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CHAPTER 1

INTRODUCTION

Given a real n × n matrix A, write φA for the maximum angle by which A rotates any

unit vector:

φA := sup
x∈Sn−1

∠(x, Ax).

Here Sn−1 is the unit sphere in R
n. If Ax is zero, ∠(x, Ax) is regarded as π

2
. It is not

difficult to see that a symmetric matrix A is positive definite if and only if φA < π
2
.

Suppose that A and B are positive definite symmetric (PDS) n×n matrices. Then their

Jordan product {A, B} := AB +BA is also symmetric, but not necessarily positive definite.

In fact,

φ{A,B} ≤ φA + φB,

so if φA + φB < π
2

then {A, B} is positive definite. However, if φA + φB ≥ π
2
, then the

eigenvalues of A and B alone do not determine whether or not {A, B} is positive definite;

the relative positions of their eigenvectors also play a role. Speaking roughly, the further

the eigenvectors of A are from those of B, the less likely {A, B} is to be PDS. Moreover,

there is always some “rotation” Brot of B such that {A, Brot} is indefinite. (we use the

term indefinite to denote matrices which are neither positive nor negative definite). More

precisely, if φA +φB ≥ π
2

then it is possible to find a special orthogonal matrix S ∈ SOn such

that {A, BS} is indefinite. Here BS denotes SBS−1.

When A and B commute, their eigenvectors are the same and {A, B} is PDS. This is in

some sense the case in which {A, B} is the farthest from being indefinite. This dissertation

grew out of the following question: if A and B are commuting PDS matrices such that
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φA + φB ≥ π
2
, what is the “smallest rotation” S such that {A, BS} is indefinite? Of course,

for n ≥ 4 in general S is not a rotation but a product of orthogonal rotations.

In order to state the problem precisely, we define

Φ(A, B) := inf{φS : S ∈ SOn and {A, BS} is indefinite }.

Problem 1 Compute Φ(A, B) for commuting PDS matrices A and B.

There is important related work by Strang [7], who deduced bounds on the extremal

eigenvalues of {A, B} in answer to a research problem proposed by Taussky-Todd [8]. The

second chapter of this thesis reviews his results.

Other related work includes that of Nicholson [6], who (independently of Strang) gave

a sufficient condition for {A, B} to be positive definite, and Alikakos and Bates [1], who

established bounds for all the eigenvalues of {A, B}. Gustafson [3] gave a trigonometric

interpretation of Strang’s result, and Fujii, Fujii, Izumino, Kubo and Nakamoto [5] gener-

alized it to non-self adjoint operators. Recently, Conley, Pucci, and Serrin [2] applied it in

establishing the domain of validity of a certain version of the maximum principle.

We begin Chapter 3 by proving a proposition that gives φA for a PDS matrix A in terms

of its extremal eigenvalues. We then establish some useful results on φS for orthogonal

matrices S. Next we take an in-depth look at Problem 1 in the 2× 2 case. We conclude the

chapter with some three dimensional examples.

For any S ∈ SO3, the trace of S is given by 1 + 2 cos φS. Therefore φS is minimal when

the trace of S is maximal. In Chapter 4 we study the trace of S and present formulas for it

in different situations pertaining to Problem 1. However, we were unable to solve Problem 1

directly by maximizing these formulas, as they are too complicated. This led us to study the

level curves of the angle function x �→ ∠(x, Ax) on the unit sphere in R
3 for a PDS matrix

A.

Chapter 5 is devoted to these level curves. In the first section we present a series of

figures depicting the level curves at different stages both on the unit sphere S2 and on the
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plane P = {s ∈ R
3 : s1 + s2 + s3 = 1}, the si being the squares of the standard coordinates.

(Matlab was used in obtaining these figures.) Interestingly, on P the level curves are all

parabolas, which we prove in Section 3. On the other hand, their shape on S2 varies. In

Section 2 we give necessary and sufficient conditions for a level curve on S2 to be a union of

circles.

Chapter 6 focuses on level curves of PDS matrices A for small angles. The results are

then used to give a geometric solution of a trace maximization problem for two increasing

diagonal PDS matrices. We view this problem as a “toy model” of Problem 1.
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CHAPTER 2

RESULTS OF STRANG

Throughout this chapter A and B are n × n symmetric matrices. Suppose that mA, MA

and mB, MB are the extreme eigenvalues of A and B, respectively.

Lemma 2.1. For all x ∈ R
n, there exists a unique vector YA(x) such that |YA(x)| ≤ 1,

x · YA(x) ≥ 0, and

Ax = mAx + (MA − mA)(x · YA(x))
YA(x)

|YA(x)| if YA(x) �= 0.

Note: We take YA(x) = 0 if Ax − mAx = 0.

Proof. If x is an eigenvector of A of eigenvalue mA, then (A − mA)x = 0 and YA(x) = 0.

Suppose x is not an eigenvector of eigenvalue mA. Then (A − mA)x �= 0. Let us first define

a unit vector yA(x) as follows:

yA(x) =
(A − mA)x

|(A − mA)x| .

Suppose mA = λ1 ≤ λ2 ≤ · · · ≤ λn = MA are the eigenvalues of A. Since A is

symmetric, it has an orthonormal eigenbasis {v1, v2, · · · , vn} corresponding to the eigenvalues

λ1, λ2, · · · , λn. Then for some scalars α1, α2, · · · , αn, we have x = α1v1 + α2v2 + · · ·+ αnvn.

Hence

x · (A − mA)x =
n∑

i=1

(λi − mA)α2
i ≥ 0,

with equality if and only if (A−mA)x = 0. Since we are assuming that this is not the case,

x · (A−mA)x and x · yA(x) are positive. For (A−mA)x �= 0, MA −mA �= 0, and so we may

define a positive scalar

ρA(x) =
|(A − mA)x|2

(MA − mA)(x · (A − mA)x)
.
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Let YA(x) = ρA(x)yA(x). Since ρA(x) is positive, |YA(x)| = ρA(x). We now prove

ρA(x) ≤ 1. Note that

|(A − mA)x|2 =

∣∣∣∣∣
n∑

i=1

(λi − mA)αivi

∣∣∣∣∣
2

=
n∑

i=1

(λi − mA)2α2
i ,

(MA − mA)(x · (A − mA)x) =
n∑

i=1

(MA − mA)(λi − mA)α2
i .

Since (MA − mA) ≥ (λi − mA) for all i,

n∑
i=1

(MA − mA)(λi − mA)α2
i ≥

n∑
i=1

(λi − mA)2α2
i .

Hence (MA −mA)(x · (A−mA)x) ≥ |(A − mA)x|2, so ρA(x) ≤ 1. Since |YA(x)| = ρA(x), we

also have |YA(x)| ≤ 1 and

x · YA(x) = ρA(x)(x · yA(x)) ≥ 0.

Finally, we will show that Ax = mAx + (MA −mA)(x · YA(x)) YA(x)
|YA(x)| . From the definition

of ρA(x), we have

x · (A − mA)x =
|(A − mA)x|2

(MA − mA)ρA(x)
.

Note that the dot product of x with YA(x) gives

x · YA(x) = ρA(x)
x · (A − mA)x

|(A − mA)x| .

Combining the above two equations, we obtain

|(A − mA)x| = (MA − mA)ρA(x)(x · YA(x))
1

|YA(x)| .

Substituting this in the definition of yA(x) and simplifying, we get

Ax = mAx + (MA − mA)(x · YA(x))
YA(x)

|YA(x)| .

�
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Definition 2.2. Given any two symmetric n × n matrices A and B, let

Λm(A, B) = inf{minimum eigenvalue of 1
2
{A, BS} : S ∈ On}

ΛM(A, B) = sup{maximum eigenvalue of 1
2
{A, BS} : S ∈ On}.

Since mA = inf{x · Ax : |x| = 1},

Λm(A, B) = inf{x · 1
2
{A, BS}x : S ∈ On, |x| = 1}

= inf{Ax · BSx : S ∈ On, |x| = 1}.

Similarly,

ΛM(A, B) = sup{Ax · BSx : S ∈ On, |x| = 1}.

By Lemma 2.1, for all x ∈ R
n we have

Ax = mAx + (MA − mA)(x · YA(x))
YA(x)

|YA(x)| .

Since YA(x) = ρA(x)yA(x) and |YA(x)| = ρA(x), the above expression becomes

Ax = mAx + (MA − mA)ρA(x)(x · yA(x))yA(x).

Similarly, we have

BSx = mBx + (MB − mB)ρBS(x)(x · yBS(x))yBS(x).

Let us write ρA, ρB for ρA(x), ρBS(x) and yA, yB for yA(x), yBS(x). Taking the dot product

of Ax and BSx gives

Ax · BSx = mAmB + mB(MA − mA)ρA(x · yA)2 + mA(MB − mB)ρB(x · yB)2

+ (MA − mA)(MB − mB)ρAρB(x · yA)(x · yB)(yA · yB).

Write kA for MA

mA
and kB for MB

mB
, and let k̃A = kA − 1 and k̃B = kB − 1. Divide both sides of

the above expression by mAmB and let

f(x, S) =
Ax · BSx

mAmB
.
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Then

(1) f(x, S) = 1 + k̃AρA(x · yA)2 + k̃BρB(x · yB)2 + k̃Ak̃BρAρB(x · yA)(x · yB)(yA · yB)

Now consider the function given by

(2)
F (γA, γB, θA, θB, φ) = 1 + k̃AγA cos2 θA + k̃BγB cos2 θB

+k̃Ak̃BγAγB cos θA cos θB cos φ.

