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Chapter 1IntrodutionThe possible existene of more dimensions than those diretly aessible to our senses hasalways fasinated mankind. They have spurred the imagination of many writers who havespeulated about how to reah them, their nature and possible appliations. Interesting as itwould be, we will not take this path in this work; instead we will divert our attention to amore sienti� point of view, namely what an we say about extra dimensions by using thesienti� knowledge we have aumulated trough time. In the next lines we show, very brie�y,the origin and evolution of the ideas related with extra dimensions. Finally, we sketh theirpresent state to situate our work in ontext1.The extra dimensions are a relatively old idea among the sienti� ommunity. Its originsan be traed bak to the year 1912 when the Finnish physiist Gunnar Nordström proposeda relativisti extra dimensional theory that desribed simultaneously gravity and eletromag-netism. At that moment the general theory of relativity was not developed and therefore thegeometri origins of gravity were not unveiled. Before Einstein, Nordström had developed arelativisti theory of gravitation based on the existene of a salar potential, φ ; he uni�edthis theory with the eletromagnetism.The ideas of Nordström were strongly in�uened by Maxwell's theory of eletromagnetism,whih uni�ed elegantly eletri and magneti phenomena by desribing the eletri and mag-neti �elds as omponents of a single six-omponent antisymmetri tensor, Fµν , while theorresponding potentials were uni�ed into a four dimensional vetor, Aµ. It beame learthrough Minkowski's work that the uni�ation of eletriity and magnetism entailed a uni�-ation of spae and time in a four dimensional spae-time. Nordström followed this reasoningand added an extra dimension to this spae-time; the vetors of this new manifold allowedfor one more salar �eld that Nordström proposed to be preisely his gravity potential, φ.The ation was taken to be the �ve dimensional version of eletromagnetism, now built fromthe antisymmetri tensor Fαβ , where α, β = 0, 1, . . . , 4. Of ourse, the �fth dimension neededto be di�erent from the rest, hene it was assumed to have a topology drastially di�erentompared with the other four, and it was ompati�ed on a irumferene, i.e. the valuesof the oordinates in the �fth dimension were restrited. This topology allowed a Fourierexpansion of the �elds and when only the fundamental mode of eah �eld was onsidered afour dimensional theory of eletromagnetism and gravity emerged. In other words, Nordströmshowed that gravitation and eletromagnetism ould be understood as two di�erent faes of a�ve dimensional eletromagnetism.1Part of the ontents of this setion has been extrated from [2℄1



2 Chapter 1. IntrodutionIt was in 1915 when Einstein proposed his awe-inspiring relativisti theory of gravitation,the "general theory of relativity", in whih gravity is understood as geometrial deformationsof the underlying spae-time. In 1919, the mathematiian Theodor Kaluza showed that a�ve dimensional theory of gravity, with the ation taken as the Einstein-Hilbert ation, wouldmanifest itself as the eletromagnetism and the gravity in a four dimensional world. In 1926,the same year Shrödinger proposed his famous equation, Oskar Klein and the Russian physi-ist H. Mandel independently redisovered Kaluza's theory. They hoped this theory wouldunderlie the quantum theory that at that moment was still under onstrution.These �rst steps into the �fth dimension were rather hesitant. It was viewed as a mathe-matial trik that allowed a more onise formulation of the laws of Nature but was ompletelyvoid of any physial interpretation. In addition, it posed a number of problems: the orretfour dimensional limit was reovered when only the fundamental Fourier mode was retained,the so alled ylindriity ondition, and it was unlear the role of the rest of the modes, thereason why some �elds must be onstant was also obsure, just to ite some.The disovery of new interations, other than eletromagnetism and gravitation, ompli-ated more the overall piture: using a single extra dimension as a means of reahing a uni�eddesription was unnatural, beause it was not able to aommodate the strong and weak fores.The latter were desribed by a lass of theories alled non-Abelian gauge theories, proposed byYang and Mills in 1954, whih beame widely aepted in the seventies. Yang-Mills theoriesould be inorporated within an extra dimensional framework, at the prie of extending thenumber of additional dimensions; but this ould not be done straightforwardly, and posed anumber of di�ulties that had to be overome. At this point the extra dimensions were stilluseful for grouping together equations in a uni�ed mathematial framework, but had aquireda great degree of omplexity, while not being preditive and presenting serious theoretialproblems.In the next years the interpretation of the extra dimensions hanged, in the sense that theywere given a physial meaning. It was due to the development of new theories; supergravityand string theory, where the extra dimensions played a key role. Both kind of theories provideda promising framework for ahieving a quantum desription of gravity. The natural energysale for these theories is the Plank mass, 1.2 1019 GeV · c2, that is ompletely out of reahfor the urrent partile aelerators. Nevertheless, in some string senarios this energy salean be as low as a few TeV what suggests that the assoiated phenomenology an be moreaessible to observation.In reent years, extra-dimensional quantum �eld theories have reeived a great deal ofattention. On one hand, the reent interest is beause the sale at whih the extra dimensionale�ets an be relevant ould be around a few TeV, even hundreds of GeV in some ases, learlya hallenging possibility for the next generation of aelerators. On the other hand, this newpoint of view has permitted to study many long-standing problems in physis from this newperspetive. These problems over many di�erent �elds of partile physis: the hierarhyproblem, new neutrino physis, the masses of the fermions, the number of generations inSM, possible modi�ations in the running of the oupling onstants, new andidates for darkmatter, et.Extra dimensional theories o�er a wide variety of senarios and therefore have a rihphenomenology. For instane, in some senarios (large extra dimensions) only the gravity�eld an probe the extra dimensions. In others gravity is not onsidered and only boson �eldsare allowed to propagate through the extra dimensions. Another possibility is to allow all the�elds present in the theory to feel the extra dimensions (universal extra dimensions).



3One of the reasons why this latter senario is partiularly interesting is beause the orre-tions to the SM preditions appear for the �rst time at the one-loop level. As a onsequene,the modi�ations to preision observables are small, what implies that the sale of this theoryan be as low as hundreds of GeV. The fat that these models do not give any tree-levelontribution, is due to the onservation of the so alled Kaluza-Klein (KK) number (stritly,it is not a onserved number in the usual sense). Most of this thesis is devoted to study thephenomenology of theories with one universal extra dimension.In partiular, in hapter 2 we show how to treat the di�erent �elds (salars, fermionsand vetor bosons) in an extra-dimensional quantum �eld theory formalism. The onept ofdimensional redution is introdued and we show how to obtain a four dimensional Lagrangianfrom the expression of the Lagrangian in 4 + δ dimensions. We also show how the extradimensional �elds are transformed into an in�nite number of four-dimensional �elds (theso alled KK towers) with the same quantum numbers assoiated to all. By studying thelow energy limit of these theories we stress the relevane of seleting a suitable topologyfor the ompati�ed dimensions sine di�erent topologies have assoiated di�erent degreesof freedom in this limit. We show that the orbifold topology selets the orret low energydegrees of freedom; spei�ally, it is possible to obtain hiral fermion �elds and to remove theextra dimensional omponents of the vetor �elds in the low energy spetrum. Interatingtheories are studied to demonstrate expliitly the KK number onservation, whih is relatedto the loal extra-dimensional Lorentz invariane of the theory and has a deep impat on thephenomenology of theories with universal extra dimensions.In hapter 3 we use the ideas developed previously to onstrut an extra dimensionalmodel that redues to SM in the low-energy limit. We study the phenomenology of this modeland fous on the observables that display a strong dependene on the mass of the top-quarkbeause in this ase the deviations from the SM preditions are more important. We omputethe radiative orretions for the Z → bb deay, b → sγ, the B0 − B
0 mixing and the ρparameter, and study their onsequenes.In hapter 4 we onstrut in detail the lattiized version of the previous model, i.e. theversion in whih the extra dimension is disretized. Lattiized as well as deonstruted mod-els were devised as ultraviolet ompletions of the extra dimensional models. The latter arenot renormalizable beause the oupling onstants have dimensions of mass to some negativepower. This is suggesting that they must be understood as low energy e�etive manifes-tations of a more omplete theory. Models with deonstruted extra dimensions are usualfour-dimensional theories, whih, due to the speial nature of the interations present in theLagrangian, display an extra dimensional behaviour in ertain range of energies. These kindof models have reeived a great deal of interest beause in some of their extensions the Higgsboson is a pseudo-Goldstone boson, what would explain why it is so light and stable againstradiative orretions. This models are very similar to lattiized models. The latter are stillnon-renormalizable but they an be understood as usual four-dimensional σ-models, and allthe known possible ultraviolet ompletions for the σ-models an be applied now. In this thesiswe study part of the phenomenology of the models with one lattiized extra dimension.The next hapter is devoted to investigate the modi�ation of the running of the ouplingonstants in models with (ontinuous) extra dimensions. It has been pointed out that in extradimensional theories the running an be aelerated, i.e. the dependene with the energysale is not logarithmi, as usual, but an be power-like. This hange ould have as a majoronsequene that the uni�ation of the three interations ould be ahieved at a very low



4 Chapter 1. Introdutionsale, of order a few TeV. We have studied in some detail, by resorting to simpli�ed models,how reliably this power orretions an be omputed without knowing the details of the moreomplete theory, i.e. the theory valid above the sale at whih the extra dimensional theoryeases to be orret. We have found that the oe�ients that govern this power orretionsare sensitive to the details of the theory in whih the extra dimensional theory is embedded.This is a ompletely di�erent result ompared with the situation in usual grand uni�ationsenarios where the uni�ation of the gauge oupling onstants an be tested without knowingthe details of the Grand Uni�ation Theory.Finally, in hapter 6 we study a model with a non-universal extra dimension. In thisase only the boson �elds are allowed to propagate through the extra dimension, due to thisthe extra-dimensional Lorentz symmetry is broken and the KK number onservation ruledoes not apply. The results are ompared with those obtained when the extra dimension isuniversal to show expliitly the importane of the KK number onservation. The bound on theompati�ation sale is learly higher for the kind of models that lak this extra-dimensionalLorentz symmetry beause the deviations from the SM preditions appear already at thetree-level.



Chapter 2Quantum �eld theory with oneuniversal extra dimensionIn this hapter we study the main features of theories with one additional spae dimensionaessible to all �elds, alled universal extra dimension. To this end we study a number oftoy models whih we will use to show how to treat salar, spinor and vetor �elds in �vedimensions. We address the issue of ompati�ation in this theories and study two di�erenttopologies: a sphere, S1, as well as an orbifold, S1/Z2. It is shown that in the proess, alleddimensional redution, one an trade the extra dimension for an in�nite tower of �elds, alledKaluza-Klein (KK) tower or KK modes. The di�erent topologies provide di�erent low energytheories even when one starts from the same �ve dimensional Lagrangian. We will showthat the advantage of ompati�ng in an orbifold is double: on one hand, only four of the�ve omponents of the vetor �eld are present in the low-energy spetrum, on the other, itan ontain hiral fermions. This opens the door to identifying the SM with the low energyrealization of an extra dimensional theory. Instead of studying possible extra dimensionalextensions of the SM, we �rst propose some simple interations to gain some insight into theproperties of these theories while keeping the model as simple as possible. It is found thata new kind of onserved number appears, the KK number. It ames from the fat that thetheories are loally invariant under the Lorentz group in �ve dimensions. Stritly, it is notonserved in the usual sense and therefore we study it in some detail. Its main ontributionis to sreen, to some extent, the impat of the KK towers in the low-energy e�etive theory.2.1 Fields and interations in �ve dimensionsIn partile physis eah partile is assoiated to the quanta of a �eld de�ned in the Minkowskispae-time M4. The oordinates in this manifold are written as xµ where µ = 0, . . . , 3.To extend this formulation to more dimensions one must de�ne �elds that depend on 4 + doordinates, say ψ(xα), where α = 0, . . . , 3 + d. All the extra oordinates are supposed to beassoiated with spatial dimensions, therefore the metri takes the form gαβ = (+,−, . . . ,−).One this is done, a topology for the additional dimensions must be seleted. This hoie hasimportant onsequenes in the low-energy spetrum. In the next setions all this proess isperformed in detail for di�erent kind of �elds.5



6 Chapter 2. Quantum �eld theory with one universal extra dimension2.1.1 Salar �eld with self interationLet us de�ne a omplex salar �eld Φ(xα) that depends on the 4+d oordinates α = 0, 1, . . . , d.The ation is de�ned in the usual way through the standard Klein-Gordon Lagrangian density
S =

∫
d4+dx L4+d(xα). (2.1)For a omplex salar �eld

L4+d = (∂αΦ)†(∂αΦ) −m2Φ†Φ, (2.2)The �rst onsequene is that the anonial dimension of the �eld gets modi�ed, now [Φ] =
E1+d/2, what will be important when studying the renormalization of theories with extradimensions. The next step to do is to speify the topology of the extra dimensions. Thesimplest hoie is to assoiate a irumferene, S1, to eah one, i.e. the full manifold is adiret produt of the Minkowski spae and d irumferenes, M = M4 × (S1)d. This meansthat the extra oordinates are periodi with a periodiity of 2πR, assuming the same radius,
R. From this it follows that Φ an be expanded on its Fourier modes

Φ(xµ, ~x) =

∞∑

n1,...,nd=−∞

φ~n(x
µ)ei~n~x/R (2.3)where ~x = (x4, . . . , xd−1) is a vetor whose omponents are the oordinates in the extra dimen-sions and ~n = (n1, . . . , nd) identi�es unambiguously eah Fourier mode. By using Eq. (2.3)the integration over the extra oordinates in Eq. (2.1) an be performed

S =

∫ ∞

−∞

d4x

∫
ddx L4+d ≡

∫ ∞

−∞

d4x L. (2.4)This shows that this theory an be desribed by a four dimensional Lagrangian related withthe original one by the equation
L =

∫
ddx L4+d. (2.5)This proess reeives the name of dimensional redution. It is independent of the kind of�eld(s) (salar, fermion, vetor, et...) that L4+d ontains, it only depends on our ability toperform the integration over the oordinates of the extra dimensions.In the ase we are studying this proess leads to

L =
∞∑

~n=−∞

(∂µφ
(~n))†(∂µφ(~n)) − (m2 +m2

~n)φ
(~n)†φ(~n) m2

~n = ~n2/R2. (2.6)To obtain anonial kineti terms, the original �elds, φ(~n), must be rede�ned: φ(~n) → (2πR)−1φ(~n).Eq. (2.6) shows one of the most important features of this kind of theories, spei�ally, theextra dimensions have been traded for an in�nite tower of �elds, alled Kaluza-Klein toweror KK tower, with inreasing masses. The lowest mass, the mass of the fundamental mode,
φ(~0), is the one appearing initially in L4+d and in priniple is ompletely independent of Rand insensitive to the ompati�ation proedure. In partiular, it ould be muh lower than
R−1 or even zero. Notie the degeneray in the spetrum, exept for the fundamental mode.



Setion 2.1. Fields and interations in �ve dimensions 7Another important topology for the extra dimensions is the so alled orbifold. It is a bitmore ompliate than S1 and for the sake of simpliity we will onentrate on the ase ofa single extra dimension, whih is the important ase for this thesis. Its relevane will bemanifest in the next setions when we study the spinor and gauge �elds. From now on, whenonly a single extra dimension is present its oordinate, x4, will be denoted by y ≡ x4. Thetopology of the spae-time is now M4 × (S1/Z2). S1 means that the extra dimension is againperiodi and Z2 re�ets the fat that the points −y and y are identi�ed. The orbifold isshematially represented in the �gure.
y

y

−y

The rosses in the �gure represent two speial points,alled �xed points, that are mapped onto themselvesunder the orbifold symmetry: y → −y. When wesay that these points are identi�ed we mean that thevalues of the �elds in them are related, i.e. Φ(−y) =
UΦ(y), where U is a unitary transformation that is asymmetry in the original Lagrangian L4+d. As a result,the physis on one side and on the other is exatly thesame, or more formally, the ation an be omputedrestriting the integration to the interval y ∈ [0, πR]

S =

∫
d4x

∫ 2πR

0
dy L5 = 2

∫
d4x

∫ πR

0
dy L5. (2.7)If it is further imposed that U2 = 1, then for a salar �eld it is perfetly valid the hoie

U = ±1. This extended symmetry imposes further struture to the �elds, for one extradimension the S1 topology implies that a �eld an be expanded as1
Φ(xµ, y) = φ(0)(xµ) +

∞∑

n=1

φ(n)+(xµ) cos
(ny
R

)
+

∞∑

n=1

φ(n)−(xµ) sin
(ny
R

)
. (2.8)The orbifold topology requires that the �elds are even or odd under the orbifold parity trans-formation (y → −y), alling Φ+ and Φ− respetively

Φ+(−y) = +Φ+(y),
Φ−(−y) = −Φ−(y).

(2.9)Their expansions are now
Φ+(xµ, y) = φ(0)(xµ) +

∞∑

n=1

φ(n)+(xµ) cos
(ny
R

)
, (2.10)

Φ−(xµ, y) =

∞∑

n=1

φ(n)−(xµ) sin
(ny
R

)
. (2.11)This is of great importane, sine only the even �elds have a fundamental mode. Reall thatthe mass of the fundamental mode was only determined by the mass in the original Lagrangianand an be in priniple as low as desired. On the ontrary, the lower available mass for theodd modes is R−1. Finally, taking L5 = (∂αφ)†(∂αφ)

L =

∫ πR

0
L5(Φ+) =

∞∑

n=0

1

2
[(∂µφ

(n))†(∂µφ(n)) −m2
nφ

(n)†φ(n)], (2.12)1Of ourse this is the (2.20), where the exponentials have been expressed in terms of sines and osines.



8 Chapter 2. Quantum �eld theory with one universal extra dimensionwhile for Φ− the expression is the same without the fundamental mode, hene the low-energyspetrum is radially di�erent. It is worth to stress that these theories had a lear separationbetween low-energy and high-energy regimes due to the existene of a natural energy sale,
1/R, whih, exluding the zero mode, is the mass of the lightest mode. The partiles we knowould be identi�ed with the fundamental mode of an even �eld, the smallness of R wouldexplain why no KK mode has yet been deteted. If this idea is true then we an make arough estimate of the size of the extra dimension, R−1 > 200 GeV beause this is the highestenergy diretly probed by aelerators. Of ourse, to obtain a serious bound it is required amore evolved model and the areful study of radiative ontributions to preision observablessine these KK modes would also modify SM preditions via virtual exhanges in loops. Thisdetailed study is the main aim of this work.Up to this point only the free part of the theory has been investigated. As an example ofinteration we will use a �ve dimensional Φ4 self-interation in an orbifold; therefore we addto the Lagrangian the next interation term

L5
I = − λ̃

4!
Φ4, (2.13)where Φ is assumed to be a real and even �eld. Notie that λ̃ is not dimensionless, it is easyto derive that in general [λ̃] = E−d. By using the deomposition given in Eq. (2.10) one �ndsafter dimensional redution that the Lagrangian of this theory an be written as

L =
∞∑

n=0

1

2
[∂µφ

(n)∂µφ(n) −m2
nφ

(n)φ(n)] −
∞∑

n,m,p,q=0

λ

4!
Θnmpq φ

(n)φ(m)φ(p)φ(q), (2.14)where a new dimensionless oupling onstant has been de�ned, λ = λ̃/
√
πR. The funtion Θis deomposed as the produt Θnmpq = θ∆nmpq. The �rst is just a numerial fator due to thefat that the fundamental mode has di�erent normalization than the rest, it depends on thenumber of fundamental modes present in the vertex, f , as θ = 2−

3f+1

2 . The seond is moreinteresting beause it forbids ertain ombinations of indies
∆nmpq =

{
1 ±n±m± p± q = 0
0 otherwise (2.15)i.e. if any of the possible ombinations is zero then the vertex exists otherwise it is forbidden.The Feynman rule for the vertex of the theory is otherwise straightforward, see Fig. 2.1. Oneof the most interesting properties of the interation is that there is no vertex that ouplesthree fundamental modes with one exited. This means that to reate partiles with n ≥ 1from the partiles of the fundamental mode they must be reated in pairs, for instane throughthe proess φ0φ0 → φnφn. Therefore the threshold for reating the new partiles is a leasttwie the mass of the �rst mode, √s ≥ 2m1. The situation is reminisent of other oasions inphysis where also new partiles had to be reated in pairs, as for instane the reation of theharm quark. In that ase there was a symmetry behind: the harm quark had to be reatedvia strong interations whih are �avour-symmetri; thus, in order to reate a harm quark itwas neessary to reate also an antiharm quark.In extra dimensions the pair prodution an also be related to a symmetry: the loal�ve-dimensional Lorentz symmetry of the tree level Lagrangian. However, this symmetryis broken by the ompati�ation. This breaking is a non-loal e�et. Sine the verties
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n

m p

q

−i λ4!θ∆nmpq

Figure 2.1: Feynman Rule for Φ4 theory.desribe always loal interations, all of them must onserve momentum. This is not truefor orrelators of the theory, as for instane the propagators or in general any n-point Greenfuntion, beause they are extended objets. From Eq. (2.10) one an see that eah mode φ(n)is assoiated with a stationary wave in the �fth dimension (the osine in its exponential formontains ei n
R
y and e−i n

R
y with the same amplitude). This is onsistent with the fat that the�fth dimension is ompati�ed beause it shows that the momentum in the �fth diretion isquantized, p4 = ±n/R. The term Φ4 in the original Lagrangian ouples loally this waves.The funtion ∆nmpq in the Feynman rule just heks if there is a hoie among all the possiblemomenta in the vertex that preserves momentum.Quantization of momentum in the diretion of the extra dimension provides another wayof understanding why the masses of the modes are mn; reall that due to Eq. (2.2) pαpα = m2,so

pαp
α = m2

E2 − |~p|2 − p2
4 = m2

pµp
µ = m2 + p2

4

p2 = m2 +m2
n (2.16)As stated, momentum is violated by quantum orretions beause these are inherently non-loal, thus the masses, i.e. the spetrum of the theory, will also get radiative orretions

mn = n/R + δ1−loopn , and in general it eases to be true that the di�erene between toonseutive modes is R−1, see Ref. [3℄.2.1.2 Spinor �eld and Yukawa interationsThe Dira equation in d dimensions reads
(iγ(d)

α ∂α −m)Ψ(xα) = 0 (2.17)where α = 0, . . . , 3 + d. The quanta of the �eld Ψ are the partiles desribed by it and willobey the dispersion relation pαpα = m2 provided the γ(d) matries obey the Cli�ord algebra
{γ(d)
α , γ

(d)
β } = 2gαβ1 (2.18)where gαβ = diag(+1,−1, . . . ,−1). So the problem of onstruting representations of theLorentz group in d dimensions is equivalent to looking for a set of matries that satisfy



10 Chapter 2. Quantum �eld theory with one universal extra dimensionEq. (2.18). One important outome is that the number of γ matries is equal to the numberof dimensions sine they always ome paired with a derivative, Eq. (2.17).In this work we onentrate almost exlusively on the ase of �ve dimensions, so we willnot look for representations in an arbitrary dimension d, this an be found for instane inRef. [4℄. Instead we will look for a set of �ve gamma matries, γ(5)
α , denoted for simpliity inthe following by Γα, that ful�l Eq. (2.18). From now on, the indies denoted by the �rst lettersin the Greek alphabet will take the values α, β = 0, . . . , 4, while as usual µ, ν = 0, . . . , 3. The

Γ's an be found in terms of the usual γ matries. It is easy to hek that the assignments
Γµ = γµ and Γ4 = iγ5 indeed work, where γ5 = iγ0γ1γ2γ3.The Dira's equation (2.17) an be obtained from the Lagrangian density

L5 = Ψ(iΓα∂α −m)Ψ. (2.19)Of ourse, it is equivalent to solving the equation of motion of Eq. (2.17) and to working withthe ation obtained from Eq. (2.19), but working with L5 will simplify the alulations, henewe will use it in the following.First of all, notie that Ψ is a four omponent spinor, even if it is assoiated with a �vedimensional representation. If we assume that the extra dimension is ompati�ed on a sphere,
S1, then the �eld must be periodi in y and an be expanded in its Fourier modes

Ψ(xµ, y) = ψ(0)(xµ) +

∞∑

n=1

η(n)(xµ) cos
(ny
R

)
+ ε(n)(xµ) sin

(ny
R

) (2.20)Integrating on the extra dimension and resaling the �elds
ψ(0) → 1√

πR
ψ(0) η(n) →

√
2

πR
η(n) ε(n) →

√
2

πR
ε(n), (2.21)the four-dimensional Lagrangian density reads

L = ψ
(0)

(i/∂ −m)ψ(0) +

∞∑

n=1

η(n)(i/∂ −m)η(n) + ε(n)(i/∂ −m)ε(n) +mn(η
(n)γ5ε(n) − ε(n)γ5η(n))(2.22)the �elds η and ε are four-omponent spinors beause so it was Ψ. Using this, one an writethem in terms of their hirality omponents, η = ηR + ηL and similarly for ε.

