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In this thesis a beam based technique is developped to
measure the Hamiltonian terms of an accelerator by pre-
cise Fast Fourier Transform of turn-by-turn beam position
data. To this aim analytical derivations, simulations and
experiments in two different accelerators are performed.
The first analytical derivation consists on describing the
effect of the beam particle distribution on the Fourier spec-
trum of the turn-by-turn motion. This study leads to the
appearance of decoherence factors that reduce the ampli-
tude of the non-linear spectral lines. The second analyt-
ical derivation describes how the resonance driving terms
vary around the accelerator. It is demonstrated that these
terms remain constant along sections free of non-linearities
and abruptly change at the location of the non-linear el-
ements. This property permits to localise the non-linear
sources by measuring the resonance driving terms around
the ring using the beam position monitors. In order to
demonstrate the applicability of this technique in a real ac-
celerator experiments were performed at the SPS of CERN
and at the RHIC of BNL. The SPS is a very linear accelera-
tor equipped with eight powerful sextupoles that were used
to introduce a controlled amount of non-linearity. Measure-
ments and predictions from the model are in good agree-
ment. In the SPS a method to measure and compensate
the linear coupling was also developed. The RHIC, as the
future LHC, is a superconducting machine with a large con-
tent of non-linearity. Sextupolar resonances were measured
in this accelerator using the presented technique obtaining
a satisfactory agreement with the model. Lastly an im-
provement of the technique is studied analytically consist-
ing on using an AC dipole instead of applying a single kick.
This has the main advantage of not being destructive.



The future Large Hadron Collider (LHC) will provide
proton-proton collisions with a center of mass energy of 14
TeV. The circumference of this machine will be 27 km and
the magnetic field in the dipoles will be 8.4 T. The LHC
magnet system consists of 1232 superconducting dipoles
and 386 superconducting quadrupoles together with 20 dif-
ferent types of magnets for experimental insertions and
correction systems. In a conventional magnet the field is
mainly defined by the shape of the iron poles which can be
realized with an accuracy of the order of 0.01 mm. In a
superconducting magnet the field is mainly defined by the
spatial distribution of the superconducting cables of the
coils, which can be positioned with an accuracy of 0.1 mm.
This difference makes the superconducting magnets intrin-
sically less precise than the normal conducting magnets.
Furthermore in the superconducting magnets there are per-
sistent currents in the filaments, which are the memory of
the former variations of the field. The real field in a super-
conducting magnet is represented by a multipolar expan-
sion whose coefficients correspond to the different multipo-
lar field errors. Each one of these multipoles contributes to
the dynamics of the confined particles in a precise way rep-
resented by a set of Hamiltonian terms. Nevertheless only
the linear part of the Hamiltonian, defined by the dipoles
and the quadrupoles, has an exact solution of the motion
(equivalent to that of a harmonic oscillator). The higher
multipoles, e.g. the sextupole and the octupole, define the
non-linear motion of the particle. Solutions to the non-
linear motion can only be approximated around a fix point
using perturbative approaches. Furthermore, for large os-
cillation amplitudes, the particle motion becomes chaotic
and unstable. The region of the phase space where the
motion remains stable over a sufficiently large number of



turns is called the dynamic aperture of the machine. The
LHC has a tight dynamic aperture budget, for this rea-
son it will be equipped with different non-linear corrector
magnets that will be used to enlarge the dynamic aperture
by compensating the effect of the multipolar errors of the
magnets.

In this thesis a beam based technique is developped to
measure the Hamiltonian resonance driving terms of an ac-
celerator by precise Fast Fourier Transform (FFT) of turn-
by-turn beam position data. To this aim analytical deriva-
tions, simulations and experiments in two different acceler-
ators are performed. The first analytical derivation consists
on describing the effect of the beam particle distribution
on the Fourier spectrum of the turn-by-turn motion. This
study leads to analytical expressions that describe the par-
ticular shape of the different Fourier lines. The main con-
clusion is the observation of the appearance of decoherence
factors that reduce the amplitude of the non-linear spectral
lines. The spectral line (m,0), i.e. the spectral line with a
frequency m times the fundamental horizontal frequency, is
reduced by a factor of |m|. As well the width of the spectral
line is almost linear with the order of the line.

The second analytical derivation describes how the res-
onance driving terms vary around the accelerator. It is
demonstrated that these terms remain constant along sec-
tions free of non-linearities and abruptly change at the lo-
cation of the non-linear elements. This property permits to
localise the non-linear sources by measuring the resonance
driving terms around the ring using the beam position mon-
itors.

All the analytical predictions have been confirmed by

numerical simulations of an SPS model. To reproduce the
decoherence a large amount of particles fulfilling Gaussian



disributions were tracked through the lattice. The turn-by-
turn centroid position was computed by taking the average
of the particle positions at every turn. The Fourier spec-
trums of these signals were confronted with the analytical
formulas obtaining a satisfactory agreement.

In order to demonstrate the applicability of this tech-
nique in a real accelerator experiments were performed at
the SPS of CERN and at the RHIC of BNL. The SPS is
a very linear accelerator equipped with eight powerful sex-
tupoles that were used to introduce a controlled amount of
non-linearity. The main conclusion from the SPS experi-
ments is that coupling and sextupolar terms were measured
around the ring and the results are in good agreement with
the predictions from the model. Other important conclu-
sions follow. It was possible to identify locations with or
without non-linearities. Correct sextupole polarities were
inferred from measurements. A method to measure and
compensate the linear coupling was also developed.

The RHIC is a superconducting machine with a large
content of non-linearity. This accelerator serves as an ideal
test bed in order to apply this technique to the LHC. Sex-
tupolar resonances were measured in this accelerator using
the presented technique obtaining a satisfactory agreement
with the model.

Lastly an improvement of the technique is studied an-
alytically that consists on using an AC dipole instead of
applying a single kick. This has the main advantage of
not being destructive. Furthermore no decoherence factors
have to be taken into account and the data samples can be
as long as desired. However the resonance driving terms
in presence of the AC dipole differ from the natural reso-
nance terms. This difference should not be large for low
orders and the local information of either kind of terms is



equivalent. New resonances appear as a result of having
introduced a new frequency in the dynamics.
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Chapter 1

Introduction

The future Large Hadron Collider (LHC) will provide proton—proton collisions
with a center of mass energy of 14 TeV. The circumference of this machine will be
27 km and the magnetic field in the dipoles will be 8.4 T. The LHC magnet system
consists of 1232 superconducting dipoles and 386 superconducting quadrupoles
together with 20 different types of magnets for experimental insertions and correc-
tion systems. In a conventional magnet the field is mainly defined by the shape of
the iron poles which can be realized with an accuracy of the order of 0.01 mm. In
a superconducting magnet the field is mainly defined by the spatial distribution of
the superconducting cables of the coils, which can be positioned with an accuracy
of 0.1 mm. This difference makes the superconducting magnets intrinsically less
precise than the normal conducting magnets. Furthermore in the superconducting
magnets there are persistent currents in the filaments, which are the memory of the
former variations of the field. The real field in a superconducting magnet is defined
by the following multipolar expansion [1],

) > . z+iy\"!

By +1B; = B, Z[bn(s) + 'Lan(s)] ( R ) )
n=1 T

where B, is the amplitude of the nominal field of the magnet at a radius R,., b,, and
ay, are the normal and the skew relative coefficients of the 2n—pole (expressing the
field errors) and R, is the radius of the measurement coil. R,. is known as reference
radius. For a multipole of order n the field is increasing with the power (n — 1)
of the radius. To represent a dipole B, is set to the value of the vertical magnetic
field and b is set to 1. The lowest order multipole error of the dipole is given by
a1, which is a constant horizontal field. The following errors in increasing order
are by and a9, normal and skew quadrupolar fields, b3 and a3, normal and skew
sextupolar fields, etc. Each one of these multipoles contributes to the dynamics of
the confined particles in a precise way represented by a set of Hamiltonian terms.
Nevertheless only the linear part of the Hamiltonian, defined by the dipoles (n = 1)
and the quadrupoles (n = 2), has an exact solution of the motion (equivalent to that
of a harmonic oscillator). The higher multipoles, e.g. the sextupole (n = 3) and

1



2 CHAPTER 1. INTRODUCTION

the octupole (n = 4), define the non-linear motion of the particle. Solutions to
the non-linear motion can only be approximated around a fix point using perturba-
tive approaches. Furthermore, for large oscillation amplitudes, the particle motion
becomes chaotic and unstable. The region of the phase space where the motion
remains stable over a sufficiently large number of turns is called the dynamic aper-
ture of the machine. The LHC has a tight dynamic aperture budget, for this reason
it will be equipped with different non—linear corrector magnets that will be used to
enlarge the dynamic aperture by compensating the effect of the multipolar errors
of the magnets. Measurements of the multipole coefficients of the magnets will be
done prior to their installation in the tunnel. Nevertheless all magnets may not be
measured and their properties may change during the installation process. There-
fore beam based techniques to measure these field imperfections will be of great
help in the commissioning and running of the machine.

The aim of this thesis is to develop a beam based method to measure the Hamil-
tonian terms of an accelerator by precise Fast Fourier Transform (FFT) of turn—by-
turn beam position data. The first attempt to perform such measurements was made
in [2]. In this work, in the framework of the first order perturbation theory, it has
been studied how the spectra from tracking and experimental turn-by-turn data
can be related to non-linear Hamiltonian terms. An important prerequisite to make
possible this analysis was a more precise technique than the standard FFT [3] to
compute the spectrum of the motion. Similar attempts were performed in the field
of celestial mechanics by Laskar [4]. This approach is known as the frequency
map analysis. Recently new techniques were developed [5], allowing an even
more precise determination of the fundamental frequencies. The frequency map
analysis can also be used to find spectral lines in descending order of magnitude.
The relation between the Hamiltonian terms and the spectral lines of single par-
ticle motion is derived in [6]. Presently other methods are being studied for the
measurement of the non—linear content of a machine. Some interesting references
are: [71, [8], [9], [10], [11], [12] and [13]. They will be briefly discussed in the last
section of this thesis.

In this thesis two theoretical aspects of the measurement of the resonance driv-
ing terms are developed. The first one is to derive an analytical relation between the
Hamiltonian terms and the spectral lines of the beam centroid motion. The starting
point of this work is the relation given in [6] between the Hamiltonian terms and
the spectral lines of single particle motion. The results from these analytical stud-
ies will be compared to computer simulations using the model of the Super Proton
Synchrotron (SPS) at CERN. The second aspect is the study of the variation of the
Hamiltonian terms around the ring. In a real machine this information could be
obtained by using the beam position monitors (BPMs). The intrinsic variation of
these terms could be of great use for localizing important sources of errors.

Experiments have been done in the CERN SPS to measure coupling and sex-
tupolar resonance driving terms. The measurement of the coupling resonance terms
provides an efficient way of correcting the coupling. The extraction sextupoles
were used to introduce a controllable amount of non-linearity. By computing the



Fourier spectrum of the turn-by—turn BPM data sextupolar resonance terms were
measured around the ring. These measurements are compared to the predictions
of the model for the different settings used. Similar measurements have been per-
formed in the Relativistic Heavy lon Collider (RHIC) of BNL which is a supercon-
ducting machine. This shows that this technique can be applied to more complex
machines.

A major improvement of this method to measure the resonance driving terms
has been analytically studied. Instead of applying a transverse kick, a forced os-
cillation is induced to the beam by an AC dipole with a frequency close to the
fundamental frequency. This has the advantage of being a non destructive mea-
surement and not being affected by decoherence processes.
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Chapter 2

Maps in accelerators

The dynamics of a system such as a circular accelerator could be described us-
ing Hamiltonian flows or according to the discrete formalism of transfer maps. A
transfer map is a set of functions that give a final set of phase space coordinates as
a function of the initial set of phase space coordinates. This formalism is the non-
linear generalization of transfer matrices used to describe the linear motion in an
accelerator. In that case the linear transfer maps are represented by matrices. The
use of transfer maps to describe the particle transverse dynamics in accelerators
is justified by the discrete nature of magnetic elements. Furthermore maps have
the advantage of being easily implementable on computers. Neglecting any non-
linear element an accelerator could be represented by a product of matrices, each
of them corresponding to a magnet or a drift (free field region). The non-linear
map formalism provides the equivalent tool to the matrices in the linear systems.
Therefore a realistic representation of the accelerator is given by a concatenation
of non-linear maps and matrices. Nevertheless the motion of a particle in an accel-
erator could be obtained only approximately by using perturbative methods. The
perturbative methods used in the non-linear map theory are more powerful than
those used in the classical perturbative Hamiltonian theory.

2.1 Linear maps

The motion of a particle in an accelerator is usually described relative to the ref-
erence orbit defined by the dipoles for a particle with momentum pg. The moving
coordinate system is shown in fig. 2.1, where s, = and y are the longitudinal, hori-
zontal and vertical coordinates respectively and p is the radius of curvature. High
energy particles travel at a constant speed close to the speed of light. The path
length s is given by s = wt. The transverse phase space in accelerators is defined
as (z,z',y,5'), where the prime denotes the derivative over the path length. In the
following the maps of the most important linear elements are given:

e Drift.
The simplest element of an accelerator is a field free region or drift. The

5



CHAPTER 2. MAPSIN ACCELERATORS

0
y Reference trajectory

Figure 2.1: Coordinate system used for accelerators.

linear map that describes a drift of length L in the phase space is given by

(ZZ'>S+L:((1)€)<ZZ/>S’ 2.1)

where z stands for z or y.

Dipole.

A sector dipole, see figure 2.2, is a section of length L with a constant verti-
cal magnetic field and the edges perpendicular to the central trajectory. \Ver-
tically the motion is equivalent to a drift of length L but horizontally the map
is given by

< x ) B ( cos(L/p) psin(L/p) ) ( x ) 22)
) (1/p)sin(L/p)  cos(L/p) a )
where p is the radius of curvature of the reference orbit.

Quadrupole.
A quadrupole, see figure 2.3, produces a linear magnetic field which vanishes
at the reference orbit. The gradient of the quadrupole % is defined as

9 9By

k =
po Ox '

where ¢ is the charge of the particle. A focusing quadrupole (k¥ > 0) of
length L is described as

( . >S+L - ( —\;%Ss?mp (1/\(:/58);11”/, ) ( 7 ) . (3
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with v = L+/k. Similarly, a defocusing quadrupole (k < 0) of length L is
described as

( z > B ( coshy  (1/Vk)sinh1 ) ( z ) (2.4)
7). ‘L ~ \ Vksinhy cosh 1) 2 ). '
with ¢ = L/[k].

For simplicity these expressions are given for a particle with the design momentum
po. The advantage of this formalism is that particles can be propagated trough sec-
tions of several magnets by multiplying 2 x 2 matrices. The one turn matrix M(s)
for a circular accelerator is the transfer matrix that propagates the particle through
all the elements back to the starting location s. It is constructed by multiplying all
the elements in the form

M(s1) = My My --- Mo My, (2.5)

where M; are the matrices of the corresponding linear elements. The one turn
matrices at different locations are connected via similarity transformations, for ex-
ample

M(s9) = MyM(s1) M. (2.6)

To guarantee the stability of the motion over a large number of turns M (s) has to
be connected to a pure rotation matrix via a similarity transformation. The angle
of rotation in the phase space is called tune and is represented by @ . Its fractional
part can be computed from M (s) using the following expression,

2cos(27Q,) = Tr[M(s)] (2.7)
where T'r[M (s)] represents the trace of the corresponding 2 x 2 one—turn matrix.

The parametrization of the turn—-by—turn coordinates at a given location of the ring
so IS given by [14]

z(N) = +/exBz(s0) cos(2mQzN + ¢z) (2.8)
y(N) = €yBy(s0) cos(2TQyN + ¢y) (2.9)

where N is the number of turns, €, and ¢, are given by the initial conditions of the
particle and 3, are the betatronic functions. Comparing to the harmonic oscillator,
€, represents the energy of the oscillation. e, is called the transverse emittance and
e, is the area enclosed by the trajectory of the particle in the phase space (z,z').
¢, is the initial phase. The betatronic function ,(s) represents the amplitude
modulation due to the changing focusing strength. For more details see [15].
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/s 78 Nyyy

Figure 2.2: Dipole magnet.

Figure 2.4: Sextupole magnet.
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2.2 Non-linear maps

The lowest order non-linear element is the sextupole. The sextupole, see figure 2.4,
produces a magnetic field that increases quadratically in the transverse coordinates,

B, = Bs2xy,
By Bs(z* —y?) (2.10)

For large accelerators it is a good approximation to assume that Bj is a Dirac delta
function along the longitudinal coordinate at the location of the sextupoles. This
is called thin lens approximation and has the advantage that the final coordinates
will be functions only of the initial positions = and y. The transfer map of a thin
sextupole placed at s is given by

T T 0

! ! LB 2,2

o = T s BTV (2.11)
y y p 0

yl s+e yl s —2xy

where LBj3 is the integrated strength of the sextupole.
In general the magnetic field of a multipole of order n is given by

By(@,y) +iBy(z,y) = [Ba(s) + idn(s)](z +iy)" ! (2.12)

The terms By, (s) and A, (s) in eq. (2.12) are called normal and skew coefficients
and they are given by the expressions

1 o™ 'B,

B,(s) = = 1) 9zn 00 (2.13)
1 o0 1B,

An(s) CES R (2.14)

Notice that B,, and A,, are absolute values, contrary to b,, and a,, that were intro-
duced relatively to the main field and the radius of the expansion. A skew multipole
of order n is a normal multipole of order » rotated by 90° /n in the transverse plane.
Higher multipoles are, for example, the octupole (n =4, third order in z and y) and
the decapole (n =5, fourth order in x and y). In presence of these non-linear ele-
ments the maps are no longer matrices and an alternative approach has to be used.
In this work Taylor maps (see section 3) are used to represent these non-linear
multipole elements. The total Hamiltonian can be expressed as the sum Hy + H;
where Hy is the linear part already described with matrices and H; contains the
contributions of all the non-linear lenses. The magnetic field of one element can
be derived from a vector potential with only the longitudinal component. Therefore
H; is proportional to this component of the magnetic vector potential, A4(z, vy, s),
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which is obtained by taking the real part of the primitive of the magnetic field
expansion. The perturbation Hamiltonian is given by

o = —%Re 3 %[Bn(s) +idn(s)](x + iy)" (2.15)
n=3

The perturbative approach followed in this work consists of the following steps:

e Construction of the one-turn—-map associated to the Hamiltonian (section 3.2)
using Taylor approach. Basically the one-turn—-map is the set of functions
that relate the initial position of the particle in the phase space to the final
position after one turn.

e Construction of the Normal Form of the one-turn-map (section 3.3). A
change of coordinates is done in a way that the new one—turn-map is much
simpler than the initial one.

e The particle trajectories in the Normal Form basis are transformed into the
initial phase space by inverting the previous change of coordinates (sec-
tion 3.4).

All these steps will be presented up to first order in the perturbation parameters.



Chapter 3

Taylor maps

A Taylor map expresses a final set of coordinates as polynomial functions of an
initial set of coordinates. The most general way to represent this kind of map is
using the exponential Lie operator. The exponential Lie operator is written as e*/*.
It operates on differentiable functions and is defined by

¢lg=g+1f.g+ 5L Lgll + @)

where [f, g] is the Poisson bracket of any functions f and g of the phase space
coordinates defined by

of dg  Of g
=222 22T 3.2
5.9 = 595 ~ o507 (3:2)

When e'f* operates on a coordinate function, the result

vy =cla=a+ (0] + S[F 1]l . (33)

can be interpreted as the value of the coordinate at a time ¢ = 1, expressed as a
function of the coordinates at time ¢ = 0, for a dynamical system with a Hamil-
tonian H = —f. Therefore the exponential Lie operator of a thin lens can be
constructed by multiplying its Hamiltonian, as given in eq. (2.15), by the length of
the magnet (that is the time like variable) and putting it with a minus sign in the
exponent. As an illustration the exponential Lie operator corresponding to a sex-
tupolar thin lens is constructed. The Hamiltonian of a normal sextupole is given by
eq. (2.15),

— (2% — 3z?) . (3.4)
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Therefore the Lie operator is given by

T = eL%(wgfawoy%)wo =Zo,
pop = MBIy gy BBz

yy = Lo @=smod)y g (3.5)
Dyf = eL%(wg_Szoyg)pyo = pyo — aL.5s 2z090 ,

notice that only the momentum coordinates are changed by the map. This is known
as “multipole kick” and its Hamiltonian is named “kick Hamiltonian”. To con-
struct the one—turn map of an accelerator including multipole kicks represented by
exponential Lie operators some of its properties are needed. These properties are
described in the following section.

3.1 Properties of the exponential Lie operator

e Action on polynomial functions. Using eqg. (3.3) it can be shown that
eligh = T, (3.6)
and thus for any polynomial function g(z) it follows

g(zg) = glel'z) = elig(x) (3.7)

e Composition of exponential Lie operators. Suppose we have two oper-
ators, e/1(#1): mapping the phase space z; into the phase space z, and the
second operator e*/2(#2): mapping z into z3. The composition of the maps
is expressed as

23 = ef2(z2)igfi(ar):y — gifalze)y, g(z) . (3.8)

Using the property of eq. (3.7) this composition of maps is expressed in the
following way

23 = 9(22) — g(elfl(zl)izl) — eifl(zl)ig(zl) — e!f1(21)1€!f2(21)1z1 . (3.9

This equation illuminates the somewhat un—intuitive result that a succession
of Lie operators can be expressed in the initial coordinates by reverting the
order of the operators. This property is needed in the construction of maps
as a succession of elements. From this property the following relation is
derived

e:g:e:f:e—:g: — e:e:g:f: (310)

which is the analogue of the similarity transformation in linear matrix alge-
bra.
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e The Campbell-Baker—-Hausdorf theorem. The concatenation of two expo-
nential Lie operators can be expressed by another exponential Lie operator,

e = ¢if: (3.11)
with the generator f given by the infinite series

[ =fo+ fr+[fo, fi] +-.. (3.12)

Higher order terms are complicated and not discussed here. The proof of
this theorem is given in [16]. In practice, this formula is of interest in those
cases where f1 and f are small and the series converges rapidly.

3.2 The one turn map

The one turn map of a circular accelerator is the set of functions that relate the
initial coordinates of the particle to the final coordinates after one turn. The one
turn map is given by the composition of successive element maps in the form

M = MN+1e:hN:MNe:hN—1: et Moeth My , (3.13)

where the M,, are the maps corresponding to the linear elements and the h, =
hn(zn,yn) are the kick Hamiltonians of the non—linear thin lenses at the longitu-
dinal coordinate s = s,,. Using the properties of the exponential Lie operator M
can be written as a function of the initial coordinates by reverting the order:

M = MieM Myeh> ... e:hN*“MNe:hN:MNH (3.14)

taking M,, = My M>...M,,, inserting identities of the form M, ! M,, and using the
similarity relation this equation transforms into:

M — e:Mlhl:e:Mth: .. e:MN_th_l:e:MNhN:MN+1 (315)

The linear one turn map is M 1. Since My is a linear, symplectic and stable
operator there exists a linear change of coordinates that transforms this operator
into a pure rotation. This is expressed by the similarity transformation

Myy = ARA™L, (3.16)

where A represents the transformation and R the rotation. By inserting identities
of the form AA~! in eq. (3.15) The one turn map can be expressed as

M = A—le:AMlhl:e:AMQh,g: . e:AMN,th,l:e:AMNhN:RA (317)

In the following we will work in the new frame where the linear one turn map is a
pure rotation. The total one turn map in the new frame will be represented by the
same symbol M. Using eq. (3.7) M is written in the form

M = ghighs .. ghvipg (3.18)
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where h,, are the functions hn(zy, yr) Written in terms of the eigencoordinates of
the linear motion at the longitudinal location s = s,. Assuming that there is no
coupling present z,, and y,, are given by

Tn = A/ 2Bndy cos(dz + bzn) (3.19)
Yn = v/ 2/8ynjy COS(¢y + ¢yn) (3-20)

where B,,, ¢, are the beta function and the phase advance at the location s = s,,.
J, and ¢, are the action—angle variables defined by the initial conditions. Com-
paring to egs. (2.8) and (2.9) J, corresponds to the transverse emittance divided by
two.

