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"Leonardo wrote that a painter 
should begin every canvas 
with a wash of black, because 
all things in nature are dark 
except where exposed by the 
light. 
 
[Paul] understands the value 
of starting with the shadows. 
The only things people can 
ever know about you are the 
ones you let them see." 
 

"Leonardo escribió que un 
pintor debería comenzar cada 
lienzo con una capa de negro, 
porque todo en la naturaleza 
es oscuro excepto allí donde 
está expuesto a la luz. 
 
[Paul] entiende el valor de 
empezar con las sombras. Las 
únicas cosas que la gente 
puede saber de ti son aquéllas 
que tú les dejas ver." 

 
 

I. Cadwell & D. Thomason 
The rule of four 
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Introduction 
 
 

Ícaro, 

no hay escapatoria real 

cuando el cepo es la mente. 

-Raúl Heraud- 
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Human Muscleblind proteins have emerged as a new family of 

alternative splicing factors, implicated in many developmental processes 

and diseases. Drosophila muscleblind shows good signs of being a useful 

model to study Muscleblind protein function in development and the 

diseases in which the human homologues are implicated. 

 

1. Regulation and developmental consequences of splicing. 

 

Pre-mRNA splicing involves the removal of introns and ligation of the 

flanking exons. Through alternative splicing, the exonic sequences of a pre-

mRNA are combined generating different transcripts from a single 

precursor. Alternative splicing can generate more transcripts from a single 

gene than the number of genes in an entire genome. A dramatic example is 

Drosophila Down Syndrome Cell Adhesion Molecule (Dscam), which 

potentially encodes 38016 proteins [1]. 40-60% of human genes are 

thought to undergo alternative splicing [2].  

 

The final exon composition of a transcript is determined by both cis 

sequence elements and factors in trans assembled in a complex called 

spliceosome. The excision of the introns from a pre-mRNA and the joining 

of the exons are directed by special sequences at the intron/exon junctions 

called splice sites [3]. Components of the basal splicing machinery bind to 

the classical splice-site sequences and promote assembly of the 

spliceosome, which performs both the recognition of the intron/exon 

boundaries and the catalysis of the cut-and-paste reactions that remove 

introns and join exons. Changes in the assembly of the spliceosome 

generate changes in splice site choice. The splice site consensus 

sequences generally do not carry enough information to determine whether 
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a site will assemble a spliceosome and function in splicing. Additional 

information and interactions come from many non–splice site regulatory 

sequences that strongly affect spliceosome assembly (Fig.I.1A,B). 

 
Figure I.1. Classical and auxiliary splicing signals A) Classical splicing signals found in 

the major class (>99%) of human introns are required for recognition of all exons. B) 
Classical and auxiliary splicing sequence elements and binding factors. Splicing enhancers 

and silencers in exons (ESEs and ESSs) and introns (ISEs and ISSs) are commonly 

required for efficient splicing of constitutive and alternative exons. Intronic elements also 

serve to modulate cell-specific use of alternative exons by binding multicomponent 

regulatory complexes. C) Cis-acting splicing mutations. Mutations that disrupt cis-acting 

elements required for pre-mRNA splicing can result in defective splicing that causes 

disease. (figure from [4]) (n = G, A, U, or C; y = pyrimidine; r = purine). 

 

The splicing machinery, known as the spliceosome, is one of the most 

complex machineries in the cell. This complexity is a response not only to 

the necessity of accuracy but also to the connection with previous and 

subsequent steps of RNA metabolism. Splicing is intimately coupled to 

transcription, RNA export, nonsense mediated decay and translation [5-7]. 

Such a broad spectrum of effects requires accurate control. Indeed, 
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alternative splicing is spatially and temporally regulated during 

development, regulating protein expression and generating a complicated 

network of isoform-dependent protein interactions that establish cell 

functionality [8-12]. Furthermore, the alternative splicing pattern of a cell 

can be altered by cell activity [13, 14] and also in response to diverse 

stimuli [15, 16]. Whereas some splicing decisions are regulated by small 

variations in general splicing factors, others require specific factors whose 

expression is highly restricted during development (reviewed in [17-19]). 

The equilibrium between the levels and activity of general and cell-specific 

splicing factors decides which isoforms are present in every cell type at 

each developmental stage. With so much energy dedicated to controlling 

alternative splicing, it is not surprising that unprogrammed changes in 

isoform ratio affect cellular functions, frequently leading to disease. 

Mutations disrupting cis-acting splice sequences (Fig. I.1C), the basal 

splicing machinery or alternative splicing factors have been linked to 

cellular transformation, metastasis and various hereditary diseases 

(reviewed in [4, 20-22]). 

 

2. Muscleblind family of proteins: RNA binding proteins with different 
functions in RNA metabolism. 

 

Muscleblind proteins are characterized by the presence of Cys3His 

(CCCH) zinc finger domains. These motifs have been described to perform 

very diverse functions including DNA recognition, transcriptional activation 

and repression, RNA packaging and turnover, protein folding and assembly 

and lipid binding [23] [24] [25]. TIS11d is a vertebrate CCCH protein that 

binds TNF-α mRNA [26] and this interaction has been studied in depth. The 

two zinc fingers of TIS11d bind in a symmetrical fashion to adjacent 5’-
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UAUU-3’ sub-sites on the ARE region [27]. RNA bases and conserved 

aromatic residues get intercalated in a stack and both electrostatic and 

hydrogen-bonding contribute to binding the protein to the RNA. 

 

The characterization of Muscleblind-Like1 (Mbnl1) knockdown 

(Mbnl1∆E3/∆E3) mice [28] showed that muscleblind function is required for 

proper alternative splicing regulation. Mbnl1∆E3/∆E3 mice developed 

myotonia, histological muscle defects, cataracts and impairment of splicing 

of several muscular transcripts (Table I.1) [28-30]. A set of exons that 

undergo a synchronized switch between post-natal day 2 and 20 in wild 

type, were misregulated in Mbnl1∆E3/∆E3 mice [30]. Interestingly, Mbnl1 was 

translocated from a predominantly cytoplasmic to nuclear distribution during 

this post-natal interval. In contrast to the Mbnl1 mutant, no myotonia or 

splicing defects were detected in Mbnl2 knockdown mice and muscle 

histology was normal. 

 

  
Figure I.2. Mechanisms of splicing regulation by MBNL1. A) Vertical boxes represent 

exons, lines introns and MSE boxes muscular splicing enhancer sequences. Dynamic 

balance model proposed by Ladd et al. [31] in which maintenance of exon E5 inclusion 

repressors MBNL1 and PTB levels in adult cardiomyocyte, together with the reduction of E5 
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inclusion activators CUG-BP1 and ETR-3 levels, originates a switch in cTNT splicing. E5 is 

only present in adult cardiomyocytes (figure taken from [31]). B-B”) Model of coordinate 

regulation of IR splicing in myoblasts. Blue boxes are exons (numbers indicate 

nomenclature used); lines are introns; circles are proteins. (B) MBNL proteins are required 

facilitators of IR E11 splicing but a limiting factor might be needed as elevated levels of 

MBNL proteins do not alter the IR splice equilibrium. (B’) hnRNP H and CUG-BP1 form an 

RNA-dependent suppressor complex that is required for the maximum repression of IR E11. 

(B”) Increased levels of MBNL1 can partially dampen the inhibitory activity of hnRNP H by 

physical interaction with it. 

 

Human Muscleblind proteins (MBNL1-3) regulate alternative splicing of 

cardiac troponin T (cTNT or TNNT2) and insulin receptor (IR) minigenes in 

HEK293 cell culture [32], although the effects of MBNL proteins on IR 

mRNA were not reproduced in myoblasts [33]. Over-expression of MBNL1, 

2 and 3 promoted the exclusion of human and chicken cTNT exon 5 (E5) 

and inclusion of human IR exon 11 (E11) in mature transcripts, whereas 

elimination of MBNL1-3 function by small interfering RNA generated the 

opposite effect in exon choice. Studies on human and chicken cTNT mRNA 

led to the description of a consensus sequence YGCU(U/G)Y (Y is a 

pyrimidine) for MBNL1 binding [32]. Two of these binding sites were 

identified close to the 5’ end of cTNT E5, which is only included in foetal 

cardiomyocytes. These MBNL1 binding sequences were required for 

repression of E5 inclusion by MBNL1. A dynamic balance between 

activators and repressors of splicing has been proposed to regulate the 

developmental switch in E5 inclusion in chicken and mouse heart 

development [31] (Fig. I.2A). The expression levels of MBNL1 and 

polypirimidine tract binding protein (PTB), previously described to repress 

E5 inclusion in skeletal muscle [34], are maintained during heart 

development. In contrast, levels of CUG binding protein 1 (CUG-BP1) and 

embryonic lethal abnormal vision type RNA binding protein 3 (ETR-3), both 
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activators of cTNT E5 inclusion [34, 35], are down-regulated in adult 

cardiomyocytes. Thus, during the foetal stage, CUG-BP1 and ETR-3 

preferentially bind the regulatory regions promoting exon inclusion but, 

when their levels decrease in adult cardiomyocytes, MBNL1 and PTB 

repress E5 inclusion. Coordinated physical and functional interactions 

between hnRNP H, CUG-BP1 and MBNL1 dictate IR splicing in myoblasts 

[33]. In this case, MBNL1 has been described to activate E11 inclusion by 

repressing hnRNP H activity (Fig. I.2B). CUG-BP1 and hnRNP H form a 

repressor complex which is inhibited by binding of MBNL1 to hnRNP H. 

Hence, the mechanisms by which MBNL1 regulates cTNT and IR splicing 

seem to be different. 

 

Although MBNL2 and 3 were also able to regulate splicing of cTNT and IR 

minigenes in cell culture, they have not been shown to regulate any 

physiological splicing event. Indeed, MBNL2 is thought to be involved in the 

RNA-dependent localisation of Integrin α3 protein to focal adhesions by 

binding to a specific ACACCC motif in the 3’ untranslated region (UTR) of 

the mRNA [36]. Furthermore, MBNL3 expression inhibits muscle 

differentiation in cell culture [37], whereas Mbnl1 knockdown mice show 

impaired muscle development pointing to Mbnl1 as a pro-myogenic factor 

[28]. Thus, although the high level of structural and functional similarity of 

these proteins could explain their similar behaviour in minigene splicing 

assays in cell culture, the physiological functions that each protein performs 

might be regulated by tissue-specific and developmentally regulated 

expression, post-transcriptional modification, sub-cellular localisation and 

other post-translational processes. 
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3. Muscleblind expression is regulated both transcriptional and post-
transcriptionaly. 

 

Human MBNL1 and MBNL2 expression was detected in brain, kidney, 

liver, pancreas and muscle tissues [37, 38]. While MBNL2 was found in 

similar levels in all tissues, MBNL1 was more abundant in skeletal muscle 

and the heart. MBNL3 transcripts, however, were expressed at much lower 

levels, with peak expression in the placenta and no expression in skeletal 

muscle. In contrast to humans, the expression of mouse Mbnl1, Mbnl2 and 

Mbnl3 genes in adults was more uniform across tissues, although Mbnl1 

transcript levels were higher in heart and lower in skeletal muscles [39]. 

During embryonic development, all three Mbnl genes were prominently 

expressed in the developing head region and forelimb bud by 9.5 days post 

conception (dpc). Later in development, the expression patterns of Mbnl1 

and Mbnl2 were similar (detected in tongue, mandibular and maxillary 

regions, lips, thymus, lung and intestines among other tissues) while Mbnl3 

expression was stronger in the thymus, lung and intestines. Muscleblind-

like2 and 3 (tmbnl2a and tmbnl3) expression patterns have been also 

characterized in Takifugu rubripes [40]. No differences between juvenile 

and adult stages were found. Expression of tmbnl2a was ubiquitous but 

predominant in the heart and brain and mbnl3, in contrast to its vertebrate 

homolog, was also detected in all analyzed tissues including skeletal 

muscle. Expression of Drosophila muscleblind mRNA is mainly detected in 

muscle and the nervous system ([41], see below) 

 

In addition to these tissue-specific expressions, different post-translational 

modification sites were detected in human MBNL protein sequences [42]. 

No functional studies have been performed, but alternative splicing 
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generates transcripts with different motifs in the final protein, which 

probably confer diverse functional abilities. Nine splicing variants of MBNL1 

transcripts, three of MBNL2 and six of MBNL3 have been reported 

(reviewed in [42]). The C-terminal region was the most variable but some of 

the isoforms generated also lacked zinc fingers or the linker between them, 

which are required to interact with RNAs [43]. Alternative splicing also 

generates four mature transcripts from Drosophila muscleblind, which show 

different developmental expression patterns and give rise to protein 

isoforms differing in their C-terminal regions ([44, 45]; see below). 

 

4. Muscleblind proteins in development. 

 

A number of studies have related Muscleblind proteins to various 

developmental processes. Analysis of Drosophila muscleblind mutants 

showed that mbl is required for proper terminal differentiation of the 

peripheral nervous system, photoreceptors and muscles in flies [41, 44, 

46]. Mouse Mbnl1 loss-of-function led to the maintenance of the foetal 

splicing pattern in skeletal muscle transcripts [28, 29]. MBNL1 is implicated 

in splicing regulation in chicken and mouse cardiomyocytes, participating in 

a developmental switch from foetal to adult splicing pattern [31]. In contrast, 

human MBNL3 has been described as an anti-myogenic factor [37]. 

Transcripts expressed in murine 3T3-F442A pre-adipocytes before and 

after differentiation induction by growth hormone (GH) were compared [47]. 

Mbnl2 messenger resulted rapidly up-regulated by GH signalling 

suggesting that, similarly to MBNL1 implication in cardiomyocytes 

differentiation, Mbnl2 could have a role in adipocyte differentiation in 

mouse. A study performed with murine foetal liver stem cells identified 

Mbnl3 transcripts being expressed in hematopoietic stem cells [48]. 
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Perhaps murine Mbnl3 is inhibiting the differentiation of hematopoietic stem 

cells, as it is in the case of human MBNL3 inhibiting myogenesis. Finally, 

human MBNL3 was upregulated in H295R cells after stimulation with 

angiotensin. [49]. 

 

5. Muscleblind proteins in disease. 

 

Most of the functional data about Muscleblind proteins were 

generated because of the implication of the MBNL proteins in human 

diseases. In particular, MBNL proteins are key factors in myotonic 

dystrophy (DM1 and DM2) [28, 50, 51] and genetic data implicate 

muscleblind in the Spinocerebellar Ataxia 8 (SCA8) disorder [52]. More 

recently, MBNL proteins have also been implicated in the pathogenic 

mechanism of Huntington Disease-Like 2 (HDL2) [53]. Finally, altered 

levels of MBNL expression have been described in several tumours, 

squizophrenia, and sporadic idiopathic pulmonary arterial hypertension [36, 

54, 55]. 

 

5.1. Myotonic dystrophy. 
 

Myotonic dystrophy is a complex multisystemic disease involving 

musculature, and the nervous and endocrine systems [56]. Dynamic 

mutations in untranslated regions of two genes form the molecular basis of 

DM. In DM1, a CTG trinucleotide repeat located in the Myotonic Dystrophy 

Protein Kinase (DMPK) 3’UTR is expanded from its normal range (5-37) to 

more than 1000 repeats, with a correlation between symptom severity and 

expansion length [57-62]. In DM2, a CCTG tetranucleotide is expanded in 

the first intron of ZNF9 [63], giving a very similar, although milder, clinical 
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manifestation. The main symptoms of myotonic dystrophies are muscular 

weakness, myotonia, cataracts, cardiac problems, insulin resistance, male 

infertility and neurological disorders such as excessive daytime sleepiness. 

At the molecular level, DM is characterized by a general impairment of 

alternative splicing regulation, which leads to the presence of foetal 

transcript isoforms in adult tissues. 

 

5.1.1. Contribution of a mutant RNA gain of function and 
sequestration of MBNL proteins to DM pathogenesis. 

 

The inability of Dmpk knockout mice to reproduce DM1 symptoms 

[64, 65], make it unlikely that the disease is a consequence of a lack of 

DMPK function in the heterozygous condition (haploinsuficiency). Also, 

CTG repeats have been shown to alter chromatin structure locally, thereby 

affecting the expression of nearby genes [66]. Extensive similarities 

between DM1 and DM2, despite the unrelated mutations that cause the 

diseases, suggested a common mechanism independent of the mutated 

gene. The observation of nuclear accumulation of mutant RNA into 

aggregates in the cells of myotonic dystrophy patients led to the RNA gain 

of function hypothesis: expanded sequences are not translated into a toxic 

protein but form a secondary structure that stabilizes the mRNA; this mRNA 

is retained in the nucleus and interferes with the function of diverse nuclear 

factors, thus leading to disease [67, 68]. 

 

The RNA gain of function hypothesis is strongly supported by murine 

models in which the expression of an expanded CUG containing RNA in an 

unrelated genomic context reproduced most of the symptoms of myotonic 

dystrophy (HSALR mice; [69]; table I.1). RNA molecules carrying expanded 
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repeats fold into a stable hairpin structure that generates the nuclear 

retention of the mRNAs [70]. Several nuclear factors have been described 

to be retained by these RNAs, including transcription and alternative 

splicing factors [51, 71, 72]. MBNL proteins co-localise with RNA foci in the 

myoblasts, fibroblasts, cardiomyocytes, neuromuscular junctions and 

neurons of DM patients [73-77]. MBNL proteins are the only nuclear factors 

described to bind CUG repeats in a length-dependent manner, an 

observation that suggested an explanation for the correlation between the 

length of the expansion and the severity of the disease: the larger the 

expansion, the stronger the loss of MBNL function [51]. Two main results 

demonstrate that MBNL loss-of-function contributes to DM pathogenesis. 

First, Mbnl1 knock-down mice reproduce the main features of myotonic 

dystrophy: myotonia, muscle histopathology, cataracts, and mis-splicing of 

Chloride Channel1, TnnT2 and 3 and other transcripts (Table I.1) [28]. 

Secondly, MBNL1 over-expression in mice expressing expanded CUG 

repeat RNA reverses the splicing defects observed in this DM model [29]. 
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Table I.1. Failure of MBNL1-dependent postnatal splicing transitions in DM1 and DM2. 
Misregulated alternative splicing in two mouse models of DM1 is concordant with human 

DM1 and DM2 molecular defects. Mice over-expressing long CUG repeat tract (HSALR) also 

reproduce these defects. a Indicates the isoform that is preferentially expressed in neonatal 

muscle at post-natal day 2 (P2) when compared with adult WT muscle. B Denotes exons that 

show post-natal splicing transition between P2 and P20 in WT hind limb muscle. C Denotes 

exons that show miss-regulated alternative splicing in adult (6 month) HSALR transgenic or 

Mbnl-/- mice when compared with WT mice of appropriate background strain. d Denotes 

exons that show misregulated alternative splicing in quadriceps muscle from DM1 or DM2 

patients compared to healthy individuals (table from [30]). 

 

5.1.2. DM: a network of intricate molecular defects. 

 

In spite of strong evidence supporting the contribution of MBNL 

sequestration to the disease, the array of molecular alterations in DM has 

not been completely elucidated yet. Mbnl1 loss-of-function mice show a 

phenotype very similar to that observed in DM patients, but no muscular 

weakness. Another molecular alteration characteristic of the myoblasts of 

patients, the increase in CUG-BP1 activity, is not reproduced in these mice 

[28]. Moreover, experimental data showed that sequestration of MBNL by 

CUG containing RNA could be separated from splicing misregulation [78] 

thus suggesting that CUG repeat RNA would trigger additional molecular 
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changes. One of them seems to involve CUG-BP1. CUG-BP1 is an 

alternative splicing factor that antagonizes MBNL1 in several RNA targets 

misregulated in DM [35, 79, 80]. Transgenic mice over-expressing CUG-

BP1 also reproduce the typical splicing impairment of DM [81]. Thus, 

although the mechanism that up-regulates CUG-BP1 activity in DM is not 

known, it might be contributing to the final systemic effects. 

 

Gene expression is also misregulated in DM. Another factor that is 

mislocalised in DM1 cells, Sp1, has been implicated in the transcriptional 

regulation of muscular specific Chloride Channel 1 (CLC1), an RNA that is 

also mis-spliced in Myotonic Dystrophy. The absence of CLC1 protein is 

the cause of the myotonia, one of the most severe symptoms of DM 

patients. Mice over-expressing CUG-BP1 and Mbnl1 knock-down mice also 

showed strong reduction in CLC1 levels due to an alteration in CLC1 RNA 

splicing [28, 81] similar to that found in DM patients. This means that at 

least three factors, MBNL1, CUG-BP1 and Sp1, could be contributing to the 

absence of CLC1 protein that leads to myotonia in DM. Furthermore, CUG-

containing RNA hairpins were described as targets of the RNA interference 

machinery, which could lead to the misregulation of gene expression by a 

different mechanism [82]. 

 

In addition to all these intricate molecular events, basic questions about DM 

aetiology have not yet been solved. Although considerable effort has been 

devoted to understanding whether foci formation in DM1 cells is 

pathogenic, protective, or perhaps irrelevant, the answer is not clear. The 

expression of 162 CUG repeat containing RNA in Drosophila formed 

ribonuclear foci only in some cell types [83]. Muscleblind protein co-

localised well with those foci, but muscleblind expression was shown to be 



Mbl molecular function 

 35

neither required nor sufficient for foci formation. Moreover, those flies did 

not show any apparent defect, indicating that RNA foci were not toxic in 

Drosophila. In contrast, flies expressing 480 CUG repeat RNA showed 

muscle wasting and degeneration, which were reduced when co-

expressing human MBNL1 [84, 85]. 

 

It is also very difficult to distinguish the primary effects of expanded RNA 

nuclear retention and secondary consequences of those primary defects. 

Fibre type transitions involving changes in gene expression and splicing 

regulation occur during development and in response to innervation, 

neuromuscular activity and hormone signalling [86]. In particular, myotonia 

causes fast muscles to become slower generating characteristic changes in 

muscular histopathology [87-90]. Therefore, myotonia could be the cause of 

some of the histological defects and splicing alterations found in DM 

muscles. Furthermore, it was found that the administration of sera from 

mothers of children with congenital myotonic dystrophy impairs muscle 

maturation in rats, suggesting there is a circulatory factor maintaining the 

immature skeletal muscle found in these patients [91]. 

 

6. Drosophila muscleblind. 

 

Drosophila muscleblind (mbl) was identified as a gene required for the 

morphogenesis of the Drosophila peripheral nervous system [46]. mbl 

mutants have neuronal abnormalities at the chordotonal organs, which are 

embryonic propioreceptors situated at the body wall. The muscleblind gene 

was independently isolated as a suppressor of the sev-svp2 eye phenotype 

[44]. sevenup (svp) acts autonomously to positively regulate the neuronal 

fate of photoreceptor precursors [92, 93]. Analysis of mbl mutant clones 
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generated during eye development showed that mutant cells fail to 

differentiate properly. Rhabdomeres were smaller than in wild type tissue 

and vertical sections showed that they failed to extent into the basal retina 

[44]. Recently, mutations in the Drosophila muscleblind gene were found to 

increase fly resistance to starvation [77]. The characterization of mbl null 

mutant embryos showed disruption of Z bands (Fig. I.3A-B) [41]. 

Expression of the Z-band specific protein kettin was tested, showing no 

differences in expression levels between mbl mutants and wild type 

controls, but the protein failed to assemble properly into the Z bands. mbl 

mutants also show severe reduction of extracellular tendon matrix at the 

indirect muscle attachments to the epidermis (Fig. I.3C-F). However, βPS 

integrin expression and localisation of the tendon matrix component Tiggrin 

appeared to be normal. These mutants die at a late embryonic stage; in 

fact, they die as larvae unable to hatch. When the chorion is artificially 

removed, the larvae show a severe abdominal contraction. With all these 

results it was concluded that Drosophila muscleblind is implicated in the 

terminal differentiation of nervous and muscular tissue. 

 

Consistent with this phenotype, characterization of Muscleblind expression 

by anti-Mbl antibody staining showed expression both in ectodermic and 

mesodermic derivatives [41] (Fig. I.4). In the ectoderm, mbl is detected at 

Bolwig’s organs (containing larval photoreceptor precursors) and 

segmentally repeated groups of cells in the central nervous system. In the 

mesoderm, Mbl protein is first detected at late stage 11 and becomes more 

abundant during germ band retraction. At the end of this process it is 

expressed throughout the somatic mesoderm, becoming restricted to a 

subset of mesodermal derivatives by stage 16. Then muscleblind is 

detected in alary, pharyngeal, visceral and somatic musculature, a pattern 
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that is typical of genes involved in terminal muscle differentiation as myosin 

or PS2 integrin [94, 95]. 

 
Figure I.3. muscleblind mutants show absence of Z-bands and reduction of 
extracellular matrix at indirect muscle attachments. Muscles (*), epidermal cells (E), and 

tendon matrix (TM).A) Relaxed wild-type muscle shows A-band with thick filaments (open 

arrow), I-band with only thin filaments (arrowhead), and Z-band in the form of electron dense 

spindles (bent arrow). B) Accumulations of electron dense thin filaments (bent arrows) most 

likely represent components of the Z-band; the I-band is absent and thick filaments occur 

adjacent to potential Z-band structures (small arrows). C-D) Schematic representation of 

direct (left) and indirect (right) muscle attachments in wild type (C) and muscleblind mutant 

embryos (D). At indirect muscle attachments numerous muscle tips are connected to few 

epidermal cells via extracellular tendon matrix (E). At mbl mutant indirect muscle 

attachments, TM (white arrow) is severely reduced, and epidermal cells bulge into the body 

cavity, staying in close contact with muscles (F). (Pictures from [41, 96]) 
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Figure I.4. Muscleblind protein is present in somatic, visceral, and pharyngeal 
musculature. A) Lateral view, stage 11 embryo with Mbl expression in the cephalic 

mesoderm (arrow) and a barely detectable signal in the remainder of mesoderm. B, C) Mbl 

expression restricted to visceral (arrow) and somatic mesoderm in a lateral view of a late 

germ-band retracting embryo (B) and a dorsal view of a late stage 13 embryo (C). D) 
Ventral–lateral view of an embryo at stage 15 showing expression in visceral and somatic 

musculature and CNS. E) Dorsal view, stage 16 embryo. Mbl expression is observed in 

repeating nuclear clusters of fused somatic mesodermal cells but not in the heart precursor 

cells (arrow). F) Lateral view, stage 16 embryo. Mbl-positive clusters of nuclei in locations 

corresponding to all syncitial fibers of differentiating somatic muscles are shown. G) Ventral 

view, stage 16 embryo. Mbl expression is also detected in the CNS in repeated clusters of 

cells. H) High magnification of the embryo in E showing the expression of Mbl in pharyngeal 

muscles (asterisk) and Bolwig’s organ (arrow). I) High magnification of VO3-6 muscles 

showing individual nuclei stained by α-Mbl antibody. (Figure from [41]) 
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The detection of Muscleblind protein in Dmef2 mutant flies showed a 

marked reduction of mbl expression in somatic, visceral and pharyngeal 

musculature thus pointing to Dmef2 as a transcriptional activator of mbl 

[41]. This activation was confirmed driving expression of Dmef2 in the 

epidermis, which led to ectopic detection of Muscleblind. Ectodermic mbl 

signal remains unaffected in Dmef2 mutants and also some signal persists 

at mesodermal derivatives indicating that other factors might regulate mbl 

expression. Consistent with these results, chromatin immunoprecipitation 

experiments isolated four fragments bound by Dmef2 surrounding the mbl 

start site [97]. 
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Figure I.5. Alternative splicing generates four mbl transcripts coding four CCCH 
proteins with specific C-terminal regions. A) The analysis of muscleblind transcript 

expression by RT-PCR showed isoform-specific developmental regulation (Figure from J. 

Houseley from the Institute of Biomedical and Life Sciences, University of Glasgow, UK). B) 
Amino acid alignment within the first two CCCH zinc fingers from flies (Dm), Anopheles 

gambiae (Ag), Caenorhabditis elegans (Ce), human (Homo sapiens; Hs), Gallus gallus (Gg), 

Xenopus tropicalis (Xt), Takifugu rubripes (Tr) and Ciona intestinalis (Ci). Besides the CCCH 

zinc finger domain, Muscleblind proteins show highly conserved sequences, such as the 

LEV and NGR boxes (boxed in the consensus sequence) (Figure from [42]). C) Schematic 

representation of Muscleblind proteins. Size in amino acids is given on the right, shared 

amino acids are given below. Zinc finger motifs (I, II) and lower complexity regions in MblB 

(Alanine- (A) and Phenylalanine (F)-rich regions are denoted. 
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muscleblind transcripts undergo alternative splicing, giving rise to four 

transcripts with specific 3’ end sequences [44]. Isoform-specific RT-PCR 

analysis showed that mbl splicing is regulated during development, as 

different amounts of the transcript isoforms are detected at different stages 

of Drosophila life cycle [45] (Fig. I.5A). These transcripts encode four 

CCCH zinc finger proteins (MblA-D; Fig. I5B-C) that share their amino 

terminal region [44]. MblA, B and C have two zinc fingers of the CCCH type 

whereas MblD has just one, as the second is truncated before the last 

histidine. Several putative sites for post-translational modification were 

identified recently [42]. Also, two low complexity regions are present in 

MblB (alanine-rich and phenylalanine-rich) but no functional studies have 

been performed that demonstrate functionality for any of these domains. 

Interestingly, rescuing the muscleblind mutant phenotype by expressing 

UAS-mblA, B and C transgenes showed that the different isoforms rescued 

to different extent, supporting the idea that Muscleblind isoforms are not 

functionally redundant [45]. Over-expression of the UAS-mblC transgene in 

a general embryonic pattern resulted in over 80% rescue of embryonic 

lethality, whereas mblB and A rescued to a much lower extent. 