L = ψ
(0)

(i/∂−m)ψ(0) +

∞∑

n=1

η(n)i/∂η(n) +ε(n)i/∂ε(n)−[ η
(n)
L ε

(n)
L

]

[
m −mn

mn m

][
η

(n)
R

ε
(n)
R

]
+h..(2.23)The mass matrix has to be diagonalized with a bi-unitary transformation. If we all Mthe mass matrix in Eq. (2.23) then U †MV = mD. It turns out that U = 1 beause M †M isdiagonal, therefore only the right-handed �elds are hanged by V :

[
η

(n)
R

ε
(n)
R

]
=

1√
m2 +m2

n

[
m mn

−mn m

] [
η
′(n)
R

ε
′(n)
R

]
. (2.24)Finally, if we de�ne the Dira (or vetor-like) �elds ψ(n) ≡ η

′(n)
R + η

(n)
L and ξ(n) ≡ ε

′(n)
R + ε

(n)
Lthe Lagrangian is written

L = ψ
(0)

(i/∂ −m)ψ(0) +
∞∑

n=1

ψ
(n)

(i/∂ −m′
n)ψ

(n) + ξ
(n)

(i/∂ −m′
n)ξ

(n), (2.25)



Setion 2.1. Fields and interations in �ve dimensions 11where as in the ase of the boson �eld m′
n = +

√
m2 +m2

n. From the above result one ansee that there are two in�nite KK towers formed by vetor-like spinors, ψ(n) and ξ(n), withmasses mn. Eq. (2.25) also shows that the fundamental low-energy spetrum is formed by avetor-like �eld ψ(0) whih mass is the one appearing in the original Lagrangian.This poses a serious problem if one wants to identify the fundamental mode with any ofthe known partiles. Spei�ally, we would want to identify the fundamental modes of a setof �elds as the �elds appearing in the SM Lagrangian. But to ahieve this, it is essential thatthe fundamental modes are hiral. In four dimensions, a hiral �eld an be de�ned as the�eld that ful�ls simultaneously γ5Ψ = ±Ψ as well as the Dira equation i/∂Ψ = 0. One ouldtry to impose the same de�nition in �ve dimensions, but now the situation is ompletelydi�erent beause in four dimensions γ5 antiommutes with all the γ matries, a fat thateases to be true in �ve dimensions. This is beause, in the former ase, the representation ofthe Lorentz group that omes from the Dira's equation is not irreduible, but it is a diretsum of two irreduible representations that an be distinguished by their di�erent eigenvaluesunder the ation of γ5. In �ve dimensions γ5 is one of the γ matries, hene it no longerantiommutes with all the γ matries, and as a onsequene the two equations an not beful�lled simultaneously. To see this in detail, let Ψ be a four-omponent spinor �eld that ful�lsthe �ve dimensional Dira's equation. Then the transformed �eld γ5Ψ does not obey Dira'sequation
iΓα∂α(γ5Ψ) = 0 (2.26)

γ5(−i/∂ + iΓ4∂y)Ψ = 0 (2.27)
(i/∂ − iΓ4∂y)Ψ = 0. (2.28)Notie that it is the relative sign between Γ4 and the rest of γ matries what prevents γ5Ψ tobe a valid solution. But this sign an be reabsorbed by the derivative ∂y if the ation of γ5 isaompanied by a parity transformation in the �fth diretion, i.e. Ψ′(y) = γ5Ψ(−y) will be asolution of the Dira's equation if previously Ψ(y) is a solution. The presene of a mass termin Eq. (2.26) would invalidate this last onlusion.This result an be exploited to obtain hiral fundamental modes. Reall that we hadassigned the topology of a irumferene to the �fth dimension S1; now suppose that imposein addition that the ation omputed with the values of the �elds in one side y ∈ [0, πR] isthe same as in the other y ∈ [−πR, 0], then to extrat the physis one only needs to lookfor extremals of the ation S in only one side. This means that the value of a �eld in oneside must be related with the values it takes in the other side by a transformation that is asymmetry of the original Lagrangian, Ψ(−y) = UΨ(y). For a spinor �eld we hoose U = ±γ5,or what is the same we impose that the ombined ation of γ5 and y → −y should leave Ψinvariant Ψ(y) = ±γ5Ψ(−y), with this, the Fourier modes are all hiral. Take for onretenessthe minus sign

Ψ(xµ, y) = ψ
(0)
L (xµ) +

∞∑

n=1

η
(n)
L (xµ) cos

(ny
R

)
+ ε

(n)
R (xµ) sin

(ny
R

)
. (2.29)So the modes that are even under y → −y have the same hirality as the fundamental onewhile the ones that are odd have opposite hirality. Sine one only need to know the valuesthat the �eld takes on one side, say y ∈ [0, πR], this means that the new topology is no otherthan an orbifold, S1/Z2, see previous setion. The Lagrangian in �ve dimensions is taken to
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L5
F = ΨiΓα∂αΨ, (2.30)and it has no mass term beause it breaks the orbifold symmetry. After the dimensionalredution the four-dimensional Lagrangian reads

LF = ψ
(0)
L i/∂ψ(0)

L +
∞∑

n=1

ψ
(n)

[i/∂ −mn]ψ
(n), (2.31)where ψ(n) = η

(n)
L + ε

(n)
R . So we have �nally ahieved a hiral fundamental mode, ψ(0)

L . Ontop of it, it has appeared a KK-tower of vetor-like �elds, ψ(n), with masses mn.If instead of the minus sign we had taken the plus, then we would have ended with a similarequation but with sign of the mass reversed, i.e. for eah mode we would have obtained
ψ

(n)
[i/∂ + mn]ψ

(n). Of ourse, the sign of the mass is unobservable. So in addition of therequired �eld rede�nitions to obtain a anonial kineti term, the modes of the �elds with aright-handed fundamental mode must be further rede�ned to get the right sign of the mass.Now that we have sueeded in onstruting a theory with hiral fundamental modes,the next step is to study possible interations that may involve this kind of �elds. We willstudy in the following the Yukawa ouplings for two reasons: it is the easiest interationbetween fermions and bosons and beause it is present in the SM. The interating �elds willbe a spinor �eld Ψ with a right-handed fundamental mode, another spinor �eld χ with aleft-handed fundamental mode and a boson �eld φ even under Z2. The orbifold topology isassumed. The Lagrangian is taken to be
L5
Y = Ỹ χφΨ + h.. (2.32)whih, as we will see, will provide a four-dimensional Yukawa interation for the zero modes.The anonial dimensions of the Yukawa oupling onstant are [Ỹ ] = E

1
2 ; this is the reasonwhy this theory is not renormalizable. Now, after dimensional redution and �eld rede�nitionsto get anonial kineti terms, the Lagrangian reads

L = Y φ(0)χ(0)
R Ψ

(0)
L +Y

∞∑

n=1

[φ(0)χ(n)
ψ(n)+φ(n)χ(0)

ψ(n)+φ(n)χ(n)
ψ(0)]+

Y√
2

∞∑

n,p,q=1

∆npqφ
(n)χ(p)

ψ(q)+h..(2.33)where y = ỹ/
√
πR and ∆npq is de�ned in Eq. (2.15). Notie that there is no vertex thatouples the fundamental modes n = 0 with only one single mode of the KK tower n > 0. Thelast ones appear at least paired, and as a onsequene the energy threshold to produe themusing only the fundamental �elds is twie the mass of the lightest KK mode, √s ≥ 2m1. Thisfeature also appeared when we studied the ase of the boson �eld, and the same reasoning wegave there applies now here.2.1.3 Vetor bosons and gauge theoriesIn the previous setion we have onstruted a senario in whih the fundamental modes ofthe extra dimensional salar and spinor �elds an be identi�ed with the �elds in the SM. Toahieve the full SM as a low-energy realization of a �ve-dimensional theory we still need to do asimilar onstrution for the vetor �elds. In �ve dimensions these �elds have �ve omponents,

Aα, orresponding to the �ve possible polarizations. Therefore, to assoiate Aα to one of the



Setion 2.1. Fields and interations in �ve dimensions 13vetor �elds in the SM we need to remove one of its omponents from the low-energy spetrum.As we will see, this an be done when we ompatify the �fth dimension on the orbifold. Thefree Lagrangian in �ve dimensions is taken to be
L5
G = −1

4
FαβFαβ = −1

4
(∂αAβ − ∂βAα)(∂αAβ − ∂βAα). (2.34)To perform the dimensional redution we impose that the �fth omponent of the �eld A4 isodd under the ation of Z2 while the rest Aµ are even. On the following the �fth omponentswill be denoted by A5 beause it is done so in the literature.

Aµ(x
µ,−y) = Aµ(x

µ, y), (2.35)
A5(x

µ,−y) = −A5(x
µ, y). (2.36)The above presription is not gauge invariant, it breaks gauge symmetry in �ve dimensionsbut preserves it in four. Di�erent omponents of the strength tensor transform di�erently:

Fµν → Fµν , (2.37)
Fαν → −Fαν . (2.38)Despite of this, L5

G is invariant under Eq.(2.35,2.36), as it should, sine both sides of S1 mustbe physially equivalent. After dimensional redution the Lagrangian reads
LG = −1

4
F (0) ·F (0) +

∞∑

n=1

−1

4
F (n) ·F (n) +

1

2
m2
nA

(n)µA(n)
µ +

1

2
∂µA

(n)
5 ∂µA

(n)
5 +m2

n∂µA
(n)
5 A(n)µ,(2.39)where F (n)

µν ≡ ∂µA
(n)
ν − ∂µA

(n)
ν and mn is de�ned in Eq. (2.6). LG shows that the A5 ompo-nents are not present in the low-energy spetrum. Moreover, the modes A(n)

µ have aquireda mass , mn, A(n)
5 being the Goldstone boson eaten by A(n)

µ . The appearane of a tree-levelmixing between A(n)
µ and A(n)

5 suggest a gauge �xing term of the form:
Lgf = − 1

2ξ
(∂µA

(n)µ − ξmnA
(n)
5 )2. (2.40)This is very similar to the usual Rξ type of gauge �xing, known from the SM. When Lgf istaken in this way the propagators are

A
(0)
µ :�: = −i

k2

[
gµν − (1 − ξ)k

µkν

k2

]
,

A
(n)
µ :�: = −i

k2−m2
n

[
gµν − (1 − ξ) kµkν

k2−ξm2
n

]
,

A
(n)
5 : �: = i

k2−ξm2
n
.

(2.41)Eq. (2.40) �xes the gauge after ompati�ation. One may wonder if it is equivalent to �xingit before ompati�ation. We will not study this issue in detail here, we refer the interestedreader to Ref.[5℄, where it is treated. It is shown there that the hoies of the Feynman gaugeand unitary gauge in Eq. (2.40) an be obtained through suitable hoies in the gauge �xingterms before ompati�ation, while there is no suh possibility for the Landau gauge, thusto avoid any problem we will work always in the Feynman gauge.Notie that the aim of the orbifold topology is to remove from the low-energy spetrumthe zero mode of the �fth omponent of the gauge �eld, A(0)
5 , but as we will see, its presene



14 Chapter 2. Quantum �eld theory with one universal extra dimensionwould o�er an interesting possibility. It ould be present as a massless salar if we ompatifyin a irumferene S1. The extra dimensional gauge symmetry forbids a mass term for it.Nevertheless, we have seen that the ompati�ation breaks this symmetry, therefore radiativeorretions will provide it mass. When these orretions are studied they are found to be�nite. The UV divergenes are not present beause at very high energies, very small distanes(ompared to the ompati�ation radius), all the dimensions are equivalent and A(0)
5 is justone omponent of a gauge �eld and therefore it an not reeive any ontribution to its massbeause of gauge symmetry. All the ontributions to its mass ame from the low energy. Thissituation is very similar to the way in whih SUSY protets the mass of Higgs. In this ase theHiggs is assoiated via the SUSY symmetry with a fermioni �eld and the hiral symmetryprotets the mass terms for both superpartners. Basially, this is the idea behind the workdone in [6, 7, 8, 9℄ . More spei�ally, the Higgs �eld, a salar �eld, an be assoiated toa gauge �eld Aα and with this, its mass an be proteted by gauge symmetry. Despite theinterest of these kind of models we will not follow them. Instead we will ontinue using theorbifold topology without the A(0)

5 �eld in our spetrum.The vetor �elds appear in general in gauge theories. As an example of a �ve dimensionalgauge theory we develop brie�y in the next lines a theory that redues to a version of QEDafter ompati�ation. Its low energy onsists in one massless hiral fermion oupled with amassless photon via a gauge interation, a more detailed derivation is given in Ref.[5℄. TheLagrangian is written as
L5 = L5

G + Ψi /DΨ, (2.42)where L5
G is de�ned in Eq. (2.34) and the �ve dimensional ovariant derivative is de�ned as

Dα = ∂α − iẽAα. After ompati�ation the Lagrangian an be deomposed in the sum ofthree terms L = LG + LF + LI , where LG and LF are de�ned in Eq. (2.39) and Eq. (2.31)respetively, and the interation term an be divided in three piees LI = L0
I + L0K

I + LKI

L0
I = e ψ

(0)
L /A0ψ

(0)
L (2.43)

L0K
I = e

∞∑

n=1

ψ
(n) /A(0)ψ(n) + e

∞∑

n=1

[
ψ

(0)
L /A(n)ψ

(n)
L + iψ

(0)
L A

(n)
5 ψ

(n)
R + h..] (2.44)

LK =
e√
2

∞∑

n,m=1

[
ψ

(n+m) /A(m)ψ(n) − iψ
(n+m)

A
(m)
5 ψ(n) + h..] (2.45)

e√
2

∞∑

n,m=1

[
ψ

(m) /A(n+m)γ5ψ(n) + iψ
(m)

A
(n+m)
5 γ5ψ(n)

]
, (2.46)where we have rewritten the �ve-dimensional oupling ẽ in terms of the four dimensional e as

e = ẽ/
√
πR. Notie that, as mentioned, the low-energy (below R−1) e�etive theory orre-sponds exatly to QED with one hiral fermion. In addition, all the verties onserve the KKnumber as it happened in the previous examples, hene KK modes must be reated in pairsfrom the fundamental modes what redues its impat on the low-energy phenomenology be-ause the e�etive Lagrangian only reeives ontributions at the one-loop level. The Feynmanrules an be easily read from the above formulae.



Chapter 3SM with one universal extradimensionUntil now we have onstruted a number of toy models that have helped us to study somefeatures of the theories with one extra dimension. In partiular we have shown that the funda-mental modes of the di�erent �elds remain in the low-energy spetrum after ompati�ation.If the topology of the extra dimension is taken to be an orbifold then the fundamental modesof the spinor �elds are hiral and the ones of the vetor �elds have only four omponents. Weexploit these results here to build a �ve dimensional model, whih was initially proposed inRef. [10℄, that after ompati�ation redues to the SM. We study the phenomenology anduse the results to set bounds on the ompati�ation sale, R, or what is the same, to themass of the �rst KK mode, to be denoted by M = R−1. We onentrate on the observableswith a strong dependene on the mass of the top-quark, mt, for whih the orretions to SMwill be enhaned. Although the proess b → sγ has no mt enhanement, the relative impatof the new physis is also important beause it is one-loop suppressed in the SM due to gaugeinvariane, hene we will also study it.3.1 The modelWe use the above onsiderations to simplify the Lagrangian of the model, and in what followsall mass sales below mt will be negleted. On the other hand, onsidering that we are notinterested in strong proesses, we onentrate only on the gauge group SU(2)L ×U(1)Y . TheLagrangian is separated in four piees
LUED =

∫ L=πR

0
dy(LG + LH + LF + LY ). (3.1)The gauge piee is de�ned to be

LG = −1

4
F a · F a − 1

4
F · F (3.2)where F aαβ is the �ve dimensional gauge �eld strength assoiated with the SU(2)L gauge groupand Fαβ is the one of the U(1)Y group

F aαβ = ∂αW
a
β − ∂βW

a
α + g̃ǫabcW b

αW
c
β (3.3)

Fαβ = ∂αBβ − ∂βBα (3.4)15



16 Chapter 3. SM with one universal extra dimensionThe Higgs piee is
LH = (DαH)†DαH − V (H), (3.5)and the ovariant derivative is de�ned as Dα ≡ ∂α − ig̃W a

αT
a − ig̃′BαY , where g̃ and g̃′ arethe (dimension-full) gauge oupling onstants of SU(2)L and U(1)Y respetively in the �vedimensional theory, T a and Y are the generators of these groups.The fermioni piee is

LF = Q(iΓαDα)Q+ U(iΓαDα)U +D(iΓαDα)D, (3.6)where Γα are the �ve dimensional gamma matries. The �elds Q, D and U arry a generationalindex that is not expliitly written here.Finally, the Yukawa piee reads
LY = −QỸuHcU −QỸdHD + h.. (3.7)where Hc = iσ2H∗ is the usual harge onjugated �eld and the Ỹu are the Yukawa matriesin the �ve dimensional theory, whih, as usual, mix di�erent generations.We use the topology of the extra dimension, assumed to be an orbifold S1/Z2, and expandthe �elds in a Fourier series

Gµ =
1√
πR

G(0)
µ +

√
2

πR

∞∑

n=1

G(n)
µ cos

(ny
R

) (3.8)
G5 =

√
2

πR

∞∑

n=1

G
(n)
5 sin

(ny
R

) (3.9)
Q =

1√
πR

Q
(0)
L +

√
2

πR

∞∑

n=1

[
Q

(n)
L cos

(ny
R

)
+Q

(n)
R sin

(ny
R

)] (3.10)
U =

1√
πR

U
(0)
R +

√
2

πR

∞∑

n=1

[
U

(n)
R cos

(ny
R

)
+ U

(n)
L sin

(ny
R

)] (3.11)where the expansion for Gµ is valid for eah omponent of the gauge �elds as well as for theHiggs doublet, the one for G5 is valid for the �fth omponent of the gauge �elds. Analogously,the expansion for U is valid also for D. We have inluded di�erent normalization for themodes to obtain anonial kineti terms after ompati�ation.3.1.1 The spetrum of the modelTo make any alulation we require the spetrum of the model. In order to extrat it, theHiggs setor has to be studied. It will undergo SSB, hene it will ontribute to the masses ofthe di�erent partiles. The Higgs doublet is parametrized as
H =

[
Φ+

Φ0

]
=

1√
2

[
−i(φ1 − iφ2)
φ0 + iφ3

]
, (3.12)where φi are real �elds. As a Higgs potential it is hosen

V (H) = −µ2H†H +
λ̃

4!
(H†H)2, (3.13)



Setion 3.1. The model 17where µ2 is a real positive parameter with mass dimensions and λ̃ is a real parameter withdimension E−1. After dimensional redution the potential ontains a number of ouplingsbetween the di�erent KK modes. Here we show only those that are relevant
V = −µ2H(0)†H(0) +

λ

4!
(H(0)†H(0))2 +

∞∑

n=1

(−µ2 +m2
n)H

(n)†H(n) + (3.14)
+

∞∑

n=1

λ

4!