Using the Campbell-Baker—Hausdorf theorem (see section 3.1), eq. (3.18) sim-
plifies to

M=e"R (3.21)

Assuming that the A, are small, h can be approximated by

N N
h=> ho+ > [hmha]+-- (3.22)
n=1 n,m<n

In the following only first order in A, are kept, i.e. the second summation of the
right hand side of eq. (3.22) will be neglected. Using egs. (2.15), (3.19) and (3.20),
h can be expanded as:

b= Z hjklm(QJw)#(QJy)“LTme*i[(j*k)(fzﬁm+¢x0)+(l*m)(¢y+¢yo)1 (3.23)
jklm

where h ., are the Hamiltonian coefficients containing the contributions from all
the multipoles of order n. = j+k+H-m, being normal multipoles (B,,) if (I+m) isan
even number, or skew multipoles (4,,) if ({4+m) is an odd number. For example the
Hamiltonian terms coming from normal sextupoles are: hsooo, h1200 and ho1g. IN
particular hsooo is given by the following summation over the existing sextupoles

q 3 i3
h3000 = ~24p Zi:Lz’BSz' 2610 (3.24)

3.3 Normal Form

For a non-linear map such as eq. (3.21), the idea of Normal Form is to look for
a change of coordinates that shapes the map into a simpler form. Generally, the
simplest form is an amplitude dependent rotation, i.e. a rotation in the phase space
whose angle depends on the oscillation amplitude of the particle. The change of co-
ordinates is represented by a similarity transformation of the one turn map, written
as

ef:F:e:h:R e:F: (325)
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Figure 3.1: Normalized phase space portraits in the initial coordinates (left) and in
the Normal Form coordinates (right). The unit of the axis is 0.5y/mm.

where F' is the generating function for the transformation. Figure 3.1 shows a
simulated tracking example of this kind of transformation. In the left part the
phase space trajectory of a particle in presence of strong sextupolar fields is shown.
For this case the generating function F' was numerically computed and the data
were transformed by applying e, The trajectory after the transformation (in
the Normal Form coordinates) is shown in the right part of the figure 3.1. The
one turn map in the Normal Form coordinates is an amplitude dependent rotation
represented by e:/(1): R, where H (I) is a function that depends only on the action
variables and not on the phases and R is the rotation matrix. Equating this to
eq. (3.25) gives

ef:F:e:h:Re:Fi — eiH(I):R (326)
Multiplying the I.h.s. of the equation by R~ R and using eq. (3.10) it becomes
e—:F:e:h,:e:RF:R — e:H(I):R (327)

Using the Campbell-Baker—Hausdorf up to first order in F', h and H (I), eq. (3.27)
is expressed as

(1-R)F+H=h (3.28)
and the formal solution of this equation is ( [17], [18] or [19]):
1 —
F = (l_R)(h—h) (3.29)
H = h (3.30)

where h represents the average of & over the phase coordinates ¢, and ¢,. When
the denominator (1 — R) of eq. (3.29) takes values close to zero F' diverges and
Normal Form cannot be applied. In these cases the motion is not regular.
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Introducing the expansion of A from eq. (3.23) in eq. (3.29) the generating
function is expressed in the form

F= Z Fikim(212) ik (21,) B (k) ($a+tbmg ) +(1—m)(y +1by, )] (3.31)
jklm

The generating function terms f;;,, are related to the hjx;,, by the following rela-
tion,

B hjkim
f]klm - 1 . e*i27r[(j_k)Qm+(l—m)Qy} (332)

where (), and @), are the horizontal and vertical tunes. f;x;,, diverges when
(1 = F)Qz + (I —m)Qy = p2 ,

being p any integer. This situation is known as a resonance and is avoided during
normal operation of accelerators. The label of the resonance is (n1, ne), being
n1 = (j — k) and ny = (I — m). Every generating function term or, equivalently,
Hamiltonian term is associated to certain resonance. For this reason these terms
are generally known as resonance driving terms.

3.4 The non-linear motion and its spectrum

The relation between the action angle variables (J5, ¢4, Jy, ¢,) and the Courant—
Snyder variables (&, pg, §, py) is given by the formula (z stands for z or y):

zZ = 2J, COS(¢Z + ¢20) (333)
P, = —+/2J,sin(¢, + ¢,0) (3.34)

where ¢, is the initial phase. It is convenient to use the resonance basis (h;}, h;,
h.f, h, ) defined by the relations:

hE =2+ ip, = \/2J,eTHP:F020) (3.35)

The transformation to the new set of Normal Form canonical coordinates (¢, ¢,
C;r, Cy—) is given by the operator e, where F is taken from eq. (3.29), and is
expressed as

(F = \/2LeTWtve0) — omFipE (3.36)

where I, is the invariant of the motion in the new frame. By construction the
one-turn map in Normal Form coordinates is an amplitude dependent rotation.
Therefore the motion in these coordinates as function of the turn number N are
given by

GE(N) = /2I,eTimv:Ntzo) (3.37)
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where v, are the tunes including the amplitude dependent detuning. Using the
two previous equations the turn—by—turn motion in the normalized coordinates is
obtained. The evolution after IV turns of the linearly normalized horizontal variable
is expressed in the form

hy(N) = /2L Cm=Ntvs) _
. . j+k—1 I+m
20> jfim(2Le) "2 (20) 7 x
jklm
ei[(l—j—l—k)(?m/mN-Hme )+ (m=1)(2mvy N+py,)] (338)

where the factors f;,,, are the generating function terms. Note that by evaluating
this equation at N = 0 the relation between (J,¢) and (I,7) is obtained. Eq. (3.38)
describes the motion of the particle in presence of non-linearities. Each Hamil-
tonian coefficient %y, introduces a spectral line proportional to its amplitude.
The FFT of the turn by turn signal 7 (V') can be used to measure these Hamilto-
nian coefficients approximately (see [6]). To construct the signal i () defined
in eqg. (3.35) both the position and the momentum are needed. In a real machine
the position are available from the beam position monitors (BPM). It is however
possible to reconstruct the momentum using two nearby BPMs. If the phase ad-
vance between the BPMs is exactly 7 /2 the first BPM gives the position z and the
second BPM the momentum p, as can be seen from eq. (3.34). Otherwise the data
from the second BPM is linearly transformed using the data from the first BPM to
achieve the 7 /2 of phase advance. In figure 3.4 an example corresponding to the
SPS in presence of strong sextupoles of the amplitude of the Fourier spectrum of
the horizontal signal h, (IV) is presented. The spectral line with frequency —2Q,,
(-2, 0), is proportional to the term hsggo, the line with frequency 2Q., (-2, 0), is
proportional to the term A9 and the line with zero frequency, (0,0), is propor-
tional to the term ho1qg.
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Figure 3.2: Amplitude of Fourier spectrum of the horizontal signal 4, (V) for the
SPS in presence of strong sextupolar fields. The label (m,n) attached to the spectral
lines means that the frequency of that line is mQ; + nQy.



Chapter 4

Spectral response to particle
distributions

4.1 Analytical study

In section 3.4 the relation between the spectral lines of the single particle motion
and the resonance driving terms was established by means of A2 (N). In a real
machine the BPMs are used to record the turn-by—turn transverse position of the
centroid of the beam. Therefore the equivalent relation to that given by A, (N) has
to be found between the spectral lines of the motion of the centroid and the reso-
nance driving terms. To derive such relation it will be assumed that the coordinates
of the centroid are given by averaging over a Gaussian distribution of particles
that do not interact between them. The most important processes that affect the
centroid motion are the decoherence processes, i.e. when all the particles do not
oscillate with the same frequency or tune. The two main sources of tune spread in
an accelerator are amplitude detuning and chromaticity.

The amplitude detuning is caused by the presence of non-linear magnetic
fields. The horizontal and vertical tunes are functions of the betatronic ampli-
tudes of the particles. Thus particles with different oscillation amplitudes have
also different tunes. This causes the decoherence of the beam. The oscillations of
the centroid are completely damped after certain number of turns. Simulation data
showing this effect for an SPS model with strong sextupoles is plotted in figure 4.1.

The tunes of the particle also depend on its momentum deviation. The param-
eter used to quantify this dependence is the chromaticity @', defined as

,_ 0Q,
Qz - 8(5 ’

(4.1)

where z stands for z or y and § = (p — po)/po is the relative momentum deviation.
This dependence of the tune on the energy of the particle is explained by the fact
that the more energetic particles are less focused by the quadrupoles and vice versa.
In addition the energy of off-momentum particles performs harmonic oscillations

19
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around the reference energy due to the effect of the radio frequency cavities. The
frequency of these oscillations is the synchrotron tune @ . Therefore the transverse
tunes are modulated with the synchrotron tune with a modulation amplitude given
by the chromaticity. The phase of this modulation is equally distributed between 0
and 27 among the particles of a centered beam. Simulation data showing the effect
of chromaticity in the centroid motion is plotted in figure 4.6.

In this chapter the spectrum of the motion of the centroid of the beam is stud-
ied assuming Gaussian particle distributions and including amplitude detuning and
chromaticity. This study will allow to relate the lines of the Fourier spectrum of the
centroid turn-by-turn data to the non-linearities of the machine. This is the gener-
alization of eq. (3.38), for single particle, to particle distributions. The quantitative
dependence of the tune on the different phase space variables that will be used in
the subsequent analysis is given in the next section.

4.1.1 Tune dependence and bunch densities

Sextupoles and octupoles introduce a linear dependence of the tunes v, and v,
with respect to the horizontal and vertical invariants I, and I, [20], introduced in
eg. (3.36). Note that this effect is of first order in the strength of the octupoles
and of second order in the strength of the sextupoles. Higher multipoles introduce
higher powers of the invariants but it is assumed here that these contributions are
negligible. This could be expressed as follows:

vy = Qz + V;.Z.ZLE + V;yQIy

vy = Qy + V;ll/:vQIl‘ + VZI/yQIy 4.2)
where the v/ are constant factors defined as
Vi = G oy = G
v = % ! = % 4.3)

= v =
Y8 ey YU Oy

with €, = 21, and ug'ﬁy = VZI/CL"

Off-momentum particles will experience an additional tune oscillation given
by the expressions [21]:

Ay, = W%i(j\/' cos(mQsN + 1)) sin(nQsN)

Ay, = WQij cos(mQsN + 1) sin(nQsN) (4.4)

where @, is the longitudinal or synchrotron tune, 5 is the initial phase, ¢ is the
momentum deviation, @Q’, and Q’y are the horizontal and vertical chromaticities and
N is the turn number.
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Assuming Gaussian distributions in the three planes with the centroids of the
initial transverse distributions off-centered with the amplitudes A, and A, in units
of the sigma of the corresponding distribution, and a centered Gaussian distribution
in the longitudinal plane, the densities are given by:

1 1 T2 _ o4

(Ip,pg) = o€ L(2L,+ A, —2A,/21, cos s (4.5)
1 T oq

y(Iya¢y) _ %67;(21—”4—/1972‘4” 21, cos1y) (4.6)
5 _52 2 2

p5(57¢8) = 27‘_0_%6 /( 0'3) (47)

where /21, and /21, are expressed in units of the sigma of the corresponding
distribution and o is the sigma of the longitudinal distribution. Each sigma corre-
sponds to the square root of the emittance in the respective plane.

4.1.2 The centroid motion and its spectrum

The centroid position and momentum are computed by averaging over the bunch
distribution. The turn-by—turn motion of each particle h, () is given by eq. (3.38)
as a function of his transverse amplitudes and initial phases. The contributions of
the amplitude detuning and the chromaticity to the tunes are introduced in that
expression. At every turn N the centroid normalized horizontal coordinate is given
by the following expression,

/dl / ar, / dé/ dwm/%dwy/ s oo, a) %

( ¢y ps(‘s ws) (4.8)

This integral involves the six variables of the phase space, the densities were intro-
duced in the previous section and h; (IV) is given by eq. (3.38) including amplitude
detuning and chromaticity. In the appendix A.1 it is described how to solve four of
these integrals. It does not seem possible to integrate over I, and I,,. ks (N) can
be re—expressed in terms of the remaining integrals as

hg (N) = Li1go(N) — 2i > ifikimIGak-1)(-je)armym-n(N)  (4.9)
jkim

where L, are defined by
o0 o0 1 —2 —2
anlk(N) — / dIl-/ dIy(QIJ:)TL/2(2Iy)l/2ef5(2Lp+Ax+2Iy+Ay) %
0 0
m(Z;U \/E)Ik (Zy 2Iy)ei27r(muw +kvy)N—272,, sin?(7Qs N) (4.10)

where I,, represents the modified Bessel function of order n, v, = (Mm@, +
kQ;)as/Qs contains the effect of chromaticity and v, and v, do contain only the
effect of amplitude detuning.
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It has been already mentioned that to measure the resonance terms we have
to perform a Fourier analysis of the data. For this reason the Fourier transforma-
tion of the centroid turn-by—turn motion, given by eq. (4.9), has to be computed.
The Fourier transformation of hz (V) is represented by H, (w). Since the Fourier
transformation is a linear operator each term of the r.h.s. of eq. (4.9) gives a con-
tribution to H, (w), this is expressed by

Hm_ (w) = /dN ha (N) —elN = Hac_tune Z x]klm (411)
Jjkim

The steps to solve this integral are described in the appendix A.2. Notice that by
solving this integral a Dirac Delta function appears and this permits to integrate
over I,. Nevertheless it is not possible to solve analytically the integral over I,.
The different terms of the r.h.s. of eq. (4.11) are re—expressed as

_ _ A2
Hz,tune(w) = m,tune(w) e~ 1o I0 (7%0) + (412)
0
—~2 _ —
Z € ,YIOIQ(V%O)[Aw,tune(w + QZWQS) + Aw,tune(w - QQWQS)]

q=1

_ _ a2
Hx,jklm(w) = ‘A;c,jklm(w)e ’y(lijJrk)(mil)10(7(217j+k)(m7l))+

“Ya-jrrym-nT, (72
€ a(Y(1—j k) (m-1)) X
q=1

where the functions A, ;,,.(w) and A, ., (w) are defined in egs. (A.21) and
(A.22) and still contain an integral over the coordinate I,,. The functions A, ;,,,. (w)
and A;jklm( w) are single peak distributions with their maximums close to the fre-
quencies v, and (1—j+k&)vg+(m—I)v, respectively. Their amplltudes contain the
generating function terms and the reduction factor [(1—j+k)vy, + (m—1)vy,|.

These factors are due to the decoherence and increase the difficulty to measure the
resonance terms since they reduce the signal of interest. The functions H_,,,,,.(w)
and H . (w) are equal to A, .(w) and A7, (w) when the chromaticity
is zero. From their expressions one can read that the effect of chromaticity is to
add an infinite number of sidebands at +¢27 Qs from every line. The shape of the
sidebands is the same as the one of the main peak and their amplitudes decrease as
g increases.

These expressions represent the furthest analytical solution for the general case.
The remaining integral over I, should be done numerically. Nevertheless simpler
expressions are found when considering only one transverse dimension or when
looking at special spectral lines.
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One transverse dimension

When only one of the transverse planes is relevant analytical expressions of the
functions A .. (w) and A_ ;.. (w) can be achieved. Considering only the hori-
zontal plane, the integrals over I, from egs. (A.21) and (A.22) are dropped and I,

is set to zero, resulting in

1 —2 _
Aspune0) = 21, (w)e 3T A) T (A, /20, (w)) (4.14)
_ __ 2ijfjkoo (+k—1)/2
i B
e 3R ITAIL o (Apy/205(w)) (4.15)
Up(w) = o (w/2m — (1—j+K)vs0) (4.16)

(1=j+k)vg,

To obtain the total H (w), with the chromaticity sidebands, the A~ (w) of egs. (4.12)
and (4.13) is replaced by these given above. To compare the former .A; jkoo 1O the
single particle case the Fourier spectrum of the motion of a single particle, see
eq. (3.38), is given with a similar notation,

h’;,tune(w) = Zac(SDirac(w/27T_Vz) (4.17)
B iroo(®) = —=2ij Finoo(Aa) T 20 pigge (w/2m— (1= +k)vz)

where 0 pirqc 1S the Dirac delta function and the oscillation amplitude of the single
particle is /21, = A,. Itis observed that each spectral line of egs. (4.17) becomes
a distribution divided by the factor |(1—j+k)v, | due to having taken into account
the particle distribution and the amplitude detuning. The spectrum is usually nor-
malized to the tune line (1,0) to easily compare to experiments. The normalized
amplitude of the line (m,0) from particle distributions is reduced by a factor of |m|
compared to the single particle case. These factors are called decoherence factors
and are described below.

Decoherence factors

Both in the two-dimensional and the one—dimensional calculations reduction fac-
tors of the spectral lines appear due to the amplitude detuning. These factors de-
pend only on the frequency of the spectral line and the amplitude detuning coeffi-
cients. The decoherence factor corresponding to the horizontal spectral line (m,n)
is defined as
VI
|m + ny,ﬂ\ (4.18)
rxr

and represents the reduction factor of the normalized spectral line of a decohered
signal when compared to the single particle case. In particular, for the one di-
mensional case the decoherence factor corresponding to the spectral line (m,0) is
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The line with zero frequency

The generating term £z, Will be attached to a zero frequency line in the horizontal
plane when 1—j+k = 0 and m—I = 0. Calculating the terms H (=1 )mm which
fulfill the former conditions, is much easier since they are not af’fjecte(f neither by
amplitude detuning nor by chromaticity. Notice that they are not a distribution
since they are only defined at w = 0. Starting from eq. (A.4) and doing the integrals
over the transverse phases one obtains

Hy jti—tymm = —2z'jfj(j1)mm/0 de/(; dI,(21;)VY (21,)™ x

e~ d LA AL AA) [0 A AT In(Ay/21,) . (4.19)

This integral can be exactly computed for all 5 > 0 and m > 0 leading to hy-
pergeometric functions. For m = 0 these hypergeometric functions are simply
polynomials of order 2(j —1) in A,. We show the cases ; = 2, m = 0 and
j =3, m = 0 which are related to sextupolar and decapolar fields respectively:

B . —2

H, 9100 = —4if2100(2 +4;) (4.20)
- . —2  —4

Hy 3000 = —6if3000(8 +8A4; + A,;)

Note that the other spectral lines vanish for A, = 0, see (4.15), and that the single
particle spectrum of eq. (3.38) is completely flat for a zero oscillation amplitude.
Contrary to these cases the (0,0) line exists even for A, = 0 when considering
particle distributions. To compare to the single particle case the contributions from
the sextupoles and the decapoles to the (0,0) line of the single particle spectrum are
given by

_ . —2
hyoigo = —4ifa1004; (4.21)
_ . —4
hysa00 = —6if32004,
where the oscillation amplitude of the single particle is /2T, = A,. Note that for

large values of A, egs. (4.20) and (4.21) tend to give the same results, contrary to
other spectral lines where the decoherence factors appear for any A,.

4.1.3 Peak widths

The width of the different lines is an important parameter since its inverse is pro-
portional to the decoherence time of the line. For the following calculation it is
assumed that the sidebands introduced by the chromaticity do not mix with the
principal line. The width is estimated by evaluating the standard quadratic devia-
tion of the corresponding distribution A, (w):

[ dww? A - (w) J dw wA .. (w) 2
021 =< W > —<w>2= DT 2 (4.22)
IH / dw‘Az,jklm(w) / dw‘Aw,jklm(w)
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In the general case these integrals have to be done numerically but considering only
one transverse dimension it is possible to compute them analytically. In table 4.1
the widths of the most important low order lines are shown. A quasi-linear increase
of the width with the order of the line is observed.

Jtk-1]1-j+k k00
Tune Line 1 1 UL, \/2 + A
Sextupolar Lines 2 +2 4l \/ 3+ A
Octupolar Lines 3 +3 61, \/4 +4

Table 4.1: Width of the most important low order lines in the horizontal spectrum
considering only a horizontal distribution.

4.1.4 Surviving lines

We have seen that the decoherence affects in a different way each line. The main
reason is that they have different amplitude detunings, i.e. the spectral line (m,n)
which has the tune v = muv,, + nv,, has an amplitude detuning expressed by:

Av = (M, + nwy, )21 + (muy, + nwy, )21, .

If the terms in brackets cancel out, this line will have no detuning and, as happens
to the line (0,0), it will not decohere. This may give a chance to measure certain
high order lines which in presence of filamentation are strongly decreased by the
decoherence factor.

4.2 Simulations

This section is devoted to comparing some of the analytical expressions derived in
section 4.1 to computer simulations. In the previous section the Fourier spectrum
of the centroid of a Gaussian beam was described analytically taking into account
the amplitude detuning and the chromaticity. In the general case of considering the
two transverse dimensions it was not possible to solve analytically all the integrals
involved in the calculations. In the simpler case of only one transverse dimen-
sion analytical expressions were obtained from the Fourier spectrum. Nevertheless
when there is chromaticity and there is no amplitude detuning analytical expres-
sions could also be inferred in the two dimensional case. In order to verify the
different predictions two simulations have been performed. The first one contains
amplitude detuning but not chromaticity and the second one contains only chro-
maticity. To do both simulations a common model of an operating accelerator has
been used: the Super Proton Synchrotron (SPS) at CERN. A detailed description
of the SPS is given in chapter 6.



26 CHAPTER 4. SPECTRAL RESPONSE TO PARTICLE DISTRIBUTIONS

In the following sections the two computer simulations are described. The re-
sults from the analysis of the data has been compared to the analytical expressions
obtained in the previous section.

4.2.1 Amplitude detuning
Description of the simulation

To obtain the horizontal evolution of the centroid a large number of particles having
an off-center Gaussian distribution in the horizontal phase space have been tracked.
The turn-by—turn position of the centroid is given by the average position of the
particles. The program used for the single particle tracking was SixTrack [23].
This program simulates the trajectory of a particle all around the accelerator. Each
element is described using a symplectic map, i.e. it preserves the area in the phase
space. The program used to compute the Fourier transform of the data was SUS-
SIX [24] which contains the recent developments [5] that allow a precise determina-
tion of the spectral lines. Particle distributions are considered neither in the vertical
nor in the longitudinal plane. Amplitude detuning was created by introducing the
extraction sextupoles in the linear lattice. The first four extraction sextupoles were
powered to +30 A and the following four extraction sextupoles were powered to
-30 A as shown in figure 6.2. All the simulated particles have the energy of the
reference particle (6 = 0), therefore chromaticity is not an issue (for the formulas
Q' = 0). The horizontal sigma of the beam distribution is 0.18 mm /+/B;, where
Bz = 103 m. The initial offset of the Gaussian distribution is represented by the
quantity A, introduced in the previous chapter. In the experiments a single dipole
kick is applied to displace the beam from the center. The simulation was done for
various kicks ranging from 2 to 13 mm at 8 = 103 m. As an illustration the simu-
lation data for the case with a kick of 7.3 mm at the same /3 is shown in figure 4.1.
This picture shows the typical pattern of the damped oscillation of the centroid due
to beam decoherence due to amplitude detuning.

In a second illustration the Fourier spectrum of the centroid turn—-by—turn data
is shown in figure 4.2. The labels (m,n) attached to the different peaks mean that
the frequency of that line is mv, + nv,,. The tune line is the (1,0) line and its
amplitude is used to normalize the spectrum. The main spectral lines arising from
the sextupoles are (-2, 0), (2, 0) and (0, 0) which are proportional to the generating
terms f3o00, f1200 and fo100 respectively. The spectral lines (-3,0) and (-1,0) come
from octupoles and second order terms of the sextupoles. The line (-4,0) comes
from second order terms of the octupoles and third order terms of the sextupoles.
The aim of this work is to describe the spectrum up to first order on the non-
linearities, therefore we focus on the tune line and the main sextupolar lines. From
the figure a couple of conclusions can be drawn: the effect of considering the
particle distribution causes the spectral lines to become wide distributions instead
of Dirac Delta functions like in the single particle case and the line (0,0) has zero
width as stated in section 4.1.2. The detailed comparison of the amplitude and
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Figure 4.1: Horizontal position of the centroid of the beam versus turn number for
the SPS with extraction sextupoles on.
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Figure 4.2: FFT spectrum of the horizontal centroid motion of the beam for the
SPS with extraction sextupoles on.
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shape of the spectral lines to the analytical predictions is done in the next section.

Comparison between model and simulation

In section 4.1.2 the expressions that describe the Fourier spectrum for one trans-
verse dimension are given. The analytical expression describing the line (1,0), the
tune line, is given by

ne(W) = ﬁ o, (w)e sCLI A [ (A, /2T, (w)) (4.23)
2Uw) = —(w/2m— Qu) (4.24)

T

The parameters needed for the evaluation of this expression are taken from the sin-
gle particle tracking. These parameters are the horizontal tune for zero oscillation
amplitude (Q.) and the amplitude detuning (vZ,), i.e. the derivative of the hori-
zontal tune with respect to the square of the oscillation amplitude. Both parameters
were obtained by evaluating the tune of the single particle at different oscillation
amplitudes and performing a fit. In figure 4.3 the tune line obtained from the
Fourier transform of the simulation with the particle distribution is compared to
the analytical model. The agreement between the two curves is good enough to
suggest that tune measurements might be improved by fitting the predicted curve
to the Fourier spectrum of measured data.

The distribution of the line (-2, 0) is given by the term H 3000(w) which is
obtained from eq. (4.15), giving

_ 64 f
7‘%,3000(“’) = - ‘21/3,00|0 21 (w) x
e~ 3 QL)AL (A, \ /2T, (w)) (4.25)
1
2I,(w) = o (w/2m 4+ 2Qy) (4.26)

The parameters needed for the evaluation of these expressions are the horizontal
tune (@), the amplitude detuning (v.,) and the generating term f3ogo. The first
two were already obtained above. The generating term was calculated by using the
analytical expressions of section 3.3 (given the model) as well as from the FFT of
single particle tracking (section 3.4), obtaining the same result. In figure 4.4 the
line (-2, 0) obtained from the Fourier transform of the centroid simulation data is
compared to the analytical prediction. The frequency of the peak of the curve and
its width are well predicted although there is a small discrepancy in the right tail.
It remains unclear whether this discrepancy comes from the simulation or from the
decoherence model.

The line (0,0) was studied separately in section 4.1.2. Contrary to the previous
spectral lines this one has zero width. Therefore the quantity to be compared be-
tween simulation and model is the amplitude of the line (0,0) for different kicks.
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Figure 4.3: Distribution of the tune peak for model and simulation versus frequency
(in tune units) for the SPS with extraction sextupoles on.

The amplitude of this spectral line as function of the kick is given by H_ 5., from
eq. 4.21. The amplitude of this line only depends on the generating term 2100,
which has been calculated in the same way as the previous term f3ggo. In figure 4.5
the amplitude of line (0,0) computed from the simulation is compared to the pre-
diction of eq. (4.21). The agreement is excellent. It is important to notice that this
line exists even when the kick is zero. This feature is not predicted from the single
particle theory, eq. (3.38), it appears only when the beam distribution is considered.

The analytical expressions derived in section 4.1.2 have been compared to a
computer simulation. The overall agreement is very satisfactory validating the
expressions obtained for the one dimensional case. It remains unclear whether the
discrepancies seen in the tails of the distributions are due to the simulation or to
the model. No simulation was done for the more general case of two transverse
dimensions since it requires a huge amount of CPU time. In the following section
the simulation containing chromaticity is discussed.