 

In summary, Drosophila muscleblind function has been implicated in the 

terminal differentiation of several tissues, but the only information we have 

about its molecular function comes from its vertebrate homologues. When 

this thesis project was initiated, human MBNL proteins had recently been 

related to the DM pathogenic pathway. Since then, relevant functional data 

have been published showing the role of MBNL in RNA metabolism, 

particularly in splicing regulation. Our work has generated important data 

about the conservation of Muscleblind protein function and the DM 

pathogenic mechanism between vertebrates and Drosophila. In particular, 
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we have shown that Muscleblind proteins are alternative splicing factors 

that regulate the splicing of specific transcripts. Interestingly, we found 

these Drosophila muscleblind targets to be altered by CUG repeat-

containing RNA toxic effect. We have also shown that Drosophila 

Muscleblind proteins are functionally diverse and we have given some 

insights into the possible causes of this diversity. Furthermore, we have 

demonstrated a possible role for Drosophila muscleblind in a crucial cellular 

process, the cell death. 
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Objectives 
 
 
 
 

La utopía es como el horizonte: cuanto más te acercas a 
ella, más se aleja... pero te hace andar. 

-Gloria G.- 
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Since their description in 1997 our laboratory has maintained a continued 

interest in characterizing the molecular functions of Muscleblind proteins in 

Drosophila and, more recently, their relevance to the mechanism of 

pathogenesis of myotonic dystrophy. It is within this far-reaching goal that 

we began this thesis project. We hypothesized that Drosophila could serve 

as a biomedical model and, in particular, that human and Drosophila 

Muscleblind proteins performed similar functions in vivo. Therefore, the 

overall objective of this thesis project was demonstrating the functional 

conservation between Drosophila and human Muscleblind proteins. We 

also wondered whether the binding of Muscleblind proteins to physiological 

targets and to CUG repeat containing RNA had different properties in a way 

that we could find mutations that inhibited the binding to CUG repeat RNA 

but left their physiological function uncompromised. This overall aim 

required addressing the following specific research objectives: 

 

1. Assessment of conservation of the myotonic dystrophy pathogenesis 

pathway in Drosophila. 

 

2. Assessment of conservation of the alternative splicing regulatory function 

described for human MBNL proteins in Drosophila Muscleblind. 

 

3. Evaluation of functional diversification of Drosophila Muscleblind protein 

isoforms as naturally occurring protein variants. 

 

4. Analysis of Muscleblind binding to physiological RNA targets and CUG 

containing RNA. 
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5. Characterization of functional domains in Drosophila Muscleblind 

proteins. 
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Materials and methods 
 
 
 
 
 
 
 
 

Dicen que no nos obligan, pero 
tenemos que cruzar el río y 

sólo hay un puente. 
-Desconocido- 
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MATERIALS 
 

I. Drosophila melanogaster strains. 
 
Oregon-R                                    Depto. Genética, Facultad de Biología, 

U.V. 

y1 w1118                                        Depto. Genética, Facultad de Biología, 

U.V. 

w; mblE27 /CyO                            [44] 

mblk7103/CyO                               [46] 

dgo/CyO, ubiquitous (ubi)-GFP  available in our laboratory from Muñoz, S. 

y1w1118; UAS-(CTG)480_1.1       [85] 

y1w1118; UAS-(CTG)480_2.1       [85] 

w; daughterless-Gal4                   Bloomington Stock Center (Indiana) 

Mhc-Gal4; ry-                               [98] 

mblk7103/CyO, ubiquitous-GFP     generated in this work 

mblE27/CyO, ubiquitous-GFP       generated in this work 

w,mblE16/CyO, ubiquitous-GFP   available in our laboratory from Monferrer, 

L. 

y1w1118; mblE27/CyO, y+; P[w+mC=UAS-mblC:GFP]T15.3 available in our 

laboratory from Pascual, M. 

 
II. Escherichia coli strains. 
 
XLBlue1: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB 

lacIqZ∆M15 Tn10 (Tetr)]. Depto. Genética, Facultad de Biología, U.V. 

electro competent DH5α: F-, φ80dlacZ∆M15, ∆(lacZYA-argF)U169, 

deoR, recA1, endA1, hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1,gyrA96, 
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relA1. (obtained from Swanson, M., Dept. of Molecular Genetics and 

Microbiology, University of Florida, USA) 

SURE: e14–(McrA–) ∆(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 

gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 (Kanr) uvrC [F´ proAB 

lacIqZ∆M15 Tn10 (Tetr) Amy Camr] (Stratagene; obtained from Swanson, 

M., Dept. of Molecular Genetics and Microbiology, University of Florida, 

USA) 

BL21: F– ompT hsdSB(rB– mB–) gal dcm (obtained from Smith, C., Dept. 

Biochemistry, University of Cambridge) 

BL21 star (DE3): F- ompT hsdSB (rB-mB-) gal dcm rne131 (DE3) 

(obtained from Smith, C., Dept. Biochemistry, University of Cambridge) 

Rosetta (DE3): ∆(ara–leu)7697 ∆lacX74 ∆phoA PvuII phoR araD139 ahpC 

galE galK rpsL (DE3) F'[lac+ lacI q pro] gor522::Tn10 trxB pRARE2 (CamR, 

KanR, StrR, TetR) (obtained from Smith, C., Dept. Biochemistry, University 

of Cambridge) 

 

III. Sacharomyces cerevisiae strains. 
 

L40 coat: MATa, ura3-52, leu2-3,112, his3∆200, trp ∆1, ade2, LYS::(LexA 

op)-HIS3, ura3::(LexA op)-LacZ, LexA-MS2 coat (TRP1) [99] (obtained 

from García, C., Depto. Bioquímica, Facultad biología, U.V.) 

YBZ1: MATa, ura3-52, leu2-3, 112, his3-200, trp1-1, ade2, 

LYS2<(LexAop)-HIS3, ura3<(lexA-op)-lacZ, LexA-MS2 MS2 coat (N55K) 

[100] (obtained from García, C., Depto. Bioquímica, Facultad biología, 

U.V.) 
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IV. Cell lines. 
 

COS: Simian fibroblasts (CV-1 cells) transformed by SV40 that is deficient 

in the origin of replication region (obtained from Swanson, M., Dept. of 

Molecular Genetics and Microbiology, University of Florida, USA, and 

Smith, C., Dept. Biochemistry, University of Cambridge). 
HEK293T: Embryonic human kidney containing SV40 large T antigen 

(obtained from Swanson, M., Dept. of Molecular Genetics and 

Microbiology, University of Florida, USA, and Smith, C., Dept. Biochemistry, 

University of Cambridge). 
S2: Schneider's Line S2 obtained from dissociated embryos (obtained from 

Zhou, L. Dept. of Molecular Genetics and Microbiology, University of 

Florida, USA, and Llorens, J., Depto. Genética, Facultad de Biología, 

Universidad de Valencia). 

 
V. Drosophila melanogaster cDNAs. 
 

muscleblind (mbl) transcript cDNAs in pBluescript were available in our 

laboratory [44]. Accession numbers are the following: 

• mblA                              AF001625 

• mblB                              AF001626 

• mblC                              AF001536 

• mblD                              AF001422 

bruno cDNAs and putative CLC1 homologues were obtained from the 

Berkeley Drosophila Genome Project (BDGP): 

• bruno1 (bru1, aret)         LD29068 

• bruno2 (bru2)                 LD19052 

• bruno3 (bru3)                 LD31834 
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• CG6942                          GH23529 

• CG8594                          RE63672 

• CG5284                          LD07266  

 

VI. Vectors. 
 
pEGFP-N3: expresses a protein of interest fused in N-t to GFP in 

eukaryotic cells (Clontech) 

pEGFP-C1: expresses a protein of interest fused in C-t to GFP in 

eukaryotic cells (Clontech) 
pACT2: expresses the protein of interest fused to the Gal4 activation 

domain in S. cerevisiae [99] 

pIIIAMS2.2: expresses RNAs fused to two MS2 binding sequences in S. 

cerevisiae [99] 

pFP105 (modified from pFP98): expresses GST and His6-tagged proteins 

in E.coli [44] 

pGEX-6P-1: expresses GST-fused proteins in E.coli (Pharmacia) 

pIEI-4: expression vector for Drosophila S2 cells (Novagen) 

pSG5: vector for minigene expression in eukaryotic cells (Stratagene) 

pSP72: vector for expanded DMPK 3’UTR expression in eukaryotic cells 

(Promega) 

pGEM4T3: control DNA in cell transfection assays (Amersham) 

 

VII. Constructs. 

pIEI-Diap1                        obtained from Zhou, L. (Dept. of Molecular 

Genetics and Microbiology, University of Florida, USA) 

pIEI-LacZ1                        obtained from Zhou, L. (Dept. of Molecular 

Genetics and Microbiology, University of Florida, USA) 
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MBNL1-GFP                     obtained from Swanson, M. (Dept. of Molecular 

Genetics and Microbiology, University of Florida, USA) 

pSP72-3’DMPK300             obtained from Swanson, M. 

pSG5-tnnt3                        obtained from Swanson, M.[29] 

pEGFP-N3-MblC∆sumo        available in our laboratory from Pascual M. 

 

Table M.1. presents a summary of constructs involving Muscleblind 
isoforms generated in this work  
 
 pEGFP-

N3 
(GFP) 

pMV1 
(myc) 

pMV2 
(myc-
GFP) 

pIEI4 
(myc) 

pFP105 
(GST/His6) 

pGEX6 
(GST) 

pACT2 
(G4AD) 

MblA + + + + +  + 
MblB + + + + * # + 
MblC + + + + + # + 
MblD + + + +   + 
MblC∆SUMO \ +  +    
ZC       + 
CCCH       + 
 
Table M.1. Epitope tagging of Muscleblind coding sequences generated in this work. 
First lane shows vectors used. The epitope to which Mbl is fused to is represented in 

brackets (GFP = Green Fluorescent Protein; G4AD = Gal4 activation domain). ZC is a 

fragment containing the common region of MblA, B and C. CCCH is a fragment containing 

the two zinc fingers. MblC∆SUMO is a mutated variant of MblC. pMV1 vector is a derivative of 

pEGFP-N3 where GFP was substituted by the myc epitope. pMV2 is a derivative of pEGFP-

N3 where the myc epitope was inserted between Mbl protein and GFP. A + indicates that 

the construct was generated in this work; * designates that the C-t sequence was not 

confirmed by sequencing; # designates that the Mbl isoform sequence is correct, but 

transferring to a fresh vector is needed as they come from PCR; \ means that was available 

in our laboratory. 
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VIII. Primers. 
 
name sequence use t ºC 

TNTE2 CGACGATGAAGAGTACAC 

TNTE6 CTCTGGATCGCCCTCTCC 

Drosophila 
troponin T 

55

TNT4 TTTTCAACCCTAAACCGTAGC 

TNT200 ACTCGGTGATGTATTCTTTCAG 

Drosophila 
troponin T 

56

6942/E12 GAAGTCCACCACGCTCCAGG 

6942/E17 GCTCCCATTGCTTCTGATCCTCCG 

Drosophila 
CG6942 

 

6942/E1 CCGAAGATCAAGTCGCACGCC 

6942/E4 GAGCTTTCTGGCTTCATCC 

Drosophila 
CG6942 

 

5284/E7 GGGTGTTATTGGCACATTC 

5284/E9 GAAGGTTCTCAACATCGTCC 

Drosophila 
CG5284 

60

ACTE5 TTATCCATCGCCATCGTC 

ACTE10 TTGAAGTTGGTCTCCAGC 

Drosophila 
α-actinin 

65

RP49for ATGACCATCCGCCCAGCATAC 

RP49rev ATGTGGCGGGTGCGCTTGTTC 

Rp49 65

Xho-Mbl CCGCTCGAGATGGCCAACGTTGTCAA
TATG 

5’Mbl ORF 
in pEGFP-N3 

See reverse 
primer 

MblA-gc-E CGGAATTCCGAATTGACTTCATTGGA
TAC 

3’MblA ORF 
in pEGFP-N3 

55

MblB-gc-E CGGAATTCCGGCATGCAACAAAAAAG
GC 

3’MblB ORF 
in pEGFP-N3 

60

MblC-gc-E CGGAATTCCGTCTTGGCACACCGGGA
GGG 

3’MblC ORF 
in pEGFP-N3 

65

MblD-gc-E CGGAATTCCGGCAGATTAATTTTTTA
CTTAC 

3’MblD ORF 
in pEGFP-N3 

60

Eco-Mbl GAATTCCGGCCAACGTTGTCAATATG
AACAGCC 

5’Mbl ORF 
in pACT2 

See reverse 
primer 

MblA-Xho CCGCTCGAGCAATTGACTTCATTGGA
TAC 

3’MblA ORF 
in pACT2 

55

MblB-Xho CCGCTCGAGCGCATGCAACAAAAAAG
GC 

3’MblB ORF 
in pACT2 

60

MblC-Xho CCGCTCGAGCTCTTGGCACACCGGGA
GGG 

3’MblC ORF 
in pACT2 

65

MblD-Xho CCGCTCGAGCGCAGATTAATTTTTTA
CTTAC 

3’MblD ORF 
in pACT2 

60

ZC-Xho CCGCTCGAGCCTCTAATCTGTCGGAA
CGTGG 

3’Common 
Region in 
pACT2 

55
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CCCH-Xho CCGCTCGAGCCTTGAGGGCCAAATGA
TTGCG 

3’Zinc 
Fingers in 
pACT2 

55

Sma-EcoA GGGTATACGCATGCTTCG 

Sma-EcoB AATTCGAAGCATGCGTATACCC 

3 hybrid 
adaptor  

 

Xba-SphA CTAGACCATGGATATCCCGGGCATG 

Xba-SphB CCCGGGATATCCATGGT 

3 hybrid 
adaptor  

 

ACTE7f CCCACAAGACAATACACC 

ACTI7r1 ACATGCATGCCTTAGAACGAGGAAGG
C 

Actn1 in 
PIIIA/MS2.2 

55

ACTI7f1 GGGCCTTCCTCGTTCTAAG 

ACTI7r2 ACATGCATGCGTACCGCTGCGACCTT
G 

Actn2 in 
PIIIA/MS2.2 

55

Nde-Mbl GGAATCCATATGATGGCCAACGTTGT
CAATATG 

5'Mbl ORF 
in pFP105 

See reverse 
primer 

MblB-Eco CGGAATTCGCATGCAACAAAAAAGGC 3’MblB ORF 
in pFP105 

65

MblC-Eco CGGAATTCTGGCACACCGGGAGGG 3’MblC ORF 
in pFP105 

65

MblD-Eco CGGAATTCGCAGATTAATTTTTTAC 3’MblD ORF 
in pFP105 

65

ZF-Eco GCATCAGTGAATTCTTGAGGG 3’Zinc 
Fingers in 
pFP105 

60

T7actn1D CGTAATACGACTCACTATAGGGAACC
CACAAGACAATACACC 

T7actn1R ATACTTAGAACGAGGAAGGC 

Actn1 in 
vitro 
transcripti
on template 

63

T7actn2D CGTAATACGACTCACTATAGGTATGC
CTTCCTCGTTCTAAG 

T7actn2R CTGCGACCTTGGCAGTG 

Actn2 in 
vitro 
transcripti
on template 

57

T7actn5R CTGTGAACGTGTGCGTGTTG Intron 6 in 
vitro 
transcripti
on template 

65

T7actn6D CGTAATACGACTCACTATAGGGCCCA
AAAGGTCTGTTATACG 

T7actn6R CTTGAGCACCTTGCAGATCC 

Intron 7 in 
vitro 
transcripti
on template 

65

T7CUGD CGTAATACGACTCACTATAGGTCCTT
GTAGCCGGGAATG 

  

T7CUGR AATGGTCTGTGATCCCCC 

CUG repeats 
in vitro 
transcripti
on template 
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T7CAGD CGTAATACGACTCACTATAGGAATGG
TCTGTGATCCCCC 

  

T7CAGR TCCTTGTAGCCGGGAATG 

CAG repeats 
in vitro 
transcripti
on template 

  

myc-dir TCGACGAGCAGAAGCTGATCAGCGAG
GAGGACCTGG 

 

myc-rev GATCCCAGGTCCTCCTCGCTGATCAG
CTTCTGCTCG 

myc tag 
into pEGFP-
N3  

5ACTMGE5 GGCGAATTCTTCTGCGCCCTTATCCA
TCGC 

3ACTMGE9 GGCGAATTCCCAGACGCTCGTACTCC
TCCATG 

α-actinin 
minigene 

60

1938 GCTGCAATAAACAAGTTCTGCTTT 

1956 AGAATTGTAATACGACTCACTATAGG
GC 

pSG5 56

S-myc-Nf TCGACGAGCAGAAGCTGATCAGCGAG
GAGGACCTGGGAGCGGGCCCATAGTA
GGC 

 

S-myc-Nr GGCCGCCTACTATGGGCCCGCTCCCA
GGTCCTCCTCGCTGATCAGCTTCTGC
TCG 

myc tag to 
build pMV 

 

Xho29 GGCCTCGAGATGTTCACCAGCCGCGC
TTC 

29Eco GGCGAATTCCAGTAGGGCTTCGAGTC
CTTGG 

Bru1 ORF in 
pEGFP-N3 

55

Xho19 GGCCTCGAGATGATGTTGCAATCCTT
GAG 

19Bam GGCGGATCCTAAAAATTGCAAGTCGG
AAAATGG 

Bru2 ORF in 
pEGFP-N3 

60

Xho31 GGCCTCGAGATGGTTCATATTATTGA
ATTG 

31Eco GGCGAATTCCAATAGGGTCGACTGGC
ATC 

Bru3 ORF in 
pEGFP-N3 

55

 
Table M.2. Primers used in this work. Primer name, sequence, application (use) and 

annealing temperature if used in PCR are given. 
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METHODS 
 

I. Drosophila work. 

 

I.1. Sequence homology searches. 

 

Human nucleotide sequences were used to search homologous 

sequences in the Drosophila genome with the Washington University Blast 

software package at http://blast.wustl.edu 

 

I.2. Assessment of mexiletine effect. 

 

I.2.1. Mexiletine administration. 

 

The mexiletine dose for humans is 8.6 mg/ kg·per day. Assuming an 

average larval weight of 1 mg, that supposes a dose of 3.6*10-5 µg/h for 

larvae. Considering the food ingested equivalent to the weight gain from 

embryo to pupae, larvae eat approximately 21.7 µg /h. That means 0.36% 

mexiletine in the fly food for a dose equivalent to the human dose. With 126 

mg of excipient (starch) per 326 mg of pharmacological presentation of 

mexiletine, 0.035 mg of medicine were added per ml of food. 0.013 mg of 

excipient were added per ml of food as control. The appropriate amount of 

mexiletine or excipient powder was added to previously mixed and cooled 

fly food. Everything was then vigorously mixed and aliquoted into culture 

tubes. 
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I.2.2. Fly viability. 
 

w; mblE27 /CyO  and mblk7103/CyO flies were crossed with dgo/CyO, 

ubi-GFP to obtain mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies. 

mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies were crossed to 

obtain the transheterozygous mblE27/ mblk7103, which behaved as a 

hypomorphic mutation and reduced adult fly viability. Oregon-R (OrR) flies 

were used as wild type control for the potential toxic effects of mexiletine. 

60 virgin females and 36 males were crossed in culture bottles. Emerged 

adults were counted daily. mblE27/ mblk7103 flies were identified as GFP 

negative using a GFP fluorescence module mounted on a Leica MZ APO 

stereo microscope. 

 

Two crosses with 1x and 10x doses of commercial mexiletine were set up 

with mbl strains in both directions and OrR. Excipient was added at 10x 

dose as control. 

 

I.2.3. Lifespan. 

 

Viable mblE27/ mblk7103 flies from the viability study were kept in tubes 

with the same dose of mexiletine and the number of dead flies was counted 

every day when possible. Fly food was changed twice a week. At least 90 

flies, in seven to eight samples, were analysed in this assay from each 

genotype/mexiletine dose combination. 

 

The longevity of flies expressing 480 CUG repeat RNA was registered in 

parallel to control flies carrying the UAS-(CTG)480 transgene or the Gal4 

insertion alone. y1w1118; UAS-(CTG)480_1.1 virgin females were crossed to 
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w; daughterless-Gal4 and Myosin heavy chain-Gal4; ry-  males to express 

the CUG repeat containing RNA in a general or muscle-specific pattern, 

respectively. Flies carrying the UAS and the Gal4 insertions alone were 

used as controls. Twenty flies were introduced in each vial and a minimum 

of two replicas per genotype were made. For those days where dead flies 

were not counted, the last number registered is taken as an approximation 

to calculate the percentage of surviving flies that day. 

 

I.2.4. Climbing assay. 
 

mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies were crossed in 

both directions using 15 virgin females and 8 males in vials containing a 1x 

or 2x dose of mexiletine or excipient. 30 synchronized flies (collected within 

48 h periods) were tested for their climbing ability by counting the number 

of flies that were above a line at eight cm height after 18 s. Two tubes per 

cross direction were made at each mexiletine dose. Five replicates per 

assay were made. The day of the assay flies were changed to a new tube 

to increase their climbing activity. As the assay tube was larger than the 

habitual culture tube, flies were allowed ten minutes to get used to it. The 

experiment was carried out at 25ºC and measurements were around noon. 

 

I.3. In situ detection of transcripts in Drosophila embryos. 

 

For whole-mount in situ hybridization OrR embryos were fixed and 

hybridized as described [101] with minor modifications. Antisense and 

control (sense) RNA probes were DIG-labelled using the DIG RNA labelling 

kit following the recommendations from the manufacturer (Roche). Table 
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M.2. summarizes the labelling reactions performed. Embryos were 

analyzed with a DM LB2 Leica microscope using bright field microscopy. 

 
Gene cDNA Probe Restriction 

enzyme 
RNA polymerase 

CG6942 GH23529 Antisense EcoRI Sp6 
CG6942 GH23529 Sense XhoI T7 
CG8594 RE63672 Antisense NotI T3 
CG8594 RE63672 Sense NruI T7 
CG5284 LD07266 Antisense XbaI T7 
CG5284 LD07266 Sense KpnI T3 
 
Table M.3. Reactives for the generation of RNA probes for in situ hybridization. The table shows 

cDNAs used as template, the restriction enzyme that linearized the plasmid and the RNA polymerase 

DNA dependent that was used to carry out the in vitro transcription. 

 

I.4. Analysis of alternative splicing defects. 
 

I.4.1. Fly collection. 

 

mblE27/CyO, ubi-GFP and mblE16/CyO, ubi-GFP flies were crossed en 

masse during 2 h in laying pots to obtain synchronized mutant embryos. 

Egg collection plates were then incubated at 25 or 18ºC and embryos were 

collected after 16 h of development. mblE27/ mblE16 embryos were identified 

by the lack of fluorescence and handpicked. Late pupae (two days after 

puparium formation) and non-staged adults were obtained from crosses 

between mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies. 

y1w1118;UAS-(CTG)480_1.1 virgin females were crossed to Mhc-Gal4; ry-  

males to drive expression of CUG repeat RNA to the musculature of the fly. 

F1 flies expressing CUG repeats with Myosin Heavy Chain pattern were 

collected at the same stages than mutants. Embryos expressing CUG 

repeats in a broad pattern were also collected from crosses between 
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y1w1118;UAS-(CTG)480_2.1 females and w; daughterless-Gal4 males. OrR 

and y,w flies were collected as controls. 

 

To further characterise tnT alternative splicing, mblE27/CyO, ubi-GFP and 

mblk7103/CyO, ubi-GFP flies were crossed en masse in culture bottles. 10 to 

22 h after egg laying embryos, 1 to 2 day-old pupae and adults of more 

than six hours expressing CUGs (1.1 strain) with the Myosin heavy chain 

(Mhc) pattern were also collected. OrR, heterozygous mblE27/ CyO, ubi-

GFP and mblk7103/ CyO, ubi-GFP, y1w1118;UAS-(CTG)480_1.1 and Mhc-

Gal4; ry- flies were collected at the same stages as controls. 

 

I.4.2. RNA extraction. 

 

Total RNA was extracted with Tri-reagent (Sigma) following the 

recommendations from manufacturer and treated with DNase I (Invitrogen). 

RNA concentration was measured by a spectrophotometer (Eppendorf). 

Only RNA extractions with A260/A280 and A260/A230 ratios over 1.8 were 

saved. 

 

I.4.3. RNA quality on gel. 

 

RNA quality was checked loading samples with 50 % formamide and 

17.5 % formaldehyde on 1.2 % agarose, 5.5 % formaldehyde gels. 20 mM 

MOPS, 5 mM NaAc, 1 mM EDTA pH 7 buffer was used to prepare the gel 

and the samples, and to run the electrophoresis. 

 

 

I.4.4. RT-PCR. 
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Reverse transcription (RT) was performed with 1 µg of total RNA, 

Superscript II RNase H- and random hexamers following instructions from 

the provider (Invitrogen). cDNA was used in a standard 20 µl PCR reaction 

of 25 cycles with Taq DNA polymerase (Need) following the 

recommendations from the manufacturer to amplify endogenous Drosophila 

transcripts. Products were separated on 2% agarose gels. 

 

TNT4/ TNT200 primers were used to amplify troponinT (tnT) mRNA from 1 

µl of RT reaction. To increase specificity we used a nested PCR approach 

with the internal TNTE2/TNTE6 primer pair and 1 µl of a 1:100 (or 1:1000 

dilution) of the first PCR as template. 

 

Primers 5284/E7 and 5284/E9 were used to amplify alternatively spliced 

region of CG5284. 2 µl of cDNA were necessary to detect any RT-PCR 

product. Primer pairs 6942/E12-6942/E17 and 6942/E1-6942/E4 were used 

to amplify CG6942 mRNA splicing products. 

 

To characterize Drosophila α-actinin (α-actn) splicing pattern, 4 µl of the RT 

reaction were used as template in a standard 40 µl PCR reaction of 40 

cycles with primers ACTE5 and ACTE10. PCR products were purified by 

NH4Ac precipitation and half of the final volume was digested with SacI to 

distinguish α-actn isoforms. 

 

1 µl of a 1:100 dilution of cDNA was used in a 25 cycle PCR with primers 

Rp49 for/rev as RT efficiency and RNA input control. These primers were 

designed to encompass an intronic region of Rp49 to detect contamination 

by genomic DNA in the RNA extraction. No reverse transcriptase controls 
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were also amplified with the same primer pairs used to amplify tnT and α-

actn cDNA sequences and showed no amplification. 

 

I.5. UV crosslinking and immunoprecipitation (CLIP) of RNA bound 
to MblC in vivo. 

 
I.5.1. Sample collection and UV crosslink. 

 

Virgin y1w1118; mblE27/CyO, y+; P{w+mC=UAS-mblC:GFP}T15.3 

homozygous female flies were crossed en masse with w; daughterless-

Gal4 homozygous males in large laying pots with agar-sucrose petri dishes 

daubed with fresh yeast paste. Flies were allowed to mate for at least 12 h. 

Laid eggs, in plates, were incubated 10 additional hours prior to collection. 

da-Gal4; UAS-mblC:GFP embryos were bleach decorionated and 

extensively washed with running tap water. Embryos were transferred to a 

15 ml conical tube with cold Hank’s Balanced Salt Solution (HBSS; 

GIBCO). Embryos were gently centrifuged at 800 rcf for 10 min at 4ºC to 

remove HBSS buffer. Supernatant was decanted and 1 ml of fresh HBSS 

was used to resuspend embryos prior to crosslink. In order to obtain a cell 

suspension, in a second experiment embryos were transferred to 

eppendorf tubes and homogenized with plastic pestles. A third experiment 

was carried out using a 5 ml homogenizer. GFP signal from individual cells 

was checked under fluorescence microscope after homogenization. The 

same washes were done with the cell suspensions. The final ml was placed 

in 1 cm tissue culture plates on ice/water bath in Stratalinker at same height 

as sensor. Three 400 mJ/ cm2 irradiations were performed, which were 

followed by mixing of cell suspension after each exposure. Suspension was 
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collected and spinned at 800 rcf for 10 min at 4ºC. HBSS was removed and 

the samples frozen at -80ºC until used. 

 

I.5.2. Immunoprecipitation and cDNA synthesis. 

 

The following steps of the CLIP protocol were done by Dr. Dan Tutle 

(Dept. of Molecular Genetics and Microbiology, University of Florida, USA), 

while I followed his work. The CLIP protocol was performed as previously 

described [102] with minor modifications. Immunoprecipitation was carried 

out using the anti-GFP antibody from Roche as it was previously shown in 

our laboratory that achieved higher efficiency than other anti-GFP 

antibodies. The immunoprecipitation worked efficiently and an adequate 

quantity of radiolabelled RNA was obtained, but ligation of linkers required 

to synthesise the cDNA failed thus precluding from reaching a final result. 

 

II. Yeast methods. 
 
II.1. Yeast three hybrid assay. 

 
II.1.1. Generation of hybrid RNA expressing constructs. 

 

480 interrupted CAG repeats cloned into pUAST were obtained from 

L. Monferrer [35, 85]. Sma-EcoA and Sma-EcoB oligos were annealed by 

standard procedures [103] to generate a short DNA adaptor with SmaI and 

EcoRI cohesive ends. The adaptor also included an internal SphI site. Xba-

SphA and Xba-SphB oligos were used to generate a DNA adaptor with 

XbaI and SphI cohesive ends including an internal SmaI site. EcoRI/XbaI 

digested (CAG)480, SmaI/SphI digested pIIIA/MS2 plasmid and the two 
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adaptors were included in a 20 µl ligation reaction. E.coli [XLBlue1 or DH5α 

strain] transformation and plasmid DNA extraction were carried out by 

standard protocols [103]. After isolating a (CAG)480 pIIIA/MS2 clone, which 

expresses CAG-repeat RNA fused to the MS2 RNA, the orientation of the 

insert was reversed in order to express CUG repeat RNA fused to MS2 

RNA. (CAG)480 pIIIA/MS2 DNA and pIIIA/MS2 empty plasmid were 

SmaI/SphI-digested and ligated in a standard 20 µl ligation reaction. The 

resulting constructs showed a distinctive restriction pattern that allowed the 

quick verification of CTG and CAG repeat DNA-containing plasmids. 