Define VF (A, B) to be the set of values of F (γA, γB, θA, θB, φ) for γA, γB ∈ [0, 1], θA, θB ∈

[0, π
2
], and cos φ ∈

[
cos(θA + θB), cos(θA − θB)

]
. We first prove the following lemma:

Lemma 2.3. {f(x, S) : x ∈ R
n, |x| = 1, S ∈ On} ⊆ VF (A, B)

Proof. This is clear because if we suppose the angle between x and yA and the angle

between x and yBS to be θA and θB respectively, then (x · yA) = cos θA, (x · yBS) = cos θB,

and (yA · yBS) is bounded by cos(θA + θB) and cos(θA − θB). �

Proposition 2.4. The extrema of F (γA, γB, θA, θB, φ), for γA, γB ∈ [0, 1], θA, θB ∈ [0, π
2
],

and cos φ ∈
[
cos(θA + θB), cos(θA − θB)

]
are the least and greatest of 1, kAkB, kA, kB and, if(

cd
b2
− c

d
− d

c

)
and

(
bd
c2
− b

d
− d

b

)
(see proof) are in [−2, 2],

(kA + 1)2(kB + 1)2 − (kA − 1)2(kB + 1)2 − (kA + 1)2(kB − 1)2

8(kA + 1)(kB + 1)
.

Proof. Since F is linear in cosφ and cosφ ∈
[
cos(θA + θB), cos(θA − θB)

]
, for extrema we

just need to consider the boundary values of cos φ. These give two functions, each depending

on just γA, γB, θA and θB. They are

F±(γA, γB, θA, θB) = 1 + k̃AγA cos2 θA + k̃BγB cos2 θB

+ k̃Ak̃BγAγB cos θA cos θB cos(θA ± θB).

Since F+(γA, γB, θA,−θB) = F−(γA, γB, θA, θB), the extrema of F−(γA, γB, θA, θB) for

θA, θB ∈ [−π
2
, π

2
] are same as that of F (γA, γB, θA, θB, φ). Therefore we will find the extrema

of F−(γA, γB, θA, θB) for θA, θB ∈ [−π
2
, π

2
].
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Since cos(θA − θB) = cos θA cos θB + sin θA sin θB, we see that cos θA cos θB cos(θA − θB)

reduces to cos2 θA cos2 θB + 1
4
sin 2θA sin 2θB. Now, writing 1

2
(cos 2θ + 1) for cos2 θ in the

equation for F−(γA, γB, θA, θB), we have

F−(γA, γB, θA, θB) = 1 + k̃AγA
1
2
(cos 2θA + 1) + k̃BγB

1
2
(cos 2θB + 1) +

k̃Ak̃BγAγB
1
4

{
cos 2(θA − θB) + cos 2θA + cos 2θB + 1

}
.

Since this function is linear in γA and γB, which lie in [0, 1], for extrema we just need

to consider the boundary values of γA and γB. When both γA and γB are zero, F− = 1.

When γA = 1 and γB = 0, F− = 1 + k̃A

2
(cos 2θA + 1), which yields extrema of 1 and kA.

Similarly, the case γA = 0 and γB = 1 yields extremas of 1 and kB. All these cases are

actually contained in the last and the most interesting case, γA = γB = 1. Let G(θA, θB) be

F−(1, 1, θA, θB). Setting

a = 1 + 1
2
k̃A + 1

2
k̃B + 1

4
k̃Ak̃B = 1

4
(kA + 1)(kB + 1),

b = 1
2
k̃A + 1

4
k̃Ak̃B = 1

4
(kA − 1)(kB + 1),

c = 1
2
k̃B + 1

4
k̃Ak̃B = 1

4
(kB − 1)(kA + 1),

d = 1
4
k̃Ak̃B = 1

4
(kB − 1)(kA − 1),

we have

G(θA, θB) = a + b cos 2θA + c cos 2θB + d cos 2(θA − θB).

The partial derivatives of this equation are

∂G

∂θA
= −2b sin 2θA − 2d sin 2(θA − θB)

∂G

∂θB
= −2c sin 2θB + 2d sin 2(θA − θB).

Clearly, these partials vanish when θA and θB are both multiples of π
2
. Since |θA| , |θB| ≤

π
2
, the choices we have for θA and θB are 0 and ±π

2
. Each possibility will result in an extremal

value of 1, kA, kB or kAkB, the first three of which were already obtained above.
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Next we check whether the partial derivatives vanish simultaneously for values of θA and

θB other than 0 and ±π
2
. Equating them to zero and adding, we obtain

(3) b sin 2θA + c sin 2θB = 0.

We are assuming that either θA or θB /∈ {0,±π
2
}. Without loss of generality, assume

θA /∈ {0,±π
2
}. Then, sin 2θA �= 0. Substituting the value of sin 2θB into the first partial

derivative and solving leads to

(4) b cos 2θA + c cos 2θB = −bc

d
.

Since b sin 2θA = −c sin 2θB, we have b2(1 − cos2 2θA) = c2(1 − cos2 2θB), which leads to

b2 − c2 = (b cos 2θA − c cos 2θB)(b cos 2θA + c cos 2θB).

Now, substituting the value of (b cos 2θA + c cos 2θB) from (4) and simplifying, we obtain

(5) b cos 2θA − c cos 2θB = −bd

c
+

cd

b
.

Solving (4) and (5) gives

(6) cos 2θA =
1

2

(cd

b2
− c

d
− d

c

)
.

(7) cos 2θB =
1

2

(bd

c2
− b

d
− d

b

)
.

There exist solutions if and only if
(

cd
b2
− c

d
− d

c

)
and

(
bd
c2
− b

d
− d

b

)
are in [−2, 2].

In order to compute the resulting extrema of F , note that by (3) and (4),

cos 2(θA − θB) = − cos 2θA

(b

c
cos 2θA +

b

d

)
− b

c
sin2 2θA = −b

c
− b

d
cos 2θA.

Substituting this value into G(θA, θB) and simplifying using (6) gives

G(θA, θB) = a + c cos 2θB − bd

c
=

1

2

(bc

d
− bd

c
− cd

b

)
.

Finally, substituting in the values of a, b, c and d gives

G(θA, θB) =
(kA + 1)2(kB + 1)2 − (kA − 1)2(kB + 1)2 − (kA + 1)2(kB − 1)2

8(kA + 1)(kB + 1)
.
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Now let Â =
(

mA 0
0 MA

)
and B̂ =

(
mB 0
0 MB

)
. For any unit vector x̂ ∈ R

2 and any Ŝ ∈ O2,

define

f̂(x̂, Ŝ) =
Âx̂ · B̂Ŝx̂

mAmB

.

Lemma 2.5. {f̂(x̂, Ŝ) : Ŝ ∈ O2, x̂ ∈ R
2, |x̂| = 1} ⊆ {f(x, S) : S ∈ On, x ∈ R

n, |x| = 1}.

Proof. Any Ŝ ∈ O2 takes the form Rθ =
(

cos θ − sin θ
sin θ cos θ

)
or Rθ

(
1 0
0 −1

)
, and

(
1 0
0 −1

)
commutes

with B̂, so f̂(x̂, Ŝ) = f̂(x̂, Rθ) for some θ.

Given any x̂, define x1 = x̂1, xn = x̂2, and xi = 0 for 1 < i < n, and consider the n × n

orthogonal matrix S =

⎛
⎝ cos θ − sin θ

1
...

1
sin θ cos θ

⎞
⎠ . It satisfies f̂(x̂, Ŝ) = f(x, S).

�

Next we consider 1
mA

Â =
(

1 0
0 kA

)
, 1

mB
B̂ =

(
1 0
0 kB

)
, and Ŝ = Rθ. Verify

1

mB

B̂Ŝ =

⎛
⎝ cos2 θ + kB sin2 θ (1 − kB) sin θ cos θ

(1 − kB) sin θ cos θ sin2 θ + kB cos2 θ

⎞
⎠ .

Choose any unit vector x̂ = (sin φ, cosφ) ∈ R
2. Then

Âx̂

mA

=

⎛
⎝ sin φ

kA cos φ

⎞
⎠ ,

B̂Ŝx̂

mB

=

⎛
⎝(cos2 θ + kB sin2 θ) sin φ + (1 − kB) sin θ cos θ cos φ

(1 − kB) sin θ cos θ sin φ + (sin2 θ + kB cos2 θ) cosφ

⎞
⎠ .

Taking the dot product of these two vectors, we get

f̂(x̂, Ŝ) = (cos2 θ + kB sin2 θ) sin2 φ + (1 − kB) sin θ cos θ sin φ cosφ +

kA(1 − kB) sin θ cos θ sin φ cosφ + kA(sin2 θ + kB cos2 θ) cos2 φ.

Further simplification gives

f̂(x̂, Ŝ) = (cos2 θ sin2 φ + sin θ cos θ sin φ cos φ)

+ kB(sin2 θ sin2 φ − sin θ cos θ sin φ cos φ)

+ kA(sin2 θ cos2 φ + sin θ cos θ sin φ cosφ)

10



+ kAkB(cos2 θ cos2 φ − sin θ cos θ sin φ cosφ).

Letting kA = k̃A + 1 and kB = k̃B + 1 and simplifying, we get

f̂(x̂, Ŝ) = 1 + k̃A cos2 φ + k̃B(cos θ cos φ − sin θ sin φ)2

+ k̃Ak̃B cos θ cos φ(cos θ cos φ − sin θ sin φ).

Since (cos θ cos φ − sin θ sin φ) = cos(θ + φ), the above expression reduces to

(8) f̂(x̂, Ŝ) = 1 + k̃A cos2 φ + k̃B cos2(θ + φ) + k̃Ak̃B cos θ cos φ cos(θ + φ).