-0.378
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Figure 4.4: Distribution of the line (-2,0) for model and simulation against fre-
guency for the SPS with extraction sextupoles on.
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4.2.2 Chromaticity
Description of the simulation

To perform simulations of the centroid in presence of chromaticity the program
HEADTAIL [25] has been used. This program has been originally written to study
the interaction of a bunch with an electron cloud over many turns. The bunch is
represented by 10° macro—particles which are initialized with a Gaussian distribu-
tion in each of the 6 dimensions of the phase space. Each macro—particle executes
betatron and synchrotron motion. The betatron motion is simulated by using the
linear one—turn map of the accelerator. This feature speeds up the tracking pro-
cess but discards the introduction of non-linear elements around the ring. The
effect of chromaticity is also included by applying a momentum dependent rota-
tion to each macro—particle. In order to ensure the longitudinal-transverse cou-
pling which allows us to see synchrotron sidebands in the spectrum of the centroid
motion, it is sufficient to set the chromaticity to a nonzero value. The macro—
particles are tracked over 2048 turns, the position of the centroid of the vertical
motion is recorded and Fourier analyzed. The parameters used for the tracking are:
Q) = 10.64, Q) = 0, Qs = 0.00686 and o, = 1.62 x 10~>. Since only the verti-
cal motion is considered the subindex vy is dropped in the following. In figure 4.6
the turn—-by—turn motion of the centroid obtained in this simulation is plotted. It
shows how the beam decoheres and recuperates the coherence periodically due to
the chromaticity and the energy oscillations.

Comparison between the decoherence model and simulation

Since no non-linear elements were introduced in the simulation all the generating
terms f;xim are zero and therefore the only spectral line existing is the tune line.
The effect of chromaticity on the tune line is to introduce sidebands with frequen-
cies v + qQs Yq € N as shown in eq. (A.23), which is re-written as

Hppne(w) o Ape(w) Io(v3o) + (4.27)
> 1L () [Amune (W + 427Qs) + Ape (w — 27Q5)]
g=1

The sidebands have the same shape as the fundamental line, given by the function
A,ne(w). There are only two parameters in eq.( 4.27), the synchrotron tune, v,
and y10 = Q'0s/Qs. Both parameters are directly obtained from the input of
the numerical simulation. s determines the spacing between the sidebands and
10 determines the number of relevant sidebands appearing via the factor I,(v%,) in
front of the sideband of order ¢. In this simulation there was no amplitude detuning,
therefore A;,,,..(w) is a Dirac delta function. Then the shape of the fundamental
line and the sidebands will be a narrow peak determined by the FFT resolution. The
amplitude of the sidebands from model and from simulation are being compared.
To this aim the analytical envelope function is being computed and plotted with
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Figure 4.6: Vertical position of the centroid versus turn number for the SPS without
any non-linear element.

the FFT of the simulation data. The envelope function E(w) that connects all the
peaks of eq. (4.27) is expressed as

BE(w) = I%(’on) (4.28)
note that the variable w is in the order of the modified Bessel function. In fig-
ure 4.7 the amplitude of the FFT of the simulation data is plotted together with
this envelope function. The simulation and the analytical formula are in excellent
agreement.
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Figure 4.7: Amplitude of the FFT of the vertical centroid motion from simulation
and predicted envelope function for the SPS without any non-liner element.
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Chapter 5

Localization of Multipoles

The longitudinal variation around the ring of the Hamiltonian and the generating
function terms are studied in this chapter. It is shown how measuring the amplitude
of the different resonance driving terms along the ring allows the identification of
the longitudinal positions of multipolar kicks. Therefore it is possible to identify
field errors and their location. This method is of great interest for commissioning
an operating an accelerator.

5.1 Longitudinal variation of resonance terms

The dependence of the one turn map on the longitudinal coordinate is studied by
constructing two maps starting at two different locations (s and ss), separated by
a linear section M and a non-linear multipole kick e1:. The corresponding one
turn maps are expressed as

MO = My et Myehv-1i..gh2 Myt v, | (5.1)
M(Z) _ e:hl:MlMN_Fle:hN:MNe:hAL1: ... e:hQ:MQ . (52)

A schematic view of these two maps is shown in figure 5.1. Both maps can be
expressed in their respective normalized phase space as follows

MO = hip (5.3)

MO = g (5.4)
where the respective linear one turn maps in the normalized space are the same
since they are connected by a similarity transformation which preserves the rotation
angle. A1) and h(?) are obtained from egs. (3.17) and (3.22), giving

BY = A Mihy + A\ My Mahy +--- + ALMi My --- Myhy
h(2) = AsMshy + AoMoMshs + --- + Ao My - - - MN+1M1h1 (55)

35
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Figure 5.1: Schematic view of the ring for maps at two different longitudinal start-
ing locations. The arrows represent the linear maps and the diamonds the non-
linear multipolar kicks.

where A; and As are transformations that bring the local coordinates into the nor-
malized coordinates. Applying A2M1A1‘1 to h; the following relation holds be-
tween £V and A(2):

B2 = AgMATYRY — Aghy + AyMy - My i Mihy (5.6)

Using R = Ay M, - --MN+1M1A2_1 and grouping terms with h; the following
relation is obtained,

PP = ApM7 AT RN + (R — 1) Aghy (5.7)

which expresses the relation between the two Hamiltonians. The generating func-
tion for both locations using eq. (3.29) is expressed as

1
m _ 1 ;0
F —h (5.8)
1
@ _ _1 ;0
F —h (5.9)

By introducing ~(?) from eq. (5.7) into eq. (5.9) and using the fact that R commutes
with Ao M; ' A7, since they are both rotations in the normalized phase space, the
relation between F(2) and F(1) is expressed as

F@ = AyM7YATIF®Y) — Aghy (5.10)

This equation shows how the generating function changes along the ring. If there
are no non-linear kicks between the two initial longitudinal positions the term
Ashy of eq. (5.10) will vanish and F() and F® will be smoothly related by the
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change of phase given by AQMl‘lAl‘l. Otherwise when there is a non-linear kick
in between, represented by hq, an abrupt change in the phase and the amplitude of
the corresponding generating term can be expected.

As an example a generating function term is computed around the longitu-
dinal position of a ring. The aim of the example is to illustrate the predictions of
eg. (5.10). Thering is modeled to be a standard FODO lattice with three sextupoles
at the locations s; = 0.33, s3 = 0.49 and s3 = 0.70 (in arbitrary units). Sextupoles
create, among others, the generating function term f3g00 defined in eq. (3.32). The
amplitude of this term has been obtained from a tracking simulation by performing
the FFT of the turn-by—turn data as explained in section 3.4. In figure 5.2 this
amplitude is plotted versus the longitudinal position where the turn-by—turn data
is acquired. The steps in the amplitude of f3p90 Occur at the locations of the sex-
tupoles. In the regions between sextupoles the amplitude of the term f3p09 remains
constant. Since the machine is circular the amplitudes of f3ggo at the beginning
and at the end of the lattice have to be the same.

09 3

0.8 r 4

0.7 1

[f3000! [arbitrary units]

06 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Longitudinal Position [arbitrary units]

Figure 5.2: Amplitude of the generating term f3g00 versus the longitudinal coordi-
nate. The location of the three sextupoles is indicated on the top.

An analytical illustration is given by computing the Hamiltonian term hsggg
at the three different regions (h{34), {2} and h{32)). As given by eq. (5.5) each
S1

sextupole contributes to hgoo)o with a certain quantity defined in the following ex-
pression,

hgf)l())() = h’13000 + h23000 + h33000 .
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h$2)is computed from A4 using eq. (5.7) in the following way

(s2)
h3000 - 3000

= 613A¢m (h13000 e_ist + h23000 + h’33000) ’ (511)

13000 hg%b)o + (67123Qm ~1) 1300,

where A¢,. is the horizontal phase advance between s; and s. hgf]%)o is computed

from hgso“{))o in a similar way. The amplitudes of the Hamiltonian terms are summa-

rized in the following expression,

‘hg%}))() = |h'13000 + h23000 + h33000‘ ’
|h£(’>80i))0 = |P13000 e P9 4 P23000 + P33000 » (5.12)
‘hgf)?f))o = |hlsoooeiz?’QaD + h2300067Z3Qw + h33ooo‘ :

Overall phases inside the bars have been omitted. The amplitude of the correspond-
ing generating term £.21)"is obtained by simply dividing |h$s;| by |1 — e~#3@=.
By applying this technique to a real machine one can determine the longitudinal
position of the strong multipole kicks as long as BPMs are available at either side.
In the following section a single particle simulation is done using a realistic model
of the SPS.

5.2 Simulation of the longitudinal variation of f3

The aim of this section is to show the usefulness of this technique when applied to
operating accelerators. In particular it is investigated how errors in the powering
polarities of non—linear elements can be found. A single particle simulation is done
using a realistic model of the SPS with the extraction sextupoles. Apart from the
extraction sextupoles the SPS has 108 chromaticity sextupoles used to correct the
chromaticity in normal operation. Two settings of the extraction sextupoles are
being considered:

e The nominal case, where the extraction sextupoles are powered:
(+30, +30, +30, +30, —30, —30, —30, —30) A.

e The opposite case, where the extraction sextupoles are powered:
(—30, —30, —30, —30, +30, +30, +30, +30) A.

The code SixTrack is used to track a single particle through the lattice. Turn—by-
turn data is obtained at many longitudinal locations of the ring and the amplitude
of the spectral line (-2, 0), proportional to fsg9, IS Obtained from the FFT of the
data. The results from the first case are shown in figure 5.3. The location of the
extraction sextupoles is indicated with vertical lines. The largest abrupt changes
of the curve are located where the extraction sextupoles sit as it is expected since
these are the strongest sextupoles. Small jumps occur all around the ring due to
the chromaticity sextupoles. The variation of the spectral line (-2, 0) for the case
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Figure 5.3: Simulated amplitude of the line (-2, 0) versus the longitudinal co-
ordinate for the nominal SPS model with extraction sextupoles with polarities:
(++ ++ — — ——30) A. The vertical lines indicate the location of the extraction
sextupoles.

with opposite polarities is shown in figure 5.4. The jumps of the curve occur at
the same locations than before but clearly the curves of the two cases are different.
This difference is enough to determine the polarities of the extraction sextupoles at
the SPS by measuring the generating term f3og0.
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Figure 5.4: Simulated amplitude of the line (-2, 0) versus the longitudinal coor-
dinate considering opposite polarities for the nominal SPS model with extraction
sextupoles with polarities: (— — — —+ 4+ ++ 30) A. The vertical lines indicate the
location of the extraction sextupoles.



Chapter 6

Description of the SPS

6.1 The SPSin CERN

The SPS is part of the complex of accelerators at CERN. The largest accelerator
at CERN will be the LHC. The LHC beam will be supplied by a chain of proton
accelerators, shown in figure 6.1. The SPS receives the proton beam from the
CERN Proton Synchrotron (PS) at an energy of 26 GeV and will accelerate the
beam up to 450 GeV to inject it into the LHC.

The SPS is a proton synchrotron with an average radius of 1100 m. Its lattice
consists of 108 FODO cells. A FODO cell consists of a focusing quadrupole and a
defocusing quadrupole separated by dipoles. The phase advance per cell is almost
w/2. Therefore the nominal tunes are around 27, e.g. 26.62 in the horizontal plane
and 26.58 in the vertical. A more detailed description of the SPS could be found
in [26].

6.2 SPS instrumentation

The SPS is equipped with a large collection of instruments used to control the
beam and measure its parameters. In the following sections a brief description of
the instruments used in the experiments is given. The location of some of these
instruments is shown in the schematic SPS layout of figure 6.2 [27].

6.2.1 BPM and MOPQOS system

BPMs are used to measure the transverse excursion of the centroid of the beam.
The majority of the BPMs of the SPS are of electrostatic type. These monitors
basically consist of two conductor plates at both sides of the beam pipe. An illus-
tration of an SPS pick-up is shown in figure 6.3. When the beam goes through
the BPM its position is inferred from the potential difference between the plates.
The SPS is equipped with about 110 BPMs in either transverse plane and they are
uniformly distributed around the ring. The phase advance between consecutive

41
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Figure 6.1: Accelerator complex in CERN.
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Figure 6.2: Simplified SPS layout. The eight extraction sextupoles and the kicker
magnet are shown at their locations in the SPS. The signs in brackets denote the
usual polarity of the sextupole during the experiments. BA stands for access hall.

Figure 6.3: An SPS pick-up installed in the beam pipe.
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pick—ups is almost /2 and the typical beta functions at the pick-ups are shown in
table 6.1. The signal coming out of the BPMs is electronically processed and col-
lected by the Multi Orbit Position System (MOPOS) system. Detailed descriptions
of this system can be found in [28] and [29]. 1000 turn data from all the available
pick—-ups is acquired by using the code MTmeasure [30]. The code MTmeasure
can save the multi-turn BPM data in different formats and can perform some or-
bit analysis. In order to obtain a reliable BPM signal during the experiments the
timing parameter and the gain of the electronics had to be carefully adjusted [31].

6.2.2 Q-Kkickers

Kickers are magnets that produce a constant transverse magnetic field when the
beam is going through. They are normally used to excite horizontal or vertical
betatron motion by producing the appropriate magnetic field during a single turn.
The SPS is equipped with a horizontal and a vertical Q—kickers. They are called
Q—kickers since in normal operation they are used to measure the transverse tunes.
The relevant magnetic parameters of these kickers are shown in table 6.2 [32] and
the lattice functions are shown in table 6.1. In our experiments these kickers are
used to excite the transverse motion for energies of 80 GeV or below.

6.2.3 Extraction kicker

This horizontal kicker is more powerful than the Q—kickers. In normal operation it
is used for the fast beam extraction. In our experiments at 120 GeV this kicker was
used to excite the horizontal betatron motion. At its maximum voltage of 15 KV
its Kick strength is 0.129 Tm. The lattice functions at the location of this kicker are
shown in table 6.1. Recently this kicker has been removed from the SPS to reduce
the total impedance [33] of the machine.

6.2.4 Extraction sextupoles

In normal operation these sextupoles are used for the slow or resonant extraction
of the beam. The SPS is equipped with eight extraction sextupoles. A technical
description of these elements can be found in [34]. In our experiments they were
used to create a controllable amount of non-linearity. The lattice functions at the
location of these elements are shown in table 6.1.

6.2.5 Skew quadrupoles

A skew quadrupole is a normal quadrupole rotated by 45 degrees. The SPS is
equipped with six skew quadrupoles powered in series. In normal operation they
are used to compensate the coupling errors of the machine. The lattice functions at
the location of these elements are shown in table 6.1.
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| BPMs

type Bz[m] By[m]

BPMH 103.4 204

BPMV 20.4 103.4

\ Kickers \
name _ Balm]_$al2n] Pylm] 47
MKQH 64.5 1.96 37.0 2.02

MKQV 33.8 2.00 70.0 2.05

MKE 87.4 2489 25.0 24.83

\ Extraction sextupoles \
nome  Balm] 627 Byl dy2T]
LSE.1060 97.761 0.737 21.775 0.729

LSE.1240 97.718 2.955  21.827 2.942

LSE.2060 97.748 5.173  21.797 5.158

LSE.2240 97.754 7.390 21.812 7.371

LSE.4060 97.663 14.047 21.782 14.018
LSEN.424 97.764 16.265 21.864 16.233
LSE.5060 97.676 18.484 21.760 18.449
LSE.5240 97.780 20.703 21.866 20.664
\ Skew quadrupoles \
name Balm]  ¢z2m] By[m]  ¢y[2n]
LQSA.129 21.902 3552 97.271 3.575

LQSA.229 2189 7.98 97.197 8.005

LQSA.329 2190 1242 97.110 12.435
LQSA.429 2191 16.86 97.099 16.866
LQSA529 2192 2130 97.172 21.297
LQSA.629 2191 2573 97.260 25.726

Table 6.1: Relevant lattice functions of the different SPS elements.

Magnet MKQH MKQV
Deflection direction horizontal  vertical
Magnetic flux density (25 KV) [T] 0.074 0.0246
Kick strength (25 KV) [Tm] 0.0357 0.0250
Maximum voltage [KV] 25 25
Magnet filling time [us] 0.38 0.112

Table 6.2: Relevant parameters of the SPS Q-kickers.
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Chapter 7

SPS experiments

A series of experiments to measure resonance driving terms in the SPS has been
performed during the years 2000, 2001 and 2002 . Prior to this study pioneering
experiments were carried out [35, 36]. Since the SPS is a very linear machine the
extraction sextupoles were used to create a controllable amount of non-linearities.
Furthermore the skew quadrupoles were also used to create and to correct coupling.
In the following sections these experiments are discussed in chronological order.

7.1 Experiments at 26 and 120 GeV in 2000

Energy [GeV] 26 120
Intensity [number of protons] 2 x 100 2 x 10'2
Number of bunches 1 84

Nominal Tunes [Q, Q] 26.62, 26.58 26.62, 26.58
Chromaticities [Q?, Q;J] 0.3,0.3 0.52,0.16

Table 7.1: Measured beam conditions for the experiments during 2000.

7.1.1 Measurement of linear coupling at 26 GeV

The experiments at 26 GeV were mostly focused on the measurement of linear
coupling. The beam conditions are shown in table 7.1. There are two resonances
contributing to the linear coupling: (1,-1) and (1,1). Resonance (m,n) means that
mQz+nQy = p, being m, n and p integer numbers. The tunes of our experiments
are much closer to the resonance (1,-1) than to the (1,1). For this reason the target
of our experiments is the resonance (1,-1). The first order resonance term driving
this resonance is h1go1 as can be seen from eq. (3.32). The contribution of this term
to the linearly normalized horizontal variable is given by eq.(3.38)

h, (N) = QIxei(wamN—i—wa) — 2if1001 2Iy€i(2m/yN+wy0) . (71)
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By virtue of this equation the term f19p1 can be inferred by measuring the spectral
line with frequency v, in the horizontal signal. The procedure adopted in the ex-
periment is now described. For a given skew quadrupole strength and a constant
ratio of horizontal to vertical kick strength the amplitude of the spectral line (0,1)
has been recorded from the Q-kicker monitor display. The BPM data could not
be used due to a poor adjustment of the electronics. For each value of the skew
quadrupole strength we have averaged over a number of injections shots (40-50).
The results of the measurement on the 18* June 2000 are depicted in figure 7.1. It
is not clear why such an averaging procedure is needed but in this way we could de-
termine the optimal skew quadrupole setting to a good precision. In fact, we could
demonstrate that with this technique we had achieved a closest tune approach of
(2 £ 1)10~* which is a factor of five better than previously. Another problem is
the fact that the slopes of the lines in figure 7.1 differ by a factor of two (see later
section 7.2.2 for an explanation).

7.1.2 Measurement of resonant terms and amplitude detuning at
120 GeV

The experiments at 120 GeV were focused on the measurement of resonance terms
and amplitude detuning. The beam conditions are shown in table 7.1. At this
energy the extraction kicker was used to excite the betatron motion. The previously
discussed method to compensate the coupling was used, obtaining a closest tune
approach of 2 x 1073, The extraction sextupoles were powered to 140 A with
polarities (+ + + + + — — — —). Various sets of BPM data, from all the available
BPMs, for different oscillation amplitudes were recorded for off-line analysis. For
this analysis the complex signal constructed from two adjacent pick—ups is Fourier
analyzed by using the SUSSIX [24] code. The first result from this analysis is
the variation of the tunes with the horizontal oscillation amplitude. In figure 7.2
the horizontal and vertical detunings are plotted versus the square of the betatronic
amplitude (e, = A2/B;). In this figure the experimental results are compared
to two models, one containing the known sextupolar sources and the other one
containing an optimized octupolar component. The octupolar component was set
to match the measured amplitude detuning since the origin and location of this
component is unknown. For the horizontal tune both models give similar results
and they are in good agreement with the measurements. For the vertical tune only
the optimized model shows a good agreement.

From the Fourier analysis the amplitude of the spectral lines due to the sextupo-
lar resonances are also computed. The resonances (3,0) and (1,0) are driven by the
terms hggoo and hiogo respectively. They produce the spectral lines (-2, 0) and
(2, 0) in the horizontal motion. The amplitude of these spectral lines normalized
to the amplitude of the tune line are linear in the oscillation amplitude as derived
from eq. (3.38). This normalization is needed to get rid of the uncertainties of the
calibration of the pick-ups. In figures 7.3 and 7.4 the normalized amplitude of
the spectral lines (-2, 0) and (2, 0) averaged over all pick-ups are plotted versus



7.1. EXPERIMENTS AT 26 AND 120 GEV IN 2000 49

T
c
2 304
N
s
c
o
N
S 254
IS
o
c
()
X
S 20+
=, y = -83.082x + 6.3656
T 2 _

S R? = 0.9851
S 5.
S
<
o
= y = 31.545x - 2.8476
() 2 _
o R?=0.9179
S 104
()
>
<

5 -

A
0 T T T T T T T "
0.4 03 0.2 0.1 0 0.1 0.2 0.3 0.4

Skew Quadrupole Strength [A]

Figure 7.1: Normalized amplitude of the spectral line (0,1) from the horizontal
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Figure 7.2: Horizontal and vertical detuning as a function of e, = A2/f,.

e}/ 2 from model and experiment. The experimental values are multiplied by the
decoherence factor of 2 to compare to the single particle model. The error bars
represent the computed rms from the longitudinal variation. The agreement in the
average value and in the rms is excellent. As derived in chapter 5 the resonance
driving terms vary around the ring. In figure 7.5 the normalized amplitude of the
spectral line (-2, 0) computed for all the BPMs for a middle kick amplitude is plot-
ted versus the longitudinal location. In the figure the prediction from the nominal
model is also shown and the location of the extraction sextupoles is represented
by the vertical lines. The agreement between model and experiment on the aver-
age is good and the abrupt changes occur at the same places but the shape of the
curves are clearly different. This discrepancy could be explained if the extraction
sextupoles had opposite polarities than those of the chromaticity sextupoles. In
figure 7.6 the same plot is presented but using the opposite polarities for all the
extraction sextupoles. Since the agreement had largely improved hardware checks
were done confirming that the polarities of these sextupoles were reversed. This
was the first success of this technique in finding lattice errors.

7.1.3 Measurement of spectral distributions

In chapter 4 analytical expressions were given describing the shape of the different
spectral lines in presence of decoherence processes. In principle, by fitting these
expressions to the measurements beam parameters like the beam size could be
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Figure 7.5: Longitudinal variation of the spectral line (-2,0) from experiment and
from the nominal model.
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Figure 7.6: Longitudinal variation of the spectral line (-2,0) from experiment and
model with opposite sextupole polarities.
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obtained. Although amplitude detuning has the negative effect of introducing the
decoherence factors there would be a positive side if these beam parameters could
be measured. For this reason measurements of the spectral distributions have been
performed.

The analytical expression describing the shape of the tune line in presence of
amplitude detuning is given by eq.(4.14)

'A;,tune(w) = L \% 2I$(w)6_%(QIZ(w)+Zi) Il(Zw \% 2];5(’11])) ’ (72)

|V2a]

2U(w) = —(w/2m—Qu). (7.3

T

A fit of this analytical expression is done to the measured tune line from the ex-
perimental data. The free parameters in the fit are the tune at zero amplitude @,
the amplitude detuning coefficient v, and the kick in beam sigmas A,. The ex-
perimental and the fitted curve are shown in figure 7.7. The numerical results of
the fit compared to the measurements of other available methods are presented in
table 7.2. Unfortunately, due to time limitations, the beam size could not be mea-
sured with other method during the experiment. This explains the two missing
entries of the table. The agreement between the results from the fit and those from
other methods is satisfactory. It is also important to note that the errors of the fitted
quantities are relatively low indicating the suitability of the model.

TUNE PEAK, SPS
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Exp. Data  +

350 r + % J
300 r " 4

250 1
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150 a

xT

H
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Figure 7.7: Spectral tune line obtained from experimental data together with a fit
of the predicted curve.
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Magnitude Fit res. Other Meth.
Qz —0.38593 £5-10°  —0.3859
o o] (-3.6+0.1)-10* —3.71.107*F
Aglo] 2.66 + 0.08

oo[mm//Ba]  0.266 = 0.008*

Table 7.2: Results from the fit compared to other measurements.
t o taken from this fit.
* Kicker Calibration used.

7.2 Experiment at 26 GeV in 2001

The beam conditions during the experiments in 2001 are listed in table 7.3. The
experiments are divided in three parts: machine set-up, measurement of the cou-
pling resonance and measurement of sextupolar resonances. During the machine
set-up the RF parameters were optimized, the tunes were set to the nominal tunes,
the closed orbit and the chromaticities were corrected and the amplitude detuning
was compensated using the Landau octupoles. This part was carefully carried out
since we learned from the previous year that a proper set-up of the machine is
fundamental for the success of this experiment.

Once the machine set—up is finished the linear coupling is measured and cor-
rected. During this part of the experiment horizontal and vertical single kicks were
applied to the bunch few seconds after the injection. The amplitude of the kicks is
constant during the coupling measurement. For various skew quadrupole strengths
the amplitudes of the coupling spectral lines, i.e. the vertical tune line in the hor-
izontal plane and the horizontal tune line in the vertical plane, are evaluated via
Fourier analysis. The optimal skew quadrupole setting was determined to mini-
mize the linear coupling of the machine. Results from this part are discussed in
section 7.2.2. Prior to this discussion the BPM pre—analysis needed to detect noisy
pick—ups is presented in section 7.2.1.

