas, asociadas a los estados preónicos BPS. No es posi-
ble dar una respuesta definitiva sobre su existencia en la supergravedad
ordinaria de CJS. Sin embargo, se demuestra la existencia [3] de con-
figuraciones preónicas en supergravedades de Chern-Simons. El caṕıtulo
4 concluye con la introducción de una acción de brana que preserva 31
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supersimetŕıas y que describe, por tanto, una solución preónica. Sin em-
bargo, esta brana no está formulada en la supergravedad estándar de CJS,
sino en el contexto del enfoque de D’Auria y Fré [92] de supergravedad
(que supone una estructura compuesta de la tres-forma A3 en términos
de uno-formas de gauge adecuadas).

Este resultado nos da pie a explorar más profundamente la super-
gravedad à la D’Auria y Fré. Antes de ello, sin embargo, se hace una
pausa para introducir en el caṕıtulo 5 el método de expansión [4] para
(super)álgebras de Lie, que será útil en el contexto de la supergravedad
de D’Auria y Fré. El contenido matemático (en contraposición a f́ısico)
de este caṕıtulo es significativamente superior al del resto de la Tesis. Se
trata de un caṕıtulo técnico en el que se dan los detalles del mecanismo
de expansión y se describen las caracteŕısticas de las álgebras obtenidas.
En primer lugar, se repasan los métodos existentes (contracciones, defor-
maciones y extensiones) para obtener nuevas álgebras (y superálgebras)
a partir de otras dadas. Después, se introduce el método de expansiones
para álgebras de Lie G en general. Al igual que el método de contracción,
se basa en una redefinición de las coordenadas grupales mediante un
parámetro λ que provoca una expansión en serie de potencias infinita de
las uno-formas de Maurer-Cartan (MC) del álgebra de Lie (dual), con coe-
ficientes que son, a su vez, uno-formas. Las series pueden ser truncadas de
forma consistente a ciertos órdenes, siempre y cuando los órdenes de corte
satisfagan ciertas condiciones, y las uno-formas coeficientes corresponden,
pues, a las formas de MC de nuevas álgebras expandidas. El método se
aplica entonces a álgebras de Lie con una estructura particular de sube-
spacios que hace, al final, inmediata su generalización a superálgebras de
Lie. Como primera aplicación del método, la superálgebra de la Teoŕıa
M (con sus automorfismos de Lorentz incluidos) se obtiene [4] como la
expansión osp(1|32)(2, 1, 2) de osp(1|32) (véase el caṕıtulo 5 y [4] para la
notación) .

El caṕıtulo 6 regresa al principal asunto de esta Tesis, la super-
gravedad en D = 11. Se revisa la simetŕıa subyacente a la supergravedad,
en una formulación à la D’Auria y Fré [92]. En general, una teoŕıa la-
grangiana con álgebra de simetŕıa local G viene descrita mediante uno-
formas de gauge, asociadas a las formas de MC de G, y por sus cur-
vaturas. Sin embargo, contrariamente al caso de su análoga en D = 4 y
N = 1, la supergravedad en D = 11 contiene, según ya se ha mencionado,
además de las uno-formas correspondientes al vielbein ea y al gravitino
ψα, una tres-forma A3 que, como tal, no puede asociarse a un gener-
ador de simetŕıa. No obstante, se puede introducir dos nuevos campos
uno-formas bosónicos Bab, Ba1...a5 y otro fermiónico ηα para expresar A3,
junto con las anteriores uno-formas ea, ψα, como un compuesto de estas
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uno-formas. Se puede asociar todas estas uno-formas a las formas de MC
de una familia uniparamétrica de superálgebras de Lie. Estas formas de
MC están definidas sobre las variedades grupales correspondientes, o su-
perespacios agrandados. Se ha de hacer de ellas la interpretación de que
describen la simetŕıa gauge subyacente a la supergravedad en D = 11:
la simetŕıa está oculta al considerar A3 como campo fundamental, pero
resulta manifiesta cuando se trata a A3 como un campo compuesto.

La naturaleza de este problema permite traer a colación las álgebras
diferenciales libres (FDAs). Las FDAs [96, 92, 97, 18] son una general-
ización natural del (enfoque dual de) las álgebras de Lie, y contienen p-
formas πp de rango p > 1. Para un caso particular de FDAs (las mı́nimas),
las diferenciales de las p-formas πp de rango superior corresponden a co-
ciclos no triviales de Chevalley-Eilenberg (CE) ωp+1 de cierta álgebra de
Lie G. Si existe otra álgebra G̃ (más grande) cuyas formas de Maurer-
Cartan permiten convertir en triviales los cociclos ωp+1, no-triviales para
G, entonces las uno-formas de Maurer-Cartan de G̃ permitirán expresar
πp como compuestas de ellas. El problema de la estructura compuesta de
A3 y la simetŕıa subyacente a supergravedad encajan de forma natural en
este lenguaje y, de hecho, se analiza [92, 6, 7] usando estos argumentos.

Las posibles consecuencias dinámicas de una A3 compuesta se exam-
inan también en el caṕıtulo 6, mediante la sustitución de su expresión
compuesta en la acción de primer orden de supergravedad. Se demuestra
que las ecuaciones de movimiento de los nuevos campos implican las de
A3, aunque ahora esta última ha de considerarse compuesta de aquéllos,
en vez de tratarse como fundamental. Puesto que estos campos poseen
más grados de libertad que A3, existen simetŕıas de gauge que convierten
estos grados de libertad en puro gauge. El caṕıtulo concluye resaltando el
hecho de que algunas teoŕıas se puedan formular mediante superespacios
agrandados tales que su dimensión coincide con el número de campos
presentes en la teoŕıa: la estructura de gauge de la supergravedad en
D = 11 es un ejemplo de esta correspondencia campos/coordenadas de
superespacio extendido [85].

En el caṕıtulo 7, vuelven a emplearse los superespacios agrandados.
El superespacio que alĺı se considera es en realidad la variedad grupal
asociada a la superálgebra de la Teoŕıa M y sus generalizaciones con n
coordenadas fermiónicas y 1

2n(n + 1) bosónicas (estos superespacios se
suelen llamar también ‘maximales’, ‘máximamente agrandados’ o ‘ten-
soriales’). Se sabe que los modelos extensos en superespacios agranda-
dos proporcionan modelos para objetos preónicos; ésa es, precisamente,
nuestra motivación para el estudio de este sistema. En el caṕıtulo 7, se
propone un modelo de cuerda supersimétrica con tensión moviéndose en
el espacio máximamente extendido, que puede interpretarse como una
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generalización de esṕın superior de la supercuerda de Green-Schwarz.
El modelo no involucra matrices de Dirac y tampoco posee un término
de Wess-Zumino (WZ). Al contrario, se formula mediante dos espinores
bosónicos que tienen un papel análogo al de los espinores preónicos intro-
ducidos en el caṕıtulo 4. La afirmación [8] de que (en D = 11) el modelo
preserva 30 supersimetŕıas de 32 (o, en general, n − 2 de n) la prueba
el hecho de poseer 30 simetŕıas κ, a pesar de carecer de un término de
WZ. El número de grados de libertad bosónicos y fermiónicos del modelo
se calcula recurriendo a un análisis hamiltoniano, que puede simplificarse
con el uso de supertwistors ortosimplécticos. El caṕıtulo concluye con una
extensión de estas ideas a la construcción de modelos de super-p-branas
en superespacios máximamente extendidos.

El caṕıtulo 8 contiene nuestras conclusiones. Algunos detalles técnicos
quedan relegados a los apéndices.



xxviii Introducción



1

Introduction

Amazing as it is the advance experienced in the last decades by our un-
derstanding of the fundamental processes and laws that rule the physical
world, many important questions remain unsolved. Two major develop-
ments, namely, General Relativity and Quantum Mechanics, contributed
to shape the 20th century Physics. The former, culminating the frame-
work of Classical Physics, is a generalization of Special Relativity, the
theory that revised the Galilean and Newtonian notions of space and time
and placed them on an equal footing in a continuum spacetime. General
Relativity provides a geometrical description of gravity and the frame-
work in which the current cosmological models are formulated. Quantum
Mechanics, on the other hand, applies to physical phenomena occurring
(mostly) at the subatomic level, and is crucial in the description of the
rest of fundamental interactions. The replacement of the original Galilean
character of Quantum Mechanics to make it consistent with Special Rel-
ativity led to the development of Quantum Field Theory. Causality ar-
guments could then be invoked to insist on a local, rather than a global,
realization of some of the symmetries. The resulting Yang-Mills, or gauge,
theories describe all fundamental interactions (electromagnetic, weak and
strong forces) but gravity and, together with a prescribed matter content,
are the key components of the Standard Model of particle physics.

1.1 The road to M Theory

The search for a unified description of different phenomena has been his-
torically a guiding principle for the progress of Physics. From this point
of view, it seems natural to look for a theory that combines all four fun-
damental interactions within the same descriptive scheme. A more solid
argument for the unification of fundamental interactions, going beyond
aesthetical grounds, is provided by the fact that the coupling constants of

1
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the fundamental interactions, including gravity, seem to converge at very
high energies: at the grand unification scale of about 1016 GeV. Even at
low energies, though, the three interactions of the Standard Model ad-
mit a description with the same Yang-Mills gauge theory language. The
reason why gravity does not fit in this scheme is more serious than it
may seem at first sight: General Relativity is a classical theory, and no
consistent results are obtained when the usual prescriptions to account
for quantum effects are imposed; in other words, General Relativity is a
non-renormalizable theory. And yet, the energy scale at which quantum
gravity effects would be significant, the so-called Plank scale, is 1019 GeV,
relatively close to the grand unification scale. This could be interpreted as
a hint that a unifying theory describing all four fundamental interactions
does indeed exist.

Research on gravitation and high energy physics has traditionally fol-
lowed separate road maps, although some discoveries have been fruitfully
applied to both. That has been the case of supersymmetry [9, 10, 11]
(see [12, 13] for reviews and [14] for a collection of reprints), a symmetry
between bosons and fermions based on the concept of Lie superalgebra,
a structure containing generators of both bosonic and fermionic charac-
ter and thus including both commutators and anticommutators. Soon
after its discovery, it was noticed that theories in which supersymmetry
was realized locally automatically contained gravity. Roughly, the argu-
ment goes as follows: the anticommutator of two supersymmetry gener-
ators is a translation; locally realized supersymmetry therefore produces
a local translation, to be identified with a diffeomorphism or local co-
ordinate transformation; invariance under local supersymmetry implies,
thus, invariance under diffeomorphisms and hence gravity. Such theo-
ries of local supersymmetry were consequently called supergravities (see
[15, 16, 17, 18]). The first and simplest supergravity theory to be con-
structed was its four-dimensional (D = 4) version with only one super-
charge (N = 1), and it was consequently called D = 4, N = 1, or simple,
supergravity [19, 20] (see [15] for a review).

In the seventies, supergravity was regarded as a promising candi-
date for a quantum theory of gravity, since fermionic contributions to
the gravitational perturbative expansions were expected to cancel the di-
vergent scattering amplitudes. Simple supergravity turned out not to
completely fulfil this prospect since, although successfully proved finite
even at two loops [21], its matter couplings failed to be so already at first
order [22]. Extended supergravities (containing N > 1 supercharges)
were then developed, the promotion of their N(N − 1)/2 abelian gauge
fields to SO(N)-gauge fields, yielding the so-called gauged supergravities,
being subsequently explored. Among all extended supergravities, maxi-
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mally extended D = 4, N = 8 supergravity [23, 24] had very attractive
features: gravity, gauge fields and matter were all included in the same
supergravity multiplet and, since no N = 8 matter multiplets existed,
a truly unified theory (expected to be renormalizable) of matter and all
interactions could be achieved.

Developments in supergravity research also included the construction
of supergravity theories in diverse spacetime dimensions (see [25] for a
collection of reprints), in particular, in ten and eleven dimensions. Three
supergravity theories could exist in ten dimensions, a supergravity with
N = 1 supersymmetry (Type I supergravity) and two versions with N =
2: Type IIA (non-chiral) and Type IIB (chiral) supergravities (see [25] and
references therein). On the contrary, only one supergravity theory existed
in eleven dimensions, which was proved to be the maximal dimension in
which supergravity could exist if higher spin fields were to be excluded
[26]. Eleven-dimensional supergravity was then constructed by Cremmer,
Julia and Scherk (CJS) in [27]. Maximal lower dimensional supergravities
(those with a maximum amount of supersymmetry), like Type IIA in
D = 10 or N = 8 in D = 4, were shown to arise as dimensional reductions
(i.e., toroidal compactifications) of eleven-dimensional supergravity1.

These developments encompassed a revival and update of the old
(Nordström and) Kaluza-Klein ideas, and compactifications on non-trivial
manifolds were explored (see [29]) where the features of the effective four-
dimensional theories were dictated by the properties of the compactifying
manifold. For instance, the gauge group and the preserved supersymme-
try in four dimensions were related to the isometry group and the holon-
omy group [30] of the compactifying manifold, respectively. Eleven was
not only the maximal dimension allowed by supersymmetry, but also the
minimal dimension that, upon compactification of the extra seven dimen-
sions, could accommodate the SU(3)× SU(2)×U(1) gauge group of the
Standard Model [31] as a subgroup of the isometry group. Moreover, it
allowed for ‘spontaneous’ compactifications [32], in which compact seven-
manifolds arose in a natural way. However, chiral fermion families could
not be obtained [33] from compactification of (non-chiral) D = 11 super-
gravity2. These facts, together with their non-renormalizable character,
damped the interest in supergravity theories as candidates for a quantum
theory of gravity.

1As a matter of fact, one of the main original motivations to build up D = 11
supergravity [27] was to circumvent the technical difficulties arising in the application of
the standard Noether procedure to the construction of the D = 4, N = 8 supergravity
lagrangian [28]; the full N = 8 lagrangian was actually obtained [23] by dimensionally
reducing its D = 11 counterpart.

2This issue was revised later on, with the discovery that compactification spaces
with singularities allowed for chiral fermions [34].
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On the other hand, new results were being obtained regarding a for-
mulation of the other interactions. While the electroweak forces were
successfully described by the spontaneously broken SU(2)× U(1) Yang-
Mills theory, a description for the strong interactions was much less clear.
Curiously enough, a description was proposed in terms of a theory of
strings, since the results of the Veneziano amplitudes and Regge slopes
suggested that hadrons could be described as vibrations of a fundamental
string [35]. This setting assumed the bold proposal of substituting point
particles for one-dimensional extended objects. However, the success of
the application of Yang-Mills theory to the description of the strong inter-
actions in terms of Quantum Chromodynamics (QCD), made the stringy
description fall out of favour, while satisfactorily put the formulation of
strong and electroweak forces on the same footing.

String Theory (see [36, 37]) recovered from this setback when the
realization that the spin two field contained in its spectrum could be
interpreted as the graviton [38] (the quantum of the gravitational field)
provided that the string scale was moved up, from the scale of the strong
interactions to that of quantum gravity. Moreover, strings provided a
renormalizable quantum theory of gravity because their interaction was
smeared over a region of spacetime, instead of taking place at a point.
The real String Theory explosion would come in the mid eighties, when
the first superstring revolution took place.

The classical theory of superstrings (incorporating supersymmetry)
was known to be well defined in 3, 4, 6 and 10 spacetime dimensions [39],
in which cases a Wess-Zumino term (see [40]) existed endowing the action
with κ-symmetry3 (see [36]), a local fermionic symmetry that allowed for
the correct Bose-Fermi matching of degrees of freedom. At the quantum
level, the theory was shown to be consistent only in ten dimensions, since
only in that case it was anomaly free [43]. The anomaly cancelation left,
moreover, five different possible string theories in ten dimensions, namely,
Type IIA, Type IIB, Type I, SO(32) heterotic and E8×E8 heterotic (see
[36] and references therein). Also, supergravity was incorporated into
String Theory: an analysis of the massless modes (describing the low en-
ergy dynamics) in the spectrum of the different string theories showed
that they consisted in the fields belonging to the different supergravity
multiplets in ten dimensions, possibly coupled to super Yang-Mills mul-
tiplets. More precisely, the low energy limits of Type IIA and IIB string
theories were found to be, respectively, the supergravities of the same
name; and that of Type I and the heterotic strings, Type I supergravity
coupled to the N = 1 vector multiplet in ten dimensions with gauge group

3In the particle case, the existence of a fermionic gauge symmetry was shown in [41]
in the massive case and in [42] in the massless case.
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SO(32) (for Type I and the corresponding heterotic string) or E8 × E8

(for the other heterotic string).
Although a Lorentzian signature had to be imposed, the consistency

of the five perturbative string theories provided for the first time a the-
oretical argument for a particular value of the spacetime dimension. A
Kaluza-Klein-type program was applied to string compactifications, that
sought for realistic models in which ten-dimensional spacetime split into
ordinary four-dimensional spacetime, and a compact six-dimensional Eu-
clidean manifold. Interestingly enough, the compactifying manifold could
be chosen so that realistic models close to the Standard Model were ob-
tained in four dimensions. The heterotic [44] E8 × E8 string was seen as
particularly suitable for Standard Model building, since its compactifica-
tions managed to provide E6 gauge symmetries4 (a candidate gauge group
in Grand Unification Theories). Moreover, choosing the compactification
manifold to be Calabi-Yau [46], the phenomenological requirement of chi-
ral fermion families provided by N = 1 supersymmetry in D = 4 was
also fulfilled. All this added to the generalized enthusiasm that made
String Theory the most promising candidate for the unified picture of the
fundamental interactions since, proposed as a quantum theory of grav-
ity, it also seemed to include the Standard Model as a result of its own
selfconsistency conditions.

Despite all this headway, many issues were still unresolved. First of
all, the (five different) theories of superstrings were only defined at the
perturbative level. Moreover, the existence of five different perturbative
theories was not too appealing if String Theory had to unify all interac-
tions. In fact, the usual prescription for the computation of scattering
amplitudes involves both the sum over all possible topologies the string
worldsheet can display (the genus expansion) and, in the presence of non-
trivial backgrounds, the loop expansion in the string coupling constant
α′ for each one of those topologies. Although this perturbative approach
can be intensively exploited to obtain a great deal of information about
the theory it describes, it was apparent that there was a lot of non-
perturbative structure which could not be reached by this prescription.

That is indeed the case. There exist states that are naturally non-
perturbative but similar, instead, to the solitonic solutions present in

4Notice that ten-dimensional heterotic compactifications on six-manifolds do not
contradict the fact mentioned above that only compactifications from eleven dimensions
on seven-manifolds allow for the Standard Model gauge group in the resulting four-
dimensional theory. The resulting gauge symmetry in heterotic compactifications is a
result of the presence of E8 × E8 gauge fields already in the ten-dimensional theory,
and not a consequence of the isometries of the compactifying manifold. Calabi-Yau
manifolds have, indeed, no isometries at all. See [45] for a derivation of the Standard
Model gauge group from compactification in a IIA context.
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other field theories. There are some special solitonic solutions, the so-
called Bogomol’nyi–Prasad–Sommerfield (BPS) states5 which, despite be-
ing classical, can be considered as true solutions to the non-perturbative
quantum theory. BPS multiplets arise in massive representations of the
N ≥ 1 extended supersymmetry algebras in which the Bogomol’nyi bound,
relating the eigenvalues of the momentum (mass) and of the central
charges, is saturated. Their basic feature is that they are characterized
by containing significatively fewer states than a usual massive multiplet.
Now, although both mass and charge may undergo renormalization in
perturbation theory, the BPS condition is protected from quantum cor-
rections. A heuristic argument to support this claim is that, otherwise,
as quantum effects are being switched on a BPS multiplet could turn
into a non-BPS one containing many more states than the former, and
such drastic appearance of states is not expected to happen. It is in this
sense that BPS states, albeit usually described by solutions of the clas-
sical equations of motion, are stable under quantum corrections and can
be lifted, therefore, to solutions of the full, non-perturbative theory. This
is why they are so useful to probe the non-perturbative structure of the
theory.

Thus, the notion of BPS states turned out to be crucial in order
to explore the non-perturbative regime of the five string theories. Such
research derived, in the mid nineties, in important discoveries concerning
the relations among them. Some perturbative relations, known as T-
dualities (see [49]), among the compactifications of the different string
theories were nevertheless already known at the time: Type IIA and
Type IIB were known to be T-dual (equivalent) when compactified on a
circle of radius R and α′/R, respectively, and viceversa. The two versions
of the heterotic string were also T-dual. S-dualities [50], in contrast,
were of a different nature and provided, instead, a generalization of the
conjectured electric-magnetic duality of classical electrodynamics [51]. S-
dualities related the strong coupling regime of a string theory (where
the usual perturbative prescriptions break down) with the weak coupling
regime (that could be treated in perturbation theory) of another string
theory. Type I and SO(32) heterotic were shown to be S-dual, and Type
IIB to be S-selfdual. T and S-dualities were unified by U-duality [52], and
the resulting web of dualities managed to give a unified picture of all string
theories, which were then reinterpreted as perturbative expansions around
five different vacua of the same underlying non-perturbative theory. The
importance of this fact motivated that its discovery were marked as the
beginning of the second superstring revolution (see [53]).

Two decisive developments came along with the discovery of the web

5The terminology comes from [47, 48]
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of dualities. The first one was the realization that p-branes [54] (see also
[55]), supersymmetric extended objects sweeping out a worldvolume of
p spacelike dimensions, were to be included in the theory [56]. These
branes are solutions of the classical supergravity equations and, since
they carry topological charges [57] (see also [58]), associated to the cen-
tral charges of the supersymmetry algebra, they keep on being solutions
at the quantum level. That is why they are so valuable to probe the non-
perturbative sectors of the theory. The existence of these extended objects
in String Theory suggests a p-brane democracy [59], according to which
they should be treated on the same footing as the strings themselves.
The second development was the realization that Type IIA and E8 ×E8

heterotic string theories were dual to a non-perturbative theory in eleven
dimensions [60, 61], subsequently dubbed M Theory (see [53] for a review
and [62] for a collection of reprints). The coupling constants of those
string theories were taken as growing functions of a compactification ra-
dius so that, in their strong coupling regime, an eleventh dimension arose.
This duality was supported by other facts; as already mentioned, Type
IIA supergravity was known to be the dimensional reduction of eleven-
dimensional supergravity, and the IIA string could be derived [63] from
the eleven-dimensional supermembrane. This added reasons to conjecture
eleven-dimensional supergravity as the low energy limit of M Theory.

Eleven is, in fact, the maximum spacetime dimension that local space-
time supersymmetry permits (as already mentioned) and that can contain
supersymmetric extended objects (see [64]). Also, the relevant supermul-
tiplet in eleven dimensions that determines the field content of D = 11
supergravity is both unique and far simpler than its ten-dimensional coun-
terparts. It only contains three fields: the metric (or graviton) gµν , its
supersymmetric partner, the gravitino ψα, and a three-form A3. From
this perspective, eleven dimensions are more natural than ten, although
the selfconsistency arguments provided by String Theory were irrefutable.
After the mid nineties, however, the place of String Theory was redefined,
from a theory of vibrating one-dimensional extended objects, to a theory
of extended objects in general. And, rather than being fundamental the-
ories in themselves, string theories arose as five different ten-dimensional
perturbative corners of a new and truly fundamental eleven-dimensional
theory, M Theory.

These insights about the non-perturbative sectors of the theory al-
lowed for new activity. For instance, D-branes [65] (see [66]) superseded
heterotic string compactifications in Standard Model building (see [67]).
On the other hand, other developments took place, exploring the non-
perturbative sectors of the theory. That was the case of the AdS/CFT
correspondence [68] (see [69] for a review), originally formulated in a Type
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IIB context. According to it, String Theory on a ten-dimensional back-
ground containing five-dimensional Anti-de Sitter space, AdS5, is dual to
a superconformal field theory (CFT) in the conformal boundary of AdS5,
namely, four-dimensional Minkowski space M4. The original formulation
related IIB string theory on the maximally supersymmetric background
AdS5 × S5, where S5 is the round five-sphere, to N = 4 super Yang-
Mills theory. Subsequent generalizations were proposed; in particular, a
dual N = 1 superconformal field theory is obtained if S5 is replaced by a
Sasaki-Einstein manifold [70].

The current knowledge of M Theory includes the non-perturbative
dualities it displays and the fact that its low energy limit is eleven-
dimensional supergravity. Properties such as the stability of BPS states
allow to probe the full M Theory from supergravity solutions: the well-
known eleven-dimensional branes can be described by their worldvol-
ume actions [71, 72], or considered as supergravity solutions [73, 74]
(see [64, 75] for reviews), that arguably remain solutions of the full non-
perturbative M Theory. D = 11 supergravity thus provides a laboratory
to explore basic features of M Theory. Brane solutions preserve one-half of
the maximum amount of supersymmetry (see [57]), and their intersections
preserve smaller fractions [76]. Getting to know more supersymmetric so-
lutions of supergravity, preserving different fractions ν of supersymmetry,
would still provide further insight into the theory.

Although supersymmetric solutions to D = 11 supergravity involving
both bosonic and fermionic fields are known (see [77]), the search for su-
pergravity solutions has been usually restricted, for simplicity, to purely
bosonic configurations. Being bosonic, the fermion fields can be set to
zero in the equations of motion and the requirement that the solution
be supersymmetric is achieved provided the supersymmetry transforma-
tion of the fermions also vanishes. Supersymmetric purely geometrical
solutions, in which the metric is the only non-vanishing field, can be clas-
sified by Riemannian holonomy. More general supergravity solutions can
be suggestively discussed by an extension of Riemannian holonomy in
terms of generalized holonomy [78, 73], G-structures [79, 80], or spinorial
geometry [81]. We shall be discussing some related issues in this Thesis.

Another piece of valuable information about M Theory can be ob-
tained, also at the supergravity level, by studying the symmetry algebra
on which it is based [59, 82]. The brane solutions of D = 11 supergravity
are often viewed as the fundamental objects of M Theory, in much the
same way strings were the basic objects of String Theory. In particular
the topological charges [57] of the M5 [58] and M2 branes can be naturally
included in the supersymmetry algebra to give the so called M Theory
algebra [59]. The lack of an action principle for M Theory can be partially
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overcome by group theoretical methods and, as a matter of fact, the study
of the representations of the M Theory superalgebra suggests that states
preserving 31 supersymmetries could be treated as fundamental, the rest
being composed of them. These states, introduced in [83] and called pre-
ons, could be considered as fundamental constituents of M Theory. As it
will be shown in this Thesis, these notions also lead naturally to consider
enlarged superspaces [8] and supertwistors (see [84] for a review); see [85]
for earlier ideas on superbranes and enlarged superspaces and [86] for a
review in this context.

The study of the symmetries of supergravity is, arguably, a useful
tool to obtain insights into the structure of M Theory. The obvious
(bosonic) local symmetry group of D = 11 supergravity is the Lorentz
group SO(1, 10) and, hence, Lorentz covariant derivatives of the super-
gravity fields arise naturally in the lagrangian. However, another superco-
variant derivative taking values on the Lie algebra of SL(32,R) [87] arises
in order to express the variation under local supersymmetry of its gauge
field, the gravitino ψα. Indeed, the suggestion has been made [87] that
D = 11 supergravity has a hidden SL(32,R) symmetry, that might be-
come relevant in M Theory6. However, no explicit formulation of D = 11
supergravity has been explicitly achieved so far exhibiting this symmetry.

This argument applies to the original, CJS formulation of D = 11
supergravity and, in particular, assumes a fundamental character for the
three-form A3 of D = 11 supergravity. The observation was made in
[92] that the lack of a clear formulation for the gauge group of D = 11
supergravity could be put down, precisely, to the presence of A3. Being
a three-form, it did not admit an interpretation as a gauge potential
of some symmetry group. In consequence, A3 was proposed [92] to be
composed of gauge one-form potentials of suitable groups which could
play a role [6, 7] in the formulation of the fully-fledged M Theory. This
formulation leads naturally to supersymmetry algebras larger than the
standard superPoincaré algebras. Other natural setting to formulate the
symmetries of supergravity theories is achieved by a Chern-Simons (CS)
formulation [91, 93], in which the lagrangians are obtained as CS forms
of suitable supergroups.

In summary, a great deal of information about M Theory can be
obtained from the analysis of its low energy limit, D = 11 supergravity,
the symmetries and structure of which are hence worth further study.
This Thesis aims to make a modest progress towards a formulation of
these symmetries and the identification of the fundamental constituents
of M Theory from the analysis of D = 11 supergravity.

6Several groups may also play a role, as the rank 11 Kac-Moody group E11 [88],
OSp(1|64) [89, 90] or OSp(1|32) (see [91]).
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1.2 The contents of this Thesis

The plan of the Thesis is as follows.
In chapter 2, the elements of D = 11 CJS supergravity that will be

needed in the rest of the Thesis are reviewed. The superPoincaré algebra
is presented, and extended into the M Theory superalgebra, containing
the central charge generators that couple to the basic M branes. The ac-
tion of D = 11 supergravity is then introduced, in a first order formalism
that treats the vielbein, gravitino and three-form of the corresponding
supergravity multiplet, as dynamical fields. The spin connection is com-
posed out of them, and an additional auxiliary four-form becomes related,
on-shell, to the curvature of the three-form. The various symmetries of the
action are discussed, with particular emphasis on supersymmetry. The
variation of the gravitino under supersymmetry allows us to introduce a
generalized connection taking values on the Lie algebra of SL(32,R). The
local (bosonic) symmetry of supergravity (at least when the three-form
field is regarded as fundamental) is, however, only its subgroup SO(1, 10),
hence the name of generalized connection. Nevertheless, the analogy can
be pushed forward, and a generalized curvature and its corresponding
holonomy, consequently called generalized holonomy, can be introduced
as a useful tool to discuss supersymmetric solutions. Interestingly enough,
the generalized curvature is shown to encode the bosonic equations of mo-
tion of D = 11 supergravity, not only in the purely bosonic limit but also
when the gravitino is not vanishing [1].

Further study about generalized holonomy is carried out in chapter 3.
It is usually claimed that the holonomy of a connection on a given fiber
bundle is generated by the curvature. A more precise statement, that is
usually underemphasized, is that the Lie algebra of the holonomy group
at a point p is generated by the curvature at p and at any other points that
can be reached from the former by parallel transport. The effect of the
curvature at neighbouring points of p can be measured by the successive
covariant derivatives of the curvature at p. These covariant derivatives
of the curvature are, thus, also involved in the definition of the Lie al-
gebra of the holonomy group. Translated into the problem of counting
the supersymmetries of a vacuum, this means that, in general, the first
order integrability of the Killing spinor equation (which determines the
supersymmetries preserved by a bosonic supergravity solution) might not
be not enough to ensure that the equation is satisfied, and higher order
integrability conditions could be needed to solve the equation.

Using these ideas, the generalized holonomy of several supersymmet-
ric solutions of supergravity is revisited in chapter 3. The generalized
holonomy of the usual brane solutions [94] is reviewed showing that, in
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these cases, successive covariant derivatives of the corresponding general-
ized curvatures only close the algebra obtained from the curvature. In this
sense, higher order integrability for the M branes does not add significant
new information to the Lie algebra of the holonomy group. Freund-Rubin
compactifications, on the other hand, are given as examples in which the
supercovariant derivatives of the generalized curvature are crucial to de-
termine the Lie algebra of the generalized holonomy group. In fact, the
curvature algebra for the Freund-Rubin compactification on the squashed
S7 turns out to be the Lie algebra of G2. It is argued that this cannot be
the right result, since a G2 holonomy does not describe correctly the pre-
served supersymmetry of the solutions. On the contrary, the generators
provided by the supercovariant derivative of the generalized curvature
enhance the holonomy algebra to so(7) [95, 2], which is also argued by
supersymmetry to be the right result.

Our study of generalized holonomy continues in chapter 4 from a
different point of view, in the context of the preon hypothesis [83]. BPS
states preserving k supersymmetries out of 32 are argued to be composed
of ñ = 32 − k of preons, a number that coincides with that of broken
supersymmetries so that k = 32 indicates a fully supersymmetric vacuum.
Preons themselves are characterized by k = 31: they are ν = 31/32 states
and preserve all supersymmetries but one. It is shown that a set of ñ
bosonic spinors can be introduced in order to describe these states. For
simplicity, it will be assumed that these states are purely bosonic so that,
being k-supersymmetric, they are also characterized by k Killing spinors.
The preonic and Killing spinors are shown to be orthogonal and, thus,
provide an alternative description of the preserved supersymmetries. In
fact, this orthogonality can be further exploited [3]: the set of preonic
spinors, on the one hand, and the set of Killing spinors, on the other
hand, can be completed, respectively, to two bases in the space of spinors,
dual to each other.

Either one of these two bases define a moving G-frame [3], where G is
a group that can be chosen for convenience. The M Theory superalgebra,
the algebraic analysis of which leads to, and can be made in terms of, the
preon conjecture, has a maximal automorphism group of GL(32,R) and,
thus, it is natural to choose G = GL(32,R). Other groups are, however,
possible and the more restrictive options G = SL(32,R) (the relevant
group in the generalized holonomy approach) or G = Sp(32,R) may also
be taken. The G-frame method is then applied to the characterization
of the generalized holonomy of preonic supergravity solutions, namely,
hypothetical supergravity solutions preserving 31 supersymmetries, asso-
ciated to the BPS preon states. No definitive answer about their existence
in ordinary CJS supergravity can be given from this analysis. However,
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preonic configurations are shown to exist [3] in the context of Chern-
Simons supergravities. Chapter 4 then concludes with the introduction
of a brane action preserving 31 supersymmetries and describing, hence,
a preon state. This brane is not formulated on standard CJS supergrav-
ity, though, but in the context of D’Auria-Fré approach to supergravity
[92] (that assumes a composite structure of the three-form A3 in terms of
suitable one-form gauge fields).

This result gives us reasons to further explore D = 11 supergravity à
la D’Auria-Fré. Before doing so, however, a break is done to introduce
in chapter 5 the expansion method [4] for Lie (super)algebras, since it
will be useful in this context. The mathematical (vs. physical) content
of chapter 5 is significatively higher than that of the rest of the Thesis.
It is a technical chapter giving the details of how the expansion method
works, and describing the features of the algebras obtained. First of all,
a review is done of the existing methods (contractions, deformations and
extensions) to obtain and derive new Lie algebras (and superalgebras)
from given ones. Then the expansion method for Lie algebras G is intro-
duced in general. Like the contraction method, it relies on a redefinition
of the group coordinates by a parameter λ that makes the Maurer-Cartan
(MC) one-forms of the (dual) Lie algebra expand in infinite power series
of λ with one-form coefficients. The series can be consistently truncated
at suitable orders, provided the cutting orders fulfil some conditions, and
the retained one-form coefficients then correspond to the MC forms of
the new, expanded algebras. The method is then applied to Lie algebras
with a particular structure of subspaces that, in the end, makes straight-
forward its generalization to Lie superalgebras. As a first application of
the method, the M Theory superalgebra (including its Lorentz automor-
phism part) is derived [4] as the expansion osp(1|32)(2, 1, 2) of osp(1|32)
(see chapter 5 and [4] for the notation).

Chapter 6 returns to the main subject of this Thesis, D = 11 su-
pergravity. The gauge symmetry underlying supergravity is revised, in a
formulation à la D’Auria and Fré [92]. In general, a lagrangian theory
with local symmetry algebra G is described in terms of gauge one-form
fields, associated to the MC forms of G, and its curvatures. However, as
opposed to its D = 4, N = 1 counterpart, eleven-dimensional supergrav-
ity contains, as already mentioned, besides the vielbein ea and gravitino
ψα one-forms, a three-form A3 that, as such, cannot be associated to
a symmetry generator. However, two new bosonic one-form fields Bab,
Ba1...a5 and one fermionic ηα can be introduced to express A3, together
with the former one-forms ea, ψα, as a composite of these one-forms. All
these one-forms can be associated to Maurer-Cartan one-forms of a one
parameter family of Lie superalgebras. These MC forms are defined on
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the corresponding group manifolds, or enlarged rigid superspaces. They
are to be interpreted as describing the underlying gauge symmetry of
D = 11 supergravity: the symmetry is hidden when A3 is considered
as a fundamental field, but becomes manifest when A3 is treated as a
composite field.

Free differential algebras (FDAs) are brought into the picture to deal
with this problem. FDAs [96, 92, 97, 18] are a natural generalization of
(the dual point of view of) Lie algebras, containing p-forms πp of rank
p > 1. For a particular case of FDAs (the minimal ones), the differentials
of the higher rank p-forms πp are nontrivial Chevalley-Eilenberg (CE)
cocycles ωp+1 of a certain Lie algebra G. If there exists another (larger)
algebra G̃ in terms of the Maurer-Cartan forms of which the non-trivial
cocycles ωp+1 for G become trivial, then the MC forms of G̃ will allow
us to express πp as composites of them. The problem of the composite
structure ofA3 and the underlying symmetry of supergravity fits naturally
in this language and, in fact, it is further studied [92, 6, 7] using these
arguments.

The possible dynamical consequences of a composite A3 are also an-
alyzed in chapter 6, by substituting its composite expression into the
supergravity first order action. The equations of motion of the new fields
are shown to imply those of A3, but now considering the later as com-
posed of them, rather than as fundamental. Although the new fields carry
more degrees of freedom than A3 does, the formulation of supergravity
due to D’Auria and Fré can be regarded as dynamically equivalent to the
standard CJS formulation, since there exist gauge symmetries that make
these extra degrees of freedom pure gauge. The chapter ends emphasizing
how enlarged superspaces can be found for some theories such that their
dimension coincides with the number of fields present in the theory: the
gauge structure of D = 11 supergravity is an example of this extended
superspace coordinates/fields correspondence [85].

In chapter 7, enlarged superspaces are again used. The relevant super-
space there is actually the group manifold of the M Theory superalgebra
and its generalizations with n fermionic and 1

2n(n + 1) bosonic coordi-
nates (also called ‘maximal’, ‘maximally enlarged’ or ‘tensorial’ super-
space). Extended objects in enlarged superspaces are known to provide
models for preonic objects; this is, in fact, our motivation for the study
of this system. A model for a supersymmetric tensionful string moving
in maximally enlarged superspace is proposed in chapter 7, which can be
interpreted as a higher spin generalization of the Green-Schwarz super-
string. The model neither involves Dirac matrices nor has a Wess-Zumino
(WZ) term. Instead, it is formulated in terms of two bosonic spinors, a
counterpart of the preonic spinors introduced in chapter 4. The claim [8]
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that (in D = 11) the model preserves 30 supersymmetries out of 32 (or,
in general, n − 2 out of n) is supported by the fact that it possess 30
κ-symmetries, in spite of its lack of a WZ term. The number of bosonic
and fermionic degrees of freedom of the model is worked out resorting to
a hamiltonian analysis, which can be simplified with the use of orthosym-
plectic supertwistors. The chapter concludes with an extension of these
ideas to the construction of super-p-branes models in maximally enlarged
superspaces.

Chapter 8 contains our conclusions. Some technical details are rele-
gated to the appendices.



2

Eleven-dimensional supergravity

The general framework in which the rest of the Thesis is developed is
introduced in this chapter, devoted to the review of a number of topics
about D = 11 Cremmer-Julia-Scherk (CJS) supergravity in order to fix
the conventions and notation used in most of the subsequent chapters. Af-
ter describing in section 2.1 the supersymmetry algebras and groups rele-
vant for supergravity (with particular emphasis on the eleven-dimensional
case), the action principle of the theory is introduced in section 2.2, in
a first order formalism that turns out to be convenient for subsequent
developments. The symmetries of the action are also discussed in that
section, devoting the following section 2.3 to the supersymmetry of the
theory and to the related notions of generalized connection, curvature
and holonomy. The equations of motion are described both in general,
in section 2.4, and in the purely bosonic limit, in section 2.5. Finally,
in section 2.6 the equations of motion of eleven-dimensional supergrav-
ity are shown to be encoded in the generalized curvature even when the
gravitino is non-vanishing [1].

2.1 The M Theory superalgebra

Eleven-dimensional CJS supergravity [27] is the locally supersymmetric
field theory based on the (only) massless supermultiplet of the super-
Poicaré group in eleven spacetime dimensions containing fields up to he-
licity two [26]. Not only the supergravity multiplet is unique in D = 11,
but the theory does not allow modifications such as the presence of a
cosmological constant [98]. It is thus worth starting the discussion about
eleven-dimensional supergravity taking a look at the symmetry algebra
on which it is based. The D = 11 superPoincaré (or standard super-

15
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symmetry) algebra1 E o so(1, 10) is made up of the usual supertransla-
tions algebra E acted on semidirectly by the Lorentz algebra in eleven
dimensions. The supertranslations algebra E exponentiates into the su-
pertranslations group Σ, the group manifold of which (also denoted Σ)
corresponds to rigid superspace. In spacetime dimension D, the even
part of the (N -extended) supertranslations algebra E is generated by D
bosonic (translation) generators Pa, a = 1, . . . , D, and the odd part by
N fermionic (supertranslation) generators, or supercharges, Qiα with n
components, i = 1, . . . , N , α = 1, . . . , n. The number n of components
of each supercharge is that of the minimal spinor in spacetime dimension
D, and the number N of supercharges has an upper bound depending
on D (see below). In eleven dimensions, D = 11, there is only one su-
percharge, N = 1, that is a Majorana spinor with n = 32 components.
Accordingly, we shall usually assume N = 1, in which case D and n are
the bosonic and fermionic dimensions of superspace. When the dimen-
sions are needed explicitly, to avoid confusion it will be written E(D|n)

(for the superalgebra) and Σ(D|n) (for the supergroup, or superspace);
in eleven dimensions, thus, the supertranslations algebra is E(11|32) and
superspace is Σ(11|32). As a supergroup, the Σ(11|32) superspace can be
regarded as a central extension2 [85] by the generator Pa of the abelian
fermionic translations group Σ(0|32) generated by Qα. Further extensions
and enlargements of the algebra are possible, as we shall shortly see.

As for the structure of the superPoincaré algebra, the supertransla-
tions (anti)commutation relations defining E are

{Qα, Qβ} = ΓaαβPa , [Pa, Qα] = 0 , [Pa, Pb] = 0 , (2.1.1)

where Γaαβ are 32 × 32 eleven-dimensional Dirac matrices defining the
Clifford algebra Cl(1, 10),

{Γa,Γb} = 2ηab I32 , (2.1.2)

ηab being the Minkowski metric and I32 the 32 × 32 identity matrix.
The spinor indices are raised and lowered with the 32 × 32 skewsym-
metric charge conjugation matrix Cαβ , which is understood in (2.1.1):
Γaαβ ≡ ΓaαγCγβ . The Lorentz group SO(1, 10) has generators Jab, and its
corresponding algebra so(1, 10) is defined by the commutation relations

[Jab, Jcd] = −4J[a
[cδb]

d] . (2.1.3)

Its semidirect action on the supertranslations algebra E is given by

[Jab, Qα] = 1
4Γab αβQβ , [Jab, Pc] = 2ηc[aPb] , (2.1.4)

1The symbol o will be used throughout, either denoting semidirect sum (when used
in a Lie algebra context) or semidirect product (when used in a Lie group context).

2See section 5.1 in chapter 5 for a brief review of Lie algebra extensions.
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where Γab is the antisymmetrized product of two Dirac matrices of the
Clifford algebra Cl(1, 10); in general,

Γa1...ak := Γ[a1 · · ·Γak] , (2.1.5)

where the brackets denote antisymmetrization with weight one. The set
of (anti)commutators (2.1.1), (2.1.3), (2.1.4) defines the superPoincaré
algebra E o so(1, 10).

The number of supersymmetries of a supergravity theory in any di-
mension must be at most 32, if interacting fields of spin higher than 2 are
to be avoided3. This is the requirement that places an upper bound de-
pending on the number of components n of the minimal spinor in dimen-
sion D. The 32-component supercharge Qα of D = 11 supergravity makes
its equations display maximal supersymmetry; the maximally supersym-
metric supergravity in four dimensions has, instead, N = 8 4-component
supercharges Qiα, i = 1, . . . , 8, α = 1, . . . , 4, so that it also displays 32
supersymmetries. N -extended supergravities in lower dimensions allow
for supersymmetry algebras with a richer structure, since new generators
commuting with the rest of the superPoincaré generators, and conse-
quently called central charges, can be introduced on the right-hand-side
of the anticommutator of two supercharges (the first equation in (2.1.1)).
Eleven-dimensional supergravity has only one supercharge, N = 1, but
extensions nevertheless do exist generalizing the anticommutator of two
supercharges.

In fact, the anticommutator in (2.1.1) is symmetric in the spinor in-
dices (αβ) and takes values on the (even part Cl(1, 10)+ of the) Clifford
algebra Cl(1, 10) generated by

{I32,Γ[1],Γ[2],Γ[3],Γ[4],Γ[5]} , (2.1.6)

where the shorthand notation Γ[k] has been used to denote generically
the antisymmetrized products of Dirac matrices, Γ[k] ≡ Γa1...ak . In eleven
dimensions and Lorentzian signature, the matrices Γ[1]

αβ ≡ (Γ[1]C)αβ ,

Γ[2]
αβ ≡ (Γ[2]C)αβ and Γ[5]

αβ ≡ (Γ[5]C)αβ are symmetric in (αβ), whereas
the rest in (2.1.6) are skewsymmetric. The standard supertranslations al-
gebra E can accordingly be extended by adding two more antisymmetric
tensorial generators Zab = Z[ab], Za1...a5 = Z[a1...a5] to the right-hand-side
of the anticommutator of two supercharges [82]:

{Qα, Qβ} = ΓaαβPa + iΓabαβZab + Γa1...a5
αβ Za1...a5 . (2.1.7)

3See section 7.1 of chapter 7, and references therein, for some remarks about higher
spin theories.
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The generators Zab, Za1...a5 commute among themselves and with the
rest of supertranslation generators. They are, thus, central if the Lorentz
group is ignored and, in fact, are also called central charges.

The extension (2.1.7) of the standard supertranslations algebra E ≡
E(11|32) by the bosonic generators Zab, Za1...a5 gives the superalgebra
E(528|32), with generators

Pa , Qα , Za1a2 , Za1...a5 , (2.1.8)

and bosonic dimension
(
11
1

)
+
(
11
2

)
+
(
11
5

)
= 11 + 55 + 462 = 528. Be-

ing maximally extended (in the bosonic sector4), E(528|32) generalizes the
superPoincaré algebra in eleven dimensions and is usually called the M
Theory superalgebra or M-algebra5 [59] (see [82, 99, 85]). Its associated
group manifold Σ(528|32) corresponds to the maximally extended rigid su-
perspace. The bosonic generators Pa, Zab and Za1...a5 can be collected in
a generalized momentum Pαβ = Pβα generator,

Pαβ = ΓaαβPa + iΓa1a2
αβ Za1a2 + Γa1...a5

αβ Za1...a5 , (2.1.9)

in terms of which the (anti)commutation relations of the M Theory su-
peralgebra E(528|32) can be written succinctly as

{Qα, Qβ} = Pαβ , [Qα, Pβγ ] = 0 . (2.1.10)

In terms of the generalized momentum Pαβ , these (anti)commutation
relations (2.1.10) exhibit a GL(32,R) automorphism symmetry. When
the decomposition (2.1.9) is used to write Pαβ in terms of Dirac matrices,
the GL(32,R) automorphism symmetry is reduced down to the Lorentz
group SO(1, 10). In some applications (see chapter 4), it is interesting
to consider the maximal automorphism group of the M Theory superal-
gebra, GL(32,R). For other developments, however, it is convenient to
consider the reduced automorphism group SO(1, 10) for the M algebra
since, after all, the supergravity equations only display a local Lorentz
symmetry. The semidirect sum E(528|32) o so(1, 10) becomes, then, the
counterpart of the superPoincaré algebra E(11|32) o so(1, 10) in the pres-
ence of additional tensorial central charges. In chapter 5, the M Theory
superalgebra with SO(1, 10) automorphisms will be revisited in connec-
tion with the orthosymplectic superalgebra osp(1|32) and shown to be an
expansion of this group [4].

The M Theory superalgebra contains complete information about the
non-perturbative BPS states of the hypothetical underlying M Theory:

4Further extensions are, however, possible in the fermionic sector: see chapter 6.
5See [99, 85, 92] for further generalizations of the M Theory superalgebra and for

their structure.
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the additional bosonic generators Zab, Za1...a5 of the M-algebra (2.1.10)
are related to the topological charges [57] of the supermembrane and the
super-M5-brane6 [58] (see also [103]). These ‘single brane’ BPS states
can be associated with D = 11 supergravity solutions [64, 75] or with
fundamental M Theory objects described by their worldvolume actions
[71, 72]. Although the M-algebra (2.1.10) leads naturally to a D = 11
Lorentz-covariant interpretation when the splitting (2.1.9) is used, it also
allows both for a IIA and a IIB treatment. In the first case, this is allowed
because the (relevant) Dirac matrices coincide in ten and eleven dimen-
sions; in the IIB case, a counterpart of equation (2.1.9) [59, 104] can
be written if the spinor indices α are split as α′i, where α′ = 1, . . . , 16
is a D = 10 Majorana-Weyl spinor index and i = 1, 2. As a result,
the information about non-perturbative BPS states of the D = 10 su-
perstring theories (including D-branes) can also be extracted from the
algebra (2.1.10). This means that the M-algebra also encodes all the du-
ality relations between different D = 10 and D = 11 superbranes. These
facts add further reasons to call (2.1.10) the M Theory superalgebra [59].

To conclude this section, let us write, for future reference, the dual
version of the algebras introduced above. It is usually convenient to
resort to a dual point of view to deal with Lie algebras, especially to
construct lagrangians invariant or quasi-invariant (i.e., invariant up to a
total derivative) under the symmetry transformations of the Lie algebra.
This dual point of view will be particularly relevant in chapters 5 and
6. Let G be a Lie group with parameters gi, i = 1, . . . ,dimG, and G its
Lie algebra, generated by the (left-, say) invariant vector fields Xi(g) on
the group manifold G, with commutation relations [Xi, Xj ] = ckijXk. The
coalgebra G∗ is then spanned by the dual (ωi(Xj) = δij), left-invariant
Maurer-Cartan (MC) one-forms ωi(g) on the group manifold G, subject
to the Maurer-Cartan equations

dωk = −1
2c
k
ijω

i ∧ ωj , (2.1.11)

which contain the same information than the commutation relations in
terms of generators Xi. In particular, the Jacobi identities cki[jc

i
lm] = 0

arise from the requirement that the MC equations (2.1.11) be consistent
with the nilpotency of the exterior differential, dd ≡ 0.

6This result was extended in [100] by showing that these generators also con-
tain a contribution from the topological charges of the eleven-dimensional Kaluza-
Klein monopole (Z0µ1...µ4 ∝ ε0µ1...µ4ν1...ν6 Z̃ν1...ν6) and of the M9-brane (Z0µ ∝
ε0µν1...ν9 Z̃ν1...ν9) which is usually identified with the Hořava-Witten hyperplane [61]
(for the Kaluza-Klein monopole and the M9 brane only bosonic actions are known
[101, 102]).
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Introducing the MC one-forms Πa, πα, σab dual, respectively, to the
generators Pa, Qα, Jab, the superPoincaré group can be described by the
MC equations

dΠa = Πb ∧ σba − iπα ∧ πβΓaαβ ,

dπα = πβ ∧ σβα
(
σα

β = 1
4σ

abΓab αβ
)
,

dσab = σac ∧ σcb , (2.1.12)

offering a counterpart of the (anti)commutation relations (2.1.1), (2.1.3),
(2.1.4). Finally, introducing the MC forms Πab, Πa1...a5 dual, respectively,
to the generators Zab, Za1...a5 , the whole set

Πa , πα , Πa1a2 , Πa1...a5 , (2.1.13)

provides, setting aside the automorphisms part, the Maurer-Cartan one-
forms of the M Theory superalgebra E(528|32), left-invariant on the corre-
sponding group manifold (maximally extended rigid superspace) Σ(528|32).
The one forms Πa, Πab, Πa1...a5 can again be collected into the symmetric
spin-tensor one-form

Παβ= 1
32

(
ΠaΓαβa − i

2Πa1a2Γa1a2
αβ + 1

5!Π
a1...a5Γa1...a5

αβ
)
, (2.1.14)

dual to Pαβ , in terms of which the MC equations of the M Theory su-
peralgebra, containing the same information as the (anti)commutation
relations (2.1.10), can be written in compact form as

dΠαβ = −iπα ∧ πβ , dπα = 0 . (2.1.15)

2.2 First order action of D = 11 supergravity

The field content of N -extended supergravity in D dimensions is deter-
mined by the so-called supergravity multiplet, determined by the mass-
less representation of the corresponding superPoincaré algebra containing
fields up to helicity two. In particular, for the construction of the eleven-
dimensional supergravity action, the central charges Zab, Za1...a5 can be
ignored. The fields involved in D = 11 supergravity [27] are, specifically,
a Lorentzian metric (corresponding to the graviton) gµν , a three-form A3

and a Majorana Rarita-Schwinger field ψα (the gravitino). Actually, the
presence of spinor fields makes it necessary to work in the vielbein ap-
proach, in which the metric is replaced by a vielbein field eaµ in tangent
space, satisfying gµν = eaµe

b
νηab, where ηab is the Minkowski metric. Ex-

cept in chapter 3, a mostly minus signature for the metric will be used
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throughout this Thesis. In the component approach, these fields are to
be regarded as forms on eleven-dimensional spacetime7 M11,

ea(x) = dxµeaµ(x) ,
ψα(x) = dxµψαµ(x) ≡ eaψαa (x) ,

A3(x) = 1
3! dx

µ1 ∧ dxµ2 ∧ dxµ3Aµ3µ2µ1(x)

≡ 1
3! e

a1 ∧ ea2 ∧ ea3Aa3a2a1(x) . (2.2.1)

Notice the ‘superspace’ reverse order convention for the components of
the p-forms. The differential d will be taken to act from the right,

dαp = 1
p!dx

µp ∧ . . . ∧ dxµ1 ∧ dxν∂ναµ1...µp . (2.2.2)

As usual in supersymmetric theories, the number of bosonic and fermionic
degrees of freedom match. In D = 11, ea has (D−2)(D−1)

2 −1 = 44 on-shell
degrees of freedom which, together with the

(
D−2

3

)
= 84 on-shell degrees

of freedom provided by A3, makes up 128 bosonic on shell degrees of
freedom. That is the same number of on-shell degrees of freedom of
fermionic character, associated to the gravitino ψα, namely, 1

22[D/2](D −
3) = 128.