[
(H(0)†H(0))(H(n)†H(n)) + (H(0)†H(n))2 + (H(0)†H(n))(H(n)†H(0)) + h..] , (3.15)where λ ≡ λ̃/(πR). The �rst thing to notie is that the potential for the fundamental modeindues SSB only for the zeroth mode, H(0), sine for n > 0 we expet reasonably m2

n > µ2.This is onsistent with the assoiation of the fundamental mode of H to the SM Higgs doublet.Following with this idea, the neutral omponent of the doublet will get a VEV, spei�ally,
〈φ(0)

0 〉0 = v, what implies
φ

(0)
0 (xµ) = v + h(xµ), 〈H(0)〉0 =

v√
2

[
0
1

]
. (3.16)On the ontrary, the modes of the KK tower (n > 0) do not undergo SSB beause their massesbefore SSB are positive. Nevertheless, the terms in Eq. (3.15) will modify their masses afterSSB. At the end, the masses of the Higgs �eld and its assoiated KK tower are

m2(h) = 2µ2 ≡ m2
h, m2(φ

(n)
0 ) = m2

h +m2
n, n ≥ 1. (3.17)Reall that the �elds φ(n)

0 , for n ≥ 1 do not get a VEV. For the rest of the �elds the massesare
m2(Φ±(n)) = m2(φ

(n)
3 ) = m2

n, n ≥ 0. (3.18)If our interpretation is orret, the �elds Φ±(0) and φ(0)
3 will be preisely the SM Goldstonebosons absorbed by W± and Z, the fat that they are massless is also onsistent with theidenti�ation of H(0) with the SM Higgs doublet.In the gauge setor, this SSB is also relevant. In addition, it is easy to onvine oneselfthat this model oinides exatly with the SM when only zero modes are taken into aount,what aounts for taking the limit mn → ∞. Thus, retaining only the zero modes, all goesmuh in the same way as in SM: the neutral omponent of the Higgs doublet gets a VEV andindues mixing between W (0)

µ3 and B(0)
µ to give a massless gauge boson, the photon A(0)

µ , anda massive one, the Z boson Z(0)
µ , the mixing being parametrized by the weak mixing angle
Z(0)
µ = cos θw W

(0)
µ3 − sin θw B

(0)
µ (3.19)

A(0)
µ = sin θw W

(0)
µ3 + cos θw B

(0)
µ (3.20)and the same mixing is generated for A(n)

µ and Z(n)
µ . But we will onentrate on the hargedgauge bosons beause they will appear in our alulations. After the dimensional redution,



18 Chapter 3. SM with one universal extra dimensionthe bilinear terms relevant for the gauge setor are
− 1

4
F aαβF

aαβ + (DαH)† (DαH)
D.R.−→ − 1

4
F (n)
µν F

µν(n) + (m2
n +M2

W )W+(n)
µ W µ−(n)(3.21)

+ ∂µW
+(n)
5 ∂µW

−(n)
5 −M2

WW
+(n)
5 W

−(n)
5 (3.22)

+ ∂µΦ
+(n)∂µΦ−(n) −m2

nΦ
+(n)Φ−(n) (3.23)

+ W µ(n)−∂µ(iMWΦ+(n) +mnW
+(n)
5 ) + h..(3.24)

+ iMWmnW
−(n)
5 Φ+(n) + h.., (3.25)where the sum on n is impliit and we have used the tree level relation gv/2 = MW . Theprevious equations an be understood as follows: the �rst two show that the vetor bosons

W
(n)
µ are now massive with mass √M2

W +m2
n, while the �fth omponents KK modes, W (n)

5 ,have beame massive harged salars with massesMW . Nevertheless, Eq. (3.24) and Eq. (3.25)show thatW (n)
5 have not diagonal mass terms, beause they mix with the modes of the hargedomponent of the Higgs doublet, Φ+(n). In partiular, Eq. (3.24) points out the ombinationthat de�nes the Goldstone �eld, Φ+

G, that is been absorbed by the W+(n)
µ �elds to get masses.The orthogonal ombination, Φ

+(n)
P , is a physial salar. The expressions that relate those�elds are

Φ
+(n)
G =

mnW
+(n)
5 + iMWΦ+(n)

√
m2
n +M2

W

MW →0−→ W
+(n)
5 , (3.26)

Φ
+(n)
P =

iMWW
+(n)
5 +mnΦ

+(n)

√
m2
n +M2

W

MW →0−→ Φ+(n). (3.27)These formulae are valid only for n ≥ 1. In the limit of negleting all mass sales below mt,the mixing is not important and W+(n)
5 an be identi�ed with the Goldstone bosons, Φ

+(n)
G ,and Φ+(n) with the physial salars, Φ

+(n)
P .We pass now to study the quark setor, in partiular, the third generation beause itontains the top. To distinguish between the up and down omponents of the �ve-dimensionaldoublet Q in Eq. (3.10) we will use subindies that will arry also information about thegeneration, e.g. when we write
Q =

[
Qt
Qb

] (3.28)we are denoting by Qt (Qb) the up (down) omponent of the weak doublet in the third genera-tion. Analogously by Ut we denote the weak singlet of the third generation. After dimensionalredution Q(n)
t aquires a mass mn and U (n)

t a mass −mn, n > 0. These are Dira fermionsde�ned as Q(n)
t = Q

(n)
tR + Q

(n)
tL . The masses reeive also ontributions oming from the ou-plings with H(0), whih are ontained in the Yukawa setor, Eq. (3.7). Here we extrat therelevant terms

LY = −YuQ(0)
t H(0)cU

(0)
t − Yu

∞∑

n=1

Q
(n)
t H(0)cU

(n)
t + h.. + . . . (3.29)

= −Yuv√
2
Q

(0)
t U

(0)
t − Yuv√

2

∞∑

n=1

Q
(n)
t U

(n)
t + h.. + . . . , (3.30)



Setion 3.1. The model 19where Yu ≡ Ỹu/
√
πR, and we have used Eq. (3.8). Sine the fundamental modes are, byonstrution, identi�ed with the SM �elds, then Yu must be the SM Yukawa matrix, whatimplies that the KK modes Q(n)

t and U
(n)
t have a mixing proportional to the mass of thetop-quark, mt = Yuv/

√
2. So the bilinear terms for these �elds may be written as

Lt ≡ t(i/∂−mt)t+

∞∑

n=1

Q
(n)
t i/∂Q(n)

t +U
(n)
t i/∂U (n)

t −
[
Q

(n)
t U

(n)
t

] [ mn mt

mt −mn

][
Q

(n)
t

U
(n)
t

]
,(3.31)We denote by t the top-quark, t = Q

(0)
tL +U

(0)
tR . The mass eigen�elds, denoted by a prime, are

[
Q

(n)
t

U
(n)
t

]
=

[
cos(αn) − sin(αn)
sin(αn) cos(αn)

] [
1 0
0 γ5

][
Q

′(n)
t

U
′(n)
t

]
, (3.32)where tan(2αn) ≡ mt/mn and the γ5 is inluded to obtain a positive mass of the U ′(n)

t . Finally,the masses are
m(Q

′(n)
t ) = m(U

′(n)
t ) =

√
m2
n +m2

t ≡ mQ n > 0. (3.33)In the alulations of this work, the degrees of freedom Q
′(n)
t and U ′(n)

t will appear insideloops, hene it will be advantageous to work with the �elds Q(n)
t and U (n)

t , we all the latterthe interation base. Sine they have not de�nite mass, the inverse of their quadrati forms,i.e. their propagators, are not diagonal. In this base, the expression of the ouplings is simpler,but the propagators are non-anonial, and the next expressions must be used for them



�Q(n)t �Q(n)t U (n)t�U (n)t Q(n)t �U (n)t

 =




i
/p+mn

p2−m2
Q

i mt

p2−m2
Q

i mt

p2−m2
Q

i
/p−mn

p2−m2
Q


3.1.2 CouplingsWe will ompute the dominant orretions to the modi�ations of the ρ parameter, whih anbe found by alulating the radiative orretions to the self energies of the gauge bosonsW (0)

µ1and W (0)
µ3 . To this end, we need to extrat the ouplings of W (0)

µ1(3) with the KK modes of the
Q �elds beause the mt proportional ontributions ome exlusively from them. This is sobeause the mass of the top, mt, only appears in the propagators of the Q and U �elds and inthe verties proportional to the Yukawa matries, but neither this verties ontribute at oneloop in UED1, nor do the U �elds, whih do not even ouple diretly to W (0)

µ1(3). Therefore,the relevant ouplings are
Lρ =

g

2
W

(0)
µ1

[
Q

(n)
t γµQ

(n)
b +Q

(n)
b γµQ

(n)
t

]
+
g

2
W

(0)
µ3

[
Q

(n)
t γµQ

(n)
t

]
, (3.34)where g = g̃/

√
πR. Notie that for simpliity we have not onsidered the CKM mixingmatrix2.1Beause in the limit of MW → 0 the Higgs doublets are not eaten by the gauge bosons, in ontrast withwhat happens in SM.2We have expliitly heked that the alulations give exatly the same result when VCKM is taken intoaount and that this is numerially so beause in our approximation all quark masses are zero exept mt.



20 Chapter 3. SM with one universal extra dimensionThe ouplings of the physial salar Φ+(n) with the modes of the top quark are alsoimportant beause they are proportional to mt.
LY =

√
2

v
mtVtjU

(n)
R Q

(0)
j LΦ(n)+ + h.. (3.35)In this ase, it has been maintained the CKM mixing matrix beause we will need it to astthe modi�ations in the B0 − B

0 mixing in a standard form, whih is de�ned to bound anynew physis a�eting this mixing. Notie that although Φ(n)+ are physial degrees of freedomtheir ouplings are exatly the same as the Goldstone bosons of the SM.We are also interested in the radiative orretions to the Z → bb deay, therefore we needto know the ouplings of Zµ = Z
(0)
µ .

LZ =
g

2cw
Zµ[J

µ
SM + Jµ(n) + J

µ(n)
Φ ], (3.36)where the JµSM is the usual SM neutral urrent

JµSM = QLγ
µ2[T 3 − s2wQ]QL + URγ

µ2[T 3 − s2wQ]UR. (3.37)Analogously we �nd for Jµ(n), n ≥ 1:
Jµ(n) = Q

(n)
γµ2[T 3 − s2wQ]Q(n) + U

(n)
γµ2[T 3 − s2wQ]U (n). (3.38)If we indiate expliitly the harges

T 3Q
(n)
t = +1

2Q
(n)
t

T 3Q
(n)
b = −1

2Q
(n)
b

T 3U (n) = 0

Y Q
(n)
t = +1

6Q
(n)
t

Y Q
(n)
b = +1

6Q
(n)
b

Y U (n) = +2
3U

(n)

(3.39)the urrent reads
Jµ(n) =

(
+1 − 4

3
s2w

)
Q

(n)
t γµQ

(n)
t +

(
−1 +

2

3
s2w

)
Q

(n)
b γµQ

(n)
b +

(
−4

3
s2w

)
U

(n)
γµU (n). (3.40)Finally, the ouplings with the KK modes of the Higgs doublet harged omponents are

J
µ(n)
Φ = (−1 + 2s2w)Φ+(n)i∂µΦ−(n) + h.. (3.41)From Eq. (3.37), Eq. (3.40) and Eq. (3.41) it is now straightforward to extrat the orrespon-dent Feynman rules for the ouplings with the Z. The ouplings of the photon an be derivedsimilarly.3.2 PhenomenologyThe detetion of the �rst members of the KK towers would be a ompelling signature in favorof extra dimensions. But until now, there is no diret detetion of any member of these towersin the experiments. This means that we have to look for their ontributions to observablesthrough virtual prodution. Sine these are expeted to be small, the best plaes to look forthem are proesses that have been experimentally measured with high degree of preision orthat an only proeed through radiative orretions in the SM. Among the formers we willstudy in the next setions the Z → bb̄ deay, the radiative orretions to the ρ parameter andthe B0 −B

0 mixing, and among the latter the proess b→ sγ.



Setion 3.2. Phenomenology 213.2.1 Radiative orretions to the Z → bb deayShifts in the Zbb̄ oupling due to radiative orretions, either from within the SM or from newphysis, a�et observables suh as the branhing ratio Rb = Γb/Γh, where Γb = Γ(Z → bb̄)and Γh = Γ(Z → hadrons), or the left right asymmetry Ab. These type of orretions anbe treated uniformly by expressing them as a modi�ation to the tree level ouplings gL(R)de�ned as
g

cW
bγµ(gLPL + gRPR)bZµ . (3.42)

Z and b's are SM �elds, PL(R) are the hirality projetors and
gL = −1

2
+

1

3
s2W + δgSM

L + δgNP
L , (3.43)

gR =
1

3
s2W + δgSM

R + δgNP
R , (3.44)where we have separated radiative orretions oming from SM ontributions and from newphysis, (NP). It turns out that, both within the SM as well as in most of its extensions, only

gL reeives orretions proportional to m2
t at the one loop level, due to the di�erene in theouplings between the two hiralities. In partiular, a shift δgNPL in the value of gL due tonew physis translates into a shift in Rb given by

δRb = 2Rb(1 −Rb)
gL

g2
L + g2

R

δgNP
L , (3.45)and to a shift in the left-right asymmetry Ab given by

δAb =
4g2
RgL

(g2
L + g2

R)2
δgNP
L . (3.46)These equations, when ompared with experimental data, will be used to set bounds on theompati�ation sale.By far the easiest way to ompute the leading top-quark-mass dependent one-loop orre-tions to δgL from the SM itself, δgSM

L , is to resort to the gaugeless limit of the SM [11℄, e.g.the limit where the gauge ouplings g and g′, orresponding to the gauge groups SU(2)L and
U(1)Y respetively, are swithed o�. In that limit the gauge bosons play the role of externalsoures and the only propagating �elds are the quarks, the Higgs �eld, and the harged andneutral Goldstone bosons G± and G0. As explained in [12, 13℄ one may relate the one-loopvertex Zbb̄ to the orresponding G0bb̄ vertex by means of a Ward identity; the latter is a diretonsequene of urrent onservation, whih holds for the neutral urrent before and after theHiggs doublet aquires a vauum expetation value v.In pratie, arrying out the alulation in the aforementioned limit amounts to the el-ementary omputation of the one-loop o�-shell vertex G0bb̄. In the gaugeless limit and formassless b-quarks the only ontribution to this vertex is depited in Fig. 3.1, where the ross inthe top-quark line represents a top-quark mass insertion needed to �ip hirality (the diagramwith an insertion in the other top-quark line is assumed). This diagram gives a derivativeoupling of the Goldstone �eld to the b-quarks whih an be gauged (or related to the Zvertex through the Ward identity) to reover the Zbb̄ vertex. Then, one immediately �nds

δgSM
L ≈

√
2GFm

4
t

(2π)4

∫
id4k

(k2 −m2
t )

2k2
=

√
2GFm

2
t

(4π)2
, (3.47)
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Figure 3.1: The diagram ontributing to the SM G0bb̄ vertex in the gaugeless limit for massless b-quarks.where GF is the Fermi onstant. The m4
t dependene (oming from three Yukawa ouplingsand one mass insertion) is partially ompensated by the 1/m2

t dependene oming from theloop integral.In the ase of a single UED this argument persists: one must simply onsider the analogof diagram in Fig. 3.1, where now the partiles inside the loop have been replaed by theirKK modes, as shown in Fig. 3.2. If we denote by δgUEDL the new physis ontributions in theUED model (the SM ontributions are not inluded) the result is
δgUED
L ≈

√
2GFm

4
t

(2π)4

∞∑

n=1

∫
id4k

(k2 −m2
Q)2(k2 −m2

n)

=

√
2GFm

4
t

(4π)2

∞∑

n=1

∫ 1

0

dxx

xm2
t +m2

n

≈
√

2GFm
4
t

(4π)2
π2R2

12
, (3.48)and depends quartially on the mass of the top quark. Notie that there are several di�ereneswith respet to the SM: (i) The ross now represents the mixing mass term between Q

(n)
tand U (n)

t , whih is proportional to mt; (ii) The Φ±(n), for n 6= 0, are essentially the physialKK modes of the harged Higgses as shown in Eq.(3.27); (iii) From the virtual momentumintegration one obtains now a fator 1/m2
n, instead of the fator 1/m2

t of the SM ase.This simple alulation allows us to understand easily the leading orretions arising fromextra dimensions. A more standard alulation of the Zbb̄ vertex in UED yields exatly thesame result. In this ase the radiative orretions to the Zbb̄ vertex stem from the diagramsof Fig. 3.3.If we neglet the b-quark mass and take MZ ≪ R−1, the result, for eah mode, an beexpressed in terms of a single funtion, f(rn), de�ned as
iM(n) = i

g

cw

√
2GFm

2
t

(4π)2
f(rn)u

′γµPLuǫµ , (3.49)where u and u′ are the spinors of the b quarks and ǫµ stands for the polarization vetor of the
Z boson. The argument of the funtion f is rn = m2

t /m
2
n.
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Figure 3.2: The dominant diagram ontributing to the UED G0bb̄ vertex in the gaugeless limit for massless
b-quarks.Although the omplete result is �nite, partial results are divergent and are regularized byusing dimensional regularization. The ontributions of the di�erent diagrams in Fig. 3.3 are

f (a)(rn) =

(
1 − 4

3
s2w

)[
rn − log(1 + rn)

rn

]
,

f (b)(rn) =

(
−2

3
s2w

)[
δn − 1 +

2rn + r2n − 2(1 + r2n) log(1 + rn)

2r2n

]
,

f (c)(rn) =

(
−1

2
+ s2w

)[
δn +

2rn + 3r2n − 2(1 + rn)
2 log(1 + rn)

2r2n

]
,

f (d)(rn) + f (e)(rn) =

(
1

2
− 1

3
s2w

)[
δn +

2rn + 3r2n − 2(1 + rn)
2 log(1 + rn)

2r2n

]
, (3.50)where δn ≡ 2/ǫ−γ+log(4π)+ log(µ2/m2

n), and µ is the 't Hooft mass sale. From Eq. (3.50)it is straightforward to verify that all terms proportional to δn anel, and so do all termsproportional to s2w, as expeted from the gaugeless limit result. Thus, �nally, the only termwhih survives is the term in f (a)(rn) not proportional to s2w, yielding the following (per mode)ontribution to gL:
δg

(n)
L =

√
2GFm

2
t

(4π)2

[
rn − log(1 + rn)

rn

]
, (3.51)whih is preisely the one obtained from the gaugeless limit alulation, e.g. Eq. (3.48) withthe elementary integration over the Feynman parameter x already arried out. Notie alsothat the above result is onsistent with the deoupling theorem sine the ontribution for eahmode vanishes when its mass is taken to in�nity, i.e. rn → 0.In order to ompute the e�et of the entire KK tower, it is more onvenient to �rst arry outthe sum and then evaluate the Feynman parameter integral; this interhange is mathematiallylegitimate sine the �nal answer is onvergent. Thus,

δgUED
L =

∞∑

n=1

δg
(n)
L =

√
2GFm

2
t

(4π)2

∫ 1

0
dx

∞∑

n=1

rnx

1 + rnx
=

√
2GFm

2
t

(4π)2
FUED(a) , (3.52)
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Figure 3.3: Dominant UED ontributions to the Zbb̄ vertex.where a = πRmt, and the funtion F (a) is de�ned in general as
F (a) ≡ δgNP

L

δgSM
L

. (3.53)In the ase of UED
FUED(a) = −1

2
+
a

2

∫ 1

0
dx

√
x coth(a

√
x) ≈ a2

12
− a4

270
+ O(a6) . (3.54)It is instrutive to ompare the above result with the one obtained in the ontext of modelswhere the extra dimension is not universal3. In partiular, in the model onsidered in Ref. [14℄the fermions live in four dimensions, and only the gauge bosons and the Higgs doublet livein �ve [15℄. In this ase there is no KK tower for the fermions, and therefore, in the loop-diagrams appear only the SM quarks interating with the KK tower of the Higgs �elds. Theresult displays a logarithmi dependene on the parameter a, whih gives rise to a relativelytight lower bound on R−1, of the order of 1 TeV. Spei�ally, the orresponding F (a) is givenby4

F (a) = −1 + 2a

∫ ∞

0
dx

x2

(1 + x2)2
coth(ax) ≈

(
2

3
log(π/a) − 1

3
− 4

π2
ζ ′(2)

)
a2 , (3.55)where the expansion on the seond line holds for small values of a, and ζ ′ is the derivativeof the Riemann Zeta funtion. The appearane of the log(a) in F (a) and its absene from

FUED(a) may be easily understood from the e�etive theory point of view: due to the KK-number onservation in UED models, the tree-level low energy e�etive Lagrangian when3In Chapter 6 we study some of these models.4Note that, unlike in Ref. [14℄, the F (a) does not inlude the SM ontribution.