Energy [GeV] 26

Intensity [number of protons] 2 x 1019
Number of bunches 1

Nominal Tunes [Q, Q] 26.62, 26.58
Chromaticities [Q},, Q;] 13,04

Table 7.3: Measured beam conditions for the experiments in 2001.

The last part of the experiment was devoted to the measurement of sextupo-
lar resonance driving terms for different sextupole configurations and tunes. The
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extraction sextupoles were used to create a controllable amount of non-linearity.
The procedure for each different configuration was to apply a single kick in the
horizontal plane and record the BPM data for off-line analysis. This is done for
various kick amplitudes ranging from 1 mm to the maximum Kick determined by
the loss of the beam. The analysis of these data is discussed in section 7.2.3.

7.2.1 BPM Pre-analysis

In order to find and to reject faulty or noisy pick—up signals a BPM pre—analysis
was carried out. The Fourier spectrum of the turn—-by-turn signal of an ideal pick—
up should have well localized peaks but noisy or faulty pick—ups will have a ran-
domly populated Fourier spectrum. In particular the rms of the amplitude of the
background of the Fourier spectrum is larger for the more noisy BPMs. This feature
is used to identify the noisy pick—ups. The rms of the background of the Fourier
spectrum is estimated by computing the rms of the amplitudes of the spectral lines
within a spectral window. This window is chosen in such a way that an ideal pick—
up would not contain any peak in that window. It is also important to avoid that the
spectral window contains the zero frequency. For our experiments, with the frac-
tional tunes being 0.62 and 0.58, the window was chosen to be delimited between
0.02 and 0.16. The observable used for indicating the noise level of the pick-up
is the rms of the amplitudes of the lines contained in the chosen spectral window.
This technique is illustrated in figure 7.8. This rms based observable is computed
for all the signals from all the pick—ups and by examination a threshold value is
chosen to decide what is a bad pick-up. In figure 7.9 the number of signals having
a certain rms observable is plotted versus this rms for a sample of 51000 signals.
From this figure it was decided to reject all the BPMs with an rms larger than 8 um.
As aresult a third of all the BPM signals, 17000, mainly coming from the pick—ups
of the last two sextants of the SPS were rejected. The reader will notice this lack
of information in the figures of next sections.

7.2.2 Measurement of linear coupling

The technique of coupling correction consists of measuring the amplitudes of the
coupling lines, normalized to the amplitude of the fundamental line, as a function
of the strength of the skew quadrupoles. In figure 7.10 the coupling lines from
the horizontal and vertical signals are plotted versus the skew quadrupole strength.
The systematic error corresponds to the rms value of the measured magnitude from
all the available pick-ups. The random error corresponds to the rms value of the
measured magnitude from the different injections. The total error is calculated by
adding quadratically the systematic plus the random errors. The optimum setting
of the skew quadrupoles is then inferred by finding the minimum coupling line
amplitude. Note that the two minima of the coupling lines of figure 7.10 correspond
to the same skew quadrupole strength. Similar to the results of the previous year
the slopes at either side of the minimum are different. A revision of the theory
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Figure 7.10: Coupling lines versus the strength of skew quadrupoles. On the left,
the amplitude of the vertical tune line normalized to the horizontal tune line from
the horizontal signal. On the right, the amplitude of the horizontal tune line nor-
malized to the vertical tune line from the vertical signal.

will be given next how to explain this puzzle and how to define a more appropriate
observable. The turn—by-turn horizontal and vertical coordinates in first order in
the coupling resonance term f1go1 are given by

B(N) —ipy(N) = /2L CmeNte0)
—2i 1001 v/ 2L G N H¥0) |
J(N) —ipy(N) = /2L, CmuNHw0) (7.4)

—2i 1001V 21 TVeNHa0)

where f{y,; 1S the complex conjugate of fipo1. The measurable amplitudes of
the fundamental horizontal and vertical tunes are represented by line(1,0) z and
line(0,1)y respectively. The measurable amplitude of the spectral line with the
vertical tune in the horizontal plane is represented by line(0,1)  and corresponds,
in the previous equations, to the quantity |2 f1001 \/E\. Accordingly, the measur-
able amplitude of the spectral line with the horizontal tune in the vertical plane
is represented by line(1,0)y and corresponds to |2 f1001v/2I;|. From these equa-
tions it can be seen that the normalized amplitude of the vertical tune line from the
horizontal plane is 24/1, /1| fi001| and the normalized amplitude of the horizontal
tune line from the vertical plane is 2/1 /1| fioo1|. Therefore the best way to mea-
sure | f1001| independently of the actions is multiplying the former two observables.
Thus,

line(0, 1)y line(1,0)v
) _ . 7.
| fio10] \/]ine(l, 0)g line(0, 1)y (7.5)
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In fig. 7.11 this new observable is plotted versus the strength of the skew quadrupoles
together with the prediction from the model and a fit to the formula m|z — z¢|. The

fitted parameters are indicated in the figure as well. The model contains only the

skew quadrupoles but we can compare it to the measurements since the optimum

setting is very close to 0 A. The agreement between measurement and prediction

is excellent and the slopes are the same on both sides of the minimum.
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Figure 7.11: Coupling resonance term versus skew quadrupole strength. Results
from experiment and tracking simulation.

This means that the difference found in the previous year between the slopes
was entirely due to the variation of the oscillation amplitudes with the strength of
the skew quadrupoles. This variation is due to the fact that by varying the coupling
the eigen—planes at the Kickers rotate. Consequently the oscillation amplitudes
vary with the coupling even though the kick strengths are constant. It is important
to note that for the particular case of fig. 7.11 the minimum coupling corresponds
to a skew quadrupole strength of 0.019 A but this value varies from experiment to
experiment.

7.2.3 Measurement of sextupolar resonance terms

To measure sextupolar resonance driving terms the beam is kicked to different
amplitudes and the turn-by-turn complex signal is Fourier analyzed to obtain the
amplitudes of the different spectral lines. For every pick-up the normalized am-
plitudes of the sextupolar spectral lines are plotted versus kick strength and a line
is fitted constrained to go through the origin. As an illustration a plot from this
procedure is shown in figure 7.12 for a particular pick—-up and for the spectral line
(-2, 0). Three measurements for every kick strength were done to assess random
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Figure 7.12: Normalized amplitude of the spectral line (-2,0) versus horizontal
kick amplitude for one pick-up.

errors. The slope of the fitted line is related to the corresponding resonance term in
the following way (3.38),

_ L rm2p) ~1/2
[ fso00| - = 6( 0.094 ) [T,
1/m _
| fi2o0] = 5(%) [pm~1/?]. (7.6)

where the m is the measured slope and its subscript denotes the spectral line from
which this slope originates. The factor 0.094 comes from the calibration of the
horizontal kicker. These relations hold as far as the beam does not experience
any decoherence. When the centroid oscillations are completely damped due to
decoherence caused by amplitude detuning, the spectral lines (£2, 0) are reduced
by a decoherence factor of two. The sextupolar resonance terms are measured
for different machine set-ups. The first set-up was the baseline machine with
the nominal tunes @, = 26.62 and ), = 26.58. The amplitude detuning was
compensated with the Landau octupoles to avoid additional decoherence of the
signal. In figure 7.13 the measured amplitude of the sextupolar resonance terms
f3000 s plotted versus the longitudinal position together with the prediction from
the simulation. The error bars correspond to the errors given by the linear fit.
On average, experiment and model agree and the location of the jumps (which
correspond to sextupole locations) are the same in both curves. Nevertheless in
some regions the curves differ in amplitude.

In another set—-up of the machine the first four extraction sextupoles were pow-
ered to +30 A and the following four extraction sextupoles were powered to —30
A ie (++4+ ++ — — ——30 A). The horizontal tune was moved to 26.69. The
beam oscillations were damped due to decoherence, therefore the decoherence fac-
tor is applied to compare experiment and model. In figure 7.14 (top) the measured
amplitude of the sextupolar resonance term f3oq0 is plotted versus the longitudinal
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Figure 7.13. Amplitude of the term f3g99 Vversus longitudinal position along the
SPS ring from experiment and tracking simulation for the baseline machine. The
beam data are not decohered.

position together with a tracking model. The disagreements in this plot requires an
improvement of our model. If the closed orbit does not go through the center of
a sextupole there is multipole feed—down and the particle observes a quadrupolar
field proportional to the offset. This quadrupolar filed originates a beta—beating,
i.e. changes the nominal optic functions of the machine. Finally this beta—beating
changes the strength of the resonances. For this reason the displacements of the
sextupoles with respect to the closed orbit were measured at the pick-ups and
added to the model. A first test of this improvement of the model can be done by
comparing the phase advance between adjacent pick—-ups from model and experi-
ment. This phase advance gives also an estimate of the beta—beating as presented
in [37]. The phase advance between two pick—ups is measured by computing the
difference in the phase of the tune lines of the respective Fourier spectra. The
displacement of the closed orbit at the extraction sextupoles is provided by the
readings of BPMs. In figure 7.15 the phase advance is compared for model and ex-
periment for the baseline and for the model with extraction sextupoles displaced.
The agreement is satisfactory enough to validate the improvement of the model.
This new model is used to compute the resonance term. The agreement between
the experiment and the new model improved considerably as shown in figure 7.14
(bottom). A similar agreement is observed for other sextupolar resonances. For
example the amplitude of the term f150¢ is shown in fig. 7.16.

Measurements were also done for a different setting of the extraction sex-
tupoles. The horizontal tune is moved to 26.662 to be close to the third order
resonance. The extraction sextupoles are powered to (+ + 4+ + + + ++)3 A. In
fig. 7.17 the measured amplitude of the sextupolar resonance term f3gqo is plotted
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Figure 7.14: Amplitude of the term f3p00 Versus longitudinal position with extrac-
tion sextupoles on. Top: Experiment and nominal model with decoherence factor.
Bottom: Experiment and model with displaced sextupoles and decoherence factor.
The vertical lines show the position of the extraction sextupoles.
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Figure 7.15: Comparison between the phase advance in adjacent pick-ups from
model and experiment for two SPS settings: The baseline machine (top) and with
the extraction sextupoles connected and displaced (bottom). The vertical lines
show the position of the extraction sextupoles.
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Figure 7.16: Amplitude of the term f150¢ versus longitudinal position from experi-
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Figure 7.17: Amplitude of the term f3000 versus longitudinal position from experi-
ment and the tracking model with the extraction sextupoles (+++ +++++)3 A.
The decoherence of two is applied to the experimental data. The horizontal tune is
26.662. The blue line is used to connect the experimental points. The vertical lines
show the position of the extraction sextupoles.
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versus the longitudinal position together with the tracking model containing the
closed orbit at the extraction sextupoles. Since the beam data were decohered a
factor of two had to be applied to the experimental values. As predicted by the
theory, the closer the tune is to the third order resonance the smaller the relative
variation of | f3000/| is around the ring.

7.3 Experiments at 26 and 80 GeV in 2002

Energy [GeV] 26 80

Intensity [number of protons] [0.5,6] x 1019 3.5 x 1010
Number of bunches 1 1

Nominal Tunes [Q, Qy] 26.18, 26.22 26.18, 26.22
Chromaticities [Q7,, @] 13,13 1.0,1.0

Table 7.4: Measured beam conditions for the experiments in 2002.

During the previous year the measurement of sextupolar resonance driving
terms could not be done in some regions of the SPS due to the failure of the BPM
system. As well, local discrepancies between model and experiment could not
be explained. These discrepancies may arise from linear lattice errors, incorrect
strengths of lattice sextupoles, remanent fields in the dipoles or collective effects.
In 2002 the goals were to have measurements from all the BPMs of the ring by
optimizing the system [31] and to try to determine what are the most likely sources
of disagreement. The effect of remanent fields should decrease with the increase
of the energy of the beam. Then by performing the measurements at different en-
ergies, 26 and 80 GeV, we expected to see the effect of these remanent fields. Col-
lective effects vary with the intensity of the beam, therefore measurements were
performed at different intensities to exclude those contributions to the measure-
ment that are not related to nonlinearities. Furthermore important aspects of the
technique needed to be studied in detail in order to ameliorate it, e.g. the pos-
sibility of measuring higher order resonance driving terms and the phases of the
sextupolar resonance terms.

The beam conditions during the experiments in 2002 are listed in table 7.4.
The procedure of the experiments carried out this year is almost identical to that of
2001, already described in section 7.2. In particular the BPM pre—analysis reveals
this time very few bad BPMs, compared to the previous year when almost all the
BPMs of two sextants of the machine had to be discarded. In the following the
results from the different studies are discussed and compared to predictions from
the model.
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7.3.1 Measurement of linear coupling at 26 GeV

In 2001 the technique for the measurement and compensation of the linear coupling
was optimised, see section 7.2.2. In figure 7.18 (top) the average amplitude of the
coupling resonance term is plotted versus the strength of the skew quadrupoles.
The smaller error bars, compared to those from the previous year, are due to the
improvement of the BPM system. The optimum setting is obtained by performing
the fit shown in the figure. In the same figure (bottom) the amplitude of the cou-
pling term is plotted versus the longitudinal position for two settings of the skew
quadrupoles. It is interesting to note that for the optimum setting this term varies
smoothly around the ring, therefore the coupling sources should be distributed
around the ring. The first spike (from left to right) appearing on this figure has
been identified as a bad pick-up. The second spike involves 4 pick-ups and it
was investigated weather this could be due to a rotated element found on that re-
gion. This spike disappeared in measurements done later which makes it difficult
to conclude about the significance of these peaks.

7.3.2 Measurement of sextupolar resonance terms at 26 GeV

The amplitude of the sextupolar term f3g00 for the baseline machine is computed
as explained in section 7.2.3. The result compared to the model is shown in fig-
ure 7.19. The level of agreement is similar to that obtained in previous measure-
ments but with smaller variations which is a consequences of chosing a different
working point.

The quality of the data also allows a measurement of the phase of the spectral
line (-2, 0). An insight into the properties of the phases of the spectral lines fol-
lows. From eqg. (3.38) the amplitude and phase of the spectral line (1—j+k, m—1)
are given by the following complex quantity,

2] fiim(202) TF (20,) T 0T H0n Do) (7.7)

The term £,z is proportional to the sum over all non-linear elements of the same
type, i.e.

where all the factors as beta functions and strenghts are contained in k;. Using
these expressions the change in the phase of the spectral line (1—j+ &, m —1[) over
a region free of non-linear sources is computed. Let the betatron phases change by
A1, and Az, over this region. Then all the +;; and 4),; change by — A1, and
—Aq, respectively. The changes in the phase of the spectral line are given by the
sum of the change of the phase of the term f;,, plus the change of the phase of
the exponential part of eq. (7.7), which yields

(1 —k)Athg + (I =m)Adhy + (1 = j + k) A¢pg + (m — D) A¢py = Aty . (7.9)
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Figure 7.18. Top: Coupling resonance term versus the strength of skew
guadrupoles. Bottom: Coupling term as a function of the longitudinal position
for two different strengths of skew quadrupoles.
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Figure 7.19: Amplitude of the generating function term f3gg0 Versus longitudinal
position from experiment and tracking model for the baseline machine at 26 GeV.
The blue line is used to connect the experimental points.

This means that the phase of all the spectral lines from the horizontal motion
changes by the same amount, A1, over a region free of non-linear sources. In
particular this is apparent for the horizontal tune line. Therefore, the following ob-
servable remains constant along sections free of non-linear sources for any m and
n,

$(m,n) — $(1,0) (7.10)

where ¢(m, n) represents the phase of the spectral line with frequency mQ@ z+nQy.
This phase observable changes abruptly at the location of the non-linear sources
as can be seen from eq. (5.10). The use of this phase observable in conjuction with
the amplitude of the spectral line allows the unambiguous localisation of non-
linear fields. In figure 7.20 this phase observable as measured from one single run
is plotted together with the model prediction versus the longitudinal location for
the baseline machine at 26 GeV. Due to the fact that experiment and model have
different phase origins a constant quantity had to be added to the experiment values
to meet the model prediction.

As in previous years measurements were also done with the extraction sex-
tupoles powered to (+ + + + — — ——) 30 A. In figure 7.21 the amplitude of the
term f3p00 IS plotted versus the longitudinal location together with the prediction
from the model. Since the data was decohered, a factor two is applied to the exper-
iment in order to compare to the single particle simulation. The closed orbit offsets
at the extraction sextupoles were introduced in the model as in the previous year.
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Figure 7.20: Phase of the spectral line (-=2,0) minus the phase of the spectral line
(1,0) versus longitudinal position from experiment and tracking model for the base-
line machine at 26 GeV.

The eigth locations of the sextupoles are clearly seen by the abrupt changes of the
measurement and model. The higher amplitudes measured show to be systemat-
icly smaller than the model prediction by around a 20%. This disagreement has not
been understood and no possible improvement of the model has been found. On
the contrary the smaller amplitues are in very good agreement with the model.

In figure 7.22 the phase of the spectral line (-2, 0) minus the phase of the
spectral line (1,0) is plotted versus the longitudinal position for experiment and
model. The overall agreement is also good but the curve from the measurement is
clearly more ragged than the one from the model.

Sextupoles also introduce non-linear coupling, the horizontal component of
the magnetic field is proportional to the product of the transverse coordinates, as
shown in eq. (2.10). This monomial introduces, among others, the term hgi9g in
the Hamiltonian and this term contributes to the vertical motion in the following
way,

hy (N) = /2L, N t¥w)
—4ifor20(215) 2 (21,) 3 'l -CmveNFha0) =Gy Nvuo )l (711)

The term hg199 introduces the spectral line (-1,-1) in the vertical turn—by—turn mo-

tion. After normalizing to the amplitude of the vertical tune the amplitude of this

spectral line is 4| fo120|+/21I,. This quantity is linear in the horizontal kick. For this
reason the amplitude of the term fy129 can be measured by performing a linear fit
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Figure 7.21: Amplitude of the term f300 Versus longitudinal position from ex-
periment and tracking model for SPS with the extraction sextupoles powered to

(++++— ———) 30 Aat 26 GeV. The blue line is used to connect the experi-
mental points. The vertical lines denote the position of the extraction sextupoles.
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Figure 7.22: Phase of the spectral line (-2,0) minus the phase of the spectral line
(1,0) versus longitudinal position from experiment and tracking model for SPS
with the extraction sextupoles powered to (++++ — — ——) 30 A at 26 GeV. The
blue line is used to connect the experimental points. The vertical lines denote the
position of the extraction sextupoles.
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Figure 7.23: Amplitude of the term f(120 versus longitudinal position from experi-
ment and tracking model for the baseline machine at 26 GeV. The blue line is used
to connect the experimental points.

in a similar way than in section 7.2.3. In presence of decoherence the reduction
factor of this spectral line has to be numerically computed since analytical expres-
sions have not been derived here for the two dimensional case. The data acquired
for the baseline machine was not decohered therefore it can be directly used to
compute this resonance term. In figure 7.23 the amplitude of the generating func-
tion term fp199 is plotted versus the longitudinal location together with the model.
The agreement seems to be better than that obtained for the term fsgg9, for the
baseline machine (see figure 7.19).

7.3.3 Measurement of sextupolar resonance terms at 80 GeV

In this section the measurements are discussed that have been done at an energy
of 80 GeV. In figure 7.24 the amplitude of the term f3q00 is plotted versus the lon-
gitudinal position from experiment and tracking model for the baseline machine.
To assess the effect of the energy this is compared to the case at 26 GeV shown
in figure 7.19. The level of agreement between experiment and model is similar
at both energies, therefore energy effects are not relevant. In figure 7.25 the phase
observable ¢(—2,0) — ¢(1,0) is plotted versus the longitudinal position for exper-
iment and model. The level of agreement is similar comparing to the 26 GeV case
(see figure 7.20).

Measurements were also done with the extraction sextupoles powered to (+ +
++4————)100 A. Since the energy is around three times larger than the previous
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Figure 7.24: Amplitude of the term f30q0 versus longitudinal position from experi-
ment and tracking model for the baseline machine at 80 GeV. The blue line is used
to connect the experimental points.
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Figure 7.25: Phase of the spectral line (—2,0) minus the phase of the spectral line
(1,0) versus longitudinal position from experiment and tracking model for the base-
line machine at 80 GeV.
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Figure 7.26: Amplitude of the term f3g00 Versus longitudinal position from ex-
periment and tracking model for the SPS with extraction sextupoles powered to
(++4+ 4+ + — — ——)100 A at 80 GeV. The blue line is used to connect the experi-
mental points. The vertical lines denote the position of the extraction sextupoles.
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Figure 7.27: Amplitude of the term f3000 Versus longitudinal position from experi-
ment and tracking model for SPS with one sextupole disconnected (+++————)
100 A at 80 GeV. The blue line is used to connect the experimental points. The
vertical lines denote the position of the extraction sextupoles. Note that there is
one less sextupole with the polarity “+”.
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26 GeV, also the current in the sextupoles has to be increased by a similar factor to
obtain a similar effect in the amplitude. In figure 7.26 the amplitude of the generat-
ing function term f30q0 is plotted versus the longitudinal position together with the
model results. A factor two is applied to the data in order to restore the effect of
decoherence. Model and measurements show large discrepancies. Looking at the
location of the first extraction sextupole a clear discrepancy is observed. Whereas
the model predicts a huge change of the amplitude of this term, the measurement
keeps constant in that region. These could mean that this extraction sextupole was
not connected. A comparison of the data with this new model without the first
sextupole shows a good agreement, figure 7.27. This hypothesis of a disconnected
sextupole has been confirmed via the SPS alarm system [38]. This is another suc-
cess of this technique in the sense that we are able to identify on-line a mispowered
sextupole.

7.3.4 Comparison of sextupolar terms at different intensities at 26 GeV

The aim of this experiment is to study the effect of the beam intensity in the am-
plitude detuning and in the measurement of the resonance driving terms. These
quantities might depend on the beam intensity due to space charge and impedance
effects [39]. During the experiment the beam intensity was changed to different
values in the range from 0.5 x 10'° to 6 x 10'° protons. The PS provided the in-
tensity of 6 x 10'° protons and it was reduced in the SPS by scraping with the fast
scrapers. Several horizontal single kicks were applied at all the different intensity
settings to measure the amplitude detuning and the resonance driving terms.

The tune for every kick amplitude and for every intensity setting is computed
by averaging the tune measured from all the pick-ups. To estimate the random
errors three sets of data are analyzed for the same kick and intensity settings. In
figure 7.28 the detuning curves are shown for the four different intensities with
the error bars corresponding to the rms value from the three measurements. The
highest intensity has slightly larger detuning. Performing a linear fit for the four
curves of figure 7.28 the amplitude detuning is represented by the slope of the fit. In
figure 7.29 this slope is plotted versus the intensity with the corresponding errors.
There seems to be an effect only for the highest intensity of 6.0 x 109, It should
be noted that for the resonance driving terms experiments the intensity was always
below 3.0 x 100 protons, i.e. in the region free of any effect.

The resonance (3,0) is driven by the resonance term h3gqg, Or equivalently by
the generating function term f3gp0. This resonance introduces the spectral line
(-2, 0) whose amplitude is proportional to the generating term f3p99. From theory
the amplitude of the spectral line (-2, 0), normalized to the amplitude of the tune
line, is proportional to the kick amplitude. In figure 7.30 the normalized amplitude
of this spectral line averaged over all pick—ups is plotted versus kick amplitude for
the four different intensities. The differences remain inside the error bars. By us-
ing the data from all the pick—ups the generating term f3qqo is obtained around the
ring. In figure 7.31 the amplitude of these terms is shown versus the longitudinal
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position for the four intensities. The discrepancies of these curves are very small
and not correlated to the intensity.

7.3.5 Measurement of octupolar resonance terms at 26 GeV

The resonance driving term h4ggo drives the resonance (4,0), has associated the
spectral line (-3, 0) and is produced in the first order by octupolar fields. The con-
tribution of this term to the horizontal motion is given by the following expression,
using eq.(3.38),

h; (N) = 2Iw6i(27rUmN+¢$0) — 8’if4000(2Ix)%6713(2WV$N+1/)m0) . (712)
After normalization the amplitude of the spectral line (-3, 0) is quadratic in the
amplitude of the betatron oscillation. In order to compute the resonance term f4o00
a linear fit in the square of the kick should be performed. The main obstacle for the
measurement of this spectral line is the small amplitude that it has at the standard
SPS parameters. To enlarge this amplitude the tunes should be moved closer to the
fourth integer. During the experiments of this year the fractional part of the tune
was moved from 0.18 to 0.26 to enlarge the octupolar effect. Data was acquired for
different kick amplitudes. The data is Fourier analyzed and the spectral line (-3, 0)
is identified. The amplitude of this spectral line, normalized to the tune line, is
plotted versus the square of the kick amplitude in figure 7.32. Data comes from
a single horizontal BPM and the error bars are the standard deviation of the value
obtained for three different data acquisitions. Note that this spectral line is only
visible at large kicks and the error bars are large. From the slope of the fit, m _3 o),
and from eq. (7.12) the amplitude of the term f4o00 is inferred,

my_
faoool = 5 (SCE) (7.13)
In figure 7.33 the amplitude of this term for all the pick—ups is plotted versus the
longitudinal coordinate together with the prediction from the model containing
octupoles and sextupoles. In a few regions the measurement and the simulation
differ considerably. This discrepancy maybe due to octupolar unknown sources
located at a few places, which might be identified from the plot. It is also important
to note that up to now it has been assumed that the octupolar fields are the only
ones contributing to the spectral line (-3, 0). But this is not true, second order
contributions from the sextupolar fields to the line (-3, 0) are the most important for
the SPS. In figure 7.33 the quantity | f4000| is shown for a lattice without octupoles.
This shows that second order contributions from the sextupoles are very relevant.
Therefore, the small discrepancies found for the sextupolar terms of the baseline
machine (see figure 7.19) must show up again as discrepancies for the octupolar
terms. In conclusion, the octupolar spectral line has been measured with a larger
uncertainty than the sextupolar spectral lines and the observed disagreement when
compared to the model could be due to unknown octupolar and sextupolar sources.
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mental data and a linear fit are shown.
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Chapter 8

RHIC experiment

In a collaboriation between BNL and CERN an experiment has been carried out
at the RHIC, BNL. The aim of this experiment is to prove the feasibility of the
measurement of resonance driving terms in a superconducting machine. The RHIC
serves as an ideal testbed for preparing this technique for the LHC. Results of the
experiment are presented, including a direct measurement of sextupolar resonances
and a comparison to the model.