 

The Actn1 fragment was amplified from Drosophila genomic DNA with 

primers ACTE7f and ACTI7r1 by high fidelity PCR (Pwo DNA polymerase, 

Roche). PCR product was digested with SphI and ligated to SmaI/SphI 

digested pIIIA/MS2 plasmid. This ligation does not reconstitute the SmaI 

site. Actn2 fragment encompassing a cluster of seven MBNL1 consensus 

binding sequences was also obtained by high fidelity PCR (Pyrobest, 

Takara) with ACTI7f1 and ACTI7r2 primers. Cohesive ends ligation did not 

work and phosphorylated PCR product (standard polynucleotide kinase 

reaction following instructions from provider; Roche) was blunt-end ligated 

to SmaI digested pIIIA/MS2 plasmid. The two fragments were sequenced to 

confirm both sequence and orientation. 

 

II.1.2. RNA structure prediction. 

 

RNA folding prediction software Mfold was used to predict the 

secondary structure of the hybrid RNAs [104]. 
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II.1.3. Generation of hybrid protein expressing constructs. 

 

High fidelity PCR reactions following the instructions from the 

manufacturer (Triple Master, Eppendorf) were performed to amplify 

Muscleblind open reading frames (ORFs). A common 5’end primer (Eco-

Mbl) was used in combination with specific 3’ end primers MblA-Xho, MblB-

Xho, MblC-Xho, MblD-Xho, ZC-Xho and CCCH-Xho to amplify MblA, B, C 

and D, the common region of MblA, B and C, and a fragment containing the 

two zinc fingers respectively. PCR products were cloned in frame with the 

Gal4 activation domain of pACT2. All constructs were sequence confirmed. 

 

II.1.4. LiAc yeast transformation. 
 

• Pick fresh colony (a big one, no older than two days) in 5 ml YAPD 

2x and grow o/n 

• Next morning, inoculate 100 ml of fresh YAPD 2x with the o/n 

culture 

• Grow until A600= 0.5-0.7 

• Spin 5000 rpm, 5 min, room temperature 

• Wash with 25 ml of sterile water: 5 min spin 5000 rpm  

• Resuspend in 0.5 ml LiAc/TE 1x (10 mM LiAc; 10 mM Tris HCl; 1 

mM EDTA; pH 7.5) 

• Prepare DNA in eppendorfs; add 10 µl of 10 mg/ ml carrier DNA 

(salmon sperm) per tube 

• Add 50 µl of cell mix per tube 

• Add 300 µl of 40% PEG/ 1x TE/ 1x LiAc freshly prepared from 50% 

PEG, 10x TE, and 10x LiAc solutions 

• Incubate 30 min at 30ºC with agitation 
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• Heat shock 15 min 42ºC 

• Spin 1 min 6000 rpm 

• Take off supernatant and resuspend in 100 µl of sterile H2O 

• Plate 50 µl in selective medium (SD + amino acids) 

• Incubate at 30ºC until transformants grow (2-5 days) 

This protocol, modified from [105], gave better results than others found in 

TRAFO website (R. Daniel Gietz, University of Manitoba) or Current 

Protocols in Molecular Biology [106]. 

 

Yeasts were co-transformed with pIIIA/MS2 and pACT2 constructs in all 

combinations. pACT2-IRP and pIIIA/MS2-IRE were used as positive control 

interaction [99] and as heterologous protein and RNA for negative controls 

in our experiments. Empty vectors were also used as negative controls. 

 

II.1.5. Confirmation of interaction specificity. 

 

L40 coat yeast strain was transformed with the pACT2 and pIIIA/MS2 

constructs in co-transformation experiments or experiments in which RNA 

expression plasmid was transformed first and protein expression plasmid 

was transformed second, or vice-versa. Yeasts carrying both plasmids 

were platted onto synthetic dextrose medium without tryptophan, leucine, 

histidine and adenine. After a few days, four white grown colonies of each 

co-transformation combination were platted onto the same media with 

increasing concentrations of the HIS3 inhibitor 3-aminotriazol (3-AT) to 

check specificity of the interaction. 
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III. Cell culture assays. 
 

III.1. Subcellular localisation assays in mammalian cells. 
 
III.1.1. Cloning. 

 

pSP72 vector carrying human DMPK 3’UTR with an expanded region 

of 300 CTG repeats was transformed into SURE cells following provider 

instructions (Stratagene). The lack of recombination in this strain favours 

the stability of long repeat DNAs. DNA extracted from individual clones was 

digested with BsaHI to control for CTG repeat length. A fragment around 

950 nt encompassing the repeats was obtained from the clone chosen, 

which corresponded to approximately 160-200 CTG repeats (for 

convenience we will refer to this clone as CTG197). 

 

ORFs of Drosophila muscleblind splice forms were amplified from full 

length cDNAs by high fidelity PCR (Pwo DNA polymerase) using isoform-

specific primer combinations. A common 5’ primer Xho-Mbl was used in 

combination with 3´ primers MblA-gc-E, MblB-gc-E, MblC-gc-E, or MblD-gc-

E, to amplify the corresponding ORFs. PCR products were purified, 

digested, and cloned into the XhoI/EcoRI sites of pEGFP-N3 plasmid in 

frame with the downstream eGFP reporter gene. pEGFP-N3-MblC∆SUMO 

was available in our laboratory. 

 

In order to facilitate future experiments, myc epitope was included in 

between Mbl proteins and the GFP tag. myc coding sequence, according to 

the human codon usage tables [103], was generated by annealing oligos 

myc-dir and myc-rev. pEGFP-N3 vector was SalI/BamHI digested and 
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ligated to the annealed oligos. The presence of the epitope was detected 

by standard colony PCR [103]. This vector (referred to as pMV2) was 

XhoI/SalI digested and ligated to MblA, B, C, D and C∆SUMO coding regions 

(XhoI/SalI digested) obtained from pEGFP-N3 vector. 

 

III.1.2. Cell transfections. 
 

COS and HEK293T cells grown in Dulbecco´s modified Eagle´s 

medium (DMEM; GIBCO) supplemented with 10% FBS (Foetal Bovine 

Serum; GIBCO) were seeded in two-well dishes to a density of 80000 cells 

per well. The transfection mix contained 6 µl of Fugene (Roche), 2 µg of 

plasmid DNA, and 180 µl of DMEM. After 15 min at room temperature, cells 

were transfected with 1/6 of the transfection mixture. 

 

In order to analyse the co-localisation of Muscleblind proteins with CUG 

repeat containing RNA, COS cell transfection mix included 1 µg of CTG197 

plasmid and 1 µg of plasmid pEGFP-N3, which expressed Muscleblind 

protein isoforms fused to GFP. HEK293T cells were transfected with a mix 

containing 300 ng of GFP-tagged Mbl protein plasmid, 300 ng of CTG197 

and 1.4 µg of carrier DNA. 

 

III.1.3. Protein and RNA sub-cellular localisation 
detection. 

 

Fluorescent in situ hybridization (FISH) with Cy3 labelled (CAG)10 

probes (Operon Technologies) was performed as described previously [67] 

except that salmon sperm was omitted from the hybridization solution. 

Muscleblind proteins fused to GFP were detected by GFP fluorescence. 
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Cells were analyzed under epifluorescence microscopy using a Zeiss 

Axioskop2 mot plus microscope. 

 

III.2. α-actinin minigene splicing assay. 

 
III.2.1. Cloning. 

 

Construction of α-actinin minigene for alternative splicing assays was 

performed as follows: DNA encompassing Drosophila α-actinin cassette 

exons 6, 7 and 8 was amplified from wild type genomic DNA using the 

Triple Master kit and oligonucleotide primers 5ACTMGE5 and 3ACTMGE9. 

The single PCR product was purified with PCR-product cleaning kit 

(Qiagen) and digested with EcoRI. pSG5 vector (Stratagene) was 

linearized with EcoRI. Digested vector and PCR product were 

phenol/chloroform extracted, quantified by agarose gel electrophoresis and 

mixed in a standard ligation reaction. 

 

In order to generate GFP fusions of Bruno proteins, bruno ORFs from 

cDNAs LD29068, LD19052 and LD31834 were amplified by high fidelity 

PCR using primers carrying adaptors for enzymatic restriction. Xho29/ 

29Eco and Xho31/31Eco primer combinations amplified bru1 and bru3 

ORFs, which additionally introduced XhoI and EcoRI restriction sites. 

Purified and digested PCR products were cloned into XhoI/EcoRI digested 

pEGFP-N3. PCR product obtained with Xho19 and 19Bam primer pair was 

XhoI/BamHI digested to clone bru2 ORF in pEGFP-N3 digested with the 

same enzymes. 
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myc tagged Muscleblind and MblC∆SUMO proteins were also generated to 

perform this assay. The myc epitope was generated by annealing 

oligonucleotides S-myc-Nf and S-myc-Nr. The hybridization left 3’ and 5' 

cohesive ends that were ligated to purified SalI/ NotI digested pEGFP-

N3/MblC (see section II.3.1.1.) in order to replace the GFP-encoding DNA 

with the myc epitope. We refer to this derivative as pMV1 vector. pMV1 

carrying mblC ORF was digested with EcoRI/XhoI to release the mblC ORF 

and the myc-encoding vector was purified. The ORFs of the remaining 

isoforms were obtained from GFP-tagged constructs in pEGFP-N3 (see 

section II.3.1.1.) by EcoRI/XhoI digestion and ligation to pMV1. GFP tagged 

MBNL1 was obtained from Prof. Maurice S. Swanson (Dept. of Molecular 

Genetics and Microbiology, University of Florida, USA). 

 

myc-tagged Muscleblind proteins were BglII and NotI digested from pMV1 

vector and cloned into BamHI/NotI digested pIEI4 for protein expression in 

Drosophila S2 cells. Notice that BamHI site is not recovered after ligation. 

 

III.2.2. Cell culture and transfection of cell lines. 

 

HEK293T cells were grown to 40-60% confluency in DMEM. HEK293T 

cells were co-transfected with 2 µg of Drosophila α-actinin minigene and 

100 ng of pEGFP-N3 expressing Mbl isoforms, or pMV1 vector, using 2 µl 

of Lipofectamine (Invitrogen) per well and 200 µl Optimem media (Life 

Technologies). Four hours after transfection the media was changed to 

antibiotic-free DMEM media supplemented with 10% FBS. 

 

For the analysis of the co-localisation with the expanded CUG repeat 

containing RNA expression, HEK293T cells were co-transfected with 0.5 µg 
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of Drosophila α-actinin minigene, 0.5 µg of CUG197 and 0.5 µg of pEGFP-

N3 (control) or GFP-tagged Muscleblind protein constructs. Empty pGEM42 

vector was used to reach a final 1.5 µg of transfected DNA whenever 

necessary. 1.5 µl of Lipofectamine (Invitrogen) were used per well. 

 

Drosophila S2 cells were grown in Schneider’s medium supplemented with 

10% FBS and 0.1% Streptomycin and Penicillin. For transfection, cells 

were seeded with a density of 1.8* 106 cells/ well in serum-free medium. 24 

h after seeding, cells were transfected with 2 µg of Drosophila α-actinin 

minigene and 100 ng of Mbl isoforms in pMV1 vector using 8 µl of 

Cellfectine reagent (Invitrogen). 

 

For Bruno protein activities assessment, COS cells grown in DMEM with 10 

% FBS were transfected with 0.5 µg of α-actinin minigene and 0.25 µg of 

GFP-tagged proteins. 

 

III.2.3. RNA and protein extraction. 

 

Total RNA was extracted as described in section II.1.4.2. Proteins 

were extracted using 150 µl of lysis buffer ([50 mM TrisHCl pH 7.1; 150 mM 

NaCl] + 0.5% triton X + freshly added protein inhibitors) per well. Protein 

quantification was performed with coomasie blue reagent (PIERCE). To 

check protein expression, 50 µg of total protein extract were run in 12.5% 

SDS-PAGE, blotted, and immunodetected with anti-GFP (mouse; Roche) 

or anti-myc (mouse; Roche) antibodies following standard procedures 

[103]. 
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Total protein from HEK cells co-expressing GFP-tagged Muscleblind 

proteins and CUG repeat RNA was extracted with 150 µl of hot 2xSDS 

loading buffer with freshly added 10% β-mercaptoethanol. Two cycles of 

hot (>95ºC) and dry ice incubation were made to lysate cells. 20 µl of 

protein extract were loaded on a 15 % SDS-PAGE gel and scanned for 

densitometry. Equal amounts of protein were then loaded on a 15 % SDS-

PAGE gel and treated as described in the previous paragraph. 

 

III.2.4. RT-PCR. 

 

5 µg of total RNA were used in an RT reaction performed as 

described in section I.4.4. To detect transcripts arising from the Drosophila 

α-actinin minigene we used 4 µl of cDNA (7 µl when working with S2 cells) 

in combination with primers 1938 and 1956 in a 40-cycle PCR reaction (for 

primer sequences and annealing temperatures see table M.2). PCR 

products were purified by NH4Ac precipitation and half of the final volume 

was digested with SacI to differentiate α-actinin isoforms A and B, which 

otherwise have the same size. The remaining PCR products and entire 

digestions were loaded in a 2% agarose gel. 1DAdvanced Phoretix 

software from Nonlinear dynamics was used to quantify the bands. 

 

Alternatively, PCR products were radiolabelled by including 32.5 µCi of 

(α32P)-dCTP (PerkinElmer Life Sciences) in the 27-cycle PCR. 

Amplification used the same primer combination as above. PCR products 

were purified by PCR-product cleaning kit (Qiagen) and half of the final 

volume was digested with SacI. Remaining PCR products and their 

corresponding digestions were resolved in an 8% polyacrylamide gel and 
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visualized by autoradiography using Biomax MS film (Eastman Kodak). 

Bands were quantified with a Molecular Dynamics Phosphorimager. 

 

III.3. mouse Tnnt3 minigene splicing assay in human cells. 

 

HEK293T cells grown and seed as above (section II.3.2.2.), were 

transfected with 0.5 µg of mouse Tnnt3 minigene and 0.5 µg of GFP-

tagged Muscleblind and Bruno proteins, or empty pEGFP-C1 vector, using 

1 µl of Lipofectamine in presence of Optimem Media. Proteins were 

extracted with 2xSDS loading buffer (see section II.3.2.3) and total RNA 

was extracted with Tri reagent (see section II.1.4.2). As Tnnt3 minigene is 

also in pSG5 vector, detection of minigene products was performed with 

non-radioactive PCR as described in section II.3.2.4. 

 

III.4. Cell death assay. 
 

III.4.1. Cell culture and transfection of S2 cells. 

 

Drosophila S2 cells were grown in Schneider’s medium with 10% FBS 

in 75 cm2 flasks. 24 h prior to transfection, cells were seeded to 4.5 * 105 

cells/ well in 24-well plates. 

Prior to transfection, two 1.5 ml sterile tubes were UV irradiated per 

sample; the tube containing the expression vectors will be called A and the 

one containing the transfection reagent, B. 

1) Prepare transfection mixture by mixing 60 µl of Schneider’s serum free 

medium and DNA (tube A) and 60 µl of medium and Cellfectin (tube B) for 

each DNA sample (will be applied to 2 wells). The amounts of DNA used 

are described in detail in table M.4 (pIEI-Diap1 and pIEI-LacZ were 
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obtained from Dr. Lei Zhou, Dept. Molecular Genetics and Microbiology, 

University of Florida). 

• Dilute 0.1 µg of pIEI-LacZ per sample with serum-free medium in tube A 

• Add appropriate amount of DNA sample to each tube A. 

• Vortex the cellfectin tube briefly before pipetting. Mix 8 µl of Cellfectin 

per sample with the x-free medium needed for tubes B. 

• Pipet 60 µl from tube B to each A tube. Mix by tapping the bottom of the 

tube and let the mixture stand at room temperature for 15-30 min. 

 
A) vector MblA MblB MblC MblD MblC∆sumo 
Sample 0.9 µg 0.9 µg 0.9 µg 0.9 µg 0.9 µg 0.9 µg 
Total DNA 1 µg 1 µg 1 µg 1 µg 1 µg 1 µg 
B) vector MblB MblD MblB + 

Diap 
MblB + 
MblD 

MblB + 
caspase 
inhibitor 

Sample 0.3 µg 0.3 µg 0.9 µg 0.3 µg 
MblB  
0.6 µg 
Diap 

0.3 µg 
MblB  
0.6 MblD 

0.3 µl 
MblB 
 

Total DNA 0.4 µg 0.4 µg 1 µg 1 µg 1 µg 0.4 µg 
C) vector MblB MblB + 

casp inh 
   

Sample 0.9 µg 0.9 µg 0.9 µg    
Total DNA 1 µg 1 µg 1 µg    
Sample MblB + 

vector 
Diap + 
vector 

MblD + 
vector 

MblB 
+ 
MblD 

MblB + 
caspase 
inhibitor 

 

Sample  
 

0.3 µg 
MblB 
0.6 µg 
vect 

0.6 µg 
Diap  
0.3 µg 
vect 

0.6 µg 
MblD 
0.3 µg 
vect 

0.3 µg 
MblB  
0.6 µg 
Diap 

0.9 µg 
MblB 
 

 

Total DNA 1 µg 1 µg 1 µg 1 µg 1 µg  
 
Table M.4. Amounts of DNA used in the different cell death experiments. A) Capacity of 

Mbl isoforms to induce cell death was evaluated transfecting 0.9 µg of expression vector per 

each two wells B, C) Experiments to test MblB interaction with apoptosis pathway. In the 

first experiment, the total amount of DNA was not the same for all samples (B). The second 

one (C), with the same total DNA amounts, gave an unmanageable number of cells per well. 
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2) Starting 15 min after pipetting B into A, aspirate the medium from the 

plates, wash once with serum-free medium and aspirate off again. 

3) Add 480 µl serum-free medium to each sample tube. Mix by pipetting up 

and down. Apply 300 µl to each 24-well (2 well per sample). 

4) After 5 h at room temperature, aspirate off the transfection mixture and 

replace with 0.5 ml of medium supplemented with 10% FBS. 
 

III.4.2. Cell viability measurements. 

 

Cells were fixed in 1% paraformaldehyde in PBS, washed twice with 

PBS and stained for lac-Z expression by standard procedures [103]. 

Number of beta-galactosidase-positive cells (blue) along the diameter of 

the well was counted under bright field microscopy. 

 

IV. in vitro techniques. 
 
IV.1. in vitro UV crosslinking. 

 
IV.1.1. Cloning. 

 

myc-tagged Mbl isoforms were BamHI/NotI digested from pMV vector 

and ligated to pGEX-6P-1 digested with BglII and NotI. This introduced a 

one nucleotide frameshift that was corrected by site-directed mutagenesis 

(QuikChange Site-Directed Mutagenesis kit from Stratagene). This 

correction shifts myc epitope out of frame. BamHI site was also 

reconstituted by site-directed mutagenesis in the same reaction. MblB and 

MblC fusions to GST were confirmed by sequencing. No positive clones 

were obtained for MblA and MblD. Since work carried out in parallel with 
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human MBNL proteins revealed protein solubility and stability problems, we 

decided to tag Drosophila proteins at both ends. 

 

MblA ORF in pFP105 (modified from pFP98), double tagged with GST at 5’ 

end and His6 at 3’ end, was obtained from N. Paricio [44]. 5’ primer Nde-

Mbl was used in combination with 3’ primers MblB-Eco, MblC-Eco, MblD-

Eco and ZF-Eco to amplify MblB, MblC and MblD ORFs, and the fragment 

containing the zinc fingers (ZF) by high fidelity PCR (Pfu DNA polymerase; 

Promega). PCR products and pFP105/MblA were digested with NdeI and 

EcoRI and ligated. MblC sequence showed no mutation. 3’ end of MblB 

could not be confirmed by sequencing. Double tagged MblD and ZF could 

not be obtained following this strategy. 

 

IV.1.2. Protein expression and extraction. 

 

BL21, BL21star, and Rosetta E.coli cells were used to express MblA 

construct in presence of 0.1 mM IPTG. Influence of temperature during 

growth, and expression induction, in protein solubility was tested. 

 

MblA and MblC small scale extractions were made by resuspending the 

pellets with Novagen Bugbuster followed by addition of Novagen 

Benzonase nuclease. Large scale extracts were lysated using a French 

press in MTPBS or SB buffer in presence of protease inhibitors (PMSF and 

Roche Complete EDTA-free protease inhibitor cocktail tablet). Insoluble 

fraction was extracted with either MTPBS or SB buffer adding 1 M NDSB. 

MTPBS: 150 mM NaCl; 16 mM Na2HPO4; 4 mM NaH2PO4·2H2O + 

freshly added 1 mM DTT  

SB buffer: 50 mM NaPO4 pH 8; 300 mM NaCl; 5% glycerol 
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IV.1.3. Protein purification. 

 

Proteins were affinity purified using GST, His6 or both tags. Once 

lysates were recovered from the French press, all the following steps were 

made in the cold room (4ºC) to prevent protein degradation. Samples from 

all extraction steps were loaded on 15 % SDS-PAGE protein gels to check 

the efficiency and to estimate the amount of protein present, and the 

volume of beads to be used in the purification procedure (referred to as 

column volume). Extracts from two 400 ml cultures were purified together. 

 

Appropriate volume (following manufacturer recommendations) of the 50% 

slurry preparation of Glutathione Sepharose 4B beads (GE Healthcare) was 

washed with H2O, MTPBS and finally MTPBS + 1 % Triton-X100. 1 % 

Triton-X100 was also added to the protein extract before loading it to the 

beads and the mixture was incubated 1 to 3 h at 4ºC with rotation. Beads 

were transferred to hydrophobic 1.7 ml tubes as soon as the volume fitted 

to prevent proteins from sticking to the walls. Four washes (resuspension 

and 1’-1000 rpm spin) with 2.5 column volumes of MTPBS/Triton were 

made. Five elutions (resuspension, 5 min rotation and 1’-1000 rpm spin) 

with 1 column volume were performed with 50 mM Glutathion in 100 mM 

Hepes pH 8. To ensure the recovery of the remaining protein, a last elution 

was performed with 2 column volumes. When His purification followed GST 

purification, final elutions were diluted with 2x SB buffer prior to loading into 

Ni-NTA beads (Qiagen). 

 

Extracts in SB buffer coming from French press or GST purification were 

loaded in the appropriate volume of washed (water and SB buffer) Ni-NTA 

beads. After 1- 2 h rotation at 4ºC, matrix was spinned and washed 
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(resuspend + 1’-1000 rpm spin) four times with SB buffer. Six elution steps 

were performed using one column volume of 500 mM imidazole in SB 

buffer. 

 

After purification, proteins were dialysed o/n at 4ºC against buffer E (20 mM 

Hepes pH 7.9; 100 mM KCl; 0.2 mM EDTA; 0.5 mM DTT; 10 % glycerol). 

As the concentration was very low, I used PD-10 columns (Amersham) in 

subsequent experiments in order to obtain a protein solution in buffer E. 

Samples from the final fractions were run in 15% polyacrylamide gel with 

SDS and the fractions showing the highest  concentrations, and low 

degradation, were pooled together, aliquoted and frozen in dry ice. 

 

IV.1.4. PCR template for in vitro transcription. 

 

5’ primers were designed to include a T7 transcription promoter 

sequence, plus a few extra nucleotides, to facilitate the binding of T7 RNA 

polymerase. Primers T7actn1D/R amplified Actn1; primers T7actn2D/R 

gave Actn2 PCR product; oligos T7actn1D/R and T7actn6D/R were used to 

amplify the entire intron 6 and 7, respectively; T7CUGD/R and T7CAGD/R 

were used to amplify CTG and CAG repeat sequences, respectively. PCR 

amplification failed with both CTG and CAG trinucleotide repeat templates. 

For each primer combination, two 50 µl PCR reactions using Pfu DNA 

polymerase were set up in thin-walled tubes following instructions from the 

manufacturer. 
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IV.1.5. in vitro transcription. 

 

The transcription reaction was set up as follows (assembled at room 

temperature to avoid DNA precipitation): 

o 5x Transcription Buffer  2 µl (0.2 M Tris pH 7.5; 30 mM MgCl2; 10 mM 

Spermidine) 

o 100 mM DTT                1 µl 

o 10x rNTP                      1 µl (5 mM CTP; 5 mM ATP; 5 mM GTP; 0.4 mM 

UTP) 

o H2O                               1 µl 

o RNasin                          0.5 µl 

o 10 mM cap                    0.5 µl 

o α32P UTP                       2 µl 

o 1 mg/ml linear DNA       1 µl 

o T7 RNA polymerase      1 µl 

• Incubate 1 – 2 hours at 40˚C 

• Add 40 µl of H2O, take 1 µl and spot onto glass fibre disc for total counts 

• Phenol extract (use water-saturated phenol) 

• Load phenol-extracted RNA onto a pre-washed G-50 column and spin. 

Save eluted liquid, measure volume and transfer to an eppendorf tube. 

Take 1 µl of the elution and perform trichloroacetic acid precipitation to 

measure the incorporated radioactivity. 

• Adjust concentration of in vitro transcribed RNA to 20 fmol/µl 

Transcription of intron 7 fragment was inadequate for subsequent 

experimental procedures. RNA encompassing DNA fragments Actn1 and 

Actn2 and the whole intron 6, on the other hand, were transcribed 

efficiently. 



Mbl molecular function 

 80

Competitor RNAs were generated from large scale in vitro transcription 

reactions as follows: 

o 5x Transcription Buffer 10 µl 

o 1 M MgCl2                     2 µl 

o 100 mM DTT                 5 µl 

o H2O                               0.75 µl 

o RNasin                          2 µl 

o 10 mM cap                    2.5 µl 

o 100 mM ATP                 5 µl 

o 100 mM GTP                 5 µl 

o 100 mM CTP                 5 µl 

o 100 mM UTP                 5 µl 

o α32P UTP                       0.25 µl 

o 1 mg/ml linear DNA       5 µl 

o T7 RNA polymerase     2.5 µl 

The procedure was the same as above but 50 ml of 10 mM Tris-10 mM 

EDTA was added instead of H2O prior to phenol extraction. 

 

IV.1.6. UV crosslinking. 

 

The following 10 µl reaction was set up in a microtitre plate (Falcon 

353911) (all reagents are included in this volume except heparin; when 

possible, the plate was kept on ice to avoid protein degradation): 

o 20 fmol in vitro transcribed RNA 

o 2 µl  5x Binding Buffer (50 mM Hepes pH 7- 7.2; 15 mM MgCl2; 25% 

glycerol; 5 mM DTT) 

o 1 µl 0.5 - 2 mg/ ml rRNA made in H2O 
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o 1 M KCl up to 100 mM final concentration 

o 0.5 µg of BSA 

o protein extract up to 10 µl 

The amount of protein extract added to the reaction varied between 2 - 6 µl 

depending on the volume left by the other reagents. To test the specificity 

of the reaction, we titrated with increasing amounts of rRNA in the reaction. 

For the competition assay, 200, 300 and 400 molar excess of competitor 

RNA was added to the reaction mix. 

• Wrap plate in plastic film and incubate at 30oC for 30 min. To increase the 

stringency of the assay and test the specificity, add 1 µl 6.81 –55 mg/ml 

heparin 5 min before the end of the incubation step. 

• UV crosslink on ice. Use a Stratalinker 2x 960 mJ placing the microtitre 

plate on a tray with ice on the floor of the Stratalinker. 

• Add 4 µl per well of RNase mix per well, wrap plate in plastic film and 

incubate for a further 15 min at 37ºC. 

 RNase Mix (for 500 µl): 
50 µl 10x RNase dilution buffer (100mM Tris-HCl pH7.5; 10mM 

MgCl2; 1M KCl) 

50 µl 10 mg/ml RNase A                                 

14 µl 100 u/µl RNase T1                                 

• Add 4 µl of 4x SDS sample loading buffer with bromophenol blue per well 

and heat to 80ºC for 5 min including protein markers. 

• Load onto 15% protein gel and run until all the bromophenol blue has run 

out. 

• Dry the gel and expose film or phosphorimager screen. 
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Results 
 

Por más que apagues las otras 
velas, la tuya no brillará más 

 
-Gandhi- 
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I. Evaluation of viable muscleblind mutants and flies expressing 
CUG repeat RNA as myotonic dystrophy fly models. 

 

Human Muscleblind proteins (MBNL1-3) have been described as key 

factors in DM pathogenesis. The RNA gain of function hypothesis explains 

defining symptoms of Myotonic Dystrophy by sequestration of nuclear 

factors, mainly human MBNL. Mutant DMPK transcripts sequester MBNL 

proteins in ribonuclear foci preventing a significant fraction of them from 

raising their functional localisation [51]. MBNL loss-of-function phenotypes 

are therefore predicted to include DM-like defects. This is the case of Mbnl1 

knockdown mice, which exhibit the main symptoms of the disease [28]. 