Finally, since φ and θ are arbitrary, the extrema of f̂(x̂, Ŝ) for φ, θ ∈ [−π
2
, π

2
] are same

as that of the function G(θA, θB) for θA, θB ∈ [−π
2
, π

2
]. This fact together with Lemmas 2.3

and 2.5 show that extrema of f(x, S) and f̂(x̂, Ŝ) are the same. Thus we have established

the following theorem:

Theorem 2.6. Λm(A, B) = Λm(Â, B̂) and ΛM(A, B) = ΛM(Â, B̂), and values are the ex-

trema of F given by Proposition 2.4.
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CHAPTER 3

ANGLES OF ROTATION OF PDS MATRICES

Recall that the maximum angle by which any n×n matrix A rotates a non-zero vector x

is given by φA = supx∈Rn\ ker A ∠(x, Ax). In this chapter, we first present a method of finding

φA for a PDS matrix A. Then we establish some results regarding orthogonal matrices S and

their maximum angles φS. Any S ∈ SOn has k orthogonal angles of rotation θ1, θ2, · · · , θk,

where k =
⌊

n
2

⌋
. Elements of SO2 take the form Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, which rotates any vector

by the angle θ. Elements of SO3 also have only one angle of rotation, but describing this

angle is not so straightforward as in the two dimensional case. It is usually described by

Euler angles or Rodrigues’ formula.

In Lemma 3.4, we prove that φS is maxi{θi} for any S ∈ SOn. In Section 3.2 we determine

those S such that {A, BS} is indefinite in the two dimensional case. In Section 3.3 we give

some examples in three dimensions in which we determine the matrix S with the smallest

possible φS such that {A, BS} is indefinite.

The following proposition, which is equivalent to Kantorovich’s Inequality [4], gives the

formula for the maximum angle of rotation of a PDS matrix in terms of its extremal eigen-

values.

Proposition 3.1. Let A be a PDS n × n matrix with eigenvalues 0 < A1 ≤ A2 ≤ A3 ≤

· · · ≤ An. Then

cos φA = 2

√
A1An

A1 + An
, sin φA =

An − A1

A1 + An
.

Moreover, ∠(v, Av) = φA if and only if v is scalar multiple of (v1

√
An + vn

√
A1), where v1

and vn are unit eigenvectors of A with eigenvalues A1 and An, respectively.

12



Proof. We may assume that A is a diagonal matrix with Aii = Ai. Let φA be the maximum

angle by which A rotates any unit vector. Then

cos φA = inf
x∈Sn−1

x · Ax

|Ax| = inf
x∈Sn−1

∑
x2

i Ai

(
∑

x2
i A

2
i )

1/2
.

Thus we want to minimize

F (x) :=
(x · Ax)2

|Ax|2

subject to
∑

x2
i = 1 by the method of Lagrange multipliers.

Suppose that a unit vector x gives the minimum. Let λ be the Lagrange multiplier. Since

(9) ∇F = 4
(x · Ax)Ax

|Ax|2
− 2

(x · Ax)2A2x

|Ax|4
, ∇(x · x) = 2x,

we have

(10) 2
(x · Ax)Ax

|Ax|2
− (x · Ax)2A2x

|Ax|4
= λx.

Taking the dot product with x on both sides, we get

(11) λ =
(x · Ax)2

|Ax|2
= cos2 φA

Thus for all i, (10) becomes

2
(x · Ax)Aixi

|Ax|2
− (x · Ax)2A2

i xi

|Ax|4
− cos2 φAxi = 0.

Let Ãi = (x·Ax)

|Ax|2 Ai. Then for all i, (Ã2
i − 2Ãi + cos2 φA)xi = 0. The quadratic equation

z2 − 2z + cos2 φA = 0 has two roots, Ã±, given by

(12) Ã± = 1 ± sin φA.

Therefore there are at most two values of Ãi such that xi �= 0. If there is only one such

value, then x is an eigenvector of A, so F (x) = 1. This is in general not the minimum value

of F , so we may assume that there are exactly two distinct values of Ãi such that xi �= 0.

Thus we may assume that there are unit eigenvectors u± of A of eigenvalues

A± =
|Ax|2

(x · Ax)
Ã±,

13



such that x = x+u+ + x−u− for some scalars x+, x− ∈ (0, 1) with x2
+ + x2

− = 1.

Note that x · Ax = A+x2
+ + A−x2

−, which in light of x2
− = 1 − x2

+ may be written as

x · Ax = (A+ − A−)x2
+ + A−.

Similarly, |Ax|2 = A2
+x2

+ + A2
−x2

−. Since (11) gives sin2 φA = 1 − (x·Ax)2

|Ax|2 , we have

sin2 φA =
A2

+x2
+ + A2

−x2
− − (A+x2

+ + A−x2
−)2

|Ax|2
=

(A+ − A−)2x2
+x2

−
|Ax|2

.

Combining this with (12), we get

(13) sin φA = Ã+ − 1 =
(A+ − A−)x+x−

|Ax| .

On the other hand, since Ã+ = (x·Ax)

|Ax|2 A+ =
(A+x2

++A−x2
−)

|Ax|2 A+, we have

(14) sin φA = Ã+ − 1 =
(A+ − A−)A−x2

−
|Ax|2

.

From (13) and (14),

A−x− = |Ax|x+.

Squaring both sides and simplifying using the fact that 1 − x2
+ = x2

−, we get

(15) A−x2
− = A+x2

+.

It follows that |Ax|2 = A2
+x2

+ + A2
−x2

− = (A+ + A−)A−x2
−. Substituting this value in (14)

and simplifying, we get

sin φA = Ã+ − 1 =
A+ − A−
A+ + A−

.

Therefore,

cos φA =

√
1 − sin2 φA = 2

√
A+A−

A+ + A−
.

Moreover, (15) together with 1 − x2
+ = x2

− gives

x± =

√
A±

A+ + A−
.

Clearly, cos φA is minimal when A+ = An and A− = A1.

�
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Let a be a unit vector such that ∠(a, Aa) = φA for a diagonal PDS matrix A whose entries

increase along the diagonal. Suppose 0 < A1 ≤ A2 ≤ · · · ≤ An are its eigenvalues. Then by

Proposition 3.1, there are exactly four choices for a, namely, 1√
A1+An

(±
√

An, 0, · · · , 0,±
√

A1).

Moreover, these choices lie one on each quadrant of the space spanned by e1 and en. Without

loss of generality, we may assume a to be the vector on the positive quadrant. We have the

following corollary:

Corollary 3.2. ∠(a, e1) = π
4
− φA

2
.

Proof. As discussed, we may take a = 1√
A1+An

(
√

An, 0, · · · , 0,
√

A1). Let the angle between

a and e1 be θa, and the angle between en and Aa be θ̂a. It suffices to show that θa = θ̂a.

Note that

cos θa = e1 · a =

√
An√

A1 + An

.

On the other hand, since Aa = 1√
A1+An

(A1

√
An, 0, · · · , 0, An

√
A1) and |Aa| =

√
A1An, we

have

cos θ̂a =
en · Aa

|Aa| =

√
An√

A1 + An

= cos θa

Hence θa = θ̂a, so we have 2θa + φA = π
2
.

�

3.1. Some Results on SOn

Recall that for any pair of n× n PDS matrices A and B, the Jordan product {A, BS} is

indefinite for some S ∈ SOn if φA + φB ≥ π
2
. The following lemma is well-known.

Lemma 3.3. Every S ∈ SOn is orthogonally similar to a block diagonal matrix with diagonal

entries Rθ1, Rθ2 , · · · , Rθ�n/2� if n is even, and Rθ1 , Rθ2, · · · , Rθ�n/2� , 1 if n is odd.

Lemma 3.4. For S ∈ SOn let θ1, θ2, · · · , θ�n/2� be the orthogonal angles of rotation. Then

the maximum angle by which S rotates any vector is maxi{θi}.
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Proof. We only give the proof for n even; the odd case is similar. We follow the approach

of the proof of Proposition 3.1: we find the minimum of

F (y) := y · Sy

such that |y|2 = 1.

We may assume that S is block diagonal as in Lemma 3.3. The maximum angle φS by

which S moves any vector is given by

cos φS = inf
y∈Sn−1

(y · Sy).

Let the unit vector ỹ be the minimizer of y · Sy. Then

cos φS = ỹ · Sỹ = F (ỹ).

It suffices to show that φS = θi for some i.

Let λ be the Lagrange multiplier. Since ∇F = 2Sy and ∇(y · y) = 2y, we have

Sỹ − λỹ = 0.(16)

Taking the dot product with ỹ on both sides, we obtain λ = (ỹ · Sỹ) = F (ỹ).

Since S is block diagonal, write ỹ as [ỹ11, ỹ12; ỹ21, ỹ22; · · · ; ỹ�n/2�,1, ỹ�n/2�,2]. By direct cal-

culation,

F (ỹ) =
∑

i

(ỹ2
i1 + ỹ2

i2) cos θi,

and (16) becomes

ỹij cos θi − λỹij = 0.

If ỹij �= 0 for some i, then λ = cos θi. But λ = ỹ · Sỹ = cos φS, so φS = θi for some i.

For such i, θi is maximal among θ1, θ2, · · · , θ�n/2�. Therefore all non-zero components of the

minimizer ỹ must correspond to those Rθi
with maximal θi.

�
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Lemma 3.5. Let A and B be two n × n PDS matrices and let S be in SOn. The Jordan

product {A, BS} is indefinite if and only if there exist non-zero vectors a, b ∈ R
n such that

Sb = a and ∠(Aa, SBb) ≥ π
2
.

Proof. If {A, BS} is indefinite, then there exists a non-zero a ∈ R
n such that

a · {A, BS}a ≤ 0.

Since A, B and BS are all symmetric, a · ABSa = Aa · BSa = a · BSAa, so a · {A, BS}a =

2(Aa · BSa). Let b = S−1a. Then Aa · SBb ≤ 0, so ∠(Aa, SBb) ≥ π
2
.

For the converse, use the same argument in the reverse direction.

�

3.2. The 2 × 2 Case

Throughout this section A and B are 2 × 2 diagonal PDS matrices. Without loss of

generality we may rescale and assume A =
(

1 0
0 k

)
and B =

(
1 0
0 l

)
, where k = A2

A1
and l = B2

B1
.

Let S be in SO2. Recall that any S ∈ SO2 takes the form Rθ, where φS = θ.