8.1 Description of the RHIC model

The RHIC tracking model is constructed from an ideal lattice, characterized by a
p—function of 10 m at all interaction points. The magnetic field errors are intro-
duced in the arc dipoles and quadrupoles. At injection energy, these field errors
dominate the dynamic aperture. The tracking program SixTrack [23] is used for all
the analysis.

For the dipoles, cold measurements at 660 A in 58 magnets are used to deter-
mine the average and rms values for the systematic field errors [40,41]. Normal
and skew components are measured up to 22—poles with the dipoles powered with
470 A. The measured mean and rms values are used to assign random errors in the
lattice. Mean and rms values for the sextupole component, dominated by persis-
tent currents, are determined in a separate measurement, and also used to assign
random errors in the lattice.

For the quadrupoles, only systematic errors are considered. The mean and the
rms values are measured in 380 magnets powered with 30 A at room temperature.
A good correlation is found between warm and cold measurements in these mag-
nets [40, 41]. No additional persistent current error contributions are included in
the quadrupoles.

Tunes and chromaticities are set to the values measured during the experiment.
Closed orbit errors are disregarded. In the experiment one interaction region sex-
tupole corrector was used as a probe to excite the third order resonance.
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Table 8.1: Machine and beam parameters for the experiment.

parameter unit value

used ring Yellow
specie Au™t
relativistic parameter -y 10.52

ions per bunch N, 10° 0.1 -0.7
norm. emittance, 95% €, pum ~ 10
tunes (v, vy) (28.223, 29.235)
chromaticities (Q7, ;) ~ (-2, —2)

8.2 Description of the experiment

The measurement of resonance driving terms was carried out in gold operation
at injection energy. Relevant parameters are displayed in Tab. 8.1. In all cases
the transverse injection oscillations of a single bunch were observed turn-by-turn.
The horizontal oscillation amplitude was varied by changing the strength of the
injection septum. The oscillation amplitudes were increased in steps until most of
the beam was lost in the injection process. Twelve beam position monitors (BPMs)
in either plane recorded 1024 turns after the injection.

Five sets of data were taken. In each set the horizontal oscillation amplitude
was varied. The first set was taken with the baseline machine. For the other sets,
the single interaction region sextupole used as a probe was powered to a normalized
strength of 0.09, 0.03, —0.03 and —0.09 m—2 respectively. This sextupole should
drive first and third order resonances.

The sextupole that was changed in the experiment is at a location with lattice
functions (8, 6y) = (143 m,50 m). For comparison, the 72 focusing arc sex-
tupoles are at locations (85, 3y) = (45 m, 11 m) with a normalized strength of
+0.18 m~2; 72 defocusing arc sextupole are at locations (85, 8y) = (11 m,44 m)
with a normalized strength of —0.39 m~2. The arc sextupoles correct for the nat-
ural chromaticities of (Q;, ,, @y, ,) = (=55, —57) and the persistent current chro-
maticities (Q7, 5,, @y 5,) = (—38, +36) [42].

8.3 Experiment versus model

Sextupolar fields introduce three spectral lines in the Fourier spectrum of the hor-
izontal motion: (-2, 0), (2, 0) and (0, 0). The first one is related to the third order
resonance and the other two are related to the first order resonance. An example
of the Fourier spectrum obtained from the experimental data and using the SUS-
SIX [24] code is shown in Fig. 8.1. In this figure the tune line and the three sextupo-
lar spectral lines are seen plus the spectral line (-1,0) which is due to quadrupolar
and octupolar resonances.

To measure the spectral line (0,0) the closed orbit previous to the excitation of
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Figure 8.1: Fourier spectrum of the complex signal from pick-ups yo5-bh10 and
y05-bh12 for the baseline RHIC machine and for an oscillation amplitude of 8 mm.
The label (m,n) means that the frequency is equal to mv; + nvy.

the betatron motion is needed. Since in this experiment the betatron motion was
excited by injecting with a certain transverse angle, the reference closed orbit is not
known. Therefore the line (0,0) cannot be measured. The spectral lines (-2, 0) and
(2, 0), normalized to the tune line, are proportional to the oscillation amplitude and
to the resonance terms h3goo and h129g respectively, as derived from Eq. (3.38). For
the different sets of data the normalized amplitude of either spectral line is plotted
versus the square root of the single particle emittance. The betatron amplitudes
have been measured from the first turns of the BPM data. A beta function of 48
m has been assumed at the BPMs to compute the single particle emittance. Only
the data coming from two of the pick—ups could be systematically used for all the
different settings. In Fig. 8.2 the normalized amplitude of the spectral line (-2, 0)
coming from these BPMs is plotted versus the oscillation amplitude for the five
different settings of the interaction region sextupole used as a probe. The experi-
mental values have been multiplied by the decoherence factor of two to compare to
the curves predicted by the model. There is a good agreement except for the case
with —0.09 m~—2. To measure the first order resonance the previous procedure is
followed for the spectral line (2, 0). The resulting plots are shown in Fig. 8.3. There
is a good agreement for the cases with positive and zero strength. Discrepancies
arise for the cases with negative strength. In the case of -0.09 m 2 (see Fig. 8.3)
the disagreement between experiment and model shows only at large amplitudes.



82 CHAPTER 8. RHIC EXPERIMENT

Str. 0.03 m™ .

Str. 0.09 m™

line(-2,0)/line(1,0) [%]

o = N w AN (6)]
T
I

0 05 1 15 2 25 3 0 05 1 15 2 25 3
1/2] 1/2]

line(-2,0)/line(1,0) [%]
o = N w N al

kick amplitude [(um) kick amplitude [(um)

Str. 0.0 m™ . Str. -0.03 m™ .

line(-2,0)/line(1,0) [%]
S P N W ~ O
line(-2,0)/line(1,0) [%]
o [l N w E 6]

0 05 1 15 2 25 3 0 05 1 15 2 25 3
1/2] 1/2]

kick amplitude [(um) kick amplitude [(um)

Str. -0.09 m™ -

Experiment ——
Model

line(-2,0)/line(1,0) [%]
(@] = N w N (6]

0 05 1 15 2 25 3

kick amplitude [(um)2]

Figure 8.2: Measurement of the third order resonance. The normalized amplitude
of the spectral line (-2,0) is plotted versus horizontal betatron amplitude for five
different strengths of the probe sextupole. Experimental results are multiplied by
the decoherence factor of 2 and predictions from the model are shown.



8.3. EXPERIMENT VERSUS MODEL

line(2,0)/line(1,0) [%] line(2,0)/line(1,0) [%]

line(2,0)/line(1,0) [%]

1

0

| Str. 0.09 m?

0 05 1 15 2 25

kick amplitude [(um)*/?]

| Str. 0.0 m?

0 05 1 15 2 25

kick amplitude [(um)*?]

3

| Str. -0.09 m?

0 05 1 15 2 25

kick amplitude [(um)2]

3

line(2,0)/line(1,0) [%]

line(2,0)/line(1,0) [%]

4 T T

83

3 | Str.0.03m™

2 - .
1 - .
0
0 051 15 2 25 3
kick amplitude [(um)*/?]
4 T T T T T

3 | Str.-0.03m™

0 05 11

kick amplitude [(um)

5 2 25 3
1/2]

Experiment ——

Model

Figure 8.3: Measurement of the first order resonance. The normalized amplitude
of the spectral line (2,0) is plotted versus horizontal betatron amplitude for five
different strengths of the probe sextupole. Experimental results are multiplied by
the decoherence factor of 2 and predictions from the model are shown.
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8.4 Summary of the RHIC experiment

For the first time we were able to demonstrate that sextupole driving terms can
be measured in RHIC, an operational superconducting machine. We measured
two types of horizontal sextupole resonances at RHIC obtaining a good agreement
with the model. Important discrepancies for the weaker resonance (1,0) at nega-
tive sextupole strenghts remain ununderstood. Due to the non availability of BPM
data around the ring the resonance driving terms could be computed only at one
location.



Chapter 9

Normal Form of particle motion
under the influence of an AC
dipole

AC dipoles in accelerators are used to excite coherent betatron oscillations at a
drive frequency close to the tune. These beam oscillations may last arbitrarily
long and, in principle, there is no significant emittance growth if the AC dipole is
adiabatically turned on and off. Therefore the AC dipole seems to be an adequate
tool for non-linear diagnostics provided the particle motion is well described in
presence of the AC dipole and non-linearities.

Normal Forms and Lie algebra are powerful tools to study the non-linear con-
tent of an accelerator lattice. In this chapter a way to obtain the Normal Form of
the Hamiltonian of an accelerator with an AC dipole is described. The particle
motion to first order in the non-linearities is derived using Lie algebra techniques.
The dependence of the Hamiltonian terms on the longitudinal coordinate is studied
showing that they vary differently depending on the AC dipole parameters. The
relation is given between the lines of the Fourier spectrum of the turn—by—turn mo-
tion and the Hamiltonian terms. Furthermore the analytical results are confronted
to a tracking simulation using a SPS model.

9.1 Linear motion with an AC dipole.

The simplified Hamiltonian that describes the linear motion of a particle in an
accelerator with an AC dipole is given by

1 1
Hy(z,pg,s,t) = ipi + §K$(s)x2 — (s, t)z , 9.1)

where x and p,, are the transverse canonical coordinates, s is the longitudinal co-
ordinate, K,(s) is the focusing strength and d(s, ¢) is the time—dependent kick of

85
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the AC dipole placed at the location sp given by the expression

d(s,t) = %(&)imc(s — sp)cos(2mQ pt + g) , 9.2)

where BL is the integrated field amplitude, (Bygp) is the rigidity, Q p and 1 are the
tune and initial phase of the AC dipole and ¢ p;rqc(s — sp) is the Dirac delta func-
tion. Note that throughout this chapter the unperturbed linear machine is assumed
to be free of transverse coupling to simplify the expressions. A generalization to in-
clude linear coupling requires an additional decoupling transformation throughout
the formalism [43]. The exact single turn map corresponding to the Hamiltonian
of eq. (9.1) at the location just before the AC kick can be found in [44]. Using
the Courant-Snyder variables (z, p,) this solution is written as function of the turn
number N as

#(N) — ipy(N) = V2J2mQaN+020) 4§ (i2mQdN _ 5, ,=27QDN = (g 3)

where J and ¢4 are the linear invariant and the initial phase given by the initial
conditions and J_ and d. are defined as
BL e*T(mQx—%o)

o = ‘/B_Dwop) 4sin(rQ<)

where 8p is the betatron function at the dipole and Q+ = Qp £ Q. Notice that
close to the resonance QQ p = @, the quantity J_ is much larger than d-..

A general solution for the particle motion at any location of the ring can be
computed following the same steps as in [44]. The equivalent expression of eq. (9.3)
at the longitudinal location s is given by

(9.4)

:fI(N) N Zﬁw(N) — \/ﬂei(ZmeN—f—@co) + e~ D (576i27rQDN B 6+e—i27rQDN) ’
(9.5)
where ¢ p is the phase advance from the starting location s to the AC dipole. J and
¢z are again given by the initial conditions. Notice that ¢ p has a discontinuity
at the AC dipole since right before the AC dipole ¢ is zero and right after it ¢p
equals to 27Q 5.

9.2 The time-independent linear one-turn map.

In general an explicitly time dependent Hamiltonian can be transformed to a time
independent one by introducing an extra degree of freedom (this is equivalent to
extend the phase space [45]). The Hamiltonian H(z,p,,t) generates the same
equations of motion for z and p,, as the new Hamiltonian H (z, p., T, p;), defined

by

H(x,pg,7,p7) = H(%,pz,7) + 07 , (9.6)
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since the solution of the canonical equations for 7 is 7(t) = ¢.

Applying this transformation to the time dependent Hamiltonian of eq. (9.1) a
new Hamiltonian independent of time with one extra degree of freedom is obtained.
The one turn operator acting on 7 is defined to be R, and its action over 7 is

Rir=7+1. 9.7)

The total linear one—turn map is the direct product of the one-turn map of the
betatron motion with the operator R, this is expressed as R, ® R, where R, is
defined as Ry¢, = ¢ + 2mwQ,. The turn—-by—turn evolution of the particle at the
location of the AC dipole is re—expressed as follows

E(N) = ipy(N) = (Ry ® R,)N[V2Je!(Pat9e0) 4 §_¢i27Q0T _ 5, ¢=127QDT] (9.8)

The cross denoting the direct product will be omitted in the following.

9.3 The non-linear one-turn map.

Since the explicit time dependence of the Hamiltonian has been removed the one-
turn map including non-linear kicks can be constructed as in [18]. All non-
linearities are assumed to be kicks without loss of generality since any Lie map
can be factorized into non-linear kicks up to a desired order [46]. The one-turn
map is expressed as

M — e:ﬁlte:ﬁz: T e:ilN:Rw’yRT (99)

where h,, are the generating functions of the multipolar kicks written in terms
of the eigen—coordinates (zy, Pgn, Yn,Pyn) at the longitudinal location s = s,.
These eigen—coordinates are the quantity inside the square brackets of eq. (9.8)
propagated to the location s,, and multiplied by the square root of the beta function
at that location. Since eq. (9.8) holds at the location just before the AC dipole,
the propagation to s,, is done by applying R, and multiplying by an exponential
function with the phase advance at s,,. The eigen—coordinates have the following
form

Ty — pr:En = A /ﬁl‘nei¢zn[ /ZJwei(¢x+¢m0) + 5$iei27rQacDT _ 6w+e*i27rQacDT] ,
Yn — Zpyn — /ﬁyneid)yn[ /2Jyei(¢y—|—¢y0) + 5y_ei27l'QyDT o 5y+e—i27'rQyDT] )
(9.10)

where 8,, and ¢,,, are the beta and phase advance functions at the location of
the n*” element. The notation has been generalized to include two independent
AC dipoles in the horizontal and vertical planes. The set of eigen—coordinates
(%1, Pan» Yn, Pyn) depends on the initial longitudinal position, which in this case
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is just before the AC dipole. In section 9.7 a derivation is presented for an arbi-
trary initial longitudinal position. Using the Campbell-Baker—Hausdorf theorem,
eq. (9.9) can be simplified to

M =e"R, R, (9.11)

where h can be approximated by
N _ N _ B
h=> hn+ > [ hn] + -+ (9.12)
n=1 n,m<n

assuming that k,, are small enough. The aim of this study is to derive expres-
sions up to first order in the non-linearities, therefore only the first summation of
eqg. (9.12) will be kept. In the absence of the AC dipole the standard expansion of
h is written as

h= Z hjklmzfz;kz;'lzy_m , (9.13)
jkim

where h,,, are the Hamiltonian terms and z are the linearly normalized coordi-
nates defined by

Z;t — /zjxe:FZ((ﬁm‘HﬁmO) ,
zE = 20T Puto0) (9.14)

where these oscillations would be obtained by applying a kick in either plane. The
expansion of A in the presence of the AC dipole is directly computed by replacing
the z in eq. (9.13) by the quantities inside the brackets of eq. (9.10), leading to

i . _k IL,_m
h="> hium& & 65, (9.15)
jkim
with
53: = \/2J,eTHPatdz0) | |5w7|e:Fi(27TQmDT_77mf) _ |5w+|eii(27erDT+7)ac+) ’
53:}: = /2Jye:Fi(¢y+¢y0) + |5y_|e:Fi(27rQyDT—ny_) _ |5y+|e:|:i(27rQyDT+ny+) ’
(9.16)

where, for convenience, the quantities d, 4 of eq. (9.10) have been separated into
an amplitude factor |d,,+| and a phase factor exp(in,,+). If the AC dipole is
adiabatically turned on the betatron oscillation is not excited, i.e. the terms of
eg. (9.16) containing J; , should vanish. Nevertheless a real AC dipole will always
excite the betatron motion up to some level. Therefore the terms containing J,
are kept until the end of the derivation.
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9.4 Normal Form Procedure.

The Normal Form technique [17,19] can be applied to the one turn map of eq. (9.11)
containing eq. (9.15). Basically, we look for a new map e*#'(/*$): which by a sim-
ilarity transformation brings the one turn map into a rotation Rz,yRTe:H (1) that
only depends on the new invariants of the motion denoted by 7. The equation to
find the functions F' and H (I) is written as

e:h:Rw,yRT — e:F:e:H(I):Rw,yRTe—iFZ . (917)

This is represented by the following diagram

5 e:h:Rm,yR-r N é”
e—:F(J,d)):JV T6=F(J,¢)= (9.18)
¢ = ¢

e:H(I):Rm,yRT
where ¢ represents the Normal Form coordinates (gg,gg,g) and £ represents
(5;?,5;,5;,5;). The Normal Form coordinates are related to the linear coordinates
by the expression

¢ =e g (9.19)
where
(F = 2LeTWetve0) 4|5, |eFi2mQenT M) _ |5, . |eFH2mQepT4Na4)
¢ = 9L, eFilbut o) 4 |§, _|eFCTQuoT—m-) _ |5, |eFi2rQuoT )

(9.20)

I, and I,, are the new action invariants. 1, and 1, are the new phase variables and
7 is the same time—like variable as above. By construction the one-turn map of the
Normal Form coordinates is an amplitude dependent rotation represented by

e:H(I):}1’%3}};@@‘E — /2T +27Qu (1,0)+100) ©.21)
_H(sz_‘eﬂFi(%QmD(rH)—an _ |5$+|e:|:i(27erD(7—+1)+nw+) 7

where Q. (1, 0) is the betatron tune with its explicit dependence on all the oscilla-
tion amplitudes of eq. (9.20), I, and |d, 4+ |. The formal solutions from eq. (9.17)
for the functions F,. and H up to first order are given by [17]
1 _
F,b = ——(h—nh 9.22
U0 (9.22)
H = h (9.23)

where h represents the average of & over the phase angles, including the new vari-
able 7. In order to obtain a detailed expansion of F, the quantity (k — h) should
be expressed in terms of the eigen—vectors of R, , R;. These eigen—vectors are the
summands of the r.h.s. of eq. (9.16) for the initial basis or the summands of the
r.h.s. of eq. (9.20) for the Normal Form basis. Nevertheless, in order to deal with
simpler expressions this expansion is postponed to the end of the derivation.
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9.5 The non-linear motion.

Following the same reasoning as in [6] the motion of the particle is computed
expanding the exponential operator of eq. (9.19) up to first order, resulting in

§~(+[F (] (9.24)

where the square brackets denote the Poisson bracket. In order to compute this
quantity the two following properties are used:

&) = i (9.25)
1 | = . - 9.26
[mg(C)’ Cz :| 1= eiiQWQwa’yRT [g(€)7 Cz ] ) ( : )

where g(¢) is an arbitrary function of the phase space coordinates ¢ which is in-
finitely differentiable. Therefore the relation of the linearly normalized horizontal
coordinate with the Normal Form horizontal coordinate is

& =G -2 Y i GGG e
jklm Y=

As stated above, the eigenvectors of the linear operator R, R, are the summands
of the r.h.s. of eq. (9.20) but not the {. To obtain the expansion as a power series
of the eigenvectors the ¢ have to be replaced by the expressions of eq. (9.20) and
the products and powers of the trinomials have to be expanded. The turn-by—turn
motion is obtained by successively applying the one—turn map to eg. (9.27) as done
in eq. (9.21).

In the general case, the number of spectral lines arising from egs. (9.27) and
(9.20) in the horizontal motion is large and many Hamiltonian terms contribute to
the same spectral line. For instance, the Hamiltonian term £ ;.o introduces, in the
horizontal spectrum, all the lines with the frequencies expressed as

(k1 — 51)Qq + (k2 — k3 + j2 — j3) QD , (9.28)
k; and j; being arbitrary positive integers or zero fulfilling the following conditions:

k1+k2+k3 = ka
Jitje+igs = 57—-1,

where k and j are the indexes of the Hamiltonian term h 0. Each of the lines
given by eq. (9.28) has associated the resonance condition expressed as

(k1 =51 —1)Qz + (kg — ks +jo — j3)Qzp = p, withpe Z.  (9.29)

As an example using this expression it can be shown that the lowest multipoles
driving the resonances Q.p = p and 2Q,p = p, with p € Z, are the sextupole
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and the octupole, respectively. In the appendix B the spectral lines introduced by
the Hamiltonian terms h3ggo and hi1gop are derived.

Nevertheless, in the ideal case of an adiabatic excitation close enough to the
resonance (Qp ~ (@) the terms containing either I, or d, . are negligible.
Thus eq. (9.27), for only one horizontal AC dipole, simplifies to

é‘; ~ |5$_|ei(27erDT*Wm—)

2ijhkoolde—| Y iy enQupr—n-
a %: 1-— eiQW(—Qz+(k—j+1)Qw)ez( JHDETQapT=1e-) , (9.30)
JRIM

In this simplified case the Hamiltonian coefficient A ;z00 only introduces the line
with frequency (k—j+1)Q,p and the associated resonance condition is

Qo+ (k—j+1)Qup =p, withp € Z . (9.31)

Although the betatron oscillation has been neglected the resonance conditions still
involve Q. This is due to the factor e ~#27%@= in the denominator of eq. (9.27).

9.6 A tracking example

In order to check the expressions derived above, single particle simulations have
been done. A ring made of 108 FODO cells has been used, which indeed is a sim-
ple model of the SPS at CERN. Sextupoles are the only source of non-linearity. A
horizontal AC dipole has been introduced with a linear ramping time of 5000 turns
and a flat top of 1000 turns. From eq. (9.28) it is concluded that the Hamiltonian
terms hsoo0, h1200 @and ko199 (coming from sextupoles) introduce all lines (m,n)
with |m| + |n| < 2 except the line (-1,0), where (m,n) corresponds to the fre-
guency mQ; + nQzp. In fig. 9.1 the Fourier spectrum of the horizontal motion of
the simulation is shown. In the figure all the predicted lines are seen plus the (0,3)
and (0,-3) lines which come from the second order of the sextupolar terms.

The approximate expression in eq. (9.30) gives us the means of unambiguously
measuring the Hamiltonian terms from the FFT of turn—by—turn data provided the
approximation is good enough. The parameters of the simulation were chosen to
optimize the study of the third order resonance. The strength of the sextupoles
and the Twiss functions at their locations are shown in table 9.1. In fig. 9.2 the
prediction of eq. (9.30) is compared to the analysis of the simulated tracking by
plotting the normalized amplitude of the line (0,—2) versus the oscillation amplitude
|6_| with 8, = 100 m. The comparison is done for two excitation frequencies. The
limit of the normalized amplitude of the line (0,-2) as it approaches the resonance
®@p = Q. is also shown in the picture. In this limit the motion is equivalent to a
free oscillation produced by a single kick. The normalized amplitude of the line
(0,-2) with @ p = @ equals the normalized amplitude of the line with frequency
—2@Q), from the kicked particle motion.
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Figure 9.1: Normalized Fourier spectrum of the horizontal motion of a particle.
The label (m,n) attached to each line indicates that the frequency of that line is

mQ; + nQp. For example the line (0,2) is mainly due to the term h19gp.