MBNL genes are homologues to the Drosophila muscleblind (mbl) gene 

and it has been previously shown that Drosophila and human MBNL1 

proteins are functionally exchangeable [107]. If the pathway of pathogenic 

RNAs is conserved in flies, and the function of Muscleblind proteins 

impaired in DM is conserved between flies and humans, one expects to find 

DM-like defects in muscleblind mutants and in flies expressing CUG repeat 

containing-RNA. Since DM patients show muscle histopathology including 

absence of Z bands [108], Drosophila muscleblind muscular defects 

(absence of I and Z bands and reduction of extracellular matrix) are in 

concordance with the RNA gain of function hypothesis [41], 

 

Different muscleblind loss-of-function flies and flies expressing expanded 

CUG repeat containing RNA, which are genetically sensitive to muscleblind 

function [85], were available in our laboratory. My interest in this point was 

to validate these flies as models to study DM pathogenesis, showing the 

similarities between the fly models and the individuals affected by the 

disease. muscleblind is essential for Drosophila development and mblE27 
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and mblk7103 muscleblind alleles are lethal in homozygosis. However, 

mblE27/mblk7103 was reported as a hypomorph allelic combination that allows 

some individuals to reach adulthood [109]. mblE27 is lethal in combination 

with mblE16, another null allele of muscleblind, whereas mblE16/mblk7103 also 

behaves as a hypomorph allelic combination, thus suggesting that mblk7103 

is a hypomorph allele itself but it has accumulated a lethal mutation in the 

chromosome. 

 

In order to find DM-like defects in muscleblind hypomorph mutants and flies 

expressing expanded CUG containing RNA, we characterised these flies at 

different levels. In a external analysis, we detected a reduced viability and 

defects in wing and leg development in mutant flies and a shortened 

lifespan in flies expressing the expanded RNA. We did not detect any 

significant effect of the anti-myotonic drug mexiletine on viability, lifespan or 

climbing activity of mutant flies, which we used as an indirect test for the 

existence of one of the main symptoms of DM, the myotonia. Finally, we 

analyse these flies at a molecular level looking for defects in the regulation 

of alternative splicing. We found interesting defects in specific transcripts. 

 

I.1. Adult phenotype of mbl E27/mbl k7103 mutants. 

 

An initial quantification of the number of escapers resulting from 

crossing mblk7103/CyO, ubi-GFP with mblE27/CyO, ubi-GFP maintained at 25 

ºC gave 52% of the expected adults (considering the 33% of the total 

offspring expected to be homozygous mutant as 100%). In a second 

counting, a more accurate scoring of the number of viable adult flies 

(scoring emerged adults every few hours to avoid underestimating the 

transheterozygous class), gave a percentage of around 70% ranging 
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between 62.9 and 79.3 % when the females in the cross were 

heterozygous for mblE27 or mblk7103, respectively. 

 

 
 

Figure R.1. mblE27/mblk7103 flies show wing defects and leg deformation. A, B) Wild type 

fly and wing to compare with mutant phenotype. C) mblE27/mblk7103 class II flies showed mild 

defects like small wing blisters (asterisk) and lack of tissue in the posterior wing 

compartment (arrowhead) D) Example of class I acute phenotype with twisted femur 

(magnified in (E); arrow) and unexpanded wings in which the two lamina do not adhere to 

each other normaly (magnified in (F)). 
 

mblE27/mblk7103 adult flies showed a variable phenotype. Most of them 

showed no apparent morphological defects, others had only mild wing 

defects (Fig. R.1A-C), and some presented an acute phenotype with severe 
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wing defects and leg deformations (Fig. R.1A, D-F). Transheterozygous 

mutant offspring were divided into four phenotypic classes: 

• class 0 included those flies that gave no viable adults or died in the 

first hours of adult stage;  

• class I included flies with acute phenotype;  

• class II, those individuals with mild wing defects;  

• class III, individuals with no apparent external defects. 

 

I.2. Lifespan of flies over-expressing CUG repeat RNA. 
 

Alterations in the insulin pathway resulting in lower insulin signalling 

have been related to an increased lifespan in Drosophila, C. elegans and 

mouse [110, 111]. Alternative splicing of human insulin receptor (IR) pre-

mRNA gives rise to two receptors with different insulin responsiveness. 

Transcripts present in those tissues responsible for glucose homeostasis 

(e.g. muscle) include exon 11 (E11; IR-B) and code for a receptor with less 

affinity for insulin but with higher signalling activity, whereas transcripts 

expressed in foetal tissues lack E11 (IR-A) [112]. DM1 skeletal muscle 

presents an abnormal abundance of the IR-A isoform [80], which causes 

the insulin resistance found in patients. Although insulin receptor structure 

and processing in Drosophila are different to those described in humans 

[113], flies expressing 162 CUG repeat RNA presented a mean  lifespan 

that was 15% longer than controls [83], suggesting that the general insulin 

signalling alteration could be conserved despite the different molecular 

mechanisms that regulate IR activity. Thus we analysed flies expressing 

480 CUG repeat RNA in order to see if longevity was altered by CUG 

repeat containing RNA. 
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Figure R.2. Flies expressing CUG repeats show shorter lifespan. Average percentages 

of live flies along the days of the different strains used are represented. Transgene UAS-

CTG480 1.1 (1.1CTG480) was expressed with both da-gal4 (da; n. replicas = 4) and Mhc-

gal4 (Mhc; n. replicas: 3) drivers. UAS transgene and Gal4 driver strains were crossed to 

white flies to generate control flies 1.1CTG480/+ (n. replicas = 4), da/+ (n. replicas = 4); 

Mhc/+ (n. replicas = 2). CUG repeat expressing flies showed reduced longevity when 

compared with their respective controls. 

 

Contrary to previous observations [83], a significant decrement of mean 

lifespan was observed when expressing CUG repeat RNA either in a 

muscular (Myosin Heavy Chain; Mhc) or general embryonic pattern 

(daughterless; da) with the Gal4/UAS system compared to control flies 

carrying the UAS or the Gal4 transgene (Fig. R.2). The average percentage 

of live flies was reduced to 50% after ten days when expressing repeats in 

Mhc pattern, whereas in flies carrying the UAS transgene it was after 58 

days and in the Mhc Gal4 driver strain, after 32 days. When expressing 

repeats in a general embryonic pattern, flies showed a milder reduction in 

lifespan as 50% of flies died after 41 days compared to the 54 days for the 

da driver strain and the 58 days of the transgene strain. Flies expressing 
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480 CUG repeats show phenotypic defects as muscle degeneration and 

flightlessness [85], which could have an effect on fly fitness, reducing 

longevity. Flies expressing 162 CUG repeat RNA do not show any 

phenotypic defects, so, no reduction in general fitness could allow these 

flies to reflect other aspects affected by CUG repeat expression. No further 

studies have been carried out in these flies to elucidate if their extended 

lifespan is related to insulin pathway. 
 

I.3. Effect of anti-myotonic drug mexiletine in mblE27/mblk7103 
mutants. 

 

Myotonia is one of the main symptoms of DM. Myotonia consists of 

the hyper excitability of the sarcolemma and delayed muscle relaxation 

after voluntary contraction, resulting from the defective function of voltage-

gated sodium or chloride channels. In the case of DM, the origin of the 

myotonia is a severe reduction in CLC1 protein on the myocyte surface of 

DM patients [79, 114]. Mbnl1 knockdown mice showed myotonic 

electromyographic recordings [28]  

 

Electromyographic recordings are very difficult to obtain in Drosophila and 

we could not find a laboratory to do either whole fly electromyography or 

cell patch-clamp recordings to directly analyse cell membrane conductance 

to chloride ions. Because of these technical limitations, we decided to 

analyse whether the anti-myotonic drug mexiletine used in DM patients had 

any effect on muscleblind mutant flies. Mexiletine is a lidocaine derivative 

that blocks voltage-gated sodium channels [115]. If muscleblind mutant flies 

had myotonia similar to DM patients, they could also respond to mexiletine. 
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We performed preliminary study of the influence of the anti-myotonic drug 

on the viability, lifespan and climbing ability of mblE27/mblk7103 flies. 

 

I.3.1. Viability analysis. 

 

Number of viable flies emerged when crossing mblE27/CyO, ubi-GFP 

and mblk7103/CyO, ubi-GFP flies in presence of excipient or 1x or 10x dose 

of mexiletine was analysed (Fig. R3A). Wild type OrR flies were exposed to 

the drug in order to control drug toxicity. No increase in the average of total 

number of viable flies was detected at any mexiletine dose. Contrary, a 

certain susceptibility to the drug was observed when the females crossed 

carried the mblE27 allele although no toxicity was detected in OrR flies. The 

viability of heterozygous flies was used as an internal control for mexiletine 

toxicity (Fig. R.3B). A significantly reduced number of heterozygous flies 

emerged at 1x mexiletine in crosses with mblk7103 females compared to the 

crosses made on medium containing excipient. No difference was found for 

crosses made with mblE27 females. This suggests that the previous 

reduction in the total number of flies emerging from crosses with females 

heterozygous for mblE27 was due to a decrease in mutant viability and not to 

a general reduction of fly viability under those conditions. 
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Figure R.3. Controls of mexiletine toxicity. A) Average number of flies that emerged from 

crosses made in presence of 0, 1x and 10x dose of mexiletine (bars) and standard 

deviations (error line) are shown. “total” correspond to the data from all the crosses between 

mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies independently of the strain where 

females came from. Whereas no mexiletine dose altered the number of OregonR flies 

emerged, a reduction was found when crossing females heterozygous for mblE27 with 

mblk7103/CyO, ubi-GFP males (1x dose: P-value = 0.09; 10x dose: P-value = 0.07). B) 
Average number of heterozygous flies (GFP-positive) emerging from crosses between 

mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies (bars) and standard deviations (error 

line). 1x dose of mexiletine significantly reduced GFP-positive flies when heterozygous 

mblk7103 flies were used as mothers compared to flies developing in food with excipient (P-

value < 0.05). 
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Fig. R.4. Frequency of mblE27/mblk7103 viable flies was reduced by high dose of 
mexiletine. Average frequencies of mutant flies emerging from crosses between 

mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies are represented. A) Average 

frequency of escapers (viable mblE27/mblk7103 flies) emerging. Administration of 1x dose of 

mexiletine generates a marginal increment in viable mutant flies when mothers are 

heterozygous for mblk7103 allele (see Fig. R.3.). Toxicity of mexiletine at 10x dose detected 

with the total numbers is mainly due to sensitivity of offspring from crosses made with 

mblE27/CyO, ubi-GFP mothers. B) Phenotypic class average frequencies. Increase of Class 

0 in crosses treated with 10x mexiletine comes from the reduction of class I in crosses with 

mblk7103/CyO, ubi-GFP mothers and from class III in crosses with mblE27/CyO, ubi-GFP 

mothers. 
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When analysing the effect of mexiletine on mblE27/mblk7103 viability, no 

increase in the proportion of viable mutant flies was observed at any 

concentration (Fig. R.4A). Actually, a 10x dose of mexiletine reduced the 

frequency of viable hypomorph flies compared to the same crosses carried 

out without the drug. Separation of the data into phenotypic classes (Fig. 

R.4B) showed that intermediate phenotypes remained similar to control 

crosses when heterozygous mblE27 mothers were used. A general 

deterioration of flies is observed at 10x mexiletine dose compared to the 

crosses without drug. Contrarily, the frequency of class I was significantly 

decreased at 10x mexiletine dose in crosses with heterozygous mblk7103 

mothers but the other classes remained similar. So, the offspring of this 

cross with acute phenotype appeared to be more sensitive to the drug but 

those with mild or no defects did not present increased sensitivity to 

mexiletine. A marginal improvement on phenotypic class distribution was 

observed in crosses at 1x dose of mexiletine with mblk7103/CyO, ubi-GFP 

mothers but differences were not statistically significant (p-value > 0.2). 

 

I.3.2. Lifespan analysis. 

 

mblE27/mblk7103 flies that emerged from the viability study were kept in 

vials with the same dose of anti-myotonic drug and their longevity recorded. 

The lifespan analysis showed no general improvement of mexiletine-treated 

flies at any concentration. However, a 1x mexiletine dose significantly 

increased the percentage of surviving flies between days 6 and 13. A slight 

increase in the survival of 1x mexiletine-treated flies persists after day 13 

but was not statistically significant. 
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Fig. R.5. Average percentage of mblE27/mblk7103 flies surviving marginally increases by 
mexiletine treatment. The average percentage of flies surviving at the ages indicated in 

presence of mexiletine concentrations 0, 1x and 10x, are represented together with standard 

deviation (bars). Differences were statistically significant between days 6 and 13 (days 6, 8 

and 12, P-value <0.05; days 7, 9 and 13, P-value< 0.1). 

 

When considering the data from crosses with mblE27/CyO, ubi-GFP and 

mblk7103/CyO, ubi-GFP females separately, we detected (Fig. R.6A) a 

general slight trend of increased survival of mblE27/mblk7103 flies treated with 

1x dose of mexiletine in the offspring of crosses where mothers carried the 

milder mblk7103 allele. An increase in mutant survival between the fifth and 

13th day was also observed when the mothers carried mblE27 but the effect 

completely disappeared after the thirteenth day. 
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Fig. R.6. Survival of mblE27/mblk7103 offspring depends on the genotype of the mothers. 
Average percentages of offspring surviving are represented versus time. Crosses were 

made in presence of different amounts of mexiletine (0, 1x, 10x). Number of flies in the 

assay (n) was, from crosses made with mblk7103/CyO, ubi-GFP mothers: 0: n = 169, 1x: n = 

153, 10x: n = 111; and from crosses with mblE27/CyO, ubi-GFP mothers: 0: n = 90, 1x: n = 

128, 10x: n = 95. A) Offspring of crosses using mblk7103/CyO, ubi-GFP females show a 

weak, although maintained, increase of survival when treated with 1x dose of mexiletine. 

Differences between mblE27/mblk7103 alive flies in vials with 1x dose of mexiletine and 

excipient were significant at days 4, 5, 6, 19, 20 and 21 (P-value < 0.1). An initial significant 

improvement is also observed with 10x dose in the crosses with mblk7103 females 

encompassing days 4 (P-value 0.06), 5 and 6 (both with P-value< 0.05) B) Apparent positive 

effect on survival of offspring of crosses made using mblE27/CyO, ubi-GFP females in 

presence of 1x dose of mexiletine is not statistically significant and is not maintained after 

day 13. 
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I.3.3. Climbing ability analysis. 

 

Climbing assays have been extensively used in Drosophila to 

ascertain motor dysfunction [116]. Because we expected muscleblind 

mutant flies to develop myotonia, impairment of climbing activity in these 

flies was a possible phenotype. Therefore, the climbing activity of 

muscleblind mutant flies was studied in presence of mexiletine and 

compared to flies taking excipient as control. The data obtained were quite 

variable. Number of flies situated over the line (see M&M) gave no clear 

tendency (Fig. R.7) and no significant improvement was detected at a 1x 

concentration of mexiletine neither when treating all the data together (Fig. 

R.7A) nor when considering the different crosses separately (Fig. R.7B). 

 

A small scale assay performed in a 2x concentration of mexiletine did not 

show any improvement. We also initiated a study administering 2x dose of 

mexiletine but insufficient flies were obtained to undergo an analysis similar 

to the previous with 1x. No trend for improvement was observed in the 

initial recordings. 
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Fig. R.7. Treatment with mexiletine 1x dose did not improve climbing ability of 
mblE27/mblk7103 flies. The average percentage for all replicas of each mexiletine or excipient 

concentration is represented. E27 and K7 indicate the genotype of the mothers (mblE27/CyO, 

ubi-GFP and mblk7103/CyO, ubi-GFP respectively); m and e designate mexiletine and 

excipient, respectively. Very dispersed data were obtained, with no clear effect of mexiletine 

on climbing ability. 

 

In summary, no significant positive effect of mexiletine was detected either 

in survival, lifespan or climbing ability even though a small window of 

positive effect on mutant lifespan was detected, especially during the first 
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days of treatment. On the other hand, some sensitivity to the drug was 

detected as a reduced viability was found when the flies came from crosses 

with females carrying the strong allele mblE27. 

 

I.4. Analysis of alternative splicing in Drosophila DM 
models. 

 

Mbnl1 knockdown mice show disrupted alternative splicing regulation 

resulting in the generation of transcripts characteristic of immature cells in 

adults (Lin et al, 2006, [29, 39]). This foetal arrest has also been described 

in DM patients and mouse models of DM disease, and it has been shown 

that is MBNL1-dependent [29, 30]. Some of these splicing alterations have 

been directly related to DM symptoms [79, 80, 114]. Then, we decided to 

check muscleblind mutant flies and flies expressing CUG repeat RNA for 

miss-splicing events. 

 

I.4.1. Chloride channel. 

 

Myotonia is caused by a dramatic reduction of CLC1 protein in the 

membrane of DM1 myocytes. The origin of this defect is the alteration of 

muscle specific chloride channel 1 (CLC1) splicing that leads to the 

inclusion of premature stop codons in the mature mRNA [79, 114] generally 

by maintaining a foetal splicing pattern in the adult tissue of DM1 and DM2 

patients. Mice expressing expanded CUG repeat containing-RNA in 

skeletal muscle (HSALR) present the same splicing alteration and myotonic 

electromyographic recordings [69, 114]. Flies over-expressing 480 CUG 

repeats show muscle and behavioural alterations that could reflect a 
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myotonic condition [85]. Thus, we decided to check if the alteration of 

chloride channel transcript splicing was conserved in flies. 

 
 

Figure R.8. No splicing defects were found in Drosophila chloride channels. A) 
Described ESTs from Drosophila genes which gave highest similarity to human CLC1. One, 

two and three splicing variants were found for CG8594, CG5284 and CG6942 (synonymous 

to CG31116), respectively B) 2% agarose gel electrophoresis of CG5284 RT-PCR products. 

1: No reverse transcriptase control; 2, 3: independent RNA extractions from embryos 

expressing CUG repeat RNA (UAS-(CTG)480, 1.1 transgene) in a muscular (Mhc-Gal4) 

pattern; 4, 5: wild type controls (OrR and yw, respectively); 6: embryos expressing CUG 

repeat RNA (UAS-(CTG)480, 2.1 transgene) in a general (da-Gal4) pattern; 7: mblE27/mblE16 

mutant embryos; 8: negative control for PCR (no cDNA template added). Band intensity 

differences in CG5284 amplification correlated with differences in RNA input denoted by 

Rp49 amplification. 
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No ortologous gene has been described in Drosophila for CLC1. However, 

Genbank BLAST searches identified CG5284, CG6942 and CG8594 as 

sequences highly homologous to human CLC1. No functional studies have 

been carried out on any of them, but voltage-gated chloride channel activity 

has been inferred from their sequences (Flybase) and electrophysiological 

recordings in flies suggest that Cl- currents are involved in Drosophila 

muscle physiology [117]. 

 

EST analysis showed that CG5284 had two alternative splicing variants 

while CG6942 had three. In order to analyse the possible conservation of 

chloride channel mis-splicing in Drosophila, we performed reverse 

transcription-polymerase chain reactions (RT-PCR) with primers 

encompassing the cassette exons. When amplifying CG5284 exons seven 

to nine, only one band appeared, the same in embryos and adults, and no 

differences between wild type embryos and those expressing CUG repeats 

in a general (daughterless; da) or muscular (Myosin Heavy chain; Mhc) 

pattern were found. As no splicing event was detected to be altered, we 

performed RNA in situ hybridization in wild type flies to characterize the 

expression pattern of the three sequences. CG5284 and CG8594 gave a 

weak general signal and CG6942 was detected in the Malpighian tubules, 

nervous system and intestine (not shown). 

 

In summary, no chloride channel mRNA was found to have a muscle-

specific pattern similar to CLC1 expression in vertebrate skeletal muscle. 

Further optimization for the amplification of other alternatively spliced 

regions and a deeper analysis of splicing variants by RT-PCR should be 

performed to elucidate if any Drosophila chloride channel is aberrantly 

regulated in these flies. 
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I.4.2. α-actinin. 

 

DM patients and muscleblind loss of function flies show a disruption of 

the Z-discs [41, 118]. Z-bands appear where the thin filaments of two 

adjacent sarcomere units overlap. Several proteins compose this 

connective structure, of which the α-Actinin (α-Actn) is the most abundant. 

Vertebrate α-actinin has tissue-specific isoforms that are developmentally 

regulated by the activity of Polypirimidine Tract Binding protein (PTB), CUG 

Binding Protein1 (CUG-BP1), Embryonically lethal abnormal vision Type 

RNA binding protein 3 (ETR-3) and CUB-BP1 and ETR-3 Like Factor 4 

(CELF4) [119]. 

 

Drosophila α-actinin mutant flies show disruption of the Z-discs and the 

muscle attachments to epithelial tendon cells [120], which is a phenotype 

similar to muscleblind mutant embryos [41]. Transcripts from the unique 

Drosophila α-actinin gene undergo alternative splicing to generate both 

non-muscle (α-actinin A) and muscle-specific (α-actinin B in adult muscle 

and α-actinin C in larval muscle) isoforms (Fig. R.9A, B). To test the 

hypothesis that Drosophila muscleblind regulates Drosophila α-actinin 

splicing, we analyzed alternative exon usage by RT-PCR both in 

muscleblind mutant and wild type flies. To prevent the interference of 

second-site mutations that might have accumulated in chromosomes 

carrying muscleblind alleles, and to be able to identify homozygous mutant 

flies at all stages, we generated mbl E27/mbl k7103 flies by crossing 

mblE27/CyO, ubi-GFP and mblk7103/CyO, ubi-GFP flies. Primers annealing at 

exons E5 and E10 were used to amplify alternatively spliced exons. (Fig. 

R.9B, C). A strong reduction in the levels of α-actinin C, the isoform 
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normally found in larval muscle, was detected in muscleblind mutant 

embryos from 16 to 18 h AEL. This correlated with increased levels of α-

actinin A and α-actinin B. No changes in α-actinin isoform ratio were 

attributable to different amounts of starting material as shown by the 

Ribosomal protein 49 (Rp49) transcript amplification (Fig. R.9D). No 

differences in the isoform ratio were found either in late pupae or adults 

(Fig. R.9E, F). In order to confirm that the defects were due to muscleblind 

loss of function we performed the same RT-PCR from mblE27/mblk7103 

embryos over-expressing MuscleblindC protein fussed to GFP. 

Unfortunately, no enough RNA was obtained to detect any PCR product. 

 

We also characterized the Drosophila α-actinin splicing pattern in flies 

expressing CUG repeat RNA in a muscular and a general embryonic 

pattern to check whether the DM model flies presented any defect in the 

maturation of this mRNA. Non-muscleα-actinin isoform A, mostly found in 

adult wild type tissue, was reduced in embryos when expressing CUG 

repeat containing-RNA in both patterns (Fig. R.9G). Again, changes were 

not due to differences in the initial starting material and no changes were 

found in α-actinin pre-mRNA splicing in late pupae or adult flies. 
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Figure R.9. α-actinin mis-splicing in muscleblind mutant embryos and embryos 

expressing CUG repeat RNA. A) Schematic representation (not to scale) of the Drosophila 

α-actinin genomic structure showing the intron/exon nomenclature used. Lines represent 

introns and boxes exons. Thick vertical bar represents a cluster of MBNL1 binding 

sequences found in intron I6 by in silico analysis B) Alternative splicing of α-actinin pre-

mRNA is developmentally regulated giving rise to three mature transcripts referred to as α-

actinin A–C. Primers used to amplify isoform-specific exons are denoted by arrows. Tissue 

and stage-specific expression is indicated on the right. Sizes in base pairs (bp) are given 

below each exon. SacI restriction site used to differentiate isoforms A and C is denoted by a 

vertical line. C) Schematic representation of electrophoretic mobility pattern of bands of the 

PCR products and the SacI digestions needed to reveal all α-actinin isoforms. Expected 

sizes are indicated. (D-G) Electrophoretic resolution (2% agarose) of RT-PCR products and 

their corresponding SacI digestions from: D) wild-type (OrR) and mutant (mblE27/mblE16) 

embryos; E) wild type and muscleblind mutant pupae and pupae expressing 480 CUG 

repeat containing RNA in a general (da>CTG) and muscular (Mhc>CTG) pattern (numbers 

indicate transgenic strain); F) adults of the genotypes: OrR, mblE27/mblE16 Mhc-

gal4/+;UAS(CTG480)1.1/+ (Mhc>1.1CTG); da-gal4/+;UAS(CTG480)2.1/+ (da>2.1CTG) G) 
control (OrR and y w) embryos and embryos expressing repetitive RNA. muscleblind mutant 

embryos show diminished levels of α-actnC isoform (asterisks; D) and increased levels of α-

actinin B (black dot) when compared with controls. Embryos expressing repeats show 

severe reduction of α-actinin A (arrowheads; G). No differences were observed in pupae or 

adult stages between mutants or CUG repeat expressing flies and controls (E, F). No 

changes were attributable to RNA input as shown by Rp49 amplification. Molecular weight 

marker VI (MWM) bands correspond to 517, 453, 394, 298, 234 and 154 bp. 

 

In summary, muscleblind mutant embryos and embryos expressing CUG 

repeat RNA show mis-splicing of α-actinin mRNA. Surprisingly, however, 

the misregulation found in this case was different. Whereas muscleblind 

mutant embryos showed a reduction in α-actnC, CUG expressing embryos 

reduced α-actinin isoform A. These defects are specific to embryonic 

stages as they are not detected in pupae or adults. 
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I.4.3. Troponin T. 

 

Troponin T, together with Troponin C, Troponin I and Tropomyosin, 

belongs to a complex involved in the regulation of calcium-mediated 

contraction. Myofibrils containing the cardiac Troponin T (cTNT or TNNT2) 

protein isoform, coded by transcripts including the E5, are more sensitive to 

Ca2+ [31]. This exon is only included in transcripts expressed in skeletal and 

cardiac embryonic muscle fibres. The final isoform ratio of cTNT in cardiac 

cells is controlled by levels of splicing factors MBNL1, CUG-BP1, PTB and 

ETR-3 [31]. Human cTNT alternative splicing is altered in cardiaomyocytes 

of myotonic dystrophy patients as transcripts in adult tissue retain E5. fast 

skeletal Troponin T (TNNT3) splicing is also altered in myocytes of DM 

patients by abnormal inclusion of a cassette exon that is only present in 

developing normal muscles [28]. Both Tnnt2 and Tnnt3 mRNAs are 

aberrantly spliced in Mbnl1 knockdown mice and mice expressing long 

CUG repeat RNA, showing alterations similar to those found in DM patients 
[28, 29]. 

 

Blast searches for the Drosophila homolog of human cardiac troponin T 

(NM_000364) returned CG7107 (also known as upheld, DmTROPT and 

troponinT) as the sequence showing the highest homology. EST analysis 

detected three splice isoforms of Drosophila troponin T (tnT), although a 

forth transcript differing in a three nucleotide exon has also been reported 

[121]. The four splicing variants differ in the inclusion or exclusion of exons 

E3, E4 and E5 (Fig. R.10A). Splicing isoforms are muscle-type specific and 

developmentally regulated. 
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We performed RT-PCR reactions, amplifying exons E2 to E6 of tnT mRNA, 

from total RNA of muscleblind mutant and CUG repeat RNA-expressing 

flies. PCR product size identifies all described splicing isoforms (Fig. R.10). 

Regular (Fig. R.10B) and nested (Fig. R.10C) PCR showed no detectable 

difference in muscleblind mutant embryos and no reproducible defects in 

CUG expressing embryos. Early mutant pupae (Fig. R.10D, F) showed an 

increase in the tnT isoform specific to the tergal depressor of trochanter 

(TDT) and indirect flight muscles (IFM). This isoform was also clearly 

detected in mblE27/CyO, ubi-GFP flies, whereas it was barely detectable in 

mblk7103/ CyO, ubi-GFP ones (Fig. R.10D). This is consistent with a 

dependence on mbl function since tnT splicing defects correlated with mbl 

allele strength. CUG expressing flies also showed the same defect but 

milder, although differences were not statistically significant when 

comparing with flies carrying the UAS transgene. Furthermore, it was also 

detected in Mhc-Gal4 flies. An unspecific band appeared when amplifying 

cDNA from adults collected at least six hours after eclosion, and all the 

samples gave the same amplification pattern (Fig. R.10E). 

 

muscleblind mutant pupae show specific splicing defects that are already 

present in heterozygous individuals carrying a strong loss of function allele 

(mblE27) but not a weak one (mblk7103), thus pointing to a dose effect. The 

detection of defects in Mhc-Gal4 flies does not allow us to form any 

conclusions about CUG-containing RNA over-expressing flies. Indeed, this 

Mhc-Gal4 line had reduced viability (see section I.2 of results) and were 

difficult to maintain and amplify. Thus, tnT splicing alterations could be 

originated by the insertion of the Gal4 P-element into an essential loci. 
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Figure R.10. muscleblind mutant pupae show alterations in the alternative splicing of 

troponinT RNA. A) Schematic representation (not to scale) of Drosophila troponinT 

transcripts showing the nomenclature used. Boxes represent exons and their sizes in base 

pairs are indicated inside. Primers used in the PCR to amplify the alternatively spliced region 

are denoted by arrows. Isoforms specific, or mainly expressed, in pupae or larvae, are 
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designated as Pp and L respectively. Tissue-specific expression is described on the right 

together with the nomenclature used in the rest of the figure. B-E) 2% agarose gel 

electrophoresis of RT-PCR products from embryos (B, C), pupae (D) and adults (E). RNA 

extractions used were: (B, C) control strains OrR and y w; two independent extractions from 

flies expressing repetitive RNA in a muscular (Mhc-Gal4>UAS-(CTG)480,1.1; Mhc>1.1CTG) 

or general embryonic (da-Gal4>UAS-(CTG)480,2.1; da>2.1CTG) pattern; and muscleblind 

mutants (mblE27/mblK7103); (D, E) negative control for PCR (no cDNA; 0); mbl mutants; flies 

expressing repetitive RNA in a muscular pattern; control flies carrying the UAS (UAS-

(CTG)480,1.1/+; 1.1CTG/+) or the Gal4 (Mhc-Gal4/+; Mhc/+) transgene, or the mbl mutant 

alleles, and wild type OrR. # denotes an unspecific band.  F) Average percentage of RT-

PCR products from three independent RNA extractions from pupae. 
 