In addition to the forms (2.2.1), the first order action for D = 11
supergravity [92, 105],

S =
∫
M11

L11[ea, ψα, A3, ω
ab, F4] , (2.2.3)

contains the Lorentz connection one-form ωab and the auxiliary four-form8

F4,

ωab(x) = dxµωabµ (x) ,

F4(x) = 1
4! dx

µ1 ∧ dxµ2 ∧ dxµ3 ∧ dxµ4Fµ4µ3µ2µ1(x)

≡ 1
4! e

a1 ∧ ea2 ∧ ea3 ∧ ea4Fa4a3a2a1(x) , (2.2.4)

that must be treated as independent fields in the variational problem,
and acquire their usual, second order formalism values when considered
on shell (see section 2.4). Notice that the on-shell counting of degrees
of freedom coincides in the first and second order formalisms, since the
auxiliary fields in the former become, on shell, functions of the fields
defining the later.

7We shall be concerned with the spacetime component formulation of supergravity.
For a review of the superspace formulation of supergravity, see e.g. [7].

8The first order formulation of [92] involved no four-form F4 but a tensor zero-form
Fa1...a4 . The later can actually be replaced throughout by its contraction with four
vielbeins to give an F4 and, hence, both formulations are equivalent.
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The action (2.2.3) is defined on eleven-dimensional spacetime M11

and the lagrangian that determines it reads [92, 105]

L11 = 1
4R

ab ∧ e∧9
ab −Dψα ∧ ψβ ∧ Γ̄(8)

αβ

+1
4ψ

α ∧ ψβ ∧ (T a + i
2 ψ ∧ ψ Γa) ∧ ea ∧ Γ̄(6)

αβ

+(dA3 − a4) ∧ (∗F4 + b7) + 1
2a4 ∧ b7

−1
2F4 ∧ ∗F4 − 1

3A3 ∧ dA3 ∧ dA3 . (2.2.5)

Both the Riemann tensor and the torsion,

Rab := dωab − ωac ∧ ωcb , (2.2.6)
T a := Dea = dea − eb ∧ ωba (2.2.7)

(where, in the last equation, D is the standard Lorentz covariant deriva-
tive) enter the first order lagrangian, the earlier in the Einstein-Hilbert
term (the first one in the r.h.s. of (2.2.5)) characteristic of any gravita-
tional lagrangian. Together with the curvature of A3, these curvatures
(2.2.6), (2.2.7) are the basic ingredients of the free differential algebra
approach to D = 11 supergravity (see chapter 6).

The derivative acting on the gravitino in its kinetic term, the second
of (2.2.5), is again the Lorentz covariant derivative,

Dψα := dψα − ψβ ∧ ωβα , (2.2.8)

now defined in terms of the spin connection,

ωβ
α = 1

4ω
ab(Γab)βα , (2.2.9)

taking values on so(1, 10), the Lie algebra of the double cover of the
eleven-dimensional Lorentz group, Spin(1, 10), generated by Γab.

Following [105] (see also [1, 7]), we have introduced in the lagrangian
(2.2.5) the notation

a4 := 1
2ψ

α ∧ ψβ ∧ Γ̄(2)
αβ , (2.2.10)

b7 := i
2ψ

α ∧ ψβ ∧ Γ̄(5)
αβ , (2.2.11)

for the bifermionic 4- and 7-forms built up from the gravitino, as well as
the compact notation

Γ̄(k)
αβ := 1

k!e
ak ∧ . . . ∧ ea1Γa1...akαβ . (2.2.12)

Finally, ∗F4 is the Hodge dual of F4,

∗F4 := − 1
4!e

∧7
a1...a4

F a1...a4 , (2.2.13)
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and the (11− k)-form

e∧(11−k)
a1...ak

:= 1
(11−k)!εa1...akb1...b11−k

eb1 ∧ . . . ∧ eb11−k (2.2.14)

has been introduced for convenience9.
As for the symmetries of the action, it should be noted that the usual

general covariance of any gravitational action is implemented in this for-
malism by using differential forms to write the lagrangian (2.2.5). Local
Lorentz symmetry is also straightforwardly implemented in the vielbein
approach. The action is also invariant under abelian gauge symmetries
of the three-form A3, and locally supersymmetric, as we now discuss.

2.3 Supersymmetry and generalized holonomy

The action (2.2.3), (2.2.5) is locally supersymmetric, i.e. it is invariant
under the following local supersymmetry transformations δε parameter-
ized by a fermionic Spin(1, 10)-spinor parameter ε(x):

δεe
a = −2iψαΓaαβε

β , (2.3.1)
δεψ

α = Dεα(x) , (2.3.2)

δεA3 = ψα ∧ Γ̄(2)
αβε

β , (2.3.3)

besides more complicated expressions for δεωab and δεFabcd, which can
be found in [105] and that will not be needed below. Let us stress that,
as shown in [105], the supersymmetry transformation rules of the phys-
ical fields are the same in the second and in the first order formalisms.
The transformations (2.3.1)–(2.3.3) have the usual form expected from
supersymmetry: the bosonic fields ea and A3 transform into the (only, in
this case) fermionic field ψα which, in turn, transforms into ea and A3

(included, on shell, inside the supercovariant derivative D: see below).
Precisely, the transformation (2.3.2) in terms of the supersymmetric co-
variant derivative D is characteristic of locally realized supersymmetry,
and allows for an interpretation of the gravitino as the gauge field of local
supersymmetry.

The introduction of the generalized covariant (or supersymmetric co-
variant, or supercovariant) derivative D allows for a simple expression for
the transformation rule (2.3.2) of the gravitino under supersymmetry. It
can be written explicitly as

δεψ
α = Dεα(x) := Dεα(x)− εβ(x)tβα(x) =

= dεα(x)− εβ(x)Ωβ
α(x) , (2.3.4)

9See [1] for the correspondence of this notation to that of [105].
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in terms of the generalized (or supersymmetric) connection one-form

Ωβ
α = 1

4ω
abΓabβα + i

144e
a
(
Γab1b2b3b4β

α + 8 δa[b1Γb2b3b4]β
α
)
F b1b2b3b4 ,

(2.3.5)

that differs from the spin connection ωαβ = 1
4ω

abΓabβα (equation (2.2.9))
by the additional tensor one-form

tβ
α = i

144e
a
(
Γab1b2b3b4β

α + 8 δa[b1Γb2b3b4]β
α
)
F b1b2b3b4 , (2.3.6)

depending on the auxiliary form F4 (which, on-shell, reduces to the su-
percovariant field strength of A3; see equation (2.4.4) below).

A connection one-form takes values on the Lie algebra G of the struc-
ture groupG of a fiber bundle (see, e.g. [40]). The spin connection ωαβ, for
instance, takes values on the Lie algebra so(1, 10) of the structure group
Spin(1, 10) of the spin bundle on eleven-dimensional spacetime M11. It
is, therefore, natural to ask what is the generalized structure group, on
the Lie algebra of which the generalized connection Ωα

β takes values [78].
To this end, notice that when F4 = 0 then tα

β = 0, and the generalized
connection (2.3.5) reduces to the so(1, 10)-valued spin connection (2.2.9).
But, in general, F4 6= 0 and tαβ, as defined in (2.3.6), is non-vanishing. In
this case, the presence of additional Dirac matrices makes the generalized
connection to take values not on so(1, 10), but on the whole Cl(1, 10)+
generated by the antisymmetrized products of Dirac matrices in (2.1.6),
namely, {I32,Γ[1],Γ[2],Γ[3],Γ[4],Γ[5]}. The dimension of the relevant even
part Cl(1, 10)+ of the Clifford algebra is

dim Cl(10, 1)+ =
(

11
0

)
+
(

11
1

)
+
(

11
2

)
+
(

11
3

)
+
(

11
4

)
+
(

11
5

)
= 1024 .

(2.3.7)

The problem can still be analyzed in terms of Lie algebras, though.
In fact, when Cl(1, 10)+ is endowed with the usual Lie bracket pro-
vided by matrix commutation, [A,B] = AB − BA, it coincides with
gl(32,R), the Lie algebra of the general linear group GL(32,R), of dimen-
sion dim gl(32,R) = 322 = 1024. The Lie algebra so(1, 10), generated
by Γ[2], on which the spin connection (2.2.9) takes values, is a subalge-
bra of gl(32,R). Similarly, one may wonder what is the Lie subalgebra
of gl(32,R) on which the generalized connection Ωα

β takes values. An
explicit computation reveals that the generators {Γ[2],Γ[3],Γ[5]} defining
Ωα

β in equation (2.3.5) do not close into a Lie algebra by themselves,
and that the presence of {Γ[1],Γ[4]} (not that of I32) is also required to
ensure closure under commutation [87]. In conclusion, the generalized
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connection Ωα
β takes values on the 1023–dimensional Lie subalgebra of

gl(32,R) spanned by its traceless generators,

{Γ[1],Γ[2],Γ[3],Γ[4],Γ[5]} . (2.3.8)

These are the generators of sl(32,R), the Lie algebra of SL(32,R) which
is, therefore, to be interpreted as the generalized structure group ofD = 11
supergravity [87].

A remark about terminology is now in order. The local symmetry
of D = 11 supergravity is not SL(32,R); as mentioned in the previous
section, it is only SO(1, 10). In this sense, the generalized connection
Ωα

β as defined by equation (2.3.5) may be said not to be a bona fide
connection. However, it reduces to the spin connection when F4 = 0 and,
in a sense, generalizes it when F4 is non-vanishing. Moreover, the role
played by the Riemannian holonomy of the spin connection ωα

β in the
classification of purely geometrical supersymmetric bosonic solutions of
supergravity (for which the metric is the only non-vanishing field) can be
taken over by its generalized counterpart Ωα

β when F4 is turned on [78,
73, 87] (see chapter 3). This adds further reasons to call Ωα

β generalized
connection.

Pushing this analogy further, the curvature two-form of the general-
ized connection Ωα

β,

Rβ
α := dΩβ

α − Ωβ
γ ∧ Ωγ

α

= 1
4R

ab(Γab)αβ +Dtα
β − tα

γ ∧ tγβ , (2.3.9)

can be introduced, and consequently referred to as the generalized cur-
vature10. In general, the curvature two-form of a connection w takes
values on a subalgebra H ≡ hol(w) of the Lie algebra G of the struc-
ture group G. The corresponding group H ≡ Hol(w) is a subgroup of
G and is called the holonomy group (of the connection w); its corre-
sponding Lie algebra hol(w) will sometimes be called the holonomy alge-
bra. Accordingly, the generalized holonomy group Hol(Ω) [78] (see also
[73, 87, 94, 107, 108, 109, 110, 95, 2, 3]11) is the subgroup of SL(32,R) on
the Lie algebra of which the generalized curvature Rα

β takes values. In
general, however, the curvature at a point does not determine completely
the Lie algebra of the holonomy group, but its successive covariant deriva-
tives are needed to determine it (see, e.g. [112]). Generalized holonomy
is no exception [2], as shown in chapter 3. See also section 3.1 for the

10A full expression for the generalized curvatureRα
β corresponding to purely bosonic

solutions of CJS supergravity can be found in [106, 80].
11See [111] for the role of generalized holonomy when vanishing F4 is considered but

higher order corrections to the supergravity equations of motion are taken into account.
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role of generalized holonomy in the determination of the number of su-
persymmetries preserved by a bosonic solution of supergravity.

2.4 Equations of motion

Algebraic equations

Let us return to the analysis of the first order action of D = 11 super-
gravity, to obtain the equations of motion. The variations of the ac-
tion (2.2.3), (2.2.5) with respect to the Lorentz connection ωab and the
auxiliary four-form F4 give algebraic constraints that can be used to de-
fine these auxiliary fields in terms of those of the supergravity multiplet
(2.2.1). Indeed, from the variation of (2.2.3), (2.2.5) with respect to the
Lorentz connection,

δS

δωab
= 1

4e
∧8
abc ∧ (T c + iψα ∧ ψβ Γcαβ) = 0 , (2.4.1)

the torsion is seen to be given by

T a = −iψα ∧ ψβ Γaαβ , (2.4.2)

which, upon use of its definition (2.2.7), gives an algebraic equation for
the Lorentz connection ωab, which allows us to solve for it in terms of the
vielbein and the gravitino.

On the other hand, the variation of the action with respect to F4,

δFS =
∫
M11

(dA3 − a4 − F4) ∧ ∗δF4 =

= − 1
4!

∫
M11

(dA3 − a4 − F4) ∧ e∧7
a1...a4

δF a1...a4 , (2.4.3)

produces an algebraic equation of motion, δS/δF4 = 0, that makes of F4

the ‘supersymmetric’ field strength of A3,

dA3 = a4 + F4 . (2.4.4)

Making use of the expressions (2.4.2) and (2.4.4) for the torsion T a and
four-form F4 into the first order lagrangian (2.2.5), the original second
order CJS lagrangian [27] is recovered.

Dynamical equations

The variation of (2.2.3) with respect to the rest of the fields yields the
dynamical equations of motion: the Einstein equations (arising from the
variation with respect to ea), the (generalization of the Maxwell) equation
for A3 and the Rarita-Schwinger equation for the gravitino ψα.
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The explicit form of the Einstein equations,

M10 a := Rbc ∧ e∧8
abc + . . . = 0 , (2.4.5)

will not be needed in the remainder, so we will not be concerned with
it12. The variation of the action with respect to the three-form A3,

δAS =
∫
M11

G8 ∧ δA3 ,
δS

δA3
:= G8 , (2.4.6)

gives the eight-form

G8 = d(∗F4 + b7 −A3 ∧ dA3) , (2.4.7)

and thus the equation of motion of A3 is

G8 = d(∗F4 + b7 −A3 ∧ dA3) = 0 . (2.4.8)

Finally, the fermionic variation of the lagrangian (2.2.5) reads (cf.
[105])

δψL11 = −2Dψα ∧ Γ̄(8)
αβ ∧ δψ

β + i(dA3 − a4 − F4) ∧ Γ̄(5)
αβ ∧ ψ

α ∧ δψβ

+
(
iaΓ̄

(8)
αβ + 1

2ea ∧ Γ̄(6)
αβ

)
∧ (T a + iψα ∧ ψβ Γaαβ) ∧ ψα ∧ δψβ

−d
[
ψα ∧ Γ̄(8)

αβ ∧ δψ
β
]
, (2.4.9)

where ia is defined by iaeb = δba so that, for αp = 1
p!e

ap ∧ . . . ∧ ea1αa1...ap ,

iaαp = 1
(p−1)!e

ap ∧ . . . ∧ ea2αaa2...ap . (2.4.10)

Imposing the algebraic constraints (2.4.2) and (2.4.4) and ignoring the
total derivative term, equation (2.4.9) gives the gravitino equation of [27]
written, as in [105], in differential form,

Ψ10 β := Dψα ∧ Γ̄(8)
αβ = 0 , (2.4.11)

in terms of the supercovariant derivative

Dψα := dψα − ψβ ∧ Ωβ
α ≡ Dψα − ψβ ∧ tβα , (2.4.12)

defined for the generalized connection (2.3.5).

12See [105] for the explicit expression of the Einstein equation in this formalism.
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2.5 The purely bosonic limit

For many applications, it is interesting to consider the purely bosonic
limit of D = 11 supergravity in which the gravitino vanishes, ψα = 0. A
torsion-free spacetime is then recovered (see equation (2.4.2)), described
by the Einstein equations (2.4.5) which, in this limit, reduce to

Eab := Ricab− 1
3Fac1c2c3Fb

c1c2c3 + 1
36ηabFc1c2c3c4F

c1c2c3c4 = 0 , (2.5.1)

where Ricab is the Ricci tensor. The equation of motion (2.4.8) of A3

reduces to

G8 = d ∗ F4 − F4 ∧ F4 = 0 . (2.5.2)

The four-form F4 that enters both (2.5.1) and (2.5.2) reduces, by virtue
of the algebraic constraint (2.4.4), to the field strength of A3, F4 = dA3;
consequently, it is subject to the Bianchi identity

dF4 ≡ 0 . (2.5.3)

Interestingly enough, these bosonic equations are encoded in the gen-
eralized curvature Rα

β of the generalized connection Ωα
β, now still given

by equations (2.3.9) and (2.3.5), respectively, but setting ψα = 0 (and,
consequently, F4 = dA3) in them. With these restrictions, Rα

β obeys
[80, 3]

Na β
α := iaRα

γΓaγβ = −1
4e
bRb[c1c2c3]Γ

c1c2c3
α
β + 1

2e
aEabΓbαβ

+ i
36e

a [∗G8]b1b2b3(Γa
b1b2b3 + 6δ[b1a Γb2b3])αβ

+ i
720 e

a [dF4]b1...b5 (Γab1...b5 + 10δ[b1a Γb2...b5])αβ ,
(2.5.4)

where Eab, G8 are the r.h.s’s of the Einstein and the gauge field equations
as defined in (2.5.1), (2.5.2) and ia is defined in (2.4.10); in particular,
iaRα

β = ebRabα
β. The equality (2.5.4) implies that the set of the free

bosonic equations for CJS supergravity, (2.5.1), (2.5.2), (2.5.3), is equiva-
lent to the following simple equation for the generalized curvature (2.3.9),
ebRabα

γΓaγβ = 0, or

iaRα
γ Γaγβ = 0 , (2.5.5)

since the r.h.s. of equation (2.5.4) is zero on account of the equations of
motion (2.5.1), (2.5.2) and the Bianchi identities for F4 (equation (2.5.3))
and for the Riemann tensor, Rb[c1c2c3] = 0.
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Especially relevant are those solutions of the purely bosonic equations
(2.5.1), (2.5.2), (2.5.3) of D = 11 supergravity preserving some supersym-
metry (see section 3.1 of chapter 3 for the conditions that a purely bosonic
supergravity solution must meet in order to preserve supersymmetry). In
eleven dimensions, supergravity displays the maximum amount, 32, of su-
persymmetries permitted (see section 2.1) and hence, a supersymmetric
bosonic solution of D = 11 supergravity preserves a number k of super-
symmetries between 1 and 32. A supersymmetric solution can be referred
to by the fraction of preserved supersymmetry as a ν = k/32 solution.

The ν = 1/2-supersymmetric solutions are usually regarded as the
basic solutions of D = 11 supergravity13. These are the M-wave [77], the
Kaluza-Klein monopole [113, 114, 100] and the elementary brane solu-
tions, namely, the M2-brane [73] and the M5-brane [74] (the existence of
an M9-brane has been conjectured in [102, 100]). See also [64, 75] and
references therein. The M2-brane solution14 solves the Einstein equation
Eab = Tab − 1

9ηab Tc
c with a singular energy-momentum tensor density

source Tab ∝ δ3(x − x̂(ξ)) (x̂(ξ) being pulled-backed on the M2-brane
worldvolume, parameterized by coordinates ξ). The gauge field equation
also receives a singular source contribution J8 in the r.h.s., G8 = J8, sim-
ilar to that of the electric current to the r.h.s. of Maxwell equations. In
this sense, the M2-brane carries a supergravity counterpart of the electric
charge in Maxwell electrodynamics (see [115] for a discussion). The other
basic ν = 1/2 brane solution of D = 11 supergravity, the M5-brane, is
a counterpart of the Dirac monopole, i.e. of the magnetically charged
particle. It is characterized by a modification of the Bianchi identities
(equation (2.5.3)) with the analogue of a magnetic current in the r.h.s.,
dF4 = J5.

Intersecting branes preserve less than one-half of the maximum su-
persymmetry, i.e., they correspond to ν < 1/2 supergravity solutions
[76]. On the other hand, there also exist maximally supersymmetric so-
lutions (ν = 1) preserving, thus, all 32 supersymmetries. Four solutions
exhaust the complete list of ν = 1 solutions of D = 11 supergravity [109]:
eleven-dimensional Minkowski space, the compactifications AdS4 × S7,
AdS7 × S4 [32, 116] on round-spheres and the pp-wave of [117]. In spite
of the fact that the supersymmetry algebra allowed, in principle, for all
the fractions ν = k/32, k = 1, . . . , 32, to be preserved [118], no explicit
solutions (other than those maximally supersymmetric) preserving more

13On the other hand, states with ν = 31/32 (BPS preons [83]) can be argued, on
purely algebraic grounds, to be fundamental in M Theory: see sec. 4.1 of chapter 4.

14See equations (3.3.10) and (3.3.1) of chapter 3 for the expressions of the metric and
four-form corresponding, respectively, to the M2- and M5-brane solutions of D = 11
supergravity; that section, 3.3, also discusses the generalized holonomy of these brane
solutions.
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that ν = 1/2 were known for some time. Solutions with extra super-
symmetry were found indeed as pp-waves [119, 120, 121, 122] or Gödel
universes [123, 124], preserving k = 18, 20, 22, 24, 26 and (in IIB super-
gravity) 28 supersymmetries.

Since the supergravity multiplet is the only one without higher spin
fields in D = 11, no usual field-theoretical matter contribution to the
r.h.s.’s of the equations of motion (2.5.1), (2.5.2), (2.5.3) may appear.
Modifications to the equations might arise, however, not only due to the
presence of the branes just mentioned, but also if higher order correc-
tions to the curvature [125, 126, 127, 111] (a counterpart of the string α′

corrections [128] in D = 10) are taken into account. These corrections
should have an M Theoretical interpretation.

2.6 Equations of motion and generalized curvature

Let us now return to the general case of non-vanishing gravitino, ψα 6= 0,
and show that there exists a counterpart of equation (2.5.5) collecting
the equations of motion of the bosonic fields in terms of the generalized
curvature [1]. The gravitino equation of motion (2.4.11), Ψ10 β = 0, is
expressed in terms of the supercovariant derivative D of ψα (equation
(2.4.12)), defined in terms of the generalized connection Ωα

β (equations
(2.3.5), (2.3.6)). As a result, the integrability/selfconsistency condition
for equation (2.4.11) may be written in terms of the generalized curvature
Rα

β of equation (2.3.9). Using DDψα = −ψβ∧Rβ
α and15 t γ

1[β ∧Γ̄(8)
α]γ =

0 which implies DΓ̄(8)
βα = DΓ̄(8)

βα = T a ∧ iaΓ̄(8)
βα, we obtain

DΨ10 α = Dψβ ∧ (T a + iψ ∧ ψΓa) ∧ iaΓ̄(8)
βα −

− i
6ψ

β ∧
[
Rβ

γ ∧ e∧8
abcΓ

abc
γα + iDψδ ∧ ψγ ∧ e∧7

a1...a4
Γ[a1a2a3

δα Γa4]
βγ

]
= 0 .

(2.6.1)

The first term in the second part of equation (2.6.1) vanishes due to
the algebraic constraint (2.4.2). Hence on the surface of constraints, the
selfconsistency of the gravitino equation is guaranteed when [1]

M10 αβ := Rβ
γ ∧ e∧8

abcΓ
abc
γα + iDψδ ∧ ψγ ∧ e∧7

a1...a4
Γ[a1a2a3

δα Γa4]
βγ = 0 . (2.6.2)

As it will now be shown, equation (2.6.2) collects all the equations of mo-
tion of the bosonic fields, (2.4.5), (2.4.8), and the corresponding Bianchi
identities for the A3 gauge field and for the Riemann curvature tensor [1].
Equation (2.6.2) is, thus, the counterpart of equation (2.5.5) when the

15This follows from direct calculation: t γ
1 α ∧ Γ̄

(8)
γβ = − i

2
F4 ∧ Γ̄

(5)
αβ + 1

2
∗ F4 ∧ Γ̄

(2)
αβ .
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gravitino is non-vanishing. Let us stress that we distinguish between the
algebraic equations or constraints (equations (2.4.2) and (2.4.4)) from the
true dynamical equations ((2.4.5), (2.4.8)) and that our statement above
refers to the dynamical equations; thus it is also true for the second order
formalism.

To show this it is sufficient to use the second Noether theorem and/or
the fact that the purely bosonic limit of (2.6.2) implies equation (2.5.5),
which is equivalent to the set of all bosonic equations and Bianchi iden-
tities when ψα = 0. According to the second Noether theorem, the local
supersymmetry under (2.3.1)–(2.3.3) reflects (and is reflected by) the ex-
istence of an interdependence among the bosonic and fermionic equations
of motion; such a relation is called a Noether identity. Furthermore, since
the local supersymmetry variation of the gravitino (2.3.2) is given by the
supercovariant derivative Dεα, the gravitino equation Ψα should enter
the corresponding Noether identity through DΨα. Thus, DΨα should be
expressed in terms of the equations of motion for the bosonic fields, in
our case including the algebraic equations for the auxiliary fields. Hence,
due to the equations (2.6.1), (2.4.2), the l.h.s. of equation (2.6.2) vanishes
when all the bosonic equations are taken into account.

Indeed, schematically, ignoring for simplicity the purely algebraic
equations and neglecting the boundary contributions, the variation of
the action (2.2.3), (2.2.5) (considered now in the second order formalism)
reads

δS =
∫
M11

(−2Ψ10α ∧ δψα + G8 ∧ δA3 +M10 a ∧ δea) . (2.6.3)

For the local supersymmetry transformations δε, equations (2.3.1)–(2.3.3),
one finds, integrating by parts

δεS =
∫
M11

(−2Ψ10α ∧ Dεα + G8 ∧ δεA3 +M10 a ∧ δεea) =

= −
∫
M11

(−2DΨ10α − G8 ∧ ψβ ∧ Γ̄(2)
βα + 2iM10 a ∧ ψβΓaβα) εα = 0 .

(2.6.4)

Since δεS = 0 is satisfied for an arbitrary fermionic function εα(x), it
follows that

DΨ10α = −1
2ψ

β ∧
(
−2iΓaβαM10 a + G8 ∧ Γ̄(2)

βα

)
. (2.6.5)

By virtue of equations (2.6.1) and (2.6.5), and after the algebraic
equations (2.4.2), (2.4.4) are taken into account,

M10 αβ := Rβ
γ ∧ e∧8

abcΓ
abc
γα + iDψδ ∧ ψγ ∧ e∧7

a1...a4
Γ[a1a2a3

δα Γa4]
βγ =
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= −3i
(
−2iΓaβαM10 a + G8 ∧ Γ̄(2)

βα

)
. (2.6.6)

It then follows that the equation of motion for the bosonic fields (2.6.2),
M10 αβ = 0, is satisfied,

Rβ
γ ∧ e∧8

abcΓ
abc
γα = −iDψδ ∧ ψγ ∧ e∧7

a1...a4
Γ[a1a2a3

δα Γa4]
βγ , (2.6.7)

after the dynamical equations (2.4.5), (2.4.8) are used. Getting rid of the
vielbein forms, the equation (2.6.2) (or (2.6.7)) can be written in terms
of the components Rabα

β , (Dψ)abα of the two-forms Rα
β, Dψα,

Rα
β = 1

2e
b ∧ eaRabα

β , (2.6.8)

Dψα = 1
2e
b ∧ ea(Dψ)abα , (2.6.9)

as

Rbcα
γΓabcγβ = 4i((Dψ)bcΓ[abc)β (ψdΓd])α . (2.6.10)

Equation (2.6.6) also shows what Lorentz-irreducible parts of the con-
cise bosonic equations M10 αβ = 0 coincide with the Einstein and with
the 3-form gauge field equations. These are given, respectively, by

M10 a = − 1
192tr(ΓaM10) , (2.6.11)

G8 ∧ ea ∧ eb = i
96tr(ΓabM10) . (2.6.12)

All other Lorentz-irreducible parts in equation (2.6.2), M10 αβ = 0, are
satisfied either identically or due to the Bianchi identities that are the
integrability conditions for the algebraic equations (2.4.2), (2.4.4) used in
the derivation of (2.6.6).

In conclusion, we have proven that equation (2.6.2) collects all the
dynamical bosonic equations of motion in the second order approach to
supergravity. To see that it collects all the Bianchi identities as well, one
may either perform a direct calculation or study its purely bosonic limit.
The latter way is simpler and it also provides an alternative proof of the
above statement as we now show.

For bosonic configurations, ψα = 0, equation (2.6.2) reduces to

Rβ
γ ∧ e∧8

abcΓ
abc
γα = 0 . (2.6.13)

Decomposing Rα
β on the vielbein basis as in (2.6.8), equation (2.6.13)

implies

Rab β
γΓabcγα = 0 . (2.6.14)

Contracting (2.6.14) with Γαδc one finds

Rab β
γΓabγδ = 0 . (2.6.15)
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Then, contracting again with the Dirac matrix Γαδd and using ΓabΓd =
Γabd + 2Γ[aδd

b] as well as equation (2.6.14), one recovers equation (2.5.4),
Naβ

α = 0, namely,

iaRβ
γΓaγ

α ≡ ebRabβ
γΓaγ

α = 0 . (2.6.16)

Since (2.6.16) collects all the bosonic equations of D = 11 CJS supergrav-
ity as well as all the Bianchi identities in the purely bosonic limit [80, 3],
ψα = 0, the equivalence of equations (2.6.16) and (2.6.13) will imply that
M10 αβ = 0, equation (2.6.2), does the same for the case of non-vanishing
fermions, ψα 6= 0 [1].

The Bianchi identities Ra[bcd] ≡ 0 and dF4 ≡ 0 appear as the irre-
ducible parts tr(Γc1c2c3Na) and tr(Γc1...c5Na) of equation (2.5.4) [1]; more
precisely, in the later case the relevant part in Na is proportional to
[dF4]b1...b5(Γa

b1...b5 + 10δa[b1Γb2...b5]), but the two terms in the brackets
are independent. Knowing this, one may also reproduce the terms that
include the Bianchi identities in the concise equation (2.6.7) (equivalent
to (2.6.10) or (2.6.6)) with a non-vanishing gravitino.
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Subtleties about generalized holonomy

The generalized holonomy of some solutions of eleven-dimensional super-
gravity is reviewed in this chapter. It is done by paying particular atten-
tion to a feature of holonomy already mentioned in section 2.3, namely,
that covariant derivatives of the curvature might be needed to define the
Lie algebra of the holonomy group. In section 3.1, the supersymmetry
transformations discussed in general in chapter 2 are particularized for
purely bosonic solutions of supergravity. The Killing spinor equation that
results as a consistency condition from the vanishing of the gravitino vari-
ation is presented and the usefulness of the integrability conditions of the
equation exhibited. These (first order) integrability conditions are related
to the generalized curvature. In section 3.2 it is argued that ordinary, first
order integrability is in general not enough to characterize the holonomy,
and that iterated commutators of the supercovariant derivatives may be
needed to properly define the holonomy algebra.

To check for possible consequences of the higher order integrability
conditions, the generalized holonomy of the usual M-branes is reviewed
in section 3.3. It is found that, in these cases, successive commutators of
the supercovariant derivatives only help to close the algebra obtained at
first order (the curvature algebra) and that successive commutators do not
add significant information. The situation is, however, different for other
supergravity solutions: as section 3.4 shows, second order integrability
conditions are necessary to compute the generalized holonomy of Freund-
Rubin compactifications. Knowledge of the embedding of the generalized
holonomy group in the generalized structure group is, moreover, needed
to determine correctly the number of preserved supersymmetries. Some
details are relegated to Appendix A.

This chapter follows closely reference [2], and uses the conventions
therein. In particular, we temporarily resort to a mostly plus metric gMN ,
M,N, . . ., denoting eleven-dimensional spacetime indices (µ, ν, . . . , and
a, b, . . . , will be reserved for lower dimensions) . With these conventions,

35
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the generalized connection (2.3.5) will be denoted ΩM and its associated
supercovariant derivative will act from the left and will be defined as

DM ≡ ∂M + 1
4ΩM = DM − 1

288(ΓMNPQR−8δNMΓPQR)FNPQR, (3.0.1)

where DM denotes the Lévi-Civita covariant derivative associated to the
spin connection ωM . The purely bosonic equations of motion (2.5.1) and
(2.5.2) will read in this chapter:

RicMN = 1
12

(
FMPQRFN

PQR − 1
12gMNF

PQRSFPQRS
)
, (3.0.2)

d ∗ F4 + 1
2F4 ∧ F4 = 0. (3.0.3)

Spinor indices will be omitted and derivatives will act from the left.

3.1 Killing spinors, holonomy and supersymmetry

For purely bosonic supergravity solutions, ψM = 0, the supersymmetry
transformations simplify considerably. The bosonic fields, ea and A3, of
such a solution are clearly invariant under supersymmetry,

δεe
a = 0 , (3.1.1)

δεA3 = 0 , (3.1.2)

since their transformation rules, (2.3.1) and (2.3.3), respectively, are pro-
portional to a vanishing gravitino. On the other hand, the invariance of
the bosonic solution under supersymmetry implies, in particular, that the
solution cannot change its bosonic character after the transformation, i.e.,
that no gravitino is generated by the transformation. This amounts to
requiring that the variation (2.3.2) of the gravitino under supersymmetry
also vanishes. Namely, with the convention of (3.0.1),

δεψM ≡ DM ε = 0 . (3.1.3)

It should be remarked that the expression (3.1.3) is not an identity,
since the non-trivial character of the transformation of the gravitino,
equation (2.3.2), will not allow for it to be identically satisfied for any
spinor field ε. Equation (3.1.3) is, instead, a consistency requirement
and only the spinors ε solving the equation will parameterize unbroken
supersymmetries. The equation (3.1.3) is usually called Killing spinor
equation, and its solutions, Killing spinors. The number k of preserved
supersymmetries of a bosonic supergravity solution is, thus, given by the
number of Killing spinors1 εJ , J = 1, . . . , k.

1In lower dimensional supergravities, or in compactifications of D = 11 super-
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In a fiber bundle, the notions of constancy with respect to the covari-
ant derivative, invariance under parallel transport and invariance under
the holonomy group come down to the same thing (see, e.g. [112]): in
fact, the holonomy group is a measure of how vectors and tensors on the
fiber transform under parallel transport around a closed loop at a point.
Let us momentarily set F4 = 0, so that, since we are dealing with bosonic
supergravity solutions (ψM = 0), the only non-vanishing field is the met-
ric; these configurations therefore correspond to purely geometrical solu-
tions, to which the results of Riemannian geometry can be applied. In
this case, the supercovariant derivative DM (equation (3.0.1)) acting on
spinors reduces to the covariant derivative associated to the Lévi-Civita-
induced spin connection DM (see (2.2.9)) taking values on the Lie algebra
so(1, 10) of the tangent space group SO(1, 10) (the structure group). The
Killing spinor equation (3.1.3) accordingly reduces to

DM ε = 0 . (3.1.4)

Unbroken supersymmetries of purely geometrical supergravity solutions
are, thus, parameterized by spinors parallel with respect to the spin con-
nection (that is, satisfying (3.1.4)). Riemannian holonomy controls in this
case the number of solutions to the equation (3.1.4) and, consequently, the
number of preserved supersymmetries: solutions to (3.1.4) exist if, and
only if, the spinor representation 32 of the structure group SO(1, 10), to
which the spinor ε belongs, is not only reducible under the Riemannian
holonomy group Hol(ω), but also the identity representation arises in the
decomposition of the 32 of SO(1, 10) under Hol(ω). The number k of
times that the identity shows up in this decomposition (i.e., the number
of singlets in this decomposition) corresponds to the number of invariant
spinors εJ , J = 1, . . . , k, under the action of Hol(ω). These are the spinors
invariant under parallel transport and, thus, satisfying equation (3.1.4).

A heuristic argument can be given to support this result. A simpler
equation for the parallel spinors is obtained if (3.1.4) is further differen-
tiated,

[DM , DN ]ε = 0 . (3.1.5)

From the computational point of view, this (first order) integrability con-
dition of the spinor equation (3.1.4) is more convenient, because it is only

gravity, further spin 1/2 fermions might exist, their supersymmetry transformations
being algebraic, instead of differential, in ε. In these cases, the invariance of purely
bosonic solutions under supersymmetry requires that the variation of these fermions
also vanishes, setting further algebraic constraints on the parameters εJ if they are to
parameterize preserved supersymmetries. We shall not encounter this situation in our
discussion.
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algebraic, whereas (3.1.4) is differential in ε. The commutator [DM , DN ]
of two Lévi-Civita covariant derivatives is proportional to the Riemann
tensor which, according to the Ambrose-Singer theorem [129] (see also
[130]), determines the Lie algebra of the holonomy group. Obviously,
equation (3.1.5) is only necessary for equation (3.1.4); however, for the
relevant cases usually encountered in supergravity (including vanishing-
flux compactifications), it is also sufficient2. The spinors solving equation
(3.1.5) and, hence, invariant under the holonomy group, solve the equa-
tion (3.1.4) and correspond to preserved supersymmetries.

Notice that the existence of parallel spinors imply a holonomy reduc-
tion: the generic holonomy of a Riemannian manifold coincides with the
structure group SO(1, 10). If parallel spinors exist, only when Hol(ω) ⊂
SO(1, 10) with strict inclusion, the spinor representation can be reducible
under Hol(ω). Riemannian holonomy groups have been classified by
Berger [131] in the Euclidean case, such classification having been par-
tially extended to the Lorentzian case by Bryant [132].

Let us now return to the case of non-vanishing four-form, F4 6= 0. This
is the generic case in supergravity and, in fact, the presence of F4 allows
for supergravity solutions preserving exotic fractions of supersymmetry.
As already discussed, the preserved supersymmetries of a bosonic solu-
tion when F4 6= 0 are now parameterized by the Killing spinors solving
the Killing spinor equation (3.1.3). The relevant covariant derivative is
not any longer the Lévi-Civita covariant derivative, but the supercovari-
ant derivative (3.0.1) associated to the generalized connection ΩM taking
values on the Lie algebra of the generalized structure group SL(32,R)
[87] (see section 2.3). The presence of F4 terms in the supercovariant
derivative does not hamper, however, an analysis of the Killing spinor
equation similar to that of its Riemannian counterpart. Again, the (first
order) integrability condition of (3.1.3),

MMN ε ≡ [DM ,DN ]ε = 0 , (3.1.6)

is an algebraic, rather than a differential, equation for the Killing spinors.
The commutator MMN = [DM ,DN ] of supercovariant derivatives now
defines the generalized curvature R (in fact, MMN contains the same
information than equation (2.3.9)) taking values, again by the Ambrose-
Singer theorem [129], in the Lie algebra hol(Ω) of the generalized holon-
omy group. The proposal was then put forward in [78] (see also [73])
that the role of Riemannian holonomy in the determination of unbroken
supersymmetries of a supergravity solution with non-vanishing F4 was

2Were (3.1.5) not sufficient for (3.1.4), the holonomy argument would keep on be-
ing correct: further integrability conditions would then be needed to determine the
holonomy (see next section).
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taken over by generalized holonomy. In particular, in analogy with the
purely geometrical, Riemannian case, the number of Killing spinors and,
thus, the number of preserved supersymmetries of a purely bosonic solu-
tion of eleven-dimensional supergravity ought to be given by the number
of singlets in the decomposition of the 32 representation of the gener-
alized structure group (SL(32,R) [87]) under the generalized holonomy
group Hol(Ω) [78, 73]. Notice that this argument does not apply to hy-
pothetical preonic (31/32-supersymmetric) solutions [83], for which both
the 31 unbroken supersymmetries and the only broken one are singlets.
See [94, 107, 108, 109, 110, 2, 95, 3, 111] for further discussion about
generalized holonomy.

Two remarks are in order. Firstly, both in the Riemannian and the
generalized cases, the relevant structure and holonomy groups can be
smaller: this is the case, e.g., in compactification. In this case, the rele-
vant representations of these groups are involved in the supersymmetry
counting (see section 3.4 for an example). Secondly, spinors are assumed
to be globally defined on the manifolds we are dealing with; namely,
the manifolds M fulfilling the Einstein equations (3.0.2) (or (2.5.1) with
the notation of chapter 2) are endowed with a spin structure3 and, con-
sequently, fulfil the topological restriction of having vanishing Stiefel-
Whitney class (see [29] and references therein). The promotion of spinors
from the (spinor representation) 32 of SO(1, 10) to the (fundamental
representation) 32 of SL(32,R) may encompass the loss of the infor-
mation contained in the spin structure [134]. A different approach to
deal with supersymmetric supergravity solutions, in which the spin struc-
ture is naturally incorporated, is that of G-structures [79, 80] (see also
[135, 136, 137, 138, 139]). The later approach has proved to be very useful
to build up explicit supergravity solutions (see [134, 140] for reviews, and
[141, 142] for G-structures in the context of flux compactifications). See
[81] for another recent approach to deal with the Killing spinor equation.

As in the Riemannian case, the presence of Killing spinors entails
a generalized holonomy reduction: as shown in [107, 87], for a D =
11 supergravity solution to preserve k supersymmetries, the generalized
holonomy group must be such that4 Hol(Ω) ⊆ SL(32−k,R)n(R32−k⊗ k. . .
⊗ R32−k) ≡ SL(32 − k,R) n Rk(32−k) or, from the Lie algebra point of
view,

hol(Ω) ⊆ sl(32− k,R) n (R32−k⊕ k. . . ⊕ R32−k) , (3.1.7)

where sl(32 − k,R) acts on each of the k copies of R32−k through the

3This could actually be a subtle issue: different spin structures on a manifold could
yield different number of preserved supersymmetries [133].

4That is also the case in Type II D = 10 supergravities [108].
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same, fundamental representation. The issue of classifying supersymmet-
ric vacua may thus be mapped into one of classifying the generalized
holonomy groups as subgroups of SL(32,R). An investigation of basic
supersymmetric configurations of M Theory was performed in [94] (see
also [78, 87]), where a large variety of generalized holonomy groups were
obtained. However, one of the striking results of the analysis of [94] was
the fact that identical generalized holonomies may yield different amounts
of supersymmetries. This shows that knowledge of the holonomy group is
insufficient to fully classify the supergravity solution, and that knowledge
of its embedding into the generalized structure group is also needed; in
other words, knowledge of the decomposition of the 32-component spinor
under Hol(Ω) is also needed.

3.2 Higher order integrability

Being only algebraic in ε, the (first order) integrability condition (3.1.6)
is more convenient than the Killing spinor equation itself, (3.1.3), in or-
der to determine Killing spinors for a particular supergravity solution. It
might happen, however, that the integrability condition (3.1.6) were only
necessary, and not sufficient, for the Killing spinor equation (3.1.3). That
is indeed the case for Freund-Rubin compactifications [32] of D = 11
supergravity, for which the preserved supersymmetry depends, in gen-
eral, on the orientation chosen for the compactifying manifold (see [29]).
Freund-Rubin compactification on the squashed seven-sphere (the coset
space SO(5) × SU(2)/SU(2) × SU(2)) [30, 143], for instance, preserves
N = 1 supersymmetry for one orientation (that can be referred to as left-
squashing) while breaks it all for the other orientation (right-squashing).
Accordingly, the Killing spinor equation (3.1.3) has solutions in the first
case, but no solutions in the second one. And yet, both orientations share
the same (first order) integrability condition (3.1.6) which is, therefore,
not sufficient for (3.1.3). This issue can be resolved by going beyond first
order integrability: successive covariant derivatives of equation (3.1.3)
(i.e., higher order integrability conditions) can give a set of additional
algebraic equations for ε, sufficient for (3.1.3) [144].

This discussion can be put in a (generalized) holonomy context, by
asking whether the Lie algebra generated by the curvature (expressed in
the first order integrability condition (3.1.6)) agrees with the Lie algebra
of the holonomy group. Actually, as shown in [94], in many cases the
complete Lie algebra of Hol(Ω) was not obtained from first order integra-
bility (3.1.6), so that in particular the algebra had to be closed by hand.
This issue is rather suggestive that the generalized curvature at a local
point carries incomplete information of the generalized holonomy group,
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in apparent violation of the Ambrose-Singer theorem (but in agreement
with the issue of left- versus right-squashing of S7 mentioned above).
However, the Ambrose-Singer theorem really indicates that Holp(Ω) at a
point p is spanned by elements of the generalized curvature (3.1.6) not
just at point p, but at all points q connected to p by parallel transport
(see e.g. [130, 112, 145]). Thus there is in fact no contradiction. Further-
more, this is rather suggestive that satisfying higher order integrability
(representing motion from p to q, an information encoded in the succes-
sive covariant derivatives of the curvature) is in fact a necessary condition
for identifying the proper generalized holonomy group [2].

In the remainder of this chapter, the interplay of higher order inte-
grability and generalized holonomy will be explored, resorting to specific
examples. We begin by revisiting the generalized holonomy of the M5
and M2-brane solutions of supergravity, and show that higher order in-
tegrability yields precisely the ‘missing’ generators that were needed to
close the algebra. Other than this, however, the generalized holonomy
groups for the M-branes identified in [94] are unchanged. Following this,
we turn to the squashed S7 [30, 143], where the situation is considerably
different.

The importance of higher order integrability was of course previously
recognized in [144] for the case of the squashed S7. Here, we reinterpret
the result of [144] in the language of generalized holonomy, and confirm
the statement of [95] that while first order integrability yields the incorrect
result hol(1)(Ω) = G2 ⊂ so(7) ⊂ so(8), higher order integrability corrects
this to hol(Ω) = so±(7) ⊂ so(8), where the two distinct possibilities
so(7)− and so(7)+ arise from left- and right-squashing, respectively, and
correspond to the two different embeddings of so(7) into so(8). Since the
spinor decomposes as either 8s → 7 + 1 or 8s → 8 in the two cases, this
explains the resulting N = 1 or N = 0 supersymmetry in four dimensions
[95, 2] (see section 3.4).

Let us now introduce a convenient notation for the Lie algebra gen-
erators associated to the n-th order integrability conditions. For the
supercovariant derivative (3.0.1) associated to the generalized connection
Ω, first order integrability (3.1.6) of the Killing spinor equation (3.1.3)
yields the generators

MMN ≡ [DM (Ω),DN (Ω)] = 1
4(∂MΩN−∂NΩM+1

4 [ΩM ,ΩN ]) ≡ 1
4RMN (Ω),

(3.2.1)

where RMN (Ω) is the generalized curvature, i.e., the curvature of Ω (see
equation (2.3.9)). Higher order integrability expressions may be obtained
by taking generalized covariant derivatives of (3.2.1). The corresponding
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generators will be taken to be

MMN1N2 ≡ [DM ,MMN1N2 ] , (3.2.2)
MMN1N2N3 ≡ [DN ,MN1N2N3 ] , (3.2.3)
MMN1N2N3N4 ≡ [DM ,MN1N2N3N4 ] , (3.2.4)
...

Higher order integrability conditions correspond to measuring the gen-
eralized curvature RMN (Ω) parallel transported away from the original
base point p. In this sense, the information obtained from higher order
integrability is precisely that required by the Ambrose-Singer theorem in
making the connection between Holp(Ω) and the curvature of the gener-
alized connection.

3.3 Generalized holonomy of the M-branes

As examples of how higher order integrability may affect determination of
the generalized holonomy group, we first revisit the case of the M5- and
M2-brane solutions of supergravity. The generalized holonomy of these
solutions, as well as several others, was originally investigated in [94].
For vacua with non-vanishing flux, including the brane solutions, it was
seen that the Lie algebra generators obtained from first order integrabil-
ity, (3.2.1), are insufficient for the closure of the algebra. In particular,
additional generators must be obtained by further commutators. In [94],
this was done by closing the algebra by hand. In the present context,
however, additional commutators are readily available from the higher
order integrability expressions, (3.2.2)–(3.2.4) [2].

3.3.1 Generalized holonomy of the M5-brane

The metric and four-form corresponding to the M5-brane solution of D =
11 supergravity are given by [74]

ds211 = H
−1/3
5 (dxµ)2 +H

2/3
5 (dyi)2 ,

Fijkl = εijklm∂
mH5 , (3.3.1)

where xµ, µ = 0, 1, . . . , 5, are coordinates corresponding to the world-
volume directions, yi, i = 1, . . . , 5, are transverse space coordinates and
εijklm = ±1 is the Lévi-Civita symbol, and H5(yi) a function, in trans-
verse space. Preservation of supersymmetry requires both the metric and
four-form to be determined by the same function H5 which is, in turn,
demanded to be harmonic by the equations of motion (3.0.2), (3.0.3).



3.3 Generalized holonomy of the M-branes 43

When acting on spinors, the generalized connection ΩM defining the
supercovariant derivative (3.0.1) for the solution (3.3.1) reads [94]

Ωµ = Ωνi
µ Kνi , Ωi = −1

3∂i lnH5Γ(M5) + 1
2Ωjk

i Tjk , (3.3.2)

where

Ωνi
µ = −2

3H
−1/2
5 δνµ∂

i lnH5 , Ωjk
i = 8

3δ
[j
i ∂

k] lnH5 , (3.3.3)

and Tij , Kµi belong to the set

Tij = ΓijP+
5 , Kµ = ΓµP+

5 , Kµi = ΓµiP+
5 , Kµij = ΓµijP+

5 , (3.3.4)

of generators of a Lie algebra to be specified below (see equation (3.3.9)).
In (3.3.2), Γ(M5) ≡ 1

5!εijklmΓijklm and, in (3.3.4), P+
5 ≡ 1

2(1 + Γ(M5)) is
the M5-brane 1/2-supersymmetry projector. The generalized connection
ΩM of (3.3.2) includes the generator Γ(M5) in addition to Tij and Kµi.
However, the connection itself is not physical and, in fact, the terms con-
taining Γ(M5) drop out from the expression of the generalized curvature
(see below) and hence do not contribute to generalized holonomy.

The integrability conditions of the Killing spinor equation (3.1.3),
posed with the supercovariant derivative associated to the generalized
connection (3.3.2) of the M5-brane, can now be discussed. The first order
integrability of the Killing spinor equation provides the set of generators
(3.2.1) corresponding to the Lie algebra of the generalized curvature. For
the M5-brane solution, these generators read [94]

Mµν ≡ 1
4Rµν = 0,

Mµi ≡ 1
4Rµi

= H
−1/2
5

[
1
6(∂i∂j lnH5 − 2

3∂i lnH5∂
j lnH5) + 1

18δ
j
i (∂ lnH5)2

]
Kµj ,

Mij ≡ 1
4Rij

=
[

2
3(∂l∂[i lnH5 − 2

3∂
l lnH5∂[i lnH5)δkj] −

2
9(∂ lnH5)2δk[iδ

l
j]

]
Tkl .

(3.3.5)

Only the generators Tij and Kµi show up in the expression for the Lie
algebra (3.3.5) corresponding to the generalized curvature. As noticed in
[94], the remaining generators Kµ and Kµij of (3.3.4) have to be obtained
by closing the algebra defined by (3.3.5) ‘by hand’. Alternatively, higher
order integrability conditions, expressed as (3.2.2)–(3.2.4), can be used to
obtain the remaining generators that ensure closure of the algebra [2].

In fact, the generators defining the second order integrability con-
ditions, obtained for the M5-brane upon insertion of the corresponding
generalized connection (3.3.2) into (3.2.2), take on the form [2]

Mµνλ = Mρi
µνλKρi, Mµνi = 1

2M
jk
µνiTjk, Mµij = Mνk

µijKνk + 1
2M

νkl
µijKνkl,
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Miµν = 0, Miµj = Mνk
iµjKνk + 1

2M
νkl
iµjKνkl, Mijk = 1

2M
lm
ijkTlm, (3.3.6)

where the component factors M ···
AMN are functions of H5 and its deriva-

tives. For example,

Mρi
µνλ = 1

36H
−3/2[∂j lnH5∂j∂

i lnH5 − 1
3∂

i lnH5(∂H5)2]ηµ[νδ
ρ
λ],

M jk
µνi = 4

9H
−1[∂[j lnH5∂i∂

k] lnH5 − δ
[j|
i ∂

l lnH5∂l∂
|k] lnH5]ηµν .(3.3.7)

The other factors arising in (3.3.6) are similar and their explicit forms
will not be needed. An additional generator Kµij arises at second or-
der through the expressions Mµij ≡ [Dµ,Rij ] and Miµj ≡ [Di,Rµj ] in
(3.3.6). However, this does not still suffice to close the algebra. Pushing
this procedure one step further into third order integrability (3.2.3), it is
found that the generator Kµ arises through Mkiµj ≡ [Dk, [Di,Rµj ]]. The
complete set of generators (3.3.4) is then obtained and, actually, no new
generator is found beyond third order [2].