Setion 3.2. Phenomenology 25all KK modes are integrated out is exatly the Standard Model; there are no additionaltree-level operators suppressed by the ompati�ation sale. Sine the one-loop logarithmiontributions in the full theory an be obtained in the e�etive theory by omputing therunning of operators generated at tree level, it is lear that in the UED no log(a) an appearat one loop in low energy observables. The situation is ompletely di�erent if higher dimensionoperators are already generated at tree level, as is the ase of the model onsidered in Ref. [14℄,where the leading logarithmi orretions an be omputed by using the tree-level e�etiveoperators in loops.We next turn to the bounds on R−1. We will use the SM predition RSM
b = 0.21569 ± 0.00016and the experimentally measured value Rexp

b = 0.21664 ± 0.00068. Combining Eq. (3.45) andEq. (3.53), we obtain F (a) = −0.24±0.31, and making a weak signal treatment [16℄ we arriveat the 95% CL bound F (a) < 0.39. The results for a single UED an be easily derived fromEq. (3.54), yielding
R−1 > 230 GeV 95%CL. (3.56)The SM predition for the left-right asymmetry ASMb = 0.9347 ± 0.0001, and the measuredvalue Aexpb = 0.921 ± 0.020 gives a looser bound.3.2.2 Radiative orretions to b → sγThe experimental observable is the semi-inlusive deay Br(B → Xsγ). Using heavy quarkexpansion it is found that, up to small bound state orretions, this deay agrees with theparton model rates for the underlaying deays of the b quark [17, 18℄, b → sγ. This �avorviolating transition is a very good plae to look for new physis beause in the SM it is forbid-den at tree level due to gauge symmetry, it an though proeed through radiative orretions.From an e�etive �eld theory point of view the transition an be understood as due to thegeneration via radiative orretions of the next e�etive Hamiltonian
Heff =

4GF√
2
V ∗
tsVtb

8∑

i=1

CiOi (3.57)where O7 operator is the one that drives the transition b→ sγ

O7 =
e

(4π)2
mbsσ

µνPRbFµν . (3.58)Notie that the presene of the strength tensor, Fµν , guarantees the gauge invariane of O7. Asusual, the operators enode the low energy physis while the high energy physis is ontainedin the oe�ients, in this ase C7.In the SM and at the sale of the W mass, CSM7 (MW ) = −1/2 A(m2
t /M

2
W ), where

A(x) = x

[
2
3x

2 + 5
12x− 7

12

(x− 1)3
−
(

3
2x

2 − x
)
lnx

(x− 1)4

] (3.59)The leading logarithmi ontributions of the two loop alulations are important, theseome from standard QCD running from MW to mb. The RGE reads [19, 20℄
C7(mb) ≈ 0.698 C7(MW ) − 0.156 C2(MW ) + 0.086 C8(MW ), (3.60)
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Figure 3.4: Diagrams that ontribute to O7 in UED.where C2 and C8 are the oe�ients of the operators O2 and O8 respetively, whih are de�nedas
O2 = [cLαγµbLα][sLβγ

µcLβ ], (3.61)
O8 =

gs
(4π)2

mbsLασ
µνT aαβbRβG

a
µν . (3.62)

α and β are olor indexes. In the ase of SM, the ontribution of O8 is negligible, C8(MW ) =
−0.097 [20℄, but the one of O2, C2(MW ) = 1, turns out to be important.In UED the transition also proeeds through the same e�etive Hamiltonian but the oef-�ient C7 reeives new ontributions aside the ones oming from SM, and the running ouldbe di�erent for eah ase beause C2 and C8 are also modi�ed. The value of C7 at the sale
MW stems from the diagrams in Fig. 3.4There are also diagrams in whih the Φ±(n) are replaed by W (n)

µ and by the non physialdegrees of freedomW
(n)
5 but sine the ouplings of these are redued by a fator (MW /mt)

2 ≈ 0.22we will ignore them and work at this level of preision.Observe that we have not onsidered the self energies of the external legs, in opposition towhat we did with Z → bb beause these diagrams do not ontribute to O7. In addition, theyare proportional to mt and its struture is of the form uγµu; when all the ontributions withthis struture are added, they anel exatly. Hene, the Zµbγµb vertex does not appear as itshould be sine it is forbidden by gauge invariane.The ontribution of the n-th mode to the C7 oe�ient an be written in the form [19℄
C

(n)
7 =

m2
t

m2
t +m2

n

[
B

(
m2
t +m2

n

m2
n

)
− 1

6
A

(
m2
t +m2

n

m2
n

)] (3.63)
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B(x) =

x

2

[
5
6x− 1

2

(x− 1)2
−
(
x− 2

3

)
log x

(x− 1)3

] (3.64)This result an be obtained by diret alulation but the more elegant reasoning given inRef. [19℄ is also possible. An expansion of C(n)
7 reveals that it is free of logarithms that relatethe two di�erent mass sales: mn and mt.

C
(n)
7 =

23

144

m2
t

m2
n

− 13

120

m4
t

m4
n

+ O
(
m6
t

m6
n

)
. (3.65)This result an be understood by using e�etive �eld theory ideas: when the heavy degreesof freedom are integrated out, the tree level e�etive Lagrangian is exatly the SM, there areno additional tree level operators suppressed by powers of m−1

n . It is well known that thedominant logarithms that may appear relating the two di�erent sales an be reovered fromthe running of the operators in the low energy e�etive Lagrangian indued by the presene ofthe additional operators, sine in our ase they are not present no logs an appear in Eq. (3.65).Finally, all ontributions must be put together
CUED

7 (MW ) = CSM
7 (MW ) +

∞∑

n=1

C
(n)
7 (MW ), (3.66)where we have negleted the running between mt and MW , i.e. CUED

7 (mt) ≈ CUED
7 (MW ).One we have determined C7(MW ) the next step is to apply the RGE given in Eq. (3.60)and ompute C7(mb). To this end we need C2(MW ) and C8(MW ), C2(MW ) = 1, i.e. it takesthe SM value beause it is a ontribution at tree level while the UED ontributions are atthe one-loop level. In addition, the small oe�ient of C8 in the equation (3.60) and the fatthat C8 is expeted to be small allows us to neglet again this term in the running. Themodi�ations to b → clν, the neessity of whih will be explained later, are also negligiblebeause UED orrets it again at the one loop level and in the SM it is already orreted attree level.To extrat the bounds this proess sets, it is used the observable

Γ̃ =
Γ(b→ sγ)

Γ(b→ clν)
(3.67)that laks the mb dependene and therefore presents smaller unertainty [21℄: 10% for thetheoretial value and 15% for the experimental determination (both at 1σ). When ompared,it is found that if a 95% CL is required the urrent bounds allow a modi�ation as big as a36% with respet to the SM value [19℄, i.e. |Γ̃total/Γ̃SM − 1| ≤ 0.36. Sine the proess b→ clνis not modi�ed by the new physis the previous equation an be easily translated into themore useful one ∣∣∣∣

|Ctotal7 (mb)|2
|CSM7 (mb)|2

− 1

∣∣∣∣ < 0.36 95% CL, (3.68)and from this the bound an be found to be
R−1 ≤ 300 GeV 95% CL. (3.69)



28 Chapter 3. SM with one universal extra dimension
�

Q(n)b
Q(n)t

W1� W1� �
Q(n)t
Q(n)b

W1� W1�

�
Q(n)t
Q(n)t

W3� W3�
Figure 3.5: Diagrams that ontribute to the ρ parameter in UED.3.2.3 Radiative orretions to the ρ parameterThe ρ parameter an be de�ned as the ratio of the relative strength of neutral to hargedurrent interations at low momentum transfer. In the SM, and at tree level, it is preditedto be unity as a onsequene of the ustodial symmetry of the Higgs potential:

ρ ≡ GNC(0)

GCC(0)
≈ M2

W

c2WM
2
Z

= 1 . (3.70)Beause the SM ontains ouplings that violate the symmetry (the Yukawa ouplings and theU(1) oupling g′) radiative orretions modify the tree-level value of ρ. At one loop, ρ reeivesorretions from vertex, box and gauge-boson self-energy diagrams; however the dominantontributions, proportional to m2
t , ome from the top-quark loops inside the gauge bosonself-energies. Keeping only these ontributions, one has

ρ = 1 +
ΣW (0)

M2
W

− ΣZ(0)

M2
Z

≈ 1 +
1

M2
W

(
Σ1(0) − Σ3(0)

)
≈ 1 +Nc

√
2GFm

2
t

(4π)2
. (3.71)

ΣW (0) and ΣZ(0) are o-fators of the gµν in the one-loop self-energies of theW and Z bosons,evaluated at q2 = 0, and Σ1(0) and Σ3(0) are the equivalent funtions for the W1 and W3omponents of the SU(2) gauge bosons. In arriving at the above formula one uses the fatthat the photon-Z self-energy Σµν
AZ is transverse, i.e. ΣAZ(0) = 0; this last property holds onlyfor the subset of graphs ontaining fermion-loops, but is no longer true when gauge-bosonsare onsidered inside the loops of ΣAZ [22, 23℄. Finally, Nc is the number of olors.In UED the tree-level value is the same as in SM beause, as we have seen, the �rstorretions appear at the one-loop level. The relevant diagrams are shown in Fig. 3.5.As we are using the interation �elds, only the Q �elds ontribute. Sine these are not themass eigen�elds there are more diagrams with the propagators that mix Q and U �elds, butthe latter are singlets under SU(2), and, therefore, do not ouple toW (n)

µ . No diagram with U�elds gives any ontribution, whih is the reason why in this base the alulus is muh easier.Had we hosen to work with the mass eigenstates, then we would had to onsider all �eldsinside the loop beause all of them have projetion on the Q �elds and the verties would havebeen more ompliate ontaining ombinations of sin(αn) and cos(αn).
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(c)
3 = 2g2Ncm

2
t

i

(4π)2

[
1

2ǫ̂
− b1(m

2
Q,m

2
Q, q

2)

]
,where
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n +m2
t

1

ǫ̂
=

2

ǫ
− γ + log(4π) + log(µ2) (3.73)

µ is an arbitrary mass sale introdued in dimensional regularization. The funtion b1 isde�ned as
b1(m

2
1,m
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2
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) (3.74)and
∆(m2

1,m
2
2, q

2) = xm2
2 + (1 − x)m2

1 − x(1 − x)q2. (3.75)The total ontribution is found by summing up the whole KK tower. This an be donewith a bit of are: �rst onsider the ontribution of the �rst N modes whih an be obtainedfrom Eq. (3.72) and Eq. (3.74). After a bit of numeris, it an be expressed in the followingway
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]
.From the point of view of the �ve dimensional theory these equations an be interpreted as theregularized integrations over the �ve omponents of momentum using a mixed regularizationsheme: dimensional regularization to render �nite the integral over the four momentumand uto� regularization for the integral over the �fth omponent. The seond logarithm isonvergent, sine term by term is smaller than the general term of the harmoni series

∞∑

n=1

log (1 + rn) <
(mtRπ)2

6
(rn > 0) (3.76)The last term in (3.76) an be also easily summed when N → ∞ and then integrated by usingthe identity

∞∑

n=1

1

(nπ)2 + α2
=
α cothα− 1

2α2
. (3.77)Observe that the divergenes related with the limits d → 4 (ǫ̂ → 0) and N → ∞ anelwhen the subtration is performed, so we an safely take these limits. It should be this waybeause divergenes present the same symmetries than the tree level terms, and at this level

Wµ1 and Wµ3 have the same mass. Thus the ontribution of eah mode is perfetly �nite andreads
∆ρ(n) =
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1 (0) − Σ
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3 (0)
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2GFm

2
t
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r2n
log(1 + rn)

]
, (3.78)
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t /m

2
n. The fator two of di�erene with respet the SM an be understoodin the following way: take the limit in Eq. (3.78) mn → 0 whih orresponds to gain thefundamental mode ontribution, but this limit has to predit twie the atual ontribution ofthe fundamental mode beause in Eq. (3.78) eah mode has left and right ontributions omingfrom Q

(n)
t L(R) and Q(n)

b L(R) running inside the loops, so the proposed limit would oinide withthe SM predition if the fundamental mode has had left and right ontribution, whih is notthe ase. In addition to this, the ontribution of a diagram with a given set of �elds and thediagram with all the hiralities reversed is the same.Eq. (3.78) is onsistent with the deoupling theorem [24℄; if the mass of an individualmode, mn, is taken to in�nity, i.e. rn → 0, its ontribution vanishes
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]
. (3.79)Finally
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√
x coth(a

√
x) − 1

]
,(3.80)where we have used Eq. (3.77). This an be expressed in a more ompat form

∆ρSM + ∆ρUED

∆ρSM
= 2

∫ 1

0
dx x

[
a
√
x coth(a

√
x)
]
, (3.81)where a = mtRπ.With the previous results we an extrat the bounds oming from the experimental mea-sures. In order to disriminate between the orretions oming from SM and the ones omingexlusively from new physis we work with the T parameter as de�ned in PDG [25℄. It ontainsonly the orretions to ρ oming from new physis. We will adopt the PDG de�nitions.The ontribution to T an be extrated from Eq. (3.80), for small mtR it an be expandedas

T ≈ 2.85(mtR)2
[
1 − 0.49(mtR)2 + 0.37(mtR)4

]
, (3.82)sine the ontributions to the T parameter oming from new physis are bounded to be T < 0.4at 95 % CL, the lower bound is

R−1
UED > 450 GeV, (3.83)whih at the end, will be the best of all bounds. This alulation was �rstly done in Ref. [10℄and later on orreted in Ref. [26℄. Our result is in agreement with the latter.3.2.4 Radiative orretions to the B0 − B

0 systemThe models we are studying in this paper fall within the so alled Minimal �avor violating(MFV) models beause they ful�ll the next two onditions:
• Only the SM operators in the e�etive weak Hamiltonian are relevant
• Flavor violation is entirely governed by the CKM matrix
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Figure 3.6: Diagrams that ontribute to the B0 −B
0 mixing in UED.The two Higgs doublet model and the MSSM at low tan β (and of ourse the SM) belongalso to the MFV lass of models. The interesting virtue of the MFV models is that withrespet to B0 −B0 mixings and the CP-violating parameter εK , they all an be parametrizedby a single funtion S(xt) [27℄. In the literature the S(xt) funtion appears also under thename Ftt, and in general eases to be only funtion of xt = m2
t/M

2
W . In our ase, at the levelof preision we are working S is only funtion of xt. S(xt) an be de�ned as

Heff =
M2
WG

2
F (VtbV

∗
td)

2

(4π)2
S(xt)[dγ

µ(1 − γ5)b][dγµ(1 − γ5)b]. (3.84)The dominant ontributions to S(xt) will be proportional to xt, hene proportional to
mt proportional orretions. In SM, this funtion is dominated by the box diagrams withlongitudinal W exhanges and the quark top running inside the loop

SSM (xt) =
xt
4

[
1 +

9

1 − xt
− 6

(1 − xt)2
− 6x2

t log(xt)

(1 − xt)3

]
. (3.85)The measured top quark mass mt = 175 GeV implies SSM(xt) ≈ 2.5. In UED, theradiative orretions from new physis an be enoded into a funtion, whih we all G(a)that is de�ned as

S(xt) = SSM(xt) + δS(xt), δS(xt) =
xt
4

(G(a) − 1). (3.86)The ontributions to this funtion ome from the amplitude of the diagrams shown inFig. 3.6. In ontrast with what happens in the omputation of the modi�ations to ρ, only the
U �elds are important in this ase beause the ouplings of Q �elds with the Φ are proportionalto the mass of the b quark. After the usual Fierz reordering and a bit of ombinatoris, donealso in the SM, the result is:
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dx (1 − x)

[
a
√
x coth(a

√
x) + 1

]
≈ 1 +

a2

18
− a4

540
+ . . . , (3.87)where a = mtπR. The last experimental determinations [27℄ agree with the SM expetations

1.3 ≤ S(xt) ≤ 3.8 95% CL. (3.88)The possible positive ontributions have been lowered with respet to previous determinations[28℄ allowing better bounds
R−1
UED > 40 GeV 95% CL. (3.89)
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Z → bb b→ s+ γ B

0 −B0 ρM(GeV) 230 300 40 450Table 3.1: Bounds oming from the di�erent observables.This bound is an order of magnitude worse than the obtained using ρ. Conversely, if the boundoming from the ρ parameter is taken, ontributions to S(xt) ompatible with experiment arefound to be relatively big.Given the future experimental improvements on the determinations of sin 2β by BaBar andBELLE and in partiular of the mass splitting ∆Ms for the B setor in LHC and FNAL onemay use this observable to predit possible deviations from the SM preditions. It turns outthat to an exellent auray [29℄ the mentioned deviations in the ase of ∆Ms are governedby G(a)

GNP (a) =
(∆Ms)NP
(∆Ms)SM

> 1 (3.90)The value of G(a) is too small to be disriminated experimentally. This result was initiallyderived in Ref. [29℄, where it is explained that the possible existene of extra dimensions willnot pollute the extration of the CKM matrix parameters from the future improvements inthe determination of the unitarity triangle.3.3 Outlook and onlusionsIn this hapter we have studied an extra dimensional extension of the SM, in whih one singleextra dimension is aessible to all the �elds. This senario is alled universal extra dimension,or UED. As explained in the previous hapter, one onsequene of the universal senarios isthe �onservation� of KK number, what implies that the orretions to the SM results are atleast one-loop suppressed. Given the smallness of these orretions we have studied preisionobservables that display a strong dependene on the mass of the top-quark, mt, beausethis dependene enhanes the relative importane of the new physis with respet to the SMpreditions. In partiular, we have studied the radiative orretions for the Z → bb deay, the
ρ parameter and the B0 − B

0 mixing. The b → sγ proess has been also studied. Althoughit is not enhaned by a large mass, the relative impat of the new physis is important for itbeause in the SM it is one-loop suppressed, hene the new ontributions an be ompetitivewith the SM radiative orretions.By omparing these di�erent observables with data, bounds on the ompati�ation sale,
R, an be set. Equivalently, these results an be translated into bounds on the mass of the�rst member in the KK tower, M = R−1. The table 3.1 summarizes the results. The saleof the new physis an be as low as 450 GeV without ontraditing any of the experimentaldeterminations. This is a relatively low value for M beause preision observables, in general,tend to establish the sale of any new physis around or above the TeV. The reason why thesale for the universal extra dimension an be so low without a�eting too muh preisionobservables is the above mentioned one-loop suppression due to the KK number onservation.



Chapter 4SM with one lattiized universal extradimensionIn the previous hapter we have studied models with one extra dimension and with all SM�elds propagating in it. The models displayed two di�erent energy regimes: the low energy,below the ompati�ation sale, redued to the SM while the high energy regime desribed theouplings among the modes of the KK towers. Beause of the presene of the extra dimensionthe oupling onstants are dimension full, in partiular Yukawa ouplings and gauge ouplings,that are dimensionless quantities in the SM, have dimensions of energy raised to some negativepower, whih is the reason why these theories are non-renormalizable. Hene, they must beunderstood as e�etive �eld theories that in their low energy limit redue to the SM. A possibleultraviolet ompletion was proposed in Ref. [30℄, whih eventually treated the extra dimensionsas if they were disontinuous. The idea of a disretized dimension was also simultaneouslysuggested in Ref. [31, 32℄. The latter is not really an ultraviolet ompletion beause theLagrangian is desribed by a number of σ-models, but for this lass of models there are someknown possible renormalizable extensions. The aim of this hapter is to investigate how thephenomenology is modi�ed in models with disretized, sometimes also alled lattiized, extradimensions; spei�ally, we will study the lattiized version of UED, alled in the followingLUED.4.1 The modelThe Lagrangian is divided, as usual, in four piees
LLUED = LG + LF + LH + LY . (4.1)The gauge piee, LG, is the one assoiated to the gauge group G = ΠN−1

i=0 SU(2)i ×U(1)i andit also ontains some salars �elds whih will be neessary on the following, their role will belari�ed later
LG =

N−1∑

i=0

−1

4
F aiµνF

µνa
i − 1

4
FiµνF

µν
i (4.2)

+
N−1∑

i=1

Tr{(DµΦi)
†(DµΦi)} + (Dµφi)

†(Dµφi) − V (Φ, φ), (4.3)33



34 Chapter 4. SM with one lattiized universal extra dimensionwhere F aiµν is the strength tensor assoiated with the gauge �eld of the i-th SU(2)i and Fiµν isthe one for U(1)i. Φi and φi are the elementary salars that will aquire a VEV independentof i due to the potential term V (Φ, φ). Eah of them beome e�etively nonlinear σ model�elds that an be parametrized as usual in terms of the salar �elds πi and πai
φi =

v1√
2
eiπi/v1 Φi = v2e

iπa
i σ

a/2v2 (4.4)
v1 and v2 are the VEVs of φi and Φi respetively and σa are the Pauli matries. In this workwe will onentrate in the so alled �aliphati model� [31℄ in whih the Φi �elds are assumedto transform as (2,2) under the groups SU(2)i and SU(2)i−1 and as singlets for the rest,they arry no U(1)i harge. On the other hand, the φi �elds are singlets under all the SU(2)groups and they are harged only under U(1)i and U(1)(i−1) with hyperharges (Yi,−Yi−1),later on, every Yi will be set to Yi = 1/3 [32℄. With this, the ovariant derivative reads

DµΦi = ∂µΦi − iWµ,iΦi + iΦiWµ,i−1 (4.5)where Wµ,i = g̃W a
µ iT

a
i , T ai are the generators of the SUi(2) and g̃ is the dimensionless gaugeoupling onstant that is assumed to be the same for all the SU(2) groups. The ovariantderivative for φi an be onstruted similarly. The gauge oupling onstant for all the U(1)groups will be alled g̃′.The next piee is the fermioni one, LF , it ontains the following �elds (generational indiesassumed)
Qi =

[
Qui
Qdi

]
Ui Di i = 0, . . . ,N − 1, (4.6)where we have used a similar notation than in the ontinuous ase. Qi transforms as a doubletunder SU(2)i and as a singlet for the rest of SU(2) groups and among the U(1) �elds it isonly harged under U(1)i with hyperharge YQ = 1/3. On the ontrary, Ui and Di are onlyharged under U(1)i with hyperharges YU = 4/3 and YD = −2/3. They are all vetor �eldswith right and left handed hiral omponents exept for i = 0. In this ase they are hiral�elds, Q is left-handed and U and D are right-handed, whih is equivalent to impose