Taken together the analysis of alternative splicing of a number of pre-

mRNAs showed that muscleblind function is required for the alternative 

splicing regulation of α-actinin and troponinT pre-mRNAs. They also 

showed that Muscleblind function is transcript-specific as no alteration was 

found in CG5284 splicing in muscleblind mutants. The absence of defects 

in α-actinin splicing in mutant pupae and adults and the developmental 

window where we detect defects in troponinT mRNA (pupa stage) indicate 

that muscleblind regulates alternative splicing during development, as 

described for human MBNL1 proteins [31, 32]. 

 

II. Analysis of Muscleblind binding to RNA. 
 

Drosophila muscleblind encodes protein isoforms with a pair of CCCH 

zinc finger motifs [44]. Human MBNL proteins, which show two pairs of zinc 

fingers (except for a few isoforms generated by alternative splicing that lack 

some [38]), have been described as splicing factors that directly interact 

with RNA targets [32]. Deletion analysis with a yeast three hybrid assay 
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showed that zinc fingers are necessary for the interaction with RNAs 

containing CUG repeats [43]. 

 

We also wondered whether the binding of Muscleblind proteins to 

physiological targets and to CUG repeat containing RNA had different 

properties. Thus, we characterized the interaction between Muscleblind and 

CUG repeat RNA and target transcripts. First, we checked the ability of 

Muscleblind isoforms to bind to expanded CUG-containing transcripts in a 

human cell context. This assessed the conservation of the co-localisation 

described to occur in DM cells. Secondly, we tested the ability of the 

different Muscleblind isoforms to interact with both CUG-containing RNA 

and fragments of Drosophila α-actinin transcript in a yeast three hybrid 

system. Finally, to show that the interaction between Muscleblind proteins 

and α-actinin was direct, we performed in vitro UV crosslinking binding 

assays. 

 

II.1.1. Co-localisation of Muscleblind proteins with expanded 

CUG containing-RNA in mammalian cells. 

 

Myoblasts from myotonic dystrophy 1 patients show ribonuclear foci 

containing mutant DMPK mRNAs aberrantly retained in the nucleus [67]. 

Human MBNL proteins have been shown to co-localize with ribonuclear foci 

in DM myoblasts as well as in DM neurons and cardiomyocytes [73, 74, 

76]. Drosophila Muscleblind binding activity to CUG repeat RNA has not 

been described. MblA, B and C contain two zinc fingers similar to those 

present in human MBNL, whereas MblD contains just one. As an initial test 

of Drosophila Muscleblind ability to bind CUGs, we worked in a mammalian 
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cell context to analyze the capacity of different Drosophila Muscleblind 

protein isoforms to co-localize with ribonuclear foci. Because there was no 

anti-Muscleblind antibody available, we decided to fuse Muscleblind 

proteins to the Green Fluorescent Protein (GFP), in order to detect them in 

cell culture assays. The activity of the fusion protein was tested in vivo in 

our laboratory with a mutant rescue experiment. The MuscleblindC:GFP 

coding sequence was cloned downstream of UAS sequences and 

transgenic flies were generated. Expression of UAS-MuscleblindC:GFP 

throughout the embryo (daugtherless-Gal4 driver) rescued the muscleblind 

embryonic lethal phenotype to the same extent as wild type MblC [122]. 
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Figure R.11. Muscleblind proteins co-localise with CUG repeat containing RNA in COS 
cells. GFP-tagged Muscleblind proteins were expressed in COS cells together with DMPK 

3’UTR (CUG197) RNA. 1 µg of each plasmid was transfected as described in M&M. Mbl-GFP 

fusion proteins are detected in the green channel (GFP), hybridized CAG probe is in the red 

channel (Cy5), and nuclear DAPI staining is in the blue channel (DAPI). Images combining 

all three channels are shown at the bottom (merge). All muscleblind isoforms but MblD co-

localise with mutant DMPK RNA (yellow signal in merged panels). 

 

We co-transfected GFP-tagged Muscleblind isoforms and the expanded 

DMPK 3’UTR (CUG197) in COS cells. In these experiments we found that 

MblA, B and C co-localized with CUG expansions in prominent ribonuclear 

foci, while MblD showed a diffuse signal (Fig. R.11). Foci were clearly 

nuclear but for MblA some of the nuclear inclusions were so close to the 

nuclear membrane that they might actually be cytoplasmic. These foci were 

different to those found when over-expressing the GFP-fussions alone (see 

section IV.1 and Fig. R.21). In order to test if the prominent protein foci 

originated from an excess of transfected protein, and to ensure that co-

localisation was not cell type-specific, we co-transfected GFP fusions and 

CUG197 RNA in HEK293T cells using one third of the DNA used before. 

Ribonuclear foci persisted when working with MblA, being more prominent 

those close to the nuclear membrane; the ability of MblB to aggregate in 

RNA foci was sharply reduced, whereas MblC still co-localised with RNA 

foci although the size of the aggregates was smaller (Fig. R.12). 
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Figure R.12. Muscleblind proteins co-localise with CUG repeat RNA in HEK cells. 
GFP-tagged Muscleblind proteins were expressed in HEK293T cells together with DMPK 

3’UTR (CUG197) RNA. 300 ng of each plasmid were transfected as described in M&M. 

Detection of Mbl-GFP fusion proteins (GFP, green), CAG probe hybridizing to CUG repeat-

containing RNA (Cy5, red), and DAPI staining the nuclei (DAPI, blue) is shown. All 

muscleblind isoforms but MblD co-localise with RNA. 

 

These results were fully consistent with those obtained by Mike Poulos 

(Dept. of Molecular Genetics and Microbiology, University of Florida, USA) 

in HeLa cells and demonstrate that Drosophila Muscleblind proteins co-

localise with CUG trinucleotide expansions in mammalian cells. 
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II.1.2. Interaction of Muscleblind proteins with CUG repeat 

containing-RNA and α-actinin transcript in a yeast three 

hybrid assay. 

 

The yeast three hybrid system is a useful technique for analysing 

protein-RNA interactions in vivo (reviewed in [100]) (Figure R.13.A). It also 

allows mutational screens to be carried out to detect both amino-acids of 

the protein and nucleotides of the RNA that are required in a given 

interaction. MBNL1 interaction with pathogenic CUG and CCUG repeats 

has been analyzed in depth using this system [43]. This study showed that 

both the zinc fingers and the linker region between them were necessary 

for the interaction with the repetitive RNA. A UV crosslinking assay showed 

that MBNL1 binds the consensus sequence YGCUU/GY (where Y is a 

pyrimidine) in cardiac Troponin T mRNA [32].  

 

Apart from the zinc fingers, no other functional domains have been 

described in Drosophila Muscleblind proteins. Therefore, we decided to 

assay the interaction properties of the four natural isoforms (see Fig. I.5C) 

and two artificial constructs, one containing the region common to MblA, B 

and C (referred to as ZC) and the other containing just the two zinc fingers 

(referred to as CCCH), to elucidate which regions of the protein are 

involved in RNA binding. 

 

To further analyze the interaction between Drosophila proteins and DM 

pathogenic expansions we cloned 480 interrupted CUGs and 480 

interrupted CAGs as control of sequence specificity in the expression 

vector pIIIA/MS2.2 [99]. Given the splicing defects in Drosophila α-actinin 

mRNA in muscleblind mutant embryos, we expected Muscleblind proteins 
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to regulate α-actinin splicing by binding the mRNA directly. To test this 

hypothesis we computationally screened the genomic sequence of the 

alternatively spliced region of Drosophila α-actinin for MBNL1 consensus 

binding sequences. The in silico analysis revealed a cluster of seven 

overlapping perfect matches of MBNL1 consensus binding sequence 132 

nucleotides downstream of the 3’ end of exon E7 (Fig. R.9A). The three 

hybrid system is optimized for RNA fragments around 150 nucleotides 

[100]. Therefore, we designed Actn1, without binding sequences, to be 142 

nucleotides long and Actn2, containing the cluster, to be 161 nucleotides 

long, and we cloned them in the appropriate expression vector (see section 

II.2.1 of M&M and Fig. R.13D). 

 

Interrupted CUG repeat RNA generates hairpin structures similar to 
those formed by pure CUG repeat RNA. 

 

Because we used CTG repeats interrupted every 20 units by the 

sequence ctcga [35], we first checked that our repeats would fold into 

double stranded hairpins like pure CTG repeats. We introduced the 

complete sequence expressed from pIIIA/MS2.2 plasmids into the web-

based RNA folding prediction program Mfold (see M&M). The study of the 

predicted secondary structures of the RNA expressed showed that 

interrupted 480 CUG repeats generate a hairpin similar to that described for 

pure repeats (Figure R.13B-C’). Predicted free energies of structures 

generated by interrupted and pure repeats were also in the same range. A 

similar structure was obtained when introducing the 480 CAG construct 

sequence in the RNA folding website. This supported that 480 CUG repeat 

RNA would faithfully model the behaviour of pure repeats. 
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Figure R.13. Schematic representation of the yeast three hybrid system and hybrid 
RNAs used. A) Overview of the three-hybrid strategy to detect RNA–protein interactions. A 

hybrid protein containing LexA DNA-binding domain with RNA-binding domain of MS2 coat 

protein localizes to the promoter of reporter genes HIS3 and LacZ. A second hybrid protein 

containing Gal4 transcriptional activation domain with the protein domain that we want to 
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test for RNA-binding activity will activate transcription of the reporter gene when in close 

proximity to the upstream regulatory sequences of reporter genes. A hybrid RNA containing 

sites recognized by MS2 coat protein and the RNA submitted to study links the two hybrid 

proteins to one another. When the RNA and the protein of interest interact the tripartite 

complex results in detectable expression of the reporter genes. B) RNA folding of the 

sequence expressed from pIIAMS2-480CTG interrupted repeats gave a similar hairpin 

structure to that obtained when introducing 480 pure repeats (B’). The most frequent 

conformation and its free energy (dG) are shown. C) Zooming into the hairpin the cucga 

sequence that interrupts the CUG tandems are shown to generate a small loop that does not 

interfere with the general hairpin structure. C’) Zooming into the predicted structure for pure 

CUG repeats is shown. D) Schematic representation of α-actinin alternatively spliced region 

showing the cluster of MBNL1 binding sequences found downstream E7 (red dot) and Actn1 

and Actn2 fragments used in the three hybrid system and UV-crosslinking assays. E) 
Nucleotide sequence of the region encompassing the 3’ end of exon 7 and the beginning of 

the I6 intron. Protein coding sequence is underlined and the putative MBNL1 binding 

sequences are highlighted in bold 

 
Muscleblind isoforms show differential binding activity in a yeast 
three hybrid system. 

 

In order to detect the smallest fragment of Muscleblind protein that 

can bind RNA we cloned Muscleblind isoforms and two constructions, one 

encompassing the common region of MblA, B and C, and one containing 

the two zinc fingers. Initially we transformed L40 coat yeast with each of the 

pIIIA/MS2.2 constructs for the expression of the hybrid RNA (480 CUG 

repeats, 480 CAG repeats and Actn1 and Actn2 fragments of Drosophila α-

actinin mRNA), and grew the yeast on synthetic dextrose medium (SD) 

without tryptophan and uracil to select L40coat colonies that had taken up 

the plasmid. After 3 to 4 days of growth, a colony carrying each RNA 

expression plasmid was grown in YAPD2x (growing in selective medium 

did not work) and transformed with the pACT2 constructs for hybrid protein 
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expression. For the initial experiments, constructs of MblB, C and D as well 

as ZC fused to a Gal4 transcription activation domain were available. 

Colonies of each protein/RNA combination were plated on increasing 

concentrations of HIS3 competitive inhibitor 3-AT (see M&M). Ability to 

grow and representative pictures are shown in Table R.1. and Fig. R.14A-

C, respectively. MblC interacted with both CUG and CAG repeat RNA and 

also with the Actn2 fragment whereas MblB only interacted with CAG 

repeats and MblD with the Actn2 fragment. The common region gave no 

repetitive results with Actn2 RNA in the two initial experiments. 

 

 
Table R.1. Muscleblind isoforms show differential binding activity in a yeast three 
hybrid assay. Combinations of pACT2 constructs coding hybrid proteins (first column) and 

pIIIA/MS2 for the expression of RNAs (first row) that were used to transform yeasts. Growth 

(positive interaction) is denoted by +; absence of growth by -. Empty cell means no replica 

was made at that concentration of inhibitor. Iron Regulatory Protein (IRP) was used as 

positive control of interaction with Iron Response Element (IRE). Empty vector was used as 

negative control. ZC designates region shared by MblA, B and C. 
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Figure R.14. Ability to grow of yeasts expressing different combinations of 
Muscleblind isoforms and target RNAs. Colonies transformed with pACT2 vector (v), 

pACT2-MblB (B), pACT2-MblC (C), pACT2-MblD (D), and pACT2-ZC (ZC) together with 

pIIIA/MS2-CTG (A) pIIIA/MS2-CAG (B) pIIIA/MS2-Actn2 (C) were grown in SD plates 

without triptophan, histidine, leucine and adenine (-T –H –L –A) and increasing 

concentrations of 3-AT: none (1), 1 mM (2) and 5 mM (3). 

 

The experiment was repeated several times because yeasts eventually 

grew in negative controls as well. It has been shown that the YBZ1 yeast 
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strain, with a mutant MS2 coat protein, reduces the background of RNA-

independent interactions, enabling the detection of weaker interactions 

[100]. Although this system was more specific (absence of non-specific 

interactions with empty vectors, heterologous proteins, or RNAs at 3-AT 

inhibitor concentration of 1 mM), it was also less sensitive. The strength of 

the control protein-RNA interaction was reduced and previous interactions 

were not detected with the YBZ1 strain. 
 

As no conclusive results were obtained with yeast, we looked for an 

alternative method to study the binding properties of Muscleblind proteins. 

 

II.1.3. in vitro UV-crosslinking assay for binding to α-

actinin RNA. 

 

UV crosslinking experiments showed that human MBNL proteins bind 

cTNT mRNA at sequences located 18 and 36 nucleotides upstream of exon 

E5. Elimination of those binding sites reduces the ability of MBNL proteins 

to repress E5 inclusion [32]. We decided to test Drosophila Muscleblind 

ability to directly bind α-actinin RNA through the cluster of MBNL1 

consensus binding sequences located in intron six (Fig. R.9A). To do so, 

we tagged Muscleblind proteins with GST at N-terminus and His6 at C-

terminus. We expressed constructs in bacteria, purified tagged proteins, 

and performed in vitro UV crosslinking assays. 
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Muscleblind proteins fused to GST and His6 are highly insoluble and 
unstable when expressed in E.coli. 

 

Small scale expression of MblA tagged with GST (5’) and His6 (3’) 

showed that most of the protein remained insoluble. Furthermore, protein in 

the soluble fraction was degraded (Fig. R.15A). A high scale expression at 

16ºC using BL21 strain eventually gave enough soluble protein for 

additional experiments (Fig. R.15B). Glutathione Sepharose purification 

recovered most of the protein, although a significant proportion remained in 

the unbound fraction (Fig. R.15C). Subsequent purification with a Ni-NTA 

column gave a cleaner but still degraded protein preparation. Expression of 

MblC fusion protein gave a similar degradation pattern and recovery results 

after GST and His purification (Fig. R.15E). After desalting with PD-10 

columns (see M&M), western blotting of the final protein preparation with 

anti-His and anti-GST antibodies showed that full length protein was 

present and most of the degradation fragments were N-terminal (Fig. 

R.15D,F). 
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Figure R.15. Muscleblind proteins expressed in bacteria are insoluble and unstable. 
Arrowheads mark full-length protein migration A) Small scale expression of GST-MblA-His6 

protein in different E.coli strains (Rosseta, BL21star and BL21). Two colonies where induced 

in order to reveal colony dependence of expression efficiency. 1: sample 15 min after 

induction with IPTG; 2: soluble protein; 3: insoluble fraction. B) High scale protein 

expression of MblA in BL21 with 24 h induction at 16ºC. Lanes correspond to the following 

samples: 1: uninduced; 2: induced; 3: soluble; 4: extracted; 5: insoluble. C) Elutions from 

Glutathion Sepharose purification of MblA. Samples loaded were 1: induced protein pooled; 

2: unbound; 3-7: washes with MTPBS buffer; 8-11: elutions with 25 mM Glutathion; 12-15: 

elutions with 50 mM Glutathion. D) Western blotting with α-His and α-GST antibodies of final 

fractions obtained after PD-10 column elution of MblA. Note the detection of several GST-

tagged N-terminal degradation products. E) Elutions from Ni-NTA column purification of 

MblC. F) Western blotting with anti-His and anti-GST antibodies of final fractions obtained 

after PD-10 column elution of MblC. Note that the protein is degraded in N-terminal 

fragments reactive to anti-GST antibody. Molecular weight marker (MWM) bands of 116, 97, 

66, 57, 55, 43, 35, 28 and 13 KDa are shown in (A), (B), (C), and (E). Pre-stained (Ps) 

molecular weigh marker bands of 47.5 and 32.5 KDa are handwritten in (D) and 83, 62, 

47.5, 32.5, 25 and 16.5 KDa bands are in (E) and (F). The 16.5 KDa band is not shown in 

the film showing the anti-His staining. Note the different mobility of pre-stained molecular 

weigh marker compared to MWM in (E). 
 

The N-terminal region of MblA interacts with a fragment of Drosophila 

α-actinin containing MBNL1 consensus binding sequences. 

 

UV-crosslinking of MblA or MblC proteins with Actn1 and Actn2 

fragments (Fig. R.16) only gave a strong signal of interaction between MblA 

and Actn2 although the protein was severely degraded during the process 

(signal around 30 KDa). Just a weak signal appeared when incubating 

MblC and Actn2 and no signal of interaction was detected between Actn1 

RNA and MblA and C proteins in these experiments. Proper size and 

equivalent amount of RNAs was checked by acrylamide gel electrophoresis 

by Clare Gooding (Dept. biochemistry, University of Cambridge) confirming 
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that the same amount of input RNA was used in all conditions. As intron 6 

contains other MBNL1 consensus sequences, we transcribed the whole 

intron and tested the RNA for the interaction with different protein 

preparations of MblA and C, and also with protein extracts from cells 

transfected with GFP-tagged Muscleblind proteins (see section II.12 of 

M&M for constructs and II.18/20 for transfection procedures). Very weak 

signal around 30 KDa was detected in all samples. To test the specificity of 

the interactions between MblA with both the whole intron 6 and the Actn2 

fragment, we titrated both rRNA and heparine, which make the binding 

reaction more stringent. Both interactions persisted even under the most 

stringent conditions assayed (Fig. R.16A). 

 

 
Figure R.16. MuscleblindA binds a fragment of α-actinin that contains MBNL1 binding 

sequences through the N-terminus. A) 15% SDS-PAGE resolution of UV crosslinked 

samples. MblA protein was incubated with the entire I6 or the Actn2 fragment, and rRNA 

and heparine were titrated to test the specificity of the binding. M: Molecular weight marker 

bands 116, 97, 66, 57, 55, 43, 35 KDa; 1: no rRNA, no heparine; 2: 0.05 µg/µl rRNA; 3: 0.1 

µg/µl rRNA; 4: 0.2 µg/µl rRNA; 5: 0.7 µg/µl heparine; 6: 1.4 µg/µl heparine; 7: 2.8 µg/µl 

heparine; 8: 5.5 µg/µl heparine. B) 15% polyacrilamide gel of in vitro UV-crosslinking 

reactions. MblA and MblC were incubated with Actn1 and Actn2 under restrictive conditions. 

M: Molecular weight marker as (A); 1: no rRNA, no heparine; 2: 0.2 µg/µl rRNA; 3: 5.5 µg/µl 

heparine; 4: 0.2 µg/µl rRNA and 5.5 µg/µl heparine. Coomassie staining (C) and antibody 

detection with anti-His antibody (C’) and anti -GST antibody of a sample of MblA protein 

going through the UV-crosslinking assay (left lane) and a freshly thawed sample (right). Note 

N-terminus degradation products. Molecular weight marker bands are in C as in (A); in C’: 

47.5, 32.5, 25 and 16.5; and in C”: 47.5, 32.5, 25, 16.5 and 6.5. 
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To confirm the results we incubated both MblA and MblC preparations with 

Actn1 and Actn2 fragments under more restrictive conditions, i.e. including 

heparine, rRNA or both in the incubation reaction, in order to compete away 

unspecific interactions. Only MblA incubated with Actn2 RNA withstood the 
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interaction signal (Fig. R.16B). A protein gel electrophoresis of a protein 

aliquot of MblA carried through the crosslinking protocol in parallel to a 

freshly thawed equivalent amount of protein showed that degradation was 

occurring during the crosslinking protocol and very little full length protein 

lasted at the end (Fig. R.16C). Western blot showed that fragments 

observed to bind RNA were amino terminal as they were detected by anti-

GST antibody but not anti-His (Fig. R.16C’,C”). 

 

To further demonstrate that Actn2 fragment, but not Actn1, contains the 

sequences where MblA binds α-actinin mRNA, we performed a competition 

assay. The reaction was set up in the same conditions using 200, 300 and 

400 molar excess of Actn1 and Actn2 competitor RNAs. No lane showed a 

reduction in the binding signal thus indicating that the amount of competitor 

RNA was not enough. The concentration of competitor RNAs and reaction 

volume limitations did not permit to perform assays with higher amount of 

competitor RNA. Therefore, further optimization of protein extraction and in 

vitro transcription are necessary to properly show that the binding signal is 

specific. 

 

In summary, Muscleblind proteins have been found to be insoluble and very 

unstable when expressed in bacteria. Despite of that, we managed to show 

that MblA might interact with a fragment of α-actinin mRNA that contains 

MBNL1 consensus binding sequences and not with the adjacent fragment, 

lacking those consensus sequences. 
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III. Analysis of Muscleblind molecular function. 

 

Human MBNL proteins are RNA binding proteins that regulate 

alternative splicing of several muscular transcripts in cell culture [32]. 

MBNL1 splicing activity on cTNT pre-mRNA has been studied in depth [31] 

showing that a developmental switch in cTNT isoform ratio arises from the 

developmentally-regulated expression of splicing factors such as MBNL1 

and CUG-BP1. Moreover, previous work in our laboratory showed 

functional conservation between Drosophila Muscleblind proteins and 

human MBNL1 [107] and we here describe specific alternative splicing 

defects in Drosophila muscleblind mutants (Fig. R.9 and 10). We therefore 

decided to confirm the hypothesis that Drosophila Muscleblind proteins 

regulate alternative splicing of specific pre-mRNAs by performing different 

in vitro minigene splicing assays. 

 

HEK293T and COS cells give very good results in experiments using 

minigenes, since the transfection efficiency and also the levels of transgene 

expression are very high. Mammalian cells have been used to analyse the 

function of Drosophila proteins in a number of studies (for examples see 

[123, 124]). Given the strong functional conservation showed between 

Drosophila Muscleblind proteins and vertebrate MBNL proteins, we decided 

to undergo the analysis in mammalian cells. This approach has the 

limitation of a not being a physiological situation but it gives the opportunity 

to test the functional conservation in the other direction. Human MBNL1 

protein was shown to be functional in the fly; with these experiments we 

tested if the fly proteins can modify alternative splicing in a vertebrate cell 

environment. 
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III.1. Drosophila α-actinin minigene splicing assay in human 

cells. 

 

Upon finding that normal alternative splicing of α-actinin pre-mRNAs 

requires muscleblind and that Muscleblind proteins show differential binding 

activity to α-actinin pre-mRNAs (Fig. R.9 and R.16), we next tested the 

ability of Muscleblind isoforms to modify α-actinin alternative exon usage in 

cell culture. In order to perform these experiments we built a Drosophila α-

actinin minigene in a mammalian expression vector, which was transfected 

along with epitope-tagged Muscleblind proteins. The α-actinin minigene 

included cassette exons 6, 7 and 8, and their intervening sequences, 

flanked by constitutive exons 5 and 9 (Fig. R.17A). 

 

The α-actinin minigene and GFP-tagged Drosophila Muscleblind isoforms, 

or human MBNL1 protein, were co-transfected into human HEK293T cells. 

24 h after co-transfection, RNA was extracted and minigene products 

analyzed by semi quantitative RT-PCR. The minigene basal splicing pattern 

was characterized by co-transfecting control vector expressing GFP alone. 

This analysis revealed splice isoforms α-actnA, B, C and a new isoform that 

hasn’t been described to appear in flies, possibly skipping exons 6, 7 and 8. 

We will refer to as the short isoform. SacI digestions of PCR products 

revealed that α-actinin isoform B (typical of adult muscle, see Fig.R.9) was 

predominantly generated in this cellular context (Fig. R.17C). Both MblC 

and human MBNL1 were able to alter α-actinin minigene splicing so that 

the short isoform and isoform C, typical of larval musculature, were reduced 

(Fig. R.17B). Activity of GFP-Bruno proteins on α-actinin minigene was also 

tested but no reproducible effects were observed. 
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When increasing the amount of protein-coding plasmids transfected, we 

detected that GFP protein itself could be interfering with splicing. For this 

reason, we tagged Muscleblind isoforms with a myc epitope and repeated 

the experiments. Constructs expressing myc-tagged Muscleblind proteins 

were co-transfected with the α-actinin minigene and the ratio of α-actinin 

minigene splice products quantified (Fig. R.17D, F). myc-tagged 

Muscleblind proteins had a similar effect onto α-actinin minigene isoform 

ratio that GFP-tagged proteins. 

 

MblC showed the highest activity in these experiments as the α-actinin C 

and short isoforms were reduced compared with the splicing pattern 

obtained when the empty vector was transfected. MblA also reduced the 

amount of α-actinin short isoform. Other Muscleblind isoforms did not alter 

minigene splicing. These results were reproduced in COS cells by Mike 

Poulos (Dept. of Molecular Genetics and Microbiology, University of 

Florida, USA). When analysing protein levels, MblC appeared to be more 

stable than other isoforms both GFP and myc-tagged, which could 

influence in the higher activity detected (Fig. R.17C). MblD was not 

detected in any western blot but one made by Mike Poulos with protein 

extracts from COS cells. 

 

From these experiments we conclude that MblC regulates α-actinin splicing 

in human HEK293T cells repressing isoform C and short isoform during α-

actinin pre-mRNA splicing. 
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Figure R.17. Expression of Muscleblind proteins affects Drosophila α-actinin 

minigene splicing regulation in cell culture. A) Schematic representation of the structure 

of the α-actinin minigene (middle) and the three alternative splicing products. Arrows denote 

primers used in the RT-PCR. B) Electrophoretic separation of PCR products (2% agarose 

gel) after co-transfection of the α-actinin minigene and GFP-tagged Drosophila Muscleblind 

protein isoforms, human MBNL1 or vector alone in HEK293T cells, as indicated. MblC 

consistently repressed a short α-actinin transcript isoform (possibly skipping all alternative 

exons between exons 5 and 9) and α-actinin C, whereas MblA showed a weaker effect. C) 

SacI digestion to differentiate α-actininA and B (see figure R.9) showed a marked 

predominance of α-actininB. D) 2% agarose gel of RT-PCR products obtained when 

expressing myc-tagged Mbl isoforms show the same effects observed with GFP-tagged 

proteins. E) Western blotting (anti-GFP and anti-Myc) of protein extracts from transfected 

HEK cells showed that all Muscleblind protein isoforms were expressed in this cell type, 

except MblD that was not detected, and that MblC was more stable or efficiently translated 

than other isoforms. Asterisks denote the migration of full length protein. F) Quantification of 

band intensity in the gel shown in D with 1DAdvanced Phoretrix software gave the following 

values of α-actininA+B (AB), α-actininC (C), and short α-actininC (s): vector: C= 24.7, 
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AB=57.2, s=18.1; MblA: C= 23, AB=62.9, s=14.1, MblB: C= 23.9, AB=60.3, s=15.8, MblC: 

C= 13.4, AB=72.5, s=14.1, MblD: C= 24.2, AB=59.8, s=16. 

 

III.2. Expression of CUG repeat RNA alters Drosophila α-actinin 

minigene splicing in human cells. 
 

Long non-coding CUG repeats can be pathogenic to humans and 

model organisms [52, 69, 84]. Expanded CUG repeat RNA forms double-

stranded hairpins that interfere with the function of Muscleblind proteins 
[51]. Accordingly, expression of CUG repeat RNA in cell culture produces 

splicing defects in MBNL1 targets similar to depletion of MBNL1 proteins 
[32]. To test whether CUG repeats interfere with a Drosophila Muscleblind 

target, we transiently co-expressed the α-actinin minigene and human 

DMPK 3’UTR containing 160 to 200 CUG repeats (referred to as (CUG)197) 

in cell culture. Minigene titration in HEK293T and COS cells showed that 

HEK cells were more convenient to study the effect of CUG expression 

(Fig. R.17A, B). 

 

Expression of (CUG)197 RNA interfered with regulated exon choice in 

Drosophila α-actinin pre-mRNA increasing the expression of α-actinin 

isoform C from a 9 to 50% of total transcript and reducing α-actinin A + B 

from 91 to 50% of the total product (representative gel is shown in Fig. 

R.18C and quantification of two experiments in Fig. R.18D). These results 

are similar to the splicing defects found in α-actn pre-mRNAs when 

analysing CUG expressing flies (note that the expression of CUG expanded 

repeat containin RNA in flies generated the reduction of α-actinin isoform 

A). In order to analyse the ability of Muscleblind proteins to rescue the 

effect of CUG expression, we also co-transfected the α-actinin minigene 
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and CUG repeats with Muscleblind isoforms (Fig. R.18C lanes 3-7). No 

conclusion could be drawn as the expression of GFP alone already 

changed the splicing pattern. 