The generators (3.3.4) thus generate the Lie algebra holM5 of the gen-
eralized holonomy group of the M5-brane [94]. The

(
5
2

)
= 10 generators

Tij correspond to so(5), whereas the remaining 6 + 6 · 5 + 6 ·
(
5
2

)
= 96

generators Kµ, Kµi, Kµij in (3.3.4) span the abelian Lie algebra R96, on
which so(5) acts semidirectly, i.e., through a 96-dimensional representa-
tion. According to the general rule (3.1.7), as a supergravity solution
preserving k = 16 supersymmetries, the M5-brane (3.3.1) must have its
generalized holonomy in sl(32− k,R) n (R32−k⊕ k. . . ⊕ R32−k), namely,

holM5 ⊆ sl(16,R) n (R16⊕ 16. . . ⊕ R16) . (3.3.8)

The 96-dimensional representation of so(5) ⊂ sl(16,R) on R96 must be,
therefore, reducible into at most k = 16 copies of the same (reducible or
irreducible) representation of dimension 32 − k = 16; thus, in this case,
R96 = (R16⊕ 6. . . ⊕ R16) ⊂ (R16⊕ 16. . . ⊕ R16), where each of the six copies
of R16 carries the same 16-dimensional representation of so(5). This
representation turns out to be further reducible into four 4-dimensional
(spinor) representations 4 of so(5). Introducing the convenient notation
R4(4) to denote this splitting of R16, the generalized holonomy algebra of
the M5-brane solution of D = 11 supergravity (3.3.1) is then [94]

holM5 = so(5) n (R4(4)⊕ 6. . . ⊕ R4(4)) . (3.3.9)

For the M5-brane case, higher order integrability conditions just pro-
vide the generators missing at first order, that can nevertheless be ob-
tained by closing the generalized curvature algebra (defined by first order
integrability) ‘by hand’. In particular, higher order integrability condi-
tions do not change the generalized holonomy (3.3.9) of the M5-brane,
which remains the same as in [94].



3.3 Generalized holonomy of the M-branes 45

3.3.2 Generalized holonomy of the M2-brane

The analysis of the M2-brane is similar to that of the M5-brane. The
supergravity solution corresponding to the M2-brane is given by [73]

ds211 = H
−2/3
2 (dxµ)2 +H

1/3
2 (dyi)2,

Fµνρi = εµνρ∂iH
−1
2 , (3.3.10)

where xµ, µ = 0, 1, 2, are coordinates corresponding to the worldvolume
directions, yi, i = 1, . . . , 8, are transverse space coordinates and εµνρ =
±1. H2(yi) is a harmonic function in transverse space.

Denoting by P+
2 = 1

2(1 + Γ(M2)) the 1/2-supersymmetry projector of
the M2-brane, where Γ(M2) ≡ 1

3!εµνρΓ
µνρ, the following generators

Tij = ΓijP+
2 , Kµi = ΓµiP+

2 , Kµijk = ΓµijkP+
2 , (3.3.11)

can be introduced in order to express the generalized connection of the
M2-brane solution (3.3.10) [94]:

Ωµ = Ωνi
µ Kνi, Ωi = 2

3∂i lnH2Γ(M2) + 1
2Ωjk

i Tjk . (3.3.12)

Here, the components of ΩM are

Ωνi
µ = −4

3H
−1/2
2 δνµ∂

i lnH2 , Ωjk
i = 4

3δ
[j
i ∂

k] lnH2. (3.3.13)

The generators of the generalized curvature algebra corresponding to the
M2-brane solution are again obtained through first order integrability of
the Killing spinor equation (3.1.3), written for the supercovariant deriva-
tive associated to the generalized connection (3.3.12). These generators
are [94]

Mµν ≡ 1
4Rµν = 0,

Mµi ≡ 1
4Rµi

= 1
18H

−1/2
2

[
6(∂i∂j lnH2 + 2∂i lnH2∂

j lnH2)− (∂ lnH2)2δ
j
i

]
Kµj ,

Mij ≡ 1
4Rij

=
[
−1

3(∂l∂[i lnH2 − 1
3∂

l lnH2∂[i lnH2)δkj] −
1
18(∂ lnH2)2δk[iδ

l
j]

]
Tkl,

(3.3.14)

and include terms proportional only to the generators Tij and Kµi of
(3.3.11). As in the M5-brane case, the closure of the algebra spanned by
the generators (3.3.14) can be achieved either ‘by hand’ [94] or by working
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out higher order integrability conditions [2]. The generators (3.2.2), cor-
responding to the second order integrability conditions, when considered
for the M2-brane solution have the general form [2]

Mµνλ = Mρi
µνλKρi , Mµνi = 1

2M
jk
µνiTjk +Mνk

µνiKνk ,

Mµij = Mνk
µijKνk + 1

6M
νklm
µij Kνklm ,

Miµj = Mνk
iµjKνk + 1

6M
νklm
iµj Kνklm + 1

2M
kl
iµjTkl ,

Miµν = 0 , Mijk = 1
2M

lm
ijkTlm. (3.3.15)

where the explicit form of their components along the generators (3.3.11)
will not be needed. The generatorsMµij ≡ [Dµ,Rij ] andMiµj ≡ [Di,Rµj ]
in (3.3.15) give rise to the additional generator Kµijk of (3.3.11) which,
together with Tij and Kµi generate the Lie algebra holM2 of the gener-
alized holonomy group of the M2-brane solution of D = 11 supergravity
[94].

Since the M2-brane preserves k = 16 supersymmetries, holM2 must be
contained, by virtue of equation (3.1.7), in sl(16,R) n (R16⊕ 16. . . ⊕ R16).
In fact, Tij in (3.3.11) generate so(8) ⊂ sl(16,R) while Kµi, Kµijk are
the generators of the abelian Lie algebra R192 = (R16⊕ 12. . . ⊕ R16) ⊂
(R16⊕ 16. . . ⊕ R16). The representation of so(8) on each R16 is reducible
into two 8-dimensional (spinor) representations 8s, making R16 split as
R2(8s) and yielding a generalized holonomy for the M2-brane [94]

holM2 = so(8) n (R2(8s)⊕ 12. . . ⊕ R2(8s)) . (3.3.16)

Second order integrability is, thus, sufficient to guarantee the closure of
the Lie algebra of the generalized holonomy group of the M2-brane.

Note that the generalized connection ΩM contains complete informa-
tion about the generalized holonomy of the spacetime, as the complete
set of integrability conditions (3.2.1)–(3.2.4) may be obtained through
commutators and derivatives of ΩM . In this sense, the algebra of the
holonomy group can never be larger than the algebra obtained through
the generators in ΩM itself. However it can certainly be smaller. This
is apparent for the M5-brane, where the Γ(M5) generator is absent in the
generalized curvature RMN (Ω) and its derivatives and also for the M2-
brane, where Γ(M2) is absent. For these examples, and in fact for all
vacua considered in [94, 110], the generators appearing in ΩM and those
appearing in RMN (Ω) are nearly identical. As a result, the generalized
holonomy group may be correctly identified at first order in integrabil-
ity, and the higher order conditions only serve to complete the set of
generators needed for closure of the algebra.

A different situation may arise, however, if for some reason (such
as accidental symmetries) a greatly reduced set of generators appear in
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RMN (Ω). In such cases, examination of first order integrability may result
in the misidentification of the actual generalized holonomy group. What
happens here is that the algebra of the curvature RMN (Ω) at a single
point p forms a subalgebra of the Lie algebra of the holonomy group. It
is then necessary to explore the curvature at all points q connected by
parallel transport to p in order to determine the actual holonomy. We
demonstrate below that this incompleteness of first order integrability
does arise in the case of generalized holonomy.

3.4 Higher order integrability and the squashed S7

For an example of the need to resort to higher order integrability to
characterize the generalized holonomy group Hol(Ω), we turn to Freund-
Rubin compactifications of eleven-dimensional supergravity. With van-
ishing gravitino, the Freund-Rubin ansatz [32] for the 4-form field strength
F4,

Fµνρσ = 3mεµνρσ, µ = 0, 1, 2, 3, (3.4.1)

with m constant and all other components vanishing, leads to sponta-
neous compactifications of the product form AdS4 × X7. Here X7 is
a compact, Einstein, Euclidean 7-manifold. Decomposing the eleven-
dimensional Dirac matrices ΓM as

ΓM = (γµ ⊗ 1, γ5 ⊗ Γm), µ = 0, 1, 2, 3, m = 1, . . . , 7, (3.4.2)

where γµ and Γm are four- and seven-dimensional Dirac matrices, respec-
tively, and assuming the usual direct-product ansatz ε(xµ) ⊗ η(ym) for
eleven-dimensional spinors, the Killing spinor equation (3.1.3) splits as

Dµε =
(
∂µ + 1

4ωµ
αβγαβ +mγµγ5

)
ε = 0, (3.4.3)

Dmη =
(
∂m + 1

4ωm
abΓab − i

2mΓm
)
η = 0. (3.4.4)

Since AdS4 admits the maximum number of Killing spinors (four in this
case), the numberN of supersymmetries preserved in the compactification
coincides with the number of Killing spinors of the internal manifold X7,
that is, with the number of solutions to the Killing spinor equation (3.4.4).
Therefore we only need to concern ourselves with the Killing spinors on
X7.

An orientation reversal of X7 or, alternatively, a sign reversal of F4,
provides another solution to the equations of motion (3.0.2), (3.0.3) and,
hence, another acceptable Freund-Rubin vacuum [143, 29]. For definite-
ness, we shall call left-orientation the solution corresponding to the choice
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of sign of F4 in (3.4.1), that leads to the Killing spinor equation (3.4.4),
and right-orientation the solution corresponding to the opposite choice of
sign of F4:

(right) Fµνρσ = −3mεµνρσ, µ = 0, 1, 2, 3, (3.4.5)

leading to the Killing spinor equation

(right) Dmη =
(
∂m + 1

4ωm
abΓab + i

2mΓm
)
η = 0. (3.4.6)

From either (3.4.4) or (3.4.6), we see that the generalized connection
definingDm takes values in the algebra spanned by {Γab,Γa} and therefore
the generalized structure group is SO(8). Notice, however, that both
Killing spinor equations (3.4.4) and (3.4.6) share the same first order
integrability condition [30, 29]

Mmnη ≡ [Dm,Dn]η = 1
4Rmnη ≡ 1

4Cmnη = 1
4Cmn

abΓabη = 0, (3.4.7)

where Cmnab is the Weyl tensor of X7 (thus demonstrating that, in this
case the generalized curvature tensor is simply the Weyl tensor). Thus
first order integrability is unable to distinguish between left and right
orientations on the sphere. Then it might be possible that spinors η solv-
ing the integrability condition (3.4.7) will only satisfy the Killing spinor
equation for one orientation, that is, satisfy (3.4.4) but not (3.4.6) (or
the other way around). In fact, the skew-whiffing theorem [143, 29] for
Freund-Rubin compactifications proves that this will, in general, be the
case: it states that at most one orientation can give N > 0, with the
exception of the round S7, for which both orientations give maximal su-
persymmetry, N = 8. Since the preserved supersymmetry N is given by
the number of singlets in the decomposition of the 8s of SO(8) (the gen-
eralized structure group) under the generalized holonomy group Hol(Ω),
then, in general, each orientation must have either a different generalized
holonomy, or the same generalized holonomy but a different decomposi-
tion of the 8s.

To illustrate this feature, consider compactifications on the squashed
S7 [143, 30]. This choice for X7 has the topology of the sphere, but
the metric is distorted away from that of the round S7; it is instead the
coset space SO(5) × SU(2)/SU(2) × SU(2) endowed with its Einstein
metric [143, 30]. The compactification on the left-squashed S7 preserves
N = 1 supersymmetry whereas that on the right-squashed S7 has N = 0;
put another way, the integrability condition (3.4.7) has one non-trivial
solution, corresponding in turn to a solution to the Killing spinor equa-
tion (3.4.4) (making the left-squashed S7 preserve N = 1), but not to
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a solution to (3.4.6), which in fact has no solutions (yielding N = 0 for
the right-squashed S7). On the other hand, an analysis of the Weyl ten-
sor of the squashed S7 shows that there are only 14 linear combinations
Cmn of gamma matrices in (3.4.7), corresponding to the generators of
G2 [30, 29]. Though appealing, G2 cannot be, however, the generalized
holonomy since the 8s of SO(8) would decompose as 8s → 8 → 7 + 1
under SO(8) ⊃ SO(7) ⊃ G2 regardless of the orientation, giving N = 1
for both left- and right-squashed solutions. We thus conclude that in
this case the first order integrability condition (3.4.7) is insufficient to
determine the generalized holonomy.

The resolution to this puzzle is naturally given by higher order integra-
bility. In the case of the squashed S7, it turns out that the second order
integrability condition (3.2.2) is sufficient. For a general Freund-Rubin
internal space X7 this condition reads5 [144]

Mlmnη ≡ 1
4 [Dl, Cmn]η = 1

4

(
DlCmn

abΓab ∓ 2imCmnlaΓa
)
η = 0 , (3.4.8)

the − sign corresponding to the left solution, and the + to the right. For
the squashed S7, we find that only 21 of the Mlmn are linearly indepen-
dent combinations of the Dirac matrices [2]. The details are provided in
Appendix A. Following the notation of [30, 29], we split the index m as
m = (0, i, î), with i = 1, 2, 3, î = 4, 5, 6 = 1̂, 2̂, 3̂; then, with a suitable nor-
malization, the linearly independent generators in (3.4.8) may be chosen
to be [2]

C0i = Γ0i + 1
2εiklΓ

k̂l̂ , Cij = Γij + Γîĵ ,

Ciĵ = −Γiĵ −
1
2Γjî +

1
2δijδ

klΓkl̂ −
1
2εijkΓ

0k̂ , (3.4.9)

Mij = Γîĵ ∓
2
3

√
5imεijkΓk̂ , Mi = Γ0̂i ∓

2
3

√
5imΓi ,

M = δklΓkl̂ ± 2
√

5imΓ0, (3.4.10)

the − sign in front of m corresponding to the left solution and the + to
the right. Notice that there are 8 linearly independent generators in Ciĵ
of (3.4.9), since δklCkl̂ ≡ C11̂+C22̂+C33̂ = 0. The 3+3+8 = 14 generators
C0i, Cij , Ciĵ span G2 [30, 29], and are the same as those obtained from
the first integrability condition (3.4.7), while the 3 + 3 + 1 = 7 additional
generators Mij , Mi, M of (3.4.10) were not contained in (3.4.7). Taken
together, they generate the 21 dimensional algebra so(7), regardless of
the orientation, provided [2]

m2 = 9
20 , (3.4.11)

5In (3.4.7), Dl (the generalized covariant derivative in equation (3.4.4)) should not
be confused with Dl (the Lévi-Civita covariant derivative).
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in agreement with the Einstein equation for the squashed S7 [29].
The embedding of so(7) into so(8) is, however, different for each ori-

entation. We use so(7)− to denote the embedding corresponding to the
left solution and so(7)+ the right. While the spinor η transforms as an
8s of the generalized structure group SO(8), the decomposition of the 8s
is different under left- and right-squashing. With our Dirac conventions,
it turns out that 8s → 7 + 1 under so(8) ⊃ so(7)−, giving N = 1 for the
left-squashed S7, while 8s → 8 under so(8) ⊃ so(7)+, giving N = 0 for
the right-squashed S7.

Since so(7) is the subalgebra of so(8) that yields the correct branching
rules of the 8s of SO(8), we conclude that second order integrability
is sufficient in this case to identify all generators of the Lie algebra of
the holonomy Hol(Ωm) of the connection Ωm defining the supercovariant
derivative Dm in (3.4.4) . Hence the generalized holonomy algebra of the
Freund-Rubin compactification on the squashed S7 is given precisely by
hol(Ωm) = so(7) [95, 2]6. In this case, it is the embedding of so(7) in
so(8) (with corresponding spinor decomposition 8s → 7 + 1 or 8s → 8)
that determines the number of preserved supersymmetries. This indicates
that, for generalized holonomy, knowledge of the holonomy group and
the embedding are both necessary in order to understand the number
of preserved supersymmetries. While this was already observed in [94,
87] for non-compact groups, here we see that this is also true when the
generalized holonomy group is compact.

The analysis of the squashed S7, along with that of the brane solutions
of the previous section, highlights several features of generalized holon-
omy. For the squashed S7, the Lie algebra of the generalized holonomy
group is in fact larger than that generated locally by the Weyl curvature
at a point p. In this case, the algebra arising from lowest order integra-
bility is already closed, but is only a subalgebra of the correct holonomy
algebra. It is then mandatory to examine the second order integrability
expression (3.4.8) in order to identify the generalized holonomy group.
On the other hand, for the M2 and M5-branes, lowest order integrability,
while lacking a complete set of generators, nevertheless closes on the cor-
rect holonomy algebra, and no really new information is gained at higher

6For a d-dimensional manifold Xd, the cone C(Xd) over Xd is the (d+1)-dimensional
manifold defined to have topology R+ × Xd and metric g(C(Xd)) = dr2 + r2g(Xd),
where g(Xd) is the metric on Xd and r parameterizes R+. In a supergravity context,
Killing spinors on the Freund-Rubin compactifying manifold Xd correspond to parallel
spinors with respect to the Lévi-Civita connection on C(Xd) [146, 70]. Thus, in this case,
the generalized holonomy of Xd corresponds to the Riemannian holonomy of C(Xd).
A compactifying 7-manifold X7 preserves N = 1 supersymmetry for one orientation if
its corresponding 8-dimensional cone C(X7) has Spin(7) holonomy [70], in agreement
with this result for the generalized holonomy of the squashed S7 [95, 2].
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order. Of course, in all cases, complete information is contained in the
generalized connection ΩM itself. However, examination of ΩM directly
can be misleading, as it may contain gauge degrees of freedom, which are
unphysical. This is most clearly seen in the case of the round S7, where
Ωm = ωabmΓab − 2imΓm is certainly non-vanishing, while the generalized
curvature Rmn, given by the Weyl tensor, is trivial, Rmn = 0.

For generalized holonomy to be truly useful, it ought to go beyond
simply a classification scheme, and must yield methods for construct-
ing new supersymmetric solutions. In much the same way that the rich
structure of Riemannian holonomy teaches us a great deal about the ge-
ometry of Killing spinors on Riemannian manifolds, the formal analysis
of generalized holonomy via connections on Clifford bundles may lead to
a similar expansion of knowledge of supergravity structures and mani-
folds with fluxes. Such an analysis is well beyond the scope of this Thesis
and, instead, we now continue with the study of generalized holonomy
to characterize supersymmetric solutions of supergravity, from a different
point of view.
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4

Generalized holonomy for BPS preons

The observation [83] that BPS states that break ñ = 32 − k supersym-
metries can be treated as composites of those preserving all but one su-
persymmetries, suggests that the k = 31-supersymmetric states might be
considered as fundamental constituents of M Theory. These ν = 31/32
BPS states were accordingly named BPS preons in [83]. In this chapter we
apply the ideas previously developed about generalized holonomy to the
study of hypothetical preonic solutions of eleven-dimensional supergrav-
ity. In section 4.1, the notion of preonic states is reviewed. States com-
posed of ñ preons are shown to be characterized by ñ bosonic spinors that
parameterize the broken supersymmetries. In section 4.2, these spinors
are shown to be orthogonal to the Killing spinors characterizing the un-
broken supersymmetries. A moving G-frame (where the group G can
chosen to be G = GL(32,R), SL(32,R) or Sp(32,R)) defined by both
preonic and Killing spinors can be consequently used to describe the cor-
responding states. We then apply, in section 4.3, this moving G-frame
method to the study of the generalized holonomies of hypothetical preonic
solutions of supergravity. Although no definite answer to the question of
the existence of preonic solutions for the standard D = 11 supergravity
is given here, we do show, in section 4.4, that ν = 31/32 supersymmetric
preonic configurations exist in Chern-Simons (CS) supergravity i.e., that
CS supergravity does have preonic solutions. To conclude this chapter,
we propose in section 4.5 a worldvolume action for BPS preons in the
background of the D’Auria-Fré formulation of D = 11 supergravity [92].
The notation and conventions are restored to those of chapter 2. This
chapter follows closely reference [3].

4.1 BPS preons

Group theoretical methods usually help with the lack of a dynamical
description of M Theory; in particular, the representation theory of the M-

53
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algebra E(528|32) (see section 2.1 of chapter 2) can shed some light into the
structure of M Theory. Bogomoln’yi-Prasad-Sommerfield (BPS) states
saturate the Bogomoln’yi bound associated to the M Theory superalgebra
(2.1.10) and are, therefore, protected from corrections as argued in the
Introduction (chapter 1). They are, thus, intrinsically non-perturbative
and are expected to be fundamental states of the fully-fledged M Theory.

A BPS state |BPS , k〉 described by a supergravity solution preserv-
ing k supersymmetries is characterized by k spinors εαJ , J = 1, . . . , k ≤ 32
parameterizing the supersymmetry transformations (2.3.1)–(2.3.3) of the
spacetime fields. In particular, it will be assumed that the state |BPS , k〉
corresponds to a purely bosonic supergravity solution, so that the spinors
εαJ are Killing and satisfy the Killing spinor equation (3.1.3). These
spinors parameterize the unbroken supersymmetries that leave invariant
the supersymmetric state; that is, at the level of generators acting on
|BPS , k〉,

εJ
αQα|BPS , k〉 = 0 , J = 1, . . . , k , k ≤ 32 . (4.1.1)

Here, Qα are the supersymmetry generators, that we shall take to be in
the maximally extended supersymmetry algebra, namely, the M Theory
superalgebra E(528|32), whose (anti)commutation relations are given in
(2.1.10): {Qα, Qβ} = Pαβ , [Qα, Pβγ ] = 0, α, β, γ = 1, 2, . . . , 32, so that
Pαβ = Pβα. The generalized momentum Pαβ can be decomposed in the
basis of D = 11 Spin(1, 10) (32×32) Dirac matrices as in (2.1.9), namely,
Pαβ = PaΓaαβ + iZabΓabαβ +Za1...a5Γ

a1...a5
αβ , containing the standard D = 11

momentum Pa and the tensorial ‘central’ charge generators Zab, Za1...a5 .
As discussed in section 2.1, these central charges are associated to the
basic M Theory branes.

In a formal, quantum-mechanical discussion, a ν = k/32-supersym-
metric BPS state |BPS, k〉 can also be defined as an eigenstate of the
generalized momentum operator Pαβ ,

Pαβ |BPS, k〉 = p
(k)
αβ |BPS, k〉 (4.1.2)

with eigenvalue p(k)
αβ such that det p(k)

αβ = 0, as justified below. The va-

nishing determinant condition implies that the matrix p(k)
αβ has rank less

than the maximal possible rank 32. More precisely, a ν = k/32-BPS state
|BPS, k〉 is such that

rank p(k)
αβ ≡ ñ = 32− k , 1 ≤ k < 32 . (4.1.3)

Recall from the discussion of section 2.1 that the maximal automorphism
group of the M-algebra E(528|32) is GL(32,R). Then the matrix p(k)

αβ can
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be diagonalized by a GL(32,R) transformation gα(γ),

p
(k)
αβ = gα

(γ)p(γ)(δ)gβ
(δ) . (4.1.4)

In (4.1.4), p(γ)(δ) is a diagonal matrix that can be put in the canonical
form

p(γ)(δ) = diag(1, . . . , 1,−1, . . . ,−1︸ ︷︷ ︸
ñ=32−k

, 0, . . . , 0︸ ︷︷ ︸
k

) , (4.1.5)

where the number of non-vanishing elements, all +1 or −1, is equal to
ñ = rank(p(k)

αβ ). However, the usual assumptions for the supersymmetric
quantum mechanics describing BPS states do not allow for negative eigen-
values of Pαβ = {Qα, Qβ} (p11 = −1, e.g., would imply (Q1)2|BPS, k〉 =
−|BPS, k〉, contradicting unitarity). Thus, only positive eigenvalues are
allowed and

p(γ)(δ) = diag(1, . . . , 1︸ ︷︷ ︸
ñ=32−k

, 0, . . . , 0︸ ︷︷ ︸
k

) . (4.1.6)

Substituting (4.1.6) into (4.1.4), one arrives at

p
(k)
αβ = gα

(γ) diag(1, . . . , 1︸ ︷︷ ︸
ñ=32−k

, 0, . . . , 0︸ ︷︷ ︸
k

)(γ)(δ) gβ
(δ) , (4.1.7)

or, equivalently, introducing the ñ vectors λ1
α, . . . , λ

ñ
α of GL(32,R), de-

fined by gα1 = λα
1, . . ., gαñ = λα

ñ,

Pαβ |BPS, k〉=
ñ=32−k∑
r=1

λα
rλβ

r|BPS, k〉

≡
(
λα

1λβ
1 + . . .+ λα

ñλβ
ñ
)
|BPS, k〉 . (4.1.8)

Taking suitable linear combinations of the supertranslations, namely,
Q

(0)
α = (g−1)βαQβ, the algebra diagonalizes on BPS states,

{Q(0)
r , Q(0)

s }|BPS, k〉 = δrs|BPS, k〉 ,
{Q(0)

r , Q
(0)
J }|BPS, k〉 = {Q(0)

J , Q
(0)
K }|BPS, k〉 = 0 , (4.1.9)

where r, s = 1, . . . , ñ, J,K = 1, . . . , k, so that the set of 32 supercharges
Q

(0)
α = (Q(0)

r , Q
(0)
J ) acting on the BPS state |BPS, k〉 splits into k genera-

tors Q(0)
J of supersymmetry that preserve the BPS state (and correspond
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to the generators of (4.1.1), Q(0)
J |k〉 = 0), and ñ = 32− k generators Q(0)

r

corresponding the set of broken supersymmetries.
Equation (4.1.8) suggests that all BPS states can be considered as

composites of states with rank p
(k)
αβ = 1 [83], that is, preserving k = 31

supersymmetries. The hypothetical objects carrying these “elementary
values” of p(31)

αβ are called BPS preons [83]. For a BPS preon state, the in-
dex r in equation (4.1.8) assumes only one value and can therefore be sup-
pressed. In summary, a BPS preon [83] state |BPS , 31〉 ≡ |λ〉 preserves
31 supersymmetries (hence the notation |BPS , 31〉) and is characterized
by the following choice of central charges matrix

pαβ = gγα p
(0)
γδ g

δ
β = λαλβ , (4.1.10)

in terms of a single bosonic spinor1 (hence the notation |λ〉) such that

Pαβ |λ〉 = λαλβ |λ〉 . (4.1.11)

Equation (4.1.8) may be looked at as a manifestation of the composite
structure of the ν = k/32 BPS state |BPS, k〉,

|BPS, k〉 = |λ1〉 ⊗ . . .⊗ |λñ〉 , (4.1.12)

where |λ1〉, . . ., |λñ〉, ñ = 32 − k, are BPS elementary, preonic states
characterized by the spinors λα1 , . . ., λαñ, respectively.

From this point of view, all the single-brane solutions of 11-dimensio-
nal supergravity, which preserve 16 out of 32 supersymmetries (see section
2.5 of chapter 2), correspond to composites of 16 BPS preons. By the
same token, intersecting branes, preserving less than 16 supersymmetries
(ν < 1/2) correspond to composites of more than 16 preons, and solutions
with extra supersymmetry (ν > 1/2) can be considered as composites of
less than 16 BPS preons. Initially, it seemed that solutions preserving all
supersymmetries but one, i.e. describing the excitations of a BPS preon,
could not exist, and indeed they were not found by means of the standard
brane ansatzes used to solve the usual 11-dimensional supergravity [27]
equations. A more general study in the context of standard D = 11
supergravity has shown that the existence of such solutions is not ruled
out [87, 78].

The possible existence of brane solutions with extra supersymmetries
should not be excluded, although these solutions would describe quite
unusual branes. The reason why the ‘standard’ brane solutions (like

1 By construction, λα is a GL(32, R) vector. However, we keep the ‘spinor’ name
for it bearing in mind the possibility of a spacetime treatment, although this is not
straightforward and would require additional study.
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M-waves, M2 and M5-branes in D = 11) always break 1/2 of the su-
persymmetry is that their κ-symmetry projector (the bosonic part of
which is identical to the projector defining the preserved supersymme-
tries [147, 58]) has the form (1 − Γ̄) with trΓ̄ = 0, Γ̄2 = I. However,
worldvolume actions for branes with a different form for the κ-symmetry
projector are known [148, 149, 150, 8, 84] although in an enlarged super-
space (see [85]): see chapter 7 for an explicit example. A question arises,
whether such actions may be written in usual spacetime or superspace.

However, and independently of whether BPS preons can be associated
with solutions of standard supergravity or there is, instead, a BPS preon
conspiracy preventing their existence in standard D=11 spacetime or su-
perspace, preons do provide an algebraic classification of the M Theory
BPS states [83]. In this perspective such a BPS preon conspiracy, if it ex-
ists, would perhaps indicate the necessity of a wider geometric framework
for a suitable description of M Theory, such as extended superspaces and
supertwistors. If, on the contrary, solitonic solutions with the proper-
ties of BPS preons were actually found, extended superspaces would still
provide a useful tool for a description of M Theory2. One is led to ex-
pect that the additional tensorial coordinates of these superspaces carry
a counterpart of the information which, in the framework of standard
D = 10, 11 supergravity, is encoded in the antisymmetric tensor gauge
fields entering the supergravity multiplets (cf. [85]). This point of view
may be also supported by the observation that in the standard topolog-
ical charge treatment of the tensorial generators of the M–algebra [57],
these topological charges are associated just with these gauge fields.

4.2 Moving G-frame

When a BPS state |k〉 is realized as a solitonic solution of supergravity,
it is characterized by k Killing spinors εJβ(x) or by the ñ = 32 − k
bosonic spinors λαr(x) associated with the ñ BPS preonic components
of the state |BPS, k〉. The Killing spinors and the preonic spinors are
orthogonal. Indeed, using the (anti)commutation relations (2.1.10) of the
M-algebra, if the preserved supersymmetries correspond to the generators
εJ
αQα, J = 1, . . . , k, equation (4.1.1), then

ñ=32−k∑
r=1

ε(J
αλα

r εK)
βλβ

r = 0 , (4.2.1)

2 There are also related reasons to consider more general superspaces, as the ensuing
fields/extended superspace coordinates correspondence [85, 86] associated with extended
superspaces: see section 6.7 of chapter 6 and further references therein.
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which implies the orthogonality of Killing and preonic spinors [3],

εJ
αλα

r = 0 , J = 1, ..., k , r = 1, ..., ñ , (4.2.2)

explaining the relation ñ = 32 − k between the number of preons ñ =
rank(p(k)

αβ ) and the number of preserved supersymmetries k.
Then, BPS preonic (λαr) and Killing (εJα) spinors provide an al-

ternative (dual) characterization of a ν-supersymmetric solution; either
one can be used and, for solutions with extra supersymmetries (ν > 1/2)
[119, 120, 121, 122, 123, 124], the characterization provided by BPS preons
is a more economic one. Moreover, the use of both BPS preonic spinors
and Killing spinors allows us to develop a moving G-frame method [3],
which we now introduce, and that may be useful in the search for new
supersymmetric solutions of supergravity.

The set of Killing and preonic spinors can be completed to obtain bases
in the spaces of spinors with upper and with lower indices by introducing
ñ = 32− k spinors wrα and k spinors uαL satisfying

ws
αλα

r = δrs , ws
αuα

J = 0 , εJ
αuα

K = δJ
K . (4.2.3)

Either of these two dual bases defines a generalized moving G-frame de-
scribed by the nondegenerate matrices

gα
(β) =

(
λα

s , uα
J
)
, g−1

(β)
α =

(
ws

α

εJ
α

)
, (4.2.4)

where (α) = (s, J) = (1, . . . , 32− k;J = 1, . . . , k). Indeed, g−1
(β)

γgγ
(α) =

δ(β)
(α) is equivalent to Eqs. (4.2.3) and (4.2.2), while

δα
β = gα

(γ)g−1
(γ)

β ≡ λα
rwr

β + uα
JεJ

β (4.2.5)

provides the unity I32 decomposition or completeness relation in terms of
these dual bases.

One may consider the dual basis g−1
(β)

α to be constructed from the
bosonic spinors in gα

(β) by solving equation (4.2.5) or g−1g = I32 (Eqs.
(4.2.3) and (4.2.2)). Alternatively, one may think of wrα and uαJ as being
constructed from εJ

α and λαr through a solution of the same constraints.
In this sense [3] the generalized moving G-frame (4.2.4) is constructed
from k Killing spinors εJα characterizing the supersymmetries preserved
by a BPS state (realized as a solution of the supergravity equations) and
from the ñ = 32 − k bosonic spinors λαr characterizing the BPS preons
from which the BPS state is composed. Although many of the consider-
ations below are general, we shall be mainly interested here in the cases
G = SL(32,R) and G = Sp(32,R).
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In D = 11, the charge conjugation matrix Cαβ = −Cβα allows us
to express explicitly the dual basis g−1 in terms of the original one g
or vice versa. In particular, in the preonic k = 31 case one finds that,
since λαC

αβλβ ≡ 0, then λα = Cαβλβ has to be expressed as λα =
λIεI

α, for some coefficients λI , I = 1, . . . , 31. In general (as e.g., in
CJS supergravity with nonvanishing F4), the charge conjugation matrix
is not ‘covariantly constant’, DCαβ = −2Ω[αβ] 6= 0, where Ωα

β is the
D = 11 supergravity generalized connection (2.3.5) (see section 2.3 of
chapter 2). This relates the coefficients λI = λαuα

I to the antisymmetric
(non-symplectic) part of the generalized connection, Ω[αβ] = C [αγΩγ

β]

by3 dλI − AλI = 2λαΩ[αβ]uβ
I . In OSp(1|32)-related models, Ω[αβ] = 0

and A = 0, hence λI is constant and we may set λI = δI31 using the global
transformations of GL(31,R), which is a rigid symmetry of the system of
Killing spinors. This allows us to identify λα itself with one of the Killing
spinors

G = Sp(32,R) :
εI
α = (εiα, λα) , λα := Cαβλβ i = 1, . . . , 30 . (4.2.6)

Without specifying a solution of the constraints (4.2.5) (or g−1g =
I32), the moving frame possesses a G = GL(32,R) symmetry. One may
impose as additional constraints det(g) = 1 or det(g−1) = 1 reducing G
to SL(32,R),

G = SL(32,R) : det(g (α)
β ) = 1 = det(g−1

(α)
β) . (4.2.7)

For instance, in the preonic case k = 31 this would imply

wα = 1
(31)!ε

αβ1...β31uβ1
1 . . . uβ31

31 . (4.2.8)

Such a frame is most convenient to study the bosonic solutions of CJS
supergravity, since the corresponding generalized holonomy must be a
subgroup of SL(32,R) (see section 2.3 of chapter 2 and references therein).

4.3 Generalized holonomy of preonic solutions

The Killing equation (3.1.3) for a ν = k/32 supersymmetric solution,

DεJα = dεJ
α − εJ

βΩβ
α = 0 , J = 1, . . . , k , (4.3.1)

implies the following equations for the other components of the moving
G-frame

Dλαr := dλα
r + Ωα

β λβ
r = λα

sAs
r , (4.3.2)

3To see this, one calculates dλI = DλI = (DCαβ)λβuα
I + Cαβ(Dλβ)uα

I +
CαβλβDuα

I and use equation (4.3.9), (4.3.10) to find dλI = AλI + 2λαΩ[αβ]uβ
I .
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DuαJ := duα
J + Ωα

βuβ
J = λα

r BJ
r , (4.3.3)

Dwrα := dwr
α − wr

βΩβ
α = −Arswsα −BJ

r εJ
α , (4.3.4)

where α, β = 1, . . . , 32, J = 1, . . . , k, r, s = 1, . . . , (32 − k), and As
r and

Br
I are (32− k)× (32− k) and (32− k)× k arbitrary one-form matrices.

To obtain the equations (4.3.2), (4.3.3), (4.3.4) one can take firstly the
derivative D of the orthogonality relations (4.2.2), (4.2.3). After using
equation (4.3.1), this results in

εI
αDλαr = 0 , εI

αDuαJ = 0 , (4.3.5)
ws

αDλαr = −Dwsα λαr , ws
αDuαJ = −Dwsα uαJ . (4.3.6)

Then, for instance, to derive (4.3.2), one uses the unity decomposition
(4.2.5) to express Dλαr through the contractions wsαDλαr and εIαDλαr:
Dλαr ≡ λα

sws
βDλβr + uα

I εI
βDλβr. The second term vanishes due to

(4.3.5), while the first one is not restricted by the consequences of the
Killing spinor equations and may be written as in equation (4.3.2) in
terms of an arbitrary form As

r ≡ ws
αDλαr.

Notice that, using the unity decomposition (4.2.5), one may also solve
formally equations (4.3.1), (4.3.2), (4.3.3), (4.3.4) with respect to the
generalized connection Ωα

β of equation (2.3.5),

Ωα
β = Ar

s λα
rws

β +Br
Jλα

rεJ
β − (dgg−1)αβ , (4.3.7)

where g (β)
α and g−1

(β)
α are defined in equation (4.2.4) and, hence,

(dgg−1)αβ = dλα
r wr

β + duα
I εI

β . (4.3.8)

For a BPS ν = 31/32, preonic configuration, equations (4.3.2), (4.3.3),
(4.3.4) read

Dλα := dλα + Ωα
βλβ = Aλα , (4.3.9)

DuαI := duα
I + Ωα

βuβ
I = BIλα , (4.3.10)

Dwα := dwα − wβΩβ
α = −Awα −BIεI

α (4.3.11)

and contain 1 + 31 = 32 arbitrary one-forms A and BI .
ForG = SL(32,R) one may choose det(g) = 1, equation (4.2.7), which

implies tr(dgg−1) := (dgg−1)αα = 0. Then the sl(32,R)-valued general-
ized connection Ωα

β (Ωα
α = 0) allowing for a ν = k/32 supersymmetric

configuration is determined by equation (4.3.7) with Arr = 0,

G = SL(32,R) : Ar
r = 0 . (4.3.12)

In particular, the sl(32,R)-valued generalized connection allowing for a
BPS preonic, ν = 31/32, configuration, should have the form [3]

G = SL(32,R) , ν = 31/32 : Ωα
β = BI λαεI

β − (dgg−1)αβ (4.3.13)
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in terms of 31 arbitrary one-forms BI , I = 1, . . . , 31.
Assuming a definite form for the generalized connection Ωα

β, one finds
that Eqs. (4.3.7) become differential equations for k Killing spinors εJα

and n = 32 − k BPS preonic spinors λαr once (dgg−1) = dλα
rwr

β −
uα

IdεI
β (equation (4.3.8)) is taken into account. On the other hand, one

might reverse the argument and ask for the structure of a theory allow-
ing for ν = k/32 supersymmetric solutions. This question is especially
interesting for the case of BPS preonic and ν = 30/32 solutions as, for
the moment, such solutions are unknown in the standard D = 11 CJS
and D = 10 Type II supergravities.

The simplest application of the moving G-frame construction is to find
an explicit form for the general solution of the integrability conditions,

εJ
βRβ

α = 0 , (4.3.14)

which are necessary for the Killing spinor equation (4.3.1). In (4.3.14),
Rβ

α is the generalized curvature (2.3.9) corresponding to the D = 11
supergravity generalized connection Ωα

β of (2.3.5). To make things sim-
pler, we shall consider that the solutions we are dealing with are such that
their generalized holonomy is fully determined by Rβ

α and, like in the M2
and M5-brane cases (see section 3.3 of chapter 3), further supercovariant
derivatives of Rβ

α do not provide additional essential information.
Since the Killing spinor equation (4.3.1) implies Eqs. (4.3.2), (4.3.3),

one may solve instead the selfconsistency conditions for these equations,

DDλαr = Rα
βλβ

r = λα
s(dA−A ∧A)sr (4.3.15)

DDuαI = Rα
βuβ

I = λα
r(dBI

r +BI
s ∧Ars) . (4.3.16)

Using the unity decomposition (4.2.5), which impliesRα
β = Rα

γλγ
r wr

β+
Rα

γuγ
I εI

β, one finds the following expression for the generalized curva-
ture

Rα
β = Gr

s λα
rws

β +∇BI
rλα

rεI
β , (4.3.17)

where

Gr
s := (dA−A ∧A)rs , (4.3.18)

∇BI
r := dBI

r −Ar
s ∧BI

s , (4.3.19)

For k = 31, corresponding to the case of a BPS preon, equation (4.3.17)
simplifies to [3]

Rα
β = dAλαw

β + (dBI +BI ∧A)λαεIβ . (4.3.20)
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Equations (4.3.17) and (4.3.20) implyRα
β = λα

r(· · · )rβ and, thus, due to
the orthogonality condition (4.2.2) they solve equation (4.3.14), εIβRβ

α =
0.

The conditions G ⊂ SL(32,R) and hence, also for the generalized
holonomy group, Hol(Ω) ⊂ SL(32,R), Rα

α = 0 (which is always the case
for bosonic solutions of ‘free’ CJS [87, 107] and Type II supergravities
[108]), imply Ar

r = 0 in equation (4.3.17) [see equation (4.3.12)], while
for k = 31 equation (4.3.20) simplifies to [3]

Hol(Ω) ⊂ SL(32,R) , k = 31 : Rα
β = dBIλαεI

β . (4.3.21)

Finally, for G ⊂ Sp(32,R) Ω[αβ] = 0, then Hol(Ω) ⊂ Sp(32,R), Rαβ :=
CαγRγ

β = R(αβ), and equation (4.3.21) reduces to [3]

Hol(Ω) ⊂ Sp(32,R) , k = 31 : Rα
β = dB λαλ

β , (4.3.22)

where only one arbitrary one-form B appears [to obtain (4.3.22) one has
to keep in mind that εIα = (εiα, Cαβλβ), I = (i, 31), equation (4.2.6)].
Eqs. (4.3.21), (4.3.22) solve equation (4.3.14) for preons when G =
SL(32,R) and G = Sp(32,R), respectively.

Equation (4.3.17) with Ar
r = 0 (Eq. (4.3.12), and, hence, (dA− A ∧

A)rr = 0) provides an explicit expression for the result of equation (3.3.8),
namely, for the fact that a k-supersymmetric solution of either D = 11
or D = 10 Type II supergravities must have its generalized holonomy
group contained in Hol(Ω) ⊂ SL(32− k,R) n Rk(32−k). For a BPS preon
k = 31, and Hol(Ω) ⊂ R31 as expressed by equation (4.3.21). However,
our explicit expressions for the [sl(32 − k,R) n (R(32−k)⊕ k. . . ⊕R(32−k)]-
valued generalized curvatures Rα

β, Eqs. (4.3.17), (4.3.21), given in terms
of the Killing spinors εIβ and bosonic spinors λαr characterizing the BPS
preon contents of a ν = k/32 BPS state, may be useful in searching for
new supersymmetric solutions, including preonic ν = 31/32 ones. Some
steps in this direction are taken in the next section.

4.4 BPS preons in supergravity

4.4.1 BPS preons in Chern-Simons supergravity

The first observation is that the generalized curvature allowing for a BPS
preonic (k = 31 supersymmetric) configuration for the case of Hol(Ω) ⊂
SL(32,R) holonomy, equation (4.3.21), is nilpotent

Rα
γ ∧Rγ

β = 0 , for Hol(Ω) ⊂ SL(32,R) , k = 31 . (4.4.1)

As a result it solves [3] the purely bosonic equations of a Chern-Simons
supergravity (see [91]),

Rα
γ1 ∧Rγ1

γ2 ∧Rγ2
γ3 ∧Rγ3

γ4 ∧Rγ4
β = 0 . (4.4.2)
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The same is true for Hol(Ω) ⊂ Sp(32,R) ⊂ SL(32,R), where R is given
by equation (4.3.22). Thus, there exist BPS preonic solutions in CS
supergravity theories, including OSp(1|32)-type ones.

Note that equation (4.4.1) follows in general for a preonic configura-
tion only. In fact, it implies that the generalized holonomy algebra is
abelian, in agreement with the fact noted above that 31-supersymmetric
solutions have their generalized holonomy groups Hol(Ω) in R31. For
configurations preserving k ≤ 30 of the 32 supersymmetries, the bosonic
equations of a CS supergravity, Eqs. (4.4.2) reduce to (see (4.3.18),
(4.3.19))

Gs
s2 ∧Gs2s3 ∧Gs3s4 ∧Gs4s5 ∧Gs5r = 0 ,

Gs
s2 ∧Gs2s3 ∧Gs3s4 ∧Gs4r ∧∇BrI = 0 , (4.4.3)

which are not satisfied identically for Grr = 0. Eqs. (4.4.3) are satisfied
e.g., by configurations with Gs

r = 0, for which the generalized holon-
omy group is reduced down to Hol(Ω) ⊂ Rk(32−k), Rβ

α = ∇BI
rλβ

rεI
α.

Thus, only the preonic, ν = 31/32, configurations always solve the Chern-
Simons supergravity equations (4.4.2).

4.4.2 Searching for preonic solutions of the free bosonic CJS equations

We now go back to the question of whether BPS ν = 31/32 (preonic)
solutions exist for the standard CJS supergravity [27]. This problem can
be addressed step by step, beginning by studying the existence of preonic
solutions of the ‘free’ bosonic CJS equations. To this aim it is useful to
observe [80, 3, 1] that these equations may be collected in a compact ex-
pression for the generalized curvature, iaRα

γΓaγβ = 0 (equation (2.5.5)
of chapter 2). The generalized curvature of a BPS preonic configura-
tion satisfies equation (4.3.21), and thus it solves the ‘free’ bosonic CJS
supergravity equations (2.5.5) if [3]

iadB
I εI

αΓaαβ = 0 . (4.4.4)

Actually, equation (4.3.21) substituted in (2.5.5) gives

λα iadB
I εI

γΓaγβ = 0 . (4.4.5)

However, since λα 6= 0, this is equivalent to (4.4.4).
Equation (4.4.4) contains a summed I = 1, . . . , 31 index and, as

a result, it is not easy to handle. It would be much easier to deal
with the expression ΓaαγiaRγ

β which, with equation (4.3.21) is equal
to ΓaαγλγiadBJεJ

β. Indeed, (Γaλ)αiadBJεJ
β = 0, for instance, would
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imply (Γaλ)αiadBJ = 0 which may be shown to have only trivial solu-
tions. However, ΓaαγiaRγ

β 6= 0 in general for a solution of the ‘free’
bosonic CJS equations (equation (2.5.5)),

ΓaαγiaRγ
β = − i

12

(
DF̂α

β + O(F F )
)
, (4.4.6)

where D = eaDa is the Lorentz covariant derivative (not to be confused
with D defined in Eqs. (4.3.1), (2.3.5)),

F̂α
β = Fa1a2a3a4(Γ

a1a2a3a4)αβ , (4.4.7)

and O(F F ) denotes the terms of second order in Fc1c2c3c4 ,

O(F F )= 1
(3!)2 4!

ea
(
Γab1b2b3 + 2δ[b1a Γb2b3]

)
εb1b2b3c1...c4d1...d4F

c1...c4F d1...d4

+2i
3 e

a
(
Γab1b2b3b4 + 3δ[b1a Γb2b3b4]

)
Fcdb1b2F

cd
b3b4

+8i
9 e

aΓb1b2b3b4b5Facb1b2F
c
b3b4b5 . (4.4.8)

Equation (4.3.21) then implies that for a hypothetical preonic solution
of the ‘free’ bosonic CJS equations, the gauge field strength Fabcd should
be nonvanishing (otherwise dBJ = 0 and Rα

β = 0, see above) and satisfy

Γaαγλγ iadBJ εJ
β = − i

12

(
DF̂α

β + O(F F )
)
. (4.4.9)

Using (4.2.3), Eqs. (4.4.9) split into a set of restrictions for Fabcd,(
DF̂ + O(F F )

)
α
βλβ = 0 , (4.4.10)

and equations for dBI ,

Γaαγλγ iadBI = − i
12

(
DF̂ + O(F F )

)
α
β uβ

I . (4.4.11)

Eq. (4.4.9) or, equivalently, Eqs. (4.4.10),(4.4.11) are the equations to
be satisfied by a CJS preonic configuration [3]. Note that if a non-trivial
solution of the above equations with some Fabcd 6= 0 and some dBI 6= 0
is found, one would have then to check in particular that such a solution
satisfies ddBI = 0 and D[eFabcd] = 0.

On the other hand, if the general solution of the above equation turned
out to be trivial, dBI = 0, this would imply Rα

β = 0 and, thus, a trivial
generalized holonomy group, Hol(Ω) = 1. However, this is the neces-
sary condition for fully supersymmetric, k = 32, solutions [109]. Hence
a general trivial solution for Eqs. (4.4.10), (4.4.11) would indicate that
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a solution preserving 31 supersymmetries possesses all 32 ones (thus cor-
responding to a fully supersymmetric vacuum) and, hence, that there
are no preonic, ν = 31/32 solutions of the free bosonic CJS supergravity
equations (2.5.1), (2.5.3), (2.5.2) and (2.4.2) and (2.4.4). If this hap-
pened to be the case, one would have to study the existence of preonic
solutions for the CJS supergravity equations with non-trivial right hand
sides. These could be produced by corrections of higher-order in curva-
ture [125, 126, 61] and by the presence of sources (from some possibly
exotic p-branes).

4.5 On possible preonic branes

4.5.1 Brane solutions and worldvolume actions

As far as supersymmetric p-brane solutions of supergravity equations are
concerned, the usual situation is that to ν = 1/2 supersymmetric solu-
tions (ν = 16/32 in the D = 11 and D = 10 Type II cases) there also
exist worldvolume actions in the corresponding (D = 11 or D = 10 Type
II) superspaces possessing 16 κ-symmetries, exactly the number of su-
persymmetries preserved by the supergravity solitonic solutions. The
κ-symmetry–preserved supersymmetry correspondence was further dis-
cussed and extended for the case of ν < 1/2 multi-brane solutions in
[147, 58].

In this perspective one may expect that if preonic ν = 31/32 super-
symmetric solutions of the CJS equations with a source do exist, a world-
volume action possessing 31 κ-symmetries should also exist in a curved
D = 11 superspace. For the time being, no such actions are known in
the standard D = 11 superspace, but they do exist in a superspace en-
larged with additional tensorial ‘central’ charge coordinates (see chapter
7 and [8, 148, 149, 150]). One might expect that the role of these addi-
tional tensorial coordinates could be taken over by the tensorial fields of
supergravity. But this would imply that the corresponding action does
not exist in the flat standard D = 11 superspace as it would require a
contribution from the above additional field degrees of freedom (replacing
the tensorial coordinate ones as in [85]). This lack of a clear flat standard
superspace limit hampers the way towards a hypothetical worldvolume
action for a BPS preon in the usual curved D = 11 superspace.

Nevertheless, a shortcut in the search for such an action may be pro-
vided by the observation [151] that the superfield description of the dy-
namical supergravity–superbrane interacting system, described by the
sum of the superfield action for supergravity (still unknown for D =
10, 11) and the super-p-brane action, is gauge equivalent to the much
simpler dynamical system described by the sum of the spacetime, com-
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ponent action for supergravity and the action for the purely bosonic limit
of the super-p-brane. This bosonic p-brane action carries the memory of
being the bosonic limit of a super-p-brane by still possessing 1/2 of the
spacetime local supersymmetries [152]; this preservation of local super-
symmetry reflects the κ-symmetry of the original super-p-brane action.

Thus the κ-symmetric worldvolume actions for super-p-branes have
a clear spacetime counterpart: the purely bosonic actions in spacetime
possessing a part of local spacetime supersymmetry of a ‘free’ super-
gravity theory. This fact, although explicitly discussed for the standard,
ν = 1/2 superbranes in [151], is general since it follows from symmetry
considerations only and thus it applies to any superbrane, including a
hypothetical preonic one. The number of supersymmetries possessed by
this bosonic brane action coincides with the number of κ-symmetries of
the parent super-p-brane action. Moreover, these supersymmetries are
extracted by a projector which may be identified with the bosonic limit
of the κ-symmetry projector for the superbrane. With this guideline in
mind one may simplify, in a first stage, the search for a worldvolume ac-
tion for a BPS preon in standard supergravity (or in a model minimally
extending the standard supergravity) by discussing the bosonic limit that
such a hypothetical action should have.