Q0R = 0 U0L = 0 D0L = 0 (4.7)With this we an split the fermioni piee in: LF = LQ + LU + LD, where
LQ =

N−1∑

i=0

[
QiLi /DQiL +QiRi /DQiR]− N−1∑

i=0

MfQiL

(
Φ†
i+1φ

†
i+1

v2(v1/
√

2)
Qi+1R −QiR

)
+ h.. (4.8)and

LU =

N−1∑

i=0

[
U iRi /DUiR + U iLi /DUiL]+N−1∑

i=0

MfU iR

(
φ4†
i+1

(v1/
√

2)4
Ui+1L − UiL

)
+ h.. (4.9)

LD an be extrated from LU making the next substitutions, U → D, φi → φ†i and theexponent should be replaed 4 → 2. In the previous formulae /D is the usual ovariantderivative assoiated with the gauge group G andMf is a generi mass that in priniple oulddepend on i but for simpliity it is set independent of i. The exponent of the φ �elds must



Setion 4.1. The model 35be adjusted in eah ase beause the terms must be invariant under G by onstrution. Inaddition, when the index of a �eld runs out of bounds it is understood as a zero, for instanein Eq. (4.8) it must be set QNR = 0, and so on.The next piee in the Lagrangian, LH , is the one assoiated with the Higgs doublet [32℄
LH =

N−1∑

i=0

(DµHi)
†(DµHi) −M2

0

∣∣∣∣Hi+1 −
(

Φi+1φ
3
i+1

(v1/
√

2)3v2

)
Hi

∣∣∣∣
2

− V (Hi), (4.10)where Hi is a doublet under SU(2)i and singlet for SU(2)j 6=i with hyperharges Yi = 1 and
Yj 6=i = 0. We parametrize its omponents as

Hi =

[
Φ+
i

Φ0
i

]
i = 0, 1, . . . ,N − 1. (4.11)As a potential it is hosen

V (Hi) = −m2H†
iHi +

λ̃

2
(H†

iHi)
2 (4.12)Finally the Yukawa setor, LY , will be taken with the Yukawa matries independent of i

LY =
N−1∑

i=0

QiỸuH
c
iUi +

N−1∑

i=0

QiỸdHiDi + h.. (4.13)where Hc
i ≡ iτ2H∗

i is the usual Higgs doublet onjugate.4.1.1 Relation with ontinuous extra dimensionsThe �elds and ouplings proposed in the above lines are set to desribe a situation in whihthe full SM is ontained in a �ve dimensional spae-time with four spaial dimensions but withthe extra �fth dimension lattiized. In LUED the length of the new dimension, L, is takento be �nite and a new variable R is de�ned through the relation L = πR, this will simplifythe omparison of the results with the ontinuous situation. The extra volume is �lled with4D surfaes equally spaed by a distane a, the �rst one situated in x5 = 0, see Fig. 4.1.Therefore, these magnitudes ful�ll the trivial relation
a =

πR

N − 1
. (4.14)In this piture every �eld that propagates in the �fth dimension will be represented by the Nvalues that it takes in the di�erent surfaes, i.e. ψi(xµ) = ψ(xµ, x5 = ia). This is the reasonwhy we have N opies for eah of the SM �elds.But the Φ and φ �elds were not previously present in SM. They are related with theomponent of the �ve dimensional gauge �elds polarized in the diretion of the extra dimension,generially denoted by W5. In the ontinuous theory these omponents are neessary in orderto de�ne a onsistent ovariant derivative. In our ase the relation between these �elds is [31℄

Φi(x
µ) = exp

[
ig̃

∫ ia

(i−1)a
dx5 W5(x

µ, x5)

]
, i = 1, . . . ,N − 1. (4.15)
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a L = �R

n = 0 1 2 N � 1
4D

Figure 4.1: Shemati representation of the disretization in the extra dimensions.In other words the Φ �elds are Wilson lines onneting two adjaent surfaes, that is thereason why there are only N − 1 opies of them, instead of the N that have the rest of the�elds. Eq. (4.15) enables us to reinterpret the interation terms between the di�erent �eldspresent in the Lagrangian with the Φ's as a lattie approximation of their ovariant derivativesprovided that the general masses obey Mf = M0 = 1/a.We have exploited this piture when writing the interation terms of the fermions. Notethe relative sign between the Q doublets and the U and D singlets, ompare Eq. (4.8) withEq. (4.9). Written in this form it will be easier to extrat the spetrum of the theory and bothpossibilities are equally legitimate sine they are lattie approximations, to the same order, ofthe �fth ovariant derivative.When studying ontinuous extra dimensions sometimes some of the �elds are not allowedto propagate through the extra volume, there are many variations in the literature, but inpartiular we will study in hapter 6 the ase when only fermion �elds do not propagate in theextra dimension, LHG. The Lagrangian for this ase an be obtained by setting in the abovedesribed one, ψiR = ψiL = 0 for i 6= 0, where ψ stands for any fermion �eld.As a last remark, the assumption that the oupling onstants are independent of theposition translates in the lattiized senario as an independene on the index i of eah group,i.e. g̃i = g̃(x5 = ia) = g̃.4.1.2 The spetrum of the modelBefore extrating the bilinear terms from L it is interesting to study whih �elds an beremoved from the spetrum by exploiting the gauge freedom. Under a generi transformationof G the Φi transforms as
Φi = UiΦiU

†
i−1 Ui ∈ SU(2)i. (4.16)Sine the vauum on�guration is by onstrution Φi = v21, it is lear that only the gaugetransformation de�ned by U0 = U1 = . . . = UN−1 leaves invariant the vauum, i.e. thediagonal group SU(2)D remains unbroken after the SSB, analogously for φi. Therefore

G→ SU(2)D × U(1)D. This proedure removes the π �elds from the spetrum and leaves



Setion 4.1. The model 37massless only one ombination of the gauge bosons. This amounts to work in the unitarygauge and it is indeed the approah followed in Ref. [31, 32℄, where SU(2)D × U(1)D is iden-ti�ed with the SM eletroweak gauge group whih is further broken by the usual SM HiggsVEV. We will not follow those steps and instead we will work in an arbitrary Rξ-ovariantgauge, in the same line as it was done in Ref. [33℄, therefore maintaining expliitly the π �elds.Extrating the bilinear terms is lengthy and umbersome, but straightforward otherwise.From LG it an be obtained
L(2)
G =

N−1∑

i=0

−1

4
F̃i · F̃i +M2

i W̃
a
µiW̃

µa
i +

N−1∑

i=1

1

2
∂µW̃

a
5i∂

µW̃ a
5i +Mi∂

µW̃ a
5iW̃

a
µi. (4.17)Here we only show the SU(2) piee but the U(1) one is similar. The new tilde �elds are relatedwith the initial ones by the next hange of base

W a
µi ≡

N−1∑

i=0

aijW̃
a
µj πai ≡

N−1∑

i=1

bijW̃
a
5j (4.18)where the a and b matries are

aij =

{
j = 0

√
1/N

j 6= 0
√

2/N cos
(

2i+1
2

jπ
N

) (4.19)and
bij =

√
2

N
sin
(
ij
π

N

) (4.20)
F̃ is understood to be the usual kineti term for gauge bosons expressed now in terms of W̃ a

µi.Finally, the masses Mi are
Mi = 2g̃v2 sin

(
iπ

2N

)
= 2

N − 1

πR
sin

(
iπ

2N

)
, (4.21)where we have hosen as usual g̃v2 = 1/a to guarantee that the large N limit reprodues theontinuous senario1[31℄. The massless vetor bosons W̃ a

µ0 and B̃µ0 are assoiated to the SMmodel gauge bosons. They are the gauge vetor bosons of the unbroken diagonal group andonsequently this last is identi�ed with the SM gauge group.On the other hand, the bilinear terms for the fermions are
L(2)
Q + L(2)

U = Q̃0Li/∂Q̃0L + Ũ0Ri/∂Ũ0R +
N−1∑

i=1

Q̃i(i/∂ −Mi)Q̃i + Ũ i(i/∂ +Mi)Ũi, (4.22)where the vetor like �elds are de�ned as Q̃i = Q̃iR+ Q̃iL and similarly for Ũi. The tilde �eldsare given by
QiL = aijQ̃jL UiR = aijŨjR
QiR = bijQ̃jR UiL = bijŨjL

(4.23)1Eq. (4.21) ould also have been written in the form Mi = 2N/πR sin(iπ/2N), as it is done in Ref. [31℄; thelarge N limit is the same. This will not be a problem beause the bounds that we will obtain are ompletelyindependent of whih of the two de�nitions is taken.



38 Chapter 4. SM with one lattiized universal extra dimensionthe massMi appearing in Eq. (4.22) is the one de�ned in Eq. (4.21) provided Mf = 1/a. Thiswill be advantageous when studying the Yukawa terms. The relative sign in the mass termsis a ommon feature after dimensional redution in theories with universal (ontinuous) extradimensions, where it is due to the de�nition of the �fth gamma matrix, Γ4 = iγ5 [10℄. Here ithas been expliitly introdued in Eq. (4.8) and Eq. (4.9), preisely to reprodue this feature.Finally, in the Higgs setor one must perform the hange of basis Hi = aijH̃j and themasses are now
M2(H̃i) = 4

(N − 1)2

π2R2
sin2

(
iπ

2N

)
−m2 (4.24)This equation shows that H̃0 will break spontaneously symmetry, hene it is identi�ed with theSM Higgs doublet, i.e. 〈H̃0〉0 = v/

√
2 with v = 246 GeV. This means that new ontributionsto the masses ame from the Yukawa piee LY and the ovariant derivative of H. The Yukawapiee in terms of the tilde �elds an be written as

LY =

N−1∑

i=0

Q̃i
Ỹu√
N
H̃c

0Ũi + Q̃i
Ỹd√
N
H̃0D̃i + h.. (4.25)where we have onentrated on the terms ontaining the Higgs doublet. It has been usedEq. (4.23). From the �rst term in the sum of Eq. (4.25) is easy to onvine oneself that

Yu ≡ Ỹu/
√
N is the SM Yukawa matrix. When the Higgs doublet aquires a VEV one mustdiagonalize Yu using the same �eld rede�nitions as in SM, Q̃ui → U †

uQ̃ui, Ũi → V †
u Ũi. At theend the mass matrix for fermions will be2

(
Ũ if Q̃if

)( −Mi mf

mf Mi

)(
Ũif
Q̃if

) (4.26)where f is the index of the generation, in this ase f = u, c, t. This mass matrix is exatly thesame obtained in the ontinuous senario with one extra dimension by making the substitution
mn → Mn [10℄, where mn = n/R is the mass of the n-th Kaluza-Klein mode of the �eld inthe absene of Yukawa ouplings. As a onsequene the mixing between the Q̃ and Ũ is thesame as in that senario as well as the masses M(Q′

if ) =
√
M2
i +m2

f , prime denotes masseigen�elds, for later referene mQ = M(Q′
if )

(
Ũif
Q̃if

)
=

(
−γ5 cosαif sinαif
γ5 sinαif cosαif

)(
U ′
if

Q′
if

) (4.27)where tan(2αif ) = mf/Mi. As in the ontinuous situation we are speially interested in thease f = t.Notie that the zero-th modes have exatly the same masses as in SM, all of them omingpurely from the Yukawa piee in Eq. (4.25) whih, as said, for the zero-th modes oinidesexatly with the SM Yukawa setor. In fat, the same happens for the rest of the piees inthe Lagrangian and one an safely identify the zero-th tilde �elds, Q̃0L, Ũ0R and D̃0R, withthe SM �elds.We will not show it expliitly but the SSB of the Higgs doublet will ause the usual mixingbetween W 3
µi and Bµi with θw as the weak mixing angle [32℄, instead we will onentrate on2We do not study expliitly the term ontaining Yd beause it does not ontain the mass of the top-quark,

mt, but its treatment would be ompletely similar.



Setion 4.1. The model 39the mixing of the harged bosons. Coming from LH and due to the VEV of H̃0 the next termsarise
L(2)

H̃0

= iMW W̃
−
µi∂

µΦ̃+
i +M2

W W̃
−
µiW̃

µ+
i −M2

W W̃
−
5iW̃

+
5i + iMWMiW̃

−
5i Φ̃

+
i + h.. (4.28)In addition, due to the quarti ouplings in Eq. (4.12) the masses for H̃i are shifted fromEq. (4.24) to Eq. (4.21). This implies, jointly with Eq. (4.17), that there is a ombinationof �elds, Φ±

Gi, that at as a Goldstone �eld absorbed by W̃±
µi whih aquires in the proessa mass M(W̃±

µi) =
√
M2
W +M2

i . The orthogonal ombination is a physial salar, Φ±
Pi, withthe same mass.

Φ+
Gi =

MiW̃
+
5i + iMW Φ̃+

i√
M2
i +M2

W

MW→0−→ W̃+
5i (4.29)

Φ+
Pi =

iMW W̃
+
5i +MiΦ̃

+
i√

M2
i +M2

W

MW→0−→ Φ̃+
i (4.30)In the limit in whih all the mass sales below mt are negleted, the Goldstone bosons and thephysial salars an be diretly identi�ed with W̃±

5i and Φ̃±
i respetively. There will be termsthat ross the massive vetor bosons W̃±

µi with the derivatives of their Goldstone bosons, Φ±
Gi;these an be removed using a onvenient Rξ gauge as done in [27, 34℄.With this, we have onluded the demonstration that, at least for the degrees of freedomwe will be interested in, the spetrum of this model is equivalent to one ontinuous universalextra dimension with mn replaed by Mn.4.1.3 CouplingsOur aim will be to extrat the dominant orretions to some preision observables and fromthem to extrat bounds on the new physis. We will onentrate on the orretions propor-tional to the top-quark mass mt, thus as a approximation we will identify Φ±

Pi = Φ̃±
i and

Φ±
Gi = W̃±

5i , whih is equivalent to neglet MW . This will simplify greatly the alulus. In thenext lines we will extrat the relevant ouplings under the previous approximations.For omputing the ontributions to the ρ parameter we will work with the base of �elds
{Q̃i, Ũi} instead of the mass eigen�elds {Q′

i, U
′
i} beause in the former the ouplings with

W̃
1/3
µ0 , the only ones needed, are rather simple

Lρ =
g

2

N−1∑

i=1

W̃ 1
µ0

[
Q̃itγ

µQ̃ib + Q̃ibγ
µQ̃it

]
+ W̃ 3

µ0

[
Q̃itγ

µQ̃it

]
, (4.31)where we have already used the relation g = g̃/

√
N [32℄. So the ouplings in this base are thesame as in SM but with the di�erene that the propagators of the tilde �elds are
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40 Chapter 4. SM with one lattiized universal extra dimensionFrom the Yukawa piee, the ouplings proportional to mt are
LY =

N−1∑

i=1

mt

√
2

v
VtbŨ tiRΦ+

i bL + h.. (4.32)The ouplings with the Z will be required, these an be obtained from
LZ =

g

2cw
Zµ[J

µ
SM + JµF + JµΦ] (4.33)where JµSM is the usual SM urrent and

JµF =

N−1∑

i=1

(
1 − 4

3
s2w

)
Q̃tiγ

µQ̃ti −
4

3
s2wŨ itγ

µŨit (4.34)
JµΦ =

N−1∑

i=1

(−1 + 2s2w)Φ̃+
i i∂

µΦ̃−
i + h.. (4.35)The ouplings with the photon an be derived similarly.4.2 PhenomenologyIn this setion we establish whih is the minimum value for the energy sale of the new physisallowed by experiments. We set bounds on the �rst mode, M1, as de�ned in Eq. (4.21) andalled simply M in the following. To this end, we ompute the impat of the new physis on aset of standard eletroweak observables. In partiular, we fous on those whih in SM displaylarge radiative orretions due to their strong dependene on the top-quark mass: the deayrates b → s γ and Z → bb, the ρ parameter and the rates of B0

⇋ B0. We expet that theywill be also very sensitive to the top mass sine the struture of these kind models is basiallythe same of the SM repliated.4.2.1 Radiative orretions to the Z → bb deayThe theory developed in Se. 3.2.1 an be straightforwardly used here, in partiular the newphysis is also parametrized through the modi�ations to gL. Now these ome from the sameset of diagrams displayed in Fig. 3.3, where the tilde �elds are now the �elds that run insidethe loop. The di�erent ontributions are parametrized in exatly the same way they were inthe ontinuous senario, we reprodue them here for ommodity of the reader.
iMi = i

g

cw

√
2GFm

2
t

(4π)2
f(ri)u

′γµPLuǫµ (4.36)



Setion 4.2. Phenomenology 41where u and u′ are the spinors of the b quarks and ǫµ stands for the polarization vetor of the
Z boson. The argument of the funtion f is now ri = m2

t/M
2
i .

f (a)(ri) =

(
1 − 4

3
s2w

)[
ri − log(1 + ri)

ri

] (4.37)
f (b)(ri) =

(
−2

3
s2w

)[
δi − 1 +

2ri + r2i − 2(1 + r2i ) log(1 + ri)

2r2i

] (4.38)
f (c)(ri) =

(
−1

2
+ s2w

)[
δi +

2ri + 3r2i − 2(1 + ri)
2 log(1 + ri)

2r2i

] (4.39)
f (d)(ri) + f (e)(ri) =

(
1

2
− 1

3
s2w

)[
δi +

2ri + 3r2i − 2(1 + ri)
2 log(1 + ri)

2r2i

] (4.40)where δi ≡ 2/ǫ− γ + log(4π) + log(µ2/M2
i ), and µ is the 't Hooft mass sale. From the aboveequations it is straightforward to verify that all the terms proportional to δi anel, and sodo all terms proportional to s2w. Thus, �nally, the only term whih survives is the term in

f (a)(ri) not proportional to s2w, yielding the following ontribution
δgLi =

√
2GFm

2
t

(4π)2

[
ri − log(1 + ri)

ri

] (4.41)The gaugeless limit leads exatly to the same onlusions as it is done in Ref. [35℄ to derive es-sentially the same alulation in UED. Notie also here the absene of logarithms in Eq. (4.41)when ri → 0. The full ontribution δgNPL =
∑N−1

i=1 δgLi expressed in terms of F (a) an bewritten in the form
FLUED(a) =

∫ 1

0
dx

N−1∑

i=1

a2x

4(N − 1)2 sin2(iπ/2N) + a2x
(4.42)This funtion aptures the orretion proportional to m2

t , the full one loop result ould beadapted from Ref. [29℄ by replaing mn →Mi as explained above. We have shown in Se. 3.2.1that F (a) − 1 < 0.39 at 95%C.L., from whih the results displayed in Fig. 4.2 follow.4.2.2 Radiative orretions to b → sγGiven the similitude with the ontinuous ase we will not develop all the theory again, insteadwe will fous on the omputation of the ontribution to the i-th mode to the C7 oe�ient,
C7 i(MW ). Again, it omes from the diagrams of Fig. 3.4, when the tilde �elds are the onesthat run inside the loop and amounts to

C7 i =
m2
t

m2
t +M2

i

[
B

(
m2
t +M2

i

M2
i

)
− 1

6
A

(
m2
t +M2

i

M2
i

)] (4.43)where A(x) and B(x) are de�ned in Eq. (3.59) and Eq. (3.64) respetively. Of ourse, anexpansion of C7 i is free of logarithms that relate the two di�erent mass sales Mi and mt,due to the same reasons as in the ontinuous senario. The total result reads
CLUED

7 (MW ) = CSM
7 (MW ) +

N−1∑

i=1

C7 i(MW ), (4.44)
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Figure 4.2: The bounds on the mass of the �rst KK mode, M , as a funtion of the number of sites N .where we have negleted the running between mt and MW , i.e. C7 i(mt) ≈ C7 i(MW ). Totake into aount the QCD running from MW to mb Eq. (3.60) is used. Again C2 takes thesame value as in SM model C2(MW ) = 1 and the ontribution of C8(MW ) is negleted. Themodi�ations to b → clν are also negligible beause LUED orrets it again at the one looplevel.Using the result derived in Ref. [19℄
∣∣∣∣
|Ctotal7 (mb)|2
|CSM7 (mb)|2

− 1

∣∣∣∣ < 0.36 95% CL. (4.45)With this the results an be extrated, and they are shown in Fig. 4.2.4.2.3 Radiative orretions to the ρ parameterFor this observable the same steps as in the ontinuous ases must be done, this leads to
∆ρi =

4

g2v2
[Σ1 i(0) − Σ3 i(0)] = 2Nc

√
2GFm

2
t

(4π)2

[
1 − 2

ri
+

2

r2i
log(1 + ri)

]
, (4.46)where ri = m2

t /M
2
i and the orrespondent diagrams are displayed in Fig. 3.5. The totalontribution would be found summing ∆ρLUED = ∆ρSM +

∑N−1
i=1 ∆ρi. Now, for eah valueof the number of sites N we an extrat the orrespondent bounds, these are displayed inFig. 4.2.4.2.4 Radiative orretions to the B0 − B

0 systemThe new physis modi�es the value of S(xt) de�ned in Eq. (3.84) and again we parametrizethis modi�ation through the funtion G(a). The diagrams are the ones in Fig. 3.6 when thetilde �elds run inside the loop and the result is
GLUED(a) =

SNP
SSM

= 1 + 2

∫ 1

0

N−1∑

n=1

a2x(1 − x) dx

4(N − 1)2 sin2(nπ/2N) + a2x
(4.47)



Setion 4.3. Outlook and onlusions 43The last experimental determinations [27℄ agree with the SM expetations
1.3 ≤ S(xt) ≤ 3.8 95% CL. (4.48)The possible positive ontributions have been lowered with respet to previous determinations[28℄ allowing better bounds. Despite the enhanement on the upper bound in Eq. (4.48) thebound onM is still rather weak. At the end, the bounds one an set on the masses of the newmodes are below the W mass, and are therefore irrelevant ompared to previously disussedbounds. Given the future experimental improvements on the determinations of sin 2β byBaBar and BELLE and in partiular of the mass splitting ∆Ms for the B setor in LHC andFNAL one may use this observable to predit possible deviations from the SM preditions. Itturns out that to an exellent auray [29℄ the mentioned deviations in the ase of ∆Ms aregoverned by G(a)