 
 

Figure R.18. Expression of CUG repeat containing RNA modifies Drosophila α-actinin 

minigene mRNA splicing in cell culture. Blue box marks α-actininC transcripts, Maroon 

box marks α-actininA+B RNAs. A) RT-PCR amplification of minigene products upon 

transfection of COS cells with 0.25 (1), 0.5 (2) or 1 µg (3) of α-actinin minigene performing 

the RNA extraction 24 or 48 h  after transfection. No difference on RT-PCR sensitivity was 

detected when increasing either the amount of vector or the growing time after transfection. 

An unspecific band was detected. The upper band should correspond to the  α-actininC 

product because of the size, but it was not confirmed by sequencing. B) RT-PCR 

amplification of minigene products upon co-transfection of HEK cells with 1 (1-3) or 2 µg (4-

6) of minigene plasmid and 0.5 µg of pEGFP-C1 (GFP control) (1), pMV2-MblC (2) and 

pMV2-MblD (3) or 1 µg of pGEM42 (4), pMV-MblC (5) and pSP72-DMPK(CUG)197 (6). C) 

Amplification of minigene splicing products after co-transfection of HEK cells with 0.5 µg α-

actinin minigene and 0.5 µg pSP72-DMPK(CUG)197 (2-7) together with 0.5 µg of pGEM42 

(2), pEGFP-C1 (3), and GFP tagged Mbl proteins A (4), B (5), C (6) and D (7). Control lane 

1 shows RT-PCR products when transfecting 0.5 µg α-actinin minigene and 1 µg of empty 

pGEM42. D) Quantification of the effect of CUG repeat RNA in α-actinin minigene isoform 

ratio showed a significant increase in α-actnC isoform and a decrease in α-actnA+B. 
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These results demonstrate that CUG repeat RNA misregulates Drosophila 

α-actinin pre-mRNA. 

 

III.3. Drosophila Muscleblind isoforms regulate mouse Tnnt3 
minigene splicing in human cells. 

 

troponin T genes are established MBNL1 targets. Human MBNL1, 

CUG-BP1 and ETR3 regulate human cardiac Troponin T transcript splicing 

[31]. Mbnl1 knockout mice show splicing defects in both cardiac (Tnnt2) 

and skeletal muscle (Tnnt3) Troponin T [28]. fast skeletal Troponin T 

(TNNT3) splicing is altered in DM as patient myocytes show inclusion of an 

exon between exons 8 and 9 only present in developing normal muscles 
[28]. Inclusion of this exon reduces the sensitivity to Ca2+ of the resulting 

fast skeletal Troponin T [125]. We have shown that muscleblind mutant 

pupae have splicing defects in tnT mRNA. With these evidences, we 

decided to test the functional conservation between human and fly proteins 

expressing Drosophila proteins in a human cell context. We tested the 

ability of Muscleblind proteins to regulate the splicing of a vertebrate RNA, 

a Tnnt3 minigene that has been described to be regulated by murine 

Muscleblind proteins [29]. In order to check if any of the Drosophila 

homologues of CUG-BP1 had activity on Tnnt3 splicing, we also co-

transfected the Tnnt3 minigene with GFP-tagged Bruno proteins. 

 

Semi quantitative RT-PCR after co-transfection of HEK293T cells with 

Muscleblind-GFP fusion proteins and murine Tnnt3 minigene revealed 

strong activity of Mbl proteins in this assay. MblA, B and C modified the 

Tnnt3 splicing pattern whereas no effect was detected when expressing 

MblD (Fig. R19A,C). Again, MblC was the isoform with the strongest activity 
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as one of the bands from Tnnt3 completely disappeared. Western blot 

showed that MblC was again more stable or efficiently translated, which 

could influence the activity detected (Fig. R19B). No activity was detected 

for any of the Bruno proteins, although western blotting showed they were 

very unstable and the detection was very low, as it was for MblD isoform. 

The presence of the foetal exon in the medium band and the absence in 

the lower one was confirmed by sequencing. The upper band could not be 

sequenced. 
 

 
Figure R.19. Muscleblind proteins modify murine TroponinT3 minigene splicing in a 
human cell culture assay. A) 2% agarose gel of RT-PCR products from HEK293T RNA 

extractions. +F indicates presence of foetal exon confirmed by sequencing. -F indicates 

absence. B) Western blot with α-GFP antibody of HEK293T protein extracts. 1: GFP vector; 

2: MblA; 3: MblB; 4: MblC; 5:MblD; 6: MblC∆SUMO; 7: Bruno1; 8: Bruno2; 9: Bruno3. C) 

Representation of average percentage of RT-PCR products including (+F) and excluding (-

F) the foetal exon in three replicas except for MblB, which could be amplified only once. 
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Quantification was with 1DAdvanced Phoretrix software . Asterisks denote statistically 

significant differences compared to the effect of the expression GFP alone (p<0.05). 

  
In summary, Muscleblind proteins influence exon choice of murine Tnnt3 

minigene in HEK293T cells. Expression of fly proteins in these cells led to 

the exclusion of Tnnt3 foetal exon whereas no effect was detected for 

Drosophila Bruno proteins. 

 

III.4. Analysis of Mbl protein implication in cell death. 

 

Genetic data generated in our laboratory implicated mbl gene function 

with the apoptotic process. reaper and Diap1 loss-of-function alleles 

respectively suppressed and enhanced a mblC over-expression phenotype 

in the Drosophila eye [126]. Furthermore, the over-expression of mblC in 

the posterior compartment of the wing imaginal disc (engrailed-Gal4 driver) 

led to a lack of laminar tissue due to the activation of Caspase3. The 

genetic interactions with key apoptotic genes and the data from the 

analysis of the wing phenotype suggested mbl could be involved in the 

apoptotic process. 

 

Over-expression of pro-apoptotic genes in Drosophila S2 cells activates 

programmed cell death, which can be measured in a cell viability assay 

[127]. We cloned myc-tagged Muscleblind isoforms into pIEI, a expression 

vector for Drosophila S2 cells. Monitoring cell viability by LacZ staining 48 h 

after co-transfection of myc-tagged Mbl isoforms and LacZ in pIEI vector 

showed an increase in cell death when expressing MblA, B and C. 

Increment in cell death was especially marked for MblB over-expression 

(Fig. R.20A), whereas MblD showed a weak effect in the opposite direction 

that, although not statistically significant, was reproducible in three 
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independent assays (Fig. R.20B). An experiment carried out fixing cells 24 

h after transfection showed that the effect was quick. 

 
Figure R.20. Over-expression of Muscleblind proteins in Drosophila S2 cells 
increases cell death probably through apoptosis. The bar graph represents the 

percentage of cell survival observed when transfecting Drosophila S2 cells with Muscleblind 

isoforms tagged with myc in pIEI vector. A) Counting of surviving cells after 24 h and 48 h 

showed a statistically significant decrease in cell survival when expressing MblA, B and C 

(p-value<0.05). B) MuscleblindB induction of cell death was suppressed  by co-transfection 

with anti-apoptotic Diap1 or addition of caspase inhibitor.  

 

To confirm that the observed increase of cell death was due to apoptosis, 

we over-expressed anti-apoptotic protein Diap1 together with MblB or 

added a chemical caspase-inhibitor (Fig. R.20B). In order to detect 

suppression by Diap1, we reduced the amount of MblB-pIEI4 transfected 

(see M&M). Diap1 over-expression effectively suppressed MblB cell death 

activity, although the conditions should be optimized in order to ascertain 

the interaction (Fig. R20B and M&M section II.3.4.). Addition of a caspase 
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inhibitor also abrogated MuscleblindB effect on cell survival, thus 

suggesting that the activation of cell death by MblB is through the apoptotic 

pathway. 

 

These results show that Muscleblind proteins activate cell death in an 

isoform specific manner. This cell death is probably due to activation of the 

apoptotic pathway although more experiments are necessary to fully 

support this proposal. 

 

IV. Molecular basis of isoform specific behaviour. 

 

Cell culture assays showed the differential activity of Muscleblind 

isoforms in regulating Drosophila α-actinin and murine tnnt3 minigenes, 

and cell viability. Binding abilities of Muscleblind isoforms were also 

different in in vivo and in vitro studies. Muscleblind proteins share an 

important part of their N-terminal region but structural differences in their 

isoform-specific C-terminal ends may underlie biologically relevant 

functional differences as has been shown for other proteins. Just 16 amino 

acids of difference between Drosophila alternative splicing factor (dASF) 

and its human homolog (hASF) results in a different sub-cellular 

localisation, abolition of a phosphorylation site and a different splicing 

activity [128]. Specific carboxy-terminal regions can also result in specific 

protein-protein interactions that may influence RNA binding activity and 

regulate splicing activity [129]. As sub-cellular localisation and pot-

translational modifications could be influencing the differential activities of 

Muscleblind isoforms, we performed cell culture assays in order to observe 

Mbl isoform localisation and the influence of the elimination of a putative 

sumoylation site. 
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IV.1. Analysis of sub-cellular localisation of Muscleblind 
proteins. 

 

While the ultimate reason for functional differences between 

Muscleblind isoforms lies within the protein sequence, it is also possible 

that distinct cellular localisation influences protein activity. To test whether 

Drosophila Muscleblind protein isoforms were preferentially localised in the 

nucleus or cytoplasm, we transiently transfected COS cells with GFP-

tagged Muscleblind proteins (Fig. 21A). In these experiments MblA 

appeared predominantly in the cytoplasm, whereas both MblB and MblC 

were enriched in the nucleus. These results were in agreement with the 

splicing activity of MblC in cell culture. Of note is the diffuse signal of GFP-

MblD, probably arising from protein degradation, which precluded drawing 

any conclusion. Both MblA and MblC accumulated into cytoplasmic foci 

whereas MblB only occasionally did. These aggregates have been 

suggested to be a consequence of translational inhibition due to stress (Dr. 

J. Tazi, personal communication). To test if these aggregates were due to 

the amount of protein expressed by transfected cells or they were cell-type 

specific, we transfected HEK293T cells with a lower amount of plasmid 

DNA (Fig. 21B). MblA, B and C continued appearing in foci. The protein 

aggregates were much smaller and mainly nuclear for MblA and MblC. 

Therefore, isoforms showed the same sub-cellular localisation as in COS 

cells, suggesting that these were their physiological localisations in vivo. 
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Figure R.21. Muscleblind proteins show different sub-cellular localisation in 

mammalian cell culture. A) 1 µg of GFP-fusion protein expression vector was transfected 

into COS cells. GFP fluorescence was detected from the GFP-tagged Muscleblind proteins 

and GFP control (green) and nuclei were counterstained with DAPI (shown in blue). MblA 

was found to be mainly cytoplasmic whereas MblC fluorescence was almost restricted to 

nuclei. MblB showed an intermediate behaviour, enriched in the nucleus but also intense in 

the cytoplasm, whereas MblD signal was diffuse and similar to that found in the GFP control, 

which suggested protein degradation . MblA, B and C formed big perinuclear aggregates. B) 
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300 ng of DNA were transfected into HEK293T cells. Aggregate size and number were 

reduced but sub-cellular localisation was similar to that found in COS cells. 

 

These data coupled with the observation that Muscleblind distribution in 

adult Drosophila muscles, when only mblC and mblD transcripts are 

detected [45], is mainly in nuclear foci [83], suggest that MblC could 

normally be located in nuclear aggregates. The results also show that a 

high proportion of MblC is localised in the nucleus, whereas MblA is mostly 

cytoplasmic. This could be influencing the ability to regulate splicing in the 

cell culture assays previously shown (Figs. R.17 and R.19) and further 

supports functional diversification between Muscleblind isoforms. 

 

IV.2. Analysis of the functional relevance of a putative MblC 
sumoylation site. 

 

All four MBNL1 zinc fingers, and the linker in between them, were 

shown to be necessary for binding to CUG repeat-containing RNA in a 

yeast three hybrid assay [43]. CCCH zinc finger motifs are the only 

domains of Muscleblind proteins associated with a function. Nevertheless, 

we have found Drosophila Muscleblind proteins sharing the first amino 

terminal 179 amino acids, including both zinc fingers, show differences in 

sub-cellular localisation and splicing activity. We next sought the molecular 

basis for such differences. 

 

in silico studies developed in our laboratory on MblC specific sequence 

identified a putative sumoylation consensus sequence (FKRP) conserved in 

C. elegans. (Fig. R.22A). Sumoylation is an ubiquitin-related 

posttranslational modification that regulates protein activity. Sumoylation 

does not typically lead to protein degradation. Instead, it usually regulates 
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intracellular protein localisation [130, 131]. In order to test whether the 

conserved FKRP motif was involved in MblC function, site-directed 

mutagenesis was performed to disrupt the site. The lysine residue located 

at position 202 was mutated to isoleucine (K202I; Fig R.22A). We tested 

the mutated protein (hereafter referred to as MblC∆sumo) in the functional 

assays we performed before with wild type MblC. 

 

COS and HEK293T cells were transfected with pEGFP-N3-MblC∆sumo to 

assess the sub-cellular localisation of mutated protein. Expression of GFP-

tagged MblC∆sumo protein in COS cells showed a frequency of protein foci 

higher than when wild type MblC was expressed (Fig. R.22B). To check 

whether MblC aggregation ability was enhanced by the elimination of the 

putative sumoylation site, we also transfected HEK293T cells diminishing 

the amount of transfected vector expressing GFP-tagged wild type and 

mutated MblC. Foci formation when transfecting wild type MblC-GFP was 

severely reduced but MblC∆sumo-GFP still formed prominent aggregates, 

mostly perinuclear (Fig. R.22B’). 

 

COS cells were also used to test the ability of MblC∆sumo to co-localise with 

expanded CUG repeat RNA in ribonuclear foci. Co-transfection of pEGFP-

N3-MblC∆sumo and DMPK 3’UTR (CUG197) in COS cells showed no 

disruption of protein co-localisation with expanded CUG ribonuclear foci 

(Fig. R.22C). The splicing factor activity of the mutated protein was also 

tested. Mutation of FKRP site did not affect Muscleblind activity on 

Drosophila α-actinin minigene (not shown). When co-transfecting the 

protein expression vector with mouse Tnnt3 minigene, the splicing activity 

of the protein was also maintained (Fig. R.22D). 
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Fig.R.22. Elimination of a conserved putative sumoylation site increases protein 
aggregation and cell death-inducing activity of MblC. (A) Drosophila MblC sumoylation 

site (dmel) is conserved in C. elegans (cel). Sequence is partially conserved in Anopheles 

gambiae (aga), Danio rerio (dre), mus musculus (mmu), and humans (hsa). Sequence 

change resulting from site-directed mutagenesis is denoted by an asterisk. Figure adapted 

from alignment by J.M.Fernandez (Depto. Genética Facultad de Biología U.V.) B) COS cells 

transfected with 1 µg of GFP-tagged proteins showed a higher frequency of protein 

aggregates when the site was mutated. B’) HEK293T cells transfected with 300 ng of GFP-

tagged proteins showed small nuclear aggregates in wild type MblC transfections whereas 

MblC∆SUMO still aggregated in big foci also found in cytoplasm. FKRP site disruption did not 

interfere with co-localisation with CUG ribonuclear foci (C) or Tnnt3 splicing regulation in cell 

culture (D). Statistical significance (p-value<0.01) was found for both +F and -F bands when 

co-expressing MblC∆SUMO and the tnnT3 minigene compared to the empty vector, showing 

no change in the splicing activity of the protein in this system when the site was mutated. E) 

MblC∆SUMO-GFP induced twice more cell death than wild type MblC tagged with GFP in 

Drosophila S2 cells. The increment was observed both 24 and 48 h after transfection. 
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We finally checked the influence of the K202I change in the activation of 

cell death. Interestingly, pro-apoptotic activity of Muscleblind was enhanced 

by elimination of the putative sumoylation site. When expressing myc-

tagged MblC∆sumo in Drosophila S2 cells, survival of cells was reduced to 

20% after 24 h compared to controls transfected with the empty vector. In 

contrast, samples transfected with wild type protein showed a survival rate 

of 40% (Fig. R.22E). Experiments carried out in our laboratory later on 

confirmed the increase of cell death activation when removing the FKRP 

site. 

 

In summary, our results suggest a role for the FKRP site, possibly 

sumoylated, in Muscleblind C activity regulation. The mutation of the site 

does not alter RNA binding to CUG repeats or tnnT3 splicing but enhances 

formation of protein aggregates and the activation of cell death in cell 

culture. 
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Discussion 
 
 
 
 
 

Yo no puedo cambiar la dirección del 
viento, pero si ajustar las velas 

para que me lleven a mi destino 
-James Dean- 
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Since muscleblind gene was first described in Drosophila, a function 

in RNA metabolism was proposed for the proteins coded because of the 

zinc finger motifs [44]. Studies carried out later on showed that human 

MBNL proteins have the ability not only to bind to RNA molecules but also 

to modify their splicing [32] and subcellular localisation [36]. Muscleblind 

proteins are being implicated in an increasing number of diseases. 

Expression levels of human MBNL2 are altered in several tumours [36] and 

MBNL1 is upregulated in schizophrenia [54] and sporadic idiopathic 

pulmonary arterial hypertension [55]. MBNL1 function is also impaired in 

Myotonic Dystrophy [28, 29] and a similar mechanism has been proposed 

to participate in Huntington Disease Like 2 pathogenesis [53]; also a fly 

model of SCA8 genetically interacted with Drosophila muscleblind loss-of-

function alleles [52]. Mouse and fly muscleblind mutants present defects in 

muscle and photoreceptor differentiation [28, 41, 44]. Drosophila 

muscleblind mutant defects [46] and expression patterns of fly and 

vertebrate muscleblind genes [39-41] suggest that it might be also 

implicated in nervous system development. 

 

Drosophila presents advantages to be used as model organism to study 

Muscleblind function as it presents a single gene that generates four 

transcript isoforms, whereas mouse and human present three MBNL genes 

and at least 15 confirmed transcript isoforms [38, 42, 43]. Drosophila 

Muscleblind proteins share their N-terminal region. MblA, B and C share 

179 amino acids, including two zinc finger motives. This is the only 

putatively functional domain described in these proteins and the domain 

that defines Muscleblind proteins as part of the CCCH zinc finger domain 

family of proteins. MblD, the shortest isoform, shares just 63 amino acids 

with the others and it has only a zinc finger. All four proteins present 
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specific carboxy-terminal sequences that might modify the binding activity 

of the zinc fingers or provide other functionality to the protein. 

 

A guiding theme throughout my PhD work was to better understand the 

molecular function of Drosophila Muscleblind proteins and their relevance 

to myotonic dystrophy. To this end, I initially looked for myotonic dystrophy-

like defects in a hypomorphic muscleblind allelic combination and a CUG 

toxicity model in flies. I found that muscleblind mutant flies showed defects 

in alternative splicing of defined pre-mRNAs. These potential Muscleblind 

targets were also altered in flies expressing CUG repeats, thus suggesting 

conservation of the mechanism of pathogenesis in the fly. Then, I analyzed 

the RNA-binding properties of Muscleblind, both to physiological and 

pathogenic CUG repeat containing RNA. I showed the conservation of 

direct binding to targets through the zinc fingers in vitro, and the interaction 

with CUG containing RNA in cell culture. I confirmed Muscleblind activity as 

splicing factor with minigene splicing assays in cell culture and I showed 

the ability of MuscleblindA, B and C to activate cell death, probably through 

the apoptotic pathway. I also performed experiments in order to analyse the 

basis of isoform-specific activity detected for Muscleblind proteins. I 

described Muscleblind protein isoforms have different subcellular 

localization, and I discovered that mutation of a conserved putative 

sumoylation motif in MuscleblindC protein activates the pro-apoptotic 

activity of the protein in cell culture. 

 

With these results, we conclude that the function of Muscleblind proteins 

and also the mechanism of DM pathogenesis are well conserved between 

vertebrates and flies (both aspects will be discussed deeply below). 

Drosophila Muscleblind function, as vertebrate MBNL function, is necessary 
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for the proper regulation of alternative splicing of specific genes. 

Furthermore, Drosophila Muscleblind proteins, as the vertebrate MBNL 

proteins, can modify the splicing pattern of transcripts in cell culture 

experiments. In the other hand, the expression of CUG repeat containing 

RNA in flies alters the splicing pattern of muscleblind targets. This opens 

the possibility to obtain important data from Drosophila with biomedical 

relevance. In summary, this work shows that Drosophila is a good model to 

study myotonic dystrophy. Both Muscleblind mutant flies and flies 

expressing CUG repeat containing RNA are useful tools not only in the 

research to clarify the role of Muscleblind proteins in DM but also in the 

analysis of other factors involved in DM and the characterisation of 

Muscleblind protein function. 

 

1. mblE27/mblk7103mutants, a model to study muscleblind function in 
late development. 

 

An accurate counting of hypomorph flies arriving to the adult stage 

gave a 70% of viable flies (Fig. R.3). Null muscleblind mutant embryos 

show defects in sarcomere organisation and tendon matrix reduction [41]. 

Somehow, these or other defects not yet described are too severe for the 

embryo to survive. They die as larvae inside the chorion. Contrarily, 

mblE27/mblk7103 allelic combination might be giving enough muscleblind 

function for the eggs to undergo a proper embryonic development, but fails 

in later stages as the adult flies show defects that can be severe and even 

the flies that look externally fine, have reduced viability. Then, this 

hypomorphic allelic combination emerges as a useful tool to analyse 

muscleblind function in late development and in consequence, a model to 

study Muscleblind implication in myotonic dystrophy. 
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During Drosophila wing development, the dorsal and ventral wing epithelia 

fuse together by highly specific cell-cell adhesions, and defects in this 

process result in blistered wings. The blistered wing phenotype observed in 

the mblE27/mblk7103 mutants (Fig. R.1) suggests that Muscleblind may 

participate in such a cell adhesion process. During Drosophila wing 

maturation, components of extra-cellular matrix (ECM) are expressed that 

bond the dorsal and ventral cuticular surfaces of the wing following 

migration of the cells [132]. The origin of ECM components is not well 

understood although it has been proposed that hemocytes are implicated in 

this process. Hemocytes are known to mediate ECM formation between 

dorsal and ventral epithelia during prior pupal appositions of the wing 

epithelia [133, 134]. Hemocytes are also known to express several tendon 

matrix molecules [135]. muscleblind null mutants where described to have 

a severe reduction of the extracellular tendon matrix (TM) at indirect 

muscle-epidermis attachments [41]. Muscleblind expression analysis by 

immunohistochemistry showed no expression in hemocytes [41]. Muscle 

tissue has not been described to secrete any component of TM and the 

study of muscleblind mutant clones in Drosophila photoreceptors showed 

muscleblind function being cell-autonomous. So, if muscleblind mechanism 

of action is the same in muscle and eye development, one wouldn’t expect 

the secretion of TM components to be dependent on muscleblind. Thus, the 

reduction in TM might be caused by the lost of anchoring of the 

components to proteins present in muscle membrane which presence or 

functionality require muscleblind function. 

 

Integrin is well known as a central molecule that mediates adhesion 

between wing layers [136, 137]. The maintenance of muscle attachment to 
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epidermal tendon cells of Drosophila also depends on the PS1 and PS2 

integrins. Muscles and tendon cells express complementary pairs of 

heterodimeric integrins (PS1 and PS2), composed of a common β-subunit 

and different α-subunits such as αPS1 in tendon cells, and αPS2 in muscles 

(reviewed in [138, 139]). Whereas mutations in βPS subunit cause severe 

detachment phenotypes, mutations in multiple edematous wings (mew) and 

inflated (if), which encode the αPS1 and αPS2 subunits, respectively, result in 

either weaker or no embryonic muscle detachment phenotype [140-142]. 
Moreover, hypomorphic alleles of integrin mutants result in wing blisters in 

surviving adult flies, a phenotype likely to be caused by the loss of 

adhesion between dorsal and ventral wing epidermal blades which express 

PS1 and PS2, respectively [138]. 

 

mblE27/mblk7103 adult flies showed defects in wing lamina adhesion (Fig. 

R.1). 15% of the mutant flies that arrived to adult stage showed wing 

blisters and over a 20% of the escapers showed an acute phenotype have 

unexpanded wings in which the two surfaces are completely detached. The 

loss of PS integrin function in the wings, by loss of function of either the 

gene itself or the adaptor molecules that mediate attachment of 

extracellular matrix -integrin complexes to cytoskeleton, causes the 

formation of a fluid-filled blister [137, 143]. So, the absence of cell adhesion 

molecules or the presence of inadequate isoforms with different 

functionality may also generate lamina detachment. Interestingly, viking, a 

gene encoding the α2 chain of collagen IV, which together with α1 chain 

form the basal membranes that stabilise cell-matrix interactions in 

Drosophila [144] was detected to interact with the expression of expanded 

CUGs in Drosophila [85]. These flies reproduce the main features of 

Myotonic Dystrophy and genetically interact with muscleblind function. 



Mbl molecular function 

 149

Another molecule implicated in cell-cell adhesion, the kinase coded by 

turtle, interacted with the over-expression of muscleblindC in the adult eye 
[126]. Then, mblE27/mblk7103 mutants are a good scenario to analyse the 

mechanism by which muscleblind function is required for wing development 

and determine muscleblind implication in extra-cellular matrix deposition or 

anchoring. 

 

We also detected splicing defects in Drosophila troponinT mRNA specific of 

muscleblind mutant pupae (Fig. R.10). Human MBNL1, PTB, CUB-BP and 

ETR-3 (the last two homologs to Drosophila bruno genes) cooperate to 

regulate the splicing of cardiac TroponinT (cTNT, [32]). Both cTNT and fast 

skeletal TroponinT (TnnT2) are mis-spliced in Muscleblind-like1 knockdown 

mice (Mbnl1∆3/ ∆3). Interestingly, Drosophila TroponinT mutation was 

described to generate an upheld phenotype [145], typical of disrupted IFMs, 

also found when expressing expanded CUG repeat RNA in a muscular 

pattern [85]. Drosophila TroponinT has been described to undergo tissue-

specific alternative splicing, also regulated during development. 

Interestingly, we detected an alteration in the ratio of inclusion of the exon 

3, encoding a glutamic acid-rich domain homologous to the fetal exon of 

cTNT that is regulated by human MBNL1 [121]. This exon is only absent in 

the troponinT isoform expressed in TDT and IFM muscles and probably 

confers specific functional properties as the foetal exon does in humans 

[125]. This defect was already detectable in heterozygous flies carrying the 

strong allele mblE27 pointing that half dose of muscleblind is not enough to 

perform all the functions required for a normal development. Despite of the 

presence of this molecular defect, heterozygous flies do not present any 

external phenotype and no viability problems have been observed. So, in 

laboratory growth conditions, these flies can cope with this defect and 
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maybe others not yet described. This gives us a situation in which 

muscleblind dose can be somehow monitored as we have a gradation of 

muscleblind loss of function. It would be interesting to correlate the defects 

found in the fly model of RNA toxicity (see below) with those found in 

mblE27/mblk7103 hypomorphs to approximately measure the level of 

muscleblind function that remains in CUG repeat RNA expressing flies in 

vivo. 

 
2. Conservation of Muscleblind molecular function. 

 

Splicing machinery is one of the most complicated macromolecular 

complexes in the cell, with more than 300 proteins described to be 

implicated in splicing [146] and a highly dynamic composition [147] that 

requires numerous protein-protein and protein-RNA interactions to be 

accurate. MBNL1 is an alternative splicing factor that binds to physiological 

targets through a YGCU(U/G)Y sequence [31, 32]. We found splicing 

defects in muscleblind mutants (Fig. R9, 10) that pointed to the 

conservation of the splicing activity in flies. The demonstration arrived when 

over-expression of Drosophila Muscleblind proteins modified α-actinin 

minigene splicing in cell culture (Fig. R.16). Insect and vertebrate cellular 

environments are known to be very different. Interestingly, Drosophila 

Muscleblind proteins were active in vertebrate cell culture and they could 

regulate α-actinin minigene splicing. Even stronger reinforcement of the 

conservation is the fact that Drosophila Muscleblind proteins were active on 

the murine TroponinT3 minigene in human cell culture (Fig.R.18). They 

were able to interact not only with vertebrate proteins required for the 

splicing but also with vertebrate sequence elements. These data reinforce 

previous in vivo conservation data generated by rescue of muscleblind 
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mutant background by MBNL1 [107]. Very little is known about the factors 

that are required for MBNL to recognise the RNA and to be active as 

splicing factor but they were similar enough in flies for MBNL1 to perform a 

good part of muscleblind functions. 

 

α-actinin isoform C, typical of larval muscle, was severely reduced in 

muscleblind mutants. The correspondent increase mainly in the non-muscle 

α-actinin isoform A, and also in α-actinin isoform B, typical of adult muscle, 

was detected (Fig.R.9). MBNL1 is implicated in a developmental switch in 

alternative splicing of cTNT E5 in vertebrates in coordination with CUG-

BP1, ETR-3 and PTB [31]. Whereas CUG-BP1 and ETR-3 favour E5 

exclusion and their expression is down-regulated during heart 

development, MBNL1 and PTB repress E5 inclusion and their expression is 

maintained in the adult heart. As result of the regulation of splicing factors 

levels, E5 is excluded in the developing heart but it is included in the adult 

tissue. The splicing alterations in flies were only found when all samples 

were collected in parallel and strictly controlling the egg laying and 

development times, indicating that we might be working in a developmental 

stage in which there is a switch in splicing regulation. Also the 

synchronisation of the pupae was essential to get reproducible results. In 

any case, what we observed in the fly seems to be a more complicated 

equilibrium than that described in cTNT. The splicing alteration that we 

found in α-actinin splicing is not only a change from larval to adult isoforms 

but also from muscle to non-muscle isoform. The splicing alteration in 

TroponinT found in hypomorphic muscleblind mutant pupae was a change 

from hypodermic muscle transcript to the transcript specific of TDT and IFM 

muscles (Fig.R.10). Then, it is again an alteration in cell-specific alternative 

splicing regulation although cloning and sequencing analysis should be 
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performed to discard a change in inclusion of the adult E4 that would mean 

an additional adult to larval switch. Interestingly, splicing defects in mutants 

were observed coinciding with the two expression peaks of muscleblindC 

(Fig. I.5). It would be interesting to check whether mblC transcript shows a 

tissue-specific expression pattern in the adult fly to better understand the 

mechanism of control of this cell-type specific splicing events. It is also 

worth noting that the changes in exon usage are not from zero to 100% or 

vice versa, pointing to the implication of other factors in the regulation of 

these splicing events. Identification of those factors and a detailed 

description of their expression patterns will be necessary to understand the 

complete mechanism of α-actinin and TroponinT splicing in Drosophila. 