We want to find S with the minimum φS such that the Jordan product {A, BS} is

indefinite. This product is given by

{A, BS} =

⎛
⎝ 2(cos2 θ + l sin2 θ) (1 − l)(1 + k) sin θ cos θ

(1 − l)(1 + k) sin θ cos θ 2(k sin2 θ + kl cos2 θ)

⎞
⎠ .

It is indefinite if and only if Det{A, BS} ≤ 0. Computation gives

(17) Det{A, BS} = 4lk − 1

4

{
(1 − l)2(1 − k)2

}
(sin 2θ)2.

Hence for {A, BS} to be indefinite, we must have 4lk − 1
4

{
(1 − l)2(1 − k)2

}
(sin 2θ)2 ≤ 0.

Thus {A, BS} is indefinite for some S if and only if

16lk ≤ (1 − l)2(1 − k)2.

This is a corollary of Strang’s result proved in Chapter 2.
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Proposition 3.6. The minimum φS such that {A, BS} is indefinite satisfies

cos2 φS =
1

2

(
1 +

√
(l − 1)2(k − 1)2 − 16kl

(l − 1)(k − 1)

)
.

Proof. The eigenvalues λ± of {A, BS} are the roots of

λ2 − λ Tr{A, BS} + Det{A, BS} = 0,

where Det{A, BS} is as in (17) and Tr{A, BS} = 2(k+1)−2(l−1)(k−1) cos2 θ. Computation

gives

λ± = (k + l) + (l − 1)(k − 1) cos2 θ ± C,

where

C =
√

(k − l)2 + (l2 − 1)(k2 − 1) cos2 θ.

Now {A, BS} is indefinite if and only if λ− ≤ 0, i.e.

(k + l) + (l − 1)(k − 1) cos2 θ ≤
√

(k − l)2 + (l2 − 1)(k2 − 1) cos2 θ.

Squaring on both sides and simplifying gives

cos4 θ − cos2 θ +
4kl

(l − 1)2(k − 1)2
≤ 0.

The boundary values of this inequality are

t± =
1

2

(
1 ±

√
(l − 1)2(k − 1)2 − 16kl

(l − 1)(k − 1)

)
.

Hence the minimum φS satisfies

cos2 φS =
1

2

(
1 +

√
(l − 1)2(k − 1)2 − 16kl

(l − 1)(k − 1)

)
.

�

Corollary 3.7. There exists an angle α such that {A, BRθ} is indefinite if and only if

either
∣∣θ − π

4

∣∣ ≤ α or
∣∣θ − 3π

4

∣∣ ≤ α.
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Proof. By the last proof, {A, BRθ} is indefinite if and only if t− ≤ cos2 θ ≤ t+. Since

t+ + t− = 1, taking α = π
4
− cos−1

√
t+ gives the result.

�

3.3. Some Examples in the 3 × 3 Case

Definition 3.8. For ω ∈ S2 and θ ∈ R, let R(ω, θ) be the element of SO3 which rotates by

θ counterclockwise around ω.

Fix matrices A =
(

A1
A2

A3

)
and B =

(
B1

B2
B3

)
such that 0 < A1 < A2 < A3, the Bi

are positive and distinct, and φA + φB = π
2
. We will find Φ(A, B) in this case. By Lemma

3.5, for S orthogonal {A, BS} is indefinite if and only if there exist non-zero vectors a, b such

that Sb = a and ∠(Aa, SBb) ≥ π
2
. Recall that for any a, b, A, B, and S,

∠(Aa, SBb) ≤ ∠(Aa, a) + ∠(Sb, SBb) ≤ φA + φB.

Here φA + φB = π
2
, so {A, BS} is indefinite if and only if there exists a with ∠(a, Aa) = φA

and b with ∠(b, Bb) = φB such that ∠(Aa, SBb) = π
2
. By Proposition 4.1 of the next chapter,

there exists exactly one such S for each such pair (a, b). We write Smax(a, b) for this S.

By Proposition 3.1, there are exactly four distinct unit vectors a satisfying ∠(a, Aa) =

φA, namely, 1√
A1+A3

(±
√

A3, 0,±
√

A1). Fix a = 1√
A1+A3

(
√

A3, 0,
√

A1). Similarly, there are

exactly four unit vectors b that satisfy ∠(b, Bb) = φB. We must deduce which of the four

choices of b minimizes φSmax(a,b). It is easy to see that Φ(A, B) is the least of the four choices

of φSmax(a, b). There are six cases.

The case B1 < B2 < B3: By Proposition 3.1, the four unit vectors b that satisfy ∠(b, Bb) =

φB are 1√
B1+B3

(±
√

B3, 0,±
√

B1). We denote them by bI , bII , bIII , and bIV , the subscript

indicating their quadrant in the (e1, e3) plane. Note that a, Aa, bi and Bbi all lie in the

(e1, e3) plane. By Corollary 3.2, the π
4

line bisects both ∠(a, Aa) and ∠(bI , BbI). Moreover,

the four bi form a rectangle in standard orientation centered on 0, wider than it is tall, and
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the four Bbi form the reflection of the bi rectangle over the π
4

line. The situation is shown

in Figure 3.1, in which for brevity [x] denotes x
|x| .

/4

a

[Aa]

bI

[BbI]

bIVbIII

bII

[BbII]

[BbIV][BbIII]

e1

e3

Figure 3.1. The case B1 < B2 < B3.

It is easy to see that φS(a,b) is minimal for b = bIV , and that S(a, bIV ) is rotation by

∠(a, bV I) around e2. Since ∠(a, Aa) = φA and ∠(bi, Bbi) = φB, the symmetries of the figure

yield ∠(e1, a) = π
4
− 1

2
φA and ∠(bIV , e1) = π

4
− 1

2
φB. Therefore since φA + φB = π

2
, here

Φ(A, B) = π
4
.

/4

a

[Aa]

bI

[BbI]

bIVbIII

bII

[BbII]

[BbIV][BbIII]

e1

e3

Figure 3.2. The case B3 < B2 < B1.
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The case B3 < B2 < B1: Here the four choices of bi are given by the same formula as in

the last case, but the rectangle they form is taller than it is wide. Thus the situation is as

in the preceding case, with bi and [Bbi] exchanged (see Figure 3.2).

A similar argument shows that φSmax(a,bi) is minimal for i = I, and Smax(a, bI) is again a

rotation by π
4

about e2. So here too, Φ(A, B) = π
4
. (Both of the first two cases are essentially

two dimensional.)

e1

e3

e2

a

[Aa]

[BbI]bI

bIII

bIV

bII [BbII]

[BbIV]

[BbIII]

Figure 3.3. The case B1 < B3 < B2.

The case B1 < B3 < B2: Here the bi are 1√
B1+B2

(±
√

B2,±
√

B1, 0), on the unit circle in the

(e1, e2) plane (see Figure 3.3). In contrast to the previous cases, this case is three-dimensional

because a and the bi do not all lie on one plane. Here direct rotation of bi to a does not give

Smax(a, bi); we must have [Smax(a, bi)Bbi] and [Aa] on opposite sides of a on the great circle

passing through a and [Aa]. Denote this great circle by GC(a, Aa). Smax(a, bi) is minimal

for bi equal to either bI or bIV ; we will take bi = bI . We can factor Smax(a, bI) as follows. Let

S1 = R(e3,−θb), S2 = R(e1,−π/2), S3 = R(e2,−θa),
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where θa = ∠(e1, a) and θb = ∠(e1, bI). One checks that

Smax(a, bI) = S3S2S1 =

⎛
⎜⎜⎜⎝

cos(θb + θa) sin(θb + θa) 0

0 0 1

sin(θb + θa) − cos(θb + θa) 0

⎞
⎟⎟⎟⎠ ,

so Tr(Smax(a, bI)) = cos(θb + θa). As in the previous cases, Corollary 3.2 gives θb + θa = π
4
,

so Tr(Smax(a, bI)) = 1√
2
. Since Tr(S) = 1 + 2 cosφS,

Φ(A, B) = π − cos−1

(√
2 − 1

2
√

2

)
.

e1

e3

e2

a

[Aa]

[BbI]
bI

bIII

bIV

bII

[BbIV]

[BbII][BbIII]

Figure 3.4. The case B2 < B3 < B1.

The case B2 < B3 < B1: Here the four choices of bi are given by the same formula as in

the last case. This is similar to the previous case, except that the positions of bi and [Bbi]

are exchanged (see Figure 3.4). The best choices of bi are still bI and bIV . Taking bi = bI ,

a similar argument leads to Tr(Smax(a, bI)) = cos(θa+θb). Hence Φ(A, B) = π−cos−1
(√

2−1
2
√

2

)
.

The case B2 < B1 < B3: Here the bi are 1√
B2+B3

(0,±
√

B3,±
√

B2), on the unit circle in

(e2, e3) plane (see Figure 3.5). Since we want [Smax(a, bi)Bbi] opposite [Aa] on GC(a, Aa),

Smax(a, bi) is minimal for bi equal to either bIII or bIV ; we will take bi = bIV . We can factor
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e1

e3

e2

a

[Aa]

[BbIV]

bI

bIII
bIV

bII

[BbI]

[BbIII]

[BbII]

Figure 3.5. The case B2 < B1 < B3.

Smax(a, bIV ) as follows. Let S1 rotate around e3 by −π
2

so as to put bIV on GC(e1, e3), and

let S2 rotate S1bIV to a:

S1 = R(e3,−π/2), S2 = R(e2,−θ),

where θ = ∠(a, e1) + ∠(e1, b). Thus

Smax(a, bIV ) = S2S1 =

⎛
⎜⎜⎜⎝

0 cos θ − sin θ

−1 0 0

0 sin θ cos θ

⎞
⎟⎟⎟⎠ ,

so Tr(Smax(a, bIV )) = cos θ. As in the earlier cases, θ = θa + θb = π
4
, so

Φ(A, B) = π − cos−1

(√
2 − 1

2
√

2

)
.