GNP(a) =
(∆Ms)NP
(∆Ms)SM

> 1 (4.49)The greater values of G(a) our for small N but they are at most G(a) ≤ 1.14 that happensto be a too small deviation to be disriminated experimentally, in fat it is of the same orderas the deviation studied in Ref. [29℄ and therefore the same reasonings given there apply here.The virtue of this results is that the possible existene of extra lattiized dimensions will notpollute the extration of the CKM matrix parameters from the future improvements in thedetermination of the unitarity triangle.4.3 Outlook and onlusionsWe have studied a �ve-dimensional extension of the SM in whih the extra spatial dimensionis lattiized, and all SM �elds propagate in it. The model has the property that there are notree-level e�ets below the threshold of prodution of new partiles. Therefore, to set a lowerbound on the sale of the new physis one should onsider one-loop proesses. We onsidereda number of well-measured observables, and whih depend strongly on the top-quark mass:the ρ parameter, b → sγ, Z → bb, and the B0
⇋ B

0 mixing. The dominant orretions,i.e. those proportional to the top-quark mass, have been omputed, and ompared with theones obtained when only the SM is onsidered. It is found that the known bounds for theontinuous version (UED) are rapidly reahed when the extra dimension is lattiized by onlyabout 10 to 20 (four dimensional) sites. However, when a smaller number of sites is onsidered,the bounds on the sale of new physis is lowered by roughly a fator of 10%�25%, as an beseen in Fig. 4.2. This suggests that the phenomenology of lattiized senarios an be moreaessible than in the ontinuous ases. Then, the limits on new partiles are about 320�
380 GeV. The bounds shown in Fig. 4.2 orrespond to the mass of the lightest modes, de�nedin Eq. (4.21).
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Chapter 5Power orretions in models withextra dimensionsWe revisit the issue of power-law running in models with extra dimensions[36℄. The analysis isarried out in the ontext of a higher-dimensional extension of QED, with the extra dimensionsompati�ed on a torus. It is shown that a naive β funtion, whih simply ounts the number ofmodes, depends ruially on the way the thresholds of the Kaluza-Klein modes are rossed. Tosolve these ambiguities we turn to the vauum polarization, whih, due to its speial unitarityproperties, guarantees the physial deoupling of the heavy modes. This latter quantity,alulated in the ontext of dimensional regularization, is used for onneting the low energygauge oupling with the oupling of the D-dimensional e�etive �eld theory. We �nd that theresulting relation ontains only logarithms of the relevant sales, and no power orretions. If,instead, hard uto�s are used to regularize the theory, one �nds power orretions, whih ouldbe interpreted as an additional mathing between the e�etive higher-dimensional model andsome unknown, more omplete theory. The possibility of estimating this mathing is examinedin the ontext of a toy model. The general onlusion is that, in the absene of any additionalphysial priniple, the power orretions depend strongly on the details of the underlyingtheory. Possible onsequenes of this analysis for gauge oupling uni�ation in theories withextra dimensions are brie�y disussed.5.1 IntrodutionThe study of models with extra dimensions has reeived a great deal of attention reently [37,38, 39, 40℄, mainly beause of the plethora of theoretial and phenomenologial ideas assoiatedwith them, and the �exibility they o�er for realizing new, previously impossible, �eld-theoretionstrutions. One of the most harateristi features of suh models is that of the �earlyuni�ation�: the running of gauge ouplings is supposed to be modi�ed so strongly by thepresene of the tower of KK modes, that instead of logarithmi it beomes linear, quadrati,et, depending on the number of extra dimensions [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,52, 53, 54, 55, 56, 57℄. Spei�ally, it has been widely argued that the gauge ouplings run as
µδ, where the δ is the number of ompat extra dimensions. Thus, if the extra dimensions aresu�iently large, suh a behavior of the ouplings ould allow for their uni�ation at aessibleenergies, of the order of a few TeV, learly an exiting possibility.The assertion that gauge-ouplings display power-law running is based on rather intuitive45



46 Chapter 5. Power orretions in models with extra dimensionsarguments: In MS shemes the QED β funtion is proportional to the number of �ative��avors, namely the number of partiles lighter than the renormalization sale. Using thisargument, and just ounting the number of modes lighter than µ, one easily �nds that the�β funtion� of QED in models with extra dimensions grows as µδ. This behavior is alsojusti�ed by expliit alulations of the vauum polarization of the photon using hard uto�s;sine the uto� annot be removed, due to the non-renormalizability of the theory, it is �nallyidenti�ed with the renormalization sale, a proedure whih eventually leads to a similaronlusion [42, 43℄ (but with the �nal oe�ient adjusted by hand in order to math the naiveexpetation in MS).Even though these arguments are plausible, the importane of their onsequenes requiresthat they should be srutinized more arefully [58℄. In partiular, the argument based on MSrunning is rather triky. As it is well known, the MS sheme, beause of its mass indepen-dene, does not satisfy deoupling, already at the level of four-dimensional theories. Instead,deoupling has to be imposed by hand every time a threshold is passed: one builds an e�e-tive theory below the threshold, m, and mathes it to the theory above the threshold. Thismathing is arried out by requiring that some physial amplitude or Green's funtion (i.e.the e�etive harge) is the same when alulated using either theory, at energies where boththeories are reliable, namely at Q2 muh below the threshold. Then, sine the renormalizationsale, µ, is still a free parameter, one hooses µ around m, in order to avoid large logarithms inthe mathing equations. In the ase of gauge ouplings and MS shemes with Tr {IDirac} = 4one �nds (at one loop) that gauge ouplings are ontinuous at µ = m. This statement is,however, extremely sheme dependent: just by hoosing Tr {IDirac} = 2D/2 it gets ompletelymodi�ed (see for instane [59℄) . In addition to these standard ambiguities, a new ompli-ation arises in the ontext of higher-dimensional models. In partiular, the aforementionedproedure requires that the di�erent sales be widely separated in order to avoid that higherdimension operators, generated in the proess of mathing, beome important. However, theondition of having well-separated thresholds is rather marginally satis�ed in the ase of anin�nite tower of KK modes with Mn = nMc (Mc is the ompati�ation sale). In fat, as wewill see in detail later, the results obtained for a β funtion that just ounts the number of a-tive modes depend very strongly on the presription hosen for the way the various thresholdsare rossed.As has been hinted above, the deeper reason behind these additional type of ambiguitiesis the fat that, gauge theories in more than 4 dimensions, ompati�ed or not, are notrenormalizable. At the level of the 4-dimensional theory with an in�nite number of KK modesthe non-renormalizability manifests itself by the appearane of extra divergenes, enounteredwhen summing over all the modes. If the theory is not ompati�ed the non-renormalizabilityis even more evident, sine gauge ouplings in theories with δ extra dimensions have dimension
1/M δ/2. Therefore, gauge theories in extra dimensions should be treated as e�etive �eldtheories (EFT). Working with suh theories presents several di�ulties, but, as we have learnedin reent years, they an also be very useful. In the ase of quantum �eld theories in extradimensions, there is no alternative: basi questions, suh as the alulation of observables orthe uni�ation of ouplings, an only be addressed in the framework of the EFT's. However,before attempting to answer spei� questions related to the running of ouplings in the extra-dimensional theories, one should �rst larify the type of EFT one is going to use, sine thereare, at least, two types of EFT [60℄: In one type, known as �Wilsonian EFT� (WEFT) [61℄,one keeps only momenta below some sale Λ, while all the e�ets of higher momenta or heavypartiles are enoded in the ouplings of the e�etive theory. This method is very intuitive



Setion 5.1. Introdution 47and leads, by de�nition, to �nite results at eah step; however, the presene of the uto� in allexpressions makes the method umbersome to use, and in the partiular ase of gauge theoriesdi�ult to reonile with gauge-invariane. The WEFT approah has already been appliedto the problem of running of ouplings in theories with ompat extra dimensions, but onlyfor the ase of salar theories [57℄. Within the ontext of another type of EFT, often termed�ontinuum e�etive �eld theories� (CEFT) (see for instane [62, 63, 64, 60, 65, 66, 67℄), oneallows the momenta of partiles to vary up to in�nity, but heavy partiles are removed from thespetrum at low energies. As in the WEFT ase the e�ets of heavier partiles are absorbedinto the oe�ients of higher dimension operators. Sine the momenta are allowed to bein�nite, divergenes appear, and therefore the CEFT need to undergo both: regularizationand renormalization. In hoosing the spei� sheme for arrying out the above proedurespartiular are is needed. Whereas in priniple one ould use any sheme, experiene hasshown that the most natural sheme for studying the CEFT is dimensional regularizationwith minimal subtration [62, 63, 64, 60, 65, 66, 67℄. CEFT are widely used in Physis: forexample, when in the ontext of QCD one talks about 3, 4 or 5 ative �avors, one is impliitlyusing this latter type of e�etive theories [68, 63℄. Moreover, most of the analyses of GrandUni�ation [69, 64℄ resort to CEFT-type of onstrutions: one has a full theory at the GUTsale, then an e�etive �eld theory below the GUT sale (SM or MSSM) is built, and thenyet another e�etive �eld theory below the Fermi sale (just QED+QCD). In these asesthe omplete theory is known, and the CEFT language is used only in order to simplify thealulations at low energies and to ontrol the large logarithms whih appear when there arewidely separated sales. Nevertheless, CEFT's are useful even when the omplete theory isnot known, or when the onnetion with the omplete theory annot be worked out; this isthe ase of Chiral Perturbation theory (χPT ) [70, 71, 72, 73℄ (for more reent reviews see also[65, 74, 75℄).It is important to maintain a sharp distintion between the two types of EFT mentionedabove, i.e. Wilsonian or ontinuum, beause oneptually they are quite di�erent. However,perhaps due to the fat that the language is in part ommon to both types of theories, itseems that they are often used interhangeably in the literature, espeially when employinguto�s within the CEFT framework. In partiular, sine the ouplings αi have dimensions
[αi] = M−n, when omputing loops one generally obtains e�ets whih grow as (Λnαi)

m,where Λ is the formal CEFT uto�, and as suh is void of physis. As a onsequene, physialobservables should be made as independent of these uto�s as possible by introduing as manyounterterms as needed to renormalize the answer. Not performing these renormalizationsorretly, or identifying naively formal uto�s with the physial uto�s of the e�etive theory,an lead to ompletely non-sensible results (see for instane [76, 77℄). This type of pitfallsmay be avoided by simply using dimensional regularization, sine the latter has the speialproperty of not mixing operators with di�erent dimensionalities.The usual way to treat theories with ompati�ed extra dimensions is to de�ne them asa 4-dimensional theory with a trunated tower of KK modes at some large but otherwisearbitrary Ns, a proedure whih e�etively amounts to using a hard uto� in the momentaof the extra dimensions. Thus, physial quantities alulated in this sheme depend expliitlyon the uto� Ns, whih is subsequently identi�ed with some physial uto�. However, asalready ommented, Ns plays the role of a formal uto�, and is therefore plagued with allthe aforementioned ambiguities. Identi�ation of this formal uto� with a universal physialuto� an give the illusion of preditability, making us forget that we are dealing with a non-renormalizable theory with in�nite number of parameters, whih an be preditive only at low



48 Chapter 5. Power orretions in models with extra dimensionsenergies, where higher dimension operators may be negleted.In this paper we want to analyze the question of the running of gauge ouplings in theorieswith ompat dimensions from the CEFT �anonial� point of view. We hasten to emphasizethat even the CEFT presents oneptual problems in theories with ompati�ed dimensions.Spei�ally, as mentioned above, in the CEFT approah the (virtual) momenta are allowedto vary up to in�nity; however, momenta related to the ompati�ed extra dimensions turnout to be KK masses in the 4-dimensional ompati�ed theory, where it is supposed that oneonly keeps partiles lighter than the relevant sale. Thus, trunating the KK series amountsto utting o� the momenta of the ompati�ed dimensions. Therefore, in order to de�ne atrue �non-uto�� CEFT sheme we are fored to keep all KK modes. Our main motivation isto seriously explore this approah, and investigate both its virtues and its limitations for theproblem at hand. We hope that this study will help us identify more learly whih quantitiesan and whih annot be omputed in e�etive extra-dimensional theories.In setion 5.2 we disuss the usual arguments in favor of power-law running of gaugeouplings and show that they depend ruially on the way KK thresholds are rossed. Inpartiular we show that, a one-loop β funtion whih simply ounts the number of modes,diverges for more than 5 dimensions, if the physial way of passing thresholds ditated by thevauum polarization funtion (VPF) is imposed.In setion 5.3 we introdue a theory with one fermion and one photon in 4+δ dimensions,with the extra δ ones ompati�ed. This theory, whih is essentially QED in 4+δ dimensions,serves as toy model for studying the issue of power orretions and the running of the ouplingin a de�nite framework.In setion 5.4 we study the question of deoupling KK modes in the aforementioned theoryby analyzing the behavior of the VPF of the (zero-mode) photon. Sine, as ommented above,deoupling the KK modes one by one is problemati, we study the question of how to deoupleall of them at one. To aomplish this we onsider the VPF of the photon with all KKmodes inluded, and study how it redues at Q2 ≪ Mc to the standard QED VPF withonly one light mode. Sine the entire KK tower is kept untrunated, the theory is of oursenon-renormalizable; therefore, to ompute the VPF we have to regularize and renormalizeit in the spirit of the CEFT, in a similar way that observables are de�ned in χPT . As in
χPT , it is most onvenient to use dimensional regularization with minimal subtration, inorder to maintain a better ontrol on the mixing among di�erent operators. However, atthe level of the 4-dimensional theory the non-renormalizability manifest itself through theappearane of divergent sums over the in�nite KK modes, and dimensional regularizationdoes no seem to help in regularizing them. The dimensional regularization of the VPF iseventually aomplished by exploiting the fat that its UV behavior oinides to that foundwhen the δ extra dimensions have not been ompati�ed1. To explore this point we �rst resortto the standard unitarity relation (optial theorem), whih relates the imaginary part of theVPF to the total ross setion in the presene of the KK modes; the latter is �nite beause thephase-spae trunates the series. For Q2 ≫ M2

c the unompati�ed result for the imaginarypart of the VPF is rapidly reahed, i.e. after passing a few thresholds. We then omputethe real part of the one-loop VPF in the non-ompat theory in 4 + δ dimensions, where, ofourse we an use diretly dimensional regularization to regularize it (sine no KK redution1This is in a way expeted, sine for very large Q2
≫ Mc = 1/Rc the ompati�ation e�ets should benegligible. Note, however, that this is not always the ase; a known exeption is provided by the orbifoldompati�ation [58℄.



Setion 5.2. Crossing thresholds 49has taken plae). For later use we also present results in whih the same quantity is evaluatedby using hard uto�s. Finally, we show that the UV divergenes of the one-loop VPF areindeed the same in both the (torus)-ompati�ed and unompati�ed theories. Therefore, inorder to regularize the VPF in the ompati�ed theory with an in�nite number of KK modesit is su�ient to split the VPF into two piees, an �unompati�ed� piee, orresponding tothe ase where the extra dimensions are treated at the same footing as the four usual ones,and a piee whih ontains all ompati�ation e�ets. We show that this latter piee is UVand IR �nite and proeed to evaluate it, while all UV divergenes remain in the former, whihwe evaluate using dimensional regularization.The results of previous setions are used in setion 5.5 to de�ne an e�etive harge αeff(Q)whih an be ontinuously extrapolated from Q2 ≪ Mc to Q2 ≫ Mc. We use this e�etiveharge to study the mathing of ouplings in the low energy e�etive theory (QED) to theouplings of the theory ontaining an in�nite of KK modes. In the ontext of dimensionalregularization we �nd that this mathing ontains only the standard logarithmi runningfrom mZ to the ompati�ation sale Mc, with no power orretions. On the other hand, ifhard uto�s are used to regularize the VPF in the non-ompat spae, one does �nd powerorretions, whih may be interpreted as an additional mathing between the e�etive D =
4 + δ dimensional �eld theory and some more omplete theory. We disuss the possibility ofestimating this mathing in the EFT without knowing the details of the full theory. This pointis studied in a simple extension of our original toy-model, by endowing the theory onsidered(QED in 4+δ ompat dimensions) with an additional fermion with mass Mf ≫ Mc, whihis eventually integrated out.5.2 Crossing thresholdsThe simplest argument (apart from the purely dimensional ones) in favor of power-law run-ning in theories with extra dimensions is based on the fat that in MS-like shemes the βfuntion is proportional to the number of ative modes. Theories with δ extra ompat di-mensions ontain, in general, a tower of KK modes. In partiular, if we embed QED in extradimensions we �nd that eletrons (also photons) have a tower of KK modes with masses
M2
n =

(
n2

1 + n2
2 + · · · + n2

δ

)
M2
c with ni integer values and Mc = 1/Rc the ompati�ationsale. The exat multipliity of the spetrum depends on the details of the ompati�ationproedure (torus, orbifold, et). As soon as we ross the ompati�ation sale, the KK modesbegin to ontribute, and therefore one expets that the β funtion of this theory will startto reeive additional ontributions from them. In a general renormalization sheme satisfyingdeoupling one an naively write

β =
∑
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β0f
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)
, (5.1)where µ is the renormalization sale, β0 is the ontribution of a single mode, and f(µ/M)is a general step-funtion that deouples the modes as µ rosses the di�erent thresholds,namely f(µ/M) → 0 µ ≪ M and f(µ/M) → 1 µ ≫ M . For instane in MS shemes

f(µ/M) ≡ θ(µ/M − 1) where θ(x) is the step-funtion. Then one �nds (Ωδ = 2πδ/2/Γ(δ/2)
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50 Chapter 5. Power orretions in models with extra dimensionsThis argument, simple and ompelling as it may seem, annot be trusted ompletely beausein MS shemes the deoupling is put in by hand. Therefore, other types of shemes, in whihdeoupling seems natural, have been studied in the literature. For instane, in Ref. [43℄ theVPF of the photon at Q2 = 0 was alulated in the presene of the in�nite tower of KK modesby using a hard uto� in proper time, and the result was used to ompute the β funtion;in that ase the modes deouple smoothly. In addition, after adjusting the uto� by handone an reprodue the aforementioned result obtained in MS. One an easily see that thisproedure is equivalent to the use of the funtion f(Λ/M) ≡ e−
M2

n
Λ2 to deouple the KK modes
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π

Λ2

M2
c

)δ/2
. (5.3)If one hooses by hand µδ = Γ(1 + δ/2)Λδ , the sum in Eq. (5.3) agrees exatly with the sumobtained if one uses a sharp step-funtion. Even though this partiular way of deoupling KKmodes appears naturally in some string senarios [78, 79, 80, 40℄, it hardly appears ompellingfrom the �eld theory point of view; this proedure is not any better oneptually than thesharp step-funtion deoupling of modes: one obtains a smooth β funtion beause one usesa smooth funtion to deouple the KK modes.These two ways of deoupling KK modes, due to the very sharp step-like behavior theyimpose, lead to a �nite result in (5.1) for any number of extra dimensions. One is tempted toask, however, what would happen if one were to use a more physial way of passing thresholds.In fat, heavy partiles deouple naturally and smoothly in the VPF, beause they annot beprodued physially. Spei�ally, in QED in 4-dimensions at the one-loop level, the imaginarypart, ℑmΠ(q2), of the VPF Π(q2) is diretly related, via the optial theorem, to the tree levelross setions σ for the physial proesses e+e− → f+f−, by

ℑmΠ(s) =
s

e2
σ(e+e− → f+f−) . (5.4)Given a partiular ontribution to the spetral funtion ℑmΠ(s), the orresponding ontri-bution to the renormalized vauum polarization funtion ΠR(q2) an be reonstruted via aone�subtrated dispersion relation. For example, for the one�loop ontribution of the fermion

f , hoosing the on�shell renormalization sheme, one �nds (if q is the physial momentumtransfer with q2 < 0, as usual we de�ne Q2 ≡ −q2):
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f → ∞ ,

(5.5)where α ≡ e2/(4π). The above properties an be extended to the QCD e�etive harge[81℄, with the appropriate modi�ations to take into aount the non-Abelian nature of thetheory, and provide a physial way for omputing the mathing equations between ouplingsin QCD at quark mass thresholds. One omputes the VPF of QCD with nf �avors and thatof QCD with nf − 1 �avors, and requires that the e�etive harge is the same for Q2 ≪
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mf in the two theories. This proedure gives the orret relation between the ouplingsin the two theories [82, 59, 83℄. However, one an easily see that this annot work formore than one extra dimension. To see that, let us onsider the deoupling funtion f(µ/M)provided by the one-loop VPF, whih, as explained, aptures orretly the physial thresholds.The orresponding f(µ/M) may be obtained by di�erentiating ΠR(Q) one with respet to
Q2; it is known [84℄ that the answer an be well-approximated by a simpler funtion of theform f(µ/M) = µ2/(µ2 + 5M2). We see immediately that if we insert this last funtion inEq. (5.1) and perform the sum over all KK modes the result is onvergent only for one extradimension (with a oe�ient whih is di�erent from the one obtained with the renormalizationshemes mentioned earlier), while it beomes highly divergent for several extra dimensions.We onlude therefore that the physial way of deoupling thresholds provided by the VPFseems to lead to a divergent β funtion in more than one extra dimension. As we will see, thisis due to the fat that, in order to de�ne properly the one-loop VPF for δ > 1, more than onesubtration is needed.5.3 A toy modelTo be de�nite we will onsider a theory with one fermion and one photon in 4+ δ dimensions,in whih the δ extra dimensions are ompati�ed on a torus of equal radii Rc ≡ 1/Mc. TheLagrangian is given by

Lδ = −1

4
FαβFαβ + iψ̄γαDαψ + Lct , (5.6)where α = 0, · · · , 3, · · · , 3 + δ. We will also use Greek letters to denote four-dimensionalindies µ = 0, · · · 3. Dα = ∂α− ieDAα is the ovariant derivative with eD the oupling in 4+δdimensions whih has dimension [eD] = 1/M δ/2. After ompati�ation, the dimensionlessgauge oupling in four-dimensions, e4, and the dimensionfull 4+ δ oupling are related by theompati�ation sale 2
e4 = eD

(
Mc

2π

)δ/2
. (5.7)Evidently eD is determined from the four-dimensional gauge oupling and the ompati�ationsale, but in the unompati�ed spae we an regard it as a free parameter (as fπ in χPT ).Finally Lct represents possible gauge invariant operators with dimension 2 + D or higher,whih are in general needed for renormalizing the theory; they an be omputed only if amore omplete theory, from whih our e�etive theory originates, is given. For instane, byomputing the VPF we will see that a Lct of the form

Lct =
c1
M2
s

DαF
αβDλFλβ + · · · (5.8)is needed to make it �nite.The spetrum after ompati�ation ontains a photon (the zero mode of the four-dimensionalomponents of the gauge boson), the δ extra omponents of the gauge boson remain in thespetrum as δ massless real salars, a tower of massive vetor bosons with masses M2

n =(
n2

1 + n2
2 + · · · + n2

δ

)
M2
c , ni ∈ Z, ni 6= 0 , 2[δ/2] massless Dira fermions (here the symbol

[x] represents the losest integer to x smaller or equal than x), and a tower of massive Dira2Note that the fators 2π depend on the exat way the extra dimensions are ompati�ed (on a irle,orbifold, et).