 

The RNA-protein interaction mechanism of Muscleblind proteins seems to 

be conserved between human and flies too. Human MBNL proteins are 

RNA binding proteins that directly interact with RNA, both with their 

physiological targets and the expanded CUG containing RNA causing DM 

[32, 51]. A yeast three hybrid study showed that MBNL1 specifically binds 

to CHHG sequences (where H is A, U or C) [43]. It also showed that the 

four zinc finger domains and the linker between them are necessary to 

interact with expanded CUG repeats although the last zinc finger might be 

not needed to interact with the CCUG repeats that originate DM2. Analysis 

of splicing defects in muscleblind mutants revealed two potential targets of 

Muscleblind proteins: α-actinin and TroponinT. Bioinformatics analyses of 

genomic sequences showed a consensus sequence for MBNL1 binding 

close to Drosophila TroponinT exon E3 and a cluster of seven overlapping 

MBNL1 binding sequences close to α-actinin exon E7 3’ end. The 

preliminary binding results, point to the binding between Muscleblind zinc 

fingers and a fragment of the α-actinin mRNA containing MBNL1 binding 
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sequences (Fig.R.13, 16). The degradation of the protein advises against 

any strong conclusion about the specificity of these studies. So, more 

experiments, either expressing fragments of the protein to obtain soluble 

and stable expressed fragments, or expressing the protein in a different 

system (ideally Drosophila S2 cells) should be performed to confirm the 

results obtained. 

 

Seven overlapping MBNL1 consensus binding sequences were found in α-

actinin I6 (see Fig. R.9 for nomenclature). N terminal fragments of MblA 

appeared to interact with a fragment of 161 bp containing these sequences 

and not the adjacent fragment with none of these sequences (Fig.R.13, 

R.16) in in vitro crosslinking assays. Other techniques as crosslinking 

immunoprecitation (CLIP) or systematic evolution of ligands by exponential 

enrichment (SELEX) should be considered to definitely prove that 

Muscleblind binding sequence is conserved between humans and flies. 

Further experiments are needed to probe that Muscleblind splicing activity 

on α-actinin requires the binding to mRNA through these sequences. 

Assays testing protein functionality when mutating these sequences and 

when introducing these sequences in an unrelated context would tell 

whether those nucleotides are required and/or sufficient for the protein to 

bind and to be active. It will also be interesting to analyse how many of 

these sequences are necessary for Muscleblind proteins to bind. As no big 

cluster has been found in TroponinT mRNA, the other target we identified, it 

is possible that just one sequence is enough for Muscleblind to bind and be 

active. 

 

Also the interaction with CUG repeat containing RNA is conserved in vivo 

as shown by the localisation of Muscleblind proteins with RNA foci in 
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human cells (Fig.R.11,12). MBNL proteins have been described to co-

localise in vivo with ribonuclear foci formed by DMPK 3’UTR RNA in many 

tissues from DM patients [38, 51, 73-75, 148, 149]. Human GFP-tagged 

MBNL proteins expressed in DM fibroblasts form big aggregates that co-

localise with RNA foci containing CUG expanded repeats [38, 51, 148]. 

Similarly, when we co-expressed Drosophila Muscleblind proteins and 

DMPK 3’UTR RNA with around 180 CUG repeats, we found big aggregates 

that perfectly co-localised with the RNA foci in COS and HEK cells. MBNL 

proteins have also shown ability to interact with other trinucleotide repeat 

sequences. MBNL proteins showed co-localisation with RNA foci formed by 

CAG repeats [78] and yeast three hybrid analysis defined a binding 

sequence CHHG [43]. Interestingly, our three hybrid preliminary results 

show that Muscleblind proteins might be able to bind CAG repeats as well. 

In conclusion, sequestration of Muscleblind proteins by CUG repeats is 

conserved in vivo and studies on Drosophila Muscleblind RNA binding 

activity can provide information of biomedical relevance. 

 

3. Functional interaction with Bruno proteins. 

 

We have seen that the lack of muscleblind function does not result in 

the complete absence of a transcript isoform (Fig. R.9, R.10), thus 

suggesting that other factors might be implicated in the regulation of α-

actinin and TroponinT splicing. It is also remarkable that expression of CUG 

repeat containing RNA in the fly altered splicing of α-actinin but the defects 

were different from those in muscleblind mutant flies. Thus, CUG expansion 

might be affecting other factors implicated in α-actinin splicing regulation. 

Human MBNL proteins, CUG-BP1, ETR-3 and PTB act on cTNT pre-mRNA 

to regulate a developmental switch in its isoform ratio [31]. CUG-BP1 and 
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ETR-3 belong to the CELF family of vertebrate proteins, homologues to 

Drosophila Bruno proteins. bruno1 (bru or aret) function was described to 

modify splicing of a Dscam minigene in S2 cells [150] although main aret 

functions have been related to translation repression in Drosophila oocyte 
[151]. bruno3 conserves the ability to bind to EDEN sequences bound by 

CUG-BP1 and it has been suggested to be its ortholog by sequence 

analysis [152]. A genetic screen for dominant modifiers of a muscleblindC 

over-expression phenotype performed in our laboratory identified aret as an 

interacting gene as the loss of function of aret enhanced mblC over-

expression phenotype. Alleles of the other two bruno genes were tested but 

neither bru2 nor bru3 genetically interacted. I checked all three Bruno 

proteins for their ability to modify splicing of Drosophila Muscleblind targets 

under the same conditions where Muscleblind proteins showed activity. I 

could not detect any effect of Drosophila Bruno proteins on splicing of 

Muscleblind targets α-actinin and TroponinT. The low levels of protein 

found when over-expressing Bruno proteins in cell culture could prevent us 

from detecting any activity and also the tnnT3 minigene assay could not be 

sensitive to Bruno activity if it is antagonistic to Muscleblind. It would be 

interesting to perform a co-transfection assay in which Bruno over-

expression was tested to antagonise the effect obtained when over-

expressing Muscleblind isoforms.  

 

Alternatively, the antagonism could be conserved in a different process. 

Muscleblind could be involved in bruno1 dependent processes in the 

oocyte different to splicing or bruno could be regulating splicing of other 

Muscleblind targets. CUG-BP1 and MBNL1 act antagonistically on cardiac 

TroponinT (TNNT2) mRNA to regulate its splicing [31]. Both proteins also 

have the ability to modify the splicing of Insulin receptor mRNA in cell 
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culture [32, 33, 80] and transgenic mice expressing the active form of CUG-

BP1, show the same splicing defects in Tnnt2 and Clcn1 Mbnl1 knockdown 

[28, 81]. DM patients show increased levels of CUG-BP1 and the 

sequestration of MBNL1 by DMPK 3’UTR is supposed to generate MBNL 

loss of function (reviewed in [50, 108, 153, 154]). Thus, CUG-BP1 and 

MBNL proteins seem to have related functions in vertebrate muscular 

tissue. Drosophila bruno1 function is well understood in the oocyte [151, 

155] but its expression pattern makes it difficult to expect an implication in 

muscle development as its RNA is only intensely detected in embryos from 

0-2 h AEL and weakly detected in pupae and adult flies [151]. Little is 

known about bruno3. It has been shown to conserve binding activity to 

EDEN element in RNA and it has been proposed as the CUG-BP1 

orthologue because of that [152]. The expression data available in the 

BDGP gene expression database show a late embryonic expression 

centred in the sensory complexes, the ventral nerve cord and visceral 

musculature. Then, a coordinated action with muscleblind in the regulation 

of skeletal muscle-specific transcripts is also improbable. Finally, no studies 

have been published about bruno2. In summary, although other Bruno 

isoforms should be tested to discard any activity on Drosophila α-actinin 

and TroponinT mRNA alternative splicing regulation, it is unlikely that the 

antagonism of vertebrate MBNL and CUG-BP1 is conserved in flies in the 

regulation of skeletal muscle development by alternative splicing. 

 

4. Conservation of Muscleblind sequestration by expanded CUG 
containing RNA in flies. 

 

Human MBNL proteins are the only factors described to bind CUG 

repeat expansions originating myotonic dystrophy in a length-dependent 
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manner, observation that provided a molecular explanation for the 

observed correlation between expansion length and severity of the disease 

[51]. MBNL proteins co-localise with ribonuclear foci containing expanded 

CUG repeat tracts in fibroblasts, muscle cells and neurons of Myotonic 

Dystrophy1 patients [51, 73-75]. They have also been shown to co-localise 

with expanded CCUG repeat-containing RNA in DM2 [76]. We found that 

all Drosophila Muscleblind isoforms that contain two zinc fingers, 

MuscleblindA, B and C, co-localise with CUG repeat-containing ribonuclear 

foci, although preliminary yeast three hybrid results showed differences in 

affinity. These results support the conservation in Drosophila of protein-

RNA interaction of Muscleblind proteins with pathogenic expanded RNAs. 

Then, although no expanded RNA has been described to occur naturally in 

Drosophila, the expression of a transgene carrying long CTG repeats in the 

fly probably interferes with Muscleblind function as it does in Myotonic 

Dystrophy.  

 

α-actinin mRNA splicing is altered when expressing CUG repeat RNA, both 

in cell culture and in the fly (Fig. R.9, R.17). We have shown that 

Muscleblind proteins regulate α-actinin mRNA alternative splicing and 

muscleblind genetically interacts with the rough eye phenotype generated 

by expression of expanded CUG containing RNA [85]. These results clearly 

indicate that there is a functional relation between Drosophila muscleblind 

and toxic CUG repeat containing RNA. The reproduction of main myotonic 

dystrophy features in flies expressing 480 interrupted CUG repeat RNA 

(muscle histological defects, RNA foci formation; Muscleblind co-

localisation with RNA foci; splicing defects) demonstrates that toxic RNA 

pathogenic pathway is conserved in flies. The different defects found in α-

actinin mRNA splicing in muscleblind mutant flies and flies expressing the 
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CUG repeat containing RNA indicate that this model might be sensitive to 

other factors which will be important to characterise to dissect myotonic 

dystrophy. 

 

5. Novel muscleblind targets affected by expression of expanded 
CUG repeat RNA. 

 

We found defects in the alternative splicing of two muscle transcripts 

in muscleblind mutant flies by following a candidate gene approach. We 

detected defects in alternative splicing of Drosophila α-actinin mRNA in 

muscleblind mblE27/mblE16 mutant embryos 16-18 h AEL. α-Actinin is the 

major component of vertebrate and insect Z-bands. Transcripts from the 

unique Drosophila α-actinin gene undergo alternative splicing to generate 

both non-muscle (α-actininA) and muscle-specific (α-actininB in adult 

muscle and α-actininC in larval muscle) isoforms [156]. These isoforms are 

cell type-specific and presumably bind Actin differently as alternative exons 

encode a peptide located at the junction of the Actin binding domain and 

the first central repeat. I found that Drosophila muscleblind mutant embryos 

present a reduction of the larval muscle isoform α-actininC. Interestingly, 

Drosophila α-actinin mutants present disruption of Z discs and muscle 

insertions, and also muscle paralysis [120, 156], similarly to muscleblind 

mutant phenotype. Then, α-actinin splicing impairment might be 

contributing to the muscle phenotype of muscleblind mutant embryos. Our 

results are consistent with a recent publication in which defects in splicing 

of α-actinin and the homolog to the vertebrate ZASP/Cypher, CG30084, 

have been shown [157]. ZASP encodes a protein component of Z-bands in 

humans [158]. Then, the impairment of muscle development observed in 
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muscleblind mutant embryos is probably the consequence of the addition of 

several isoform ratio alterations. 

 

Drosophila α-actinin splicing regulation was also altered in the fly model of 

expanded CUG repeat RNA toxicity. We found the isoform A to be reduced 

using two different Gal4 strains and two different CTG transgenes. Thus, 

the defect is clearly specific, but it is different from what we found in 

muscleblind mutant embryos. Two main reasons could explain this 

difference: first, the amount of muscleblind function that is compromised 

might be different in CUG repeat containing RNA expressing flies than in 

muscleblind mutants; second, other factors might be involved. The 

discrepancy could be reflecting the different sensitiveness of the fly to 

muscleblind function. The reduction of muscleblind function by CUG 

expanded transcripts might not be the same than in the mutants tested. 

Furthermore, muscleblind function is altered during the whole embryonic 

development and all tissues in muscleblind mutants whereas CUG repeat 

RNA is only expressed in the Mhc or da pattern. Flies expressing CUG 

repeats with the drivers used are viable whereas strong alleles of 

muscleblind are embryonic lethal, thus suggesting that most of muscleblind 

function is being performed properly in these flies. It would be interesting to 

check whether the different alleles or transheterozygous allelic 

combinations show the same defect. On the other hand, expanded CUG 

repeat RNA might be also affecting other factors implicated in Drosophila α-

actinin splicing. In this concern, Bruno proteins were good candidates to be 

acting on splicing regulation of muscleblind targets. However, no effect of 

Bruno proteins on Drosophila α-actinin and mouse Tnnt3 minigenes was 

detected (see section 3 for discussion). 
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α-actinin mRNA splicing was sensitive to expanded CUG containing RNA 

expression in cell culture and also in flies. Regarding the biomedical 

relevance of α-actinin mis-splicing, it is important to keep in mind that, even 

though α-Actinin is the major component of Z discs, a single α-actinin gene 

provides both muscle and non-muscle specific isoforms in Drosophila. 

Thus, its contribution to tissues other than muscle might be also relevant. 

Moreover, muscleblind expression is detected in tissues other than muscle 

during embryonic development. Rescue assays showed that the expression 

of Muscleblind isoforms in a general pattern rescues more than the 

expression in muscular tissue alone [45], thus indicating that muscleblind 

might be controlling isoform ratio of other mRNAs in the different tissues 

where it is expressed. Muscleblind dependent isoform ratio of neurogenic 

proteins could explain the increase in rescuing ability when expressing 

Muscleblind proteins in a general embryonic pattern and also the defects 

found in development of peripheral nervous system and neural 

photoreceptor structures in muscleblind mutants [44, 109]. It has been 

suggested that α-actinin defects in muscleblind mutant embryos were not 

conserved in DM1 patients because human α-actinin2 splicing was normal 

in DM1 samples [157]. However, PTB, CUB-BP and ETR-3 regulate 

inclusion of the smooth muscle and non muscle exons in rat α-actinin [119]. 

Recent data suggest that MBNL1 regulates this splicing event ([159] Dr. 

Kino, personal communication), and we showed that human MBNL1 was 

able to modify Drosophila α-actinin minigene splicing. Therefore, we 

suggest that a more exhaustive study is required to determine which 

human α-actinin, if any, is regulated by MBNL proteins and hence might be 

altered in DM patients. 
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Splicing of vertebrate troponinT2 and 3 mRNAs is regulated by MBNL1 and 

is mis-regulated in Myotonic Dystrophy patients [28, 31, 32]. We found that 

muscleblind function is required for the proper splicing regulation of 

Drosophila TroponinT mRNA (Fig. R.10). Splicing of this transcript was also 

mis-regulated in pupae expressing expanded CUG containing RNA. A 

dominant effect of the Gal4 strain was detected when analyzing troponinT 

mRNA splicing in flies carrying Mhc-Gal4 insertion, which indicated an 

unspecific alteration of this splicing event. Analysis carried out afterwards in 

our laboratory showed that flies expressing 60 CUG repeat containing RNA 

under the control of the same Mhc-Gal4 driver have a weaker splicing 

alteration meaning that the defect is probably specific (Monferrer L. and 

García-López, A., unpublished). 

 

6. Muscleblind isoforms are functionally distinct. 

 

One of the aims of my study was to identify protein motifs implicated 

in Muscleblind function. The four Drosophila Muscleblind isoforms give a 

scenario with enough variability as to identify parts of the protein implicated 

in different activities, much like in a deletion analysis. MblA, B and C 

present two complete zinc fingers and, although sharing an important part 

of the protein sequence, they present specific carboxy-terminal regions. 

MblD only presents a zinc finger as the second one is truncated before the 

conserved Histidine. These structural differences might be reflecting 

biologically relevant functional differences as it has been shown to occur in 

other cases [128, 129].  

 

muscleblind function is required for alternative splicing regulation as shown 

by the splicing defects in α-actinin and TroponinT mRNAs in muscleblind 
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mutants. We demonstrated with cell culture assays that MuscleblindA, B 

and C are alternative splicing factors when acting on Drosophila α-actinin 

and mouse TroponinT3 minigenes (Fig. R.17, R.19). All human MBNL 

proteins (MBNL1-3) have been described to modify alternative splicing of 

cardiac TroponinT (cTNT or TnnT2) in cell culture [32]. However, Mbnl1 

knockdown mice show defects in tnnT2 and several other transcripts [28, 

30] but no splicing defect was found in Mbnl2 knockout mouse. In fact, 

MBNL2 was implicated in the localization of Integrin α3 protein through the 

localization of its mRNA [36]. No physiological target for MBNL3 has been 

described. Actually, its molecular function might be different from the other 

MBNL proteins as it is an anti-myogenic factor [37]. Thus, although MBNL2 

and MBNL3 show the ability to modify splicing in cell culture, they could not 

be acting like splicing factors or they could be acting onto different targets. 

The same situation could occur in Drosophila. 

 

Indeed, we found MblA, B and C to show different activities as splicing 

factors (Fig. R.17, R.19). Whereas MblC strongly modified both Drosophila 

α-actinin and mouse TroponinT3 minigenes, MblA marginally regulated 

Drosophila α-actinin minigene splicing in cell culture and MblB did not have 

any effect on it. The expression pattern of mblB transcripts almost discards 

its implication in α-actinin splicing control during embryo development as it 

is restricted to late larva and early pupa, but it could be active onto 

troponinT pre-mRNA during those stages. mblA is expressed during the 

embryonic development and in the late larva-early pupa stages so it could 

be implicated in the defects of splicing in both RNAs. mblC is broadly 

expressed during the entire fly life cycle and it is the only transcript 

detected in adult flies. Then, it could be implicated in both splicing events. 

Some muscular defects appear when over-expressing CUG repeat 
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containing RNA in the adult muscle [85] but the molecular basis has not  

been described and it is not known whether they are caused by 

muscleblind loss of function or not. Then, more studies are needed to 

clarify to which extent MuscleblindC is acting as splicing factor in adult 

tissues. Over-expression of Muscleblind isoforms in Drosophila S2 cells 

showed that they have different ability to activate cell-death, being MblB the 

isoform with strongest effect on cell viability (Fig. R.20). Also the binding 

activity was different between the isoforms (Fig. R.11-R.14, R.16 and Table 

R.1). All together these results show that Muscleblind isoforms are not 

functionally equivalent and they might not only have different targets but 

also act in a different manner on them. Works in our lab are now trying to 

elucidate whether the splicing defects found in muscleblind mutants are 

due to lack of function of any particular isoform and which of them are 

required for the proper splicing of α-actinin and troponinT mRNAs. Isoform-

specific RNA interference transgenic flies are being generated in which 

each isoform will be specifically silenced. We are also checking if MblA 

isoform has a function in subcellular localisation of mRNAs and genome-

wide strategies will be used to identify the targets of each Muscleblind 

isoform. 

 

We found MuscleblindC to be the most active isoform as splicing factor 

when acting on α-actinin and TroponinT (Fig. R.17, R.18). Evolutionary 

studies showed that MuscleblindC is the only isoform conserved in 

protostomes, thus suggesting it has been under higher selective pressure 

than the other protein isoforms [126]. Indeed, it has been recently 

demonstrated that MuscleblindA, B and C have different ability to rescue a 

muscleblind mutant background, being MuscleblindC the one showing the 

highest rescuing potential [45]. Taken together these data suggested that 
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MuscleblindC was performing most of the muscleblind functions required 

for embryonic development, in agreement with its wide expression in 

embryogenesis. Although marginal, MblA had some effect on α-actinin 

minigene splicing and both MblA and B modified Tnnt3 minigene transcript 

isoform ratio (Fig. R.17, R.18). Sequences similar to MblA and MblB 

isoforms were only found within the melanogaster group [126]. The lack of 

conservation and their restricted expression patterns [45] suggest that they 

are probably carrying out specialized functions in the species in which they 

have been detected. MblD isoform showed the lowest conservation as 

similar sequences were only found in Drosophila simulans. This, together 

with the high instability that we have observed in all the cell types and 

organisms that we have used, and the absence of significant effect in any 

of the different assays we have performed might suggest that MblD is a 

recently acquired variant, which has lost the function of the original protein 

and it has not acquired a new function yet. The appearance of this non-

functional isoform could be a new mechanism for muscleblind function 

regulation by alternative splicing. 

 

7. Basis of isoform specific behaviour. 

 

Alternative splicing can generate transcripts encoding proteins with 

subtle or opposing functional differences. Aberrant relative levels of 

alternative spliced isoforms are expected to affect cellular functions and an 

increasing number of human diseases are being related to aberrant isoform 

ratios. This way, regulation of splicing regulators is a clue in the proper 

development of the organisms as it is the regulation of transcription factors. 

This regulation can arise by controlling the levels of splicing factors, their 

activation (phosphorylation) and their efficiency (subcellular localization) 
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[160]. Well studied splicing factors as PTB have different splicing isoforms 

themselves with different splicing activity [161]. Then, regulation of 

alternative splicing is a mechanism to regulate the activity of splicing 

factors. 

 

We have shown Muscleblind isoforms have different affinity to bind RNA 

and that they have different capacity to regulate alternative splicing. 

Rescue assays where the different isoforms were tested for their ability to 

rescue the lethality of muscleblind mutant embryos showed they have 

different potential [45]. in vitro assays showed that Muscleblind RNA 

binding activity probably resides in the zinc fingers (Fig. R.16), as it does in 

the human MBNL proteins. The analyses of the C-t sequences of 

Muscleblind proteins led to the identification of several putative functional 

domains, such as the alanine and phenylalanine regions only present in 

MblB, which can give a different functionality to each isoform [42] but none 

of them have been experimentally shown to modify protein activity. 

Muscleblind proteins share the N-terminal region in which the binding 

activity resides. Thus, the differences in binding affinity might reside in C-

terminal sequences. Isoform specific regions might confer particular tertiary 

structure, diverse protein-protein interaction abilities or trigger specific post-

translational modifications that modify RNA affinity. The specific RNA 

sequence to which the proteins bind might be defined by these C-terminal 

amino acids. These sequences might be also introducing the other 

activities that we detected, the splicing regulation and apoptosis activation, 

and others that we have not identified yet. 

 

We found two interesting data that could contribute to explain the functional 

diversification of Muscleblind isoforms. When expressed in cell culture, 
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Muscleblind proteins show distinct sub-cellular localisations (Fig. R.21). 

MuscleblindC, the isoform with highest alternative splicing activity, shows a 

coherent nuclear distribution while MuscleblindA, that shows a higher RNA 

affinity in vitro but a lower activity as splicing factor, is mainly cytoplasmic. 

MuscleblindB shows an intermediate behaviour being both nuclear and 

cytoplasmic signals strong. Its activity as splicing factor is similar to 

MuscleblindA although it is more enriched in the nucleus, where the 

splicing occurs. The difference in RNA affinity could help to explain these 

results as MblA bound α-actinin RNA with more affinity than MblC and 

MblB did not show interaction with the same fragment in the three hybrid 

experiments in which MblC showed strong binding activity. 

 

The second data I presented about the basis of functional diversity was the 

analysis of the relevance of the MuscleblindC putative sumoylation site 

(SUMO). We identified a putative sumoylation site with the consensus 

sequence FKRP that is conserved in C.elegans (Fig. R.22). Sumoylation 

consists in the covalent attachment of a small ubiquitin-related peptide, 

SUMO. This post-traductional modification regulates protein activity in a 

substrate-specific manner and it usually results in intracellular localization 

regulation [131]. The molecular mechanism by which sumoylation targets 

intracellular protein localization is not well understood although it probably 

generates conformational changes that alter protein-protein interactions. 

This would explain the different ability of MblC to aggregate when mutating 

sumoylation site compared with the wild type protein. Often those 

aggregates appear in response to stress when the protein has the ability to 

form dimers [162-164]. Thus, the elimination of the FKRP site could be 

changing the ability of MuscleblindC to for dimmers. The localisation 

experiments were carried out in human cells where the cellular environment 
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might be quite different from the physiological situation of MuscleblindC. 

Interestingly, I also observed an alteration of MuscleblindC function in a 

Drosophila cell environment that is much closer to a physiological situation. 

The increase of pro-apoptotic activity when eliminating SUMO site could be 

reflecting an over-activation of MblC on RNA processing. Muscleblind 

proteins might need to interact with other factors that define its precise 

functionality as many other RNA binding proteins do [17]. Sumoylation 

could have the role of modifying these interactions to regulate Muscleblind 

function. Whether the FKRP sequence can be sumoylated is our next 

priority. Alternatively, we could be interfering in protein folding or eliminating 

a protein-protein interaction site, thus modifying MuscleblindC functionality. 

 

It would be interesting to address whether the subcellular localisation is 

coded into the protein sequence (any signal peptide not identified yet) or it 

depends on post-translational modifications. In fact, sumoylation of 

MuscleblindC could be related to its major nuclear localisation. Experiments 

in Drosophila S2 cells transfecting wild type MblC and MblC∆SUMO are being 

addressed in our laboratory to determine if MuscleblindC is sumoylated in 

vivo and to analyse the functional consequences of elimination of 

sumoylation site in a Drosophila cell environment. 

 

8. Is the binding to physiological targets separable from the binding 
to pathogenic CUG repeat containing RNA? 

 

The cell culture assay showed that MuscleblindA, B and C co-localise with 

the RNA foci containing expanded CUG repeats (Fig. R.11, R.12). 

Regarding to MuscleblindD, the signal in the co-localisation assay is blurry 

both in COS and HEK cells. Despite of that, the signal is different to that 
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observed when transfecting the GFP vector alone and experiments made 

afterwards by J.M. Fernández in Drosophila S2 cells indicate that the signal 

detected in MblD over-expression experiments is specific. Furthermore, the 

only western blot in which full length MblD has been observed was in a 

similar experiment carried out by Mike Poulos in COS cells. Thus, we 

suggest MuscleblindD does not co-localise with expanded CUG containing 

RNA in human cells and it is so unstable that is being degraded during the 

protein extraction prior to western blot detection. This leaves a situation in 

which the two zinc fingers seem to be required for Muscleblind proteins to 

be sequestered, although it is yet to be known whether they are sufficient. 

 

The minigene splicing assay showed that only isoforms with the two zinc 

fingers can modify the splicing of the transcripts analysed, but they also 

showed that the C-terminus sequence can modify the protein activity. Thus, 

Muscleblind activity as splicing factor is not completely dependent on the 

binding activity of the zinc fingers. Interestingly, the three hybrid results 

point to the requirement of just one zinc finger to bind α-actinin RNA as 

MblD interacted with the intron fragment of α-actinin in two independent 

experiments. It was shown by three hybrids that the last zinc finger in 

MBNL is required to interact with CUG repeats but not with CCUG 

expansions [43]. Then, it would be interesting to test whether the four 

MBNL1 zinc finger motifs are required for the binding to its physiological 

targets or not. If the requirements for the binding to physiological targets 

and to pathological expansions are different enough, an important 

perspective of therapy would be open. 
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9. Implication in new processes: apoptosis. 

 

We found that over-expression of Muscleblind isoforms in Drosophila S2 

cells considerably reduced cell viability in an isoform-specific manner (Fig. 

R.20A). The reduction of the cell-death inducing activity when co-

expressing the apoptotic inhibitor Diap1 or using chemical caspase 

inhibitors indicate that they probably activate cell death through the 

apoptotic pathway (Fig. R.20B). According to this, several key apoptotic 

genes showed genetic interaction with mblC over-expression in Drosophila 

adult eye. Immunostaining of wing imaginal discs over-expressing mblC 

showed increased caspase activity in specific regions inside the area where 

mblC expression was driven [126]. An accurate analysis of the interaction 

of Muscleblind induced cell death and the apoptotic pathway would clarify if 

this is the mechanism by which Muscleblind is killing the cells. Supression 

of the cell death by co-expression of Diap1 or administration of apoptosis 

inhibitors would confirm the genetic interactions and the preliminary cell 

culture experiment presented in this thesis. The work performed in our 

laboratory is the first study that relates muscleblind function with the 

apoptotic pathway. The relevance of this insight is yet to be revealed but it 

is worth to note that myoblast cells transiently expressing expanded DMPK 

alleles showed increased susceptibility to oxidative stress [165]. These 

cells underwent cell death with characteristics of apoptosis. 