4.5.2 BPS preons in D’Auria-Fré supergravity

Consider [3] a symmetric spin-tensor one-form eαβ = eβα = dxµeαβµ (x),
transforming under local supersymmetry as

δεe
αβ = −2iψ(α εβ) , (4.5.1)

where ψα is a fermionic one-form,

ψα = dxµψαµ(x) , (4.5.2)

which we may identify with the gravitino. Let us consider for simplicity
the worldline action (cf. [148])

S =
∫
W 1

λα(τ)λβ(τ)êαβ

=
∫
W 1

dτλα(τ)λβ(τ) eαβµ (x̂(τ)) ∂τ x̂µ(τ) , (4.5.3)

where τ parameterizes the worldline W 1 in D = 11 spacetime, êαβ :=
dτ∂τ x̂

µ(τ) eαβµ (x̂(τ)) and λα(τ) is an auxiliary spinor field on the worldline
W 1. The extended (p ≥ 1) object counterpart of this worldline action is
the following action for tensionless p-branes (cf. [149, 150])

Sp+1 =
∫
W p+1

λαλβ ρ̂ ∧ êαβ
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=
∫
W p+1

dp+1ξ ρkλαλβ ê
αβ
µ ∂kx̂

µ , (4.5.4)

where ρ̂(ξ) is a p-form auxiliary field, and ρk(ξ) is the worldvolume vec-
tor density (see [153, 154]) related to ρ̂(ξ) by ρ̂(ξ) = (1/p!)dξjp ∧ . . . ∧
dξj1ρj1...jp(ξ) = (1/p!)dξjp ∧ . . . ∧ dξj1εj1...jpkρk(ξ).

The action (4.5.3) possesses all but one of the local spacetime super-
symmetries4, equation (4.5.1), 31 for α, β = 1, . . . , 32 corresponding to
D = 11. Indeed, performing a supersymmetric variation δε of (4.5.3)
assuming δελα(τ) = 0, one finds

δεS = −2i
∫
W 1

ψ̂αλα(τ) ε̂βλβ(τ) . (4.5.5)

Thus, one sees that δεS = 0 for the supersymmetry parameters on W 1

that obey (cf. (4.2.2))

ε̂βλβ(τ) = 0 (ε̂β := εβ(x̂(τ))) . (4.5.6)

Equation (4.5.6) possesses 31 solutions, which may be expressed through
worldvolume spinors ε̂Iα(τ) (the worldline counterparts of the Killing
spinors) orthogonal to λα(τ), ε̂Iα(τ)λα(τ) = 0, as

ε̂β = εI(τ)ε̂Iβ , I = 1, . . . , 31 , (4.5.7)

for some arbitrary εI(τ). The same is true for the tensionless p-branes
described by the action (4.5.4).

Thus, the actions (4.5.3), (4.5.4) possess 31 of the 32 local spacetime
supersymmetries (4.5.1) and, in the light of the discussion of the pre-
vious subsection, can be considered as the spacetime counterparts of a
superspace BPS-preonic action (hypothetical in the standard superspace
but known [148, 155, 149, 150] in flat maximally enlarged or tensorial
superspaces).

The question that remains to be settled is the meaning of the symmet-
ric spin-tensor one-form eαβ with the local supersymmetry transformation
rule (4.5.1) in D = 11 supergravity. The contraction of eαβ with the Dirac
matrix Γa,

ea = eαβΓaαβ , (4.5.8)

may be identified with the D = 11 vielbein. Decomposing eαβ in the
basis of the D = 11 Spin(1, 10) gamma-matrices,

eαβ = eβα = 1
32

(
eaΓαβa − i

2!B
abΓαβab + 1

5!B
a1...a5Γαβa1...a5

)
, (4.5.9)

4Notice that when a brane action is considered in a supergravity background, the
local spacetime supersymmetry is not a gauge symmetry of that action but rather a
transformation of the background; it becomes a gauge symmetry only when a super-
gravity action is added to the brane one so that supergravity is dynamical.
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one finds [3] that eαβ also contains the antisymmetric tensor one-forms
Bab(x) = dxµBab

µ (x) and Ba1...a5(x) = dxµBa1...a5
µ (x). Such fields, whose

supersymmetry transformation properties follow from (4.5.9) and (4.5.1),
also appear among the additional fields introduced in [92] in order to
investigate the hidden gauge symmetry ofD = 11 supergravity, which will
be discussed in chapter 6. In this case, however, the degrees of freedom
of the B fields in (4.5.3) will not be reduced by the gauge symmetry to be
discussed in chapter 6. Thus, the action (4.5.3), preserving 31 out of 32
supersymmetries, could be treated as a worldline action for a BPS preon
in the presence of supergravity with additional fields à la D’Auria and
Fré [92].

The formulation of D = 11 supergravity due to D’Auria and Fré [92]
is, actually, closely related to enlarged superspaces so, in this sense, it is
not surprising that preonic branes would exist in such a context (given
that preonic actions are known in enlarged superspaces, see [84] for a re-
view). It is, then, worthwhile both to take a closer look at the D’Auria-Fré
approach to supergravity and to further study actions for supersymmet-
ric extended objects in enlarged superspaces. We shall, thus, turn our
attention to these issues in chapters 6 and 7 respectively. In particu-
lar, the symmetry algebras underlying the construction of supergravity à
la D’Auria and Fré will be reviewed in chapter 6. These algebras were
known to be fermionic central extensions of the M Theory superalgebra,
but their expected relation to the orthosymplectic superalgebra osp(1|32)
was quite unclear. In chapter 6 this relation will be discussed in terms of
Lie algebra expansions, a new method of building up new algebras from
given ones. It seems appropriate, then, to stop our physical discussion
momentarily and open up a purely mathematical parenthesis to introduce
the expansion method in the next chapter.



5

Interlude: Lie algebra expansions

Setting aside the problem of finding whether an algebra is a subalgebra of
another one there are, essentially, three different ways of relating and/or
obtaining new algebras from given ones: contractions, deformations and
extensions. In this chapter we explore a fourth way to obtain new algebras
of increasingly higher dimensions from a given one G. The idea, originally
considered in [156] in a less general context and developed in general in
[4] (see also [5]) consists in looking at the algebra G as described by the
Maurer-Cartan (MC) forms1 on the manifold of its associated group G
and, after rescaling some of the group parameters by a factor λ, in ex-
panding the MC forms as a series in λ. The resulting expansion method is
different from the three above albeit, when the algebra dimension does no
change in the process, it may lead to a simple Inönü-Wigner (IW) or IW-
generalized contraction (see section 5.1), but not always. Furthermore,
the algebras to which it leads have in general a higher dimension than
the original one (hence the expansion name), in which case they cannot
be related to it by any contraction or deformation process.

A description of the expansion method is given in this rather technical
chapter. Our main concern will be its application to Lie superalgebras,
so we proceed step by step towards that goal. First of all, the brief review
in section 5.1 of the three already known methods to obtain new Lie alge-
bras from given ones will be useful in order to discuss the properties and
structure of the algebras encountered in the rest of the chapter (and other
parts of this Thesis). Section 5.2 introduces the expansion method for Lie
algebras G. When further assumptions are made about the structure of
the original Lie algebras, the results provided by the expansion method
are more interesting. That is why the existence of a subalgebra in G is
assumed in section 5.3, and the further existence of a symmetric coset is

1See section 2.1 of chapter 2 for the dual formulation of Lie algebras in terms of
MC one-forms.

69
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assumed in subsection 5.3.1. Section 5.4 generalizes in a convenient way
the case in which G contains a subalgebra, by assuming that there is a
certain subspace splitting of G. All these cases are actually combined in
section 5.5 to discuss the expansions of Lie superalgebras. The chapter
concludes with an explicit example: the derivation of the M Theory alge-
bra from an expansion of osp(1|32). Appendix B contains some technical
details. This chapter follows closely references [4] and [5].

5.1 Three well-known ways to relate Lie (super)algebras

Contractions

The first one is the contraction procedure [157, 158, 159]. In its İnönü
and Wigner (IW) simple form [158], the contraction Gc of a Lie algebra
G is performed with respect to a subalgebra L0 by rescaling the basis
generators of the coset G/L0 by means of a parameter, and then by tak-
ing a singular limit for this parameter. The generators in G/L0 become
abelian in the contracted algebra Gc, and the subalgebra L0 ⊂ Gc acts on
them. As a result, Gc has a semidirect structure, and the abelian gen-
erators determine an ideal of Gc; obviously, Gc has the same dimension
as G. The contraction process has well known physical applications as
e.g., in understanding the non-relativistic limit from a group theoretical
point of view, or to explain the appearance of dimensionful generators
when the original algebra G is semisimple (and hence with dimensionless
generators). This is achieved by using a dimensionful contraction param-
eter, as in the derivation of the Poincaré group from the de Sitter groups
(there, the parameter is the radius R of the universe, and the limit is
R → ∞). There have been many discussions and variations of the IW
contraction procedure (see [160, 161, 162, 163, 164, 165] to name a few),
but all of them have in common that G and Gc have, necessarily, the same
dimension as vector spaces.

This procedure can be extended to generalized IW contractions in the
sense of Weimar-Woods (W-W) [165]. These are defined when G can be
split in a sum of vector subspaces

G = V0 ⊕ V1 ⊕ · · · ⊕ Vn =
n⊕
s=0

Vs, (5.1.1)

(V0 being the vector space of the subalgebra L0), such that the following
conditions are satisfied:

cks
ipjq

= 0 if s > p+ q i.e. [Vp, Vq] ⊂
⊕
s

Vs, s ≤ p+ q , (5.1.2)
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where ip labels the generators of G in Vp, and ckij are structure constants
of G. Then the W-W [165] contracted algebra is obtained by rescaling
the group parameters as gip 7→ λpgip , p = 0, . . . , n, and then by taking
a singular limit for λ. The contracted Lie algebra obtained this way, Gc,
has the same dimension as G. The case n = 1 corresponds to the simple
IW contraction.

Deformations

The deformation of algebras, and Lie algebras in particular [166, 167,
168, 169] (see also [170, 171]), allows us to obtain algebras close, but
not isomorphic, to a given one. This leads to the important notion of
rigidity [166, 167, 169] (or physical stability): an algebra is called rigid
when any attempt to deform it leads to an equivalent (isomorphic) one.
From a physical point of view, the deformation process is essentially the
inverse to the contraction one (see [170] and the second ref. in [165]), and
the dimensions of the original and deformed Lie algebras are again the
same. For instance, the Poincaré algebra is not rigid, but the de Sitter
algebras, being semisimple, have trivial second cohomology group by the
Whitehead lemma and, as a result, they are rigid. One may also consider
the Poincaré algebra as a deformation of the Galilei algebra, so that this
deformation may be read as a group theoretical prediction of relativity.
Thus, the mathematical deformation may be physically considered as a
tool for developing a physical theory from another pre-existing one.

Deformations are performed by modifying the r.h.s. of the original
commutators by adding new terms that depend on a parameter t in the
form

[X,Y ]t = [X,Y ]0 +
∞∑
i=1

ωi(X,Y )ti , X, Y ∈ G , ωi(X,Y ) ∈ G . (5.1.3)

Checking the Jacobi identities up to O(t2), it is seen that the expression
satisfied by ω1 characterizes it as a two-cocycle so that the second Lie al-
gebra cohomology group H2(G,G) of G with coefficients in the Lie algebra
G itself is the group of infinitesimal deformations of G. Thus H2(G,G) = 0
is a sufficient condition for rigidity [166, 167, 168, 169].

Extensions

In contrast with the previous procedures, the initial data of the extension
problem include two algebras G and A. A Lie algebra G̃ is an extension of
the Lie algebra G by the Lie algebra A if A is an ideal of G̃ and G̃/A = G.
As a result, dim G̃ = dimG + dimA, so this process is also ‘dimension
preserving’.
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Given G and A, in order to obtain an extension G̃ of G by A it is
necessary to specify first an action ρ of G on A i.e., a Lie algebra ho-
momorphism ρ : G −→ EndA. The different possible extensions G̃ for
(G,A, ρ) and the possible obstructions to the extension process are, once
again, governed by cohomology (see [40] and references therein). To be
more explicit, let A be abelian. The extensions are governed by H2

ρ (G,A).
Some special cases are: 1) trivial action ρ = 0, H2

0 (G,A) 6= 0. These are
central extensions, in which A belongs to the centre of G̃; they are de-
termined by non-trivial A-valued two-cocycles on G, and non-equivalent
extensions correspond to non-equivalent cocycles; 2) non-trivial action
ρ 6= 0, H2

ρ (G,A) = 0 (semidirect extension of G by A); and 3) ρ = 0,
H2(G,A) = 0 (direct sum of G and A, G̃ = G ⊕A, or trivial extension).

Well-known examples of extensions in Physics include the centrally
extended Galilei algebra, which is relevant in quantum mechanics, or the
M Theory superalgebra that, without the Lorentz automorphisms part,
is the maximal central extension of the abelian D = 11 supertranslations
algebra (see section 2.1 of chapter 2 and [82, 59, 85]).

5.2 The expansion method

Let G be a Lie group, of local coordinates gi, i = 1, . . . , r = dimG. Let G
be its Lie algebra2 of basis {Xi}, which may be realized by left-invariant
generators Xi(g) on the group manifold. Let G∗ be the coalgebra, and let
{ωi(g)}, i = 1, . . . , r = dimG be the basis determined by the (dual, left-
invariant) Maurer-Cartan (MC) one-forms on G. Then, when [Xi, Xj ] =
ckijXk, the MC equations read

dωk(g) = −1
2
ckijω

i(g) ∧ ωj(g) , i, j, k = 1, . . . , r . (5.2.1)

We wish to show in this section how we may obtain new algebras by
means of a redefinition gl → λgl of some of the group parameters and
by looking at the power series expansion in λ of the resulting one-forms
ωi(g, λ). Let θ be the left-invariant canonical form on G,

θ(g) = g−1dg = e−g
iXi deg

iXi ≡ ωiXi . (5.2.2)

Since

e−A deA = dA+
1
2
[dA,A] +

1
3!

[[dA,A], A] +
1
4!

[[[dA,A], A], A] + . . .

2Calligraphic G, L, W will denote both the Lie algebras and their underlying vector
spaces; V , W etc. will be used for vector spaces that are not necessarily Lie algebras.
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= dA+
∞∑
n=1

1
(n+ 1)!

[ n. . . [dA,A], . . . , A], A] , (5.2.3)

one obtains, for A ≡ gkXk, dA = (dgj)Xj , the expansion of θ(g) and of
the MC forms ωi(g) as polynomials in the group coordinates gi :

θ(g) =
[
δij +

1
2!
cijkg

k

+
1
3!
ch1
jk1
cih1k2g

k1gk2 +
1
4!
ch1
jk1
ch2
h1k2

cih2k3g
k1gk2gk3 + . . .

]
dgjXi ,

(5.2.4)

ωi(g) =
[
δij +

1
2!
cijkg

k

+
∞∑
n=2

1
(n+ 1)!

ch1
jk1
ch2
h1k2

. . . c
hn−1

hn−1kn−1
cihn−1kn

gk1gk2 . . . gkn−1gkn

]
dgj .

(5.2.5)

Looking at (5.2.5), it is evident that the redefinition

gl → λgl (5.2.6)

of some coordinates gl will produce an expansion of the MC one-forms
ωi(g, λ) as a sum of one-forms ωi,α(g) on G multiplied by the correspond-
ing powers λα of λ.

5.2.1 The Lie algebras G(N) expanded from G

Consider, as a first example, the splitting of G∗ into the sum of two
(arbitrary) vector subspaces,

G∗ = V ∗
0 ⊕ V ∗

1 , (5.2.7)

V ∗
0 , V ∗

1 being generated by the MC forms ωi0(g), ωi1(g) of G∗ with indices
corresponding, respectively, to the unmodified and modified parameters,

gi0 → gi0 , gi1 → λgi1 , i0 (i1) = 1, . . . ,dimV0 (dimV1) . (5.2.8)

In general, the series of ωi0(g, λ) ∈ V ∗
0 , ωi1(g, λ) ∈ V ∗

1 , will involve all
powers of λ,

ωip(g, λ) =
∞∑
α=0

λαωip,α(g) = ωip,0(g)+λωip,1(g)+λ2ωip,2(g)+. . . , (5.2.9)
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for p = 0, 1 and ωip(g, 1) = ωip(g). We will see in the following sections
what restrictions on G make zero certain coefficient one-forms ωip,α.

With the above notation, the MC equations (5.2.1) for G can be rewrit-
ten as

dωks = −1
2
cks
ipjq

ωip ∧ ωjq (p, q, s = 0, 1) (5.2.10)

or, explicitly

dωk0 = −1
2
ck0i0j0ω

i0 ∧ ωj0 − ck0i0j1ω
i0 ∧ ωj1 − 1

2
ck0i1j1ω

i1 ∧ ωj1 ,(5.2.11)

dωk1 = −1
2
ck1i0j0ω

i0 ∧ ωj0 − ck1i0j1ω
i0 ∧ ωj1 − 1

2
ck1i1j1ω

i1 ∧ ωj1 .(5.2.12)

Inserting now the expansions (5.2.9) into the MC equations (5.2.10) and
using (B.1) in appendix B, the MC equations are expanded in powers of
λ:

∞∑
α=0

λαdωks,α =
∞∑
α=0

λα

−1
2
cks
ipjq

α∑
β=0

ωip,β ∧ ωjq ,α−β
 . (5.2.13)

The equality of the two λ-polynomials in (5.2.13) requires the equality
of the coefficients of equal power λα. This implies that the coefficient
one-forms ωip,α in the expansions (5.2.9) satisfy the identities:

dωks,α = −1
2
cks
ipjq

α∑
β=0

ωip,β ∧ ωjq ,α−β (p, q, s = 0, 1) . (5.2.14)

We can rewrite (5.2.14) in the form

dωks,α = −1
2
Cks,α
ip,β jq ,γ

ωip,β∧ωjq ,γ , Cks,α
ip,β jq ,γ

=
{

0 , if β + γ 6= α

cks
ipjq

, if β + γ = α
.

(5.2.15)

We now ask ourselves whether we can use the expansion coefficients
ωk0,α, ωk1,β up to given orders N0 ≥ 0, N1 ≥ 0, α = 0, 1, . . . , N0, β =
0, 1, . . . , N1, so that equation (5.2.15) (or (5.2.14)) determines the MC
equations of a new Lie algebra. The answer is affirmative. More precisely,
the vector space generated by

{ωi0,0, ωi0,1, . . . , ωi0,N , ωi1,0, ωi1,1, . . . , ωi1,N} , (5.2.16)
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together with the MC equations (5.2.15) for the structure constants

Cks,α
ip,β jq ,γ

=
{

0, if β + γ 6= α

cks
ipjq

, if β + γ = α
(α, β, γ = 1, . . . , N ; p, q, s = 0, 1) ,

(5.2.17)

determines a Lie algebra G(N) for each expansion order N ≥ 0 of dimen-
sion dimG(N) = (N + 1) dimG [4].
To see why, consider the one-forms

{ωi0,α0 ; ωi1,α1} = {ωi0,0, ωi0,1, . . . , ωi0,N0 ;ωi1,0, ωi1,1, . . . , ωi1,N1} (5.2.18)

where we have not assumed a priori the same range for the expansions of
the one-forms of V ∗

0 and V ∗
1 . To see whether the vector space V ∗(N0, N1)

of basis (5.2.18) determines a Lie algebra G(N0, N1), it is sufficient to
check that a) the exterior algebra generated by (5.2.18) is closed3 un-
der the exterior derivative d and that b) the Jacobi identities for G are
satisfied.

To have closure under d we need that the r.h.s. of equations (5.2.15)
does not contain one-forms that are not already present in (5.2.18). Con-
sider the forms ωis,βs , s = 0, 1, that contribute to dωks,αs up to order
α = Ns. Looking at equations (5.2.14) it follows trivially that

N0 = N1 (= N) . (5.2.19)

To check the Jacobi identities for G(N), it is sufficient to see that ddωks,α ≡
0 in (5.2.15) is consistent with the definition of Cks,α

ip,β jq ,γ
. Equation

(5.2.15) gives

0 = Cks,α
ip,β jq ,γ

C
ip,β
lt,ρ mu,σ

ωjq ,γ ∧ωlt,ρ ∧ωmu,σ (α, β, γ, ρ, σ = 1, . . . , N) ,

(5.2.20)

which implies

Cks,α
ip,β [jq ,γ

C
ip,β
lt,ρ mu,σ] = 0 . (5.2.21)

Now, on account of definition (5.2.17), the terms in the l.h.s. above are
either zero (when α 6= γ+ ρ+ σ) or give zero due to the Jacobi identities
for G, cks

ip[jq
c
ip
ltmu] = 0. Thus, the Cks,α

ip,β jq ,γ
satisfy the Jacobi identities

(5.2.21) and define the Lie algebra G(N,N) ≡ G(N) [4].
3An algebra of forms closed under d defines in general a free differential algebra

(FDA): see chapter 6 and references therein.
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Explicitly, the resulting algebras for the first few orders are [4]:

N = 0 , G(0):

dωks,0 = −1
2
cks
ipjq

ωip,0 ∧ ωjq ,0 (p, q, s = 0, 1) , (5.2.22)

i.e., G(0) reproduces the original algebra G.

N = 1 , G(1):

dωks,0 = −1
2
cks
ipjq

ωip,0 ∧ ωjq ,0 , (5.2.23)

dωks,1 = −cks
ipjq

ωip,0 ∧ ωjq ,1 (p, q, s = 0, 1) . (5.2.24)

N = 2 , G(2):

dωks,0=−1
2
cks
ipjq

ωip,0 ∧ ωjq ,0 , (5.2.25)

dωks,1=−cks
ipjq

ωip,0 ∧ ωjq ,1 , (5.2.26)

dωks,2=−cks
ipjq

ωip,0 ∧ ωjq ,2 − 1
2
cks
ipjq

ωip,1 ∧ ωjq ,1 (p, q, s = 0, 1) . (5.2.27)

In sight of the above results, the following remark is in order. Since
ωip,0(g) 6= ωip(g), one might wonder how the MC equations for G(0) = G
can be satisfied by ωip,0(g). The dimG MC forms ωip(g) are left-invariant
forms on the group manifold G of G. The (N + 1)dimG ωip,α(g) (α =
0, 1, . . . , N) determined by the expansions (5.2.9) are also one-forms on G,
but they are no longer left-invariant under G-translations. They cannot
be, since there are only dimG = r linearly independent MC forms on G.
Nevertheless, equations (5.2.15) determine the MC relations that will be
satisfied by the MC forms on the manifold of the higher dimensional group
G(N) associated with G(N). These MC forms on G(N) will depend on
the (N +1)dimG(N) coordinates of G(N) associated with the generators
(forms) Xip,α (ωip,α) that determine G(N) (G∗(N)).

5.2.2 Structure of the expanded algebras G(N)

Let Vp,α be, at each order α = 0, 1, . . . , N , the vector space spanned by
the generators Xip,α, p = 0, 1; clearly, Vp,α ≈ Vp. Let

Wα = V0,α ⊕ V1,α , G(N) =
N⊕
α=0

Wα . (5.2.28)

We first notice that G(N − 1) is a vector subspace of G(N), but not a
subalgebra for N ≥ 2. Indeed, for N ≥ 2 there always exist α, β ≤ N − 1
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such that α+β = N . Denoting by C(N) ks,γ
ip,α jq ,β

and C(N−1) ks,γ
ip,α jq ,β

the structure
constants of G(N) and G(N−1) respectively, one sees that, for α+β = N ,
C

(N−1) ks,α+β
ip,α jq ,β

= 0 in G(N − 1) (since α + β > N − 1) while, in general,

C
(N) ks,α+β
ip,α jq ,β

6= 0 in G(N). In other words, G(N − 1) is not a subalgebra
of G(N) because the structure constants for the elements of the various
subspaces Vp,α depend onN and they are different, in general, for G(N−1)
and G(N). Likewise, G(M) for 1 ≤M < N is not a subalgebra of G(N).

We now show that the Lie algebras G(N) have a Lie algebra extension
structure for N ≥ 1. More precisely, the Lie algebra G(0) is a subalgebra
of G(N), for all N ≥ 0. For N ≥ 1, WN is an abelian ideal WN ⊂ G(N)
and G(N)/WN = G(N − 1) i.e., G(N) is an extension of G(N − 1) by
WN which is not semidirect for N ≥ 2 [4]. To prove this result, notice
that G(0) ⊂ G(N) is a subalgebra by construction, since C(N) ks,α

ip,0 jq ,0
= 0,

α = 1, . . . , N , by equation (5.2.15). For the second part, notice that,
since α + N > N for α 6= 0, [Wα, WN ] = 0; in particular, WN is an
abelian subalgebra. Furthermore [W0, WN ] ⊂ WN , so that WN is an
ideal of G(N). Now, the vector space G(N)/WN is isomorphic to G(N−1).
G(N − 1) is a Lie algebra the MC equations of which are (5.2.15), and
G(N)/WN ≈ G(N − 1). Since G(N − 1) is not a subalgebra of G(N) for
N ≥ 2, the extension is not semidirect.

5.2.3 Limiting cases

Let us discuss the limiting cases V0 = 0, V1 = V and V0 = V, V1 = 0 When
V1 = V , all the group parameters are modified by (5.2.8). In this case
G(0) is the trivial G(0) = 0 subalgebra of G(N). The first order N = 1,
ωi1,1 = dgi1 , corresponds to an abelian algebra with the same dimension
as G (in fact, G(1) is the IW contraction of G with respect to the trivial
V0 = 0 subalgebra). For N ≥ 2 we will have extensions with the structure
in section 5.2.2.

For the other limiting case, V1 = 0, there is obviously no expansion
and we have G(0) = G.

5.3 The case in which G contains a subalgebra

Let G = V0 ⊕ V1 as before, where now V0 is a subalgebra L0 of G. Then,

ck1i0j0 = 0 (ip = 1, . . . ,dimVp , p = 0, 1) , (5.3.1)

and the basis one-forms ωi0 are associated with the (sub)group parame-
ters gi0 unmodified under the rescaling (5.2.8). The MC equations for G
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become

dωk0 = −1
2
ck0i0j0ω

i0 ∧ ωj0 − ck0i0j1ω
i0 ∧ ωj1 − 1

2
ck0i1j1ω

i1 ∧ ωj1 , (5.3.2)

dωk1 = −ck1i0j1ω
i0 ∧ ωj1 − 1

2
ck1i1j1ω

i1 ∧ ωj1 . (5.3.3)

Using (5.3.1) in equation (5.2.5), one finds that the expansions of
ωi0(g, λ) (ωi1(g, λ)) start with the power λ0 (λ1):

ωi0(g, λ) =
∞∑
α=0

λαωi0,α(g) = ωi0,0(g) + λωi0,1(g) + λ2ωi0,2(g) + . . .

(5.3.4)

ωi1(g, λ) =
∞∑
α=1

λαωi1,α(g) = λωi1,1(g) + λ2ωi1,2(g) + λ3ωi1,3(g) + . . . .

(5.3.5)

Inserting them into the MC equations (5.3.2) and (5.3.3) and using equa-
tion (B.1) of appendix B when the double sums begin with (0, 0), (0, 1)
and (1, 1), we get

∞∑
α=0

λαdωk0,α = −1
2
ck0i0j0ω

i0,0 ∧ ωj0,0

+λ
[
−ck0i0j0ω

i0,0 ∧ ωj0,1 − ck0i0j1ω
i0,0 ∧ ωj1,1

]
+

∞∑
α=2

λα

−1
2
ck0i0j0

α∑
β=0

ωi0,β ∧ ωj0,α−β

−ck0i0j1
α−1∑
β=0

ωi0,β ∧ ωj1,α−β − 1
2
ck0i1j1

α−1∑
β=1

ωi1,β ∧ ωj1,α−β
 ,

(5.3.6)
∞∑
α=1

λαdωk1,α = −λck1i0j1ω
i0,0 ∧ ωj1,1

+
∞∑
α=2

λα

−ck1i0j1 α−1∑
β=0

ωi0,β ∧ ωj1,α−β − 1
2
ck1i1j1

α−1∑
β=1

ωi1,β ∧ ωj1,α−β
 .

(5.3.7)
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Again, the equality of the coefficients of equal power λα in (5.3.6), (5.3.7)
leads to the equalities:

α = 0:

dωk0,0 = −1
2
ck0i0j0ω

i0,0 ∧ ωj0,0 ; (5.3.8)

α = 1:

dωk0,1 = −ck0i0j0ω
i0,0 ∧ ωj0,1 − ck0i0j1ω

i0,0 ∧ ωj1,1 , (5.3.9)

dωk1,1 = −ck1i0j1ω
i0,0 ∧ ωj1,1 ; (5.3.10)

α ≥ 2:

dωk0,α = −1
2
ck0i0j0

α∑
β=0

ωi0,β ∧ ωj0,α−β − ck0i0j1

α−1∑
β=0

ωi0,β ∧ ωj1,α−β

−1
2
ck0i1j1

α−1∑
β=1

ωi1,β ∧ ωj1,α−β , (5.3.11)

dωk1,α = −ck1i0j1
α−1∑
β=0

ωi0,β ∧ ωj1,α−β − 1
2
ck1i1j1

α−1∑
β=1

ωi1,β ∧ ωj1,α−β . (5.3.12)

To allow for a different range in the orders α of each ωip,α, we now
denote the coefficient one-forms in (5.3.4) ((5.3.5)) ωi0,α0 (ωi1,α1), α0 =
0, 1, . . . , N0 (α1 = 1, 2, . . . , N1). With this notation, the above relations
take the generic form

dωks,αs = −1
2
Cks,αs

ip,βp jq ,γq
ωip,βp ∧ ωjq ,γq , (5.3.13)

where

Cks,αs

ip,αp jq ,αq
=
{

0, if βp + γq 6= αs
cks
ipjq

, if βp + γq = αs

p, q, s = 0, 1
ip,q,s = 1, 2, . . . ,dimVp,q,s
α0, β0, γ0 = 0, 1, . . . , N0

α1, β1, γ1 = 1, 2, . . . , N1 .

(5.3.14)

As in the preceding case, we now ask ourselves whether the expansion
coefficients ωk0,α0 , ωk1,α1 up to a given order N0, N1 determine the MC
equations (5.3.13) of a new Lie algebra G(N0, N1). It is obvious from
(5.3.8) that the zeroth order of the expansion in λ corresponds to N0 =
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0 = N1 (omitting all ωi1,α1 and thus allowing N1 to be zero), and that
G(0, 0) = L0. It is seen directly that the terms up to first order give
two possibilities: G(0, 1) (equations (5.3.8), (5.3.10) for ωk0,0 , ωk1,1) and
G(1, 1) (equations (5.3.8), (5.3.9), (5.3.10) for ωk0,0 , ωk1,1 , ωk0,1). Thus,
we see that now (and due to (5.3.1)) one does not need to retain all
ωip,αp up to a given order to obtain a Lie algebra. To look at the general
N0 ≥ 0, N1 ≥ 1 case, consider the vector space V ∗(N0, N1), generated by

{ωi0,α0 ; ωi1,α1} = {ωi0,0, ωi0,1, ωi0,2, . . . , ωi0,N0 ;ωi1,1, ωi1,2, . . . , ωi1,N1} .
(5.3.15)

To see that it determines a Lie algebra G(N0, N1) of dimension

dimG(N0, N1) = (N0 + 1) dimV0 +N1dimV1 , (5.3.16)

we first notice that the Jacobi identities in G(N0, N1) will follow from
those in G. To find the conditions that N0 and N1 must satisfy to have
closure under d, we look at the orders βp of the forms ωip,βp that appear
in the expression (5.3.13) of dωks,αs up to a given order αs ≥ s. Looking
at equations (5.3.8) to (5.3.12) we find the following table:

αs ≥ s ωi0,β0 ωi1,β1

dωk0,α0 β0 ≤ α0 β1 ≤ α0

dωk1,α1 β0 ≤ α1 − 1 β1 ≤ α1

Table 5.1. Orders βp of the forms ωip,βp that contribute to dωks,αs

Since there must be enough one-forms in (5.3.15) for the MC equa-
tions (5.3.13) to be satisfied, the N0 + 1 and N1 one-forms ωi0,α0 (α0 =
0, 1, . . . , N0) and ωi1,α1 (α1 = 1, 2, . . . , N1) in (5.3.15) should include, at
least, those appearing in their differentials. Thus, the previous table 5.1
implies the reverse inequalities

αs ≥ s ωi0,β0 ωi1,β1

dωk0,α0 N0 ≥ N0 N1 ≥ N0

dωk1,α1 N0 ≥ N1 − 1 N1 ≥ N1

Table 5.2. Conditions on the number N0 (N1) of one-forms ωi0,α0(ωi1,α1)

Hence, in this case there are two ways of cutting the expansions (5.3.4),
(5.3.5), namely for

N1 = N0 , (5.3.17)
or N1 = N0 + 1 . (5.3.18)



5.3 The case in which G contains a subalgebra 81

Besides (5.2.19) there is now an additional type of solutions, equa-
tion (5.3.18). For the N0 = 0, N1 = 1 values equation (5.3.16) yields
dimG(0, 1) = dimG. Then, α0 = 0 and α1 = 1 only, the label αp may be
dropped and the structure constants (5.3.14) for G(0, 1) read

Cks
ip jq

=
{

0, if p+ q 6= s

cks
ipjq

, if p+ q = s
p = 0, 1
ip,q,s = 1, 2, . . . ,dimVp,q,s ,

(5.3.19)

which shows that V1 is an abelian ideal of G(0, 1). Hence, G(0, 1) is just
the (simple) IW contraction of G with respect to the subalgebra L0, as it
may be seen by taking the λ→ 0 limit in (5.3.6)-(5.3.7), which reduce to
equations (5.3.8) and (5.3.10).

To summarize, let G = V0 ⊕ V1, where V0 is a subalgebra L0 and
let the coordinates gip of G be rescaled by gi0 → gi0 , gi1 → λgi1 (equa-
tion (5.2.8)). Then, the coefficient one-forms {ωi0,α0, ωi1,α1} of the ex-
pansions (5.3.4), (5.3.5) of the Maurer-Cartan forms of G∗ determine
Lie algebras G(N0, N1) when N1 = N0 or N1 = N0 + 1 of dimension
dimG(N0, N1) = (N0 +1) dimV0 +N1dimV1 and with structure constants
(5.3.14),

Cks,αs

ip,βp jq ,γq
=
{

0, if βp + γq 6= αs
cks
ipjq

, if βp + γq = αs

p, q, s = 0, 1
ip,q,s = 1, 2, . . . ,dimVp,q,s
α0, β0, γ0 = 0, 1, . . . , N0

α1, β1, γ1 = 1, 2, . . . , N1 .

In particular, G(0, 0) = L0 and G(0, 1) (equation (5.3.18) for N0 = 0) is
the simple IW contraction of G with respect to the subalgebra L0 [4].

5.3.1 The case in which G contains a symmetric coset

Let us now particularize to the case in which G/L0 = V1 is a symmetric
coset i.e.,

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 , (5.3.20)

([Vp, Vq] ⊂ Vp+q , (p+ q)mod 2). This applies, for instance, to all superal-
gebras where V0 is the bosonic subspace and V1 the fermionic one. Then,
if cks

ipjq
(p, q, s = 0, 1; ip = 1, . . .dimVp) are the structure constants of G,

cks
ipjq

= 0 if s 6= (p+ q)mod 2, the MC equations reduce to

dωk0 = −1
2
ck0i0j0ω

i0 ∧ ωj0 − 1
2
ck0i1j1ω

k1 ∧ ωj1 , (5.3.21)

dωk1 = −ck1i0j1ω
i0 ∧ ωj1 . (5.3.22)
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In this case, the rescaling (5.2.8) leads to an even (odd) power series in
λ for the MC forms ωi0(g, λ) (ωi1(g, λ)):

ωi0(g, λ) = ωi0,0(g) + λ2ωi0,2(g) + λ4ωi0,4(g) + . . .

ωi1(g, λ) = λωi1,1(g) + λ3ωi1,3(g) + λ5ωi1,5(g) + . . . , (5.3.23)

namely, ωiα(g, λ) =
∑∞

α=0 λ
αωiα,α(g) ; α = α (mod 2).

Indeed, under (5.2.8) dgi0 → dgi0 , dgi1 → λ dgi1 , which contributes
with λ0 (λ) to ωi0(g, λ) (ωi1(g, λ)); cipjqks

vanish trivially unless p = (q +
s) mod 2 . Then, under (5.2.8), the gksdgjq terms in (5.2.5) with one gks

rescale as

p = 0 : ci0j0k0 g
k0dgj0 → ci0j0k0 g

k0dgj0 , ci0j1k1 g
k1dgj1 → λ2ci0j1k1 g

k1dgj1 ;

p = 1 : ci1j0k1 g
k1dgj0 → λ ci1j0k1 g

k1dgj0 , (5.3.24)

so that the powers λ0 and λ2 (λ) contribute to ωi0(g, λ) (ωi1(g, λ)). For
the terms in (5.2.5) involving the products of n gks ’s,

c
ht1
jqks1

c
ht2
ht1ks2

. . . c
htn−1

htn−2ktn−1
c
ip
htn−1ksn

gks1gks2 . . . gksn−1gksndgjq , (5.3.25)

the fact that V1 = G/L0 is a symmetric space requires that p = q +
s1 + s2 . . .+ sn (mod2). Thus, after the rescaling (5.2.8), only even (odd)
powers of λ, from λ0 (λ) up to the closest (lower or equal to) n+ 1 even
(odd) power λn+1, contribute to ωi0(g, λ) (ωi1(g, λ)).

Structure of G(N0, N1) in the symmetric coset case

Inserting the power series above into the MC equations (5.3.21) and
(5.3.22), we arrive at the equalities:

dωk0,2σ = −1
2
ck0i0j0

σ∑
ρ=0

ωi0,2ρ ∧ ωj0,2(σ−ρ)

−1
2
ck0i1j1

σ∑
ρ=1

ωi1,2ρ−1 ∧ ωj1,2(σ−ρ)+1 , (5.3.26)

dωk1,2σ+1 = −ck1i0j1
σ∑
ρ=0

ωi0,2ρ ∧ ωj1,2(σ−ρ)+1 , (5.3.27)

where the expansion orders α are either α = 2σ or α = 2σ + 1. From
them it follows that the vector spaces generated by

{ωi0,0, ωi0,2, ωi0,4, . . . , ωi0,N0 ;ωi1,1, ωi1,3, . . . , ωi1,N1} , (5.3.28)
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where N0 ≥ 0 (and even) and N1 ≥ 1 (and odd), will determine a Lie
algebra when

N1 = N0 − 1 , (5.3.29)
or N1 = N0 + 1 . (5.3.30)

Notice that we have a new type of solutions (5.3.29) with respect to
the preceding case (equations (5.3.17), (5.3.18)), and that the previous
solution N0 = N1 is not allowed now since N0 (N1) is necessarily even
(odd). Then, for the symmetric case, the algebras G(N0, N1) may also be
denoted G(N), where N = max{N0, N1}, and are obtained at each order
by adding alternatively copies of V0 and V1. Its structure constants are
given by

Ckα,α
iβ ,β jγ ,γ

=

{
0, if β + γ 6= α

ckα
iβjγ

, if β + γ = α ; α, β, γ = α, β, γ (mod2) . (5.3.31)

Let us write explicitly the MC equations for the first algebras ob-
tained. If we allow for N1 = 0, we get the trivial case

G(0, 0) = G(0):

dωk0,0 = −1
2
ck0i0j0ω

i0,0 ∧ ωj0,0 (5.3.32)

i.e., G(0, 0) is the subalgebra L0 of the original algebra G.
G(0, 1) = G(1):

dωk0,0 = −1
2
ck0i0j0ω

i0,0 ∧ ωj0,0 , (5.3.33)

dωk1,1 = −ck1i0j1ω
i0,0 ∧ ωj1,1 , (5.3.34)

so that G(0, 1) is again the IW contraction of G with respect to L0.
G(2, 1) = G(2):

dωk0,0=−1
2
ck0i0j0ω

i0,0 ∧ ωj0,0 , (5.3.35)

dωk1,1=−ck1i0j1ω
i0,0 ∧ ωj1,1 , (5.3.36)

dωk0,2=−ck0i0j0ω
i0,0 ∧ ωj0,2 − 1

2
ck0i1j1ω

i1,1 ∧ ωj1,1 . (5.3.37)

The structure of the Lie algebras G(N) can be summarized as follows.
The Lie algebra G(0) = L0 is a subalgebra of G(N) for all N ≥ 0. Wα in
(5.2.28) reduces here to

Wα =
{
V0,α , if α even
V1,α , if α odd .

(5.3.38)
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For N ≥ 1, WN is an abelian ideal WN of G(N) and G(N)/WN = G(N−
1), i.e., G(N) is an extension of G(N − 1) by WN . Further, for N even
and L0 abelian, the extension G(N) of G(N − 1) by WN is central [4].
The proof of the first part of the claim proceeds as in section 5.2.2. For
the second part, notice that, for N ≥ 1, the only thing that prevents
the abelian ideal WN from being central is its failure to commute with
W0 ≈ L0, since [Wα, WN ] = 0 for α = 1, 2, . . . , N . But for N even,
Ck0,Ni0,0 j0,N

= ck0i0j0 , which vanish for L0 abelian. Thus WN becomes a
central ideal, and G(N) a central extension of G(N − 1) by WN .

5.4 Rescaling with several different powers

Let us extend now the above results to the case where the group param-
eters are multiplied by arbitrary integer powers of λ. Let G be split into
a sum of n+ 1 vector subspaces,

G = V0 ⊕ V1 ⊕ · · · ⊕ Vn =
n⊕
0

Vp , (5.4.1)

and let the rescaling

gi0 → gi0 , gi1 → λgi1 , . . . , gin → λngin

(gip → λpgip , p = 0, . . . , n) (5.4.2)

of the group coordinates gip be subordinated to the splitting (5.4.1) in an
obvious way. We found in the previous section (p = 0, 1) that, when the
rescaling (5.2.8) was performed, having V0 as a subalgebra L0 proved to be
convenient (though not necessary) since it led to more types of solutions
((5.3.17)-(5.3.18),cf. (5.2.19)). Furthermore, the first order algebra G(0, 1)
for that case was found to be the simple IW contraction of G with respect
to L0. By the same reason, we will consider here conditions on G that
will lead to a richer new algebras structure, including the generalized IW
contraction of G in the sense [165] of Weimar-Woods (W-W). In terms
of the structure constants of G we will then require that they fulfil the
condition (5.1.2), namely,

cks
ipjq

= 0 if s > p+ q (5.4.3)

i.e., that the Lie bracket of elements in Vp, Vq is in ⊕sVs for s ≤ p + q.
This condition leads, through (5.2.5), to a power series expansion of the
one-forms ωip in V ∗

p that, for each p = 0, 1, . . . , n, starts precisely with
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the power λp,

ωi0(g, λ) =
∞∑
α=0

λαωi0,α(g) = ωi0,0(g) + λωi0,1(g) + λ2ωi0,2(g) + . . . ,

(5.4.4)

ωi1(g, λ) =
∞∑
α=1

λαωi1,α(g) = λωi1,1(g) + λ2ωi1,2(g) + λ3ωi1,3(g) + . . . ,

(5.4.5)
...

ωin(g, λ) =
∞∑
α=n

λαωin,α(g) = λnωin,n(g) + λn+1ωin,n+1(g) + . . . .

(5.4.6)

We may extend all the sums so that they begin at α = 0 by setting
ωip,α ≡ 0 when α < p. Then, inserting the expansions of ωip,α in the MC
equations and using (B.1) we get (5.2.14) for p, q, s = 0, 1, . . . , n. If we
now introduce the notation ωip,αp with different ranges for the expansion
orders, αp = p, p+1, . . . Np for each p, we see that the MC equations take
the form

dωks,αs = −1
2
Cks,αs

ip,βp jq ,γq
ωip,βp ∧ ωjq ,γq , (5.4.7)

where

Cks,αs

ip,βp jq ,γq
=
{

0, if βp + γq 6= αs
cks
ipjq

, if βp + γq = αs

p, q, s = 0, 1, . . . , n
ip,q,s = 1, 2, . . . ,dimVp,q,s
αp, βp, γp = p, p+ 1, . . . , Np

(5.4.8)

and the cks
ipjq

satisfy (5.4.3). To find now the ωip,βp ’s that enter dωks,αs ,
s = 0, 1, . . . , n, we need an explicit expression for it. This is found in
appendix B, equations (B.7)-(B.10). From them we read that dωks,αs ,
s = 0, 1, . . . , n, is expressed in terms of products of the forms ωip,βp in
the following table:

αs ≥ s ωi0,β0 ωi1,β1 ωi2,β2 · · · ωin,βn

dωk0,α0 β0 ≤ α0 β1 ≤ α0 β2 ≤ α0 · · · βn ≤ α0

dωk1,α1 β0 ≤ α1 − 1 β1 ≤ α1 β2 ≤ α1 · · · βn ≤ α1

dωk2,α2 β0 ≤ α2 − 2 β1 ≤ α2 − 1 β2 ≤ α2 · · · βn ≤ α2

...
...

...
...

...
dωkn,αn β0 ≤ αn − n β1 ≤ αn − n + 1 β2 ≤ αn − n + 2 · · · βn ≤ αn

Table 5.3. Types and orders of the forms ωip,βp needed to express dωks,αs
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Now let V ∗(N0, . . . , Nn) be the vector space generated by

{ωi0,α0 ;ωi1,α1 ; . . . ;ωin,αn} =
= {ωi0,0, ωi0,1,N0+1. . . , ωi0,N0 ; ωi1,1, N1. . ., ωi1,N1 ; . . . ; ωin,n,Nn−n+1. . . , ωin,Nn} .

(5.4.9)

These one-forms determine a Lie algebra G(N0, N1, . . . , Nn), of dimension

dimG(N0, . . . , Nn) =
n∑
p=0

(Np − p+ 1) dimVp . (5.4.10)

More precisely, let G = V0 ⊕ V1 ⊕ · · · ⊕ Vn be a splitting of G into n + 1
subspaces and let G fulfil the Weimar-Woods contraction condition (5.4.3)
subordinated to this splitting, cks

ipjq
= 0 if s > p+ q. The one-form coeffi-

cients ωip,αp of (5.4.9) resulting from the expansion of the Maurer-Cartan
forms ωip in which gip → λpgip , p = 0, . . . , n (equation (5.4.2)), deter-
mine Lie algebras G(N0, N1, . . . , Nn) of dimension (5.4.10) and structure
constants

Cks,αs

ip,βp jq ,γq
=
{

0, if βp + γq 6= αs
cks
ipjq

, if βp + γq = αs

p, q, s = 0, 1, . . . , n
ip,q,s = 1, 2, . . . ,dimVp,q,s
αp, βp, γp = p, p+ 1, . . . , Np ,

(equation(5.4.8)) if Nq = Nq+1 or Nq = Nq+1 − 1 (q = 0, 1, . . . , n − 1)
in (N0, N1, . . . , Nn). In particular, the Np = p solution determines the
algebra G(0, 1, . . . , n), which is the generalized İnönü-Wigner contraction
of G [4].

Let us prove this statement. To enforce the closure under d of the
exterior algebra generated by the one-forms in (5.4.9) and to find the
conditions that the various Np must meet, we require, as in section 5.3,
that all the forms ωip,βp present in dωks,αs are already in (5.4.9). Looking
at equations (B.7)-(B.10) and at table 5.3 above, we find the restrictions

αs ≥ s ωi0,β0 ωi1,β1 ωi2,β2 · · · ωin,βn

dωk0,α0 N0 ≥ N0 N1 ≥ N0 N2 ≥ N0 · · · Nn ≥ N0

dωk1,α1 N0 ≥ N1 − 1 N1 ≥ N1 N2 ≥ N1 · · · Nn ≥ N1

dωk2,α2 N0 ≥ N2 − 2 N1 ≥ N2 − 1 N2 ≥ N2 · · · Nn ≥ N2

...
...

...
...

...
dωkn,αn N0 ≥ Nn − n N1 ≥ Nn − n + 1 N2 ≥ Nn − n + 2 · · · Nn ≥ Nn

Table 5.4. Closure conditions on the number Np of one-forms ωip,αp

It then follows that there are 2n types of solutions4 characterized by
(N0, N1, . . . , Nn), Np ≥ p, p = 0, 1, . . . , n, where

4 This number may be found, e.g. for n = 3, by writing symbolically the solution
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Nq+1 = Nq or Nq+1 = Nq + 1 (q = 0, 1, . . . , n− 1) . (5.4.11)

The Jacobi identities for G(N0, . . . , Nn),

Cks,αs

ip,βp [jq ,γq
C
ip,βp

lt,ρt mu,σu] = 0 =

Cks,αs

ip,βp jq ,γq
C
ip,βp

lt,ρt mu,σu
+ Cks,αs

ip,βp mu,σu
C
ip,βp

jq ,γq lt,ρt
+ Cks,αs

ip,βp lt,ρt
C
ip,βp

mu,σu jq ,γq
,

(5.4.12)

are again satisfied through the ones for G. This is a consequence of the
fact that, for G, the exterior derivative of the λ-expansion of the MC
equations is the λ-expansion of their exterior derivative, but it may also
be seen directly.

Indeed, we only need to check that (5.4.12) reduces to the Jacobi
identities for G when the order in the upper index is the sum of those
in the lower ones since the C’s are zero otherwise. First we see that,
when αs = γq + ρt + σu, all three terms in the r.h.s. of (5.4.12) give non-
zero contributions. This is so because the range of βp is only limited by
βp ≤ αs, which holds when βp = ρt + σu, βp = γq + ρt and βp = σu + γq.
Secondly, and since βp ≥ p, we also need that the terms in the ip sum
that are suppressed in (5.4.12) when p > βp be also absent in the Jacobi
identities for G so that (5.4.12) does reduce to the Jacobi identities for
G. Consider e.g., the first term in the r.h.s. of (5.4.12). If p > βp, then
p > ρt + σu and hence p > t + u. Thus, by the W-W condition (5.4.3),
this term will not contribute to the Jacobi identities for G and no sum
over the subspace Vp index ip will be lost as a result. The argument also
applies to the other two terms for their corresponding βp’s.

A particular solution to (5.4.11) is obtained by setting Np = p, p =
0, 1, . . . , n, which defines G(0, 1, . . . , n), with dimG(0, 1, . . . , n) = dimG =
r (from (5.4.10)). Since in this case αp takes only one value (αp = Np = p)
for each p = 0, 1, . . . , n, we may drop this label. Then, the structure
constants (5.4.8) for G(0, 1, . . . , n) read

Cks
ip jq

=
{

0, if p+ q 6= s

cks
ipjq

, if p+ q = s
p = 0, 1, . . . , n
ip,q,s = 1, 2, . . . ,dimVp,q,s ,

(5.4.13)

types in (5.4.11) as [0,0,0,0] for N0 = N1 = N2 = N3; [0,0,0,1] for N0 = N1 =
N2, N3 = N2 +1; [0,0,1,0] for N0 = N1, N2 = N1 +1 = N3; [0,0,1,1] for N0 = N1, N2 =
N1 + 1, N3 = N2 + 1; [0,1,0,0] for N0, N1 = N0 + 1 = N2 = N3; [0,1,0,1] for N0, N1 =
N0+1 = N2, N3 = N2+1; [0,1,1,0] for N0, N1 = N0+1, N2 = N1+1 = N3 and [0,1,1,1]
for N0, N1 = N0 + 1, N2 = N1 + 1, N3 = N2 + 1. This notation numbers the solutions
in base 2; since [0,1,1,1] corresponds to 23 − 1 we see, adding [0,0,0,0], that there are
23 ways of cutting the expansions that determine Lie algebras G(N0, N1, N2, N3), and
2n in the general G(N0, N1, . . . , Nn) case.
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which shows that G(0, 1, . . . , n) is the generalized IW contraction of G, in
the sense of [165], subordinated to the splitting (5.4.1). Of course, when
n = 1 (p = 0, 1), V = V0 ⊕ V1, L0 is a subalgebra and equations (5.4.11)
((5.4.13)) reduce to (5.3.17) or (5.3.18) ((5.3.19)), what concludes the
proof of the statement.

For instance, for the case G = V0 ⊕ V1 ⊕ V2 there are four types of
algebras5 G(N0, N1, N2)

N0 = N1 = N2 (5.4.14)
N0 = N1 = N2 − 1 , (5.4.15)
N0 = N1 − 1 = N2 − 1 , (5.4.16)
N0 = N1 − 1 = N2 − 2 . (5.4.17)

Since in the above theorem αp ≥ p for all p = 0, . . . , n was assumed, all
types of one-forms ωip,αp with indices ip in all subspaces Vp were present
in the basis of G(N0, N1, . . . , Nn). However, one may consider keeping
terms in the expansion up to a certain order l, l < n in which case due to
(5.4.6), the forms ωip,αp with p > l will not appear. Those with p ≤ l will
determine the vector space V ∗(N0, N1, . . . , Nl) where Nl is the highest
order l and hence αl takes only the value Nl = l = αl. This vector space,
of dimension

dimV ∗(N0, . . . , Nl) =
l∑

p=0

(Np − p+ 1) dimVp , (5.4.18)

determines a Lie algebra G(N0, N1, . . . , Nl), as claims the following state-
ment.