52 Chapter 5. Power orretions in models with extra dimensionsfermions with masses given also by the above mass formula. Note that this theory does notlead to normal QED at low energies, �rst beause the δ extra omponents of the gauge bosonremain in the spetrum, and seond beause in 4 + δ dimensions the fermions have 4 · 2[δ/2]omponents, whih remain as zero modes, leading at low energy to a theory with 2[δ/2] Dirafermions. In the D = 4 + δ theory these will arise from the trae of the identity of the γ ma-tries, whih just ounts the number of omponents of the spinors. To obtain QED as a lowenergy one should projet out the orret degrees of freedom by using some more appropriateompati�ation (for instane, orbifold ompati�ations an remove the extra omponentsof the photon from the low energy spetrum, and leave just one Dira fermion). Howeverthis is not important for our disussion of the VPF, we just have to remember to drop theadditional fators 2[δ/2] to make ontat with usual QED with only one fermion. Theoriesof this type, with all partiles living in extra dimensions are alled theories with �universalextra dimensions� [10℄ and have the harateristi that all the e�ets of the KK modes belowthe ompati�ation sale anel at tree level due to the onservation of the KK number. Inpartiular, and ontrary to what happens in theories where gauge and salar �elds live in thebulk and fermions in the brane [15, 85℄, no divergenes assoiated to summations over KKtowers appear at tree level. Finally, the ouplings of the eletron KK modes to the standardzero-mode photon are universal and ditated by gauge invariane. The ouplings among theKK modes an be found elsewhere [5, 34℄; they will not be important for our disussion of theVPF that we present here.5.4 The vauum polarization in the presene of KK modesIn this setion we will study in detail the behavior of the one-loop VPF in the theory de�nedabove for general values of the number δ of extra dimensions. The main problems we want toaddress are: i) the general divergene struture of the VPF, ii) demonstrate that it is possibleto regulate the UV divergenes using dimensional regularization, iii) the appearane of non-logarithmi (power) orretions, and, iv) their omparison to the analogous terms obtainedwhen resorting to a hard-uto� regularization.5.4.1 The imaginary part of the vauum polarizationOne an try to ompute diretly the VPF of the zero-mode photon in a theory with in�niteKK fermioni modes. However, one immediately sees that, in addition to the logarithmidivergenes that one �nds in QED, new divergenes are enountered when summing over thein�nite number of KK modes. One an understand the physial origin of these divergenesmore learly by resorting to the unitarity relation (here s denotes the enter-of-mass energyavailable for the prodution proess):
ℑmΠ(δ)(s) =

s

e24

∑

n

σ(e+e− → f+
n f

−
n )

=
α4

3

∑

n<nth

(
1 +

2M2
n

s

)√
1 − 4M2

n/s , (5.9)where n < nth represents the sum over all the eletron KK modes that ful�ll the relation
4
(
n2

1 + n2
2 + · · · n2

δ

)
M2
c < s, and α4 = e24/(4π). This sum an be evaluated approximately for
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QFigure 5.1: ℑmΠ(δ)(Q) as ompared with the asymptoti value (δ = 1, 2, 3). Q is given in units of Mc.
s≫M2

c by replaing it by an integral; then we obtain
ℑmΠ(δ)(s) ≈ α4

23+δ

(δ + 2)π(δ+1)/2

Γ ((δ + 5)/2)

(
s

M2
c

)δ/2
. (5.10)It turns out that this last result aptures the behavior of the same quantity when theextra dimensions are not ompat; this is so beause, at high energies, the e�ets of theompati�ation an be negleted. In fat, this result may be dedued on simple dimensionalgrounds: as ommented, the gauge oupling in 4 + δ dimensions has dimension 1/M δ/2;therefore one expets that ℑmΠ(δ)(s) will grow with s as (s/M2

)δ/2, whih is what we obtainedfrom the expliit alulation. To see how rapidly one reahes this regime we an plot theexat result of ℑmΠ(δ)(s) together with the asymptoti value. As we an see in Fig.5.1, theasymptoti limit is reahed very fast, espeially for higher dimensions. For pratial purposesone an reliably use the asymptoti value soon after passing the �rst threshold, Q > 2Mc,inurring errors whih are below 10%.Now we an try to obtain the real part by using a dispersion relation as the one used in4-dimensional QED, i.e. Eq.(5.5). However, one immediately sees that it will need a numberof subtrations whih depends on the value of δ. Thus, for just one extra dimension, as in4-dimensional QED, one subtration is enough, for δ = 2 and δ = 3 two subtrations areneeded, see Eq. (5.10), and so on. This just manifests the non-renormalizability of the theory,and in the e�etive �eld theory language, the need for higher dimension operators atingas ounterterms. Even though this �absorptive� approah is perfetly aeptable, it wouldbe preferable to have a way of omputing the real part diretly at the Lagrangian level (byomputing loops, for instane). As ommented in the introdution, to aomplish this we willuse dimensional regularization.5.4.2 The vauum polarization in unompati�ed 4 + δ dimensionsWhen using dimensional regularization to ompute the VPF in unompati�ed spae, to bedenoted Πuc, simple dimensional arguments suggest that one should typially obtain ontri-butions of the form
Πuc(Q) ∝ e24

(
2π

Q

Mc

)δ
,sine the two verties in the loop provide a fator e2D, whose dimensions must be ompensatedby the only available sale in the problem, namely Q2. In the above formula we have used



54 Chapter 5. Power orretions in models with extra dimensionsthe relation of Eq.(5.7) in order to trade o� eD for e4. The omitted oe�ient in front will begenerally divergent, and will be regularized by letting δ → δ − ǫ.Let us ompute the VPF Παβ
uc (q) in unompati�ed spae, assuming that, if neessary, thedimensions will be ontinued to omplex values. We have that

Παβ
uc (q) = ie2D

∫
d4+δk

(2π)4+δ
Tr

{
γα

1

k/
γβ

1

k/+ q/

}
, (5.11)whih, by gauge-invariane assumes the standard form

Παβ
uc (q) =

(
q2gαβ − qαqβ

)
Πuc(q) .If we now were to use that, in D-dimensions, Tr[γαγβ] = 2[D/2]gαβ , we would �nd that thelow energy limit has an extra 2[δ/2] fator, whih, as ommented, is an artifat of the torusompati�ation: there are 2[δ/2] too many fermions in the theory. Therefore we simply dropthis fator by hand. Moreover, we use Eq.(5.7) and employ the proper-time parametrizationin intermediate steps, thus arriving at:

Πuc(Q) =
e24
2π2

(
π

M2
c

)δ/2 ∫ 1

0
dxx(1 − x)

∫ ∞

0

dτ

τ1+ δ
2

exp
{
−τ x(1 − x)Q2

}

=
e24
2π2

πδ/2 Γ2(2 + δ
2)

Γ(4 + δ)
Γ

(
−δ

2

) (
Q2

M2
c

)δ/2
. (5.12)A simple hek of this result may be obtained by omputing its imaginary part. To thatend we let Q2 → −q2 − iǫ with q2 > 0. Then

ℑm
{
−q2 − iǫ

}δ/2
= −

(
q2
)δ/2

sin
δπ

2
.Now we an use that Γ(−δ/2)Γ(1 + δ/2) = −π/ sin(δπ/2) to write

ℑm {Πuc(q)} = α4
2πδ/2 Γ2(2 + δ

2)

Γ(4 + δ)Γ(1 + δ/2)

(
q2

M2
c

)δ/2
=

α4

23+δ

(δ + 2)π(δ+1)/2

Γ ((δ + 5)/2)

(
q2

M2
c

)δ/2
,whih agrees with our previous result of Eq.(5.10).For odd values of δ, the one-loop Πuc(Q) omputed above is �nite, sine the Γ(− δ

2) anbe alulated by analyti ontinuation. This result is in a way expeted, sine in odd numberof dimensions, by Lorentz invariane, there are no appropriate gauge invariant operators ableto absorb any possible in�nities generated in the one-loop VPF; this would require operatorswhih give ontributions that go like Qδ. Notie, however, that at higher orders Πuc(Q)will eventually beome divergent. For instane, in �ve dimensions at two loops, the VPFshould go as Q2, sine there are four elementary verties. The divergenes generated by theseontributions ould be absorbed in an operator suh as the one onsidered in the previoussetion, namely DαF
αβDλFλβ . On the other hand, when δ is even, Γ(− δ

2) has a pole, andsubtrations are needed already at one loop. To ompute the divergent and �nite parts in awell-de�ned way we will use dimensional regularization, i.e. we will assume that δ → δ − ǫ .Notie however that, unlike in 4-dimensions, we do not need to introdue an additional saleat this point, i.e. the equivalent of the 't Hooft mass sale µ: Mc plays the role of µ, and an



Setion 5.4. The vauum polarization in the presene of KK modes 55be used to keep e4 dimensionless. After expanding in ǫ we �nd a simple pole aompanied bythe usual logarithm
Πuc(Q) ∝

(
Q2

M2
c

)δ/2 {
−2

ǫ
+ ln(Q2/M2

c ) + · · ·
}
. (5.13)Here the ellipses represent a �nite onstant. Now, to renormalize this result we must introduehigher dimension operators (for instane, if δ = 2 the operator DαF

αβDλFλβ will do the job)whih ould absorb the divergent piee. The downside of this, however, is that we also haveto introdue an arbitrary ounterterm, κ, orresponding to the ontribution of the higherdimension operator; thus we obtain a �nite quantity proportional to log(Q2/M2
c ) + κ. Notethat, sine κ is arbitrary, we an always introdue bak a renormalization sale and write

log(Q2/M2
c ) + κ = log(Q2/µ2) + κ(µ) with κ(µ) = κ + log(µ2/M2

c ). It is also important toremark that, in the ase of odd number of dimensions, although at one loop we do not needany ounterterm to make the VPF �nite, higher dimensional operators ould still be presentand a�et its value.In the ase of unompati�ed spae, it is interesting to ompare the above result with thatobtained by regularizing the integral using a hard uto�. To study this it is enough to arryout the integral of Eq. (5.12), with a uto� in τ0 = 1/Λ2:
Πuc(Q) =

e24
2π2

(
π

M2
c

)δ/2 ∫ 1

0
dxx(1 − x)

∫ ∞

τ0

dτ

τ1+δ/2
exp

{
−τ x(1 − x)Q2

}
. (5.14)Then, for δ = 1, 2, 3 we obtain

Π(1)
uc (Q) =

e24
2π2

(
−3π2Q

64Mc
+

√
πQ2

15McΛ
+

√
πΛ

3Mc

)
, (5.15)

Π(2)
uc (Q) =

e24
2π2

(
πΛ2

6M2
c

+
πQ2

30M2
c

(
log(Q2/Λ2) + γ − 77

30

))
, (5.16)

Π(3)
uc (Q) =

e24
2π2

(
5π3Q3

768M3
c

− π3/2Q2Λ

15M3
c

+
π3/2Λ3

9M3
c

)
. (5.17)As we an see, the piees whih are independent of the uto� are exatly the same ones weobtained using dimensional regularization. But, in addition, we obtain a series of ontributionswhih depend expliitly on the uto�. For instane we �nd orretions to the gauge ouplingwhih behave as Λδ, and just rede�ne the gauge oupling we started with [86℄. In the aseof �ve dimensions we also generate a term linear in Q2; however it is suppressed by 1/Λ,and therefore it approahes zero for large Λ. In the ase of six dimensions we obtain thesame logarithmi behavior we found with dimensional regularization, and the result an beast in idential form, if the uto� is absorbed in the appropriate ounterterm. For sevendimensions we also �nd divergent ontributions whih go as Q2. This means that, whenusing uto�s, higher dimension operators in the derivative expansion (e.g. operators givingontributions as Q2 or higher) are neessary to renormalize the theory and must be inluded.In the ase of dimensional regularization this type of operators is not stritly needed at oneloop; however, nothing forbids them in the Lagrangian, and they ould appear as ��niteounterterms�. If one were to identify the Λ in the above expressions with a physial uto�,



56 Chapter 5. Power orretions in models with extra dimensionsone might get the impression that, ontrary to the dimensional regularization approah wherearbitrary ounterterms are needed, one ould now obtain all types of ontributions with onlyone additional parameter, namely Λ. This is however not true: the regulator funtion isarbitrary, we simply have hosen one among an in�nity of possibilities. By hanging theregulator funtion we an hange the oe�ients of the di�erent ontributions at will, exeptfor those few ontributions whih are independent of Λ. These latter are preisely the ones wehave obtained by using dimensional regularization. Thus, even when using uto�s one has toadd ounterterms from higher dimension operators, absorb the uto�, and express the result interms of a series of unknown oe�ients. The lesson is that with dimensional regularization weobtain all alulable piees, while the non-alulable piees are related to higher dimensionalterms in the Lagrangian.What we will demonstrate next is that the one-loop VPF in the ompati�ed theory on atorus an be renormalized exatly as the VPF in the unompati�ed theory; this will allow usto ompute it for any number of dimensions, and examine its behavior for large and for smallvalues of the Q2.5.4.3 The vauum polarization in δ ompat dimensionsFrom the four-dimensional point of view the vauum polarization tensor in the ompati�edtheory is
Πµν(q2) =

∑

n

ie24

∫
d4k

(2π)4
Tr

{
γµ

1

k/−mn
γν

1

k/+ q/−mn

}with m2
n =

(
n2

1 + n2
2 + · · · + n2

δ

)
M2
c ; for simpliity we have assumed a ommon ompati�a-tion radius R = 1/Mc for all the extra dimensions. The sum over n denotes olletively thesum over all the modes ni = −∞, · · · ,+∞. The ontribution of eah mode to this quantityseems quadratially divergent, like in ordinary QED; however, we know that gauge invari-ane onverts it to only logarithmially divergent. But, in addition, the sum over all themodes makes the above expressions highly divergent. Instead of attempting to ompute itdiretly, we will add and subtrat the ontribution of the vauum polarization funtion of theunompati�ed theory in 4 + δ dimensions:

Πµν(q) = [Πµν(q) − Πµν
uc (q)] + Πµν

uc (q) = Πµν
fin(q) + Πµν

uc (q) . (5.18)Here we have taken already into aount the relation between the oupling in 4+δ dimensionsand the four-dimensional oupling and have restrited the external Lorentz indies to the4-dimensional ones. Depending on the value of δ the vauum polarization an be highlydivergent (naively as Λδ+2, and after taking into aount gauge invariane as Λδ). However,we an use dimensional regularization (or any other regularization sheme) to make it �nite.The important point is that the quantity Πµν
fin(Q) is UV and IR �nite and an unambiguouslyomputed.Instead of doing the two alulations from srath, we will do the following:i) We will �rst ompute the ompati�ed expression by using Shwinger's proper time, τ ,to regularize the UV divergenes.ii) We will show that the UV behavior of the ompati�ed theory, τ → 0, is just thebehavior of the unompati�ed theory.iii) Therefore, to ompute Πµν

fin(Q) it is su�ient to ompute Πµν(Q) and then subtrat itsmost divergent ontribution when τ → 0. We will see that it is su�ient to make it �nite.



Setion 5.4. The vauum polarization in the presene of KK modes 57After a few manipulations Πµν(Q) an be written as
Πµν(q) =

(
q2gµν − qµqν

)
Π(q) ,where [43℄

Π(Q) =
e24
2π2

∑

n

∫ 1

0
dxx(1 − x)

∫ ∞

0

dτ

τ
exp

{
−τ
(
x(1 − x)Q2 +m2

n

)}
.

Π(Q) an be written in terms of the funtion
θ̄3(τ) ≡

+∞∑

n=−∞

e−n
2τ =

√
π

τ
θ̄3

(
π2

τ

)as
Π(Q) =

e24
2π2

∫ 1

0
dxx(1 − x)

∫ ∞

0

dτ

τ
exp

{
−τx(1 − x)

Q2

M2
c

}
θ̄δ3(τ) ,where we have resaled τ in order to remove Mc from the θ̄3(τ) funtion. This last expressionfor Π(Q) is highly divergent in the UV (τ → 0), beause in that limit the θ̄3(τ) funtion goesas √π/τ . Then, if we de�ne, as in Eq. (5.18), Πfin = Π − Πuc, we have

Πfin(Q) =
e24
2π2

∫ 1

0
dxx(1 − x)

∫ ∞

0

dτ

τ
exp

{
−τx(1 − x)

Q2

M2
c

}(
θ̄δ3(τ) −

(π
τ

)δ/2)
,whih is ompletely �nite for any number of dimensions. In fat, the last term provides afator

Fδ(τ) ≡ θ̄δ3(τ) −
(π
τ

)δ/2 τ→0−→ 2δ
(π
τ

)δ/2
exp

{
−π

2

τ

}
,that makes the integral onvergent in the UV, while for large τ this funtion goes to 1 quitefast. In this region the integral is ut o� by the exponential of momenta; so we an think ofthe exponential exp

{
−τx(1 − x) Q

2

M2
c

} as providing a uto� for τ > 4M2
c /Q

2, and Fδ(τ) asproviding a uto� for τ < π2. With this in mind, we an estimate Πfin(Q) as
Πfin(Q) ≈ e24

2π2

∑

n

∫ 1

0
dxx(1 − x)

∫ 4M2
c /Q

2

π2

dτ

τ
= − e2

2π2

1

6
log

Q2π2

4M2
c

, Q2 < 4M2
c /π

2;(5.19)it is just the ordinary running of the zero mode. As Q2 grows, the upper limit of integrationis smaller than the lower limit, and then we expet that Πfin(Q) should vanish. In that region
Π(Q) will be dominated ompletely by Πuc(Q).Let us evaluate Πfin(Q) for any number of extra dimensions. To this end we will approxi-mate the funtion Fδ(τ) as follows

Fδ(τ) =

{
2δ
(
π
τ

)δ/2
exp

{
−π2

τ

}
τ < π

1 + 2δ exp {−τ} −
(
π
τ

)δ/2
τ > π

. (5.20)The mathing point in τ = π makes the funtion ontinuous. In Fig. 5.2 we display the exatfuntion Fδ(τ) (solid) and the approximation above (dashed) for δ = 1, 2, 3. The approxima-tion is very good exept at a small region around the mathing point τ = π. This an befurther improved by adding more terms from the expansions of the θ̄(τ) funtions.
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Figure 5.2: Exat values of Fδ(τ) (solid) as ompared with the approximation disussed in the text(dashed) for δ = 1, 2, 3.The approximate expression of Eq.(5.20) an be used to obtain semi-analytial expansionsfor Πδ
fin(Q) for small Q2 (we de�ne w ≡ Q2/M2

c )
Π

(1)
fin (Q) =

e24
2π2

(
−0.335 − 0.167 log(w) + 0.463

√
w − 0.110w + · · ·

)
, (5.21)

Π
(2)
fin (Q) =

e24
2π2

(−0.159 − 0.167 log(w) − 0.105w (log(w) − 1.75) + · · · ) , (5.22)
Π

(3)
fin (Q) =

e24
2π2

(
−0.0937 − 0.167 log(w) + 0.298w − 0.202

√
w3 + · · ·

)
. (5.23)To see how good these approximate results are, we an ompare with the exat resultsthat an be obtained when δ = 1. In this ase we have
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. (5.24)This last expression an be expanded for w ≪ 1, and the integral over x an then be performedanalytially, yielding

Π
(1)
fin (Q) ≈ e24

2π2

(
1

18
(5 − 6 log(2π)) − 1

6
logw +

3π2

64

√
w − π2

90
w + · · ·

)
, (5.25)whih is in exellent agreement with our approximation (see Eq. (5.21)).
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(1)
fin (Q) for w ≫ 1. In this limit weobtain

Π
(1)
fin (Q) ≈ e24

2π2

3ζ(5)

π4

M4
c

Q4
, Q2 ≫M2

c .For higher dimensions things are more ompliated, but the behavior is the same, and we �nd
Π

(δ)
fin (Q) ≈ e24

2π2

4δΓ(2 + δ/2)