Element | Strength [m~2] | Bz [M] | By [M] | ¢z | &y
sext.1 -0.1 4241 | 55.96 | 6.21 | 6.26
sext.2 -0.2 19.63 | 107.64 | 6.53 | 6.53
sext.3 -0.2 19.65 | 106.69 | 6.78 | 6.78

Table 9.1: Strength of the sextupoles and twiss functions at their locations used in

the simulation.
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Figure 9.2: Comparison of the normalized amplitude of the line —-2Q) p from the
horizontal motion of simulated tracking and the approximated model for the two
different excitation frequencies Qp = @, = 0.01. The normalized amplitude of
the line —2@Q),; in the free oscillation case is also shown. These lines are due to the
resonance term hsgog-

9.7 Considering an arbitrary initial location

As stated in section 9.3, the eigen—vectors of eq. (9.10) depend on the initial loca-
tion, i.e. the longitudinal coordinate with zero phase advance. The turn-by—turn
motion at an arbitrary location has been calculated in eq. (9.5), rewriting it using
the one-turn linear operators yields

#(N) —ipg(N) = (Ry® Ry)N[V2Jei(%=+0s0)
eTian (5 AT g, e~ 2Q0TY] L (9.3)

The eigen—coordinates (z,, Pzn, Yn, Pyn) at the n" element will be given by dif-
ferent expressions depending on whether it is located before or after the AC dipole.
To compute them the expression inside the square brackets of eq. (9.32) is propa-
gated to s, as done in section 9.3, but now R, is only applied when ¢,, > ¢.p.
This is given by the following expressions

Ban€'92n [\/2 T, ($2t20) | g=idwp
X((Sz_eﬁ”Q“DT _ 6z+e—z’27erD'r)] i don < bub
Ln — ipzn =
,anew""[ 2Jzez(¢m+¢mo) + e—i(ﬁmD
x((;w_eizn(QwHQ_) — 5$+e—i2ﬁ(QmDT+Q+))] if don > b
(9.33)
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Similar expressions hold for the vertical coordinate. Following the steps of section
9.3 the Hamiltonian A is expressed up to first order in h,, as

Ne
h = Z hn(fcnapwnaympyn) . (9.34)
n=1

It was possible (see eg. (9.15)) to express the Hamiltonian with an AC dipole us-
ing the Hamiltonian terms £ ;4;,,, because all the elements fell into one of the two
possible solutions of eq. (9.33). In the general case of an arbitrary initial location
the contribution of each element to A depends on its relative position with respect
to the AC dipole. To achieve a similar expansion to eq. (9.15), the Hamiltonian in
absence of AC dipole is separated into two summations in the following way

7 7 i _k I _m
h = Z hn + Z h" = Z (hj<klm + h’]klm) +] Zy Zgj— Zy s (935)

d)mn <¢mD ¢mn>¢mD ]klm

where hj<klm contains the contributions of all the elements before the AC dipole
and h,,., of the elements after. These new terms can be used in expanding the
Hamiltonian containing an AC dipole, leading to the expression

j .k i ok 1l ,_m
h = Z h’jklmgzjw§<w§ £<y + Z hgklmfi;§>w§iy£>y ’ (936)

Jjklm jkim
with

fi:z _= A /2JI6:FZ(¢35 +¢m0)
+|8p_|eFiCTQaTHz ) _ |5 |FH2mQeDT )

£, = V2TeTiatw0)
+|0p_ |eFT(QupT+Q) 41 ] _ |5 |eF2M(QupT+Q4) o]

(9 37)
and .. = F(nz+ — ézp). Similar expressions hold for the vertical coordinates.
The turn—-by—turn motion can be computed in the same way as done in section 9.5
obtaining

{& = _2223 612”QwR R
Jjkim

G-1) G-1) _m
(hg<k:lm + . C<xc C<y + h’]klm + - C>$C C>y ) 7(9-38)

where the coordinates ¢ are defined as the coordinates ¢ in eq. (9.37) but replacing
J by I, and ¢, by 1,. Again the same approximation can be done as in section
9.5, resulting in the following expression for the horizontal motion in presence of
one horizontal AC dipole

&~ |8y |e? 2T QaD T+ )

o Z jk00|5$—|(j+k_1) ez‘(k—j+1)(27erDT+n'm,) (9 39)
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with

;‘kOO — h’j<lc00 + h;kooei(k*j+1)27er ] (9.40)
This expression shows the difference between the Hamiltonian terms of a lattice
with and without an AC dipole. For those locations where all the sources are seen
to be either before (h<) or after (h~) the AC dipole the amplitudes of the two
kinds of terms, h’ and h, are equal. Notice that as ) _ decreases the terms with
an AC dipole tend to the terms without an AC dipole. Also notice that the high
order terms, with larger |k — j + 1|, will exhibit greater discrepancies between the
two kinds of Hamiltonian terms. At the longitudinal location of a magnetic source
the corresponding Hamiltonian terms vary abruptly in phase and amplitude [47].
The amplitude remains constant between sources. This property will allow the
identification of locations with multipolar kicks in a real machine by using beam
position data from the pick-ups along the ring.

A tracking simulation has been performed to check the approximation used in
deriving eq. (9.39). The same lattice and method of the previous tracking example
in section 9.6 have been used but 108 sextupoles were introduced. Turn-by-turn
data are obtained at the different longitudinal locations. The Hamiltonian term
h000 is Obtained by evaluating the amplitude of the (0,—2) spectral line of these
data (according to eq. (9.39)). The results of this analysis together with the the-
oretical value of hj, obtained from the lattice parameters are shown in fig. 9.3.
Small discrepancies arise at some locations due to contributions from the terms
h1200 and ho1go to the spectral line (0,—2). These contributions are proportional to
the quantity d, and they were neglected to arrive at eq. (9.39). To give an idea of
the differences between the Hamiltonian terms with and without AC dipole their
amplitudes are plotted versus the longitudinal coordinate for the same lattice in
fig. 9.4.

9.8 Conclusion

A method to derive the Normal Form of a Hamiltonian with an AC dipole term
is presented. To avoid the explicit time dependence of the Hamiltonian a new
dimension is introduced. In principle this method works not only for the case of
an AC dipole but for all cases where there is a solution of the linear plus the time
dependent parts of the Hamiltonian.

The turn-by-turn motion at any location of the lattice is derived using Lie al-
gebra techniques. In the general case various Hamiltonian terms contribute to the
same Fourier spectral line of the motion. This is not the desired situation when
using the AC dipole for non-linear beam diagnostic. Nevertheless an approximate
expression for the turn—by—turn motion is derived under the ideal conditions that
the excitation is adiabatic and the AC dipole tune is sufficiently close to the fun-
damental tune. It has been shown that the Hamiltonian terms in presence of the
AC dipole are different to those without AC dipole. Nevertheless the discrepancies
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Figure 9.3: Comparison of the amplitude of the Hamiltonian term k%, computed
from tracking and from theory (both with AC dipole) plotted versus the longitudi-
nal position.
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Figure 9.4: Comparison between the theoretical amplitudes of the Hamiltonian
terms hf,, (With AC dipole) and hsgoo (free oscillation) plotted versus the longi-
tudinal position.
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should not be large and the local information contained in both cases is equivalent,
i.e. it is possible to identify longitudinal locations with multipolar kicks. All this
predictions have been compared with tracking simulations in a FODO lattice with
sextupoles. In the more academic example where one resonance is strongly ex-
cited the agreement was excellent. In the more general case where 108 sextupoles
were introduced some small discrepancies arose due to contributions from differ-
ent resonance terms to the same spectral line. The feasibility of this technique in
an operating machine has to be experimentally demonstrated. First experimental
attempts to validate this method can be found in [58, 60].



98

CHAPTER 9. NORMAL FORM OF PARTICLE MOTION UNDER...



Chapter 10

Comparison with other methods

Presently, various beam-based techniques to measure lattice imperfections or non-
linearities are being investigated by other research groups. This chapter gives an
overview of the different techniques under investigation. In table 10.1 a classifi-
cation of these techniques is given based on the kind of perturbation applied to
the beam. The different techniques fall into two groups: destructive and non-
destructive. The non—destructive methods are suitable for feed—back systems whereas
the destructive techniques should be used during the machine set-up only.

Measured
Perturbation quantity Destructive Ref.
. Static bump Tunes No [10,11]
Orbit bump { Wobbling bump Fourier lines No [7]
Radial steering Tunes Yes [12]
Energy change ¢ Energy kick Fourier lines Yes [48]
RF phase mod. Fourier lines Yes [49]
Used as corrector Orbit Yes [13]
Single kick Fourier lines Yes [6]
Dipole kick transfer map Yes [8]
frequency map  Yes [9]
AC dipole Fourier lines No [58, 59]

Table 10.1: Classification of the different techniques to measure lattice errors
and/or non-linearities based on the type of perturbation applied to the beam and
whether the method is destructive. The measured quantity and the bibliographic
references are given in each case.
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To assess the usefulness and the performance of a technique its various advan-
tages and disadvantages have to be taken into account. For example, the methods
that provide the local information are more advantageous than those that only give
a global average. Other important parameters are the time that the complete mea-
surement process lasts, the need for special instrumentation and the complexity of
the measurement. In the following these techniques will be discussed according to
the type of beam perturbation as indicated in table 10.1.

10.1 Orbit bumps

An orbit bump is a local modification of the reference orbit by use of dipole cor-
rectors. This kind of correctors are available for all accelerators since they are
needed to keep the closed orbit close to the reference orbit. For a minimal bump
set—up one needs two of these correctors but more sophisticated bumps with sev-
eral correctors may be used. Orbit bumps are extensively used in a wide range of
applications like alignment, K-modulation, impedance measurement, beam—beam
effects, beam size measurements, luminosity optimization and, of course, non—
linear diagnostics. Orbit bumps can be constant in time (static bump) or can vary
harmonically with one or more frequencies (wobbling bump). These two scenarios
render different beam dynamics and the information is obtained in a different way.

10.1.1 Static bump

This technique uses the fact that the non-linearity inside the orbit bump acts by
feed—down to all lower orders. Its order and magnitude are deduced from the vari-
ation of suitable observables with the bump amplitude. The main observables are
the tunes but also the degree of the bump non-closure (orbit leakages). An exper-
imental application of this method can be found in [10] and [50]. In these studies
a bump is created along a low-g3 triplet of quadrupoles and the tunes are measured
as function of the amplitude of the bump. The multipolar components are found
by a polynomial fit of the tunes versus the amplitude. The use of a Phase Lock
Loop (PLL) for the tune measurement has advantages since it provides a resolution
as low as 1076, Nevertheless, using a PLL makes this a delicate instrument at the
present stage.

It was tried in simulation if this technique can be applied to the case of the
LHC [11]. In this study a 77 bump is put along one arc of the LHC and the
tunes are measured as function of the bump amplitude in view of optimizing the
sextupolar spool pieces correction. The results are promising.

This technique finds the local information corresponding to just those multi-
poles that are located inside the bump. Therefore, to cover the whole machine,
a very large number of bumps are needed which makes this procedure very time
consuming. On the other hand it can be made non—-destructive in case a PLL is
used to measure the tunes.
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10.1.2 Wobbling bump

If the bump is set to oscillate with one or more frequencies the non-linearities in-
side the bump will drive oscillations with frequencies as multiples of the wobbling
frequencies. This technique was proposed in [7] and [51] and has been tried out
at the COSY cooler synchrotron [52] and at the SPS [53]. Unfortunately, it was
difficult to interpret the data in these first attempts. It therefore remains to be seen
if this non—destructive technique can be of any use in machine operation.

10.2 Energy change

In this section those techniques are discussed that modify the beam or reference
energy. They were initially proposed or used to measure the first order chromaticity
but may be of more general use concerning non-linearities. There is also a new
technique [54] which is based on the measurement of the oscillation phases of the
head and the tail of the bunch after applying a transverse kick.

10.2.1 Radial steering

The radial steering procedure is based on changing the beam energy and the cen-
tral orbit via frequency modulations of the radio frequency system. The tunes are
measured for each of the different energy settings. Similarly to the case of an or-
bit bump the different multipolar fields induce different dependencies of the tunes
versus the energy or, equivalently, the central orbit. Via a polynomial fit global
multipolar components may be determined. In this case the bump is across the
whole machine. For this reason this technique does not provide any local informa-
tion, but it is much faster.

An example can be found in [12]. In this study it is assumed that the unknown
sources of sextupolar and decapolar fields of the SPS are located at the dipoles and
that the sources of octupolar fields are located at the quadrupoles. Another assump-
tion is that all magnets of the same kind have the same multipolar components. The
numerical values of the multipoles are chosen to match the machine measurements.
The advantage of this technique is that it does not need dedicated instrumentation.
Further applications of this technique are found in [55], which also makes use of
the methods as described in this thesis.

10.2.2 Energy kick

This method has been recently proposed to measure the first order chromaticity by
computing the synchrotron sidebands around the tunes after an energy kick and
without the RF feedback. An experiment in the SPS [56] was carried out to test
this technique. Unfortunately, it was not yet conclusive. A possible extension of
this method is the measurement of resonant driving terms since the energy kick



102 CHAPTER 10. COMPARISON WITH OTHER METHODS

and the subsequent synchrotron oscillations varies the orbit in the horizontal plane
with the synchrotron frequency.

10.2.3 RF phase modulation

In [49] a method to measure chromaticity is proposed based on modulating the
phase of the Radio Frequency (RF) cavities. Successful results from an experiment
in the SPS are also reported. To determine the sign of the chromaticity a controlled
tune modulation should be induced with quadrupoles. This method would largely
profit from the use of a PLL.

10.3 Dipole kick

A dipole kick is provided by a dipole field, typically at one location of the ring.
This kick is applied as a corrector when it is left constant over time. A single kick
is applied only at one turn. On the other hand, an AC dipole provides a kick at
every turn with an amplitude varying harmonically in time, mind you that it has to
be switched on adiabatically. The aim of all these methods is to move the beam to
different locations of the transverse phase space in order to extract the non-linear
information.

10.3.1 Dipole kick as corrector

In [13] a technique is presented to measure the multipole components at each low-
B triplet inside the IRs of RHIC. The technique is based on measurements of the
strength of the overall kick that the orbit naturally experiences at a particular triplet
due to the presence of linear and nonlinear errors. To measure the kick strength at
the triplet, the action and phase are measured before and after the triplet. This ac-
tion and phase can be related to the strength of the overall kick at the triplet. Action
and phase measurements are done on an orbit obtained from the subtraction of an
orbit produced by turning on a dipole corrector and the baseline orbit (difference
orbit). This technique does not need any extra instrumentation and it provides the
local information. Up to now it has been used in a destructive way but in principle
one could do it in a non-destructive manner. Quadrupole components were suc-
cessfully computed using experimental data but for the nonlinear measurements
more experiments are needed to prove its usefulness.

10.3.2 Single kick

After applying a single kick the bunch performs betatron oscillations that are even-
tually damped due to decoherence processes. As a result the transverse emittance
blows up, making this method intrinsically destructive but it gives plenty of high
precision information concerning non-linearities with several ways to extract it.
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The first way is the subject of this thesis. It has been presented here how by
performing the Fourier spectrum of the turn—-by—turn data the local information
of the non-linearities can be extracted. It has been experimentally confirmed in
the SPS and RHIC that quadrupolar and sextupolar resonances can be measured
around the ring. The effect of decoherence on this method has been understood
and can be incorporated into the measurement. No dedicated instrumentation is
needed for this technique.

Another way of analyzing the data is by computing transfer maps [8]. A poly-
nomial fit of the coordinates at a final location as a function of the initial coordi-
nates is performed. The coefficients from the fit correspond to the integrated mul-
tipolar kicks between the two locations. The effect of beam decoherence cannot be
easily taken into account. Therefore the measurement period has to be restricted
to smaller time intervals before the decoherence becomes large. Also in this case
there is no dedicated instrumentation needed. No experimental application of this
technique has yet been performed.

The Frequency Map (FM) [9] is evaluated by applying several single kicks at
different amplitudes. The tunes are computed as function of the horizontal and
vertical oscillation amplitudes. The dynamics of the particle motion inside the
storage ring can be analyzed by studying the regularity of this map. Therefore it
does not provide any local information. This method has been successfully used in
the ALS operation [57].

10.3.3 AC dipole

The greatest advantage of using an AC dipole to excite the beam motion is its non—
destructiveness, keeping all the advantages of the dipole kick methods to measure
non-linearities. A detailed description of the motion in presence of an AC dipole
has been presented here in chapter 9 and in [59]. First experimental tests have been
performed at the AGS of BNL [58] and more recently at the CERN SPS [60]. How-
ever, further experimental studies are required before this method can be applied
for routine machine operation.
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Chapter 11

Conclusions

In this thesis a beam based method has been studied to measure resonance driving
terms using the FFT of BPM data taken from an accelerator in operation. Ana-
Iytical derivations, computer simulations and experiments have been applied and
performed for two different accelerators, i.e. the CERN SPS and RHIC at BNL.

The first new analytical aspect of this thesis consists of evaluating the effect of
beam decoherence on the FFT spectra of BPM data. For a Gaussian beam it has
been demonstrated that the normalized amplitude of the line (m, 0) decreases by a
factor of |m| and its width increases by approximately the same factor if the beam
experiences decoherence due to amplitude detuning. It has also been shown that in
the context of spectral analysis the chromaticity introduces synchrotron sidebands
around all spectral lines. These predictions have been tested against simulations
of the centroid motion. The analytical expressions obtained for the shape of the
lines have been compared to the lines obtained from the Fourier analysis of the
simulation data and have been found in good agreement. There remain some small
discrepancies of unknown origin in the tails of the distributions.

A second theoretical achievement is the discovery of a very useful property
of the Hamiltonian terms. The amplitude of these terms remains constant along
sections free of non-linear elements while their phase varies smoothly. Both am-
plitude and/or phase may change abruptly at the longitudinal location of non-linear
elements. In a real machine this property has been proved to localize lattice errors
by comparing the measurements of these terms at the BPMs with the predictions
of the model at the same locations.

During three years a series of experiments have been performed to measure
resonance driving terms in the SPS. The general and main conclusion is that global
and local coupling and sextupolar resonance driving terms have been measured
with good precision at the SPS. These measurements are in good agreement when
compared to the predictions using the model of the SPS. A short list of the various
results are given next. An observable for the coupling was defined based on the am-
plitude of the normalized secondary spectral lines. This observable is independent
of the amplitude oscillations and pick—up calibrations and naturally leads to a fast
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way to compensate the coupling resonance. Unexpected sextupole configurations
were inferred from the measurements of local sextupolar resonance terms. In par-
ticular, it was found that the polarities of the extraction sextupoles were opposite
to that of the lattice sextupoles and that in one experiment one of the sextupoles
was accidentally disconnected. The validity of applying the decoherence factors
has been demonstrated in several examples. Measuring the distribution of spectral
lines of a single medium sized kick allowed to determine additional beam param-
eters like detuning with amplitude and beam emittance. To this end the predicted
shape of the tune line in presence of decoherence was fitted to the experimental
one. The phase of sextupolar terms has been measured around the ring which ac-
tually proves that one can measure both components of a resonance, i.e. amplitude
and phase respectively. A two—-dimensional sextupolar resonance which produces
a non-linear coupling between the two transverse planes was measured as well. It
was shown that this technique is not affected by the beam energy in the range be-
tween 26 and 120 GeV. Moreover, the results are not dependent on beam intensity
in the range between 0.5x10'° and 6x10'° protons.

For the first time we were able to demonstrate that sextupole driving terms
can be measured in RHIC, an operational superconducting machine. We measured
two types of horizontal sextupole resonances at RHIC, obtaining good agreement
with the RHIC model. More studies are planned at RHIC with an improved BPM
system to allow the measurement of the local non-linear resonances.

Presently, this technique is destructive because the applied kick blows up the
emittance of the beam. A major improvement can be achieved using AC dipoles
which excite the beam adiabatically and close to the betatron frequency causing
little emittance blow up. A method to derive the Normal Form of a Hamiltonian
in presence of an AC dipole has been developed. The turn-by—turn motion at any
location of the lattice is derived using Lie algebra techniques. It has been shown
that the Hamiltonian terms including the AC dipole are different to those without
an AC dipole. Nevertheless, the discrepancies should not be too large and the local
information contained in both cases is equivalent, i.e. it is possible to identify the
longitudinal locations of multipole kicks. These predictions have been compared
with tracking simulations in a FODO lattice with sextupoles. In the somewhat aca-
demic example in which only one resonance is strongly excited the agreement is
excellent. In the more general case of the SPS with 108 sextupoles some small dis-
crepancies are observed. These are due to contributions from different resonance
terms to the same spectral line.

In this thesis the feasibility of the proposed technique has been shown to de-
tect and correct resonances of non-linear elements. It was also possible to local-
ize these non-linear elements around the ring. Furthermore, one achieves a non-
destructive tool when the kicker is replaced by an AC dipole. One can therefore be
confident that this techniques has great potential to be very useful in commission-
ing and running of the CERN LHC which is planned to be started in 2008.
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Chapter 12

Resumen

12.1 Antecedentes y objetivos

EL futuro Large Hadron Collider (LHC) proporcionara colisiones protbn—proton
con una energia en el centro de masas de 14 TeV. La circunferencia de esta maquina
sera aproximadamente 27 km y el campo magnético en los dipolos superconduc-
tores serd de 8.4 T. EI LHC estard compuesto por 1232 dipolos y 386 cuadrupolos
asi como 20 tipos diferentes de imanes destinados a la inyeccién y a la correccion.
En un imén convencional el campo viene determinado por la forma de los polos
ferromagnéticos mientras que en un iman superconductor el campo esta definido
principalmente por la distribucion espacial del cable superconductor en las bobinas.
En los imanes convencionales se alcanza una precision de 0.01 mm en el pulido de
los polos mientras que el posicionamiento de los cables superconductores tiene una
precision maxima de 0.1 mm. Debido a esta diferencia los imanes superconduc-
tores son intrinsecamente menos precisos que los convencionales. Normalmente
las desviaciones del campo real en el iman comparado con el campo ideal se ex-
presan mediante una superposicion de multipolos de orden ascendente. Por multi-
polo de orden n entendemos un iméan de n polos en el que el campo aumenta con
la potencia (n — 1) de las coordenadas transversales. Cada uno de estos multipo-
los contribuye a la dindmica de las particulas confinadas en el anillo de una forma
precisa descrita mediante un conjunto de términos en el Hamiltoniano. Tan sélo la
parte lineal del Hamiltoniano, definida por los dipolos y los cuadrupolos, presenta
una solucibn exacta para la trayectoria de las particulas. Basicamente la dinamica
lineal es equivalente a la del oscilador harmonico. Los multipolos de orden supe-
rior, como el sextupolo o el octupolo, definen la dindmica no lineal. Las soluciones
a la dindmica no lineal s6lo pueden ser halladas mediante métodos perturbativos
en la vecindad de un punto fijo. De hecho, a partir de cierta amplitud de oscilacion
el movimiento se vuelve cabtico e inestable. Laregion del espacio fasico donde las
trayectorias seran estables se denomina apertura dinadmica. Por lo tanto la apertura
dindmica de la maquina queda determinada por el contenido no lineal. EI LHC es-
tara equipado con distintos imanes correctores no lineales destinados a cancelar los
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errores de la maquina y maximizar asi la apertura dindmica. Por ésto, las técnicas
gue permitan la medida de estos errores no lineales seran de gran valor a la hora de
detectar fallos y optimizar el rendimiento de la maquina.

El objetivo de esta tesis es desarrollar un método para medir los términos res-
onantes del Hamiltoniano de un acelerador basado en la transformada de Fourier
de los datos recogidos por los monitores de posicion del haz (BPMs). El primer
intento de realizar medidas de este tipo se llevo a cabo en 1988 [2]. Mediante teoria
de perturbaciones se estudi6 la relacion de las lineas del espectro de la trayectoria
vuelta a vuelta en funcion de los términos del Hamiltoniano. Un importante prereg-
uisito para este analisis era el desarrollo de una técnica superior para la medicion
de las frecuencias fundamentales (tonos) de la sefial vuelta a vuelta del haz, tanto
si la sefial proviene de una simulacién como de los monitores de posicion del haz
de un acelerador. Recientemente se han desarrollado técnicas que permiten deter-
minar el espectro de Fourier con una mayor precision [5]. Estas técnicas ya se han
aplicado con éxito en datos provenientes de simulaciones para corregir no lineali-
dades creadas por sextupolos. En la parte tedrica de este trabajo se estudia como
varian los términos del Hamiltoniano a lo largo del anillo y se desarrollan modelos
tedricos que describan con mas exactitud el espectro de Fourier de la trayectoria del
haz teniendo en cuenta la distribucién de particulas en el haz. Estas predicciones
analiticas se compararan con simulaciones numéricas.

La parte experimental de esta tesis tiene por objetivo demostrar la viabilidad
y la utilidad de esta técnica en un acelerador en funcionamiento. Para realizar los
experimentos se ha escogido principalmente el Super Proton Synchrotron (SPS)
del CERN por su accesibilidad y adecuada instrumentacion. Este acelerador es
altamente lineal pero dispone de ocho potentes sextupolos con los que introducir
la no linealidad de forma controlada. Estos sextupolos se denominan sextupolos
de extraccion. También se han realizado experimentos similares en el Relativistic
Heavy lon Collider (RHIC) del Brookhaven National Laboratory (BNL). Este coli-
sionador, al igual que lo serd el LHC, estd compuesto por imanes superconductores.
Por lo tanto es un banco de pruebas ideal para testear esta técnica.

Por (ltimo se ha estudiado analiticamente una mejora de este método. Esta
mejora consistiria en introducir una oscilacion del haz con una frecuencia ligera-
mente diferente al tono. Para esto se usa un dipolo alimentado con corriente alterna,
Ilamado “dipolo AC”. Gracias a este instrumento esta técnica se podria aplicar sin
que la medida sea destructiva, como era el caso anterior.

12.2 Discusion de los resultados

La dinAmica de una particula en un acelerador se describe mediante una Orbita
de referencia. Esta Orbita es la que seguiria una particula con momento de refer-
encia pg. Un acelerador estad compuesto por diversos elementos magnéticos: los
dipolos que determinan la Orbita de referencia; los cuadrupolos que se encargan
de la focalizacion del haz y ademas existen diversos multipolos utilizados para
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corregir las distintas aberraciones de la maquina como los sextupolos y los octupo-
los. La dindmica lineal queda determinada por los dipolos y los cuadrupolos y es
basicamente equivalente a la del oscilador harménico. Las frecuencias fundamen-
tales del movimiento en cada uno de los ejes de referencia se denominan tonos. Al
considerar elementos no lineales, i.e. orden multipolar superior al cuadrupolar, la
trayectoria deja de ser integrable y es necesario considerar los campos no lineales
como perturbaciones del Hamiltoniano. Una de las técnicas méas apropiadas para
el tratamiento analitico de las no linealidades es la denominada “Forma Normal”
( [17], [18] o [19]), que se basa en la representacion de los distintos elementos
magnéticos mediante operadores exponenciales sobre un algebra de Lie. La idea
fundamental de la “Forma Normal” es que en la vecindad de los puntos fijos y
estables debe existir un cambio de coordenadas que transforme las ecuaciones de
movimiento en las de un oscilador harmonico cuya frecuencia dependa de la ampli-
tud de oscilacion. Concretamente se llega a expresar la trayectoria de la particula
como una superposicién de oscilaciones harménicas [6]. La oscilacion en cada uno
de los ejes tiene por frecuencia fundamental el tono correspondiente y su ampli-
tud es la excursion inicial del haz en ese eje. Ademas aparecen acopladas un gran
nimero de oscilaciones de menor amplitud. Cada una de estas oscilaciones esta
ligada a un término del Hamiltoniano, representado por h,,,;;. La frecuencia y la
amplitud de la oscilacion quedan determinadas por el término en cuestion. Estas
oscilaciones aparecen en el analisis de Fourier de la posicién de la particula como
lineas espectrales y su medida permite la determinacion de los distintos términos
del Hamiltoniano. En una méaquina real se obtiene la posicion del haz vuelta tras
vuelta mediante monitores de posicion del haz distribuidos a lo largo de ésta. El
analisis de Fourier de esta sefial contiene la informacion de las no linealidades de
la maquina.