Let G = ⊕n0Vp, satisfy the Weimar-Woods conditions (5.4.3). Then,
up to a certain order Nl = l < n, the one-forms

{ωi0,α0 ;ωi1,α1 ; . . . ;ωil,αl} =
= {ωi0,0, ωi0,1,N0+1. . . , ωi0,N0 ; ωi1,1, N1. . ., ωi1,N1 ; . . . ;ωil,Nl} , (5.4.19)

where Nl = l = αl, determine a Lie algebra G(N0, N1, . . . Nl) of dimension
(5.4.18) and structure constants given by

Cks,αs

ip,βp jq ,γq
=
{

0, if βp + γq 6= αs
cks
ipjq

,if βp + γq = αs

p, q, s = 0, 1, . . . , l
ip,q,s = 1, 2, . . . ,dimVp,q,s
αp, βp, γp = p, p+ 1, . . . , Np ≤ l,

(5.4.20)

5With the notation of footnote 4, these correspond, respectively, to [0,0,0], [0,0,1],
[0,1,0] and [0,1,1].
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if Nq = Nq+1 or Nq = Nq+1 − 1, (q = 0, 1, . . . , l − 1) [4].
To see that this is indeed the case, notice that the restriction αp ≤

Nl = l < n on the order αp of the one-forms ωip,αp implies, due to
(5.4.6), that Vl is monodimensional and that ωil,l is the last form entering
(5.4.19). Then, looking at the closure conditions in table 5.4, we can
restrict ourselves to the box delimited by ωip,βp , dωks,αs with p, s ≤ l.
This box will give spaces V ∗(N0, N1, . . . , Nl), where Nq = Nq+1 or Nq =
Nq+1−1 (q = 0, 1, . . . , l−1), and these spaces will determine Lie algebras
if the Jacobi identities for (5.4.20)

Cks,αs

ip,βp [jq ,γq
C
ip,βp

lt,ρt mu,σu] = 0 , ip,q,s = 1, 2, . . . ,dimVp,q,s (5.4.21)

i.e., if cks

ip[jq
c
ip
ltmu] = 0 , s, q, t, u ≤ l, is satisfied when αs = γq + ρt + σu

above. Note that this is not the Jacobi identities for G since ip now runs
over the basis of ⊕l0Vp ⊂ G only since p ≤ l, and we are thus removing
the values corresponding to the basis of ⊕nl+1Vp. However, if p > l it is
also e.g. p > βp = ρt + σu ≥ t + u in which case ciplt mu

= 0 by (5.4.3),
what concludes the proof.

Notice that, since the structure constants (5.4.20) are obtained from
those of G by restricting the ip indices to be in the subspaces Vp, p ≤ l,
G(N0, N1, . . . , Nl) is not a subalgebra of G(N0, N1, . . . , Nn).

5.5 Superalgebra expansions

The above general procedure of generating Lie algebras from a given
one does not rely on the antisymmetry of the structure constants of the
original Lie algebra. Hence, with the appropriate changes to account for
the grading, the method is applicable when G is a Lie superalgebra, a
case which we consider explicitly in this section.

Let G be a supergroup and G its superalgebra. It is natural to consider
a splitting of G into the sum of three subspaces G = V0⊕V1⊕V2, V1 being
the fermionic part of G and V0⊕V2 the bosonic part, so that the notation
reflects the Z2-grading of G. The even space is always a subalgebra of G
but it may be convenient to consider it further split into the sum V0⊕V2

to allow for the case in which a subspace (V0) of the bosonic space is itself
a subalgebra L0.

Notice that, since V0 is a Lie algebra L0, the Z2-graduation of G
implies that the splitting G = V0⊕V1⊕V2 satisfies the W-W contraction
conditions (5.4.3). Indeed, let cks

ipjq
(ip,q,s = 1, . . . ,dimVp,q,s, p, q, s =

0, 1, 2) be the structure constants of G. The Z2-graduation of G obviously
implies

ck1i0j0 = ck2i0j1 = 0 , (5.5.1)



90 5 Interlude: Lie algebra expansions

ck0i0j1 = ck1i1j1 = ck1i0j2 = ck0i2j1 = ck2i2j1 = ck1i2j2 = 0 . (5.5.2)

The first set of restrictions (5.5.1), together with the assumed subalgebra
condition for V0 (which, in addition, requires ck2i0j0 = 0), are indeed the
W-W conditions (5.4.3) for G; note that these conditions alone allow for
ck0i1j1 6= 0, and ck2i1j1 6= 0 (and for ck1i1j1 6= 0, although here ck1i1j1 = 0 due to
the Z2-grading).

To apply now the above general procedure one must rescale the group
parameters. The rescaling (5.4.2) for V = V0 ⊕ V1 ⊕ V2 takes the form

gi0 → gi0 , gi1 → λgi1 , gi2 → λ2gi2 . (5.5.3)

The present Z2-graded case fits into the preceding general discussion for
n = 2, but with additional restrictions besides the W-W ones that fol-
low from the Z2-grading. This situation is described by the following
statement.

Let G = V0⊕V1⊕V2 be a Lie superalgebra, V1 its odd part, and V0⊕V2

the even one. Let further V0 be a subalgebra L0. As a result, G satisfies
the W-W conditions (5.4.3) and, further, V1 is a symmetric coset. Then,
the coefficients of the expansion of the Maurer-Cartan forms of G rescaled
by (5.5.3) determine Lie superalgebras G(N0, N1, N2), Np ≥ p, p = 0, 1, 2,
of dimension

dimG(N0, N1, N2) =
[
N0 + 2

2

]
dimV0+

[
N1 + 1

2

]
dimV1+

[
N2

2

]
dimV2 ,

(5.5.4)

and structure constants

Cks,αs

ip,βp jq ,γq
=
{

0, if βp + γq 6= αs
cks
ipjq

, if βp + γq = αs

p, q, s = 0, 1, 2
ip,q,s = 1, 2, . . . ,dimVp,q,s ,

(5.5.5)

and αp, βp, γp = p, p+2, . . . , Np−2, Np, where [ ] denotes integer part and
the N0, N2 (even) and N1 (odd) integers satisfy one of the three conditions
below

N0 = N1 + 1 = N2 (5.5.6)
N0 = N1 − 1 = N2 , (5.5.7)
N0 = N1 − 1 = N2 − 2 . (5.5.8)

In particular, the superalgebra G(0, 1, 2) (equation (5.5.8) for N0 = 0) is
the generalized İnönü-Wigner contraction of G [4].
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Indeed, since V1 is a symmetric coset the rescaling (5.5.3) leads to
an even (odd) power series in λ for the one-forms ωi0(g, λ) and ωi2(g, λ)
(ωi1(g, λ)), as in Sec. 5.3.1 (equations (5.3.23)). Thus, the conditions
N0, N2 even, N1 odd, have to be added to those that follow from the
closure inequalities in table 5.4. This gives the conditions

N0 + 1 ≥ N1 ≥ N0 − 1 (5.5.9)
N1 + 1 ≥ N2 ≥ N1 − 1 (5.5.10)
N0 + 2 ≥ N2 ≥ N0 , (5.5.11)

from which equations (5.5.6)–(5.5.8) follow.

5.6 The M Theory superalgebra as an expansion of osp(1|32)

Let us work out an explicit example to illustrate the expansion method.
The M Theory superalgebra (see section 2.1 of chapter 2 and references
therein) is sometimes regarded (see e.g. [59]) as an IW contraction of the
superalgebra osp(1|32). That is indeed the case if the 55 Lorentz genera-
tors are excluded, otherwise there are not enough generators in osp(1|32)
to give the M-algebra by the dimension-preserving method of contrac-
tion (see section 5.1). In other words, the M Theory superalgebra, when
its Lorentz automorphism generators are included, E(528|32) o so(1, 10),
cannot be obtained as a contraction of osp(1|32). Let us show that, in
contrast, the former is an expansion of the later [4].

The orthosymplectic superalgebra is defined by the 528 bosonic MC
forms ραβ = ρβα of the symplectic algebra sp(32) and by the 32 fermionic
MC forms να satisfying the MC equations

dραβ = −iραγ ∧ ργβ − iνα ∧ νβ

dνα = −iραβ ∧ νβ (α, β = 1, . . . , 32) . (5.6.1)

The spinor indices are raised and lowered by the 32× 32 symplectic form
Cαβ , which can be interpreted, as in section 2.1, as the D = 11 charge
conjugation matrix. It is useful to use Dirac matrices to decompose ραβ

as

ραβ = 1
32

(
ρaΓa − i

2ρ
abΓab + 1

5!ρ
a1...a5Γa1...a5

)αβ
. (5.6.2)

In terms of the one-forms ρa, ρab, ρa1...a5 entering the decomposition
(5.6.2) of ραβ the MC equations (5.6.1) of osp(1|32) can be rewritten as

dρa = − 1
16ρn ∧ ρ

b
a + 1

32(5!)2
εb1...b10aρb1...b5 ∧ ρb6...b10 − να(Γa)αβ ∧ νβ ,
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dρab = − 1
16ea ∧ eb −

1
16ρac ∧ ρ

c
b − 1

16(4!)ρac1...c4 ∧ ρ
c4...c1

b

−να(Γab)αβ ∧ νβ ,
dρa1...a5 = 1

16(5!)ε
bc1...c5

a1...a5ρb ∧ ρc1...c5 + 5
16ρ

b
[a1...a4

∧ ρa5]b

+ 1
4(4!)2

εb1...b6a1...a5ρb1b2b3c1c2 ∧ ρc2c1b4b5b6 − να(Γa1...a5)αβ ∧ νβ ,

dνα = 1
32

(
ρaΓa − i

2ρ
abΓab + 1

5!ρ
a1...a5Γa1...a5

)α
β ∧ νβ . (5.6.3)

This form of the MC equations of osp(1|32) suggests a splitting of the
underlying vector space into three subspaces osp(1|32) = V0 ⊕ V1 ⊕ V2,
where V0 is the space generated by the 55 MC forms ρab = ραβ(γab)αβ of
the Lorentz subalgebra of osp(1|32), V1 the fermionic subspace generated
by να, and V2 the space generated by the remaining 11+462 bosonic gen-
erators ρa = ραβ(Γa)αβ , ρa1...a5 = ραβ(Γa1...a5)αβ . Moreover, this splitting
fulfils the general conditions discussed for superalgebras in section 5.5. It
then follows that, after the redefinition (5.5.3) of the group parameters
of osp(1|32), the expansions of the forms in V0 contain even powers of λ
starting from λ0, that those of the forms in V1 include only odd powers
in λ starting from λ1, and that those of V2 contain even orders starting
with λ2, i.e.,

V0 : ρab =
∞∑
n=0

λ2nρab,2n = ρab,0 + λ2ρab,2 + · · · ; (5.6.4)

V1 : να =
∞∑
n=0

λ2n+1να,2n+1 = λνα,1 + λ3να,3 + · · · ; (5.6.5)

V2 :

 ρa =
∑∞

n=1 λ
2nρa,2n = λ2ρa,2 + · · · ,

ρa1...a5 =
∑∞

n=1 λ
2nρa1...a5,2n = λ2ρa1...a5,2 + · · · .

(5.6.6)

The restriction (5.5.6) allow to cut the series (5.6.4)–(5.6.6) at orders
N0 = 2, N1 = 1, N2 = 2, respectively, to obtain the MC equations of the
expansion osp(1|32)(2, 1, 2):

dρab,0 = − 1
16ρ

ac,0 ∧ ρcb ,0 ,
dρa ,2 = − 1

16ρ
b,2 ∧ ρba,0 − iνα,1 ∧ νβ,1Γaαβ ,

dρab,2 = − 1
16

(
ρac,0 ∧ ρcb,2 + ρac,2 ∧ ρcb,0

)
− να,1 ∧ νβ,1Γabαβ ,

dρa1...a5 ,2 = 5
16ρ

b[a1...a4| ,2 ∧ ρb|a5],0 − iνα,1 ∧ νβ,1Γa1...a5
αβ ,

dνα,1 = − 1
64ν

β,1 ∧ ρab,0Γabβα , (5.6.7)

Now, setting ρab,0 ≡ −16σab and identifying ρa,2 ≡ Πa, ρab,2 ≡ Πab,
ρa1···a5,2 ≡ Πa1···a5 and να,1 ≡ πα, the set of equations (5.6.7) coincides
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with the MC equations of the M Theory superalgebra containing the
Lorentz group E(528|32) o so(1, 10) (equations (2.1.15) when the Lorentz
part is restored) [4]. As a check, notice that the dimensional counting is
correct since, by equation (5.5.4),

dim osp(1|32)(2, 1, 2)=2 · 55 + 32 + 473 = 583 + 32 =

=dim
(
E(528|32) o so(1, 10)

)
. (5.6.8)

In conclusion, from the supergroup point of view [4],

Σ(528|32) o SO(1, 10) ≈ OSp(1|32)(2, 1, 2) . (5.6.9)

This concludes this mathematical parenthesis, and we now return to
D = 11 supergravity. In chapter 4 we were able to write down a world-
volume action for a preonic brane in a D’Auria and Fré supergravity
background. This formulation of supergravity is closely related to the
notions of enlarged supersymmetry algebras and superspaces. In chap-
ter 7, a worldvolume action for a string describing the excitations of two
preons will be formulated, in fact, in an enlarged superspace. In the next
chapter, D’Auria-Fré supergravity will be revisited, and the expansion
method for Lie algebras will be find useful to describe the origin of the
underlying symmetry algebras.
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6

The underlying symmetry
of D = 11 supergravity

The problem of the hidden or underlying geometry of D = 11 supergrav-
ity was raised already in the pioneering paper by Cremmer-Julia-Scherk
(CJS) [27] (see also [172]), where the possible relevance of OSp(1|32) was
suggested. It was specially considered by D’Auria and Fré [92], where the
search for the local supergroup of D = 11 supergravity was formulated
as a search for a composite structure of its three-form A3. Indeed, while
the graviton and gravitino are given by one-form fields ea = dxµeaµ(x),
ψα = dxµψαµ(x) and can be considered, together with the spin connection
ωab = dxµωabµ (x), the gauge fields for the standard superPoincaré group
[173], the Aµ1µ2µ3(x) abelian gauge field is not associated with a symme-
try generator and it rather corresponds to a three-form A3. However, one
may ask whether it is possible to introduce a set of additional one-form
fields such that they, together with ea and ψα, can be used to express
A3 in terms of products of one-forms. If so, the ‘old’ and ‘new’ one-form
fields may be considered as gauge fields of a larger supergroup, and all
the CJS supergravity fields can then be treated as gauge fields, with A3

expressed in terms of them. This is what is meant here by the underly-
ing gauge group structure of D = 11 supergravity: it is hidden when the
standard D = 11 supergravity multiplet is considered, and manifest when
A3 becomes a composite of the one-form gauge fields associated with the
extended group. The solution to this problem is equivalent to the trivial-
ization of a standardD = 11 supersymmetry algebra four-cocycle (related
to dA3) on an enlarged superalgebra.

The notion of free differential algebras (FDAs) is a natural extension
of that of Lie algebras, particularly suitable to account for the p-form
fields present in supergravity theories. The notion of FDA and their
construction as a process governed by cohomology will be reviewed in
section 6.1. All this is put in its due context in section 6.2, where the
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FDA of D = 11 supergravity is presented, and dA3 seen to be related to a
non-trivial supersymmetry algebra cocycle. We then apply these ideas to
discuss the trivialization of FDAs (the process of obtaining Lie algebras
from FDAs) and its implications for the physics they may describe. To
that end, a family of extensions Ẽ(s) of the supersymmetry superalgebra
is described in section 6.3 and its relation to osp(1|32) discussed in section
6.4. In section 6.5, the cocycle associated to dA3 is shown to be trivialized
by any member of the family, except for s 6= 0 [6, 7], extending previous
results [92]. Section 6.6 analyzes the possible dynamical consequences of
a composite structure of A3 and shows the presence of additional gauge
symmetries in the action for a composite A3. Section 6.7 concludes this
chapter with some remarks about a conjectured fields/enlarged super-
space coordinates correspondence. The main results of this chapter can
be found in references [6, 7].

6.1 Free differential algebras, Lie algebras and cohomology

The presence of forms of orders higher than one in the supergravity la-
grangians makes it especially convenient to resort to free differential al-
gebras in order to discuss the geometry associated to those theories. In
fact, the discussion of this section about the relation of free differential al-
gebras and Lie algebras can be straightforwardly extended to account for
their superalgebra counterparts, the structures of interest in supergravity
theories.

A free differential algebra (FDA) [96, 92, 18, 97] (termed Cartan in-
tegrable system in [92]) is an exterior algebra with constant coefficients,
generated by a set of forms (not necessarily of the same rank) closed un-
der the action of the exterior differential d. The dual formulation of a Lie
algebra G, in terms of Maurer-Cartan (MC) one-forms1 πi left-invariant
on the corresponding group manifold, provides the simplest example of
an FDA. As an FDA, G is to be regarded as generated by a collection
of one-forms πi, i = 1, . . . ,dimG, and two-forms dπi, related through the
MC equations of G (equation (5.2.1)) and closed under d due to the Jacobi
identity.

A more interesting application of FDAs is the description of the local
symmetry of a theory through the gauging of Lie algebras. The gauge
FDA associated to the Lie algebra G is obtained by replacing the MC one-
forms πi of G by their gauge field or soft (see [18]) one-form counterparts
Ai, and by introducing two-form curvatures satisfying a generalization of

1In chapter 5, the MC one-forms of the Lie algebra G were denoted as ωi. Here, the
notation πi is preferred to reserve ω for non-trivial Chevalley-Eilenberg cocycles.
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the MC equations of G (see equation (5.2.1)),

F k = dAk + 1
2c
k
ijA

i ∧Aj . (6.1.1)

The curvatures then satisfy the consistency conditions expressed by the
Bianchi identities

dF k = ckijF
i ∧Aj . (6.1.2)

The structure equations (6.1.1) and the Bianchi identities (6.1.2) then
define the gauge FDA associated with the Lie algebra G. Dynamically,
the relevance of the FDA constructed this way from the Lie algebra G is
reflected by the fact that the lagrangian of a theory with local symmetry
G is built up from the gauge potentials Ai and their curvatures F i.

An FDA is called minimal [96] when the differential of any p-form in
the FDA is expressible only in terms of sums of wedge products of q-forms
in the FDA, with q ≤ p. The FDA is contractible if it is generated by
pairs of forms πp, πp+1 such that dπp = πp+1, dπp+1 = 0. According
to Sullivan’s first theorem [96], which is the counterpart for FDAs of the
Lévi-Mal’čev theorem (see [40]) for Lie algebras, the most general FDA
is the semidirect sum of a contractible with a minimal one. For instance,
regarded as an FDA, a Lie algebra G is minimal, whereas the FDA (6.1.1),
(6.1.2) is contractible. If the ‘flat limit’ of the contractible algebra (6.1.1),
(6.1.2) is considered, in which all the curvatures are set to zero, F i = 0,
the gauge potentials Ai turn out to satisfy the same equations than πi

(i.e., (6.1.1) reduces to (5.2.1)), and the minimal algebra, which in this
case coincides with the Lie algebra G, is recovered.

The minimal FDA does not need to be a Lie algebra, though. Indeed,
it is the typical case in supergravity theories that their lagrangian contains
not only one-forms and their curvature two-forms, but also2 p-forms Aip,
p > 1, and their curvature (p + 1)-forms F ip+1. This is precisely the
case of D = 11 supergravity, the lagrangian (2.2.5) of which involves not
only the one-forms ea and ψα and their curvatures, but also the three-
form A3 and, in the first order approach, an auxiliary four-form F4 which
is related, on-shell, to its curvature. For notational analogy with the
gauging of Lie algebras, it is convenient to introduce the rigid p-form
counterparts πip of the soft [18] p-forms Aip, such that, in the ‘flat limit’ in
which all the curvatures are set to zero, F ip+1 = 0, the forms Aip satisfy the
same structure equations than πip. The FDA thus reduces to the minimal
FDA, which is nevertheless not a Lie algebra since it contains forms πip
of rank higher than one. And yet, from a physical point of view, despite

2Here, the superindex i is again used to label the forms, and a subindex showing
their rank is added.
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the unclear relation in this case of the minimal FDA with a Lie algebra,
a lagrangian built up from Aip and F ip+1 possesses a local symmetry: that
is the case in supergravity theories, which are the field theories of local
supersymmetry.

Consider a Lie algebra G defined through the MC, left invariant, one-
forms πi1 on the group manifold G of G satisfying the MC equations
(5.2.1). Sullivan’s second theorem [96] determines the structure of minimal
FDAs, built by using the MC forms πi1, through an iterative process
[96, 18] (see also [174]). First, the MC one-forms πi1 of any minimal
FDA close into the original Lie algebra G. The structure equations for
additional p-forms πip of the minimal FDA can be written as

dπip = ωip+1(π
j
1) , (6.1.3)

where ωip+1 are nontrivial Chevalley-Eilenberg (CE) [175, 40] (p + 1)-
cocycles on the Lie algebra G. In other words, for each i, ωip+1 is a closed
(p + 1)-form built up as a sum of exterior products (i.e., as an exterior
polynomial) of the MC one-forms πi1 (and, thus, invariant under G) which
is not the differential of a p-form invariant under G, namely, πip is not an
(exterior) polynomial in πi1. The process can be iterated by adding new
q-forms π′iq such that their differentials are non-trivial (q + 1)-cocycles
depending on (πi1, π

j
p), then on (πi1, π

j
p, π′iq ), and so on.

In general, the non-trivial character of the cocycles ωip+1 defining a
minimal FDA can be interpreted by saying that there are not enough
MC one-forms πi1 in the Lie algebra G to write the p-forms πip in equation
(6.1.3) in terms of them. But it may happen that the introduction of
an algebra G̃ larger than G allows for the G-cocycles to be written in
terms of the new MC one-forms of G̃, so that they are (left-)invariant
under the corresponding group G̃. Bearing this in mind, the question of
whether there exists a Lie algebra describing the same local symmetry
than a given FDA can be put in precise mathematical terms, at least
for minimal FDAs: if there exists an extension3 G̃ of the Lie algebra G
for which the cocycles ωip+1 become trivial, i.e., such that for each i, the
p-forms πip (related to ωip+1 through equation (6.1.3)) can be expressed
as (exterior) polynomials in the MC one-forms of G̃, then the FDA can
be ‘trivialized’, by writing its forms in terms of the MC forms of the Lie
algebra G̃. In a supergravity context, it is in this sense that G̃ can be said
to be the underlying gauge symmetry of the theory under consideration.

Notice that the trivialization problem might have either no solution
at all (see [97] for an example) or more than one solution: there might

3See section 5.1 of the previous chapter and references therein.
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exist more than one enlarged algebra G̃ that trivializes the cocycles defin-
ing the minimal FDA. The later is the case for D = 11 supergravity,
for which two superalgebras were already found in [92] to account for its
underlying symmetry. It will be shown in section 6.5 that, in fact, not
only the two algebras of [92] solve the problem, but that there exists a
whole one-parameter family of Lie superalgebras describing the underly-
ing symmetry of D = 11 supergravity. First, we shall introduce the FDA
corresponding to D = 11 supergravity.

6.2 The D = 11 supergravity FDA

Let us first consider, momentarily, the case of four-dimensional simple su-
pergravity, where the only fields involved are the graviton and gravitino
(in the N = 1, D = 4 supergravity multiplet) and the Lorentz connection.
These can actually be considered as the gauge fields of simple D = 4 su-
pergravity [173] and can be described by a gauge (super)FDA constructed
as discussed in section 6.1. Indeed, replacing the MC one-forms Πa, πα,
σab of the superPoincaré algebra by the gauge field one-forms ea, ψα,
ωab, respectively, and introducing their corresponding curvatures, Ra,
Rα, Rab, the superPoincaré MC equations (2.1.12) can be promoted to
the structure equations (see equation (6.1.1))

Ra := dea − eb ∧ ωba + iψα ∧ ψβΓaαβ = T a + iψα ∧ ψβΓaαβ ,

Rα := dψα − ψβ ∧ ωβα
(
ωα

β = 1
4ω

abΓab αβ
)
,

Rab := dωab − ωac ∧ ωcb , (6.2.1)

where T a := Dea = dea − eb ∧ ωba is the torsion (see equation (2.2.7)).
The equations (6.2.1), together with their selfconsistency or integrability
conditions (see (6.1.2))

DRa = −eb ∧Rb
a + 2iψα ∧RβΓaαβ ,

DRα = −1
4ψ

β ∧RabΓabβα ,

DRab = 0 , (6.2.2)

where D is the Lorentz covariant derivative, form the gauge FDA of the
superPoincaré group. When all the curvatures are set to zero, Ra = 0,
Rα = 0, Rab = 0, the Bianchi identities (6.2.2) are trivially satisfied and,
as discussed in the previous section, the structure equations (6.2.1) of the
FDA reduce to the MC equations (2.1.12) of the superPoincaré algebra.
The minimal FDA is, in this case, a Lie superalgebra (superPoincaré),
the local symmetry of simple supergravity.
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This FDA description is, however, incomplete for D = 11 supergrav-
ity, due to the presence of the three-form field A3. When A3 is taken into
account, the FDA defined by equations (6.2.1) must be completed by the
definition of the four-form field strength [92]

R4 := dA3 + 1
4ψ

α ∧ ψβ ∧ ea ∧ ebΓabαβ , (6.2.3)

supplemented by its corresponding Bianchi identity4,

dR4 = −ψα ∧Rβ ∧ Γ̄(2)
αβ −

1
2ψ

α ∧ ψβ ∧ eb ∧RaΓabαβ . (6.2.4)

Equations (6.2.1), (6.2.3) are the structure equations for the D = 11
supergravity FDA, their corresponding Bianchi identities being (6.2.2),
(6.2.4). The definition (6.2.3) of the curvature R4 of A3 is obviously
inspired in the algebraic constraint (2.4.4) that relates F4 to A3. Indeed,
resorting to the superspace formulation of supergravity and setting Ra =
0 and R4 = F4 := 1

4!e
a4 ∧ . . .∧ ea1Fa1...a4 , the on-shell D = 11 superspace

supergravity constraints [176, 177] are recovered (see also [7]).
In contrast with the D = 4 case, the above FDA for vanishing curva-

tures cannot be associated with the MC equations of a Lie superalgebra
due to the presence of the three-form A3. In fact, according to the gen-
eral discussion in section 6.1, for vanishing curvatures the bi-fermionic
four-form

a4 = −1
4ψ

α ∧ ψβ ∧ ea ∧ ebΓabαβ (6.2.5)

entering the definition (6.2.3) of the curvature R4 of A3 (see also equation
(2.2.10)) becomes a CE four-cocycle on the supertranslations algebra E ≡
E(11|32) given by

ω4(xa, θα) = −1
4π

α ∧ πβ ∧Πa ∧ΠbΓabαβ = dω3(xa, θα) , (6.2.6)

where Πa = dxa − idθαΓaαβθ
β and πα = dθα. In equation (6.2.6), the

dependence of the forms ω3 and ω4 on the coordinates Z = (xa, θα)
of rigid superspace Σ ≡ Σ(11|32), the group manifold of the D = 11
supertranslations group, has been written explicitly. The Lorentz group,
being simple and not adding anything to the cohomology, can be neglected
in this discussion.

As discussed in general, the E-invariant and closed four-cocycle ω4

is, furthermore, non-trivial in the CE cohomology, since the three-form
ω3 = ω3(xa, θα) in (6.2.6) cannot be expressed in terms of the invariant
MC forms Πa, πα of E. Now, we may ask whether there exists an ex-
tension Ẽ of the standard D = 11 supersymmetry algebra E, with MC

4See section 2.1 for the notation.
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forms defined on its associated enlarged superspace Σ̃, on which the CE
four-cocycle ω4 becomes trivial. In this way, the problem of writing the
original A3 field in terms of one-form fields becomes purely geometrical:
it is equivalent to looking, in the spirit of the fields/extended superspace
variables correspondence of [85] (see section 6.7), for an enlarged super-
group manifold Σ̃ on which one can find a new three-form ω̃3 (correspond-
ing to A3) that can be expressed in terms of sums of exterior products of
Ẽ MC forms on Σ̃ (that will correspond to one-form gauge fields), hence
depending on the coordinates Z̃ of Σ̃. That such a Σ̃-invariant form ω̃3(Z̃)
should exist is also not surprising if we recall that the CE (p+2)-cocycles
on E that characterize [178] the Wess-Zumino terms of the super-p-brane
actions and their associated FDAs, can also be trivialized on larger super-
algebras Ẽ [179, 85] (see also [180]) associated to extended superspaces
Σ̃, and that the pull-back of ω̃3(Z̃) to the supermembrane worldvolume
defines an invariant Wess-Zumino term.

To summarize, the minimal FDA of D = 11 supergravity is obtained
by enlarging the supertranslations algebra E (containing the MC one-
forms Πa, πα, corresponding to the gauge fields ea, ψα, respectively) with
the three-form ω3 (corresponding to A3) such that its differential is the
CE four-cocycle ω4 on E (equation (6.2.6)). Notice, however, that further
enlargements are possible, within the FDA construction scheme of section
6.1. Actually, the closed seven-form

ω7 = −ω3 ∧ ω4 + i
2·5!π

α ∧ πβ ∧Πa5 ∧ . . . ∧Πa1 Γa1...a5 αβ (6.2.7)

is a non-trivial cocycle5 on the FDA generated by (Πa, πα, ω3) ([18], vol. II,
p. 866). The seven-cocycle ω7 is nothing but the ‘flat limit’, R7 = 0,
of dA6, where the six-form A6 is the dual six-form of A3, defined by
F7 = ∗F4, where F4 = dA3 and F7 = dA6 + A3 ∧ dA3. The structure
equation of A6,

R7 := dA6 +A3 ∧ dA3 − i
2ψ

α ∧ ψβ ∧ Γ̄(5)
αβ (6.2.8)

(see (2.2.12) for the notation), together with its corresponding Bianchi
identity,

dR7 =
(
R4 + 1

2ψ ∧ ψ ∧ Γ̄(2)
)
∧
(
R4 + 1

2ψ ∧ ψ ∧ Γ̄(2)
)

+iψα ∧Rβ ∧ Γ̄(5)
αβ −

i
2·4!ψ

α ∧ ψβ ∧ ec4 ∧ . . . ∧ ec1 ∧RaΓac1...c4αβ

−1
4ψ

α ∧ ψβ ∧ ψγ ∧ ψδ ∧ Γ̄(2)
αβ ∧ Γ̄(2)

γδ ≡ 0 , (6.2.9)

5Notice that ω7 is not a CE seven-cocycle on the standard, D = 11 supertranslations
algebra E ≡ E(11|32), since it explicitly involves ω3.
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may thus be added to the FDA (6.2.1), (6.2.3), (6.2.2), (6.2.4). We
shall, however, ignore this enlargement of the algebra and work with
the FDA generated by (Πa, πα, ω3) whose gauging, described (neglecting
the Lorentz part) by the structure equations (6.2.1) and (6.2.3) and their
Bianchi identities (6.2.2), (6.2.4), involves only ea, ψα, A3 and their cur-
vatures Ra, Rα, R4. Nevertheless, it would be an interesting question
for further study to determine whether the Lie algebras Ẽ(s) introduced
below to trivialize the four-cocycle ω4 (of equation (6.2.6)) also allow for
the trivialization of ω7 (of equation (6.2.7)). Namely, whether there exists
a six-form ω̃6 (corresponding to the ‘flat limit’ of A6) constructed as an
exterior polynomial of the MC one-forms of Ẽ(s) and such that ω7 = dω̃6.
This would correspond to the problem of finding the underlying gauge
symmetry of the duality-symmetric formulation of D = 11 supergravity
(see [181] for the action).

6.3 A family of extended superalgebras

As stated in [92], the problem is whether the D = 11 supergravity FDA
(6.2.1), (6.2.3), may be completed with a number of additional one-forms
and their curvatures in such a way that the three-form A3 obeying (6.2.3)
is constructed from one-forms, becoming composite rather than funda-
mental or ‘elementary’. This problem, when attacked in the flat limit
achieved by setting all the curvatures to zero, is equivalent to trivializing
the Σ four-cocycle ω4 (equation (6.2.6)) on the algebra Ẽ of an enlarged
superspace group Σ̃. A one-parameter family of Lie superalgebra exten-
sions Ẽ(s) (with the notation of [6]) of the M Theory superalgebra was
first proposed by D’Auria and Fré in [92] as an ansatz to solve the prob-
lem. All the superalgebras in the family contain a set of 528 bosonic and
32 + 32 = 64 fermionic generators,

Pa , Qα , Za1a2 , Za1...a5 , Q
′
α , (6.3.1)

including the M Theory superalgebra ones (see section 2.1 of chapter
2) plus a central fermionic generator Q′

α, and are defined through the
(anti)commutation relations

{Qα, Qβ} = ΓaαβPa + iΓa1a2
αβ Za1a2 + Γa1...a5

αβ Za1...a5 ,

[Pa, Qα] = δ Γa αβQ′
β ,

[Za1a2 , Qα] = iγ1Γa1a2 α
βQ′

β ,

[Za1...a5 , Qα] = γ2Γa1...a5 α
βQ′

β ,

[Q′
α, all} = 0 , (6.3.2)
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that display their structure as central extensions of the M Theory super-
algebra by the fermionic generator Q′

α. With the notation of section 2.1
of chapter 2, the family of enlarged superalgebras Ẽ(s) could be denoted
as E(528|64)(s) or, in order to emphasize the presence of two independent
fermionic generators, as E(528|32+32)(s). The corresponding group man-
ifolds can accordingly be denoted Σ̃(s) or Σ(528|32+32)(s). The notation
Ẽ(s), Σ̃(s) will be preferred, although E(528|32+32)(s), Σ(528|32+32)(s) will
sometimes be used to avoid confusion.

In (6.3.2), δ, γ1, γ2 are real parameters only restricted by the require-
ment that (6.3.2) be indeed a superalgebra, i.e., that the Jacobi identities
are satisfied. This translates into a relation for the parameters [92]:

δ + 10γ1 − 6!γ2 = 0 . (6.3.3)

One parameter (γ1 if nonvanishing, δ otherwise) can be removed by rescal-
ing the new fermionic generator Q′

α and it is thus inessential. Hence
equations (6.3.2) describe, effectively, a one-parameter family of Lie su-
peralgebras that may be denoted Ẽ(s) by using a parameter s given by

s :=
δ

2γ1
− 1 , γ1 6= 0 ⇒

{
δ = 2γ1(s+ 1) ,
γ2 = 2γ1( s6! + 1

5!) .
(6.3.4)

This notation also accounts for the case γ1 = 0, by considering the limit
γ1 → 0, s → ∞ and γ1s → δ/2 6= 0, and the corresponding algebra can
be denoted Ẽ(∞). In terms of s, the algebra (6.3.2) reads:

{Qα, Qβ} = ΓaαβPa + iΓa1a2
αβ Za1a2 + Γa1...a5

αβ Za1...a5 ,

[Pa, Qα] = 2γ1(s+ 1) Γa αβQ′
β ,

[Za1a2 , Qα] = iγ1Γa1a2 α
βQ′

β ,

[Za1...a5 , Qα] = 2γ1(
s

6!
+

1
5!

)Γa1...a5 α
βQ′

β ,

[Q′
α, all} = 0 . (6.3.5)

Introducing the MC one-forms

Πa , πα , Πa1a2 , Πa1...a5 , π′α , (6.3.6)

dual to the generators (6.3.1), and left-invariant on the corresponding
group manifolds Σ̃(s) ≡ Σ(528|32+32)(s), the family of superalgebras Ẽ(s)
can be equivalently described by the MC equations

dΠa = −iπα ∧ πβΓaαβ ,
dπα = 0 ,
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dΠa1a2 = −πα ∧ πβ Γa1a2
αβ ,

dΠa1...a5 = −iπα ∧ πβ Γa1...a5
αβ ,

dπ′α = πβ ∧
(
−i δΠaΓa βα − γ1 ΠabΓab βα − i γ2 Πa1...a5Γa1...a5β

α
)
.

(6.3.7)

In the dual, MC formulation of the family of superalgebras Ẽ(s), the
parameters δ, γ1, γ2 are only involved in the last equation of (6.3.7), the
MC equation for the extra fermionic MC one-form π′α, and the relation
(6.3.3) among the parameters is obtained from the integrability condition
ddπ′α = 0. In terms of the parameter s defined in (6.3.4), the last equation
in (6.3.7) reads

dπ′α=−2γ1π
β ∧

(
i(s+ 1)ΠaΓa + 1

2ΠabΓab + i
(
s
6! + s

5!

)
Πa1...a5Γa1...a5

)
β

α.

(6.3.8)

Finally, introducing the ‘soft’ one-form fields,

ea , ψα , Ba1a2 , Ba1...a5 , ηα , (6.3.9)

corresponding to the MC one-forms (6.3.6), and their corresponding cur-
vatures,

Ra , Rα , Ba1a2 , Ba1...a5 , Bα , (6.3.10)

the family of gauge FDAs corresponding to Ẽ(s) is described by the equa-
tions (6.2.1), (6.2.3) together with the corresponding equations for the
new one-forms and their curvatures, namely, by

Ra := dea − eb ∧ ωba + iψα ∧ ψβΓaαβ = T a + iψα ∧ ψβΓaαβ ,

Rα := dψα − ψβ ∧ ωβα
(
ωα

β = 1
4ω

abΓab αβ
)
,

Rab := dωab − ωac ∧ ωcb ,
R4 := dA3 + 1

4ψ
α ∧ ψβ ∧ ea ∧ ebΓabαβ ,

Bab2 = DBab + ψα ∧ ψβ Γabαβ ,

Ba1...a5
2 = DBa1...a5 + iψα ∧ ψβ Γa1...a5

αβ ,

Bα2 = Dηα + ψβ ∧
(
i δ eaΓa βα + γ1B

abΓab βα + i γ2B
a1...a5Γa1...a5 β

α
)
,

(6.3.11)

and their corresponding Bianchi identities.
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6.4 The relation of Ẽ(s) with osp(1|32)

For s 6= 0, the superalgebras Ẽ(s) are non-trivial deformations (see section
5.1) of Ẽ(0). Actually, the superalgebra Ẽ(0) is singled out within the
family Ẽ(s) for having an enhanced automorphism group. Introducing,
as in (2.1.9), the generalized momentum Pαβ = ΓaαβPa + iΓa1a2

αβ Za1a2 +
Γa1...a5
αβ Za1...a5 , the D = 11 decomposition

δ(α
γδβ)

δ = 1
32

(
ΓaαβΓ

γδ
a − 1

2Γa1a2
αβΓa1a2

γδ + 1
5!Γ

a1...a5
αβΓa1...a5

γδ
)

(6.4.1)

allows us to write the superalgebra (6.3.5) for s = 0 as

{Qα, Qβ} = Pαβ ,

[Pαβ , Qγ ] = 64 γ1 Cγ(αQ
′
β) ,

[Q′
α, all} = 0 . (6.4.2)

Similarly, it is possible to collect the MC one-forms Πa, Πa1a2 , Πa1···a5 in
a symmetric spin-tensor one-form (2.1.14), Παβ = 1

32(ΠaΓa− i
2Πa1a2Γa1a2

+ 1
5!Π

a1...a5Γa1...a5)
αβ that allows us to write, for s = 0, the MC equations

(6.3.7) of Ẽ(0) in compact form as

dΠαβ = −iπα ∧ πβ ,
dπα = 0 ,
dπ′α = −64iγ1 π

β ∧Πβ
α . (6.4.3)

The explicit appearance in equation (6.4.2) of the Sp(32)-invariant eleven-
dimensional 32 × 32 charge conjugation matrix Cαβ or, alternatively, its
concealed appearance in the contraction of spinor indices in (6.4.3), ex-
hibits Sp(32) as the automorphism symmetry of Ẽ(0). In contrast, the
rest of superalgebras Ẽ(s), s 6= 0, have a reduced automorphism symme-
try SO(1, 10), since they involve explicitly the SO(1, 10) Dirac matrices.

Hence, the generalizations of the superPoincaré group Σ o SO(1, 10)
for the s 6= 0 and s = 0 cases are, respectively, the semidirect prod-
ucts Σ̃(s) o SO(1, 10) and Σ̃(0) o Sp(32). Precisely for s = 0, both
Σ̃(0) o SO(1, 10) and Σ̃(0) o Sp(32) can be obtained from OSp(1|32) by
the expansion method of chapter 5; they are given, respectively, by the
expansions Osp(1|32)(2, 3, 2) and Osp(1|32)(2, 3) [6] as it will now be
shown.

The derivation of Ẽ(0) o so(1, 10) as an expansion of osp(1|32) fits
into the general discussion of section 5.5 of the expansion method for
superalgebras. In fact, it follows the same steps that led to the M The-
ory superalgebra in section 5.6, the only difference being the way the
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cutting orders of the series expansions of the MC one-forms of osp(1|32)
are chosen. Consider the 528 sp(32) bosonic ραβ and 32 fermionic να

MC forms of osp(1|32), satisfying the MC equations (5.6.1). Again, it is
useful to decompose ραβ in terms of Dirac matrices as in (5.6.2), ραβ =
1
32

(
ρaΓa − i

2ρ
abΓab + 1

5!ρ
a1...a5Γa1...a5

)αβ ; this decomposition is adapted
to the splitting osp(1|32) = V0 ⊕ V1 ⊕ V2, where V0 is generated by ρab,
V1 by να and V2 by ρa and ρa1...a5 . In terms of ρab, να, ρa and ρa1...a5 ,
the superalgebra osp(1|32) takes the form (5.6.3).

After the redefinition (5.5.3) of the group parameters of osp(1|32), the
MC forms expand as in (5.6.4)–(5.6.6), namely,

ρab = ρab,0 + λ2ρab,2 + λ4ρab,4 + · · · ,
ρa = λ2ρa,2 + λ4ρa,4 + · · · ,
ρa1...a5 = λ2ρa1...a5,2 + λ4ρa1...a5,4 + · · · ,
να = λνα,1 + λ3να,3 + · · · . (6.4.4)

Choosing the cutting orders N0 = 2, N1 = 3, N2 = 2, as allowed
by the restriction (5.5.7), the MC equations of the expanded algebra
osp(1|32)(2, 3, 2) are obtained:

dρab,0 = − 1
16ρ

ac,0 ∧ ρcb ,0 ,
dρa ,2 = − 1

16ρ
b,2 ∧ ρba,0 − iνα,1 ∧ νβ,1Γaαβ ,

dρab,2 = − 1
16

(
ρac,0 ∧ ρcb,2 + ρac,2 ∧ ρcb,0

)
− να,1 ∧ νβ,1Γabαβ ,

dρa1...a5 ,2 = 5
16ρ

b[a1...a4| ,2 ∧ ρb|a5],0 − iνα,1 ∧ νβ,1Γa1...a5
αβ ,

dνα,1 = − 1
64ν

β,1 ∧ ρab,0Γabβα ,

dνα,3 = − 1
64ν

β,3 ∧ ρab,0Γabβα

− 1
32ν

β,1 ∧
(
iρa,2Γa + 1

2ρ
ab,2Γab + i

5!ρ
a1...a5,2Γa1...a5

)
β

α
. (6.4.5)

Now, setting ρab,0 ≡ −16ωab and identifying ρa,2 ≡ Πa, ρab,2 ≡ Πab,
ρa1···a5,2 ≡ Πa1···a5 , να,1 ≡ πα and να,3 ≡ π′α/64γ1 (notice that γ1 6= 0
just defines the scale of Q′

α), the set of equations (6.4.5) coincides with the
MC equations of Ẽ(0) o so(1, 10) (obtained by restoring the Lorentz part
in equations (6.4.3)). As a check, notice that the dimensional counting is
correct since, by equation (5.5.4),

dim osp(1|32)(2, 3, 2) = 2 · 55 + 2 · 32 + 473 = 583 + 64 =

= dim
(
Ẽ(0) o so(1, 10)

)
. (6.4.6)

In conclusion [6],

Σ̃(0) o SO(1, 10) ≈ OSp(1|32)(2, 3, 2) . (6.4.7)
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The algebra Ẽ(0) o sp(32) with its enhanced automorphism symme-
try Sp(32) can also be obtained as an expansion of osp(1|32). Indeed,
consider instead the splitting osp(1|32) = V0 ⊕ V1 where V0 is generated
by all the bosonic generators ραβ and V1 by the fermionic ones, να. This
splitting makes V1 a symmetric coset and, indeed, makes the algebra have
the structure discussed in section 5.3.1 of chapter 5. Cutting the corre-
sponding series at orders N0 = 2 and N1 = 3, in agreement with condition
(5.3.30), the MC equations corresponding to the expansion osp(1|32)(2, 3)
are obtained:

dραβ,0 = −iραγ,0 ∧ ργβ,0 ,

dραβ,2 = −i
(
ραγ,0 ∧ ργβ,2 + ραγ,2 ∧ ργβ,0

)
− iνα,1 ∧ νβ,1 ,

dνα,1 = −iνβ,1 ∧ ρβα,0 ,
dνα,3 = −iνβ,3 ∧ ρβα,0 − iνβ,1 ∧ ρβα,2 . (6.4.8)

Identifying ραβ,0 in (6.4.8) with an sp(32) connection, equations (6.4.8)
are those of Ẽ(0) o sp(32) (given by (6.4.3) when sp(32)-automorphisms
are included) with ραβ,2 ≡ Παβ , να,1 ≡ πα and να,3 ≡ π′α/64γ1. Again,
by equations (5.5.4), the dimensions agree,

dim osp(1|32)(2, 3) = 2 · 528 + 64 = dim
(
Ẽ(0) o sp(32)

)
, (6.4.9)

and [6]

Σ̃(0) o Sp(32) ≈ OSp(1|32)(2, 3) . (6.4.10)

6.5 The composite nature of A3

We will now show how the set of one-forms (6.3.9) of the gauge FDA
(6.3.11) associated to Ẽ(s) allows for a composite structure of A3,

A3 = A3(ea, ψα ; Bab, Babcde, ηα) . (6.5.1)

According to the discussion of section 6.2, based on the general arguments
of section 6.1, the problem is equivalent to the trivialization of the super-
Poincaré algebra CE four-cocycle ω4 of equation (6.2.6) in an extended
superalgebra. Thus, we are looking for a three-form ω̃3 built up as an
exterior polynomial of the one-forms (6.3.6) of the family of extensions
Ẽ(s) that fulfils equation (6.2.6), namely,

dω̃3 = ω4 ≡ −1
4π

α ∧ πβ ∧Πa ∧ΠbΓabαβ . (6.5.2)

In the process, it will be made apparent which of the superalgebras in the
family Ẽ(s) allow for a trivialization of ω4.
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The most general expression for ω̃3 as an exterior polynomial of the
one-forms (6.3.6) of Ẽ(s) is

4 ω̃3 = λΠab ∧Πa ∧Πb − α1Πab ∧Πb
c ∧Πca

−α2Πb1a1...a4 ∧Πb1
b2 ∧Πb2a1...a4

−α3εa1...a5b1...b5cΠ
a1...a5 ∧Πb1...b5 ∧Πc

−α4εa1...a6b1...b5Π
a1a2a3

c1c2 ∧Πa4a5a6c1c2 ∧Πb1...b5

−2iπβ ∧ π′α ∧
(
β1 ΠaΓaαβ − iβ2 ΠabΓab αβ + β3 Πa1...a5Γa1...a5 αβ

)
,

(6.5.3)

where α1, . . . , α4, β1, . . . , β3 [92] and λ [6, 7] are constants to be deter-
mined by the requirement that ω̃3 obeys equation (6.5.2). The numerical
factors in the right hand side of (6.5.3) have been introduced to make
the definition of the coefficients coincide with that in [92] while keeping
our notation for the FDA. The only essential difference with [92] is the
inclusion of the arbitrary coefficient λ in the first term; as we show below
this leads to a one-parametric family of solutions that includes the two
D’Auria-Fré ones.

Using the MC equations (6.3.7) for Ẽ(s), the application in (6.5.3) of
the differential d leads to [92]

4 dω̃3 = −(λ− 2δβ1) πα ∧ πβ ∧Πa ∧ΠbΓabαβ
+2(β1 + 10β2 − 6!β3) πα ∧ πβ ∧ πγ ∧ π′δΓaαβΓaγδ
+2i(λ− 2γ1β1 − 2δβ2) πα ∧ πβ ∧Πab ∧ΠbΓaαβ
+(3α1 + 8γ1β2) πα ∧ πβ ∧Πa

c ∧ΠcbΓabαβ
+2i(α2 − 10γ1β3 − 10γ2β2) πα ∧ πβ ∧Πa1

c ∧Πca2···a5Γa1···a5αβ

+2i
5! (5!α3 − δβ3 − γ2β1) εa1···a5b1···b5cπ

α ∧ πβ ∧Πb1···b5 ∧ΠcΓa1···a5αβ

−(α2 − 5! 10γ2β3) πα ∧ πβ ∧Πa1
b1···b4 ∧Πa2b1···b4Γa1a2αβ

+i(α3 − 2γ2β3) εa1···a5b1···b5cπ
α ∧ πβ ∧Πa1···a5 ∧Πb1···b5Γcαβ

+ i
3(9α4 + 10γ2β3) εa1···a6b1···b5π

α ∧ πβ ∧Πa1a2a3
c1c2 ∧Πa4a5a6c1c2Γb1···b5αβ .

(6.5.4)

Finally, comparing the expressions for dω̃3 in (6.5.4) and (6.5.2), and
equating the coefficients of the different, independent four-form terms,
the following non-homogeneous linear system of nine equations and eight
unknowns λ, α1, . . . , α4, β1, . . . , β3, dependent on the parameters δ, γ1,
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γ2 is found6 [92, 6, 7]

λ− 2δβ1 = 1 ,
β1 + 10β2 − 6!β3 = 0 ,
λ− 2γ1β1 − 2δβ2 = 0 ,
3α1 + 8γ1β2 = 0 ,
α2 − 10γ1β3 − 10γ2β2 = 0 ,
5!α3 − δβ3 − γ2β1 = 0 ,
α2 − 5! 10γ2β3 = 0 ,
α3 − 2γ2β3 = 0 ,
9α4 + 10γ2β3 = 0 . (6.5.5)

The existence of solutions to this system depends on the values of the
parameters δ, γ1, γ2 that define it. Actually, the system (6.5.5) depends
effectively on one parameter s (defined in (6.3.4)) only, for the same
reason as the family of superalgebras Ẽ(s) does: one parameter among
δ, γ1, γ2 can be eliminated by means of the relation (6.3.3), and another
one by a redefinition of the extra fermionic generator Q′

α in (6.3.5) (or
π′α in (6.3.7)). The system (6.5.5) turns out to be incompatible for s = 0
(namely, for δ = 2γ1, γ2 = 2γ1/5!) but has, otherwise, a unique solution
for each s 6= 0 given by [6, 7]

λ = 1
5
s2+2s+6

s2
, β1 = − 1

10γ1
2s−3
s2

, β2 = 1
20γ1

s+3
s2

, β3 = 3
10·6!γ1

s+6
s2

,

α1 = − 1
15

2s+6
s2

, α2 = 1
6!

(s+6)2

s2
, α3 = 1

5·6!5!
(s+6)2

s2
, α4 = − 1

9·6!5!
(s+6)2

s2
.