The case B3 < B1 < B2: Here the four choices of bi are given by the same formula as

in the last case, but the positions of b and [Bbi] are exchanged (see Figure 3.6). Since

we want [Smax(a, bi)Bbi] and [Aa] on opposite sides of a on GC(a, Aa), Smax(a, bi) is min-

imal for bi equal to either bI or bII . Taking bi = bI , an argument as above again gives

Φ(A, B) = π − cos−1
(√

2−1
2
√

2

)
.
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e1

e3

e2

a

[Aa]

[BbI]

bI

bIII bIV

bII

[BbIV]

[BbII]

[BbIII]

Figure 3.6. The case B3 < B1 < B2.
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CHAPTER 4

THE TRACES OF SOME ORTHOGONAL MATRICES

Throughout this chapter assume that A and B are 3×3 diagonal PDS matrices. Suppose

that {A, BS} is indefinite for some S ∈ SO3. Recall that in three dimensions, Tr(S) =

1 + 2 cosφS, where φS is the maximum angle by which S rotates any non-zero vector. Thus

in this case, Problem 1 may be solved by computing max{Tr(S) : {A, BS} is indefinite}.

Recall that if {A, BS} is indefinite, then by Lemma 3.5 there exist vectors a and b such

that Sb = a and ∠(Aa, SBb) ≥ π
2
. For the rest of this Chapter, fix arbitrary a, b ∈ S2, and

define

α := ∠(a, Aa), β := ∠(b, Bb).

Note that for any S ∈ SO3 such that Sb = a,

∠(Aa, SBb) ≤ ∠(Aa, a) + ∠(Sb, SBb) = ∠(Aa, a) + ∠(b, Bb) = α + β.

In Proposition 4.1 we show that there exists a unique S ∈ SO3 such that Sb = a and

∠(Aa, SBb) = α + β. In Proposition 4.2 we show that if α + β > π
2
, then there exist exactly

two matrices S ∈ SO3 such that Sb = a and ∠(Aa, SBb) = π
2
.

Proposition 4.1. Fix a and b in S2, and define α := ∠(a, Aa) and β := ∠(b, Bb). There

exists a unique matrix Smax(a, b) ∈ SO3 such that Smax(a, b)b = a and ∠(Aa, Smax(a, b)Bb) =

α + β. Its trace is given by Tr
(
Smax(a, b)

)
=

a · b + cot α cot β
(a · Bb

b · Bb
+

b · Aa

a · Aa
− Aa · Bb + (b × Bb) · (a × Aa)

(a · Aa)(b · Bb)
− a · b

)
.

Proof. Consider the orthonormal bases {v1, v2, v3} and {w1, w2, w3} of R
3 defined by

v1 = b, v3 =
b × Bb

|b × Bb| , v2 = v3 × v1,
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w1 = a, w3 =
a × Aa

|a × Aa| , w2 = w3 × w1.

We want to find an orthogonal matrix S such that Sb = a and ∠(Aa, SBb) = α + β.

Clearly SBb must lie in Span{a, Aa} = Span{w1, w2}. Since v1 = b and Sb = a, we have

Sv1 = w1. Thus SBb ∈ Span{w1, w2} if and only if Sv2 ∈ Span{w1, w2}. Since v2 ⊥ v1, we

have Sv2 ⊥Sv1 = w1. Therefore Sv2 = ±w2.

By the definition of the orthonormal basis {w1, w2, w3}, Aa lies on the first quadrant

of the (w1, w2) plane. Thus for ∠(Aa, SBb) to be maximal, SBb must be on the fourth

quadrant of the (w1, w2) plane, so Sv2 = −w2.

Since |b × Bb| = |Bb| sin β and (b × Bb) × b = Bb − b |Bb| cos β, we have v2 = v3 × v1 =(
Bb

|Bb| cos β
− b
)
cot β. Using |Bb| cos β = b ·Bb and applying the same argument to the wi gives

v2 =
( Bb

b · Bb
− b
)

cot β, w2 =
( Aa

a · Aa
− a
)

cot α.(18)

Summarizing, we have v1 · Sv1 = a · b and

v2 · Sv2 = −
( Bb

b · Bb
− b
)
·
( Aa

a · Aa
− a
)

cotα cotβ.

Also note that Sv3 = Sv1 × Sv2 = −w1 × w2 = −w3. Thus

v3 · Sv3 = − b × Bb

|Bb| sin β
· a × Aa

|Aa| sin α
= −(b × Bb) · (a × Aa)

(a · Aa)(b · Bb)
cot α cot β.

Finally, since Tr(S) = v1 · Sv1 + v2 · Sv2 + v3 · Sv3, we have

Tr(S) = a · b + cotα cotβ
(a · Bb

b · Bb
+

b · Aa

a · Aa
− Aa · Bb + (b × Bb) · (a × Aa)

(a · Aa)(b · Bb)
− a · b

)
.

Since Svi is determined for 1 ≤ i ≤ 3, S is unique.

�

Proposition 4.2. Maintain a, b, α and β as in Proposition 4.1, and assume that α+β > π
2
.

Then there exist exactly two matrices S ∈ SO3 such that Sb = a and ∠(Aa, SBb) = π
2
. Their

traces are given by

Tr(S) = a · b + cot2 α cot2 β
{(a · Bb

b · Bb
+

b · Aa

a · Aa
− Aa · Bb + (b × Bb) · (a × Aa)

(a · Aa)(b · Bb)
− a · b

)
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±Δ
∣∣∣(a − Aa

a · Aa

)
·
(b × Bb

b · Bb

)
−
(
b − Bb

b · Bb

)
·
(a × Aa

a · Aa

)∣∣∣},

where Δ =
√

tan2 α tan2 β − 1. (Note that tan2 α tan2 β ≥ 1 precisely when α + β ≥ π
2
.)

Proof. Define orthonormal bases {v1, v2, v3} and {w1, w2, w3} of R
3 as in the last proof.

Then v2 and w2 are as in (18). Inverting these equations gives

Aa = |Aa| (w1 cos α + w2 sin α), Bb = |Bb| (v1 cos β + v2 sin β).

Here we want to find an orthogonal matrix S such that Sb = a (i.e., Sv1 = w1) and

∠(Aa, SBb) = π
2
. Since Sv2 ∈ Span{w2, w3}, for some non-zero scalars γ2 and γ3 we can

write Sv2 = γ2w2 + γ3w3. Therefore

SBb = |Bb| (w1 cos β + γ2w2 sin β + γ3w3 sin β).(19)

Note that γ2
2 + γ2

3 = 1, or γ3 = ±
√

1 − γ2
2 . Now we want SBb · Aa = 0. Since

SBb · Aa = |Bb| |Aa| (cosα cos β + γ2 sin α sin β),

we must have

γ2 = − cot α cotβ, γ3 = ± cot α cot β
√

tan2 α tan2 β − 1.

Denote
√

tan2 α tan2 β − 1 by Δ, so γ3 = ±Δ cot α cot β.

To compute Tr(S) =
∑3

i=1 vi · Svi, note that v1 · Sv1 = b · a and v2 · Sv2 = γ2(v2 · w2) +

γ3(v2 · w3). Since v2 = ( Bb
b·Bb

− b) cotβ, w2 = ( Aa
a·Aa

− b) cot α, and w3 = (a×Aa
a·Aa

) cotα,

v2 · Sv2 =
{

γ2

( Bb

b · Bb
− b
)
·
( Aa

a · Aa
− a
)

+ γ3

( Bb

b · Bb
− b
)
·
(a × Aa

a · Aa

)}
cotα cotβ.

Further simplification leads to

v2 · Sv2 =
{a · Bb

b · Bb
+

b · Aa

a · Aa
− Aa · Bb

(a · Aa)(b · Bb)
− a · b

±Δ
( Bb

b · Bb
− b
)
·
(a × Aa

a · Aa

)}
cot2 α cot2 β.

Finally, we want v3 · Sv3. Note that Sv3 = Sv1 × Sv2. Recall that Sv1 = a and

Sv2 = γ2w2+γ3w3. Hence we must find the scalar triple products v3 ·(a×Aa) and v3 ·(a×w3).
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Since v3 = b×Bb
b·Bb

cot β, the first triple product becomes (b×Bb)·(a×Aa)
(a·Aa)(b·Bb)

cot α cot β. Similarly,

since a×w3 = (a− Aa
a·Aa

) cotα, the second triple product becomes (a− Aa
a·Aa

)·( b×Bb
b·Bb

) cotα cotβ.

Hence substituting the values of γ2 and γ3, we get

v3 · Sv3 =
{(b × Bb) · (a × Aa)

(a · Aa)(b · Bb)
± Δ

(
a − Aa

a · Aa

)
·
(b × Bb

b · Bb

)}
cot2 α cot2 β,

where the choice of sign for Δ must be same as that for v2 · Sv2. Combining all three

components, we obtain the desired formula for Tr(S).

Since the Svi are determined by the choice of sign of γ3, there are exactly two choices of

S.

�

We denote the two choices of S given by ±Δ in Proposition 4.2 by S±
⊥(a, b), respectively.

Define S⊥(a, b) := S+
⊥(a, b). Note that in the limiting case Δ = 0, α + β = π

2
and S+

⊥(a, b) =

S−
⊥(a, b) = Smax(a, b).

Proposition 4.3. Φ(A, B) = min{φS⊥(a,b) : α + β ≥ π
2
}.