El estudio detallado de los términos del Hamiltoniano en esta tesis doctoral ha
abierto la posibilidad de una nueva utilidad para este método de medida: la lo-
calizacion de las no linealidades. Se ha demostrado que estos términos varian en
funcion de la posicion a lo largo de la maquina y concretamente éstos experimen-
tan un cambio brusco alla donde se localizan las fuentes de no linealidad. Esto sig-
nifica que el sistema de monitores de posicion del haz a lo largo de la maquina nos
permitira determinar los distintos términos del Hamiltoniano en cada BPM vy asi
localizar los campos no lineales e identificar las imperfecciones por comparacion
con el modelo.

Otra aportacion importante de esta tesis al método de medida es la descripcion
analitica del efecto de los distintos procesos de decoherencia en el espectro de
Fourier de la trayectoria del haz vuelta tras vuelta. Los procesos de decoherencia
se observan cuando las frecuencias fundamentales de las particulas que componen
el haz son funcibn de alguna de las variables del espacio fasico. Las fuentes mas
importantes de decoherencia son:

e El corrimiento del tono con la amplitud. En este caso los tonos son fun-
ciones de las amplitudes de oscilacion. Esta dependencia se debe exclu-
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sivamente a las no linealidades. Tanto los sextupolos como los octupolos
provocan una dependencia cuadratica de los tonos en las amplitudes de os-
cilacion. Las contribuciones de multipolos superiores no se han considerado
en el modelo analitico.

e La cromaticidad. En este caso los tonos dependen de la energia de la
particula. Aquellas particulas con una energia superior a la de referencia
sufren una menor desviacion en los elementos magnéticos y viceversa para
aquellas particulas con una energia inferior a la de referencia. La cromati-
cidad se define, asi, como la derivada del tono respecto del momento rela-
tivo de la particula. Hay que tener en cuenta que la energia de la particula
sigue una oscilacion harmonica de frecuencia @, el tono sincrotron. Por lo
tanto los tonos también siguen una modulacién en esta frecuencia con una
amplitud proporcional a la cromaticidad. Esta aberracion se puede corregir
mediante familias de sextupolos convenientemente distribuidas a lo largo del
anillo.

El haz esta constituido por un gran nimero de particulas que normalmente obe-
decen una distribucion gausiana en los tres planos del espacio fasico. Con el fin de
estudiar el espectro de la oscilacion en presencia de decoherencia se ha asumido
gue cada particula del haz sigue la trayectoria predicha por la “Forma Normal”,
que los tonos de cada particula son funciones lineales de la energia y del cuadrado
de la amplitud de oscilacion y se ha calculado la trayectoria del centroide prome-
diando sobre un haz gausiano. En el caso mas general considerado, con las tres
dimensiones, se ha conseguido expresar la transformada de Fourier como una sola
integral sobre una de las amplitudes del espacio fasico. Considerando s6lo el plano
horizontal y el longitudinal se ha llegado a una expresién analitica para el espectro
de Fourier de la sefial. Las diferencias mas importantes en comparacion con el
espectro de una sola particula debidas al corrimiento del tono con la amplitud
son: (1) las lineas espectrales ya no son distribuciones de Dirac sino funciones
con cierta anchura. Dicha anchura es aproximadamente proporcional al nimero
harmonico de la linea, i.e. la linea de frecuencia 2@Q), es 2 veces mas ancha que
la fundamental @, (2) la amplitud de la linea espectral con frecuencia m@, , se
ve reducida por un factor |m| debido a la decoherencia. Este hecho introduce una
dificultad afiadida a la medida ya que reduce la sefial de interés. Las diferencias
mas importantes entre el espectro del centroide y el de una sola particula debidas
a la cromaticidad son: (1) la aparicion de bandas laterales en todas las lineas del
espectro. Si la frecuencia de la linea es v las bandas laterales aparecen con frecuen-
cias (v £ gQ;), donde ¢ es un entero positivo 0 cero y ()5 es el tono sincrotron.
La amplitud de estas bandas decrece rapidamente a medida que g aumenta; (2)
las amplitudes de las diferentes lineas del espectro se ven afectadas por diferentes
factores debidos a la cromaticidad. Idealmente se medira con cromaticidad nula.

Con el fin de testear todas estas predicciones se han realizado distintas simu-
laciones de la dindmica del centroide. Para ello se ha usado un modelo del SPS
del CERN, que basicamente es un anillo de 1100 m de radio cuya estructura es
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de tipo FODO [22]. Se han realizado dos tipos de simulaciones, uno para com-
probar el efecto del corrimiento del tono con la amplitud y otro para comprobar el
efecto de la cromaticidad. En el primer tipo se simula un gran nimero de particulas
con distribucién gausiana solo en el plano horizontal y se utilizan sextupolos como
fuentes no lineales. En el segundo caso se consideran distribuciones gausianas
en los tres planos del espacio fasico pero sin fuentes no lineales. Las expresiones
analiticas obtenidas han sido comparadas con distintas simulaciones obteniendo un
buen acuerdo.

La parte experimental de esta tesis se desarrolla en dos aceleradores, el SPS'y
el RHIC. En el SPS se han realizado experimentos sistematicamente durante los
tres afios entre el 2000 y el 2002. Con el fin de dar la mayor validez posible a
esta técnica de medida los experimentos cubrieron una amplia gama de escenarios:
diferentes energias de los protones, diferentes intensidades del haz, diversos tonos
horizontal y vertical, diferentes configuraciones de los sextupolos de extraccion,
etc. En el RHIC se Ilevd a cabo tan s6lo un experimento con el fin de probar esta
técnica en una maquina con imanes superconductores, mas similar al futuro LHC.
En lo que sigue se discuten estos experimentos en orden cronoldgico.

Descripcion del SPS

El SPS forma parte del gran complejo de aceleradores de particulas del CERN.
Su mision consistira en el suministro de protones al LHC. EI SPS recibira el haz
de protones del Proton Synchrontron (PS) a una energia de 26 GeV y lo acelerara
hasta 450 GeV para inyectarlo en el LHC, el qué, a su vez, lo acelerara hasta 7 TeV.

El SPS es un sincrotron de protones de un radio promedio de 1100 m. Su es-
tructura consiste de 108 celdas tipo FODO. Una celda FODO esta compuesta por
un cuadrupolo focalizante y otro desfocalizante separados por espacios vacios. La
fase de la oscilacion betatronica avanza casi 7/2 por celda por lo que el tono, que
es el avance de fase a lo largo de una vuelta, es aproximadamente 27. Los tonos del
SPS tienen una gran flexibilidad habiéndose usado durante nuestros experimentos
valores comprendidos entre 26.1 y 26.8. Una descripcion més detallada del SPS se
puede hallar en [26].

El SPS cuenta con una gran coleccion de instrumentos usados para controlar el
haz y medir sus parametros. En los apartados siguientes se describen brevemente
aquellos instrumentos usados en los experimentos para la medida de términos res-
onantes:

e Monitores de posicion del haz: Estos monitores proporcionan una me-
dida de la posicion del centroide del haz. La mayoria de los monitores de
posicion del SPS son de tipo electrostatico y basicamente consisten de dos
placas conductoras a ambos lados de la cAmara de vacio. Cuando el haz
pasa entre las placas la posicion del centroide se puede inferir de las cargas
eléctricas inducidas en cada placa. Existen alrededor de 110 monitores por
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cada plano transverso y se encuentran distribuidos uniformemente alrededor
de la maquina. El avance de fase de la oscilacion betatronica entre monitores
consecutivos es de casi /2. La mayoria de los monitores se encuentran posi-
cionados alla donde la funcion betatronica correspondiente es maxima, i.e.
un monitor horizontal tiene tipicamente una funcion betatronica horizontal
de 103 m mientras que la funcion betatrénica vertical es de 20 my viceversa
para los monitores de posicion verticales.

e Q-Kickers: Por “kicker” entendemos un iman capaz de producir un campo
magnético transverso al paso del haz. Normalmente son usados para exci-
tar oscilaciones horizontales y verticales en el haz mediante la produccion
del campo magnético apropiado durante una vuelta. EI SPS esta equipado
con un “Q-kicker” horizontal y otro vertical. Se denominan asi debido a
que normalmente se usan para llevar a cabo la medicion de los tonos (Q.,
(Qy). Durante los experimentos de esta tesis en los que la energia es inferior
o0 igual a 80 GeV, los “Q-Kickers” se han usado para excitar oscilaciones
betatronicas en cada uno de los planos.

e Kicker de extraccion: Es un “kicker” que actla en el plano horizontal y es
mas potente que los “Q-kickers”. Normalmente se usa para la extraccion del
haz. Durante los experimentos de esta tesis con una energia de 120 GeV este
instrumento se ha usado para excitar oscilaciones betatronicas horizontales.

e Sextupolos de extraccion: Durante la operacion normal de la maquina estos
potentes sextupolos se usan para la extraccion lenta o resonante del haz. El
SPS esta equipado con ocho de estos sextupolos. Una descripcion técnica
de éstos puede encontrarse en [34]. En los experimentos llevados a cabo
para esta tesis estos sextupolos se han usado para crear una no linealidad
controlada y conocida.

e Cuadrupolos “skew”: Un cuadrupolo “skew” o girado es un cuadrupolo
girado 45° respecto al normal. El SPS est& equipado con 6 cuadrupolos de
este tipo. Su mision es cancelar los errores de acoplamiento transverso de la
maquina. En nuestros experimentos ademas de darles esta utilidad también
se usaron para crear una cantidad controlada de acoplamiento lineal.

Los experimentos del 2000 en el SPS

Durante el afio 2000 se realizaron experimentos a dos energias diferentes:
26 GeV y 120 GeV. La energia de 26 GeV es de gran relevancia ya que seré la en-
ergia de inyeccion en el SPS cuando el LHC entre en funcionamiento. Histéricamente
este tipo de estudios se realizaba a 120 GeV. La energia de 120 GeV es de caracter
excepcional con el fin de discernir el efecto de los remanentes de campo que apare-
cen a mas bajas energias y que a ésta no deben estar presentes. Los experimentos
a la energia de 26 GeV estuvieron focalizados fundamentalmente en la medida del
acoplamiento lineal que se manifiesta en el termino resonante hqgo1. ESte término
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resonante produce una linea espectral con la frecuencia del tono vertical en el es-
pectro horizontal. Para la realizacion de la medida a cada haz inyectado se le aplica
un “kick” (campo magnético dipolar durante una sola vuelta) en los dos planos
transversos con el fin de producir oscilaciones betatronicas. La posicién del haz se
mide vuelta tras vuelta usando los monitores de posicién del haz y a continuacion
se calcula la transformada de Fourier de las sefiales. Por motivos de carécter técnico
en el experimento a 26 GeV so6lo se pudo utilizar la sefial procedente de un moni-
tor de posicion horizontal. A su vez, la lectura de la amplitud de la linea espectral
de interés tuvo que hacerse en la pantalla de uno de los ordenadores de la sala de
control, por lo cual la medida fue poco precisa. Para contrarrestar esta imprecision
se repitid la medida un gran nimero de veces. Se determin® de esta manera la
amplitud de la linea espectral de acoplamiento en funcion de la corriente aplicada
en los cuadrupolos girados. Esto permiti6 encontrar el minimo acoplamiento, que
coincide con el minimo de amplitud de la linea espectral de acoplamiento. Sin
embargo no se entendi6 entonces porque la pendiente de la curva del acoplamiento
en funcion de los amperios a ambos lados del minimo era diferente. Veremos mas
adelante como en afos siguientes se mejora el método de medida y se aclara este
punto.

En el mismo afio se realizd otro experimento con una energia de 120 GeV. Se
conectaron los sextupolos de extraccion con el fin de generar una gran no lineali-
dad y poder medir términos resonantes de orden sextupolar. Se aplicaron “kicks”
con diferentes amplitudes y se almacenaron las medidas de la posicion del haz
vuelta tras vuelta provenientes de todos los monitores. Una de las lineas espec-
trales producida por los campos sextupolares tiene por frecuencia el doble del tono
horizontal con el signo opuesto. Esta linea se pudo medir para todos los monitores
disponibles. Su promedio obtuvo un perfecto acuerdo con la prediccion del modelo
pero comparando en las distintas posiciones de los monitores se observo una clara
discrepancia. Esta discrepancia se resolvia si la polaridad de los sextupolos de
extraccion se consideraba opuesta a la del modelo inicial. Esto llevo a realizar me-
didas de la polaridad de estos sextupolos obteniendo que, de acuerdo con nuestra
hipotesis, su polaridad era opuesta a la del modelo. Estos datos sirvieron también
para comprobar algunas de las predicciones analiticas de la reduccién y el ensan-
chamiento de las lineas espectrales debido a la existencia del corrimiento del tono
con la amplitud. Esta propiedad se usd para determinar parametros del haz tras
hacer un ajuste de la formula teérica a los datos experimentales. Los parametros del
haz que se pudieron determinar mediante este ajuste son: el tono cuando la ampli-
tud de oscilacién tiende a cero, el corrimiento del tono con la amplitud y el “kick”
aplicado. Los resultados de la medida de estos parametros por el método expuesto
se compararon con resultados de otros métodos obteniendo un buen acuerdo.

Los experimentos del 2001 en el SPS

Con el fin de mejorar y agilizar las medidas durante los experimentos, espe-
cialmente la del acoplamiento, fue necesario desarrollar una aplicacion informética
gue recogiera las medidas de los monitores de posicion del haz, calculara la trans-
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formada de Fourier y mostrara los resultados en gréficas. Esta tarea se llevd a cabo
en la fase de preparacion de los experimentos que se realizarian en el 2001. Tanto
para la interfaz grafica como para la representacion de gréficas se usaron co6digos y
librerias estandar mientras que para el calculo de la transformada de Fourier se us6
una modificacion del codigo fuente de SUSSIX [24].

En el afio 2001 se dispone de més tiempo experimental y se dedica exclusiva-
mente a la energia de 26 GeV. Todos los datos adquiridos durante este afio se ven
afectados por un problema del sistema de los monitores de posicion. Un porcentaje
de estos monitores proporcionaba medidas erroneas de la posicion del haz. Tras un
estudio detallado se comprob6 que los monitores afectados cambiaban de experi-
mento a experimento por lo que no era un problema intrinseco de los monitores.
Este hecho Ilevo a los expertos de instrumentacion a realizar un estudio y como
conclusion se vio que se trataba de un problema del ajuste de la sincronizacion
entre el sistema de adquisicion de datos y el haz [31]. Asi pues este problema de-
sapareceria para los experimentos del 2002 pero en los datos adquiridos durante
el 2001 se tendrian que encontrar aquellas sefiales erroneas y descartarlas para el
andlisis. Para ello se desarroll6 un método para identificar aquellas sefiales no
fisicas basado en el analisis del espectro de Fourier. Basicamente se escoge una
ventana del espectro en la que sabemos (ya que conocemos los tonos) que no deben
existir lineas espectrales y se calcula la desviacion estandar de las amplitudes de
las lineas comprendidas en ese espectro. Aquellas sefiales no fisicas presentaran
una mayor desviacion estandar que la de las sefiales fisicas. Por supuesto hubo que
elegir un limite para dicho valor para decidir si una desviacion estandar provenia
de una sefial fisica 0 no. Una vez identificadas las sefiales no fisicas se descartan
para cualquier analisis.

La medida del acoplamiento lineal transverso se mejord gracias: al uso de la
aplicacion informatica “on-line” disefiada al efecto, a que se pudieron almacenar
los datos de los monitores de posicion del haz (y filtrar posteriormente aquellas
sefiales no fisicas) y a que se encontrd un observable mas adecuado que el usado
el afio anterior. Este observable se obtiene de las dos lineas espectrales producidas
en cada plano transverso debidas al acoplamiento, i.e. la linea con el tono ver-
tical en el plano horizontal y la linea con el tono horizontal en el plano vertical.
Este observable proporciona directamente el término resonante y no depende de
amplitudes de oscilacion ni de la calibracion del monitor de posicion (debido a la
normalizacion del espectro). Asi se resolvio también el problema de la diferencia
de las pendientes a ambos lados del minimo. Esta diferencia se originaba a que
la amplitud de oscilacion depende no sblo del “kick” aplicado sino también del
acoplamiento de la maquina. Por ello introducir un observable independiente de la
amplitud de oscilacion resolvio esta cuestion.

Al mismo tiempo se llevaron a cabo medidas de términos sextupolares para
la “maquina base” (sin no linealidades) y para la maquina con sextupolos de ex-
traccion, con diversas configuraciones y tonos. El proceso experimental consistia
en aplicar “kicks” con diferentes amplitudes y almacenar los datos. De la teoria se
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desprende que las amplitudes normalizadas de las lineas espectrales (-2,0) y (2,0)
son proporcionales al kick y a los términos sextupolares hsogo Y h1200 respectiva-
mente. Por lo que tras hacer un ajuste lineal de la amplitud de estas lineas frente
a las amplitudes del kick se pueden inferir los términos sextupolares. Procesos
similares se llevarian a cabo para medir otro tipo de resonancias. Las medidas
realizadas con la “méaquina base” mostraron que era posible medir los términos
sextupolares en ausencia de potentes fuentes de no linealidad. EI acuerdo entre
la prediccion del modelo y el experimento es satisfactorio: el valor medio a lo
largo del SPS coincide pero existen discrepancias locales debido a los otros tipos
de errores lineales y no lineales de la maquina no considerados en el modelo.

Con los sextupolos de extraccidn conectados las discrepancias entre prediccion
y medida deben ser pequefias puesto que conocemos las principales fuentes sex-
tupolares. Comparando estas medidas, realizadas del mismo modo que las anteri-
ores, con el modelo obtuvimos inicialmente una severa discrepancia de la que se
deducia la necesidad de mejorar el modelo. Tras varios refinamientos del modelo,
casi sin influencia, se observo que la orbita de referencia durante los experimentos
no habia sido suficientemente pequefia como para despreciarla. La buscada mejora
del modelo debe pues consistir en introducir la 6rbita cerrada medida durante el
experimento. Esta se calculd promediando la posicion del haz medida durante las
vueltas previas al “kick”. Para introducir la orbita cerrada en el modelo se asigno a
cada sextupolo un desplazamiento opuesto a la 6rbita medida. Se comprob6 a con-
tinuacion que la orbita cerrada del modelo no diferia en mas de un diez por cien de
la medida. Gracias a esto se obtuvo un buen acuerdo entre los términos sextupo-
lares provenientes del experimento y del modelo considerando la orbita cerrada.

Es de particular interés la medida de estos términos cuando el tono se encuen-
tra proximo a la resonancia correspondiente ya que, de los desarrollos tedricos de
esta tesis se desprende que en este caso la variacion relativa a lo largo del anillo
del término resonante se reduce, eliminando en parte la informacion local. Se re-
alizaron medidas con el tono horizontal proximo al tercio de entero con una config-
uracion de los sextupolos de extraccion en la que todos tenian la misma polaridad y
estaban alimentados con 8 amperios. Se obtuvo un excelente acuerdo entre modelo
y experimento, confirmando asi las predicciones tedricas.

Los experimentos del 2002 en el SPS

El objetivo de los experimentos del afio 2002 en el SPS es tratar de aclarar
distintas cuestiones pendientes: posibles influencias de la energia de las particulas
y la intensidad del haz, medida de resonancias de orden superior y bidimensionales
y, por altimo, la determinacion de la fase de los terminos resonantes.

Para examinar una posible influencia de la energia se prepard un ciclo especial
del SPS en el que se disponia de un “plateau” inicial a 26 GeV y a continuacion se
aceleraba hasta 80 GeV. Se realizaron medidas de términos sextupolares a ambas
energias para la “méaquina base” sin hallarse diferencias relevantes.

Para estudiar la posible influencia de la intensidad se realizaron medidas con
haces de diferentes intensidades durante un mismo experimento, entre 0.5 x 100 y
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6 x 101 protones. Esto se conseguia inyectando la intensidad mas alta, de 6 x 1019
protones, desde el Proton Synchrotron (PS) y a continuacion limitando la cantidad
de haz en el SPS con una apertura fisica impuesta por los “scrapers”. Permitiendo
con estos instrumentos una reduccion de intensidad hasta 0.5 x 10'° protones.
En este rango de intensidades se observo una pequefia fluctuacion de la variacion
del tono con la amplitud de oscilacion pero los términos resonantes medidos no
presentaron ninguna dependencia con la intensidad.

Durante el 2002 fue posible realizar medidas de la fase de los términos reso-
nantes de origen sextupolar. Esto fue debido en parte al buen funcionamiento de los
monitores de posicion de haz. También, la introduccién de un observable apropi-
ado para estas fases (como es la diferencia con la fase de la oscilacion fundamental)
facilita la confrontacion con el modelo y sobre todo muestra un comportamiento
similar al de la amplitud, i.e. permanece constante en aquellas regiones libres de
fuentes de no linealidad y cambia abruptamente alli donde éstas se localizan. Este
comportamiento es de gran importancia para el proceso de localizacion de una
fuente no lineal, ya que, disponiendo de la amplitud y la fase, el cambio abrupto
ha de reflejarse en, al menos, una de estas cantidades. El acuerdo entre medidas y
predicciones del observable relacionado con la fase es bueno para un gran nimero
de configuraciones de la maquina.

Ademas se ha estudiado la posibilidad de medir otras resonancias. En partic-
ular se ha conseguido medir, obteniendo un excelente acuerdo con el modelo, una
resonancia bidimensional, o de acoplamiento no lineal, de origen sextupolar. Para
llevar acabo esta medida se excitaron oscilaciones betatronicas en los dos planos
transversos. En el plano vertical es suficiente una amplitud pequefia y constante
mientras que en el horizontal se deben adquirir datos a diferentes amplitudes con
el fin de poder realizar un buen ajuste. Es un resultado de la teoria que la linea es-
pectral (-1,-1) observada en el plano vertical normalizada a la amplitud de la linea
(0,1) es proporcional a la amplitud de oscilacién horizontal. La pendiente de esta
curva es proporcional al termino sextupolar hg129. Haciendo un ajuste lineal de la
amplitud de la linea (-1,-1) respecto de la amplitud del “kick” horizontal se deter-
mind el término resonante hgy99 mostrando un acuerdo excelente con el modelo.

Se ha estudiado también la posibilidad de medir resonancias de orden supe-
rior al sextupolar. En el SPS no existen imanes de orden superior al octupolar
por lo que se eligi6 como objetivo la medida de una resonancia octupolar durante
un corto espacio de tiempo en un experimento. Los octupoles se ajustaron para
cancelar el corrimiento del tono con la amplitud de la “méaquina base”. Alimentar
con mayor potencia estos octupolos, para crear una mayor no linealidad, causaria
una excesiva decoherencia. Para maximizar el efecto de los octupolos se movio el
tono fraccional horizontal cerca de la resonancia (4,0), desde 0.18 a 0.26. A con-
tinuacion se realiz6 la adquisicion de datos de una forma analoga a como se hizo
para el caso sextupolar. La linea espectral a evaluar es la (-3,0) de la sefial hori-
zontal. Desafortunadamente se encontraron dos obstaculos para la determinacion
del término octupolar. El primero se debe a la pequefia amplitud de la linea (-3,0),
que sblo era superior al ruido para los tres “kicks” de mayor amplitud, causando
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un gran error tanto en las medidas como en los resultados del posterior ajuste. El
segundo obstaculo, de caracter analitico, es que esta linea espectral estd dominada
por la contribucién de segundo orden de los campos sextupolares. Esto imposi-
bilitaria una medida precisa de los términos octupolares. Este, en principio, es un
problema exclusivo de las resonancias octupolares ya que se ven afectadas por el
segundo orden de las sextupolares, que es grande debido a la existencia de nu-
merosos sextupolos. Resonancias de orden decapolar o superior estarian libres de
este efecto. Debido principalmente al primer obstaculo la comparacion de la linea
espectral (-3,0) del modelo con la misma linea de los resultados experimentales de-
nota un desacuerdo. Sobrepasa a esta tesis el estudio de refinamientos de la técnica
gue permitieran medir estas resonancias octupolares.

Para finalizar con los experimentos en el SPS citaremos como en el transcurso
de éstos se utiliz6 la técnica presentada para hallar el origen de un desacuerdo en-
tre medida y modelo. Supuestamente se habian efectuado medidas con los ocho
sextupolos de extraccion conectados pero la medida del término sextupolar fsoo0
daba en claro desacuerdo con el modelo. Estudiando detenidamente la medida se
observO que en la posicién de uno de los sextupolos no habia cambio abrupto del
término f3000 por lo que esto podria indicar que aquel sextupolo no estaba conec-
tado durante el experimento. Se pudo comprobar, gracias al sistema de alarmas
del SPS [38] que, de hecho, este sextupolo permanecid desconectado durante el
experimento.

Descripcion del RHIC

En el marco de una colaboracion entre el CERN y el BNL se realiz6 un ex-
perimento para medir términos sextupolares en el RHIC del BNL. ElI RHIC es
un colisionador de iones pesados de un radio promedio de 610 m. Sus dipo-
los son imanes superconductores que alcanzan, durante la dptica de colision, los
3.5 T. RHIC puede proporcionar, entre otras, colisiones oro-oro con una energia de
200 GeV y lleva en operacion desde el afio 2000 y pretende contribuir al desarrollo
de la fisica en un amplio rango de disciplinas como la fisica nuclear, la fisica de
particulas, la fisica de la materia condensada, la astrofisica y la cosmologia.