(6.5.6)

The two particular solutions in [92] are recovered by adjusting s (i.e.,
δ, γ1 in equation (6.3.4)) so that λ = 1 in equation (6.5.6). This is achieved
for δ = 5γ1 (δ non vanishing but otherwise arbitrary), or for δ = 0 (with
γ1 non vanishing but otherwise arbitrary). Thus, the two D’Auria and
Fré decompositions of A3 are characterized by s = 3/2,

Ẽ(3/2) : δ = 5γ1 6= 0 , γ2 = γ1
2·4! ,

λ = 1 , β1 = 0 , β2 = 1
10γ1

, β3 = 1
6! γ1

,

α1 = − 4
15 , α2 = 25

6! , α3 = 1
6!4! , α4 = − 1

54 (4!)2
, (6.5.7)

and by s = −1,

Ẽ(−1) : δ = 0 , γ1 6= 0 , γ2 = γ1
3·4! ,

6The factor 5! in the equation 5!α3−δβ3−γ2β1 = 0, and the factor 9 in the equation
9α4+10γ2β3 = 0 were both missing in footnote 6 in [6], and the later factor was missing
in equation (4.39) of [7].
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λ = 1 , β1 = 1
2γ1

, β2 = 1
10γ1

, β3 = 1
4·5! γ1 ,

α1 = − 4
15 , α2 = 25

6! , α3 = 1
6! 4! , α4 = − 1

54 (4!)2
. (6.5.8)

Here it has been shown that not only these two superalgebras solve the
problem, but that all the superalgebras in the family Ẽ(s), except Ẽ(0),
allow for a trivialization of the four-cocycle ω4 in (6.5.2) [6, 7]. The
three-form ω̃3 that trivializes it in Ẽ(s), s 6= 0, is given by the expression
(6.5.3) with the coefficients (6.5.6). The composite expression (6.5.1) of
the three-form A3 in terms of the soft one-form counterparts (6.3.9) of
the MC one-forms of Ẽ(s), s 6= 0, is thus given explicitly by

4A3 = λBab ∧ ea ∧ eb − α1Bab ∧Bb
c ∧Bca

−α2Bb1a1...a4 ∧Bb1
b2 ∧Bb2a1...a4

−α3εa1...a5b1...b5cB
a1...a5 ∧Bb1...b5 ∧ ec

−α4εa1...a6b1...b5B
a1a2a3

c1c2 ∧Ba4a5a6c1c2 ∧Bb1...b5

−2iψβ ∧ ηα ∧
(
β1 e

aΓaαβ − iβ2B
abΓab αβ + β3B

a1...a5Γa1...a5 αβ

)
,

(6.5.9)

where the coefficients are given by (6.5.6).
It is worth stressing that allowing the coefficient λ not to be fixed

from the onset, produces more possibilities for the trivializing algebras
than those in [92] (equations (6.5.7) and (6.5.8)). A particularly inter-
esting superalgebra within the family Ẽ(s) is achieved for s = −6. The
trivialization of the four-cocycle ω4 (6.5.2) associated to dA3 on Ẽ(−6) is
obtained for the coefficients (6.5.6) with s = −6, namely,

Ẽ(−6) : δ = −10γ1 6= 0 , γ2 = 0 ,
λ = 1

6 , β1 = 1
4!γ1

, β2 = − 1
2·5!γ1 , β3 = 0 ,

α1 = 1
90 , α2 = 0 , α3 = 0 , α4 = 0 . (6.5.10)

Interestingly enough, the vanishing coefficients α2, α3, α4, β3 are those in
front of each term involving the one-form Πa1...a5 in the expression of the
trivializing three-form ω̃3 (6.5.3). In consequence, the expression (6.5.9)
for A3 as a composite of the gauge one-form fields of Ẽ(−6) becomes
especially simple,

A3 = 1
4!B

ab ∧ ea ∧ eb − 1
3·5!Bab ∧B

b
c ∧Bca

− i
4·5! γ1

ψβ ∧ ηα ∧
(
10 eaΓaαβ + i BabΓab αβ

)
, (6.5.11)

since it does not involve the gauge one-form field Ba1...a5 . This is, never-
theless, not surprising since, by the definition (6.3.4), the choice s = −6
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fixes the parameter γ2 in the algebra (6.3.2) to γ2 = 0, rendering central
the generator Za1...a5 associated to the gauge field Ba1...a5 .

For s = −6 the central generator Za1...a5 plays, in short, no role in
the trivialization of ω4. One can, therefore, get rid of it and consider the
smaller, (66 + 64)-dimensional superalgebra Ẽmin [6, 7], the extension of
which by the central charge Za1...a5 gives the superalgebra Ẽ(−6). The
‘minimal’ superalgebra Ẽmin is given explicitly by setting γ2 = 0 (and,
hence, δ = −10γ1) in (6.3.2) or, equivalently, by setting s = −6 in (6.3.5)
and by removing the generator Za1...a5 :

{Qα, Qβ} = ΓaαβPa + iΓa1a2
αβ Za1a2 ,

[Pa, Qα] = −10γ1 Γa αβQ′
β ,

[Za1a2 , Qα] = iγ1Γa1a2 α
βQ′

β ,

[Q′
α, all} = 0 . (6.5.12)

It is worth noting that Ẽmin does not belong to the family Ẽ(s) and
yet it provides a composite structure of A3 in terms of the soft field
counterparts of its MC one-forms. The expression of A3 in terms of
the gauge field one-forms associated to Ẽmin is precisely (6.5.11), and it
coincides with the composite expression achieved for Ẽ(−6). In summary,
the most economic extension of the standard supertranslations algebra
that allows for a composite structure of A3 is Ẽmin, corresponding to the
most economical extended supergroup manifold Σ̃min = Σ(66|32+32) on
which ω4 corresponding to dA3 becomes trivial [6, 7].

6.6 Dynamics with a composite A3

In section 2.4 of chapter 2, the equations of motion of ordinary D = 11
CJS supergravity were derived (in a first order formalism) from its action
S, given by equations (2.2.3), (2.2.5). It is now our aim to check for
possible dynamical consequences of a composite structure of A3 (equation
(6.5.9)) in terms of the gauge one-forms (6.3.9) associated to any of the
superalgebras Ẽ(s), s 6= 0. As noticed in [92], to perform the analysis in
general, the expression (6.5.9) with the coefficients (6.5.6) for a composed
A3 in terms of gauge one-forms of Ẽ(s), s 6= 0, would have to be introduced
in the first order action (2.2.3), (2.2.5) of supergravity. We shall only
consider here the case in which A3 is given by the expression (6.5.11)
in terms of the soft one-forms of the minimal algebra Ẽmin (equation
(6.5.12)). The conclusions, however, are general and can be translated to
the general case in which A3 is given by equation (6.5.9).

Consider, thus, the expression (6.5.11) for A3 in terms of the gauge
one-forms of the superalgebra Ẽmin. Ignoring the variation of the vielbein
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ea and gravitino ψα fields, that would contribute, respectively, to the
Einstein (2.4.5) and the Rarita-Schwinger (2.4.11) equations with on-
shell-vanishing terms, the variation of A3 as given by (6.5.11) when the
fields Ba1a2 and ηα are varied reads

δA3 =
(

1
4!ea ∧ eb −

1
5!Ba

c ∧Bcb + 1
5! 4ψ

β ∧ ηαΓab βα
)
∧ δBab

+ i
5! 4ψ

β ∧ (10 eaΓaαβ + iBabΓab αβ) ∧ δηα . (6.6.1)

Once the composite A3 given in (6.5.11) has been introduced into the
supergravity action S (equations (2.2.3), (2.2.5)), the variation of S with
respect to the field Bab can be worked out, taking into account that Bab

enters the action S only through A3:

δS

δBab
=

δS

δA3
∧ δA3

δBab

= 1
4!G8 ∧

(
ea ∧ eb − 1

5B
ac ∧Bcb + 1

20ψ ∧ η Γab
)
. (6.6.2)

In this expression, the eight-form G8 is the variation of the action S
with respect to A3, δS/δA3 = G8, and its explicit expression is given in
equation (2.4.7), namely, G8 = d(∗F4 + b7 −A3 ∧ dA3).

In the component approach we are dealing with, the action S is de-
fined on eleven-dimensional spacetime M11. Consequently, all the forms
involved in the action, including Bab and ηα take arguments on M11 and
can, therefore, be expressed in terms of the vielbein basis ea; in particular,
Bab = ecBc

ab, ηα = ecηc
α. Thus, introducing the matrix

Kcdab = δ[c
aδbd] +

1
5
B[c

aeBd]
b
e +

1
20
ψ[c

β ηd]
α Γabαβ , (6.6.3)

the variation (6.6.2) of the action with respect to Bab can be written as

δS

δBab
=

1
4!
G8 ∧ ec ∧ ed Kcdab . (6.6.4)

Now, as it can be seen e.g. at the linearized level, in which the fields
Bab are weak, the matrix Kcdab can be supposed to be invertible and the
requirement that the action be invariant under variations of Bab leads to

det(Kabcd) 6= 0 :
δS

δBab
= 0 ⇒ G8 ∧ ec ∧ ed = 0 . (6.6.5)

The last equation then implies the standard equations of motion for A3,
equation (2.4.8), but now for a composite, rather than fundamental A3.
Thus one may state, at least within the det(Kabcd) 6= 0 assumption, that
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the variation with respect to the Bab field produces the same equations
as the variation with respect to the CJS three-form A3,

det(Kabcd) 6= 0 :
δS

δBab
= 0 ⇒ G8 :=

δS

δA3
= 0 . (6.6.6)

Notice, however, that the Bab field carries more degrees of freedom
than A3 does. In fact, the three index tensor Bcab = −Bcba has reducible
symmetry properties (product of two Young tableaux),

Bc ab ∼ ⊗ = ⊕ (6.6.7)

whereas the components Aabc of A3 = 1
3!e

c ∧ eb ∧ eaAabc are completely
antisymmetric, Aabc = A[abc],

Aabc ∼ . (6.6.8)

Then, since a variation of the action with respect to Bab produces (for
det(K[ab]

[cd]) 6= 0) the same equations as the variation with respect to
A3, one concludes that the action for a composite A3 must possess local
symmetries that make the extra degrees of freedom in Bab (i.e, but not

) pure gauge. Similarly, one may expect to have an extra local fermionic
symmetry under which the new fermionic fields ηαa in ηα = eaηa

α are also
pure gauge.

This is indeed the case [7]. Actually, the fact that the above δBab =
ecδBc

ab variation produces the same result as the variation with respect
to δAabc = δA[abc] plays the role of Noether identities for all these ‘ex-
tra’ gauge symmetries. Let us show, for instance, that the supergravity
action with A3 with the simple composite structure of equation (6.5.11)
does possess extra fermionic gauge symmetries with a spinorial one-form
parameter. Indeed, the equations of motion for ηα,

δS

δηα
= 0 ⇒ G8 ∧ ψβ ∧

(
10 eaΓaαβ + i BabΓab αβ

)
= 0 , (6.6.9)

are satisfied identically on the Bab equations of motion (G8 = 0 for
det(K[ab]

[cd]) 6= 0, equations (6.6.5)). This is a Noether identity that indi-
cates the presence of a local fermionic symmetry with spinorial one-form
parameter χα, χα = eaχa

α, such that

δχη
α = χα ,

δχB
ab =

i

16
K−1[ab][cd] ψc

α(10Γd + iBd
efΓef )αβ χβ . (6.6.10)
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We can see that the transformations (6.6.10), leave invariant the com-
posite three-form A3 (6.5.11) considered as a form on spacetime. In the
same way, having in mind that the contribution of any variation of the
fundamental fields in δA3 on M11 is always given by an antisymmet-
ric third-rank tensor contribution, one concludes that any contribution
to δA3 from an arbitrary variation of the irreducible part of δBcab

(which carries also an antisymmetric contribution) can always be com-
pensated by a contribution of a proper transformation of its completely
antisymmetric part δB[cba], .

When the more general form for A3, (equations (6.5.9), (6.5.6)) is con-
sidered, the same reasoning shows that any transformations of the new
form Ba1...a5 can be compensated by some properly chosen Bab transfor-
mations. The key point is that the coefficient λ in (6.5.6) never vanishes.
Hence (omitting δea and δψα),

δA3 = −λ
4 e
c ∧ ed ∧ KcdabδBab + S2a1...a5 ∧ δBa1...a5 + Sα2 ∧ δηα

= −λ
4 e
a ∧ eb ∧ ec δB[c ab] +O(B ∧B) +O(ψ ∧ η) , (6.6.11)

Kcdab = δ[c
aδd]

b +O(B ∧B) +O(ψ ∧ η) , (6.6.12)

λ =
(20γ2

1 + δ2)
5(2γ1 − δ)2

≡ 1
5
s2 + 2s+ 6

s2
6= 0

and the variation of the completely antisymmetric part B[abc] of Bab =
ecBc

ab always reproduces (for an invertible K (6.6.12)) the same equation
G8 = 0 as it would an independent, fundamental three-form A3 [7].

One might also wonder whether the equations of motion of the first
order action with a composite A3 produce any relations for the curvatures
Bab2 , Ba1...a5

2 and Bα2 of the new fields Bab, Ba1...a5 and ηα, in the same
way that they fix the curvatures Ra and R4 of ea and A3 to be Ra =
0 and R4 = F4, where F4 is the auxiliary four-form of the first order
supergravity action. An expression for the curvature R4 of A3 in terms
of the curvatures Bab2 , Ba1...a5

2 , Bα2 and Rα may be obtained by substituting
the composite expression (6.5.9) for A3 in the expression (6.2.3) for R4

[7],

R4 = λ
4B

ab
2 ∧ ea ∧ eb − 3α1

4 B2ab ∧Bb
c ∧Bca

−α2
2 B2 a1...a5 ∧Ba1

b ∧Bba2...a5 + α2
4 Ba1...a5 ∧ B

a1
2 b ∧Bba2...a5

−α3
2 εa1...a5b1...b5ce

c ∧Ba1...a5 ∧ Bb1...b52

−α4
4 εa1...a6b1...b5B

a1a2a3
c1c2 ∧Ba4a5a6c1c2 ∧ Bb1...b52

−α4
2 εa1...a6b1...b5B

a4a5a6c1c2 ∧Bb1...b5 ∧ Ba1a2a3
2 c1c2
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− i
2ψ

β ∧ ηα1 ∧
(
−iβ2 Bab2 Γab αβ + β3 Babcde2 Γabcde αβ

)
+ i

2ψ
β ∧

(
β1 e

aΓaαβ − iβ2B
abΓab αβ + β3B

abcdeΓabcde αβ
)
∧ Bα2

+ i
2η

α ∧
(
β1 e

aΓaαβ − iβ2B
abΓab αβ + β3B

abcdeΓabcde αβ
)
∧Rβ ,

(6.6.13)

where Ra = 0 has been assumed by consistency with the equations of
motion for ea, and the coefficients are given by (6.5.6).

If the condition R4 = F4, where F4 = 1
4!e

a4 ∧ . . . ∧ ea1Fa1...a4 , is
now imposed, equation (6.6.13) sets the value of Fa1...a4 in terms of the
curvatures Bab2 , Ba1...a5

2 , Bα2 and Rα. This reflects the existence of the
extra gauge symmetries that makes the theory with a composite A3 carry
the same number of degrees of freedom than the standard theory with
a fundamental A3, as discussed previously in this section at the level of
the equations of motion. Indeed, equation (6.6.13) with R4 = F4 is the
only relation imposed on the new field strengths Bab2 , Ba1...a5

2 , Bα2 by the
first-order D = 11 supergravity action (2.2.3), (2.2.5) with a composite
A3. This makes the detailed properties of the curvatures Bab2 , Ba1...a5

2 , Bα2
of the additional gauge fields inessential: their only relevant properties
are that the field strength F4 is constructed out of them in agreement
with equation (6.6.13), and that such a composite field strength obeys
the equation of motion (2.4.8), G8 = 0.

In summary, on the one hand, the underlying gauge group structure
implied by the new one-form fields allows us to treat D = 11 supergravity
as a gauge theory of the supergroup Σ̃(s)oSO(1, 10), s 6= 0, that replaces
superPoincaré. On the other hand, the supergravity action (2.2.3), (2.2.5)
with a composite A3 also possesses ‘extra’ gauge symmetries (i.e., not in
Σ̃(s) o SO(1, 10), s 6= 0) that make the additional degrees of freedom in
the ‘new’ fields Bab, Ba1...a5 , ηα pure gauge (i.e. Bab, Ba1...a5 , ηα carry in
all the same number of physical degrees of freedom as the fundamental A3

field). One might conjecture that the superfluous degrees of freedom in
the ‘new’ one-form fields, which are pure gauge in the pure supergravity
action, could become ‘alive’ when supergravity is coupled to some M
Theory objects. These could not be the usual M-branes as they couple to
the standard fields and, hence, all the gauge symmetries preserving the
composite A3 would remain preserved. Thus one might think of some
coupling of supergravity through some new action containing explicitly
the new one-form fields. A guide in the search for such an action would
be the preservation of the gauge symmetries of the underlying Σ̃(s) o
SO(1, 10), s 6= 0, gauge supergroup.
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6.7 Fields/extended superspace coordinates correspondence

In the previous section the additional one-forms Ba1a2 , Ba1...a5 and ηα

were introduced as forms on conventional D = 11 spacetime. In contrast,
in section 6.5, the trivialization of the four-cocycle ω4 associated to dA3

was carried out assuming that all those forms, together with ea and ψα,
were independent. This was explicitly used in the derivation of the linear
system of equations (6.5.5) for the coefficients of the trivializing three-
form ω̃3 from the expression (6.5.4) of dω̃3. From this point of view,
for each value of the parameter s, the natural space on which the MC
one-forms Πa, Πa1a2 , Πa1...a5 , πα and π′α of the superalgebra Ẽ(s) are
defined, is the corresponding group manifold Σ̃(s) of Ẽ(s), the (rigid)
enlarged superspace manifold.

The one-forms Πa and πα are the usual MC one-forms of the super-
translations algebra E ≡ E(11|32), defined on the supertranslations group
manifold, that is, rigid superspace Σ ≡ Σ(11|32). In eleven spacetime di-
mensions, a set of 11 bosonic coordinates xa and 32 fermionic coordinates
θα can be introduced to parameterize the standard rigid superspace,

Σ ≡ Σ(11|32) : ZM = (xa, θα) . (6.7.1)

The MC equations of the supertranslations algebra (obtained from the
MC equations (2.1.12) of the superPoincaré algebra disregarding the Lo-
rentz part) can be solved, accordingly, in terms of superspace coordinates
as

Πa = dxa − idθαΓaαβθ
β ,

πα = dθα . (6.7.2)

On standard superspace Σ, any (left-invariant) differential form can
be expressed in the basis provided by the MC one-forms Πa, πα (with
constant coefficients). However, the assumption that the one-forms Πab,
Πa1...a5 (or their ‘soft’ counterparts Bab, Ba1...a5) are independent is equiv-
alent to the assumption that the expressions

dΠab = −dθα ∧ dθβΓabαβ ,
dΠa1...a5 = −idθα ∧ dθβΓa1...a5

αβ (6.7.3)

(see equation (6.3.7)) cannot be solved in terms of the left-invariant MC
one-forms Πa, πα on standard superspace Σ. Although the forms Πab,
Πa1...a5 are actually de Rham trivial (exact) and can indeed be solved in
terms of the coordinates ZM = (xa, θα) of Σ, the resulting expressions
Πab = −dθαΓabαβθ

β, Πa1...a5 = −idθαΓa1...a5
αβ θβ fail to be left invariant on
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Σ. In contrast, the introduction of new parameters yab, ya1...a5 does allow
for a solution for Πab, Πa1...a5 in terms of them,

Πab = dyab − dθαΓabαβθ
β ,

Πa1...a5 = dya1...a5 − idθαΓa1...a5
αβ θβ , (6.7.4)

such that, under suitable (and straightforward) transformation rules for
the new parameters, the forms Πab and Πa1...a5 become left invariant MC
one-forms of an enlarged algebra. The corresponding group manifold
Σ(528|32) is parameterized by the 11 bosonic xa and 32 fermionic θα coor-
dinates of standard superspace, together with the additional

(
11
2

)
+
(
11
5

)
=

517 bosonic coordinates yab, ya1...a5 ; Σ(528|32) is, precisely, the group man-
ifold associated to the M Theory superalgebra7 E(528|32):

Σ(528|32) : (xa, yab, ya1...a5 , θα) . (6.7.5)

When the curvatures are not zero, and in particular Bab2 6= 0, Ba1...a5
2 6=

0 i.e., the invariant one-forms Πa1a2 , Πa1...a5 become ‘soft’, rendering
Σ(528|32) non-flat and no longer a group manifold.

Likewise, if the additional fermionic one-form π′α is considered, 32
new coordinates θ′α must be introduced to solve for π′α in

dπ′α = −idθβ ∧
(
δΠaΓa − iγ1ΠabΓab + γ2Πa1...a5Γa1...a5

)
β

α (6.7.6)

(see the last equation of (6.3.7)), where Πa, Πab and Πa1...a5 are given by
(6.7.2), (6.7.4). In terms of the new coordinates, π′α reads

π′α = dθ′α + iθβ
(
δΠaΓa − iγ1ΠabΓab + γ2Πa1...a5Γa1...a5

)
β

α

−2
3δ dθΓ

aθ (Γaθ)α + 2
3γ1dθΓabθ (Γabθ)α − 2

3γ2dθΓa1...a5θ (Γa1...a5θ)
α .

(6.7.7)

All these coordinates thus define the enlarged superspaces Σ̃(s) parame-
terized by the coordinates

Σ̃(s) ≡ Σ(528|32+32)(s) : ZN :=
(
xa , yab , ya1...a5 ; θα , θ′α

)
,(6.7.8)

7 The Σ(528|32) extended superspace group may be found in our spirit by searching
for a trivialization of the R528-valued two-cocycle dEαβ = −idθα ∧ dθβ , which leads to
the one-form Eαβ = dXαβ−idθ(αθβ). This introduces in a natural way the 528 bosonic
coordinates Xαβ including the coordinates xa, yab, ya1...a5 in (6.7.5) (see equation
(7.1.1) of next chapter). The transformation law δεX

αβ = iθ(αεβ) makes Eαβ invariant,
and hence leads to a central extension structure for the extended superspace group
Σ(528|32). Thus, the (maximally extended in the bosonic sector) superspace Σ(528|32)

transformations make of Eαβ a MC form that trivializes, on the extended superalgebra
E(528|32), the non-trivial CE two-cocycle on the original odd abelian algebra Σ(0|32).
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which correspond to the group manifolds of the extended superalgebras
Ẽ(s) ≡ E(528|32+32)(s). Again, when the curvatures are not zero the in-
variant MC one-forms become ‘soft’, and Σ̃(s) non-flat and no longer a
group manifold.

The gauging of the superalgebra Ẽ(s) (6.3.7) leads to the associated
FDA (6.3.11), including as many one-form gauge fields (6.3.9) as group
parameters (6.7.8) correspond to the enlarged superspace Σ̃(s). This
points out to the existence of a fields/extended superspace coordinates cor-
respondence [85, 86], according to which all the (here, spacetime) fields
entering the physical action are in one-to-one correspondence with the
coordinates (that is, group parameters of their corresponding group man-
ifolds) of suitably enlarged superspaces. This one-to-one correspondence
is further supported by the fact that enlarged superalgebras also arise in
the description [179, 85] of the strictly invariant Wess-Zumino (WZ) terms
of the scalar p-branes. These invariant WZ terms trivialize their charac-
terizing Chevalley-Eilenberg (CE) (p+ 2)-cocycles [178] on the standard
supersymmetry algebras E(D|n), including that of the D = 11 supermem-
brane, since its WZ term is given by the pull-back to W of the three-form
potential of the dA3 superspace four-cocycle. See [86] for a review.

Enlarged superspaces can also be used in the case of D-branes [182, 85,
180]. Moreover, whereas the coordinates corresponding to the enlarged
superspaces enter trivially (through a total derivative) the scalar p-brane
actions, that is not the case for D-branes or the M5-brane. The Born-
Infeld fields of D-branes and the antisymmetric tensor field of the M5-
brane are usually defined as ‘fundamental’ gauge fields i.e., they are given,
respectively, by one-forms A1(ξ) and a two-form A2(ξ) directly defined on
the worldvolume W. It was shown in [85] (see also [182]) that both A1(ξ)
and A2(ξ) can be expressed through pull-backs to W of forms defined
on superspaces Σ′ suitably enlarged by additional bosonic and fermionic
coordinates, in agreement with the worldvolume fields/extended super-
space coordinates correspondence for superbranes [85] (see also [183]).
The extra degrees of freedom that are introduced by considering A1(ξ)
and A2(ξ) to be the pull-backs to W of forms given on Σ′, and that
produce the composite structure of the Born-Infeld fields to be used in
the superbrane actions, are removed by the appearance of extra gauge
symmetries [85, 183], as it is here the case for the composite A3 field
of D=11 supergravity. Of course, these two problems are not identical:
for instance, in the case of D=11 supergravity with a composite A3, the
suitably enlarged flat superspace Σ̃(s) = Σ(528|32+32)(s) solves, for s 6= 0,
the associated problem of trivializing the CE cocycle, but a dynamical
A3 field requires ‘softening’ the Ẽ(s) = E(528|32+32)(s), s 6= 0, MC equa-
tions by introducing nonvanishing curvatures; in contrast, the Born-Infeld
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worldvolume fields A1(ξ) and the tensor field A2(ξ) are already dynamical
in the flat superspace situation considered in [85]. Nevertheless, in both
these seemingly different situations the fields/extended superspace coor-
dinates correspondence leads us to the convenience of enlarging standard
superspace Σ ≡ Σ(11|32). In this way, all the fields in the theory under
consideration (be them on spacetime or on the worldvolume) correspond
to coordinates of a suitably enlarged superspace.

Superalgebras Ẽ enlarged with additional (bosonic and, possibly, fer-
mionic) generators have been shown here to arise naturally when the
underlying gauge structure of D = 11 supergravity is studied. The cor-
responding group manifolds are, thus, superspaces Σ̃ enlarged with addi-
tional (bosonic and, possibly, fermionic) coordinates, that generalize ordi-
nary superspace Σ ≡ Σ(11|32). The role in supergravity of these enlarged
superspaces merits further investigation. Just like ordinary supersymmet-
ric objects are formulated as dynamical systems in standard superspace
Σ, it is, thus, natural to pose actions describing the dynamics of objects
moving in the backgrounds provided by enlarged superspaces Σ̃ and look
for an interpretation for these actions. As an example, the next chapter
studies the dynamics of a supersymmetric string moving in an enlarged
superspace (corresponding, in fact, to the group manifold associated to
the M Theory superalgebra). Such string can be conveniently described
in terms of supertwistors and, interestingly enough, the model is argued
to describe the excitations of a system composed of two BPS preons.
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7

A 30/32-supersymmetric
string in tensorial superspace

In the early period of superstring theory, when it was found that all
D = 10 supergravities appear as low energy limits of superstring models,
a question arose: what is the origin of maximally extended D = 11 su-
pergravity? Its relation with the supermembrane [71] was established by
studying the supermembrane action in a supergravity background; how-
ever, the quantization of the supermembrane was fraught with difficulties.
An indication was found [184] that the quantum state spectrum of the su-
permembrane is continuous, a problem now sorted out by treating [185]
the supermembrane as an object composed of D0-branes in the frame-
work of the Matrix model approach [186]. Another aspect of the same
problem was that the membrane was shown to develop string-like insta-
bilities [184]. The Green-Schwarz superstring is free from these problems,
but it is a D = 10 theory. Thus, it was tempting to search for possible
new D = 11 superstring models hoping that their low energy limit would
be eleven-dimensional supergravity. Such a search requires going beyond
the standard superspace framework: in moving from D = 10 to D = 11
one has to add also extra bosonic degrees of freedom, thus arriving to an
enlarged D = 11 superspace rather than to the standard one.

In section 7.1, models in enlarged superspaces are argued to provide
higher spin generalizations of their standard superspace counterparts. A
supersymmetric string action in maximal, or tensorial superspace (the
supergroup manifold corresponding to the M Theory superalgebra, and
its generalizations containing n fermionic and 1

2n(n + 1) bosonic coor-
dinates) is subsequently introduced in section 7.2. The model does not
use D = 11 gamma-matrices, but instead includes two auxiliary bosonic
spinor variables1, λ+

α and λ−α . As a consequence, the resulting supersym-
metric string action possesses 30 local fermionic κ-symmetries, although

1 Actually, the model possesses Sp(32) symmetry besides the SO(1, 10) one, so that

121
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it does not include a Wess-Zumino term as that of [191]. In the general
formulation in terms of n fermionic coordinates, the number of preserved
κ-symmetries is n−2, so that, for any n, the models provide an extended
object action for the excitations of a state composed of two BPS preons.

Sections 7.3 and 7.4 describe, respectively, the equations of motion
and gauge symmetries of the model, including the (n − 2) κ-symmetries
and their ‘superpartners’, the (n−1)(n−2)/2 bosonic gauge b-symmetries.
The gauge symmetries are studied in section 7.5 in the Hamiltonian ap-
proach. We also discuss there the number of degrees of freedom of our
model. In Sec. 7.6 we show that its action may be formulated in terms of
a pair of constrained OSp(2n|1) supertwistors (see [148]) which, by def-
inition, are invariant under both κ- and b-symmetries. The hamiltonian
analysis then simplifies considerably, as shown in section 7.7. Section
7.8 contains the hamiltonian analysis in terms of unconstrained super-
twistors. The generalization of the model to the super-p-brane case is
given in Sec. 7.9. Some details about the supertwistor formulation of the
model are included in Appendix C. This chapter follows reference [8].

7.1 Models in enlarged superspaces

A first example of a supersymmetric string action in an enlarged D = 11
superspace was found in [191]. The model, possessing 32 supersymme-
tries and 16 κ-symmetries, was constructed in the enlarged superspace
Σ(528|32). This contains 32 fermionic coordinates θα and 528 bosonic co-
ordinates xµ, yµν , yµ1...µ5 (yµν = −yνµ ≡ y[µν], yµ1...µ5 = y[µ1...µ5]) which
may be collected in a symmetric spin-tensor Xαβ = Xβα,

Xαβ = 1
32

(
xµΓαβµ − i

2!y
µνΓαβµν + 1

5!y
µ1...µ5Γαβµ1...µ5

)
, (7.1.1)

so that the coordinates of Σ(528|32) are (see equation (6.7.5)):

ZM = (Xαβ , θα) , Xαβ = Xβα , α, β = 1, 2, . . . , 32 . (7.1.2)

Recall that the Σ(528|32) superspace has a special interest because it is the
supergroup manifold associated with the maximalD = 11 supersymmetry
algebra E(528|32), the M Theory superalgebra, defined in chapter 2 by the
(anti)commutators (2.1.10) or the MC equations (2.1.15). In fact, the
coordinates Xαβ parameterizing the superspace Σ(528|32) can be seen as
canonically conjugate to the generalized momentum Pαβ entering the M–
algebra and defined in equation (2.1.9). Also, the MC one-forms Πa, πα,

λ±α may be considered as symplectic vectors (called ‘s-vectors’ in [187, 188]) rather than
Lorentz spinors. See footnote 1 of chapter 4. See [189] for a spacetime treatment of a
CP3 sigma model i.e., of a string theory in twistor space, and its relation to Yang-Mills
amplitudes. See [190] and references therein for very recent work in this subject.
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Πab and Πa1...a5 can be solved by the coordinates Xαβ (see equations
(6.7.2), (6.7.4)).

The model of [191] may also be restricted to the superspaces2 Σ(66|32)

((xµ, yµν , θα), with 66 bosonic coordinates) and Σ(462|32) ((xµ, yµ1...µ5 , θα),
with 462 bosonic coordinates). For the sake of definiteness, we shall
call here maximal, or tensorial superspaces, those with bosonic coordi-
nates of symmetric ‘spin-tensorial’ type, like Σ(528|32) and its counterparts
Σ(

n(n+1)
2

|n),

Σ(
n(n+1)

2
|n) : ZΣ = (Xαβ , θα), Xαβ = Xβα, α, β = 1, 2, . . . n, (7.1.3)

where n = 2l for suitable l, to allow for an interpretation of n as the
number fermionic coordinates. This name distinguishes the Σ(

n(n+1)
2

|n)

superspaces from other, not maximally extended (in the bosonic sector)
superspaces like Σ(66|32) and Σ(462|32) whose bosonic coordinates may be
described by a spin-tensor Xαβ only if it satisfies some conditions.

The main problem of the approach in [191] is how to treat the large
number of additional bosonic degrees of freedom3 in the coset(s)
Σ(528|32)/Σ(11|32) (or Σ(462|32)/Σ(11|32), Σ(66|32)/Σ(11|32)), where, as usual,
Σ ≡ Σ(11|32) is the standardD = 11 superspace (see (6.7.1)). Actually, the
same problem arises in any approach dealing with enlarged superspaces
[85, 193, 148, 155, 83, 187, 188, 194, 195, 150, 149, 8]. Thus, one has to
find a mechanism that either suppresses the additional (with respect to
the usual spacetime/superspace Σ(D|n)) degrees of freedom or provides
a physical interpretation for them. In this respect Σ(

n(n+1)
2

|n), despite
having a maximal bosonic part, has some advantages with respect to
non-maximally extended superspaces. Indeed, the bosonic sector of the
tensorial superspace (7.1.3),

Σ(
n(n+1)

2
|0) : Xαβ = Xβα , α, β = 1, 2, . . . , n , (7.1.4)

was proposed for n = 4 [196] as a basis for the construction of D = 4
higher-spin theories [197, 187, 188]. Moreover, it was shown in [155]
that the quantization of a simple superparticle model [148] in Σ(

n(n+1)
2

|n)

for n = 2, 4, 8, 16 results in a wavefunction describing a tower of massless

2All these superspaces Σ(528|32), Σ(462|32) and Σ(66|32), considered as supergroup
manifolds, may be seen as central extensions of an abelian 32-dimensional fermionic
group by tensorial (equation (7.1.1)) bosonic groups [85]. See footnote 7 of chapter 6.

3See [192] for a later related search based on an attempt to replace the κ-symmetry
requirement by a dynamically generated projection constraint on the spinor coordinate
functions. This approach also suffers from the problem of additional bosonic degrees
of freedom.
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fields of all possible spins (helicities). Such an infinite tower of higher spin
fields allows for a non-trivial interaction in AdS spacetimes [198, 197]4.

To give an idea of the relation between higher spin theories and max-
imally extended superspaces, let us consider the free bosonic massless
higher-spin equations proposed in [187] (for n = 4). These can be col-
lected as the following set of equations for a scalar function b on Σ(

n(n+1)
2

|0)

∂α[β∂γ]δb(X) = 0 , (7.1.5)

where ∂αβ = ∂/∂Xαβ . Equation (7.1.5) states that ∂αβ∂γδ is fully sym-
metric on a non-trivial solution. In the generalized momentum represen-
tation equation (7.1.5) reads

kα[βkγ]δb(k) = 0 . (7.1.6)

This implies that b(k) has support on the n(n+1)
2 − n(n−1)

2 = n-dimensional

surface in momentum space Σ(
n(n+1)

2
|0) (actually, in Σ(

n(n+1)
2

|0)\{0}) on
which the rank of the matrix kγδ is equal to unity [188]. This is the surface
defined by kαβ = λαλβ (or −λαλβ) characterized by the n components of
λα. In a ‘GL(n,R)-preferred’ frame (an analogue of the standard frame
for lightlike ordinary momentum), λα = (1, 0, . . . , 0) and the surface is
the GL(n,R)-orbit of the point kαβ = δα1δβ1. Thus, equation (7.1.6) may
also be written as

(kαβ − λαλβ)b = 0 , (7.1.7)

which is equivalent to writing equation (7.1.5) in the form

(i∂αβ − λαλβ)b = 0 . (7.1.8)

Equations (7.1.7) and (7.1.8) may be considered [8] as the generalized
momentum (kαβ) and coordinate (Xαβ) representations of the defini-
tion (4.1.10) of a BPS preon [83] (see section 4.1 of chapter 4). The
solutions of equations (7.1.7), (7.1.8) are the momentum and coordinate
‘wavefunctions’ corresponding to a BPS preon state |λ〉, b(X) = 〈X|λ〉,
b(k) = 〈k|λ〉. These equations also appear as a result of the quantization
[155] of the superparticle model in [148]5.

4A relation between the generalized n = 4 superparticle wavefunctions [155] and
Vasiliev’s ‘unfolded’ equations for higher spin fields was noted in [187]. This was elab-
orated in detail in [199], where the quantization of an AdS superspace generalization
of the n = 4 model of [148] was also carried out (see also [200] for a related study of
higher spin theories in the maximal generalized AdS4 superspace).

5In [187, 201] equation (7.1.8) was written as (∂αβ − ∂
∂µα

∂
∂µβ )b(X, µ) = 0 which is

an equivalent ‘momentum’ representation obtained by a Fourier transformation with
respect to λα, see [199].
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Thus, in contrast with other extended superspaces, the models in the
tensorial superspaces Σ(

n(n+1)
2

|n) can be regarded as higher spin general-
izations of the models in standard superspace6 Σ(D|n). For a recent review
of higher spin theory see [203].

7.2 A supersymmetric string in tensorial superspace

A superstring in Σ(
n(n+1)

2
|n) is described by worldsheet functions Xαβ(ξ),

θα(ξ), where ξ = (τ, σ) are the worldsheet W 2 coordinates. We propose
the following action [8]:

S =
1
α′

∫
W 2

[e++ ∧Παβ λ−αλ
−
β − e−− ∧Παβ λ+

αλ
+
β − e++ ∧ e−−] , (7.2.1)

where

Παβ(ξ) = dXαβ(ξ)− idθ(α θβ)(ξ) = dτΠαβ
τ + dσΠαβ

σ ;
α, β = 1, . . . , n , m = 0, 1 , ξm = (τ, σ) , (7.2.2)

with dimensions [1/α′] = ML−1 , [Παβ ] = L , [e±±] = L (c = 1). The
two auxiliary worldvolume fields, the bosonic spinors λ−α (ξ), λ+

α (ξ), are
dimensionless and constrained by

Cαβλ+
αλ

−
β = 1 ; (7.2.3)

e±±(ξ) = dξme±±m (ξ) = dτe±±τ (ξ) + dσe±±σ (ξ) are two auxiliary worldvol-
ume one-forms. The one-forms e±± are assumed to be linearly indepen-
dent and, hence, define an auxiliary worldsheet zweibein

ea = (e0, e1) = dξmeam(ξ) = (1
2(e++ + e−−), 1

2(e++ − e−−)). (7.2.4)

The Cαβ in (7.2.3) is an invertible constant antisymmetric matrix

Cαβ = −Cβα , dCαβ = 0 , (7.2.5)

which can be used to rise and lower the spinor indices (as the charge
conjugation matrix in Minkowski spacetimes). The invertibility of the
matrix Cαβ requires n to be even; this is not really a limitation since,
after all, we are interested in n = 2l to allow for a spinor treatment of
the α, β indices.

We shall refer to this n = 32 (Σ(528|32)) model as aD = 11 superstring,
which implies the decomposition of equation (2.1.9) for the generalized
momentum. Nevertheless, the n = 32 case also admits a D = 10, Type

6Formulations of higher spin theories are currently known up to spacetime dimension
D = 10 [202].
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IIA treatment, which uses the same Cαβ of the D = 11 case, and in which
the decomposition (2.1.9) is replaced by its D = 10, IIA counterpart
obtained from (2.1.9) by separating the eleventh value of the vector index.

The action (7.2.1) is invariant under the supersymmetry transforma-
tions

δεX
αβ = iθ(αεβ) , δεθ

α = εα , δελ
±
α = 0 , δεe

±± = 0 , (7.2.6)

as well as under rigid Sp(n,R) ‘rotations’ acting on the α, β indices.
Note also that, although formally the action (7.2.1) possesses a manifest
GL(n,R) invariance, the constraint (7.2.3) breaks it down to Sp(n,R)
⊂ GL(n,R). Under the action of Sp(n,R), the Grassmann coordinate
functions θα(ξ) and the auxiliary fields λ±α (ξ) are transformed as sym-
plectic vectors and Xαβ(ξ) as a symmetric symplectic tensor. Neverthe-
less, we keep for them the ‘spinor’ and ‘spin-tensor’ terminology having in
mind their transformation properties under the subgroup Spin(t,D−t) ⊂
Sp(n,R), which would appear in a ‘standard’ (t,D − t) spacetime treat-
ment.

The above Σ(
n(n+1)

2
|n) superstring model may also be described by

an action written in terms of dimensionful unconstrained spinors Λ±α (ξ),
[Λ±α ] = (ML−1)1/2 [8],

S =
∫
W 2

[e++ ∧Παβ Λ−αΛ−β − e−− ∧Παβ Λ+
αΛ+

β

−α′e++ ∧ e−−(CαβΛ+
αΛ−β )2] . (7.2.7)

Indeed, one can see that the action (7.2.7) possesses two independent
scaling gauge symmetries defined by the transformation rules

e++(ξ) → e2α(ξ)e++(ξ) , Λ−α (ξ) → e−α(ξ)Λ−α (ξ) (7.2.8)

and

e−−(ξ) → e2β(ξ)e−−(ξ) , Λ+
α (ξ) → e−β(ξ)Λ+

α (ξ) . (7.2.9)

This allows one to obtain CαβΛ+
αΛ−β = 1/α′ as a gauge fixing condition.

Then the gauge fixed version of the action (7.2.7) coincides with (7.2.1)
up to the trivial redefinition Λ±α = (α′)−1/2λ±α . The gauge CαβΛ+

αΛ−β =
1/α′ (equivalent to equation (7.2.3)) is preserved by a one-parametric
combination of (7.2.8) and (7.2.9) with α = −β, which is exactly the
SO(1, 1) gauge symmetry (worldvolume Lorentz symmetry) of the action
(7.2.1),

e±±(ξ) → e±2α(ξ)e±±(ξ) , λ±α (ξ) → e±α(ξ)λ±α (ξ) . (7.2.10)
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The tension parameter T = 1/α′ enters in the last (‘cosmological’)
term of the action (7.2.7) only. Setting in it α′ = 0 one finds that the
model is non-trivial only for e++ ∝ e−− and Λ+ ∝ Λ− in which case one
arrives at the tensionless super-p-brane action (with p = 1) of reference
[149], S =

∫
d2ξρ++mΠαβ

m Λ−αΛ−β . As we are not interested in this case,
we set α′ = 1 below since the α′ factors can be restored by dimensional
considerations.

The most interesting feature of the model (7.2.1), (7.2.7) is that, being
formulated in the tensorial Σ(

n(n+1)
2

|n) superspace with n fermionic coor-
dinates, it possesses (n−2) κ-symmetries [8]; we will prove this in section
7.4. For a supersymmetric extended object in standard superspace, the
κ-symmetry of its worldvolume action determines the number k of super-
symmetries which are preserved by the ground state, which is a ν = k

n
BPS state made out of ñ = n − k preons if at least one supersymmetry,
k ≥ 1, is preserved (see section 4.1 of chapter 4). In the present case, we
may expect that the ground state of our model should preserve (n − 2)
out of n supersymmetries, i.e. that it is a ν = n−2

n BPS state (ñ = 2, 30
32

BPS state for the D = 11 tensorial superspace Σ(528|32)).
For n = 2, Xαβ provides a representation of the 3-dimensional Min-

kowski space coordinates, Xαβ ∝ Γαβµ xµ (α, β = 1, 2; µ = 0, 1, 2). Thus
the n = 2 model (7.2.1) describes a string in the D = 3 standard Σ(3|2)

superspace. However, in the light of the above discussion, it does not pos-
sess any κ-symmetry and, hence, its ground state is not a BPS state since
it does not preserve any supersymmetry. The situation becomes different
starting with the n = 4 model (7.2.1), which possesses two κ-symmetries,
the same number as the Green-Schwarz superstring in the standardD = 4
superspace. For D ≥ 6, n ≥ 8 the number of κ-symmetries of our model
exceeds n/2 and thus the model describes the excitations of BPS states
with extra supersymmetries, a 30

32 BPS state in the D = 11 Σ(528|32) su-
perspace.

The number of bosonic degrees of freedom of our model is 4n − 6 [8]
(see section 7.5). It is not as large as it might look at first sight due to the
‘momentum space dimensional reduction mechanism’ [155] which occurs
due to the presence of auxiliary spinor variables entering the generalized
Cartan-Penrose relation (see equation (7.5.8) below) generated by our
model. However, it is larger than that of the (D = 3, 4, 6, 10) Green-
Schwarz superstring (which has D [2n = 4(D − 2)] bosonic [fermionic]
configuration space real degrees of freedom, which reduce to D−2 [2(D−
2)] after taking into account reparameterization invariance (κ-symmetry),
thus resulting in 2(D − 2) bosonic and 2(D − 2) fermionic phase space
degrees of freedom). Thus, the relation of models in tensorial superspaces
to higher spin theories mentioned in section 7.1, allows us to consider our
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model as a higher spin generalization of the Green-Schwarz superstring,
containing additional information about the non-perturbative states of
the String/M Theory.

The number of fermionic degrees of freedom of our model is 2 for any
n, less than that of the D = 4, 6, 10 (N = 2) Green-Schwarz superstring.

7.3 Equations of motion

Consider the variation of the action (7.2.1). Allowing for integration by
parts one finds

δS =
∫
W 2

d(e−−λ+
αλ

+
β − e++λ−αλ

−
β ) iδΠαβ

−2i
∫
W 2

e++ ∧ dθαλ−α δθβλ−β + 2i
∫
W 2

e−− ∧ dθαλ+
α δθ

βλ+
β

+
∫
W 2

(Παβ λ+
αλ

+
β − e++) ∧ δe−− −

∫
W 2

(Παβλ−αλ
−
β − e−−) ∧ δe++

+δλS , (7.3.1)

where iδΠαβ ≡ δXαβ − iδθ(αθβ) and the last term

δλS = +
∫
W 2

2e++ ∧Παβλ−β δλ
−
α −

∫
W 2

2e−− ∧Παβλ+
β δλ

+
α , (7.3.2)

collects the variations of the bosonic spinors λ±α (ξ).
The equations of motion for the bosonic coordinate functions, δS/δXαβ

(= δS/iδΠαβ) = 0, turn out to restrict the auxiliary spinors and auxiliary
one-forms,

d(e−−λ+
αλ

+
β − e++λ−αλ

−
β ) = 0 . (7.3.3)

The equations for the fermionic coordinate functions, δS/δθα = 0, read

e++ ∧ dθαλ−αλ−β − e−− ∧ dθαλ+
αλ

+
β = 0 , (7.3.4)

which, due to the linear independence of the spinors λ+
α and λ−α , imply

e++ ∧ dθαλ−α = 0 , e−− ∧ dθαλ+
α = 0 . (7.3.5)

The equations for the one-forms e±±(ξ) express them through the world-
sheet covariant bosonic form (7.2.2) of the Σ(

n(n+1)
2

|n) superspace and the
spinors λ±α (ξ),

e++ = Παβ λ+
αλ

+
β , (7.3.6)

e−− = Παβλ−αλ
−
β . (7.3.7)
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This reflects the auxiliary nature of e±± and implies that equations (7.3.3)
and (7.3.5) actually restrict Παβ and dθα,

d(Πγδλ−γ λ
−
δ λ

+
αλ

+
β −Πγδλ+

γ λ
+
δ λ

−
αλ

−
β ) = 0 , (7.3.8)

Πγδλ+
γ λ

+
δ ∧ dθ

αλ−α = 0 , (7.3.9)

Πγδλ−γ λ
−
δ ∧ dθ

αλ+
α = 0 . (7.3.10)

The necessity of the constraints (7.2.3) on the bosonic spinor variables
can be seen to stem from the equations (7.3.6), (7.3.7). Indeed, were the
constraints (7.2.3) ignored, the variation of the action (7.3.2) with respect
to unconstrained λ±α would yield e++∧Παβ λ−β = 0 and e−−∧Παβ λ+

β = 0.
By (7.3.6) (or (7.3.7)) this would imply, in particular, e++ ∧ e−− = 0,
contradicting the original assumption of independence of the one-forms
e++ and e−− and, actually, reducing the present model to a p = 1 version
of the tensionless p-brane model [149].

As λ±α are restricted by the constraint (7.2.3), this constraint has to
be taken into account in the variational problem. Instead of applying the
Lagrange multiplier technique, one may restrict the variations to those
that preserve (7.2.3), i.e. such that

Cαβδλ+
αλ

−
β + Cαβλ+

α δλ
−
β = 0 . (7.3.11)

One can solve (7.3.11) by introducing a set of n− 2 auxiliary spinors uIα
‘orthogonal’ to the λ± (cf. [154, 204]),

CαβuIαλ
±
β = 0 , I = 1, . . . , n− 2 , (7.3.12)

and normalized by

CαβuIαu
J
β = CIJ , CIJ = −CJI , (7.3.13)

where CIJ is an antisymmetric constant invertible (n−2)×(n−2) matrix.
The n spinors

{λ+
α , λ

−
α , u

I
α} , I = 1, . . . , n− 2 , (7.3.14)

provide a basis that can be used to decompose an arbitrary spinor world-
volume function (cf. [205]), and in particular the variations δλ+, δλ−.
Then one finds that the only consequence of equation (7.3.11) is that the
sum of the coefficient for λ+ in the decomposition of δλ+ and that of
λ− in the decomposition of δλ− vanishes . In other words, the general
solution of equation (7.3.11) reads

δλ+
α = ω(δ)λ+

α + Ω++(δ)λ−α + Ω+
I (δ)uIα , (7.3.15)
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δλ−α = −ω(δ)λ−α + Ω−−(δ)λ+
α + Ω−

I (δ)uIα , (7.3.16)

where Ω±
I (δ), Ω±±(δ) and ω(δ) are arbitrary variational parameters. Sub-

stituting equations (7.3.15), (7.3.16) into (7.3.2), one finds

δλS = −
∫
W 2

(2e++ ∧Παβλ−β λ
−
α + 2e−− ∧Παβλ+

β λ
+
α )ω(δ)

+
∫
W 2

2e++ ∧Παβλ−β λ
+
αΩ−−(δ)

+
∫
W 2

2e−− ∧Παβλ+
β λ

−
αΩ++(δ)

+
∫
W 2

2e++ ∧Παβλ−β u
I
αΩ−

I (δ)

−
∫
W 2

2e−− ∧Παβλ+
β u

I
αΩ+

I (δ) . (7.3.17)

Now we can write the complete set of equations of motion which
include, in addition to equations (7.3.3), (7.3.5), (7.3.6), (7.3.7), the set
of equations for λ±α , which follows from δS/ω(δ) = 0, δS/Ω++(δ) = 0,
δS/Ω+

I (δ) = 0, δS/Ω−−(δ) = 0, and δS/Ω−
I (δ) = 0, namely

e++ ∧Παβλ−β λ
−
α + e−− ∧Παβλ+

β λ
+
α = 0 , (7.3.18)

e++ ∧Παβλ−β λ
+
α = 0 , (7.3.19)

e−− ∧Παβλ+
β λ

−
α = 0 , (7.3.20)

e++ ∧Παβλ−β u
I
α = 0 , (7.3.21)

e−− ∧Παβλ+
β u

I
α = 0 . (7.3.22)

Due to the linear independence of both one-forms e++ = dξme++
m (ξ) and

e−− = dξme−−m (ξ), equations (7.3.19), (7.3.20) imply

Παβλ−β λ
+
α = 0 . (7.3.23)

Decomposing the bosonic invariant one form Παβ = dξmΠαβ
m in the basis

provided by e±±,

Παβ = e++Παβ
++ + e−−Παβ

−− , (7.3.24)

Παβ
±± = ∇±±X

αβ − i∇±±θ
(α θβ) , (7.3.25)

where ∇±± is defined by

d ≡ e±±∇±± = e++∇++ + e−−∇−− , (7.3.26)
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one finds that equations (7.3.21) and (7.3.22) restrict only the derivatives
(∇++, ∇−−) of the bosonic coordinate function Xαβ(ξ), respectively,

Παβ
−−λ

−
β u

I
α ≡ (∇−−X

αβ − i∇−−θ
(α θβ)) λ−β u

I
α = 0 , (7.3.27)

Παβ
++λ

+
β u

I
α ≡ (∇++X

αβ − i∇++θ
(α θβ)) λ+

β u
I
α = 0 . (7.3.28)

In the same manner, equations (7.3.5) can be written as

∇−−θ
α λ−α = 0 , ∇++θ

α λ+
α = 0 . (7.3.29)

The analysis of the above set of equations in the tensorial super-
space, the search for solutions and their reinterpretation in standard D-
dimensional spacetime, possibly along the fields/extended superspace co-
ordinates correspondence of [85] (see section 6.7 of chapter 6) , or of the
‘two-time physics’ approach of [206], lies beyond the scope of this Thesis.

7.4 Gauge symmetries

The expression (7.3.1), with (7.3.17), for the general variation of the
supersymmetric string action (7.2.1) shows that the model possesses n
supersymmetries and (n− 2) κ-symmetries of the form [8]

δκθ
α(ξ) = CαβuIβ(ξ)κI(ξ) , (7.4.1)

δκX
αβ(ξ) = iδκθ

(α(ξ)θβ)(ξ) , (7.4.2)
δκλ

±
α (ξ) = 0 , δκe

±±
m (ξ) = 0 , (7.4.3)

with (n − 2) fermionic gauge parameters κI(ξ) (30 for Σ(528|32)). In the
framework of the second Noether theorem this κ-symmetry is reflected by
the fact that only 2 of the n fermionic equations (7.3.4) are independent.
We stress that the (n − 2) GL(n,R) vector fields uIα defined by (7.3.12)
are auxiliary. They allow us to write explicitly the general solution of the
equations

δκθ
α(ξ)λ±α (ξ) = 0 , (7.4.4)

which define implicitly the κ-symmetry transformation (7.4.1). Note that
the dynamical system is κ-symmetric despite it does not contain a Wess-
Zumino term. This property seems to be specific of models defined on
tensorial superspaces.

Our model also possesses 1
2(n− 1)(n− 2) b-symmetries, which are the

bosonic ‘superpartners’ of the fermionic κ-symmetries, defined by

δbX
αβ = bIJ(ξ)uαIuβJ , δbθα = 0 , δbλ

±
α = 0 , δbe

±± = 0 , (7.4.5)
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where bIJ(ξ) is symmetric and I, J = 1, . . . , n − 2. They are reflected
by the (n − 1)(n − 2)/2 Noether identities stating that the contractions
of the bosonic equations (7.3.3) with the uαIuβJ bilinears of the (n − 2)
auxiliary bosonic spinors uαI(= CαβuIβ) vanish 7.