Proof. Clearly the left side is less than or equal to the right. To prove the converse, suppose

that {A, BS} is indefinite. Then by Lemma 3.5 Sb1 = a1 and ∠(Aa1, SBb1) ≥ π
2

for some

(a1, b1), so ∠(Aa1, B
Sa1) ≥ π

2
. Since both A and BS are PDS, if a2 is an eigenvector of A

we have ∠(Aa2, SBS−1a2) < π
2
. Thus by the connectedness of S2, there exists a3 such that

∠(Aa3, B
Sa3) = π

2
, so S is one of S±

⊥(a3, S
−1a3). Since Tr(S+

⊥(a, b)) ≥ Tr(S−
⊥(a, b)), we have

φS ≥ φS⊥(a3,S−1a3). The result follows.

�

Thus in three dimensions, Problem 1 amounts to maximizing the function Tr(S⊥(a, b))

given in Proposition 4.2 over all a, b ∈ S2 with α + β ≥ π
2
. It would be interesting to prove

the following conjecture.

Conjecture 4.4. The minimum of φS⊥(a,b) over all (a, b) with α + β ≥ π
2

occurs for some

(a, b) with α + β = π
2
.
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CHAPTER 5

LEVEL CURVES OF THE ANGLE FUNCTION OF A PDS MATRIX A

In this chapter we discuss the level curves of the angle function x �→ ∠(x, Ax) of A on

the unit sphere in R
3 for a PDS matrix A. We may assume without loss of generality that

A =
(

A1 0 0
0 A2 0
0 0 A3

)
, where 0 < A1 ≤ A2 ≤ A3. Recall that φA is the maximum angle by which

the matrix A rotates any non-zero vector x. Thus ∠(x, Ax) ≤ φA for all x ∈ R
3.

Since A is positive definite, φA < π
2
. It follows that the level curves of x �→ ∠(x, Ax) are

the same as those of

(20) F (x) := cos2
(
∠(x, Ax)

)
=

(
∑

i Aix
2
i )

2

(
∑

i x
2
i )(
∑

i A
2
i x

2
i )

.

Let us denote the level curve F = γ by L(A, γ). Writing si for x2
i , this curve has equation

(21)
(∑

i

Aisi

)2

− γ
(∑

i

si

)(∑
i

A2
i si

)
= 0.

Since |x| = 1, we must have s1 + s2 + s3 = 1 and si ≥ 0 for all i. Thus we seek solutions

of (21) on the standard simplex T , which is contained in the plane P :

T :=
{
s ∈ R

3 : s1 + s2 + s3 = 1, si ≥ 0
}
, P := {s : s1 + s2 + s3 = 1}.

We may write (21) as sT MA(γ)s = 0, where MA(γ) is the symmetric matrix

⎛
⎜⎜⎜⎝

A2
1(1 − γ) A1A2 − γ

2
(A2

1 + A2
2) A1A3 − γ

2
(A2

1 + A2
3)

A1A2 − γ
2
(A2

1 + A2
2) A2

2(1 − γ) A2A3 − γ
2
(A2

2 + A2
3)

A1A3 − γ
2
(A2

1 + A2
3) A2A3 − γ

2
(A2

2 + A2
3) A2

3(1 − γ)

⎞
⎟⎟⎟⎠ .

We wish to find all s ∈ T such that sT MA(γ)s = 0. Let λ1, λ2, and λ3 be the eigenvalues of

MA(γ), and let {u1, u2, u3} be an orthonormal eigenbasis corresponding to these eigenvalues,

respectively. Thus for some scalars α1, α2 and α3, we can write s = u1α1 +u2α2 +u3α3. This
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leads to

sT MA(γ)s = α2
1λ1 + α2

2λ2 + α2
3λ3.

When the λi are all positive or all negative, the only solution of sT MA(γ)s = 0 is s = 0.

Towards the end of this chapter we will show that if the determinant of MA(γ) is not zero,

then MA(γ) has exactly one negative eigenvalue. This can be proven using a factorization

of MA(γ). Therefore sT MA(γ)s = 0 defines a cone M(A, γ), and the solution of (21) is the

conic P ∩M(A, γ).

We will see that this conic is in fact a parabola for all values of γ, and obtain a formula

for this parabola. In the next section we graph T ∩ M(A, γ) for some A and γ, and map

the result back to S2 to obtain L(A, γ). Note that each point in T corresponds to exactly

one point in each octant of S2.

5.1. The Level Curves

PDS matrices fall into several categories, with qualitatively different level curves. For

each case, we will give pictures (created with Matlab) of the level curves for certain values

of γ on T and on S2.

Recall Proposition 3.1, and write φ(C1, C2) for φC when C =
(

C1
C2

)
. The level curves

show a qualitative transition when γ is cos2 φ(A1, A2), cos2 φ(A2, A3), or cos2 φ(A1, A3) (note

that φ(A1, A3) is φA). We display the level curves at each of these values, as well as at some

intermediate values. When γ = 1, the parabola touches all three vertices of T and the level

curve on S2 consists of the six points ±e1,±e2 and ±e3.

The case A1 = A2 < A3. Here the parabola P ∩M(A, γ) is degenerate and is either two

parallel lines or a single “double” line. The level curves have a transition only at γ = cos2 φA.

For γ < cos2 φA, T ∩M(A, γ) and L(A, γ) are empty. For γ = cos2 φA, T ∩M(A, γ) is a line

segment, and L(A, γ) is a pair of opposite latitude lines with respect to the poles ±e3, one in

the northern and one in the southern hemisphere. For γ > cos2 φA, T ∩M(A, γ) consists of

two parallel line segments, and L(A, γ) is two pairs of latitude lines. For γ = 1, T ∩M(A, γ)
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consists of e3 and the line segment e1e2. We illustrate the situation for A =
(

1 0 0
0 1 0
0 0 3

)
in

Figures 5.1 and 5.2.

e
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e
3

e
1

e
2

e
3

e
1

Figure 5.1. A =
(

1
1

3

)
, γ = 3

4
= cos2 φA

e
2

e
3

e
1

e
2

e
3

e
1

Figure 5.2. A =
(

1
1

3

)
, γ = 9

10
> cos2 φA
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The case A1 < A2 = A3. This is similar to the previous case. Here too the level curves

have a transition only at γ = cos2 φA. The only difference is that L(A, γ) consists of latitude

lines with ±e1 as the poles, as T ∩M(A, γ) consists of line segments parallel to e2e3. Figures

are omitted since they are as in the previous case with e1 and e3 exchanged.

The case 1 < A2

A1
< A3

A2
. Here φ(A1, A2) < φ(A2, A3) < φ(A1, A3) = φA. We present the

level curves for these angles and some intermediate values. Take as an example A =
(

1 0 0
0 2 0
0 0 5

)
.

By Proposition 3.1, φ(1, 2) ≈ 20◦, φ(2, 5) ≈ 25◦, and φ(1, 5) = φA ≈ 42◦. The corresponding

e
3

e
2

e
1

Figure 5.3. A =
(

1
2

5

)
, γ = 5

9
= cos2 φA

γ values are 8
9
, 40

49
, and 5

9
respectively. For γ < 5

9
, L(A, γ) is empty. At γ = 5

9
, the parabola

is tangent to e1e3 (Figure 5.3). Thus the level curve on the sphere at this stage consists of

four points, a point on each of the four quadrants of the great circle GC(e1, e3).

For 5
9

< γ < 40
49

, the parabola intersects e1e3 but not e2e3 or e1e2. Hence L(A, γ) consists

of four roughly oval curves; see Figure 5.4.

At γ = 40
49

the parabola is tangent to e2e3. The corresponding four points on GC(e2, e3)

are saddle points of the angle function of A; see Figure 5.5.
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Figure 5.4. A =
(

1
2

5

)
, cos2 φA = 5

9
< γ < 40

49

e
3

e
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e
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e
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Figure 5.5. A =
(

1
2

5

)
, γ = 40

49

For 40
49

< γ < 8
9
, the parabola intersects e1e2 and e2e3, but not e1e2; see Figure 5.6.

At γ = 8
9
, the parabola is tangent to e1e2, giving the four saddle points of the angle

function on GC(e1, e2); see Figure 5.7.
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Figure 5.6. A =
(

1
2

5

)
, 40

49
< γ < 8

9
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Figure 5.7. A =
(

1
2

5

)
, γ = 8

9

For 8
9

< γ < 1, the parabola intersects all three sides of T in two points. Hence L(A, γ)

consists of six roughly oval curves, around ±e1,±e2 and ±e3; see Figure 5.8.

Finally, at γ = 1 the parabola touches all three vertices of the triangle; see Figure 5.9.
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Figure 5.8. A =
(

1
2

5

)
, 8

9
< γ < 1

e
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1

Figure 5.9. A =
(

1
2

5

)
, γ = 1

We remark that the angle function of A on S2 is minimal at ±e1,±e2 and ±e3, maximal

at the four points on GC(e1, e3) corresponding to Figure 5.3, and has saddles at the eight

points on GC(e1, e2) and GC(e2, e3) arising from Figures 5.5 and 5.7. It follows from the

proof of Proposition 3.1 that it has no other critical points. A contour map is given in

Figure 5.10.
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Figure 5.11. A =
(

1
2

3

)
, γ = 8

9
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Figure 5.12. A =
(

1
2

3

)
, 8

9
< γ < 24

25

At γ = 24
25

, the parabola is tangent to e2e3, yielding the saddle points of the angle function

on GC(e2, e3); see Figure 5.13.
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Figure 5.13. A =
(

1
2

3

)
, γ = 24
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Figure 5.14. A =
(

1
2

3

)
, 24

25
< γ < 1

For 24
25

< γ < 1, the situation is roughly as in Figure 5.8; see Figure 5.14. Figure 5.15

gives a contour map of the angle function.
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Figure 5.16. A =
(

1
2

4

)
, γ = 8

9
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e
2

Figure 5.17. Contour map for A =
(

1
2

4

)
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5.2. Level Curves Containing Circles

Proposition 5.1. The level curve L(A, γ) is a union of circles if and only if either the ratios

A2

A1
and A3

A2
are equal and γ = cos2 φ(A1, A2) = cos2 φ(A2, A3), or A has repeated eigenvalues

and γ ≥ cos2 φA.