Es necesaria la elaboracion de un modelo del RHIC que tenga en cuenta todas
las posibles fuentes de campos sextupolares. Ademas de los sextupolos dedicados
a la correccion de la cromaticidad, las componentes sextupolares mas importantes
provienen de los errores de los dipolos superconductores. Estas componentes y
otras de orden superior han sido medidas previamente [40,41]. En el modelo se
incorporan todas estas componentes con los valores procedentes de las medidas.
También se introducen en los cuadrupolos del modelo aquellos errores de origen
geométrico, sin tener en cuenta cualquier otro tipo de error. Los tonos y la cro-
maticidad del modelo se ajustan a los observados en el experimento. La oérbita
cerrada no se tiene en cuenta y se considera despreciable ya que aquellos datos con
una gran oOrbita cerrada fueron descartados. Un sextupolo de una region de inter-
accion fue usado como sonda para introducir distintas fuerzas de las resonancias
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sextupolares.

EL experimento del 2002 en el RHIC

El experimento se realiz6 de forma idéntica a los del SPS con la diferencia
de que las oscilaciones transversas se excitaron inyectando fuera de la 6rbita en
lugar de la aplicacion de un “kick”. EIl haz estaba compuesto por iones de oro.
Se adquirieron datos provenientes de los monitores de posicion del haz para cinco
fuerzas diferentes del sextupolo sonda. Tras el analisis de los datos y una minuciosa
elaboracion del modelo (ahora se trata de una maquina superconductora con una
gran cantidad de fuentes sextupolares) se obtuvo un buen acuerdo para la resonan-
cia sextupolar (3,0). También se midid otra resonancia sextupolar, la (1,0). En ésta
ultima se encontraron discrepancias entre modelo y experimento para las configu-
raciones con polaridad negativa del sextupolo sonda, mientras que para los casos
con polaridad positiva el acuerdo era bueno. Se desconoce el posible origen de esta
discrepancia. Hay que afiadir que so6lo se pudieron usar los datos provenientes de
un par de monitores del haz debido a que el resto de monitores presentaba errores
de funcionamiento.

Estudio analitico de la dindmica en presencia de un dipolo AC

La Gltima contribucion desarrollada en esta tesis ha sido el estudio analitico
de como se podria hacer uso de un nuevo instrumento instalado en varios aceler-
adores, un dipolo AC, para mejorar la técnica descrita anteriormente. Un dipolo
AC es un dipolo alimentado con corriente alterna que es capaz de introducir os-
cilaciones transversales forzadas en el haz con una frecuencia préxima al tono. La
gran ventaja de la utilizacion de este instrumento en sustitucion del “kick” es que
la medida no es desctructiva, ya que estas oscilaciones se pueden inducir de forma
adiabatica. Para asegurar la adiabaticidad de este proceso la amplitud de la corri-
ente AC con la que se alimenta el dipolo ha de incrementarse linealmente desde
cero hasta el valor deseado de una forma lenta. De igual manera cuando se desea
desconectar el dipolo AC la amplitud de la corriente se va disminuyendo lenta y
linealmente hasta cero. De esta forma la talla del haz se mantiene constante durante
el proceso, en contraposicién con lo que ocurre tras la aplicacion de un “kick”.

En esta tesis se estudia la dinamica transversa de las oscilaciones forzadas por
un dipolo AC en presencia de no linealidades. Como herramientas para el de-
sarrollo de las expresiones analiticas se adoptan la “Forma Normal” y el algebra
de Lie. La barrera que supone la dependencia temporal del Hamiltoniano (prove-
niente del dipolo AC) se salva introduciendo un nuevo grado de libertad. De esta
forma se pueden seguir pasos similares a los de [6] para llegar a una expresion
de la dinAmica vuelta tras vuelta. Una vez que se obtienen las expresiones de la
dindmica vuelta tras vuelta se observa la aparicion de un gran nimero de reso-
nancias que involucran la frecuencia del dipolo AC. Estas expresiones son exactas
hasta el primer orden perturbativo de las no linealidades pero presenta una gran
complejidad debido al gran numero de lineas espectrales emergentes. Una gran
parte de estas nuevas lineas espectrales tienen su origen en una oscialacion forzada
parasita con frecuencia opuesta a la de la fundamental. Si el tono de la maquinay el
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tono del dipolo AC se encuentran lo bastante proximos estas oscilaciones parasitas
se pueden despreciar frente a las fundamentales, llegando a unas expresiones mas
sencillas para la dinAmica vuelta tras vuelta. De estas expresiones se concluye que
los términos resonantes en presencia de un dipolo AC son numéricamente difer-
entes a aquellos de la “maquina base”. Esto supone una complicacién ya que los
términos que realmente se desean medir y compensar son los de la “maquina base”.
En cualquier caso esta diferencia debe ser pequefia y los nuevos términos contienen
la informaci6n local de igual forma que los ya discutidos. Por lo que el potencial
que ofrece este método de medida es enorme teniendo en cuenta que la adquisicion
de datos puede prolongarse a nuestro deseo ya que el haz no se vera afectado.

Otras técnicas para la medicion de no linealidades

Diversas técnicas para la medicion de no linealidades, basadas en medidas
del haz, se estan desarrollando en el presente. En esta tesis se ha querido hacer
un compendio de éstas citando algunos de sus ventajas e inconvenientes. En la
tabla 10.1 se encuentra una clasificacion de estas técnicas basada en el tipo de per-
turbacion aplicado al hacer la medida. Una de las caracteristicas mas importantes
de la técnica de medida es si es destructiva o no, i.e. si el haz que se estd midi-
endo podra ser utilizado posteriormente en colisiones o no. La clara desventaja de
las medidas destructivas es que exigirian el sacrificio de algunos haces. Pero para
juzgar la utilidad de los distintos métodos hay que tener en cuenta otros factores
como son: si la medida contiene la informacion local o un promedio global, el
tiempo de medida, la necesidad de instrumentacion dedicada, etc. En lo que sigue
se describen brevemente las distintas técnicas en el mismo orden que se presentan
en la tabla 10.1.

e “Orbit bump” estatico: Un “orbit bump” es una modificacion local de la
orbita de referencia mediante el uso de dipolos correctores. Este tipo de
imanes se encuentra disponible en todos los aceleradores. El principio de
esta técnica es que las no linealidades comprendidas en el ‘orbit bump”
actlan sobre la dindmica del haz de forma medible. Los principales ob-
servables son los tonos pero también las alteraciones de la érbita fuera del
“orbit bump” sirven para inferir las no linealidades contenidas en él. La in-
formacion obtenida con este método es local y para cubrir toda la maquina
es necesario la aplicacion del método repetidas veces. Es de gran relevancia
que puede ser no destructivo si se usa un Phase Lock Loop (PLL) para la
medicion de los tonos.

e “Orbit bump” oscilante: Si el “orbit bump” se programa para oscilar con
una o mas frecuencias las no linealidades comprendidas en él causaran la
aparicion de lineas espectrales con frecuencias maltiplos de las del “orbit
bump” en la dindmica del haz. En principio este método no es destructivo
pero ain no se ha conseguido aplicar con éxito.

e Desplazamiento radial: Consiste en cambiar la energia del haz para cam-
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biar el radio promedio de curvatura, tipicamente del orden de 1 a 10 mm. Asi
pues es como un “orbit bump” global que puede proporcionar medidas de las
no linealidades en promedio. Se han realizado estudios experimentales en los
que tras suponer la localizacion de las fuentes se les puede otorgar valores
nUMericos.

e “Kick” de energia: Tras un “kick” de energia, la energia del haz oscila
harmoénicamente. Debido a la existencia de acoplamiento transverso-longitudinal
esta oscilacion harmonica se traslada al plano transverso. La informacion
obtenida por este método es similar al presentado en esta tesis y al dipolo
AC. Es destructiva y aln no existe aplicacion experimental.

e Modulacion de la fase RF: Modulando la fase de la radio-frecuencia se
modula a su vez la energia. Esta técnica es similar a la anterior. Se ha
aplicado experimentalmente para medir la cromaticidad en el SPS.

e “Kick” dipolar como corrector: Aplicando un corrector dipolar a distintas
amplitudes de campo magnético se estudia la respuesta de la orbita cerrada.
Proporciona informacion local y ya se ha aplicado para medir campos de
acoplamiento en el RHIC.

e “Kick”: Mediante la aplicacion de un “kick” se excitan oscilaciones hori-
zontales y verticales en el haz. En este apartado se halla la técnica motivo
de esta tesis y muchas otras. Todas ellas son destructivas pero difieren en
el analisis. Como ya se ha dicho, la técnica presentada en esta tesis se basa
en el espectro de Fourier de los datos de los monitores de posicion. Otro
tipo de analisis consiste en el calculo de mapas de transferencia. Entre dos
puntos cualesquiera de la maquina se trata de hacer un ajuste polinomial de
la aplicacion que los conecta. No se han encontrado aplicaciones practicas
de este método. Otro tipo de analisis es el mapa de frecuencias. Se trata
esta vez de medir los tonos fundamentales en funcion de las amplitudes de
oscilacion. EI contenido no lineal del acelerador se plasmara en discon-
tinuidades de esta aplicacion. Existen exitosas aplicaciones experimentales
en el Advanced Ligth Source (ALS).

e Dipolo AC: En esta tesis se ha discutido en profundidad el uso de un dipolo
AC para llevar a cabo la medicion de no linealidades. La gran ventaja de este
instrumento es su capacidad para producir oscilaciones del haz duraderas
y no destructivas. Es ideal, pues, para sustituir al “kick” en las técnicas
anteriores.

12.3 Conclusion

En esta tesis se ha estudiado y desarrollado un método de medida de términos res-
onantes del hamiltoniano basado en la transformada de Fourier de los datos proce-
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dentes de los BPM. Para llevar a cabo este estudio se han efectuado desarrollos
analiticos al igual que experimentos en dos aceleradores: el SPSy el RHIC.

El primer aspecto analitico aqui tratado consiste en evaluar el efecto de la deco-
herencia en el espectro de los datos provenientes de los monitores del haz. El punto
de partida para este estudio es la expresion analitica de la dindmica transversa en
presencia de no linealidades [6]. Se ha escogido como modelo del haz distribu-
ciones gausianas de particulas en los tres planos fasicos. Se ha demostrado que la
amplitud normalizada de la linea con frecuencia m(@ , se ve reducida por un factor
|| y que su anchura se incrementa aproximadamente el mismo factor en presencia
de decoherencia debida al corrimiento del tono con la amplitud. Se ha demostrado
también que la decoherencia debida a la cromaticidad introduce bandas laterales
alrededor de todas las lineas espectrales y cambia las amplitudes relativas de las
lineas centrales. Ambos tipos de decoherencia son claramente negativos de cara a
la medida de los términos del Hamiltoniano via analisis de Fourier de la trayectoria
del centroide en un acelerador real ya que disminuyen la sefial.

Un segundo progreso tedrico ha sido el descubrimiento de una propiedad muy
atil de los términos del Hamiltoniano. Su amplitud permanece constante en aquel-
las secciones de la maquina donde no hay fuentes no lineales. En estas secciones su
fase varia suavemente. Al menos una de estas cantidades, amplitud o fase, cambia
abruptamente alla donde se encuentran las correspondientes fuentes no lineales. En
una maquina real esta propiedad permitiria localizar imperfecciones comparando
las medidas de estos términos en los BPMs con las predicciones del modelo en los
mismos lugares.

Durante tres afios se han realizado experimentos para medir términos reso-
nantes en el SPS usando el “kick” como método de perturbacion. Para realizar
dicha medida se usaron: cuadrupolos girados 45 grados para introducir o mini-
mizar el acoplamiento transverso y ocho sextupolos para introducir una cantidad
conocida y controlada de no linealidad. Para la medicion de las no linealidades
las oscilaciones betatronicas se excitaron mediante la aplicacion de “kicks” con
los “Q-kickers” y el “kicker” horizontal de extraccion. La conclusién principal
es que se han medido satisfactoriamente términos resonantes de acoplamiento y
sextupolares y que el acuerdo entre estos y los predichos por el modelo ha sido
bueno. A continuacion describimos los diferentes progresos que han llevado a esta
conclusion. Se ha definido un nuevo observable para el acoplamiento basado en la
amplitud normalizada de las lineas secundarias de los espectros. Este observable es
independiente de las amplitudes de oscilacion y de la calibracion de los BPMs'y, de
forma natural, sirve para compensar el acoplamiento. De las medidas de términos
sextupolares se pudieron inferir inesperadas configuraciones de los sextupolos de
extraccion. En particular, se encontr6 que las polaridades de los sextupolos de
extraccion eran opuestas a las de los sextupolos de cromaticidad. También se en-
contrd, gracias a esta medida, que durante un experimento uno de los sextupolos
permanecio desconectado accidentalmente. Los efectos predichos en el espectro
de Fourier debidos a la decoherencia se comprobaron numerosas veces. La fase
de los términos sextupolares se midi6 por primera vez alrededor del SPS. También
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se evalud por primera vez una resonancia de acoplamiento no lineal de orden sex-
tupolar. Esta técnica no se vio afectada por la energia de los protones en el rango
de 26 a 120 GeV. Tampoco se vio afectada por la intensidad del haz en un rango de
0.5x10'% a 6x10'° protones.

Por primera vez se pudo demostrar que la medida de términos sextupolares es
viable en RHIC, una maquina superconductora como lo sera el LHC. Se midieron
dos tipos de resonancias sextupolares horizontales obteniendo un buen acuerdo
entre el experimento y las predicciones del modelo. Importantes discrepancias
para la resonancia mas débil, la (1,0), en polaridades negativas del sextupolo sonda
permanecen inexplicadas. Debido a que no se disponia de medidas de todos los
BPMs alrededor del anillo los términos resonantes se calcularon solamente en una
coordenada longitudinal.

Hasta el momento esta técnica de medida es destructiva ya que debido al “kick”
aplicado la emitancia transversal se incrementa. Este problema se podria solu-
cionar mediante el uso de un dipolo AC para forzar oscilaciones en el haz, ya que
estas se podrian introducir de una forma adiabatica. En esta tesis se ha presentado
un método para calcular la “Forma Normal” del Hamiltoniano en presencia de un
dipolo AC y no linealidades. Se ha llegado a la conclusion de que los términos reso-
nantes en presencia de un dipolo AC son diferentes a aquellos de la méquina libre.
Pero en cualquier caso sus diferencias no deberian ser grandes y la informacion
local contenida en ambos casos es equivalente. Estas predicciones han sido confir-
madas mediante simulaciones en un anillo de estructura FODO con sextupolos. En
el caso mas académico en el que s6lo una resonancia era excitada el acuerdo es ex-
celente mientras que en el caso mas general con 108 sextupolos aparecen pequefias
discrepancias debidas a contribuciones de diferentes términos resonantes.

Las técnicas estudiadas en esta tesis tendran una directa aplicacién en el fu-
turo LHC para la deteccibn, correccion y localizacion de errores de la maquina.
El LHC, al igual que el RHIC, estara compuesto por un gran nimero de imanes
superconductores con componentes multipolares de gran influencia para la estabil-
idad del haz. De hecho, es posible que se equipe al LHC con un dipolo AC con el
principal objetivo de controlar tanto parametros lineales como no lineales



Appendix A

Spectral response to particle
distributions

A.1 Centroid normalized horizontal coordinate

To compute the centroid of a Gaussian beam as a function of the number of turns
N the expression of A N, given in eq. (3.38), is integrated over the phase space
weighted with the densities:

pzc(I;c '@[)w) = ie—%(ZIx—FZi—sz\/ECOS'lP;E) (A-l)
’ 27

Py(Iyawy) _ %67%(2Iy+23722y\/21yCoswy) (A2)
™

ps(Bhy) = ge @D (A3)
2o

S

The horizontal coordinate of the centroid is therefore represented by

[e'S) 27
he (N) = / Al dlyds | dpzdipydipspz(In, Ya)py(Iy, Py)ps (8, Ps)hy (V) (A4)
0 0
Since hz (V) contains a sumation this equation becomes a sumation of integrals:

By (N) = Liigo(N) — 2i Z 3 Fiktm LG rk—1)(1=j+k) (+m)m—1) (V) (A5)
Jjkim

where L, are defined as
anlk = / dV6p(ICEa "pma Iya 7/’y= 67 ¢3)(2IE)H/2(2IZ})U2 X

e m2mDz N+tz ) +k(2mdy N4y )] (A.6)

for any integer n,m, I, k, dV% stands for dIdI,dédyydipydips and the tunes v,
and v, are defined by the expressions:

Dy = g+ v, 20 + V;y2Iy + Ay,

Uy = vyo+ ug'/w2Iw + ug'/yQIy + Ay (A.7)

131



132 APPENDIX A. SPECTRAL RESPONSE TO PARTICLE DISTRIBUTIONS

where all these quantities were introduced in egs. (4.2) and (4.4). The following
simplifications may be performed on the term L.

e Integral over the longitudinal plane: Isolating all terms containing 1), one
gets

2w
_/ iy 20mi cOS(RQuN+45)sin(rQsN)/Qs — 7 (956, sin(rQy N)/Q,)
0

(A.8)
with & = (mQy + kQy) and Jp being the Bessel function of order 0.
Grouping all terms containing d and integrating over this variable one gets

o0

L[ 35 6.00(266 g sin(mQ) /Qu)e /07 = ¢ Mo st (rQuN)/E
95 Jo
’ (A9)

o Integral over the phases in the transverse planes: Isolating all the terms
containing 1, or vy, the integral over these variables stays:

1 27 _ _ .
(2 )2 / d¢wd¢y6A$ V2I; cos g+ Ay+/ 21y cos Yy +i(mips +kipy) —

L (Ap/21,) 1k (Ay+/21,) (A.10)
where the |, represents the modified Bessel function of order n.

Using these simplifications L,,,,;; can be expressed as an integral over the two
transverse invariants given by

o — —
anlk(N) :/ dIzdIy(2_[1)”/2(21:,/)”26_%(21m+Ai+2Iy+A§) %
0

L (Ag v/ 21, T (Ay /21, ) 27 mve v N=210 sin®(1QuN) (A 11)

With v, = &mios/Qs. Notice that v, and v, do contain only the amplitude
detuning as expressed in eq. (4.2). In the following section the Fourier transform
of this expression is computed.

A.2 Fourier transformation of the centroid motion

The Fourier transform of E(N) is represented by H_ (w). Since the Fourier trans-
formation is a linear operator each term of the r.h.s. of eq. (A.5) gives a contribution
to H_ (w), this is expressed by

_ / dN bz (N) e = Ho () + 3 Hopnw)  (AL2)
Jjkim
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To compute this transformation in the general case the following integral has to be
solved for arbitrary integers m and &,

fmk /dNez%r(me—l—kuy w/2m)N—272, , sin®*(rQsN) (A13)

To calculate this integral the sin? (7Q,N) term is expressed as (1—cos(2mQ,N))/2
and e7mk ©05(27QsN) s expanded in power series, giving

) © _2h
Fone(w) = e Tms / AN ei2r (mvs +kvy—w/2m)N > % cos(2nQ,N) (A.14)
h=0

Taking cos™(27rQ4N) as a sum of exponentials,

h
cos (27TQ5 = Z Weﬁw(h—%)QsN (A.15)
Jj=

and introducing this expression into eq. (A.14) we obtain:
; ')’ 3 Ve +kvy— T —27)Qs
Fmk(w) = e ”’"’CZZ —;n]:j!Qh /dNeZQW(m +hvy—w/2m+(h—2)Qs)N

hO]O

= mGzz 7m:€]|2h5D,~mc(mux+kuy—w/27r+(h—2j)Qs)
h=0 j= 0

where § pirac(mygp+kvy —w/2m+(h—25)Q5) is the Dirac delta function. This last
expression can be simplified by changing the sum indexes. Defining ¢ = (h — 2j),
j goes from 0 to oo and ¢ from —oo to +o0o0. The summation over j leads to a
modified Bessel function of order ¢ expressed as

(2]+(1)

o0
Z (j + q |J|2 @iy ODirac(mvp+kvy —w/2m+9Q;) =
Jj=

I,(Y25) S Dirac(mug+kvy —w/2n+9Qs)  (A.16)
and writing F,,,x (w) with the summation over ¢ yields
o

Fmk(w) = e ik Z I, (Y260 Dirac(mug + kvy — w/2m 4+ qQ5)  (ALT7)

g=—00
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This result is used to calculate the Fourier transform H; (w). In particular H_,,,,,.(w)
and H_.., (w) are expressed as follows

ziklm
o — .
Hipune(w) = / dI“dIy\/Ee_%(ZI”AiHI”A;)11(Zwm) y
0
w .
Hg;_jklm(’w) = —Zijfjklm/ dIdey(QIw)(J+k—1)/2(2Iy)(l+k)/2X

1
,5(21z+A +21y+A )I(l _7+Ic A / m l A 2Iy) %
F—j+kym—1) (w) (A.19)

Using the properties of the Dirac delta function contained in F,,;(w) the integral
over I is performed expressing the tunes as in egs. (4.2). The proper value of I is
obtained by equating to zero the argument of the Dirac delta function of eq. (A.17).
This is expressed as a function of w and I,, and the indexes m and & of the function
Fmi (w) contained in the integral by

1
m(w/% — qQs — M (V20+Vay2Iy) — k(vyo +1yy21,))

Since I kg is an amplitude I ;.1 > 0. It has to be imposed that I ;4 IS z€ro
when the r.h.s. of eq. (A.20) is smaller than zero. To better interpret egs. (A.18)
and (A.19) the following functions are defined,
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where I, mko(w, I) is the function defined in eq. (A.20) with ¢ = 0 (g is explic-
itly reintroduced Iater) Lastly the terms of the Fourier transform H_,,,,..(w) and



A.2. FOURIER TRANSFORMATION OF THE CENTROID MOTION 135

H_ 1 (w) may be written as:
Hype (W) = Ay (w) e "0To(v3) + (A.23)
3 e M0Ty (70) [Agpume (w + 027Qs) + Agpne (w — 427Q5)]
H (W) = ‘A;jklm(w) 6_7(1_j+k)(m_l)10(7(217j+k)(m7l)) +
Ze 00 0Ty o) X
[ijklm(w +q27Qs) + ALy (0 — q27Q5)] (A.24)

Despite the length of the formula its interpretation is quite simple. If chromaticity is
zero this implies that +y,,,, = 0, ¥ m, k and then all the modified Bessel functions
with index ¢ > 0 vanish, resulting in:

H; (UJ) = ztune Z :v]klm (A25)
jklm

= wtune + E ‘Az]klm (A26)
Jjkim

This equation shows how the spectral lines found in the single particle motion
eg. (3.38), which had zero width, are transformed into distribution functions. The
effect of chromaticity, as seen from egs. (A.23) and (A.24), is to introduce an
infinite number of peaks around the principal ones displaced by integer multipoles
of @), this integer represented by ¢ is the order of the sideband.

The functions A, (w) still contain the integral over I, which has to be
done numerically. Nevertheless in those cases where only one transverse plane is
relevant for the calculations, an analytical expression of H_ (w) could be derived.
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Appendix B

Spectral lines introduced by A3
and hipog With an AC dipole.

From eq. (9.27) the term hggo9 (Which at the AC dipole location is equal to the term
hf000) CONtributes to the horizontal motion with the quantity

. B.1
1—e 2R, R, % (B.1)

where ;' is given by
¢ = 2Le  Wete0) 4 |5, |7 i QeDT—0em) _ |5 o+ (2TQaDTH004) (B D)

Expanding the square gz in eq. (B.1) gives

C:z = 2I$e_i2(¢”+¢m0) + |5$_|26*i2(27TQmDT*77m—) + ‘5$+|2e+i2(2meDT+%+)
) /2Iz|5$_|6—i(1/1m+¢m0)—i(27erDﬂr—nm,) (B.3)
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The frequencies of the lines introduced by this expression are: —2Q, , —2Q.p ,
2QzD ) _Qa: - QJ:D ) _Qz + QxD and 0.

By virtue of eq. (B.1) the resonance conditions corresponding to the different
lines are: —=3Q; =p, —2Qup — Q2 =p,2Qzp — @z =p, —2Qz; — Qup =p,
—2Q;+ Qzp=p and —Q, = p withp € Z.

The equivalent calculation will be done now for the term h1g99. From eq. (9.27)
the term hqg29 contributes to the horizontal motion with the quantity

1—e 2 R, R, Y °

(B.4)

where ¢F is given by

+= QIye*i(T/)z+¢y0) + |5y_‘e*i(27rQymfny—) — |5y+|e+i(27rQyDT+ny+) .(B.5)
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Expanding the square Cf in eq. (B.4) gives

;2 = 2Iy6_i2(¢y+¢y0) + |5y_|26_i2(27rQyDT_Wy—) + |5y+|26+i2(27TQyDT+'Uy+)
+2/2Iy |8, |e~ (Ve t¥y0) =i @nQyDT =) (B.6)

-9 /QIy‘(SZH_|e—i(’lpy+1/1y0)+i(27rQyDT+ﬂy+) — 2|5y—||5y+| .

The frequencies of the lines introduced by this expression are: —2Q, , —2Qyp ,
2QyD ) _Qy - QyD ) _Qy + QyD and 0.

By virtue of eq. (B.4) the resonance conditions corresponding to the different
lines are: _2Qy —Qz=p, _2QyD —Qz=0p, 2QyD —Qz=p, _Qy —Qz —
Qzp =D, _Qy — Qs+ Qzp=p and —Q, =p withp € Z.
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