The remaining gauge symmetries of the action (7.2.1) are the SO(1, 1)
worldsheet Lorentz invariance

δXαβ = 0, δθα = 0, δλ±α = ±ω(δ)λ±α , δe±± = ±2ω(δ)e±±, (7.4.6)

which is reflected by the fact that equation (7.3.18) is satisfied identically
when equations (7.3.6), (7.3.7) are taken into account, and the symmetry
under worldvolume general coordinate transformations.

As customary in string models, the general coordinate invariance and
the SO(1, 1) gauge symmetry allows one to fix locally the conformal gauge
where ema(ξ) = eφ(ξ)δam or, equivalently

e++ = eφ(ξ)(dτ + dσ) , e−− = eφ(ξ)(dτ − dσ) , (7.4.7)

⇔ e++
σ = e++

τ = eφ(ξ) , e−−σ = −e−−τ = −eφ(ξ) . (7.4.8)

This indicates that it makes sense to consider the fields e±±σ (τ, σ) as
nonsingular ( 1

e±±σ
= ±e−φ(ξ) in the conformal gauge), a fact used in the

Hamiltonian analysis below.
According to the correspondence [147, 58] between the κ-symmetry of

the worldvolume action and the supersymmetry preserved by a BPS state
(e.g. by a solitonic solution of the supergravity equations of motion), the
action (7.2.1) defines a dynamical model for the excitations of a BPS state
preserving all but two supersymmetries. Such a BPS state can be treated
as a composite of two BPS preons (ñ = 32 − 30). This will be proved
after the Hamiltonian analysis of next section.

7.5 Hamiltonian analysis

The gauge symmetry structure of the model has already been shown in
the Lagrangian framework. However, our dynamical system possesses ad-
ditional, second class, constraints [207], one of which is condition (7.2.3).
The Hamiltonian analysis of our Σ(

n(n+1)
2

|n) superstring model [8], that

7In the massless Σ(
n(n+1)

2 |n) superparticle and tensionless super-p-brane models the
b-symmetry [148, 155, 149] is n(n − 1)/2 parametric. This comes from the fact that
such models contain a single bosonic spinor λα and the non-trivial b-symmetry varia-
tion is the general solution of the spinorial equation δbX

αβλα = 0. In our tensionful
superstring model with two bosonic spinors λ±α (ξ), the (n − 1)(n − 2)/2 paramet-
ric b-symmetry transformations (equation (7.4.5)) are the solutions of two equations
δbX

αβλ+
α = 0 and δbX

αβλ−α = 0.
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we perform in this section, will allow us to find the number of field theo-
retical degrees of freedom of our model and to establish its relation with
the notion of BPS preons [83] (see section 4.1 of chapter 4).

The Lagrangian density L for the action (7.2.1),

S =
∫
W 2

dτdσ L , (7.5.1)

is given by

L = (e++
τ Παβ

σ − e++
σ Παβ

τ )λ−αλ
−
β − (e−−τ Παβ

σ − e−−σ Παβ
τ )λ+

αλ
+
β

−(e++
τ e−−σ − e++

σ e−−τ ) , (7.5.2)

where

Παβ
τ = ∂τX

αβ − i∂τθ
(αθβ) , Παβ

σ = ∂σX
αβ − i∂σθ

(αθβ) , (7.5.3)

are the worldsheet components of the one-form (7.2.2).
The momenta PM canonically conjugate to the configuration space

variables

ZM ≡ ZM(τ, σ) :=
(
Xαβ , θα, λ±α , e

±±
τ , e±±σ

)
(7.5.4)

are defined as usual:

PM = (Pαβ , πα , P
α(λ)
± , P τ±± , P

σ
±±) =

∂L
∂(∂τZM)

. (7.5.5)

The canonical equal τ graded Poisson brackets,

[ZN (σ) , PM(σ′)}P = −(−1)NM[PM(σ′) , ZN (σ)}P , (7.5.6)

are defined by

[ZN (σ′) , PM(σ)}P := (−1)N δNMδ(σ − σ′) , (7.5.7)

where (−1)N ≡ (−1)deg(N ) and the degree deg(N ) ≡ deg(ZN ) is 0 for
the bosonic fields, ZN = Xαβ , λ±α , e

±±
m (or for the ‘bosonic indices’ N =

(αβ), (α±), (±±),m), and 1 for the fermionic fields ZN = θα (or for the
‘fermionic indices’ N = α and N = ±).

Since the action (7.2.1) is of first order type, it is not surprising that
the expression of every momentum results in a primary [207] constraint.
Explicitly,

Pαβ = Pαβ + e++
σ λ−αλ

−
β − e−−σ λ+

αλ
+
β ≈ 0 , (7.5.8)

Dα = πα + iθβPαβ ≈ 0 , (7.5.9)
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P
α(λ)
± ≈ 0 , (7.5.10)
P σ±± ≈ 0 , (7.5.11)
P τ±± ≈ 0 , (7.5.12)

where only Dα is fermionic. Condition (7.2.3),

N := Cαβλ+
αλ

−
β − 1 ≈ 0 , (7.5.13)

imposed on the bosonic spinors from the beginning, is also a primary
constraint and has to be treated on the same footing as equations (7.5.8)-
(7.5.12).

The canonical Hamiltonian density H0,

H0 = ∂τZM PM − L , (7.5.14)

calculated on the primary constraints (7.5.8)–(7.5.12) hypersurface reads

H0 = e−−τ Παβ
σ λ+

αλ
+
β − e++

τ Παβ
σ λ−αλ

−
β + (e++

τ e−−σ − e++
σ e−−τ ) .(7.5.15)

The evolution of any functional f(ZM, PN ) is then defined by

∂τf = [f ,
∫
dσH′]P , (7.5.16)

involving the total Hamiltonian,
∫
dσH′, where the Hamiltonian density

H′ is the sum ofH0 in equation (7.5.15) and the terms given by integrals of
the primary constraints (7.5.8)-(7.5.12) multiplied by arbitrary functions
(Lagrange multipliers) [207]. Then one has to check that the primary
constraints are preserved under the evolution, ∂τPαβ ≈ 0, etc. At this
stage additional, secondary constraints may be obtained. This is the case
for our system.

Indeed, since the constraints (7.5.12) have zero Poisson brackets with
any other primary constraint, their time evolution is just determined by
the canonical HamiltonianH0, ∂τPτ±± = [Pτ±±,

∫
dσH0]P . Then ∂τPτ±± ≈

0 can be seen to produce a pair of secondary constraints,

Φ±± := Παβ
σ λ∓αλ

∓
β − e∓∓σ

= (∂σXαβ − i∂σθ
(αθβ))λ∓αλ

∓
β − e∓∓σ ≈ 0 . (7.5.17)

Slightly more complicated calculations with the total H′ show that we
also have the secondary constraint

Φ(0) := Παβ
σ λ+

αλ
−
β = (∂σXαβ − i∂σθ

(αθβ))λ+
αλ

−
β ≈ 0 (7.5.18)

(details about its derivation can be found below equation (7.5.32)). The
appearance of this secondary constraint may be understood as well by
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comparing with the results of the Lagrangian approach: it is just the σ
component of the differential form equation (7.3.23).

The secondary constraints (7.5.17) imply that the canonical Hamilto-
nian H0, equation (7.5.14), vanishes on the surface of constraints (7.5.17),

H0 ≈ 0 , (7.5.19)

a characteristic property of theories with general coordinate invariance.
Hence the total Hamiltonian reduces to a linear combination of the con-
straints (7.5.8)–(7.5.12), (7.5.17), (7.5.18),

H = −e++
τ Φ++ + e−−τ Φ−− + l(0)Φ(0) + LαβPαβ + ξαDα

+l±αP
α(λ)
± + L±±P σ±± + h±±P τ±± + L(n)N (7.5.20)

where l(0), Lαβ , ξα, l±α , L±±, h±±, L(n) and ±e±±τ are Lagrangian multi-
pliers whose form should be fixed from the preservation of all the primary
and secondary constraints under τ -evolution.

Note that the constraints (7.5.12) are trivially first class, since their
Poisson brackets with all the other constraints, including (7.5.17) and
(7.5.18), vanish. This allows us to state that e±±τ (ξ) are not dynamical
fields but rather Lagrange multipliers (as the time component of electro-
magnetic potential A0 in electrodynamics). Nevertheless, the appearance
of these Lagrange multipliers from the τ components of the zweibein e±±m
puts a ‘topological’ restriction on a possible gauge fixing; in particular the
gauge e±±τ = 0 is not allowed. Indeed, the nondegeneracy of the zweibein,
assumed from the beginning, reads

det (eam(ξ)) ≡ 1
2(e−−τ e++

σ − e++
τ e−−σ ) 6= 0 . (7.5.21)

Just due to this restriction, studying the τ -preservation of the primary
constraints, one finds the secondary constraint (7.5.18).

If by checking the (primary and secondary) constraints preservation
under τ -evolution one finds that some lagrangian multipliers remain un-
fixed, then they correspond to first class constraints [207] which generate
gauge symmetries of the system through the Poisson brackets. In other
words, since the canonical Hamiltonian vanishes in the weak sense, the to-
tal Hamiltonian is a linear combination of all first class constraints [207].
If some of the equations resulting from the τ -evolution of the constraints
(or their linear combinations) do not restrict the Lagrangian multiplier,
but imply the vanishing of a combination of the canonical variables, they
correspond to new secondary constraints, which have to be added with
new Lagrange multipliers to obtain a new total Hamiltonian. In this case
the check that all the constraints are preserved under τ–evolution has to
be repeated.
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This does not happen for our dynamical system: a further check of
the constraints τ–preservation does not result in the appearance of new
constraints. Indeed, it leads to the following set of equations for the
Lagrange multipliers

∂σ(e−−τ λ+
αλ

+
β − e++

τ λ−αλ
−
β + l(0)λ+

(αλ
−
β))

−2e−−σ λ+
(αl

+
β) + 2e++

σ λ−(αl
−
β) + L++λ−αλ

−
β − L−−λ+

αλ
+
β ≈ 0 , (7.5.22)

λ−α [2ie++
τ (∂σθλ−)− il(0)(∂σθλ+) + 2ie++

σ (ξλ−)]

−λ+
α [2ie−−τ (∂σθλ+) + il(0)(∂σθλ−) + 2ie−−σ (ξλ+)] ≈ 0 , (7.5.23)

−2e−−τ Παβ
σ λ+

β − l(0)Παβ
σ λ−β + 2e−−σ Lαβλ+

β − L(n)Cαβλ−β ≈ 0(7.5.24)

2e++
τ Παβ

σ λ−β − l(0)Παβ
σ λ+

β − 2e++
σ Lαβλ−β − L(n)Cαβλ+

β ≈ 0 , (7.5.25)

e−−τ − Lαβλ−αλ
−
β ≈ 0 , (7.5.26)

e++
τ − Lαβλ+

αλ
+
β ≈ 0 , (7.5.27)

l+αC
αβλ−β − l−αC

αβλ+
β ≈ 0 , (7.5.28)

∂σL
αβλ−αλ

−
β + 2i(ξλ−)(∂σθλ−) + 2l−Πσλ

− − L−− ≈ 0 , (7.5.29)

∂σL
αβλ+

αλ
+
β + 2i(ξλ+)(∂σθλ+) + 2l+Πσλ

+ − L++ ≈ 0 , (7.5.30)

∂σL
αβλ+

αλ
−
β + i(ξλ+)(∂σθλ−)− i(ξλ−)(∂σθλ+) +

+l+Πσλ
− + l−Πσλ

+ ≈ 0 , (7.5.31)

where the weak equality sign is used to stress that one may use the
constraints in solving the above system of equations. For brevity, in
equations (7.5.22)–(7.5.31) and below we often omit spinor indices in the
contractions

(∂σθλ±) ≡ ∂σθ
β λ±β , (ξλ±) ≡ ξβ λ±β ,

l±Πσλ
± ≡ l±αΠαβ

σ λ±β , l±Lλ± ≡ l±αL
αβ
σ λ±β . (7.5.32)

Note that equations (7.5.22)–(7.5.28) come from the requirement of τ–
preservation of the primary constraints, while that for the secondary con-
straints leads to equations (7.5.29)–(7.5.31). Thus the above statement
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about the appearance of the secondary constraint (7.5.18) can be checked
by studying equations (7.5.22)–(7.5.28) with l(0) = 0. In this case the
contraction of equation (7.5.24) with (−λ−α ) and of equation (7.5.25) with
λ+
α results, respectively, in the equations e−−τ λ+Πσλ

− − e−−σ λ+Lλ− ≈ 0
and e++

τ λ+Πσλ
− − e++

σ λ+Lλ− ≈ 0. Due to the nondegeneracy of the
zweibein, equation (7.5.21), the solution to these two equations is trivial,
i.e. it implies λ+Lλ− ≈ 0 and λ+Πσλ

− ≈ 0, the last of which is just the
secondary constraint (7.5.18).

To solve this system of equations for the Lagrange multipliers and thus
to describe explicitly the first class constraints, we can use the auxiliary
spinor fields uIα(ξ) defined as in (7.3.12), (7.3.13). The general solution
of equations (7.5.22)–(7.5.31) obtained in such a framework reads

Lαβ = bIJu
αIuβJ

+
e++
τ

e++
σ

[
e++
σ λ−αλ−β + 2

(
λ−γ Πγ(α

σ λ+β) − (λ−Πσλ
+)λ−(αλ+β)

+(λ−Πσλ
−)λ+(αλ+β)

)]
+
e−−τ
e−−σ

[
e−−σ λ+αλ+β − 2

(
λ+
γ Πγ(α

σ λ−β) − (λ+Πσλ
+)λ−(αλ−β)

+(λ+Πσλ
−)λ+(αλ−β)

)]
, (7.5.33)

ξα = κI u
αI +

e++
τ

e++
σ

(∂σθλ−)λ+α − e−−τ
e−−σ

(∂σθλ+)λ−α , (7.5.34)

l+α = ω(0)λ+
α +

e−−τ
e−−σ

(
∂σλ

+
α − Ω(0)

σ λ+
α

)
+

e−−τ
2e−−σ e−−σ

[
− e−−σ Ω++

σ − e++
σ Ω−−

σ + i∂σθλ
+∂σθλ

−

−Παβ
σ (∂σλ+

αλ
−
β − λ+

α∂σλ
−
β )
]
λ−α

+
e++
τ

2e++
σ e−−σ

[
e−−σ Ω++

σ + e++
σ Ω−−

σ + i∂σθλ
+∂σθλ

−

+Παβ
σ (∂σλ+

αλ
−
β − λ+

α∂σλ
−
β )
]
λ−α , (7.5.35)

l−α = −ω(0)λ−α +
e++
τ

e++
σ

(
∂σλ

−
α + Ω(0)

σ λ−α

)
+

+
e−−τ

2e++
σ e−−σ

[
− e−−σ Ω++

σ − e++
σ Ω−−

σ + i∂σθλ
+∂σθλ

− −

−Παβ
σ (∂σλ+

αλ
−
β − λ+

α∂σλ
−
β )
]
λ+
α +
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+
e++
τ

2e++
σ e++

σ

[
e−−σ Ω++

σ + e++
σ Ω−−

σ + i∂σθλ
+∂σθλ

− +

+Παβ
σ (∂σλ+

αλ
−
β − λ+

α∂σλ
−
β )
]
λ+
α , (7.5.36)

L±± = ∂σe
±±
τ + 2e±±τ Ω(0)

σ ± 2e±±σ ω(0) , (7.5.37)

L(n) = −4det(eam) ≡ −2(e−−τ e++
σ − e++

τ e−−σ ) , (7.5.38)

l(0) = 0 , (7.5.39)

where, Ω±±
σ and Ω(0)

σ (cf. equations (7.3.15)) are given by

Ω++
σ := ∂σλ

+Cλ+ , Ω−−
σ := ∂σλ

−Cλ− , (7.5.40)

Ω(0)
σ :=

1
2
(∂σλ+Cλ− − λ+C∂σλ

−) . (7.5.41)

In this solution the parameters

bosonic : bIJ = bJI , ω(0) , e±±τ , h±± , (7.5.42)
fermionic : κI , (7.5.43)

are indefinite. They correspond to the first class constraints

PIJ :=PαβuαIuβJ ≈ 0 , (7.5.44)

DI :=DαuαI ≈ 0 , (7.5.45)

G(0) := λ+
αP

α(λ)
+ − λ−αP

α(λ)
− + 2e++

σ P σ++ − 2e−−σ P σ−− ≈ 0 , (7.5.46)

Φ̃++ = Φ++ + ∂σP
σ
++ − 2Ω(0)

σ P σ++ − 2e−−σ N

− 1
e++
σ

(∂σλ−α + Ω(0)
σ λ−α )Pα(λ)

− − 1
e++
σ

(∂σθλ−)(λ+αDα)−

−
[
λ−αλ−β +

2
e++
σ

(
λ−γ Πγα

σ λ+β − (λ−Πσλ
+)λ−αλ+β

+(λ−Πσλ
−)λ+αλ+β

)]
Pαβ

− 1
2e++
σ

[
e−−σ Ω++

σ + e++
σ Ω−−

σ + i∂σθλ
+∂σθλ

−

+Παβ
σ (∂σλ+

αλ
−
β − λ+

α∂σλ
−
β )
] [λ−αPα(λ)

+

e−−σ
+
λ+
αP

α(λ)
−

e++
σ

]
(7.5.47)

Φ̃−− := Φ−− − ∂σP
σ
−− + 2Ω(0)

σ P σ−− − 2e++
σ N
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− 1
e−−σ

(∂σθλ+)(λ−αDα) +
1
e−−σ

(∂σλ+
α + Ω(0)

σ λ+
α )Pα(λ)

+ +

+
[
λ+αλ+β − 2

e−−σ

(
λ+
γ Πγα

σ λ−β − (λ+Πσλ
+)λ−αλ−β +

+(λ+Πσλ
−)λ+αλ−β

)]
Pαβ

+
1

2e−−σ

[
− e−−σ Ω++

σ − e++
σ Ω−−

σ + i∂σθλ
+∂σθλ

−

−Παβ
σ (∂σλ+

αλ
−
β − λ+

α∂σλ
−
β )
] [λ−αPα(λ)

+

e−−σ
+
λ+
αP

α(λ)
−

e++
σ

]
(7.5.48)

and

P τ±± ≈ 0 . (7.5.49)

In equations (7.5.47), (7.5.48) the relation

δα
β ≈ λ+

αλ
−β − λ−αλ

+β − uIαu
JβCIJ , (7.5.50)

λ±β := Cβαλ±α , uIβ := CβαuIα , (7.5.51)

has been used to remove the auxiliary variables uIα in all places where it
is possible. Note that (7.5.50) is a consequence of the constraint (7.5.13)
and of the definition of the uIα spinors, equations (7.3.12), (7.3.13) (see
further discussion on the use of u variables below). Thus we are allowed
to use them in the solution of the equation for the Lagrange multipliers
and, then, in the definition of the first class constraints, as the product
of any two constraints is a first class one since its Poisson brackets with
any other constraint vanishes weakly.

Using the Poisson brackets (7.5.7), the first class constraints generate
gauge symmetries. In our dynamical system the fermionic first class con-
straints (7.5.45) are the generators of the (n−2)–parametric κ–symmetry
(7.4.1)–(7.4.3). The PIJ in equation (7.5.44) are the 1

2(n − 1)(n − 2)
generators of the b-symmetry (7.4.5). The constraint G(0) (7.5.46) gener-
ates the SO(1, 1) gauge symmetry (7.2.10). Finally, the constraints Φ̃±±,
equations (7.5.47), (7.5.48), generate worldvolume reparameterizations.
They provide a counterpart of the Virasoro constraints characteristic of
the Green–Schwarz superstring action. Thus, as it could be expected, our
Σ(

n(n+1)
2

|n) superstring is a two-dimensional conformal field theory. As it
was noted above, the presence of the first class constraints (7.5.49) indi-
cates the pure gauge nature of the fields e±±τ (ξ); the freedom of the gauge
fixing is, nevertheless, restricted by the ‘topological’ conditions (7.5.21).

Note that the κ–symmetry and b–symmetry generators, in (7.5.45)
and (7.5.44), are the uIα and uIαu

J
β components of equation (7.5.9) and
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equation (7.5.8), respectively, while all other first class constraints can
be defined without any reference to auxiliary variables. The use of the
auxiliary spinors uIα(ξ) to define the first class constraints requires some
discussion. Any spinor can be decomposed in the basis (7.3.14), but the
use of uIα to define constraints requires, to be rigorous, to consider them as
(auxiliary) dynamical variables, to introduce momenta, and to take into
account any additional constraints for them, including equations (7.3.13)
and the vanishing of the momenta conjugate to uIα (cf. [208]).

An alternative is to consider these auxiliary spinors as defined by
(7.3.12), (7.3.13) and by the gauge symmetries of these constraints, i.e.
to treat them as some implicit functions of λ±α (cf. [209]). Such a de-
scription can be obtained rigorously by the successive gauge fixings of
all the additional gauge symmetries that act only on uIα and by intro-
ducing Dirac brackets accounting for all the second class constraints for
the uIα variables. Nevertheless, with some precautions, the above sim-
pler alternative can be used from the beginning. In this case, one has to
keep in mind, in particular, that the uIα’s do not commute with P

α(λ)
± .

Indeed, as conditions (7.3.12) have to be treated in a strong sense, one
has to assume [Pα(λ)

± (σ), uIβ(σ
′)]P ≈ ±λ±βC

αγuIγδ(σ − σ′). However, one
notices that this does not change the result of the analysis of the num-
ber of first and second class constraints among equations (7.5.8)–(7.5.13),
(7.5.17), (7.5.18), which do not involve uIγ(ξ). The reason is that one only
uses uIγ(ξ) as multipliers needed to extract the first and second class con-
straints from the mixed ones (7.5.8), (7.5.9). Thus, the Poisson brackets
of the projected constraints PαβuαIuβJ , uαIDα with other constraints
(e.g., [PαβuαIuβJ , . . .]P ) and the projected Poisson brackets of the origi-
nal constraints Pαβ , Dα with the same ones (e.g., uαIuβJ [Pαβ , . . .]P ) are
equivalent in the sense that a non-zero difference ([PαβuαIuβJ , . . .]P −
uαIuβJ [Pαβ , . . .]P ) will be proportional to Pαβ or Dα and, hence, will
vanish weakly. This observation allows us to use the basis (7.3.14) to
solve the equations (7.5.22)–(7.5.28), that is to say, to decompose the
constraints (7.5.8)–(7.5.13), (7.5.17), (7.5.18) into first and second class
ones, without introducing momenta for the uIγ(ξ) and without studying
the constraints restricting these variables.

The remaining constraints are second class. In particular, these are
the λ± components of the fermionic constraints (7.5.9),

D± = Dαλ±α = παλ
±α + ie±±σ θβλ∓β ≈ 0 (7.5.52)

with Poisson brackets

{D+(σ),D+(σ′)}P ≈ +2ie++
σ δ(σ − σ′) ,

{D+(σ),D+(σ′)}P ≈ −2ie−−σ δ(σ − σ′) ,
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{D+(σ),D+(σ′)}P ≈ 0 (7.5.53)

(recall that, having in mind the possibility of fixing the conformal gauge
(7.4.7), we assume nondegeneracy of e±±σ (σ), i.e. that the expression
1/e±±σ (σ) is well defined). The selection of the basic second class con-
straints and the simplification of their Poisson bracket algebra is a tech-
nically involved problem.

In the next section we show that the dynamical degrees of freedom
of our superstring in Σ(

n(n+1)
2

|n), may be presented in a more economic
way in terms of constrained OSp(2n|1) supertwistors. The Hamiltonian
mechanics also simplifies in this symplectic supertwistor formulation. In
particular, all the first class constraints can be extracted without using
the auxiliary fields uIα. The reason is that the supertwistor variables are
invariant under both κ– and b–symmetry. Thus, moving to the twistor
form of our action means rewriting it in terms of trivially κ– and b–
invariant quantities, effectively removing all variables that transform non-
trivially under these gauge symmetries. Since the description of κ– and
b–symmetries is the one requiring the introduction of the uIα(ξ) fields,
it is natural that these are not needed in the supertwistor Hamiltonian
approach.

This consideration already allows us to calculate the number of the
(field theoretical worldsheet) degrees of freedom of our superstring model
[8]. The dynamical system described by the action (7.2.1) possesses
1
2(n − 1)(n − 2) + 5 bosonic first class constraints (equations (7.5.44),
(7.5.46), (7.5.47), (7.5.48) and (7.5.49)) out of a total number of 1

2n(n+
1) + 2n + 8 constraints (equations (7.5.8), (7.5.10), (7.5.11), (7.5.12),
(7.5.13), (7.5.17) and (7.5.18)). This leaves 4n + 2 bosonic second class
constraints. Since the phase space dimension corresponding to the world-
volume bosonic fields ZM(τ, σ) = (Xαβ , λ±α , e

±±
σ , e±±τ ) is 2(n(n+1)

2 +2n+
4), the action (7.2.1) turns out to have (4n−6) bosonic degrees of freedom.

Likewise, the (n−2) fermionic first class constraints (7.5.45) and the 2
fermionic second class constraints, equations (7.5.52), reduce the original
2n phase space fermionic degrees of freedom of the action (7.2.1) down
to 2.

Thus our supersymmetric string model in Σ(
n(n+1)

2
|n) superspace car-

ries (4n − 6) bosonic and 2 fermionic worldvolume field theoretical de-
grees of freedom. Treating the number n as the number of components of
an irreducible spinor representation of the D-dimensional Lorentz group
SO(1, D − 1), one finds [8]
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D n #bosonic d.o.f. #fermionic d.o.f. BPS
= 4n− 6 = 2 states

3 2 2 2 NO
4 4 10 2 1/2
6 8 26 2 6/8
10 16 58 2 14/16
11 32 122 2 30/32

Table 7.1. Bosonic and fermionic degrees of freedom

of the model in various dimensions

Thus, the number of bosonic degrees of freedom of our Σ(
n(n+1)

2
|n) su-

perstring model exceeds that of the Green–Schwarz superstring (where it
exists, 4n−6 > 2(D−2)), while the number of fermionic dimensions, 2, is
smaller than that of the Green–Schwarz superstring for D = 6, 10. Note
that here the #(bosons) = #(fermions) rule is not valid. The additional
bosonic degrees of freedom might be treated as higher spin degrees of free-
dom and/or as corresponding to the additional ‘brane’ central charges in
the maximal supersymmetry algebra (2.1.10). The smaller number of
physical fermionic degrees of freedom just reflects the presence of extra
κ–symmetries ((n−2) > n/2 for n > 4) in our Σ(528|32) superstring model.
Our Σ(

n(n+1)
2

|n) superstring model describes, as argued, the excitations of
a BPS state preserving k = (n− 2) supersymmetries (a 30

32 BPS state for
the D = 11 superstring in Σ(528|32)).

The search for solitonic solutions of the usual D = 11 and D = 10
Type II supergravities preserving exotic fractions of supersymmetry is a
subject of recent interest. If successful, it would be interesting to study
how the additional bosonic degrees of freedom of our model are mapped
into the moduli of these solutions, presumably related to the gauge fields
of the supergravity multiplet (cf. [85]). Nevertheless, if it were shown
that such solutions do not appear in the standard D = 11 supergravity,
this could indicate that M Theory does require an extension of the usual
superspace for its adequate description.

To conclude this section we comment on the BPS preon interpretation
of our model. In agreement with [83], it can be argued to describe a
composite of ñ = n− k = 2 BPS preons. To support this conclusion one
can have a look at the constraint (7.5.8). As we have shown, it is a mixture
of first and second class constraints. However, performing a ‘conversion’
of the second class constraints [210] to obtain first class constraints (in a
way similar to the one carried out for a point–like model in [155]), one
arrives at the first class constraint

Pαβ = Pαβ + e++
σ λ̃−α λ̃

−
β − e−−σ λ̃+

α λ̃
+
β ≈ 0 , (7.5.54)
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where the λ̃±α are related to λ±α . In the quantum theory this first class
constraint can be imposed on quantum states giving rise to a relation
similar to equation (4.1.8) with ñ = n− k = 2.

7.6 Supertwistor form of the action

Further analysis of the Hamiltonian mechanics of our Σ(
n(n+1)

2
|n) super-

string model would become quite involved. Instead, we present in this
section a more economic description of the system.

The action (7.2.1) can be rewritten (α′ = 1) in the form [8]

S =
∫
W 2

[e++ ∧ (dµ−αλ−α − µ−αdλ−α − idη−η−)

−e−− ∧ (dµ+αλ+
α − µ+αdλ+

α − idη+η+)
−e++ ∧ e−−] , (7.6.1)

where the bosonic µ±α and the fermionic η± are defined by

µ±α = Xαβλ±β −
i

2
θαθβλ±β , η± = θβλ±β . (7.6.2)

Equations (7.6.2) are reminiscent of the Ferber generalization [211] of the
Penrose correspondence relation [212] (see also [83, 148]). The two sets of
2n+ 1 variables belonging to the same real one-dimensional (Majorana–
Weyl spinor) representation of the worldsheet Lorentz group SO(1, 1),

(µ+α, λ+
α , η

+) := Y +Σ , (µ−α, λ−α , η
−) := Y −Σ , (7.6.3)

can be treated as the components of two OSp(2n|1) supertwistors, Y +Σ

and Y −Σ. However, equations (7.6.2) considered together imply the fol-
lowing constraint:

λ+
αµ

−α − λ−αµ
+α − iη−η+ = 0 . (7.6.4)

One has to consider as well the ‘kinematic’ constraint (7.2.3), which
breaks GL(n,R) down to Sp(n,R). In terms of the two supertwistors
Y ±Σ the action (7.2.1) describing our tensionful string model and the
constraints (7.2.3), (7.6.4) can be written as follows8 [8]

S =
∫
W 2

[e++ ∧ dY −Σ ΩΣΠY
−Π

−e−− ∧ dY +Σ ΩΣΠY
+Π − e++ ∧ e−−] ; (7.6.5)

8See [213] for a recent construction of massive particle actions in terms of only one
supertwistor.
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Y +ΣCΣΠY
−Π = 1 , (7.6.6)

Y +Σ ΩΣΠY
−Π = 0 , (7.6.7)

where the nondegenerate matrix ΩΣΠ = −(−1)deg(±Σ)deg(±Π)ΩΠΣ is the
orthosymplectic metric,

ΩΣΠ =

 0 δα
β 0

−δβα 0 0
0 0 −i

 , (7.6.8)

preserved by OSp(2n|1). The degenerate matrix CΣΠ in equation (7.6.6)
has the form

CΣΠ =

0 0 0
0 Cαβ 0
0 0 0

 (7.6.9)

with Cαβ defined in (7.2.5).
One can also find the orthosymplectic twistor form for the action

(7.6.1) with unconstrained spinors. It reads [8]

S =
∫
W 2

[e++ ∧ (dM−αΛ−α −M−αdΛ−α − idχ−χ−)

−e−− ∧ (dM+αΛ+
α −M+αdΛ+

α − idχ+χ+)
−e++ ∧ e−−(CαβΛ+

αΛ−β )2] , (7.6.10)

where

M±α = XαβΛ±β −
i

2
θαθβΛ±β , χ± = θβΛ±β . (7.6.11)

Equation (7.6.11) differs from (7.6.2) only by replacement of the con-
strained dimensionless λ± by the unconstrained dimensionful Λ±. But,
as a result, the OSp(2n|1) supertwistors

Υ±Σ := (M±α,Λ±α , χ
±) , (7.6.12)

are restricted by only one condition similar to (7.6.7),

Υ+Σ ΩΣΠΥ−Π = 0 . (7.6.13)

The action in terms of Υ±Σ includes the degenerate matrix CΣΠ, and
reads [8]

S =
∫
W 2

[e++ ∧ dΥ−Σ ΩΣΠΥ−Π − e−− ∧ dΥ+Σ ΩΣΠΥ+Π

− e++ ∧ e−− (Υ+ΣCΣΠΥ−Π)2] . (7.6.14)
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The orthosymplectic supertwistors Υ±Σ are both in the fundamental
representation of the OSp(2n|1) supergroup. The constraints (7.6.7) (or
(7.6.13)) are also OSp(2n|1) invariant. However, condition (7.6.6) (or the
last term in the action (7.6.14)) breaks the OSp(2n|1) invariance down to
the semidirect product Σ(

n(n+1)
2

|n) oSp(n,R), generalizing superPoincaré,
of Sp(n,R) ⊂ Sp(2n,R) and the maximal superspace group Σ(

n(n+1)
2

|n)

(see appendix C). In contrast, both the point–like model in [148] and the
tensionless superbrane model of [149] possess full OSp(2n|1) symmetry.
This is in agreement with treating OSp(2n|1) as a generalized supercon-
formal group, as the standard conformal and superconformal symmetry
is broken in any model with mass, tension or another dimensionful pa-
rameter.

7.7 Hamiltonian analysis in the supertwistor formulation

The Hamiltonian analysis simplifies in the supertwistor formulation (7.6.5)
of the action (7.2.1) [8]. This is due to the fact that moving from (7.2.1)
to (7.6.5) reduces the number of fields involved in the model.

The Lagrangian of the action (7.6.5) reads

L = (e++
τ ∂σY

−Σ − e++
σ ∂τY

−Σ
)ΩΣΠY

−Π

−(e−−τ ∂σY
+Σ − e−−σ ∂τY

+Σ
)ΩΣΠY

+Π

−(e++
τ e−−σ − e++

σ e−−τ ) , (7.7.1)

and involves the 2(2n+ 1 + 2) = 4n+ 6 configuration space worldvolume
fields

Z̃M̃ ≡ Z̃M̃(τ, σ) =
(
Y

±Σ
, e±±τ , e±±σ

)
. (7.7.2)

The calculation of their canonical momenta

P̃M̃ = (P±Σ , P
τ
±± , P

σ
±±) =

∂L
∂(∂τ Z̃M̃)

(7.7.3)

provides the following set of primary constraints:

P±Σ = P±Σ ∓ e∓∓σ ΩΣΠY
±Π ≈ 0 , (7.7.4)

P σ±± ≈ 0 , (7.7.5)
P τ±± ≈ 0 . (7.7.6)

Conditions (7.6.7), (7.6.6) should also be taken into account after all the
Poisson brackets are calculated and, hence, are also primary constraints,

U := Y +Σ ΩΣΠY
−Π ≈ 0 , (7.7.7)
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N := Y +ΣCΣΠY
−Π − 1 ≈ 0 . (7.7.8)

The canonical Hamiltonian density H0 corresponding to the action
(7.6.5), reads

H0 = [−e++
τ ∂σY

−Σ
ΩΣΠY

−Π
+ e−−τ ∂σY

+Σ
ΩΣΠY

+Π

+(e++
τ e−−σ − e++

σ e−−τ )] . (7.7.9)

The preservation of the primary constraints under τ–evolution (see sec-
tion 7.5) leads to the secondary constraints

Φ++ = ∂σY
−Σ

ΩΣΠY
−Π − e−−σ ≈ 0 , (7.7.10)

Φ−− = ∂σY
+Σ

ΩΣΠY
+Π − e++

σ ≈ 0 , (7.7.11)

Φ(0) = ∂σY
+Σ

ΩΣΠY
−Π − Y

+Σ
ΩΣΠ∂σY

−Π ≈ 0 . (7.7.12)

Again (see section 7.5) the canonical Hamiltonian vanishes on the sur-
face of constraints (7.7.10), (7.7.11), and thus the τ–evolution is defined
by the Hamiltonian density (cf. (7.5.20))

H′ = −e++
τ Φ++ + e−−τ Φ−− + l(0)Φ(0) + L±ΣP±Σ +

+L(0)U + L(n)N + L±±P σ±± + h±±P τ±± (7.7.13)

and the canonical Poisson brackets

[P±Λ(σ) , Y
±Σ

(σ′)}P = −δΣ

Λ
δ(σ − σ′), (7.7.14)

[e±±σ (σ) , P σ±±(σ′)]P = δ(σ − σ′) , (7.7.15)
[e±±τ (σ) , P τ±±(σ′)]P = δ(σ − σ′) , (7.7.16)

Then the τ–preservation requirement of the primary and secondary
constraints results in the following system of equations for the Lagrange
multipliers

L
+Σ ≈ e−−τ

e−−σ
∂σY

+Σ
+
∂σe

−−
τ − L−−

2e−−σ
Y

+Σ
+
l(0)

e−−σ
∂σY

−Σ

+
∂σl

(0) − L(0)

2e−−σ
Y

−Σ − L(n)

2e−−σ
Y

−Π
(CΩ)Π

Σ
, (7.7.17)

L
−Σ ≈ e++

τ

e++
σ

∂σY
−Σ

+
∂σe

++
τ − L++

2e++
σ

Y
−Σ − l(0)

e++
σ

∂σY
+Σ

−∂σl
(0) + L(0)

2e++
σ

Y
+Σ − L(n)

2e++
σ

Y
+Π

(CΩ)Π

Σ
, (7.7.18)
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L
+Σ

ΩΣΠY
−Π ≈ L

−Σ
ΩΣΠY

+Π
, (7.7.19)

L
+Σ
CΣΠY

−Π ≈ L
−Σ
CΣΠY

+Π
, (7.7.20)

L
−Σ

ΩΣΠY
−Π ≈ e−−τ , (7.7.21)

L
+Σ

ΩΣΠY
+Π ≈ e++

τ , (7.7.22)

and

L−− ≈ ∂σL
−Σ

ΩΣΠY
−Π − L

−Σ
ΩΣΠ∂σY

−Π
, (7.7.23)

L++ ≈ ∂σL
+Σ

ΩΣΠY
+Π − L

+Σ
ΩΣΠ∂σY

+Π
, (7.7.24)∑

±

(
∂σL

±Σ
ΩΣΠY

∓Σ − L
±Σ

ΩΣΠ∂σY
∓Σ
)
≈ 0 . (7.7.25)

where (CΩ)Π

Σ
:= CΠΛΩ

ΛΣ
and Ω

ΣΠ
= −ΩΣΠ is the inverse of the or-

thosymplectic metric (7.6.8),

ΩΣΛΩ
ΛΠ

= δ
Π

Σ
, Ω

ΣΠ
=

 0 −δβα 0
δα
β 0 0

0 0 i

 . (7.7.26)

Equations (7.7.17)–(7.7.22) come from the preservation of the pri-
mary constraints, while equations (7.7.23)–(7.7.25) from the preservation
of the secondary constraints. Again, as in section 7.5, one can follow
the appearance of the secondary constraint (7.7.12) by considering equa-
tions (7.7.17)–(7.7.22) with l(0) = 0. Denoting

A(0)
σ =

1
2

(
∂σY

+Σ
CΣΠY

−Π − Y
+Σ
CΣΠ∂σY

−Π
)
, (7.7.27)

A++
σ = ∂σY

+Σ
CΣΠY

+Π
, (7.7.28)

A−−σ = ∂σY
−Σ
CΣΠY

−Π
, (7.7.29)

B(0) = S − ∂σY
+Ω∂σY −

2e++
σ e−−σ

, (7.7.30)

S =
1
2

(
A++
σ

e++
σ

+
A−−σ
e−−σ

)
, (7.7.31)

one can write the general solution of equations (7.7.17)–(7.7.22) in the
form

L
+Σ ≈ ω(0)Y

+Σ
+

+
e−−τ
e−−σ

(
∂σY

+Σ −A(0)
σ Y

+Σ − e++
σ B(0)Y

−Σ
+ e++

σ (Y −CΩ)
Σ
)
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+e++
τ

(
B(0)Y

−Σ − (Y −CΩ)
Σ
)
, (7.7.32)

L
−Σ ≈ −ω(0)Y

−Σ

+
e++
τ

e++
σ

(
∂σY

−Σ
+A(0)

σ Y
−Σ

+ e−−σ B(0)Y
+Σ − e−−σ (Y +CΩ)

Σ
)

−e−−τ
(
B(0)Y

+Σ − (Y +CΩ)
Σ
)
, (7.7.33)

L(0) = 2(e−−τ e++
σ − e++

τ e−−σ )B(0) , (7.7.34)

L±± = ∂σe
±±
τ ∓ 2e±±τ A(0)

σ ± 2e±±σ ω(0) , (7.7.35)

L(n) = −4det(eam) ≡ −2(e−−τ e++
σ − e++

τ e−−σ ) , (7.7.36)

l(0) = 0 . (7.7.37)

Note that equations (7.7.36), (7.7.37) have the same form as (7.5.38),
(7.5.39) for the Lagrange multipliers in the original formulation, and equa-
tions (7.7.35) are similar to equations (7.5.37).

The above solution contains the indefinite worldsheet field parameters
h±±(ξ), ω(0)(ξ) and e±±τ (ξ) corresponding to the five first class constraints
which generate the gauge symmetries of the symplectic twistor formula-
tion of our Σ(

n(n+1)
2

|n) superstring model. They are

P τ±± ≈ 0 (7.7.38)

and

G(0) := Y
+ΣP+Σ − Y

−ΣP−Σ + 2e++
σ P σ++ − 2e−−σ P σ−− ≈ 0 , (7.7.39)

Φ̃++ := Φ++ + ∂σP
σ
++ + 2A(0)

σ P σ++ + 2e−−σ B(0)U

−2e−−σ N + F±Σ

++P±Σ , (7.7.40)

Φ̃−− := Φ−− − ∂σP
σ
−− + 2A(0)

σ P σ−− + 2e++
σ B(0)U

−2e++
σ N + F±Σ

−−P±Σ , (7.7.41)

where

F+Σ

++ = −B(0)Y
−Σ

+ (Y −CΩ)
Σ
, (7.7.42)

F−Σ

++ = − 1
e++
σ

[∂σY
−Σ

+A(0)
σ Y

−Σ
+B(0)e−−σ Y

+Σ − e−−σ (Y +CΩ)
Σ
] ,

(7.7.43)

F+Σ

−− =
1
e−−σ

[∂σY
+Σ −A(0)

σ Y
+Σ −B(0)e++

σ Y
−Σ

+ e++
σ (Y −CΩ)

Σ
],(7.7.44)

F−Σ

−− = −B(0)Y
+Σ

+ (Y +CΩ)
Σ
. (7.7.45)



7.7 Hamiltonian analysis in the supertwistor formulation 149

Using Poisson brackets, the constraint (7.7.39) generates the SO(1, 1)
worldsheet Lorentz gauge symmetry, (7.7.40) and (7.7.41) are the repa-
rameterization (Virasoro) generators, and the symmetry generated by
equations (7.7.38) indicates the pure gauge nature of the e±±τ (ξ) fields
(again, subject to the nondegeneracy condition (7.5.21) that restricts the
gauge choice freedom for them).

Note that both the b–symmetry and the κ–symmetry generators,
equations (7.5.44) and (7.5.45), are not present in the symplectic su-
pertwistor formulation. Actually, the number of variables in this for-
mulation minus the constraint among them, equation (7.6.7), is (4n +
6) − 1 and equal to the number of variables in the previous formulation
(n(n+1)

2 +n+2n+4), minus the number of b– and κ–symmetry generators
( (n−1)(n−2)

2 + (n − 2)). This indicates that the transition to the super-
twistor form of the action corresponds to an implicit gauge fixing of these
symmetries and the removal of the additional variables, since the remain-
ing supertwistor ones are invariant under both b– and κ–symmetry9.

Other constraints are second class. Indeed, e.g. the algebra of the
constraints P±Σ, equation (7.7.4),

[P+Σ(σ) , P+Λ(σ′)}P = 2e−−σ ΩΛΣδ(σ − σ′) , (7.7.46)
[P−Σ(σ) , P−Λ(σ′)}P = −2e++

σ ΩΛΣδ(σ − σ′) , (7.7.47)
[P+Σ(σ) , P−Λ(σ′)}P = 0 , (7.7.48)

shows their second class nature. As such, one can introduce the graded
Dirac (or starred [207]) brackets that allows one to put them strongly
equal to zero. For any arbitrary two (bosonic or fermionic) functionals f
and g of the canonical variables (7.7.2), (7.7.3) they are defined by

[f(σ1), g(σ2)}D = [f(σ1), g(σ2)}P

−1
2

∫
dσ

(
1

e−−σ (σ)
[f(σ1),P+Σ(σ)}P Ω

ΠΣ
[P+Π(σ), g(σ2)}P

− 1
e++
σ (σ)

[f(σ1),P−Σ(σ)}P Ω
ΠΣ

[P−Π(σ), g(σ2)}P

)
. (7.7.49)

Using these and reducing further the number of phase space degrees of
freedom by setting P±Σ = 0 strongly, the supertwistor becomes a self-
conjugate variable,

[Y
±Σ

(σ), Y
±Π

(σ′)}D = ∓ 1
2e∓∓σ

Ω
ΣΠ
δ(σ − σ′) . (7.7.50)

9This invariance was known for the massless superparticle and the tensionless su-
perstring cases, see e.g. [148, 149, 155, 214].
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For the ‘components’ of the supertwistor, equation (7.7.50) implies

[λ±α (σ), µ±β(σ′)]D = ∓ 1
2e∓∓σ

δβαδ(σ − σ′) , (7.7.51)

{η±(σ), η±(σ′)}D = ∓ i

2e∓∓σ
δ(σ − σ′) . (7.7.52)

The Dirac brackets for e±±σ , e±±τ and P τ±± coincide with the Poisson
brackets, while for P σ±± one finds

[P σ++(σ), ...]D = [P σ++(σ), ...]P −
1

2e++
σ

Y
−Σ

(σ)[P−Σ(σ), ...}P ,(7.7.53)

[P σ−−(σ), ...]D = [P σ−−(σ), ...]P −
1

2e−−σ
Y

+Σ
(σ)[P+Σ(σ), ...}P .(7.7.54)

However, P σ±±(σ) still commute among themselves,

[P σ±±(σ), P σ±±(σ′)]D = 0 = [P σ++(σ), P σ−−(σ′)]D . (7.7.55)

When the constraints (7.7.4) are taken as strong equations, the first
class constraints (7.7.39)–(7.7.41) simplify to

G(0) := 2e++
σ P σ++ − 2e−−σ P σ−− ≈ 0 , (7.7.56)

Φ̃++ := Φ++ + ∂σP
σ
++ + 2A(0)

σ P σ++ + 2e−−σ B(0)U − 2e−−σ N ≈ 0, (7.7.57)

Φ̃−− := Φ−− − ∂σP
σ
−− + 2A(0)

σ P σ−− + 2e++
σ B(0)U − 2e++

σ N ≈ 0, (7.7.58)

and the remaining second class constraints can be taken in the form

K(0) := e++
σ P σ++ + e−−σ P σ−− ≈ 0 , (7.7.59)

N = Y +ΣCΣΠY
−Π − 1 ≈ 0 , (7.7.60)

U = Y +Σ ΩΣΠY
−Π ≈ 0 , (7.7.61)

Φ(0) = ∂σY
+Σ

ΩΣΠY
−Π − Y

+Σ
ΩΣΠ∂σY

−Π ≈ 0 . (7.7.62)

One has to take into account that, under the Dirac brackets, P σ±± and
Y ∓Σ do not commute,

[P σ++(σ), Y −Σ(σ′)]D =
1

2e++
σ

Y
−Σ

(σ)δ(σ − σ′) , (7.7.63)

[P σ−−(σ), Y +Σ(σ′)]D =
1

2e−−σ
Y

+Σ
(σ)δ(σ − σ′) . (7.7.64)

Then one checks that, under Dirac brackets, G(0) generates the SO(1, 1)
transformations of the supertwistors,

[G(0)(σ), Y ±Σ(σ′)]D = ∓Y ±Σ
(σ)δ(σ − σ′) . (7.7.65)
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On the other hand, one finds that the second class constraint U inter-
changes the Y +Σ and Y −Σ supertwistors,

[U(σ) , Y +Σ(σ′)]D =
1

2e−−σ
Y

−Σ
(σ)δ(σ − σ′) ,

[U(σ), Y −Σ(σ′)]D =
1

2e++
σ

Y
+Σ

(σ)δ(σ − σ′) . (7.7.66)

It is interesting to note that in the original supertwistor formulation of
the D = 4, N = 1 superparticle [211] there exists a counterpart of the
U constraint; however, there it is the first class constraint generating the
internal U(1) symmetry10.

The Dirac brackets of the above second class constraints (7.7.59)–
(7.7.62) are:

[Φ(0)(σ),U(σ′)]D =

= −1
2

(
∂σY

+Σ(σ)ΩΣΠY
+Π(σ)

e++
σ (σ)

+
∂σY

−Σ(σ)ΩΣΠY
−Π(σ)

e−−σ (σ)

)
δ(σ − σ′)

= −1
2

(
Φ++(σ)
e++
σ (σ)

+
Φ−−(σ)
e−−σ (σ)

+ 2
)
δ(σ − σ′)

≈ −δ(σ − σ′) , (7.7.67)

[Φ(0)(σ),N (σ′)]D =

= −1
2

(
∂σY

+Σ(σ)CΣΠY
+Π(σ)

e++
σ (σ)

+
∂σY

−Σ(σ)CΣΠY
−Π(σ)

e−−σ (σ)

)
δ(σ − σ′)

= −1
2

(
A++
σ (σ)
e++
σ (σ)

+
A−−σ (σ)
e−−σ (σ)

)
δ(σ − σ′) ≡ −S(σ)δ(σ − σ′) , (7.7.68)

[K(0)(σ),U(σ′)]D = Y +Σ(σ)ΩΣΠY
−Π(σ) δ(σ − σ′)

= U δ(σ − σ′) ≈ 0 , (7.7.69)

[K(0)(σ),N (σ′)]D = Y +Σ(σ)CΣΠY
−Π(σ) δ(σ − σ′)

= (N + 1) δ(σ − σ′) ≈ δ(σ − σ′) , (7.7.70)

[K(0)(σ),Φ(0)(σ′)]D =
= 1

2

(
∂σY

+Σ(σ)ΩΣΠY
−Π(σ)− Y +Σ(σ)ΩΣΠ∂σY

−Π(σ)
)
δ(σ − σ′)

= 1
2Φ(0) δ(σ − σ′) ≈ 0 , (7.7.71)

10See [215] for a detailed study of the Hamiltonian mechanics in the twistor–like
formulation of the D = 4 superparticle, where the possibility of constraint class trans-
mutation was noted.
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where, in (7.7.68), S(σ) ≡ 1
2

(
A++

σ (σ)

e++
σ (σ)

+ A−−σ (σ)

e−−σ (σ)

)
(equation (7.7.31)) and

δσ σ′ ≡ δ(σ − σ′).
These Dirac brackets (7.7.67)-(7.7.71) can be summarized schemati-

cally in the following table

[... ↓ , ...→}D ≈ (Φ(0)(σ′)+ U(σ′) K(0)(σ′) N (σ′)
+SK(0)(σ′))

(Φ(0) + SK(0))(σ) 0 −δσ σ′ 0 0
U(σ) δσ σ′ 0 0 0
K(0)(σ) 0 0 0 δσ σ′

N (σ) 0 0 −δσ σ′ 0

Table 7.2. Schematic Dirac brackets of the second class constraints

in the supertwistor formalism

This table indicates that the K(0) constraint is canonically conjugate to
N while the second class constraint Φ(0) + SK(0) is conjugate to U . One
may pass to the (doubly starred) Dirac brackets with respect to the above
mentioned four second class constraints. However, the new Dirac brackets
for the supertwistor variables would have a very complicated form, so
that it looks more practical either to apply the formalism using (singly
starred) Dirac brackets (equation (7.7.49)) and simple first and second
class constraints, equations (7.7.56)–(7.7.58) and (7.7.59)–(7.7.62), or to
search for a conversion [210] of the remaining second class constraints into
first class ones. Note that a phenomenon similar to conversion occurs
when one moves from (7.6.5) to the dynamical system with unnormalized
twistors described by the action (7.6.14). We discuss on this in more
detail in the next section.

As the simplest application of the above Hamiltonian analysis let us
calculate the number of field theoretical degrees of freedom of the dy-
namical system (7.6.5). In this supertwistor formulation one finds from
equations (7.7.2) and (7.6.3) (4n + 4) bosonic and 2 fermionic configu-
ration space variables, which corresponds to a phase space with 2(4n +
4) and 4 fermionic ‘dimensions’. The system has 5 bosonic first class
constraints, equations (7.7.38)-(7.7.41), out of a total number of 4n +
9 bosonic constraints (the bosonic components of (7.7.4) and (7.7.5),
(7.7.6), (7.7.10)–(7.7.12)). Thus, in agreement with section 7.5, one finds
that the Σ(

n(n+1)
2

|n) supersymmetric string described by the action (7.6.5)
possesses 4n − 6 bosonic degrees of freedom. Likewise, the 2 fermionic
constraints of the action (the fermionic components of (7.7.4)) reduce to
2 the fermionic degrees of freedom [8].
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7.8 Hamiltonian analysis with ‘unnormalized’ supertwistors

As shown in Section 7.6, the action (7.6.5) may be considered as a gauge
fixed form of the action (7.6.14) written in terms of supertwistors (7.6.12)
restricted by only one Lagrangian constraint (7.6.13). The second con-
straint (7.6.6), the ‘normalization’ condition that distinguishes among the
Y ±Σ and Υ±Σ supertwistors, may be obtained by gauge fixing the direct
product of the two scaling gauge symmetries (7.2.8) and (7.2.9) down to
the SO(1, 1) worldsheet Lorentz symmetry (7.2.10) of the action (7.6.5).
As a result, one may expect that the Hamiltonian structure of the model
(7.6.14) will differ from the one of the model (7.6.5) by the absence of one
second class constraint (7.7.60) and the presence of one additional first
class constraint replacing (7.7.59).