Proof. Suppose that L(A, γ) contains a circle. If n is any vector normal to this circle, then

the equation of the circle (on S2) is x · n = N for some constant N . Note that since A is

diagonal, x · Mn = N must also be contained in L(A, γ) for any M in
{( ±1

±1
±1

)}
∼= Z

3
2.

It follows that the product of all x ·Mn = N with M ∈ Z
3
2 and Mn distinct must divide the

equation of L(A, γ). Since L(A, γ) is quartic in x, this implies that at least one entry of n is

zero. There are two cases.

Suppose first that two entries of n are zero. In this case the circles are centered on ±e1,

±e2 or ±e3. Thus they correspond to line segments parallel to one side of the triangle T in

s-space. This occurs only when A has repeated eigenvalues, in which case the level curve on

T consists of a single line if γ = cos2 φA and a pair of lines if γ > cos2 φA. On the sphere it

consists of two circles if γ = cos2 φA and four circles if γ > cos2 φA.

Now suppose that only one entry of n is zero. Here by symmetry L(A, γ) contains four

congruent circles, so since it is quartic it must be exactly the union of these circles.

Assume first that the second entry of n is zero. Then the normals of the four circles are

n = (±n1, 0,±n3), so the equation of L(A, γ) is

0 =
∏

ε1,ε3=±1

(x1ε1n1 + x3ε3n3 − N) =
(
s1n

2
1 + s3n

2
3 − N2

)2 − 4s1s3n
2
1n

2
2,

where si = x2
i for all i. Expanding and simplifying, we obtain

(22) N4 − 2N2n2
1s1 − 2N2n2

3s3 + (s1n
2
1 − s3n

2
3)

2 = 0.

Set k = A2

A1
and l = A3

A2
. We may assume that A =

(
1

k
l

)
. Recall that L(A, γ) is

(s1 + ks2 + ls3)
2 − γ(s1 + k2s2 + l2s3) = 0,
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where s2 = 1 − s1 − s3. Expanding and simplifying gives

(23)
k2(1 − γ) −

(
γ(1 + k) − 2k

)
(1 − k)s1

−
(
2k − γ(k + l)

)
(k − l)s3 +

(
(1 − k)s1 − (k − l)s3

)2
= 0.

Since (22) and (23) have the same solutions, they are proportional. We may replace (n, N)

by (cn, cN) for any scalar c, so we may assume that

N4 = k2(1 − γ),

2N2n2
1 =

(
γ(1 + k) − 2k

)
(1 − k),

2N2n2
3 =

(
2k − γ(k + l)

)
(k − l),

n2
1 = 1 − k,

n2
3 = k − l.

The last four of these give

(24) N2 =
γ(1 + k) − 2k

2
=

2k − γ(k + l)

2
,

so γ = 4k
1+2k+l

. Using (24) and N4 = k2(1 − γ), we arrive at l = k2. Hence the ratios of the

eigenvalues of A are equal and

γ =
4k

(1 + k)2
= cos2 φ(1, k).

If n1 or n3 is the zero coordinate instead of n2, the above argument shows that l is k−1

or
√

k, respectively, contradicting the assumption that A1 ≤ A2 ≤ A3.

�

5.3. The Equation of the Parabola

For convenience, let us define 1 := (1, 1, 1), A := (A1, A2, A3) and A2 := (A2
1, A

2
2, A

2
3).

Then the equation sT MA(γ)s = 0 of M(A, γ) may be written as

( A · s)2 = γ(1 · s)( A2 · s).

The plane P is defined by 1 · s = 1, so the equation of P ∩M(A, γ) ⊂ P is
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(25) ( A · s)2 = γ( A2 · s).

For A1, A2 and A3 distinct, A · s and A2 · s are independent linear coordinates on P, so (25)

defines a parabola. Define vectors

l = A − 1
3
( A ·1)1, n = 1 ×l = 1 × A.

Since only the square of A · s appears in (25), the axis of the parabola is perpendicular

to A. Since it is in P, the axis is parallel to n. Note that the axial direction is independent

of γ.

Now {1, l, n} is an orthogonal basis of R
3, and {l, n} is an orthogonal basis of the space

of vectors parallel to P. Therefore l · s and n · s are orthogonal coordinates of P. We will

find constants L, M and N so that (25) takes the form

(l · s − L)2 = Mn · s − N.

To do this, write A and A2 in terms of 1, l, and n, use 1 · s = 1, and complete the square

appropriately. One arrives at

L =
γ

2

l · A2

l · l −
A ·1
3

, M = γ
n · A2

n · n ,

N =
γ

3

l · A2

l · l ( A ·1) − γ
1 · A2

1 ·1
− γ2

4

( l · A2

l · l
)2

.

These constants enable us to read off the vertex and axis of the parabola: they are
(
L, N

M

)
and (l · s) = L.

5.4. Factorization of MA(γ) and Its Eigenvalues

Here we exhibit a factorization property of the symmetric matrix MA(γ) and use it

to prove that when determinant of this matrix is not zero, it has exactly one negative

eigenvalue. In fact, when MA(γ) is expressed in the basis {1, A, A2}, it factors as a product
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of two Vandermonde matrices and a diagonal matrix. To explain, let Y be the Vandermonde

matrix Y =

(
1 A1 A2

1

1 A2 A2
2

1 A3 A2
3

)
. Then for A1, A2, and A3 distinct

Y −1 =

⎛
⎜⎜⎜⎝

A2A3

(A1−A3)(A1−A2)
− A1A3

(A2−A1)(A3−A2)
A1A2

(A2−A3)(A1−A3)

− A3+A2

(A1−A3)(A1−A2)
A1+A3

(A2−A1)(A3−A2)
− A1+A2

(A2−A3)(A1−A3)

1
(A1−A3)(A1−A2)

− 1
(A2−A1)(A3−A2)

1
(A2−A3)(A1−A3)

⎞
⎟⎟⎟⎠ .

One checks that

Y −1MA(γ) =

⎛
⎜⎜⎜⎝
−γ

2

1

−γ
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

A2
1 A2

2 A2
3

A1 A2 A3

1 1 1

⎞
⎟⎟⎟⎠ ,

and so

Det MA(γ) = Det Y −1MA(γ)Y = −γ2

4
(A1 − A2)

2(A2 − A3)
2(A1 − A3)

2 < 0.

Since Tr MA(γ) = (1− γ)(a2
1 + a2

2 + a2
3) ≥ 0, it must be that MA(γ) has one negative and

two positive eigenvalues. Therefore the solution set M(A, γ) of sT MA(γ)s = 0 is a cone.
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CHAPTER 6

INTERACTIONS BETWEEN THE SETS OF LEVEL CURVES OF TWO PDS

MATRICES

Recall that in light of Proposition 4.3, Problem 1 amounts to maximizing the function

Tr(S⊥(a, b)) given in Proposition 4.2 over all a, b ∈ S2 with α + β ≥ π
2
. Although we needed

min φS⊥(a,b) for the solution of Problem 1, we could not make progress as calculations were

prohibitively complicated. Instead, we look at min φSmax(a,b) by studying the interactions

between the sets of level curves of two PDS matrices.

Throughout this chapter, suppose that A and B are 3 × 3 increasing diagonal PDS

matrices with distinct eigenvalues. We work exclusively on S2. We consider the level curves

of the angle functions of A and B for fixed small angles α and β, respectively, as described

in Chapter 5.

Recall from the previous chapter that the level curves change qualitatively when the an-

gles are either φ(A1, A2), φ(A2, A3) or φ(A1, A3) = φA. Choose α smaller than both φ(A1, A2)

and φ(A2, A3). Similarly, choose β smaller than both φ(B1, B2) and φ(B2, B3). For such α,

we saw that L(A, cos2 α) consists of oval shaped structures around ±e1,±e2 and ±e3.

Consider the portion of L(A, cos2 α) around e1 (see Figure 5.8). Let us call this compo-

nent of the level curve C(A, α). Note that C(A, α) is symmetric about both GC(e1, e2) and

GC(e1, e3). Let a± be the points on the intersection of GC(e1, e3) and C(A, α) closest to e1

in the northern and southern hemisphere, respectively (see Figure 6.1). Define b± similarly.

In this chapter we prove that the minimum of φSmax(a,b−) as a ranges over C(A, α) occurs at

a+. The precise statement is given below in Theorem 6.1. Its proof takes most of Chapter

6.
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Theorem 6.1. The minimum of φSmax(a,b−) as a ranges over C(A, α) is ∠(a+, b−) and occurs

at a+.

a

n(a)

GC(a, Aa)
GC(e1, a)

[Aa]

e1

a+

a

to e2

to e3

Figure 6.1. Polar projection of region of sphere near e1.

Recall that ∠(a, Aa) = α for all a on C(A, α). We use again the notation [x] = x
|x| in

figures. If a lies on either GC(e1, e3) or GC(e1, e2), then [Aa] also does so. Suppose that a

does not lie on either GC(e1, e3) or GC(e1, e2). Without loss of generality, we may assume a

to be a point on the first octant of S2 for the remainder of this chapter. A polar projection of

the region of S2 near e1 is shown in Figure 6.1. The dotted line segments represent GC(e1, a)

and GC(a, Aa), as labeled.

Any two distinct great circles intersect each other at exactly two points. Consider

the points of intersection of GC(e1, e3) and GC(a, Aa). Since GC(e1, e3) has axis e2 and
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C(A, )

GC(e1, a)

GC(a, Aa)
S
2 F(a)

a x Aa

a

a x F(a)
to a+

Figure 6.2. Polar projection at a.

GC(a, Aa) has axis a×Aa, these points of intersection are along ±e2×(a×Aa) = ±(A2−A)a.

Let n(a) = [(A2 − A)a].

Lemma 6.2. n(a) is always between e1 and −e3 on GC(e1, e3).