 

Further analyses are necessary to elucidate whether MblC activation of 

apoptosis is due to a direct regulation of any apoptotic gene at RNA level or 

not. Apoptotic genes produce pro-apoptotic or anti-apoptotic isoforms 

depending on the regulation of their splicing [166] and Muscleblind proteins 

could be affecting the isoform ratio of a key apoptotic gene. However, other 
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explanations are also possible. Muscleblind proteins could be regulating the 

isoform ratio of a cell adhesion molecule causing apoptosis by inefficient 

attachment to substrate. Furthermore, Muscleblind proteins could also 

perform other functions in RNA metabolism. Human MBNL proteins are 

implicated not only in splicing but also in RNA localization [32, 36] and 

other RNA binding proteins in Drosophila as Bruno1 have been described 

to be splicing factors and translation repressors [150, 151]. In fact, 

elimination of sumoylation site in MuscleblindC increased its pro-apoptotic 

activity without affecting its activity as splicing factor on TroponinT3 

minigene (Fig. R.22). The possibility of Muscleblind implication in apoptosis 

being independent of its splicing regulation activity would be in agreement 

with the fact that MuscleblindB, an isoform that cannot alter Drosophila α-

actinin splicing and has a lower activity on mouse TroponinT3 minigene 

isoform ratio, is the isoform with a higher pro-apoptotic activity. In order to 

test this possibility in depth, another splicing assay should be used. The 

TroponinT3 minigene assay cannot detect hyperactivation of MuscleblindC 

activity on splicing by lack of sumoylation because the wild type protein 

already excludes completely the inclusion of the foetal exon into the mature 

mRNA. In any case, it is also possible that MuscleblindB targets 

substantially differ from those of MuscleblindC. It is worth noting that 

muscleblindB expression is restricted to late larva and early pupa stages 

[45] and, at that moment, the metamorphic process is at maximum speed 

and a large amount of cells is undergoing apoptosis. MuscleblindB could be 

in the pathway that activates this generalised apoptosis. 



Mbl molecular function 

 171

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions 
 
 

No es posible descender dos veces al mismo río, tocar 

dos veces una sustancia mortal en el mismo 

estado, ya que a causa del ímpetu y la velocidad de 

los cambios, se dispersa, vuelve a reunirse, y aflora 

y desaparece. 
-Heráclito de Éfeso- 
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Taken together our results support the following main conclusions: 

 

I-Drosophila Muscleblind proteins are alternative splicing regulators. We 

found α-actinin and TroponinT transcripts to be among their physiological 

targets. 

 

II- Muscleblind proteins likely recognize the same binding sequences as 

human MBNL1 since MuscleblindA binds an α-actinin pre-mRNA fragment 

that contains a cluster of seven overlapping MBNL1 consensus binding 

sequences through the zinc finger-containing N-terminal region. 

 

III-Over-expression of Muscleblind proteins activates cell death, probably 

through the apoptotic pathway. MuscleblindB reduced the most cell 

viability. MuscleblindA and C also increased cell death whereas MblD 

seemed to enhance cell viability. 

 

IV- A conserved putative sumoylation site (FKRP) is implicated in the cell-

death induction by MuscleblindC and its ability to aggregate. Site-directed 

mutagenesis of the FKRP site enhanced the ability of MuscleblindC to 

activate cell death upon over-expression, with no discernible effect on 

splicing. 

 

V- Muscleblind isoforms are functionally distinct and show distinct 

preferences in their sub-cellular localisation in human cells. In particular, 

MuscleblindA, B, C and D show different RNA binding affinities in a yeast 

three-hybrid assay and differ in their ability to modify the alternative splicing 

of Drosophila α-actinin and murine TroponinT3 minigenes. 
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VI- Non-coding CUG repeat RNAs are pathogenic to Drosophila cells. 

MuscleblindA, B, and C co-localise with expanded CUG repeat RNA foci in 

human cells and expression of 480 CUG repeat containing RNA in 

Drosophila misregulates the alternative splicing of α-actinin pre-mRNA. 
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Resumen en castellano 
 
 

Lo difícil se consigue, lo imposible, se intenta. 
-Napoleón Bonaparte- 
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INTRODUCCIÓN Y OBJETIVOS 

 

El gen muscleblind (mbl) fue descrito inicialmente en Drosophila 

como un gen cuya función era necesaria para el adecuado desarrollo del 

sistema nervioso periférico embrionario [46, 109]. La caracterización 

detallada de los mutantes muscleblind mostró su implicación en la 

diferenciación terminal de los fotorreceptores [44] y los músculos [41]. La 

generación de clones mitóticos mutantes para muscleblind en las células 

precursoras de los fotorreceptores no originó fenotipo externo, pero cortes 

tangenciales mostraron que los rabdómeros de los fotorreceptores 

presentaban un tamaño reducido y no se extendían correctamente hasta 

las regiones basales de la retina [44]. Mutaciones nulas para muscleblind 

son letales en homocigosis. Las moscas mueren en embriogénesis tardía, 

como larvas que no pueden salir del corion [41]. Los músculos de estos 

embriones mutantes aparecen hipercontraidos, con ausencia de bandas I y 

discos Z. Además, la matriz tendinosa extracelular de las uniones 

indirectas del músculo a la epidermis está fuertemente reducida. 

 

De acuerdo con este fenotipo mutante, el análisis de la expresión de 

Muscleblind reveló un patrón principalmente mesodérmico, con detección 

de señal en la musculatura esquelética y visceral [41]. En cuanto al 

ectodermo, Muscleblind se detectó en el sistema nervioso central y en los 

órganos de Bolwig, que son los precursores de los fotorreceptores 

larvarios. Hay pocos datos acerca de la regulación de la expresión de 

muscleblind. La expresión de muscleblind en el músculo desaparece en 

mutantes Dmef2 [41] y recientemente se detectó la unión del factor de 

transcripción pro-miogénico Dmef2 a secuencias reguladoras de mbl [97]. 
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A partir del único gen muscleblind de Drosophila se generan cuatro 

transcritos por procesado alternativo que codifican para cuatro proteínas 

caracterizadas por la presencia de dedos de zinc del tipo CCCH. Las 

isoformas MuscleblindA, B y C poseen dos dedos de zinc de este tipo 

mientras MuscleblindD sólo tiene uno [44]. Las tres primeras comparten 

179 aminoácidos entre ellas y 63 aminoácidos con MblD. Todas ellas 

poseen regiones carboxilo terminales específicas susceptibles de 

conferirles especializaciones funcionales, aunque no se han realizado 

estudios al respecto. 

 

Los homólogos de muscleblind en vertebrados son los genes Muscleblind-

like1, 2 y 3 (MBNL1-3). Los ratones de falta de función de Mbnl1 sufren 

miotonía (incapacidad para relajar los músculos), tienen defectos 

histológicos en el músculo, cataratas y, a nivel molecular, defectos en la 

regulación del procesado alternativo de varios transcritos [28, 30]. Las 

proteínas humanas MBNL1, 2 y 3 tienen la capacidad de modificar el 

procesado alternativo de los transcritos de la troponinaT cardiaca (cTNT) y 

el receptor de insulina (IR) en cultivo celular [32]. MBNL1 une el transcrito 

de la cTNT en una secuencia YGCU(U/G)Y (Y es pirimidina) intrónica y 

reprime la inclusión del exon E5 en el transcrito maduro. Del balance entre 

los niveles de MBNL1, PTB, CUG-BP1 y ETR-3 resulta la inclusión o 

exclusión final del E5 en el transcrito maduro [31]. En el caso del transcrito 

del IR, las proteínas CUG-BP1 y hnRNP H forman un complejo represor de 

la inclusión del exon E11, mientras que MBNL1 reprime la acción de este 

complejo al unirse a hnRNP H [33]. 

 

Se han detectado niveles alterados de expresión de los genes MBNL en 

diversas patologías [36, 54, 55]. Las proteínas MBNL tienen un papel 
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importante en la patogénesis de la distrofia miotónica (DM). La DM es una 

enfermedad autonómica dominante generada por la expansión del 

trinucleótido CTG en una región no codificante del gen DMPK. Esta 

secuencia repetitiva expandida está presente en el RNA de DMPK y 

genera una estructura secundaria en horquilla que provoca el secuestro de 

factores nucleares, fundamentalmente las proteínas MBNL, impidiendo su 

funcionamiento normal [51, 70, 71, 167]. Dos observaciones 

fundamentales apoyan la hipótesis de que gran parte de los síntomas de la 

enfermedad se deben a la falta de función de las proteínas MBNL. Primero, 

el ratón de falta de función de Mbnl1 reproduce muchos de los síntomas de 

la enfermedad mencionados anteriormente [28]. En segundo lugar, la 

expresión de la proteína MBNL1 en ratones modelo de DM que expresan 

repeticiones largas como las que originan la enfermedad, restaura el 

fenotipo normal [29]. 

 

Desde 1997 nuestro laboratorio ha mantenido un interés continuo en la 

caracterización de la función molecular de las proteínas Muscleblind de 

Drosophila y, más recientemente, en su relevancia en el mecanismo de 

patogénesis de la distrofia miotónica. En este contexto general fue donde 

iniciamos el presente proyecto de tesis doctoral. Hipotetizamos que 

Drosophila podía servir como modelo biomédico y, en particular, que las 

proteínas Muscleblind humanas y de Drosophila desarrollaban funciones 

semejantes in vivo. Más allá de esto, supusimos que la unión de las 

proteínas Muscleblind a sus dianas fisiológicas y a RNAs que contienen 

repeticiones CUG, eran actividades separables. De este modo, el objetivo 

general de este proyecto de tesis fue la demostración de la conservación 

funcional entre las proteínas Muscleblind de Drosophila y humanas, así 

como encontrar mutaciones en Muscleblind que inhibieran la unión a 
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repeticiones CUG sin comprometer su función fisiológica. Este objetivo 

general requirió el desarrollo de diversos reactivos y técnicas, y el abordaje 

de los siguientes objetivos específicos: 

 

1. Análisis de la conservación de la ruta de patogénesis de la distrofia 

miotónica en Drosophila. 

 

2. Estudio de la conservación en las proteínas Muscleblind de Drosophila 

de la función como regulador del procesado alternativo descrita para las 

proteínas MBNL humanas. 

 

3. Evaluación de la diversificación funcional de las isoformas de 

Muscleblind como variantes proteicas naturales. 

 

4. Análisis de la unión de Muscleblind a dianas de RNA fisiológicas y a 

RNA con repeticiones CUG. 

 

5. Caracterización de dominios funcionales en las proteínas Muscleblind de 

Drosophila. 
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RESULTADOS Y CONCLUSIONES 

 

1. muscleblind es necesario para el correcto procesado alternativo 

de los transcritos de la α-actinina y la TroponinaT de Drosophila. 

 

Los ratones de falta de función de Mbnl1 presentan una alteración de 

la regulación del procesado alternativo que resulta en un mantenimiento en 

el adulto de un conjunto de transcritos típicos de la etapa fetal. [29, 39]. Por 

ello decidimos analizar los mutantes muscleblind de Drosophila en busca 

de defectos en el procesado alternativo. 

 

Los embriones mutantes muscleblind muestran ausencia de bandas Z [41]. 

La α-Actinina (α-Actn) es la proteína más abundante en esta estructura 

conectiva. Moscas mutantes para la α-actinina presentan defectos en las 

uniones del músculo al epitelio y ausencia de bandas Z [120], de modo 

similar a los mutantes muscleblind. Además, en vertebrados, la α-actinina 

presenta isoformas específicas de tejido como consecuencia del 

procesado alternativo de los transcritos inmaduros y proteínas 

relacionadas con la función de MBNL1 como regulador del splicing 

alternativo, como PTB, CUG-BP, ETR-3 y CELF4, están implicadas en la 

regulación de este suceso de procesado alternativo [119]. Los transcritos 

del único gen de la α-actinina de Drosophila generan por procesado 

alternativo una isoforma específica de tejido no muscular (α-actinina A) y 

dos de tejido muscular (α-actinina B en músculo adulto y α-actinina C en 

músculo larvario) (Fig. C.1A). Todo ello nos llevó a considerar que los 

transcritos de la α-actinina podrían ser una diana directa de Muscleblind en 

Drosophila. 
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Por otro lado, el RNA mensajero de la TroponinaT es una diana conocida 

de la proteína MBNL1 humana. En concreto, dos genes parálogos de la 

TroponinaT, la TroponinaT cardiaca (tnnT2) y la TroponinaT de fibras 

esqueléticas rápidas (tnnT3), presentan defectos de procesado en ratones 

de falta de función de Mbnl1 [28]. Además, se ha propuesto un modelo de 

equilibrio dinámico entre MBNL1, PTB, CUGBP y ETR-3 para la regulación 

del procesado alternativo del mRNA de tnnT2 en cardiomiocitos de ratón y 

pollo [31]. El único gen de la TroponinaT en Drosophila genera cuatro 

isoformas por procesado alternativo de los exones E3, E4 y E5 [121]. Estos 

transcritos son específicos de tipo muscular y su expresión está regulada a 

lo largo del desarrollo (Fig. C.1B). 

 

Para testar la hipótesis de que el gen muscleblind de Drosophila regula el 

procesado alternativo de los genes α-actinina y TroponinaT, analizamos 

por RT-PCR los transcritos presentes en moscas mutantes y control en 

estadío embrionario, larva, pupa y adulto. Los embriones mutantes nulos 

para muscleblind mostraron defectos en el procesado del RNA mensajero 

de la α-actinina (Fig. C.1C), al presentar reducido el transcrito de la α-

actininaC e incrementados los de la α-actininaA y B. Por su parte, pupas 

trans-heterocigotas mblE27/mblK7103, combinación alélica que reduce la 

función muscleblind pero permite el desarrollo hasta adulto de algunas 

moscas, presentan defectos en el procesado alternativo del mensajero de 

la TroponinaT (Fig. C.1D), viéndose un incremento en el transcrito típico de 

los músculos indirectos del vuelo y del músculo depresor tergal del 

trocánter. El defecto en el procesado del mensajero de la TroponinaT es ya 

detectable en heterocigotos portadores del alelo nulo mblE27, pero no en los 

heterocigotos para el alelo que provoca una pérdida de función más leve 

mblK7103, indicando un posible efecto de la dosis de muscleblind. 
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Figura C.1. Moscas mutantes muscleblind presentan defectos de procesado 

alternativo en los transcritos de la α-actinina y la TroponinaT. A) Esquema de los 

transcritos de la α-actinina de Drosophila mostrando la nomenclatura utilizada. La 

regulación durante el desarrollo se muestra a la derecha. El tamaño de los exones en pares 

de bases (pb) se indica debajo. Las isoformas A y B tienen el mismo tamaño y se 

diferencian mediante digestión con SacI. Los cebadores utilizados en la RT-PCR se 

representan con flechas. B) Esquema de los transcritos generados a partir del RNA 

mensajero de la TroponinaT de Drosophila mostrando la nomenclatura utilizada. El tamaño 

de los exones en pb se representa en su interior. La regulación específica de tejido se 

muestra a la derecha (TDT = músculo depresor tergal del trocánter; IFM = músculo indirecto 

del vuelo). La regulación durante el desarrollo se muestra a la izquierda (Pp = pupa; L = 

larva). Las flechas representan los cebadores empleados en la RT-PCR. C) Electroforesis 

en agarosa al 2% de los productos de la PCR de la α-actinina en embriones de 16 a 18 h, y 

su correspondiente digestión con SacI. Los embriones mblE27/mblE16 presentan reducida la 

isoforma α-actininaC (*) e incrementada la α-actininaA y B (puntos negros). D) Separación 
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electroforética en agarosa al 2% de los productos de la RT-PCR sobre los transcritos de la 

TroponinaT en pupas tempranas (menos de 48 h). Las pupas mblE27/mblK7103 presentan 

incrementada la isoforma típica de TDT e IFM. Este defecto ya se aprecia en heterocigotos 

portadores del alelo nulo mblE27. 

 

En conjunto, los resultados muestran que la función de muscleblind es 

necesaria para la correcta regulación de eventos específicos de corte y 

empalme en momentos determinados del desarrollo. 

 

2. El efecto tóxico de la expresión de un RNA no codificante portador 
de repeticiones CUG expandidas está conservado en Drosophila. 

 

Las proteínas MBNL humanas son secuestradas por los transcritos 

portadores de repeticiones CUG expandidas que generan la distrofia 

miotónica [51]. Este secuestro se comprueba por la co-localización con el 

RNA portador de estas expansiones en células de pacientes y se hipotetiza 

que genera la falta de función de la proteína, desencadenando gran parte 

de los síntomas de la enfermedad. Los pacientes de DM muestran 

numerosos síntomas que son reproducidos por la falta de Mbnl1 en 

ratones, entre ellos, la miotonía, las cataratas y la alteración del procesado 

alternativo de muchos transcritos, que muestran retención de exones 

fetales en tejido adulto [28, 30]. 
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Figura C.2. El mecanismo de toxicidad de los transcritos portadores de repeticiones 
CUG expandidas está conservado en Drosophila. A) Las proteínas Muscleblind se 

expresaron en células COS junto con un transcrito no codificante portador de las 

repeticiones CUG expandidas. Se utilizó 1 µg de cada plásmido. Se muestra la detección de 

proteínas fusionadas a GFP (GFP; verde); sonda CAG hibridando con el RNA portador de 

las repeticiones CUG (Cy5; rojo); y tinción DAPI de los núcleos (DAPI; azul); así como la 

superposición de las imágenes (merge). Todas las proteínas Muscleblind excepto MblD co-

localizan con las inclusiones ribonucleares. B) Separación electroforética (agarosa 2%) de 

los productos de RT-PCR de la α-actinina y sus correspondientes digestiones con SacI de 

embriones: control (OrR y y,w), expresando repeticiones CUG en un patrón general (da) o 

muscular (Mhc). 2.1 y 1.1 indican la cepa transgénica utilizada. MWM = marcador de peso 

molecular; bandas: 517, 453, 394, 298, 234 y 154 pb. Las cabezas de flecha señalan la 

reducción del transcrito α-actininaA en moscas que expresan RNAs portadores de 

repeticiones CUG. 
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Para analizar si la ruta de patogénesis de los transcritos portadores de 

repeticiones CUG se conserva en Drosophila, nos propusimos inicialmente 

comprobar que las proteínas Muscleblind de Drosophila co-localizan con 

dichos transcritos en células de vertebrado. Posteriormente, estudiamos si 

la expresión de RNAs portadores de 480 repeticiones CUG en moscas 

generaba alteraciones en el procesado de RNAs, del mismo modo que lo 

hace en pacientes. 

 

La co-expresión de las isoformas de Muscleblind fusionadas con GFP y 

RNA con expansiones largas de repeticiones CUG en células COS mostró 

que MblA, MblB y MblC co-localizan con los foci ribonucleares generados 

por los RNAs portadores de repeticiones CUG (Fig. C.2A). 

 

El análisis del procesado alternativo de la α-actinina en moscas que 

expresan RNAs portadores de 480 repeticiones CUG mostró defectos en la 

regulación del procesado, aunque fueron diferentes a los hallados 

anteriormente en mutantes muscleblind (Fig. C.2B). En moscas que 

expresan RNAs portadores de repeticiones CUG, el transcrito de la α-

actininaA aparece fuertemente reducido. 

 

De estos resultados se concluye que las proteínas Muscleblind de 

Drosophila son secuestradas por los RNAs portadores de repeticiones de 

un modo similar a como lo hacen las MBNL humanas. Así mismo, la 

expresión de RNAs portadores de repeticiones en la mosca genera 

alteraciones del procesado alternativo en dianas fisiológicas de mbl. 
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3. Las proteínas Muscleblind modifican el procesado alternativo de 
minigenes en cultivo celular y unen por su región N-terminal un 

fragmento de RNA con secuencias consenso para la unión de MBNL1. 

 

Las proteínas MBNL humanas se unen directamente al RNA a través 

de una secuencia consenso YGCUU/GY (Y = pirimidina) para modificar su 

procesado alternativo [32]. Ensayos en levadura mostraron que para su 

interacción con RNAs portadores de repeticiones, los dedos de zinc de 

MBNL1 y los aminoácidos que los separan son necesarios [43]. 

 

Con el fin de establecer si la unión al RNA de las proteínas Muscleblind de 

Drosophila es directa, realizamos ensayos in vitro incubando las proteínas 

con fragmentos del RNA inmaduro de la α-actinina de Drosophila. El 

ensayo de entrecruzamiento con luz ultravioleta mostró que fragmentos N-

terminales de MblA, conteniendo los dedos de zinc, interaccionan con un 

fragmento de la α-actinina de Drosophila que contiene siete secuencias 

consenso para la unión de MBNL1 solapadas (Fig. C3A-A”). Además, para 

demostrar que, al igual que las proteínas humanas, las proteínas 

Muscleblind de Drosophila son factores reguladores del procesado 

alternativo, realizamos ensayos en cultivo celular de la actividad de estas 

proteínas sobre el procesado de minigenes de la α-actinina de Drosophila 

y de la troponinT3 de ratón (Fig. C3B,C). MblC mostró gran actividad sobre 

ambos minigenes. MblA modificó levemente el procesado de α-actinina, y 

MblA y MblB alteraron el patrón de procesado de tnnT3, siendo 

ligeramente menos activos que MblC. 



Mbl molecular function 

 187

 
 

En resumen, las proteínas Muscleblind son factores de procesado 

alternativo que regulan el corte y empalme de los transcritos de la α-

actinina y la TroponinaT. Además, MblA une directamente un fragmento 

del mensajero de la α-actinina que contiene siete secuencias consenso de 

unión de MBNL1. Esta unión se produce a través de una región N-terminal 

que contiene los dedos de zinc. 

 

Figura C.3. Las proteínas Muscleblind 
son factores de procesado alternativo 
que unen directamente el RNA. A)
Ensayo de entrecruzamiento por luz 
ultravioleta en el que se incubó MblA con 
un fragmento intrónico de la α-actinina
que contiene secuencias consenso para 
la unión de MBNL (Actn2) y un fragmento 
contiguo que no contiene ninguna de 
estas secuencias (Actn1). El ensayo se 
realizó incubando el RNA y la proteína 
en presencia de 1: H2O; 2: 0.2 µg/µl 
rRNA; 3: 5.5 µg/µl heparina; 4: 0.2 µg/µl 
rRNA y 5.5 µg/µl heparina A’) El 
anticuerpo α-His detecta la presencia de 
proteína completa (His6 se sitúa en el 
extremo C-t de MblA) A”) El anticuerpo 
α-GST detecta la presencia de 
numerosos fragmentos de degradación 
conteniendo el fragmento N-t con los 
dedos de zinc (GST se sitúa en el 
extremo N-t de MblA) B-C) Electroforesis 
(agarosa 2%) de los productos de RT-
PCR de extractos de células humanas en 
las que se co-expresaron las proteínas 
Mbl y MBNL1 fusionadas a GFP junto 
con el minigen de la α-actinina de 
Drosophila (B) y la tnnT3 de ratón (C). B) 
La expresión de MblC y MBNL1 elimina 
la formación de transcritos α-actnC y 
short α-actn. MblA disminuye 
ligeramente short α-actn. C) +/-F indica 
la presencia/ausencia del exón fetal. La 
expresión de MblA, B y C disminuye la 
inclusión del exón fetal de tnnT3. 
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4. La sobreexpresión de las proteínas Muscleblind activa la muerte 
celular en células de Drosophila. 

 

Trabajos realizados en nuestro laboratorio mostraron que la 

reducción de la dosis de genes reguladores de la ruta apoptótica, como 

Diap1 y reaper, interaccionan con un fenotipo de sobre-expresión de mblC 

en el ojo de Drosophila. La sobre-expresión de proteínas pro-apoptóticas 

en células S2 provoca un incremento la muerte celular que puede ser 

monitorizado [127]. Para comprobar si las proteínas Muscleblind de 

Drosophila tenían la capacidad de activar la muerte celular, sobre-

expresamos las distintas isoformas marcadas con el epítopo myc. Todas 

las isoformas salvo MblD incrementaron la muerte celular, siendo MblB la 

isoforma más activa en este ensayo (Fig. C.4). 

 
Figura C.4. Las proteínas Muscleblind activan la muerte celular en células S2. Se 

representa el porcentaje medio (dos réplicas) de células vivas respecto a las contabilizadas 

en las muestras control. La sobre-expresión de MblA, MblB y MblC fusionadas a myc redujo 

la viabilidad en recuentos realizados 48 y 24 h después de la transfección. 

 

Estos resultados muestran la capacidad de las proteínas Muscleblind para 

la activar la muerte celular. Las interacciones genéticas observadas en 

nuestro laboratorio apuntan a que esta muerte celular es debida a 

apoptosis. 
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5. La localización subcelular de las distintas isoformas Muscleblind y 

un sitio potencial de sumolización presente únicamente en 
MuscleblindC contribuyen a su diversificación funcional. 

 

Hemos visto que las distintas proteínas Muscleblind tienen distinta 

actividad en los diferentes ensayos que hemos realizado. Aunque la razón 

última para esta diversidad funcional debe residir en la secuencia, es 

posible que la localización subcelular esté influyendo en la actividad de la 

proteína. Con el fin de comprobar si las isoformas Muscleblind se localizan 

de manera preferente en los distintos compartimentos celulares, 

transfectamos células de mamífero con las proteínas fusionadas a GFP. Al 

transfectar con gran cantidad de plásmido, observamos que MblA, B y C 

formaban agregados proteicos y se distribuían de manera diferente en la 

célula (Fig. C5A). MblA apareció fundamentalmente citoplasmática, MblC 

enriquecida en el núcleo, y MblB con un comportamiento intermedio, 

presente en núcleo y citoplasma. En cuanto a MblD, se observó una señal 

fundamentalmente nuclear bastante difusa, posiblemente relacionada con 

la inestabilidad de la proteína. 
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Figura C.5. Las proteínas Muscleblind presentan distinta localización subcelular. Las 

proteínas Muscleblind fusionadas a GFP se transfectaron en células COS. Se muestra la 

detección de las proteínas Mbl-GFP (GFP; verde) y la tinción DAPI de los núcleos (DAPI; 

azul), así como la superposición de las imágenes (merge). 

 

Mientras que la isoforma MblD difiere sustancialmente de las demás al 

tener un solo dedo de zinc, MblA, MblB y MblC comparten una gran parte 

de su secuencia (179 aa). Las diferencias funcionales entre ellas, por 

tanto, deben residir en las secuencias específicas C-terminales. El análisis 

in silico de estas secuencias detectó la existencia de regiones de baja 

complejidad ricas en alanina o fenilalanina en MblB [42]. Posteriormente, 

trabajos en nuestro laboratorio llevaron a la detección de un sitio potencial 

de sumolización que aparecía conservado en C.elegans (Figura C.6A). La 

alteración de dicha secuencia por mutagénesis dirigida (cambio K202I 

representado en Fig. C.6A) no modificó la actividad reguladora del 

procesado alternativo del minigen de la tnnT3 de ratón ni la co-localización 

con los transcritos portadores de repeticiones CUGs, pero incrementó la 

frecuencia de agregados proteicos en células COS (Fig. C6B) y aumentó la 
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capacidad de la proteína para inducir muerte celular en cultivo de células 

S2 de Drosophila (Fig. C6C). 

 
Figura C.6. La mutación de un sitio potencial de sumolización incrementa la 
formación de agregados y la activación de la muerte celular por la proteína MblC. A) 
El alineamiento muestra la conservación de la secuencia FKRP, un sitio potencial de 

sumolización. Se indica el cambio de aminoácido (K202I). dme: Drosophila melanogaster; 

cel: Caenorhabditis elegans; aga: Anopheles gambiae; dre: Dario rerio; mmu: Mus 

musculus; hsa: Homo sapiens. B) Transfección de células COSM6 con la proteína MblC y la 

forma mutada MblC∆SUMO. Se muestra la detección de proteínas Mbl-GFP (GFP; verde), y la 

superposición con la tinción DAPI (azul) de núcleos (merge). C) Se representa el porcentaje 

medio de supervivencia celular al expresar las proteínas MblC silvestre y mutada respecto a 

la encontrada al transfectar el vector vacío. 

 

Con estos resultados concluimos que la diferente localización subcelular 

de las isoformas proteicas de Muscleblind podría contribuir a la 

especialización funcional que detectamos en distintos ensayos. Asimismo, 

identificamos un sitio potencial de sumolización como motivo funcional de 

la proteína MblC, puesto que un fenotipo de sobre-expresión se ve alterado 

al mutar esta secuencia. 
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Tomados en conjunto, nuestros resultados apoyan las siguientes 

conclusiones: 

 

I-Las proteínas Muscleblind de Drosophila son reguladores del procesado 

alternativo. Entre sus dianas fisiológicas encontramos los transcritos de la 

α-actinina y la TroponinaT. 

 

II-Las proteínas Muscleblind probablemente reconocen la misma secuencia 

de unión que la proteína humana MBNL1 ya que MuscleblindA une un 

fragmento del pre-mRNA de la α-actinina que contiene siete secuencias de 

unión para MBNL1 solapadas a través de una región N-terminal que 

contiene los dedos de zinc. 

 

III-La sobre-expresión de las proteínas Muscleblind activa la muerte 

celular, probablemente a través de la ruta apoptótica. MuscleblindB fue la 

isoforma que más redujo la viabilidad celular. MuscleblindA y MuscleblindC 

también incrementaron la muerte celular mientras MuscleblindD pareció 

incrementar la viabilidad celular. 

 

IV-Un sitio conservado, posiblemente de sumolización, (FKRP) está 

implicado en la regulación de la inducción de la muerte celular por 

MuscleblindC así como de su capacidad para agregarse. La mutación del 

sitio FKRP incrementó la capacidad de MuscleblinC para activar muerte 

celular sin tener un efecto detectable en su actividad como factor de 

procesado alternativo. 

 

V-Las isoformas Muscleblind son funcionalmente distintas y muestran 

localizaciones sub-celulares preferentes en células de mamífero. En 
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concreto, MuscleblindA, B, C y D tienen diferente afinidad por el RNA en 

un ensayo de tres híbridos en levaduras y distinta capacidad para modificar 

el procesado alternativo de minigenes de α-actinina de Drosophila y 

TroponinaT3 de ratón. 

 

VI-RNAs no codificantes portadores de repeticiones CUG son patogénicos 

para células de Drosophila. MuscleblindA, B, y C co-localizan con foci 

ribonucleares formados por RNA portadores de repeticiones CUG en 

células humanas. La expresión de RNAs portadores de 480 repeticiones 

CUG en Drosophila altera el procesado alternativo del transcrito de la α-

actinina. 
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