This is indeed the case [8]. An analysis similar to the one carried out
in Section 7.7 allows one to find the following set of primary

P±Σ = P±Σ ∓ e∓∓σ ΩΣΠΥ
±Π ≈ 0 , (7.8.1)

P σ±± ≈ 0 , (7.8.2)
P τ±± ≈ 0 , (7.8.3)

U := Υ+Σ ΩΣΠΥ−Π ≡ Υ+ ΩΥ− ≈ 0 , (7.8.4)

and secondary constraints

Φ++ = ∂σΥ−ΩΥ− − e−−σ (Υ+CΥ−)2 ≈ 0 , (7.8.5)
Φ−− = ∂σΥ+ΩΥ+ − e++

σ (Υ+CΥ−)2 ≈ 0 , (7.8.6)

Φ(0) = ∂σΥ+ΩΥ− −Υ+Ω∂σΥ− ≈ 0 , (7.8.7)

that restrict the phase space variables

Z̃M̃ ≡ Z̃M̃(τ, σ) =
(
Υ
±Σ
, e±±τ , e±±σ

)
, (7.8.8)

P̃M̃ = (P±Σ , P
τ
±± , P

σ
±±) =

∂L
∂(∂τ Z̃M̃)

. (7.8.9)

The set (7.8.1)–(7.8.7) contains 6 first class constraints (versus five
first class constraints (7.7.38)–(7.7.41) in the system (7.6.5)), namely

P τ±± ≈ 0 , (7.8.10)

2e++
σ P σ++ −Υ−ΣP−Σ ≈ 0 , (7.8.11)

2e−−σ P σ−− −Υ+ΣP+Σ ≈ 0 , (7.8.12)
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Φ̃++ = Φ++

+
2e−−σ B(0)

(Υ+CΥ−)2
U − B(0)

(Υ+CΥ−)2
Υ−ΣP+Σ − ∂σP

σ
++ + (Υ+CΥ−)Υ−CΩP+

− 1
e++
σ

[
∂σΥ−ΣP−Σ +

e−−σ B(0)

(Υ+CΥ−)2
Υ+ΣP−Σ − e−−σ (Υ+CΥ−)Υ+CΩP−

]
≈ 0 , (7.8.13)

Φ̃−− = Φ−−

+
2e++
σ B(0)

(Υ+CΥ−)2
U − B(0)

(Υ+CΥ−)2
Υ+ΣP−Σ + ∂σP

σ
−− + (Υ+CΥ−)Υ+CΩP−

+
1
e−−σ

[
∂σΥ+ΣP+Σ −

e++
σ B(0)

(Υ+CΥ−)2
Υ−ΣP+Σ + e++

σ (Υ+CΥ−)(Υ−CΩP+)
]

≈ 0 , (7.8.14)

where (cf. (7.7.30))

B(0) =

=
1
2

(
∂σΥ+CΥ+ (Υ+CΥ−)

e++
σ

+
∂σΥ−CΥ− (Υ+CΥ−)

e−−σ
+
∂σΥ+Ω∂σΥ−

e++
σ e−−σ

)
.

(7.8.15)

Using Dirac brackets to account for the second class constraints (7.8.1),
where (cf. (7.7.50))

[Υ
±Σ

(σ),Υ
±Π

(σ′)}D = ∓ 1
2e∓∓σ

Ω
ΣΠ
δ(σ − σ′) , (7.8.16)

the first class constraints simplify to

P τ±± ≈ 0 , (7.8.17)
P σ++ ≈ 0 , (7.8.18)
P σ−− ≈ 0 , (7.8.19)

Φ̃++ = Φ++ +
2e−−σ B(0)

(Υ+CΥ−)2
U ≈ 0 , (7.8.20)

Φ̃−− = Φ−− +
2e++
σ B(0)

(Υ+CΥ−)2
U ≈ 0 , (7.8.21)

which corresponds to the set of constraints (7.7.56)–(7.7.58) of the de-
scription in terms of ‘normalized’ supertwistors with the addition of the
constraint (7.7.59), which is now ‘converted’ into a first class one due to
the disappearance of the normalization constraint (7.7.60).
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The remaining two bosonic constraints, equations (7.8.4) and (7.8.7),
are second class. Their Dirac bracket

[U(σ) , Φ(0)(σ′)]D=(Υ+CΥ−)2δ(σ − σ′) +
(

Φ++

2e++
σ

+
Φ−−

2e−−σ

)
δ(σ − σ′)

≈(Υ+CΥ−)2δ(σ − σ′) (7.8.22)

is nonvanishing due to the linear independence of the Υ
+Σ

and Υ
−Σ

super-
twistors (7.6.12) (coming from the linear independence of their Λ+

α and Λ−α
components, Λ+

αC
αβΛ−α 6= 0). For a further simplification of the Hamil-

tonian formalism it might be convenient to make a conversion of this pair
of second class constraints into first class by adding a pair of canonically
conjugate variables, q(ξ) and P (q)(ξ), ([q(σ) , P (q)(σ′)]P = δ(σ − σ′)) to
our phase space.

The above Hamiltonian formalism and its further development can
be applied to quantize the Σ(

n(n+1)
2

|n) superstring model. This should
produce a quantum higher spin generalization of the Green–Schwarz su-
perstring for n = 4, 8, 16 and, for n = 32, an exactly solvable quantum
description of a conformal field theory carrying, somehow, information
about the non-perturbative brane BPS states of M Theory.

7.9 Supersymmetric p–branes in tensorial superspace

The model may be generalized to describe higher-dimensional extended
objects (supersymmetric p–branes) in Σ(

n(n+1)
2

|n). The expression of the
supersymmetric p–brane action in terms of dimensionful unconstrained
bosonic spinors reads (cf. (7.2.7)) [8]

Sp =
∫
W p+1

e∧pa ∧Παβ(Λrαρ
a
rsΛ

s
β)

−(−α′)p
∫
W p+1

e∧(p+1) det(CαβΛrαΛsβ) , (7.9.1)

where a = 0, 1, . . . , p , r = 1, . . . , ñ(p) , α = 1, . . . , n ,

e∧pa ≡ 1
p!εab1...bpe

b1 ∧ . . . ∧ ebp , (7.9.2)

(see equation (2.2.14)) and e∧(p+1) is the W p+1 volume element

e∧(p+1) ≡ 1
(p+1)!εb1...bp+1e

b1 ∧ . . . ∧ ebp+1 . (7.9.3)

In equation (7.9.1), the (p + 1) ea = dξmeam(ξ) are auxiliary worldvol-
ume vielbein fields, ξm = (τ, σ1, . . . , σp) are the worldvolume W p+1 local
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coordinates and Λrα(ξ) is a set of ñ = ñ(p) unconstrained auxiliary real
bosonic fields with a ‘spacetime’ spinorial (actually, a Sp(n)–vector) in-
dex α = 1, ..., n. The number ñ(p) of real spinor fields Λrα(ξ) as well as the
meaning of the symmetric real matrices ρars depend on the worldvolume
dimension d = p + 1. For d = 2, 3, 4 (mod 8), where a Majorana spinor
representation exists, the ρars are Spin(1, p) Dirac matrices multiplied by
the charge conjugation matrix or sigma matrices, provided they are sym-
metric. If not, it is always possible to find a real symmetric matrix by
doubling the index r, r′ = ri (i = 1, 2), as in the case of d = 6 symplectic
Majorana spinors. For dimensions with only Dirac spinors (like d = 5)
Λrαρ

a
rsΛ

s
β should be understood as Λ̄αρaΛβ + Λ̄βρaΛα, etc.

For simplicity we present equation (7.9.1) and other formulae of this
section for ‘Majorana dimensions’ d with symmetric Cρ–matrices; the
generalization to the other cases is straightforward, although one should
be careful determining the value of ñ(p) for a given d = p + 1. For
p = 1, where the irreducible Majorana–Weyl spinor is one-dimensional
(Spin(1, 1) is abelian), one needs Λrα to be in a reducible Majorana repre-
sentation in the worldsheet spinor index r, i.e. Λrα = (Λ+

α ,Λ
−
α ); otherwise

the second term in (7.9.1) would be zero and the action would become
that of a tensionless Σ(

n(n+1)
2

|n) supersymmetric string. Then, the action
(7.9.1) reduces to (7.2.7) using (7.2.4).

The fermionic variation δf of the action (7.9.1), δfSp, comes only from
the variation of Παβ . Let us simplify it by taking δfXαβ = iδfθ

(α θβ) (cf.
below equation (7.3.1)), so that iδf Παβ = 0 and δfΠαβ = −2idθ(αδθβ). As
Παβ enters the action (7.9.1) only through its contraction with Λrαρ

a
rsΛ

s
β

we find

δfSp = −2i
∫
W p+1 e

∧p
a ∧ dθαΛrα ρ

a
rs Λsβδθ

β . (7.9.4)

Thus only ñ(p) fermionic variations δθβΛsβ out of the n variations δθβ are
effectively involved in δfSp.

This reflects the presence of (n−ñ(p)) κ–symmetries in the dynamical
system described by the supersymmetric p–brane action (7.9.1). They are
defined by

δκX
αβ = iδκθ

(α θβ) , δκe
a = 0 , (7.9.5)

and by the following condition on δκθα,

δκθ
αΛrα = 0 , r = 1, . . . , ñ(p) . (7.9.6)

This can be solved, using the auxiliary spinor fields uαJ [where now J =
1, . . . , (n− ñ(p))] orthogonal to Λrα, as

δκθ
α = κJ (ξ) uαJ(ξ) , uαJ(ξ) Λrα(ξ) = 0 ,
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J = 1, . . . , (n− ñ(p)) , r = 1, . . . , ñ(p) . (7.9.7)

The κ–symmetry (7.9.5), (7.9.7) implies the preservation of all but ñ(p)
supersymmetries by the corresponding ν = n−ñ(p)

n BPS state.
For instance, for p = 2, n = 32, it is ñ = 2. The action (7.9.1)

then describes excitations of a membrane BPS state preserving all but 2
supersymmetries, a 30

32 BPS state. For p = 5 and ñ = 8 the action (7.9.1)
with n = 32 describes a 24

32 supersymmetric 5–brane model in Σ(528|32).
Both the supermembrane (M2–brane) and the super–5–brane (M5–brane)
are known in the standard D = 11 superspace, where they correspond to
16
32 BPS states. The speculation could be made that the ‘usual’ M2 and
M5 superbranes are related to the generalized Σ(528|32) supersymmetric
2–brane and 5–brane described by the action (7.9.4) for p = 2 and 5.
For instance, they might be related with some particular solutions to
the equations of motion of the corresponding 30

32 and 24
32 Σ(528|32) models

preserving 16 supersymmetries and/or with the result of a dimensional
reduction of them. For the p = 5 case a question of a special interest would
be the role of the M5 selfdual worldvolume gauge field in the Σ(528|32)

superspace description (see [85] for a related discussion). For p = 3 and
ñ = 4 we have a 28

32 BPS state, a BPS 3–brane. Neither the Green–
Schwarz superstring nor the super–3–brane exist in the standard D = 11
superspace, but a super–D3–brane does exist in the D = 10 Type IIB
superspace, as the superstring does. The possible relation of these preonic
branes with the usual Type II branes would require further study.
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Conclusions and outlook

A number of topics about eleven-dimensional supergravity, the low en-
ergy limit of the hypothetical M Theory, have been covered in this Thesis.
The role of (generalized) holonomy in the description of supersymmetric
solutions of supergravity has been discussed and applied, in particular, to
the search of possible preonic solutions. The notion of BPS preons leads
naturally to that of enlarged superspaces and supersymmetry algebras,
the role of which in supergravity has also been explored. In particular,
enlarged superspaces have been shown to allow for the construction of
supersymmetric objects with a manifest content of BPS preons, and en-
larged superalgebras have appeared in the discussion of the underlying
symmetry of D = 11 supergravity.

After an introductory chapter 1, the conventions and notation used
throughout the Thesis (with the exception of chapter 3), were set in
chapter 2. The later contains a general discussion of topics about eleven-
dimensional supergravity relevant for the remainder of the Thesis. The
M Theory superalgebra is introduced, and the Lagrangian, equations of
motion and symmetries of D = 11 supergravity discussed. Especial atten-
tion has been payed to supersymmetry, in relation to which the notions
of generalized connection, curvature and holonomy have been reviewed.
The interplay between the generalized curvature and the equations of mo-
tion has also been discussed. In particular, we have shown [1] that all
the bosonic equations of D=11 supergravity can be collected in a single
equation, (2.6.2), written in terms of the generalized curvature (2.3.9)
which takes values in the algebra of the generalized holonomy group.
The concise form (2.6.2) of all the bosonic equations is obtained by fac-
toring out the fermionic one–form ψβ in the selfconsistency (or integra-
bility) conditions DΨ10 β = 0 [Eqs. (2.6.1)], for the gravitino equations
Ψ10α = 0, Eqs. (2.4.11). In this sense, one can say that in (the second
order formalism of) D = 11 CJS supergravity all the equations of motion
and Bianchi identities are encoded in the fermionic gravitino equation

159
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Ψ10 β := Dψα ∧ Γ̄(8)
αβ = 0 (equation (2.4.11)). Actually this should be

expected for a supergravity theory including only one fermionic field, the
gravitino, and whose supersymmetry algebra closes on shell. As we have
discussed, the basis for such an expectation is provided by the second
Noether theorem.

Generalized holonomy has been further explored in chapter 3, where
especial emphasis has been made in the role of supercovariant derivatives
of the curvature to characterize the holonomy algebra. After a general
review of how higher order integrability conditions might be necessary
to properly determine the Killing spinors characterizing purely bosonic
supersymmetric solutions of supergravity, the generalized holonomy of
some well known solutions has been revised. Supercovariant derivatives
of the generalized curvatures corresponding to the M2 and M5 brane
solutions of supergravity only turn out to help to close the generalized
holonomy algebra obtained at first order. The situation is different for
other solutions, such as Freund-Rubin compactifications. An example has
been provided by the compactification on the squashed S7. Left squashing
preserves N = 1 supersymmetry, while its right counterpart breaks all
supersymmetries. This situation cannot be described if the generalized
holonomy is G2, as obtained in first order. Second order integrability,
namely, the supercovariant derivative of the generalized curvature yields
a holonomy algebra of so(7) [2], which gives the correct decompositions
of the Killing spinor for both left and right compactifications.

In chapter 4, the role of the BPS preon notion in the analysis of
supersymmetric solutions of D = 11 supergravity is studied. This notion
suggests the moving G–frame method [3], which is proposed as a useful
tool in the search for supersymmetric solutions of D = 11 and D = 10
supergravity. We used this method here to make a step towards answering
whether the standard CJS supergravity possesses a solution preserving 31
supersymmetries, a solution that would correspond to a BPS preon state.
Although this question has not been settled for the CJS supergravity case,
we have shown in our framework that preonic, ν = 31/32 solutions do
exist [3] in a Chern–Simons type D = 11 supergravity.

Although the main search for preonic solutions concerns the ‘free’
bosonic CJS supergravity equations, one should not exclude other pos-
sibilities, both inside and outside the CJS standard supergravity frame-
work. When, e.g., super–p–brane sources are included, the Einstein equa-
tion, and possibly the gauge field equations and even the Bianchi identi-
ties, acquire r.h.s.’s and the situation would have to be reconsidered. An-
other source of modification of the CJS supergravity equations might be
due to ‘radiative’ corrections of higher order in curvature. Such modified
equations might also allow for preonic solutions not present in the unmod-
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ified ones. If it were found that only the inclusion of these higher–order
curvature terms allows for preonic BPS solutions, this would indicate that
BPS preons cannot be seen in a classical low energy approximation of M
Theory and, hence, that they are intrinsically quantum objects.

The special role of BPS preons in the algebraic classification of all
the M Theory BPS states allows us to conjecture that they are elemen-
tary (‘quark-like’) necessary ingredients of any model providing a more
complete description of M Theory. In such a framework, if the standard
supergravity did not contain ν = 31/32 solutions, neither in its ‘free’ form,
nor in the presence of a super–p–brane source, this might just indicate
the need for a wider framework for an effective description of M Theory.
Such an approach could include Chern–Simons supergravities [91] and/or
the use of larger, extended superspaces (see [85, 4] and refs. therein),
in particular with additional tensorial coordinates (also relevant in the
description of massless higher–spin theories [155, 187, 203]). In this per-
spective our observation that the BPS preonic configurations do solve the
bosonic equations of Chern–Simons supergravity models looks interesting.
It might be also worthwhile to look at the role of vectors and higher order
tensors that may be constructed from the preonic spinors λαr, in analogy
with the use of the Killing vectors Ka

IJ = εIΓaεJ and higher order bilin-
ears εIΓa1···asεJ made in references [79, 80, 135, 136, 137, 138, 139, 103].

Chapter 5 contains the technical details of the expansion method [4, 5],
a procedure of obtaining new (super)algebras G(N0, . . . , Np) from a given
one G. It is based in the power expansion of the Maurer-Cartan equations
that results from rescaling some group parameters. These expansions are
in principle infinite, but some truncations are consistent and define the
Maurer-Cartan equations of new (super)algebras, the structure constants
of which are obtained from those of the original (super)algebra G. We
have considered the different possible G(N0, . . . , Np) algebras subordi-
nated to various splittings of G and discussed their structure. We have
seen that in some cases (when the splitting of G satisfies the Weimar-
Woods conditions) the resulting algebras include the simple or general-
ized İnönü-Wigner contractions of G, but that this is not always the case.
In general, the new ‘expanded’ algebras have higher dimension than the
original one. Since G is the only ingredient of the expansion method, it is
clear that the extension procedure (which involves two algebras) is richer
when one is looking for new (super)algebras; the expansion method is
more constrained. Nevertheless, we have used it to obtain the M The-
ory superalgebra, including its Lorentz part, from the orthosymplectic
superalgebra osp(1|32) as the expansion osp(1|32)(2, 1, 2) [4].

The expansion method is also applied, already in chapter 6, to discuss
the relation of the gauge structure of D = 11 supergravity with osp(1|32).
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In this chapter, the consequences of a possible composite structure, à la
D’Auria-Fré, of the three–form field A3 of the standard CJS D = 11
supergravity are studied. In particular, we have shown that A3 may be
expressed in terms of the one-form gauge fields Bab, Ba1...a5 , ηα, ea, ψα

associated to a family of superalgebras Ẽ(s) ≡ Ẽ(528|32+32)(s), s 6= 0, cor-
responding to the supergroups Σ̃(s) ≡ Σ̃(528|32+32)(s) [6, 7]. Two values
of the parameter s recover the two earlier D’Auria–Fré [92] decomposi-
tions of A3, while one value of s, s = −6 leads to a simple expression for
A3 that does not involve Ba1...a5 . Indeed, the generator Za1...a5 associ-
ated to Ba1...a5 is central in Ẽ(−6), so that the smaller supergroup Σmin

obtained by removing Za1...a5 from Σ̃(−6) can be regarded as the mini-
mal underlying gauge supergroup of supergravity [6, 7]. The supergroups
Σ̃(s) o SO(1, 10) with s 6= 0 are non-trivial (non-isomorphic) deforma-
tions of the Σ̃(0) oSO(1, 10) ⊂ Σ̃(0) oSp(32) supergroup, which is itself
the expansion [6, 4] OSp(1|32)(2, 3, 2) of OSp(1|32). For any s 6= 0,
Σ̃(s) o SO(1, 10) may be looked at as a hidden gauge symmetry of the
D = 11 CJS supergravity generalizing the D=11 superPoincaré group
Σ(11|32) o SO(1, 10).

To study the possible dynamical consequences of the composite struc-
ture of A3 we have followed the original proposal [92] of substituting the
composite A3 for the fundamental A3 in the first order CJS supergravity
action [92, 105] of chapter 2. It has been seen that such an action pos-
sesses the right number of ‘extra’ gauge symmetries to make the number
of degrees of freedom the same as in the standard CJS supergravity [7].
These are symmetries under the transformations of the new one–form
fields that leave the composite A3 field invariant; their presence is related
to the fact that the new gauge fields enter the supergravity action only
inside the A3 field. In other words, the extra degrees of freedom carried
by the new fields Bab, Ba1...a5 , ηα are pure gauge. One may conjecture
that these extra degrees of freedom might be important in M Theory
and that, correspondingly, the extra gauge symmetries that remove them
would be broken by including in the supergravity action some exotic ‘mat-
ter’ terms that couple to the ‘new’ additional one–form gauge fields. In
constructing such an ‘M–theoretical matter’ action, the preservation of
the Σ̃(s) o SO(1, 10) gauge symmetry would provide a guiding principle.

We have stressed the equivalence between the problem of searching
for a composite structure of the A3 field and, hence, for a hidden gauge
symmetry of D = 11 supergravity, and that of trivializing a four–cocycle
of the standard D = 11 supersymmetry algebra E ≡ E(11|32) cohomology
on the enlarged superalgebras Ẽ(s), s 6= 0. The generators of Ẽ(s) are in
one–to–one correspondence with the one–form fields ea, ψα, Bab, Ba1...a5 ,
ηα. For zero curvatures these fields satisfy the same equations as the Σ̃(s)–
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invariant Maurer-Cartan forms of Ẽ(s) which, before pulling them back
to a bosonic eleven–dimensional spacetime surface, are expressed through
the coordinates (xa, θα, yab, ya1...a5 , θ′α) of the Σ̃(s) superspace. This is
the content of the fields/extended superspace coordinates correspondence
principle, that conjectures that for the relevant supergravity theories there
always exists an enlarged superspace whose coordinates are in one-to-one
correspondence with the fields of the theory [85, 86]. D = 11 supergravity
itself can be conjectured to be embedded in a larger superspace (see [7]).

Several interesting questions arise concerning the composite nature of
A3. The first one was already sketched in chapter 7 and refers to the triv-
ialization of the FDA seven-cocycle ω7 related to the dual formulation of
D = 11 supergravity. It would be interesting to check if ω7 is already triv-
ial on the family of superalgebras Ẽ(s), or further extensions are needed
instead to trivialize it. Another issue that would be worth studying is the
trivialization of the FDAs corresponding to lower dimensional supergrav-
ities. It would be interesting, in particular, to study whether the FDA
corresponding to IIA and IIB supergravities can be trivialized by some
superalgebra and, in case it were possible, to study its relation with the
family Ẽ(s) trivializing the D = 11 supergravity FDA. Another question
that would be interesting to analyze would be the implications of the
composite nature of A3 in the problem of the cosmological constant of
D = 11 supergravity, argued in [98] to be forbidden on cohomological
grounds.

In chapter 7, we have presented a supersymmetric string model in
the ‘maximal’ or ‘tensorial’ superspace Σ(

n(n+1)
2

|n) with additional ten-
sorial central charge coordinates (for n > 2) [8]. The model possesses
n rigid supersymmetries and n − 2 local fermionic κ–symmetries. This
implies that it provides the worldsheet action for the excitations of a
BPS state preserving (n− 2) supersymmetries. In particular, for n = 32
our model describes a supersymmetric string with 30 κ–symmetries in
Σ(528|32), which corresponds to a BPS state preserving 30 out of 32 su-
persymmetries. This model can be treated as a composite of two BPS
preons [83] and is the second (after theD = 11 Curtright model [191]) ten-
sionful extended object model in Σ(528|32). In contrast with the Curtright
model [191], our supersymmetric string action in the enlarged D = 11
superspace Σ(528|32) does not involve any gamma–matrices, but instead
makes use of two constrained bosonic spinor variables, λ+

α and λ−α , cor-
responding to the two BPS preons from which the superstring BPS state
is composed. As a result, our model preserves the Sp(32) subgroup of
the GL(32,R) automorphism symmetry of the D = 11 M–algebra. Our
Σ(

n(n+1)
2

|n) supersymmetric string model can be treated as a higher spin
generalization of the classical Green–Schwarz superstring. At the same
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time, the additional bosonic tensorial coordinate fields of the n = 32 case
might contain information about topological charges corresponding to the
higher branes of the superstring/M Theory [71].

The Σ(
n(n+1)

2
|n) model may also be formulated in terms of a pair of

constrained worldvolume OSp(2n|1) supertwistors. The transition to the
supertwistor formulation is similar to that for the massless superparticle
and the tensionless Σ(

n(n+1)
2

|n) supersymmetric p–branes [148, 149]. In
our case, however, the supertwistors are restricted by a constraint that
breaks the generalized superconformal OSp(64|1) symmetry down to a
generalization of the super–Poincaré group, Σ(528|32) o Sp(32). Such a
breaking is characteristic of tensionful models. We note that this con-
strained OSp(2n|1) supertwistor framework might also be useful for mas-
sive higher spin theories.

We have developed the Hamiltonian formalism, both in the original
and in the symplectic supertwistor representation, and found that, while
the Hamiltonian analysis in the original formulation requires the use of
the additional auxiliary spinor variables uIα (I = 1, ..., (n − 2)) orthog-
onal to λ±α , the symplectic supertwistor Hamiltonian mechanics can be
discussed in terms of the original phase space variables. Moreover, un-
der Dirac brackets, supertwistors become selfconjugate variables and the
symplectic structure of the phase space simplifies considerably. A nat-
ural application of the Hamiltonian approach developed here would be
the BRST quantization of the Σ(

n(n+1)
2

|n) superstring model, which might
provide a ‘higher spin’ counterpart of the usual string field theory.

We have also presented a generalization of our Σ(
n(n+1)

2
|n) supersym-

metric string model for supersymmetric p–branes in Σ(
n(n+1)

2
|n). They

correspond to BPS states preserving all but ñ(p) (see below (7.9.1)) super-
symmetries, composites of ñ(p) BPS preons (ñ(2) = 2 , ñ(3) = 4 , ñ(5) =
8). In particular, the Σ(528|32) supersymmetric membrane (p = 2) also
corresponds to 30

32 a BPS state.
In this Thesis, preonic solutions have been shown to exist in enlarged

superspaces or in the context of Chern-Simons supergravities. It would
be very interesting to determine whether preonic solutions also occur as
solutions of standard CJS D = 11 supergravity. The definitive answer
would be provided by a complete classification of supergravity solutions,
that would also shed light into the structure of M Theory itself. As fu-
ture work, we aim to make some steps towards a complete classification
of CJS supergravity solutions. The study of the interplay between the
approaches to classify general supergravity solutions, is expected to give
us new insights towards that classification. In particular, the presence
of Killing spinors implies the existence of a G-structure [79, 80] on the
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tangent bundle, that is, a sub-bundle of the frame bundle with structure
group G. Its existence can be seen from the fact that a set of covari-
antly constant tensors exist on the tangent bundle, built as bilinears of
the Killing spinors. The differential and algebraic conditions that these
tensors satisfy turn out to constrain the geometry (the metric) and the
fluxes.

The generalized holonomy approach [78, 87], on the contrary, deals
with the supergravity connection as a Clifford algebra valued connection,
as discussed in chapter 2, without focussing on the tangent bundle or
the spinor bundle of the background. The difficulty in relating both
approaches could be put down to that fact. By dealing with an sl(32,R)-
valued connection, the Killing spinors are not any longer regarded as
spinors in the tangent bundle (transforming in suitable representations of
the tangent bundle structure group, SO(1, 10)), but are instead promoted
to vectors of SL(32,R). It is not obvious that this step does not entail any
loss of the information contained in the spin bundle [134] so, if this were
indeed the case, supplementary conditions should be derived to account
for the fact that the relevant SL(32,R)-vectors are also tangent bundle
spinors.

An interesting question that would shed light into the relation of both
approaches is what subgroups H of the generalized structure group can
actually arise as generalized holonomy groups of supergravity solutions.
A refined definition of holonomy taking into account covariant derivatives
of the curvature (higher order commutators of the covariant derivatives)
[2] could be relevant with this regard. It could also be worth studying
the effects of the effect successive covariant derivatives of the curvature
when no fluxes are considered but higher order gravitational corrections
are taken into account [111]. Alternatively, the study of the relevant G-
structures of solutions including higher order corrections could allow us
both to generate new examples, and help us to understand the origin of
this higher order gravitational terms in the fully-fledged M Theory.

The classification of supergravity solutions is not only expected to
provide insights into the structure of M Theory, but also to provide new
backgrounds for Standard Model building and for the AdS/CFT corre-
spondence. In the later case, the G-structure approach has provided
solutions containing AdS factors [134, 136, 137] suitable to test the corre-
spondence (see [134, 79] and references therein for a review). We expect
to be able to make progress also in this direction.
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Appendix A

Second order integrability
for the squashed S7

In this Appendix we present the details of the derivation of the linearly
independent generators (3.4.9) and (3.4.10) of the generalized holonomy
algebra hol(Ωm) = so(7) of the squashed S7, associated to the second
order integrability condition (3.4.8). For convenience, we rewrite (3.4.8)
with a modified normalization

Mabc = 5
(√

5DaCbcdeΓde −m′CbcadΓd
)
, (A.1)

where we have defined

m′ = 2
√

5im, (A.2)

and have chosen the − sign in front of m′ for definiteness.
To obtain Mabc, we have computed both the Weyl tensor Cbcad (given

in [29]) and its (Lévi-Civita) covariant derivative DaCbcde. We obtain, for
the non-vanishing generators (A.1) [2]:

M00j = 4Γ0ĵ − εjklΓkl̂ − 2m′Γj , (A.3)

M00ĵ = 4Γ0j + εjklΓkl + 2m′Γĵ , (A.4)

M0ij = 2εijkΓ0k̂ + Γiĵ − Γjî , (A.5)

M0iĵ =−εijkΓ0k + Γij − 3Γîĵ +m′εijkΓk̂ , (A.6)

M0̂iĵ =−3Γiĵ + 3Γjî − 2m′εijkΓk , (A.7)

Mh0j = εhjkΓ0k̂ + 2Γhĵ + δhjδ
klΓkl̂ + Γjĥ + 2m′δhjΓ0 , (A.8)

Mh0ĵ =−εhjkΓ0k + Γhj + 3Γĥĵ −m′εhjkΓk̂ , (A.9)
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Mhij = δhiΓ0ĵ − δhjΓ0̂i + 4εijkΓhk̂ − εhijδ
klΓkl̂ − εij

kΓkĥ
+2m′(δhjΓi − δhiΓj) , (A.10)

Mhiĵ = (2εjklδhi − 1
2εhklδij −

1
2εiklδhj)Γ

kl − 3εhikΓk̂ĵ + 2δhiΓ0j

+δijΓ0h + δhjΓ0i +m′(2δhiΓĵ − δijΓĥ + δhjΓî) , (A.11)

Mhîĵ = 3δhiΓ0ĵ − 3δhjΓ0̂i + 3εhikΓkĵ − 3εhjkΓkî
+2m′(εhijΓ0 + δhjΓi − δhiΓj) , (A.12)

Mĥ0j =−6Γĥĵ + 2m′εhjkΓk̂ , (A.13)

Mĥ0ĵ = 3Γjĥ − 3δhjδklΓkl̂ −m′(2δhjΓ0 + εhjkΓk) , (A.14)

Mĥij = 6εijkΓk̂ĥ + 2m′(δhjΓî − δhiΓĵ) , (A.15)

Mĥiĵ = 3δhjΓ0̂i − 3δijΓ0ĥ − 3δhiεjklΓkl̂ − 3εij lΓhl̂
+m′(−εhijΓ0 − 2δhjΓi + δijΓh − δhiΓj) , (A.16)

Mĥîĵ = 6δhjΓ0i − 6δhiΓ0j − 6εijkΓkh + 4m′(δhjΓî − δhiΓĵ) . (A.17)

Not all the generators included in (A.3)–(A.17) are linearly independent,
however. After all, they are built up from Dirac matrices {Γab,Γa}, that
is, from generators of SO(8), so at most 28 can be linearly independent.

In fact, only 21 linearly independent generators are contained in (A.3)–
(A.17), as we will now show. Some redundant generators are straightfor-
ward to detect, since the Bianchi identities for the Weyl tensor,D[aCbc]de =
0 and C[bca]d = 0 place the restrictions

M[abc] = 0 . (A.18)

Further manipulations show that only the generators (A.11) and (A.16)
are relevant, the rest being linear combinations of them. The generators
(A.4), (A.6), (A.9), (A.13), (A.15) and (A.17) are obtained from (A.11):

M00ĵ = 1
5δ
kl(Mklĵ +Mkjl̂ +Mjkl̂) , (A.19)

M0iĵ = 1
5ε[i|

kl(4Mk|j]l̂ −M|j]kl̂)−
1
5εij

kδlmMlmk̂ , (A.20)

Mi0ĵ =−1
5ε[i|

kl(Mk|j]l̂ − 4M|j]kl̂)−
1
5εij

kδlmMlmk̂ , (A.21)

Mĵ0i =−ε[i|
kl(Mk|j]l̂ −M|j]kl̂) , (A.22)

Mĥij =Mjiĥ −Mijĥ , (A.23)
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Mĥîĵ = 1
5(Mhiĵ −Mhjî +Mihĵ −Mjhî)

−4
5δ
kl(δhiMklĵ − δhjMkl̂i) , (A.24)

while (A.3), (A.5), (A.7), (A.8), (A.10), (A.12) and (A.14) are linear
combinations of (A.16):

M00j = 1
3δ
kl(Mk̂jl̂ −Mĵkl̂) , (A.25)

M0hj =−1
3εh

kl(Mk̂lĵ + 3Mĵkl̂) + 1
3εj

kl
(
Mk̂lĥ + 3Mĥkl̂

)
, (A.26)

M0ĥĵ = εh
kl(Mk̂lĵ + 2Mĵkl̂)− εj

kl(Mk̂lĥ + 2Mĥkl̂) , (A.27)

Mh0j =−1
6εh

kl(2Mk̂lĵ + 5Mĵkl̂) + 1
6εj

klMĥkl̂ , (A.28)

Mhij = 1
2δ
kl
(
δhi(Mk̂lĵ − 2Mĵkl̂)− δhj(Mk̂l̂i − 2Mîkl̂)

)
+Mîjĥ

−Mĵiĥ + 7
3(Mĥiĵ −Mĥjî)−

2
3εh

klεij
m(Mk̂lm̂ + 4Mm̂kl̂) , (A.29)

Mhîĵ =Mîhĵ −Mĵhî , (A.30)

Mĥ0ĵ = εh
kl(Mk̂lĵ +Mĵkl̂)− εj

klMĥkl̂, (A.31)

Moreover, both (A.11) and (A.16) contain redundant generators. The
following combinations obtained from (A.11):

C0i = 1
6δ
klMikl̂ , (A.32)

Cij = − 1
30ε[i|

kl(Mk|j]l̂ − 9M|j]kl̂)−
1
30εij

kδlmMlmk̂ , (A.33)

Mij = 1
6Mĵ0i = −1

6ε[i|
kl(Mk|j]l̂ −M|j]kl̂) (A.34)

(the expressions of which in terms of Dirac matrices are the first two
equations in (3.4.9) and the first equation in (3.4.10), respectively) are
linearly independent. Thus (A.11) [and so (A.4), (A.6), (A.9), (A.13),
(A.15) and (A.17)] can be uniquely written in terms of them:

Mhiĵ = 2δhiC0j + δijC0h + δhjC0i − 3δhiεjklMkl − 3εhikMkj

+(2εjklδhi − 1
2εh

klδij − 1
2εi

klδhj)Ckl . (A.35)

Similarly, the following combinations contained in (A.16):

Ciĵ = 1
3εi

klMĵkl̂ −
1
6εj

kl(Mk̂l̂i +Mîkl̂) , (A.36)

Mi = 1
12δ

kl(Mk̂l̂i − 2Mîkl̂) , (A.37)

M = −1
6ε
hijMĥiĵ (A.38)
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(which can be written in terms of Dirac matrices as in the final equation
of (3.4.9) and the last two equations of (3.4.10), respectively) are linearly
independent. Hence (A.16) [and so (A.3), (A.5), (A.7), (A.8), (A.10),
(A.12) and (A.14)] can be uniquely written in terms of them:

Mĥiĵ = 6δhiεjklCkl̂ − 2εijk(Ckĥ − 2Chk̂)
+6δhjMi + 3δihMj − 3δijMh − εhijM . (A.39)

In summary, the linearly independent generators associated to the
second order integrability condition (3.4.8) are the 21 linearly independent
generators (3.4.9) and (3.4.10), namely {C0i, Cij , Ciĵ , Mij , Mi,M} (notice
that Ciĵ contains 8 generators, since it is traceless), which close into an
algebra whenever m2 takes the value required by the equations of motion,
m2 = 9

20 . Since the only condition for the generators to close the algebra
is placed on m2, they will close regardless of the orientation (i.e., of the
sign of m). In fact, they generate the 21-dimensional algebra so(7), for
both orientations [2].

Note that, by further choosing linear combinations of (3.4.9), the 14
generators {C0i, Cij , Ciĵ} of G2 may be re-expressed in symmetric form

Γ11̂ − Γ22̂, Γ11̂ − Γ33̂,

Γ0̂i + Γjk̂, Γ0̂i + Γĵk, (i, j, k = 123, 231, 312)

Γ0i + Γĵk̂, Γ0i − Γjk, (i, j, k = 123, 231, 312). (A.40)

The 7 additional generators {Mij , Mi, M} of (3.4.10) extending (A.40)
to so(7) may also be simplified in appropriate linear combinations. One
possible set of generators is given by [2]:

Γ11̂ ± iΓ0,

Γ0̂i ∓ iΓi,
Γĵk̂ ∓ iΓî, (i, j, k = 123, 231, 312). (A.41)



Appendix B

Expansion of dωks,αs

This appendix contains the details of the derivation of the results sum-
marized in table 5.3, about what one-form coefficients ωip,βp are needed
to express dωks,αs when the original algebra G is split as in (5.4.1), with
the structure constants satisfying (5.4.3).

Inserting (5.4.4)-(5.4.6) into (5.2.10) where now p, q, s = 0, 1, . . . , n,
and using( ∞∑

α=p

λαωip,α

)
∧

( ∞∑
α=q

λαωjq ,α

)
=

∞∑
α=p+q

λα
α−q∑
β=p

ωip,β ∧ωjq ,α−β , (B.1)

we obtain the expansion of the MC equations for G,

∞∑
α=s

λαdωks,α =
∞∑
α=s

λα

−1
2
cks
ipjq

α∑
β=0

ωip,β ∧ ωjq ,α−β
 , (B.2)

since the W-W conditions (5.4.3) will give zero in the r.h.s. unless α =
p+q ≥ s, in agreement with the l.h.s. equation (B.2) can be made explicit
for p, q, s = 0, 1, . . . , n as follows [4]:

∞∑
α=s

λαdωks,α = −1
2

cks
i0j0

∞∑
α=0

λα
α∑
β=0

ωi0,β ∧ ωj0,α−β +

+2cks
i0j1

∞∑
α=1

λα
α−1∑
β=0

ωi0,β ∧ ωj1,α−β + . . .+

+2cks
i0jn

∞∑
α=n

λα
α−n∑
β=0

ωi0,β ∧ ωjn,α−β+

+cks
i1j1

∞∑
α=2

λα
α−1∑
β=1

ωi1,β ∧ ωj1,α−β + . . .+
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+2cks
i1jn

∞∑
α=1+n

λα
α−n∑
β=1

ωi1,β ∧ ωjn,α−β + . . .+

+cks
in−1jn−1

∞∑
α=2n−2

λα
α−n+1∑
β=n−1

ωin−1,β ∧ ωjn−1,α−β+

+2cks
in−1jn

∞∑
α=2n−1

λα
α−n∑
β=n−1

ωin−1,β ∧ ωjn,α−β+

+cks
injn

∞∑
α=2n

λα
α−n∑
β=n

ωin,β ∧ ωjn,α−β
 . (B.3)

Rearranging powers we get
∞∑
α=s

λαdωks,α = −1
2

[
cks
i0j0

ωi0,0 ∧ ωj0,0 +

+λ
(
cks
i0j0

1∑
β=0

ωi0,β ∧ ωj0,1−β + 2cks
i0j1

ωi0,0 ∧ ωj1,1
)

+

+λ2
(
cks
i0j0

2∑
β=0

ωi0,β ∧ ωj0,2−β +

+2cks
i0j1

1∑
β=0

ωi0,β ∧ ωj1,2−β + 2cks
i0j2

ωi0,0 ∧ ωj2,2 +

+cks
i1j1

ωi1,1 ∧ ωj1,1
)

+ . . .

]
. (B.4)

Equation (B.4) now gives
∞∑
α=s

λαdωks,α = −1
2
cks
i0j0

ωi0,0 ∧ ωj0,0 −

−
n−1∑
α=1

λα

1
2

[α
2
]∑

p=0

cks
ipjp

α−p∑
β=p

ωip,β ∧ ωjp,α−β+

+
[α−1

2
]∑

p=0

α−p∑
q=p+1

cks
ipjq

α−q∑
β=p

ωip,β ∧ ωjq ,α−β
−

−
2n−1∑
α=n

λα

1
2

[α
2
]∑

p=0

cks
ipjp

α−p∑
β=p

ωip,β ∧ ωjp,α−β+
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+
[α−1

2
]∑

p=0

min{α−p ,n}∑
q=p+1

cks
ipjq

α−q∑
β=p

ωip,β ∧ ωjq ,α−β
−

−
∞∑

α=2n

λα

1
2

n∑
p=0

cks
ipjp

α−p∑
β=p

ωip,β ∧ ωjp,α−β+

+
n−1∑
p=0

n∑
q=p+1

cks
ipjq

α−q∑
β=p

ωip,β ∧ ωjq ,α−β
 , (B.5)

that is

∞∑
α=s

λαdωks,α = −1
2
cks
i0j0

ωi0,0 ∧ ωj0,0 −

−
∞∑
α=1

λα

1
2

min{[α
2
] ,n}∑

p=0

cks
ipjp

α−p∑
β=p

ωip,β ∧ ωjp,α−β+

+
min{[α−1

2
] ,n−1}∑

p=0

min{α−p ,n}∑
q=p+1

cks
ipjq

α−q∑
β=p

ωip,β ∧ ωjq ,α−β

 , (B.6)

from which we obtain, upon explicit imposition of the contraction condi-
tion (5.4.3) on the structure constants c’s [4]:

α = s = 0:

dωk0,0 = −1
2
ck0i0j0ω

i0,0 ∧ ωj0,0 ; (B.7)

α = s ≥ 1, s odd:

dωks,s = −

s−1
2∑

p=0

cks
ipjs−p

ωip,p ∧ ωjs−p,s−p ; (B.8)

α = s ≥ 1, s even:

dωks,s = −1
2
cks
i s
2
j s
2

ω
i s
2
, s
2 ∧ ωj s

2
, s
2 −

s−2
2∑

p=0

cks
ipjs−p

ωip,p ∧ ωjs−p,s−p ; (B.9)
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α > s ≥ 0:

dωks,α = −1
2

min{[α
2
] ,n}∑

p=[ s+1
2 ]

cks
ipjp

α−p∑
β=p

ωip,β ∧ ωjp,α−β −

−
min{[α−1

2
] ,n−1}∑

p=0

min{α−p ,n}∑
q=max{s−p,p+1}

cks
ipjq

α−q∑
β=p

ωip,β ∧ ωjq ,α−β . (B.10)



Appendix C

Symmetry breaking of
the supertwistor string

This appendix contains the details of the breaking of the OSp(2n|1) sym-
metry down to the supergroup Σ(

n(n+1)
2

|n) o Sp(n), generalizing super-
Poincaré, in the supertwistor formulation (section 7.6) of the supersym-
metric string model in tensorial superspace of chapter 7.

The supergroup OSp(2n|1) is characterized by the (2n+1)× (2n+1)
supermatrices GΣ

Π that preserve the graded-antisymmetric matrix ΩΣΠ =
−(−1)deg(Σ)deg(Π)ΩΠΣ, ‘orthosymplectic metric’,

GΣ
Σ′ΩΣ′Π′GΠ

Π′
(−1)deg(Π)(deg(Π′)+1) = ΩΣΠ , (C.1)

the canonical form of which is given by equation (7.6.8). The grading is
defined by

(−1)deg(Σ) =

{
1 for Σ = 1, . . . , 2n
−1 for Σ = 2n+ 1

(C.2)

and coincides with deg(±Σ) for Y ±Σ (see below equation (7.5.7)). The
fundamental representation of OSp(2n|1) acts on supertwistors

Y Σ = (µα, λα, η) , (C.3)

with even µα, λα and odd η. Near the unity,

GΣ
Π ∼ δΣ

Π + ΞΣ
Π , (C.4)

where ΞΣ
Π is an element of the osp(2n|1) superalgebra. It has the form

ΞΣ
Π =

Gαβ Kαβ ζα
Aαβ −Gβα εα

iεβ −iζβ 0

 , (C.5)
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where the even n× n matrix Gαβ is arbitrary and the even n× n Kαβ =
Kβα and Aαβ = Aβα matrices are symmetric. They define a gl(n) and
two sp(n) subalgebras of osp(2n|1),

Gα
β ∈ gl(n) , Aαβ ∈ sp(n) , Kαβ ∈ sp(n) . (C.6)

Exploiting the analogy with the matrix representation of the stan-
dard 4-dimensional conformal algebra su(2, 2|N) and the 4-dimensional
super-Poincaré algebra, one can look at the gl(n) boxes G as a general-
ization of the spin(1, D − 1) and dilatation algebras (Lαβ + δα

βD), at
the elements Aαβ ∈ sp(n) as a generalization of the translation one, and
at Kαβ ∈ sp(n) as a generalization of the special conformal transforma-
tions. Equation (C.5) also contains two fermionic parameters, εα and ζα,
which can be identified as those of the of ‘usual’ and special conformal
supersymmetries. A specific check is provided by the n = 2 case, where
SL(2,R) = Spin(1, 2), the symmetric spin-tensor provides an equivalent
representation for a SO(1, 2) vector, and the superconformal group is
OSp(2|1).

If we now demand in addition that the degenerate matrix CΣΠ (equa-
tion (7.6.9)) is preserved,

GΣ
Σ′CΣ′Π′GΠ

Π′
(−1)deg(Π)(deg(Π′)+1) = CΣΠ , (C.7)

we see that this is satisfied by the osp(2n|1) elements of the form

ΞΣ
Π =

Sαβ 0 0
Aαβ −Sβα εα

iεβ 0 0

 ≡ ΞΣ
Π(S,A, ε) , (C.8)

where Sαβ ∈ sp(n),

Sαβ ≡ CαγSγ
β = Sβα , (C.9)

i.e. by those of (C.5) with Kαβ = 0, ζα = 0 and Gα
β = Sα

β ∈ sp(n).
Thus the condition (C.7) not only reduces GL(n) symmetry down to
Sp(n), but also breaks the generalized special conformal transformations
and the superconformal supersymmetry.

The right action of GΣ
Π(S,A, ε) (Eqs. (C.4), (C.8)) on the super-

twistor (C.3), δY Σ = Y ΠΞΠ
Σ, defines the generalized super-Poincaré

transformation of the supertwistor components,

δµα = µβSβ
α + λβA

βα + iεαη ,

δλα = −Sαβλβ , δη = εαλα . (C.10)

These can be reproduced from the following transformations of the coor-
dinates of Σ(

n(n+1)
2

|n),

δXαβ = Aαβ + iθ(αεβ) + 2X(α|γSγ
|β) , δθα = εα + θβAβ

α , (C.11)
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using the generalization [148] of the Penrose correspondence relation [211,
212] given in equation (7.6.2),

µα = Xαβλβ −
i

2
θαθβλβ , η = θαλα . (C.12)

The transformations (C.11) of the Σ(
n(n+1)

2
|n) variables are a straightfor-

ward generalization of the super-Poincaré transformations of the standard
superspace coordinates. This justifies calling the resulting supergroup
Σ(

n(n+1)
2

|n) o Sp(n) a generalization of the super-Poincaré group.
Going back to osp(2n|1), let us note that the generalized special super-

conformal transformations (Kαβ , ζα) act on the supertwistor components
by

δµα = 0 , δλα = µβKβα − iηζα , δη = µβζβ . (C.13)

Using equation (C.12) one may find from (C.13) the generalized special
superconformal transformations of the Σ(

n(n+1)
2

|n) coordinates

δXαβ = iθ(αXβ)γζγ − (XKX)αβ ,

δθα = Xαβζβ −
i

2
(θζ) θα − (θKX)α . (C.14)

Note that (C.11) follows as well from a nonlinear realization of the
generalized super-Poincaré group Σ(

n(n+1)
2

|n) o Sp(n) on the Σ(
n(n+1)

2
|n)

coset, i.e. from the left action of GΣ
Π(S,A, ε) ∼ δΣ

Π +ΣΣ
Π(S,A, ε) (C.8)

on KΣ
Π(X, θ) ∼ δΣ

Π +KΣ
Π(X, θ) with

KΣ
Π(X, θ) =

 0 0 0
Xαβ 0 θα

iθβ 0 0

 . (C.15)

Indeed, the infinitesimal form of

GΣ
Π(S,A, ε)KΣ

Π(X, θ) = KΣ
Π(X ′, θ′)GΣ

Π(A, 0, 0) (C.16)

reads

K(δX, δθ) = Ξ(0, A, ε) + Ξ(0, A, ε)K(X, θ)
+[Ξ(S, 0, 0) , K(X, θ)] (C.17)

and reproduces the generalized super-Poincaré transformations (C.11)
[8].
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[4] J.A. de Azcárraga, J.M. Izquierdo, M. Picón and O. Varela, Gen-
erating Lie and gauge free differential (super)algebras by expanding
Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys.
B662, 185–219 (2003) [arXiv:hep-th/0212347].
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[86] J.A. de Azcárraga, Superbranes, D = 11 CJS supergravity and en-
larged superspace coordinates/fields correspondence, in Fundamental
interactions and twistor-like methods, J. Lukierski and D. Sorokin
eds., AIP Conf. Proc. 767, 243–267 (2005) [arXiv:hep-th/0501198].

[87] C. Hull, Holonomy and symmetry in M-theory, arXiv:hep-
th/0305039.

[88] P. West, E11 and M theory, Class. Quantum Grav. 18, 4443-4460
(2001) [arXiv:hep-th/0104081].

[89] I. Bars, C. Deliduman and D. Minic, Lifting M-theory to two-time
physics, Phys. Lett. B457, 275-284 (1999) [arXiv:hep-th/9904063].

[90] P. West, Hidden superconformal symmetry in M theory, JHEP
0008, 007 (2000) [arXiv:hep-th/0005270].

[91] R. Troncoso and J. Zanelli, New gauge supergravity in seven and
eleven dimensions, Phys. Rev. D58, 101703 (1998) [arXiv:hep-
th/9710180];

J. Zanelli, Chern-Simons gravity: from 2 + 1 to 2n+ 1 dimensions,
Braz. J. Phys. 30,251–267 (2000) [arXiv:hep-th/0010049]; (Super)-
gravities beyond 4 dimensions, arXiv:hep-th/0206199.

P. Hořava, M-theory as a holographic field theory, Phys. Rev. D59,
046004 (1999) [arXiv:hep-th/9712130];

H. Nastase, Towards a Chern-Simons M theory of OSp(1|32) ×
OSp(1|32), arXiv:hep-th/0306269;
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Math. France (2000) [arXiv:math.DG/0004073].

[133] J.M. Figueroa-O’Farrill and S. Gadhia, Supersymmetry and spin
structures, Class. Quantum Grav. 22, L121–L126 [arXiv:hep-
th/0506229].

[134] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Super-
symmetric AdS backgrounds in string and M Theory, published
in Strasbourg 2003, AdS/CFT correspondence, 217–252 [arXiv:hep-
th/0411194].

[135] J.P. Gauntlett, J.B. Gutowski and S. Pakis, The geometry of
D = 11 null Killing spinors, JHEP 0312, 049 (2003) [arXiv:hep-
th/0311112].

[136] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersym-
metric AdS5 solutions of M Theory, Class. Quantum Grav. 21,
4335–4366 (2004) [arXiv:hep-th/0402153].

[137] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersym-
metric AdS5 solutions of IIB supergravity, arXiv:hep-th/0510125.

[138] O.A.P. Mac Conamhna, Refining G-structure classifications, Phys.
Rev. D70 (2004) 105024 [arXiv:hep-th/0408203].

[139] C.N. Gowdigere, D. Nemeschansky and N.P. Warner, Supersymmet-
ric solutions with fluxes from algebraic spinors, Adv. Theor. Math.
Phys. 7, 787–806 (2004) [arXiv:hep-th/0306097].

[140] J.P. Gauntlett, Classifying supergravity solutions, Fortsch. Phys.
53, 468–479 (2005) [arXiv:hep-th/0501229].

[141] M. Graña, Flux compactifications in string theory: A comprehensive
review, Phys. Rept. 423, 91–158 (2006) [arXiv:hep-th/0509003].
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