Proof. By definition n(a) is along

(
(A2−A1)a1

0
(A2−A3)a3

)
. Since A is increasing diagonal with distinct

eigenvalues, the third component of n(a) is negative, and the first component is positive. �

By the above lemma, GC(a, Aa) is always “steeper” than GC(e1, a), as shown in Fig-

ure 6.1.

Next, recall from Chapter 5 that F (u) = cos2 ∠(u, Au), and F = cos2 α defines the level

curve L(A, cos2 α). Let ∇S2F be the projection of this vector to the tangent plane of the

sphere at a. It is perpendicular to C(A, α) at a and points inward from the oval, in the

direction of decreasing ∠(a, Aa). A polar projection near a is shown in Figure 6.2. Note that
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a ×∇F is tangent to C(A, α) at a and points away from a+. The next proposition justifies

the fact that in the drawing, −∇S2F (a) is to the left of GC(a, Aa).

Proposition 6.3. The great circle through a that is perpendicular to C(A, α) passes through

GC(e1, e3) strictly between n(a) and −e3.

Proof. We first prove the following identity: −∇F · (a × Aa) > 0. By (9),

a ×∇F = 4
a · Aa

|Aa|2
(a × Aa) − 2

(a · Aa)2

|Aa|4
(a × A2a).

Since Aa · (a × Aa) = 0, we have

Aa · (a ×∇F ) = −2
(a · Aa)2

|Aa|4
{
Aa · (a × A2a)

}
.

Now A2a = (A2
1a1, A

2
2a2, A

2
3a3), so a × A2a =

(
a2a3(A2

3−A2
2)

a1a3(A2
1−A2

3)

a1a2(A2
2−A2

1)

)
. Thus

Aa · (a × A2a) = a1a2a3

{
A1(A

2
3 − A2

2) + A2(A
2
1 − A2

3) + A3(A
2
2 − A2

1)
}
.

= a1a2a3(A3 − A2)(A2 − A1)(A1 − A3).

Since A1 < A2 < A3, this quantity is negative, so Aa · (a ×∇F ) and hence −∇F · (a × Aa)

are positive, proving the identity.

Using a · (a × Aa) = 0 and a · a = 1, we obtain

{(a × Aa) × a} · (a ×∇F ) = −∇F · (a × Aa).

Since a × Aa is perpendicular to GC(a, Aa) at a, (a × Aa) × a is parallel to GC(a, Aa) at

a. Thus the angle measured counterclockwise from (a × Aa) × a to ∇S2F is positive. This

together with Lemma 6.2 proves the Proposition. �

Hence for any a on C(A, α), GC(a, Aa) is “between” GC(e1, a) and the normal on the

sphere to C(A, α). Next we prove following lemma:

Lemma 6.4. As a moves towards a+ on C(A, α), n(a) moves monotonically towards −e3.
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Proof. Since n(a) is along

(
(A2−A1)a1

0
(A2−A3)a3

)
,
∣∣∣n3

n1

∣∣∣ is proportional to the ratio
∣∣∣ (A2−A3)a3

(A2−A1)a1

∣∣∣ . As

A is fixed, the ratio
∣∣∣n3

n1

∣∣∣ is proportional to a3

a1
. Hence as a moves towards a+ on C(A, α),

n(a) moves monotonically towards −e3 if and only if a3

a1
is strictly increasing, or equivalently,

s3

s1
=

a2
3

a2
1

is strictly increasing.

e3

e2e1

Figure 6.3. Schematic diagram.

Suppose s3

s1
is not strictly increasing. Then for some point a on C(A, α), there exists a

second point ã on C(A, α), between a and a+, such that s̃3

s̃1
= s3

s1
. Note that x3

x1
= a3

a1
defines

GC(a, e2) on the sphere, and s3

s1
=

a2
3

a2
1

defines the line segment passing through s and e2 in the

triangle T . Since α < min{φ(A1, A2), φ(A2, A3)}, this line segment intersects the parabola

corresponding to C(A, α) at s and also at a point corresponding to a point on the oval on S2

around e2 (see Figure 6.3). Since s̃3

s̃1
= s3

s1
, the line segment also passes through s̃. This is a

contradiction as a line segment intersects a parabola at most twice. �
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Define Latb(a) to be the latitude line through a with b as a pole, the path of a through

all rotations about b. As a corollary to Proposition 6.3, we prove following lemma:

Lemma 6.5. Consider the acute arc of Latn(a)(a) from a to GC(e1, e3). Near a, this arc is

on the outside of C(A, α) (see Figure 6.4).

n(a)

a
a+

e1
to e2

to –e3

[Aa]

GC(a, Aa)

Latn(a) a

C(A, )

F(a)

Figure 6.4. Polar projection at a.

Proof. By Proposition 6.3, GC(a, Aa) is “between” GC(e1, a) and the normal on the sphere

to C(A, α). Since GC(a, Aa) is perpendicular to Latn(a)(a), it must cross C(A, α) at a from

lower right to upper left as shown in Figure 6.4. �
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n(a)

n(ã)

a

ã

Latn(a) a

[Aa]

F(a)

F(ã)

a+

e1

[Aã]

to e2

to –e3

C C(A, )

Figure 6.5. Polar projection at e1.

Lemma 6.6. Latn(a)(a) never crosses C(A, α) between a+ and a.

Proof. We prove this by contradiction. Suppose that Latn(a)(a) crosses C(A, α) at a point

ã between a+ and a from above. By Lemma 6.4, n(ã) is between n(a) and −e3. Let S̃ be

the rotation around n(a) such that ã = S̃a. Then [S̃Aa] lies on GC(ã, n(a)). Note that

GC(ã, n(a)) is perpendicular to Latn(a)(a), and ∇S2F (ã) is perpendicular to the tangent to

C(A, α) at ã. Thus the angle measured counterclockwise from the tangent to C(A, α) at ã to

GC(ã, n(a)) is obtuse (see Figure 6.5). This contradicts Proposition 6.3. Hence Latn(a)(a)

never crosses C(A, α) from above between a and a+. Therefore it never crosses C(A, α)
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between a and a+ at all, as it starts out above at a by Lemma 6.5. The argument is similar

if it is ever tangent to C(A, α) between a and a+. �

Thus the situation is as shown below in Figure 6.6.

n(a)

a
a+

e1
to e2

to –e3

[Aa]

GC(a, Aa)

Latn(a) a

C(A, )

Figure 6.6. Polar projection at e1.

We need two elementary results before proving Theorem 6.1.

Lemma 6.7. Let S1, S2 ∈ SO3 have perpendicular axes of rotation. Then

cos2
(φS1S2

2

)
= cos2

(φS1

2

)
cos2

(φS2

2

)
.

Proof. Without loss of generality, we may assume S1 = R(e3, φS1) and S2 = R(e2,−φS2).

Computation gives Tr(S1S2) = (1 + cosφS1)(1 + cos φS2)− 1. On the other hand Tr(S1S2) =

1 + 2 cos φS. The result follows. �
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Corollary 6.8. Let S1, S2 ∈ SO3 be two matrices with perpendicular axes of rotation. Let

S = S1S2, then φS ≥ max{φS1, φS2}.

Proof of Theorem 6.1. Consider the point b− on the intersection of C(B, β) and

GC(e1, e3) between e1 and −e3. Recall that S−1
max(a, b−) is the orthogonal matrix that moves

a to b− such that [S−1
max(a, b−)Aa] lies on GC(e1, e3), opposite [Bb−] from b− (see Figure 6.7).

C(A, )

C C(B, )

a+ a

b

e1

[Bb ]

to –e3

to e2

[Smax(a,b )Aa]

[Aa]

n(a)

S1

Figure 6.7. Polar projection of region of sphere near e1.

Note that φSmax(a+,b−) = ∠(a+, b−). By Corollary 3.2, ∠(a+, e1) ≤ π
4
− φA

2
and ∠(e1, b−) ≤

π
4
− φB

2
, so both ∠(a+, e1) and ∠(e1, b−) are less than or equal to π

4
. Therefore ∠(a+, b−) ≤ π

2
.

First suppose that a is a point on C(A, α) in the first octant of S2 (i.e., the first quadrant

in Figure 6.7). We factor S−1
max(a, b−) as S2S1, where S1 and S2 are the following rotations:
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S1 rotates GC(a, Aa) to GC(e1, e3) counterclockwise (hence by an acute angle) about n(a),

and S2 moves [S1a] to b− about e2 so that [S2S1Aa] is opposite [Bb−] on GC(e1, e3).

By Lemma 6.6, since Latn(a)(a) never crosses C(A, α) between a and a+, S1a is above

a+ on GC(e1, e3) (see Figure 6.6). Thus the distance between S1a and b− is greater than

the distance between a+ and b− along GC(e1, e3), so φS2 > ∠(a+, b−). By Corollary 6.8,

φSmax(a,b−) ≥ max{φS1, φS2}. Therefore φSmax(a,b−) > ∠(a+, b−).

Next, suppose a is on the part of C(A, α) in the fourth quadrant (Figure 6.8). We factor

S−1
max(a, b−) as S2S1, where S1 and S2 are the following rotations: S1 rotates GC(a, Aa) to

GC(e1, e3) counterclockwise (hence by an obtuse angle) about n(a), and S2 rotates [S1a] to

C(A, )

C(B, )

a+

a

b

e1

[Bb ]

to –e3

to e2

[Smax(a,b )Aa]

[Aa]

n(a)

S1

Figure 6.8. Polar projection of region of sphere near e1.
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b− about e2 so that [S2S1Aa] is opposite [Bb−] on GC(e1, e3). Since φS1 > π
2
, by Corollary 6.8

φSmax(a,b−) > π
2
.

The proof is similar if a is on the second or the third quadrant. �

We conclude with a conjecture similar in spirit to Conjecture 4.4.

Conjecture 6.9. The minimum of φSmax(a,b) on C(A, α) × C(B, β) occurs at (a+, b−) and

(a−, b+).
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