π4+δ/2
Kδ

M4
c

Q4
, Q2 ≫M2

c ,where Kδ is of the order of unity and is determined numerially (K1 = ζ(5) = 1.037, K2 =

1.165, K3 = 1.244). However, sine the unompati�ed ontribution grows as (Q2/M2
c

)δ/2it is obvious that the ontributions to Π(δ)(Q) from Π
(δ)
fin (Q) will be ompletely irrelevant for

Q2 ≫M2
c .Adding the �nite and the unompati�ed ontributions we �nd that for Q2 ≪ M2

c theunompati�ed ontribution exatly anels the orresponding piee obtained from the ex-pansion of Π
(δ)
fin (Q) (the √

w piee for δ = 1, the w log(w) piee for δ = 2, or the √
w3 for

δ = 3). Then, for Q2 ≪M2
c and hoosing µ = Mc we �nally �nd:

Π(δ)(Q) =
e24
2π2

(
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(δ)
0 − 1

6
log

(
Q2

M2
c

)
+ a

(δ)
1

Q2

M2
c

+ · · ·
)
, Q2 ≪M2

c (5.26)with the oe�ients for 1,2 and 3 extra dimensions given by
δ 1 2 3

a
(δ)
0 −0.335 −0.159 −0.0937

a
(δ)
1 −0.110 0.183 0.298As we will see below, in general the oe�ients a(δ)

1 an be a�eted by non-alulableontributions from higher dimension operators in the e�etive Lagrangian, whih we have notinluded.The following omments related to Eq. (5.26), whih is only valid in the dimensionalregularization sheme we are using, are now in order:(i) From Eq. (5.26) we see that for smallQ2, as expeted, we reover the standard logarithmwith the orret oe�ient, independently of the number of extra dimensions. In addition,interestingly enough, we an ompute also the onstant term. Thus, although the full theoryin 4 + δ dimensions is non-renormalizable and highly divergent, the low energy limit of theVPF alulated in our dimensional regularization sheme is atually �nite: when seen fromlow energies the ompati�ed extra dimensions seem to at as an ultraviolet regulator for thetheory.(ii) When the energy begins to grow, we start seeing e�ets suppressed by Q2/M2
c , whihare �nite, at one loop, for any number of dimensions exept for δ = 2. This is so beause thegauge ouplings have dimensions 1/M δ/2, and therefore, the one-loop VPF goes like 1/M δ .(iii) For δ = 1 one �nds that, beause of gauge and Lorentz invariane, there are nopossible ounterterms of this dimension. The VPF must be �nite, and that is preisely theresult one obtains with dimensional regularization. This of ourse hanges if higher loops areonsidered: for instane, two-loop diagrams go like 1/M2, and, in general, we expet that theywill have divergenes, whih, in turn, should be absorbed in the appropriate ounterterms.In priniple the presene of these ounterterms ould pollute our result; however, the natural



60 Chapter 5. Power orretions in models with extra dimensionssize of these ounterterms, arising at two loops, should be suppressed ompared to the �niteontributions we have omputed.(iv) For δ = 2 one �nds that the VPF goes as 1/M2, already at one loop, and thatthe result is divergent. The divergenes have to be absorbed in the appropriate ountertermoming from higher dimension operators in the higher dimensional theory. The immediatee�et of this, is that the oe�ient of the Q2 term in Π(2)(Q) beomes arbitrary, its valuedepending on the underlying physis beyond the ompati�ation sale.(v) For δ > 2 all loop ontributions to the Q2 term are �nite, simply beause of thedimensionality of the ouplings. This, however, does not prelude the existene of �niteounterterms, whih ould be generated by physis beyond the ompati�ation sale, thatis, ontributions from operators suppressed by two powers of the new physis sale like theoperator in Eq. (5.8).For Q2 ≫M2
c the full VPF is ompletely dominated by the unompati�ed ontribution:
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) 3
2

.As before, the VPF ould also reeive non-alulable ontributions from higher dimensionoperators whih we have not inluded; in fat, for δ = 2, these are needed to renormalize theVPF. How large an these non-alulable ontributions be? Sine our D-dimensional theory isan e�etive theory valid only for Q2 ≪ M2
s , even above Mc the results will be dominated bythe lowest power of Q2. In the ase of δ = 1, the �rst operator that one an write down goes as

Q2; therefore we expet that the one-loop ontribution, of order√Q2, that we have omputed,will dominate ompletely the result, as long as we do not streth it beyond the appliability ofthe e�etive Lagrangian approah. For δ = 2, ounterterms are ertainly needed at order Q2;still one an hope that the result will be dominated by the logarithm (as happens with hirallogarithms in χPT ). For δ = 3 (and higher), the one loop result grows as (Q2
)δ/2; howeverthere ould be operators giving ontributions of order Q2 with unknown oe�ients (in fatalthough in dimensional regularization those are not needed, they must be inluded if uto�sare used to regularize the theory). Therefore, unless for some reason they are absent from thetheory, the result will be dominated by those operators.5.5 Mathing of gauge ouplingsUsing the VPF onstruted in the previous setion we an de�ne a higher dimensional analogueof the onventional QED e�etive harge [87, 88℄, whih will enter in any proess involvingo�-shell photons, e.g.

1

αeff(Q)
≡ 1

α4

(
1 + Π(δ)(Q)

)∣∣∣
MSδ

, (5.27)where α4 = e24/(4π). We remind the reader that e4 denotes the (dimensionless) oupling of thefour-dimensional theory inluding all KK modes; it is diretly related to the gauge oupling



Setion 5.5. Mathing of gauge ouplings 61in the theory with δ extra dimensions by Eq.(5.7). The subsript MSδ means that the VPFhas been regularized using dimensional regularization in D = 4 + δ − ǫ dimensions, and thatdivergenes, when present, are subtrated aording to the MS proedure.To determine the relation between α4 and the low energy oupling in QED, we have toidentify the e�etive harge omputed in the ompati�ed theory with the low energy e�etiveharge, at some low energy sale (for instane Q2 = m2
Z ≪ M2

c ), where both theories arevalid. In that limit we an trust our approximate results of Eq. (5.26), and write
1

αeff(mZ)
=

1

α4
+

2

π
a

(δ)
0 − 2

3π
log

(
mZ

Mc

)
. (5.28)This equation onnets the low energy QED oupling with the oupling in the ompati�edD-dimensional theory, regularized by dimensional regularization. Note that this equation isompletely independent of the way subtrations are performed to remove the poles in 1/ǫ.These poles only appear (and only for even number of dimensions) in the ontributions pro-portional to Qδ, whih vanish for Q→ 0. Eq. (5.28) ontains, apart from a �nite onstant, thestandard logarithmi running from mZ to the ompati�ation sale Mc. It is interesting tonotie that, in this approah, the logarithm omes from the �nite piee, and should thereforebe onsidered as an infrared (IR) logarithm. When seen from sales smaller than Mc, theselogarithms appear to have an UV origin, while, when seen from sales above Mc, appear ashaving an IR nature.It is important to emphasize that, in this sheme, the gauge oupling does not run anymore above the ompati�ation sale. This seems ounter-intuitive, but it is preisely whathappens in χPT when using dimensional regularization: fπ does not run, it just renormalizeshigher dimensional operators [62℄.Now we an use Eq. (5.28) to write the e�etive harge at all energies in terms of theoupling measured at low energies:

1

αeff(Q)
≡ 1

αeff(mZ)
+

1

α4

(
Π(δ)(Q) − Π(δ)(mZ)

)∣∣∣∣
MSδ

. (5.29)Note that the last term is independent of α4 due to the impliit dependene of Π(δ) on it.Eq. (5.29) has the form of a momentum-subtrated de�nition of the oupling; in fat, infour dimensions it is just the de�nition of the momentum-subtrated running oupling. For
δ = 1 and at one loop, Π(δ)(Q) − Π(δ)(mZ) is �nite, and αeff(Q) an still be interpreted asa momentum-subtrated de�nition of the oupling. For δ > 1, however, Eq. (5.29) involvesadditional subtrations, a fat whih thwarts suh an interpretation.For Q2 ≪M2

c we an expand Π(δ)(Q) and obtain
1

αeff(Q)
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− 2
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log
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)
+ O

(
Q2
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c

)
,whih is nothing but the standard expression of the e�etive harge in QED, slightly modi�edby small orretions of order Q2/M2

c . However, as soon as Q2/M2
c approahes unity, the e�etsof the ompati�ation sale start to appear in αeff(Q), foring it to deviate dramatially fromthe logarithmi behavior, as shown in Fig. 5.3.The ruial point, however, is that this e�etive harge annot be interpreted anymore asthe running oupling (as an be done in four dimensions) sine it may reeive ontributionsfrom higher dimension operators; in fat some of them are needed to de�ne this quantity
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Figure 5.3: The �e�etive harge� against the energy sale for δ = 1 (solid), δ = 2 (short dash), δ = 3(long dash). Contributions from ounterterms have not been onsidered.properly. These ontributions have nothing to do with the gauge oupling whih is de�nedas the oe�ient of the operator F 2. In partiular, one should not use this quantity to studygauge oupling uni�ation. Instead, one ould use Eq. (5.28), whih relates the ouplingmeasured at low energies with the one appearing in the D-dimensional Lagrangian valid atenergies Mc < Q < Ms. This relation involves a logarithmi orretion, whih is the onlyontribution that an be reliably omputed without knowing the physis beyond Ms.It is instrutive to see what happens if instead of dimensional regularization we use harduto�s to regularize the unompati�ed part of the VPF as in Eqs. (5.14)�(5.17). Then, whenusing uto�s, one an de�ne an �e�etive harge� as in Eq. (5.27)
1

αeff(Q)
≡ 1

α4(Λ)

(
1 + Π(δ)(Q)

)∣∣∣
Λ
, (5.30)where α4(Λ) now is the oupling onstant in the theory regularized with uto�s and thesubsript Λ indiates that the VPF has been regularized with uto�s. The use of a Λ dependentoupling obviously implies the WEFT formulation, in whih the uto� is not removed fromthe theory. On the other hand, in the CEFT formulation one should renormalize the ouplingonstant by adding the appropriate ounterterms and then take the limit Λ → ∞. Thisusually brings in a new sale at whih the oupling is de�ned, and whih e�etively replaes

Λ in the previous equation. Notie also that for δ = 2 in Eq. (5.16) there are logarithmiontributions proportional to Q2, whih annot be removed when Λ → ∞. The same is truefor δ > 2, but with dependenies whih are proportional to Λ(δ−2). This just manifests theneed of higher dimensional operators, as was already lear in the dispersive approah, to de�neproperly the e�etive harge. As one an see, the full VPF ontains a term that goes as Λδand is independent of Q. This piee survives when Q → 0, and thus we obtain (we assume
m2
Z ≪ Q2)
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)
. (5.31)Sine αeff(mZ) should be the same in the two shemes, we �nd the following relation between
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α4 and α4(Λ)

1

α4
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1

α4(Λ)
+

2

3πδ

(√
π

Λ

Mc

)δ
. (5.32)If one identi�es Λ with the onset of a more omplete theory beyond the ompati�ation sale,but at whih the EFT treatment is still valid, i.e. if one assumes that Λ ∼ MG ≪ Ms, MGbeing this new sale, Eq.(5.32) ould be reinterpreted as a mathing equation between theoupling α4 of our e�etive theory and the oupling of the theory at sales MG, α4(MG).Eq. (5.32) generially tells us that one expets orretions whih go as (MG/Mc)

δ. However,without knowledge of the full theory beyond MG, the meaning of MG (or even α4(MG)) isunlear. In partiular, if the new theory is some Grand Uni�ed Theory in extra dimensions,
MG will be, in general, not just one single mass, but several masses of the same order of mag-nitude, related by di�erent oe�ients. In the ase of logarithmi running those oe�ientsan be negleted, beause they give small logarithms next to the large logarithms ontainingthe ommon sale. However, in the ase of ontributions whih depend on powers of the newphysis sale the situation is ompletely di�erent, and the presene of several masses ouldhange ompletely the piture of uni�ation. Cuto�s an give an indiation of the preseneof power orretions, but the oe�ients of these orretions annot be omputed withoutknowing the details of the full theory.To see this point more learly, we add to our 4 + δ dimensional theory an additionalfermion with mass Mf satisfying Ms ≫ Mf ≫ Mc, suh that ompati�ation orretionsmay be negleted, and ompute its e�ets on the oupling onstant for M2

c ≪ Q2 ≪ M2
f ,using dimensional regularization. We have
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. (5.33)By expanding for Q2 ≪Mf and integrating over x we obtain
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. (5.34)For odd values of δ we an use the analyti ontinuation of the Γ funtion to obtain a �niteresult. For even values of δ we will allow a slight departure of the integer value in order todimensionally regularize the integral. Clearly, integrating out the heavy fermion gives powerorretions to the gauge oupling. In addition, it also generates ontributions to the higherdimension operators, e.g. ontributions proportional Q2 and higher powers. As an be seen byomparing with Eqs. (5.14)�(5.17) these power orretions are qualitatively similar to thosealulated using a hard uto�. Evidently, in the ontext of a more omplete theory (in thisase, given the existene of a heavy fermion), power orretions may be enountered even ifthe dimensional regularization is employed. However, as one an easily see by setting, forexample, δ = 1 in Eq.(5.34), the oe�ients of the power orretions obtained knowing thefull theory are in general di�erent from those obtained using a hard uto�, e.g. Eq.(5.15). Infat, no hoie of Λ in Eq.(5.15) an reprodue all the oe�ients appearing in Eq.(5.34).The situation is somewhat similar to what happens when χPT with SU(2) ⊗ SU(2) ismathed to χPT with SU(3) ⊗ SU(3). In the SU(2) ⊗ SU(2) theory, just by dimensionalarguments, one an expet orretions like m2

K/f
2
π . But, an one ompute them reliablywithout even knowing that there are kaons?



64 Chapter 5. Power orretions in models with extra dimensions5.6 ConlusionsWe have attempted a ritial disussion of the arguments in favor of power-law running ofoupling onstants in models with extra dimensions. We have shown that the naive argumentslead to an arbitrary β funtion depending on the partiular way hosen to ross KK thresholds.In partiular, if one hooses the physial way of passing thresholds provided by the vauumpolarization funtion of the photon, a β funtion that ounts the number of modes is divergentfor more than 5 dimensions.We have studied the question of deoupling of KK modes in QED with 4+ δ (ompat)dimensions by analyzing the behavior of the VPF of the photon. We have omputed �rst theimaginary part of the VPF by using unitarity arguments, and found that it rapidly reahesthe value obtained in a non-ompat theory (only a few modes are neessary). We also showedthat it grows as (s/M2
c )
δ/2, exhibiting learly the non-renormalizability of theories in extradimensions. To obtain the full VPF, one an use an appropriately subtrated dispersion rela-tion. Instead, we use the full quantum e�etive �eld theory, with the expetation, suggestedby the alulation of the imaginary part of the VPF, that the bad UV behavior of the the-ory is aptured by the behavior of the unompati�ed theory. To hek this idea, we haveomputed the VPF in the unompati�ed theory, regularized by dimensional regularization(δ → δ − ε). We have found that, after analytial ontinuation, the one loop VPF is �nite,and proportional to Qδ for odd number of dimensions, and has a simple pole, proportional to

Qδ, for even number of dimensions. This result an be understood easily, beause there are nopossible Lorentz and gauge invariant operators in the Lagrangian able to absorb a term like
Qδ for odd δ. For δ even it shows that higher dimension operators are needed to regularizethe theory. As a hek we also reovered the imaginary part of the VPF in the limit of in�niteompati�ation radius.For omparison with other approahes, we have also obtained the VPF in the ase thata hard uto� is used to regularize it. We found that the piees that do not depend on theuto� are exatly the same as those obtained by dimensional regularization, while the uto�dependent piees are arbitrary, and an be hanged at will by hanging the uto� proedure.Next we have omputed the VPF in the ompati�ed theory, and showed that it an beseparated into a UV and IR �nite ontribution and the VPF alulated in the unompati�edtheory; as was shown previously, the latter an be ontrolled using dimensional regularization.The �nite part is more ompliated, but an be omputed numerially for any number ofdimensions. Also, some analytial approximations have been obtained for the low and thehigh energy limits (Q ≪ Mc and Q ≫ Mc respetively). Adding these two piees, togetherwith the ounterterms oming from higher dimension operators, we obtain a �nite expressionfor an e�etive harge whih an be extrapolated ontinuously from Q ≪ Mc to Q ≫ Mc;however, its value does depend on higher dimension operator ouplings.Deoupling of all KK modes in this e�etive harge is smooth and physially meaningful,and the low energy logarithmi running is reovered. We use this e�etive harge to onnetthe low energy ouplings (i.e. αeff (mZ)) with the oupling of the theory inluding all KKmodes, regularized by dimensional regularization. We �nd that this mathing only involvesthe standard logarithmi running from mZ to the ompati�ation sale Mc. In partiular,no power orretions appear in this mathing. However, if uto�s are used to regularizethe VPF in the non-ompat spae, one does �nd power orretions, exatly as expetedfrom naive dimensional analysis. In the EFT language one ould interpret these orretionsas an additional mathing between the e�etive D dimensional �eld theory and some more



Setion 5.6. Conlusions 65omplete theory. The question is how reliably an this mathing be estimated without knowingthe omplete theory. By adding to our theory an additional fermion with Mf ≫ Mc, andintegrating it out, we argue that power orretions annot be omputed without knowingthe details of the omplete theory, in whih the D dimensional theory is embedded. Someexamples in whih this mathing an, in priniple, be omputed are some 5D GUT's and stringmodels [44, 50, 89, 56, 90, 91℄, and the reently proposed de-onstruted extra dimensions[30, 32, 92, 93, 54℄. For the question of uni�ation of ouplings this result seems rathernegative, at least when ompared with standard Grand Uni�ed Theories, where gauge ouplinguni�ation an be tested without knowing their details. Alternatively, one an approahthis result from a more optimisti point of view, and regard the requirement of low-energyuni�ation of ouplings as a stringent onstraint on the possible extra-dimensional extensionsof the SM.
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Chapter 6A model with a non-universal extradimensionBefore the universal extra dimensions were studied many other senarios had been proposed.These models were justi�ed in some string senarios[37, 94, 39, 40, 95, 96, 97, 4℄. Initially, theywere proposed to solve the hierarhy problem by introduing a new sale near the eletroweaksale, but their onsequenes extended to many other �elds: the value of the osmologialonstant [98, 99℄, supersymmetry breaking [100℄, fermion masses [101, 102℄, et... Thesemodels are radially di�erent with respet to the universal ones beause they do not onservethe �fth omponent of the momentum, hene the KK number is no longer onserved. As aonsequene, the bound on this new physis is set above the TeV. In what follows we willstudy a model in whih only the Higgs and gauge bosons propagate through one ontinuousextra dimension; the lattiized version is also onsidered. We show brie�y the main featuresas well as how to study the phenomenology by using the formalism developed in the preedinghapters.6.1 One ontinuous extra dimension6.1.1 The modelThis ase an be straightforwardly studied by retraing the steps done in Chapter 3. TheLagrangian has the same piees, Eq. (3.1), and the Eqs. (3.2 - 3.7) remain the same. Thetopology of the extra dimension is an orbifold, S1/Z2, but now only the Higgs and gauge �eldspropagate through the bulk, this is the main feature of this model, that is why we will referto it as HG. The expansions in Eq. (3.8) and Eq. (3.9) are still valid while Q and U do notpresent now any mode.Upon ompati�ation, we �nd that the spetrum for the fermions is exatly the same as inSM. On the other hand, there are again two towers of salars, Φ
(n)
G and Φ

(n)
P , one unphysialthat is eaten to give mass to the tower of gauge bosons and the other physial with mass

mn. In partiular the onlusion about the dominant ontributions oming from Φ
(n)
P runninginside the loop is again valid.The absene of extra modes for the fermions has as a �rst onsequene that the ouplingbetween the fundamental modes of the gauge bosons and the fermioni part of the theory, Lρ,Eq. (3.34) is exatly the same as in SM. Important di�erenes appear, though, in the Yukawa67



68 Chapter 6. A model with a non-universal extra dimensionpiee of the Lagrangian
LY =

∫ πR

0
dx5(−QỸuHcU −QỸdHD + h..)δ(x5), (6.1)where the delta stands to fore the interations only in the brane de�ned by the ondition

x5 = 0, this brane is taken to be a rigid one, therefore it breaks translation invariane inthe �fth dimension. Due to this, the �fth omponent of the momentum is not onserved andthe KK-number onservation (as well as all its impliations) no longer applies. Plugging theexpansion of the Higgs doublet, Eq. (3.8), in Eq. (6.1), one obtains the expression of theYukawa ouplings in this senario
LY =

2

v
mtVtjtPLdjΦ

+(n) + h.., (6.2)where we have already partiularized for the mt proportional ouplings, t and dj are the usualspinor �elds of the top and down-like quarks. Note the presene of the extra √
2 fator withrespet to the UED and SM ase Eq. (3.35), it is present beause in the expansion for H thezero-th mode and the rest have a √

2 fator of di�erene. In UED it was absorbed by thetower of modes of U in Eq. (3.35) that here are substituted by the delta funtion.All the part that has to do with SSB and the zero gauge modes, ranging from Eq. (3.13)to Eq. (3.18), goes exatly the same way. The ouplings with the Z boson an be found byusing the same proedure as in the UED ase and the outome shows that the urrent thatouples to Z is the same as in UED, i.e. Eq. (3.36), with the sole di�erene of the laking ofthe Jµ(n) piee
LZ =

∞∑

n=1

g

2cw
Z(0)
µ [Jµ(0) + J

µ(n)
Φ ]. (6.3)

J
µ(n)
Φ is the same as in UED, given by Eq. (3.41), it does not get any extra fator due thepresene of two Higgs �elds in the urrent.6.1.2 BoundsTo know whih is the minimum possible value of the sale of this model we will use experimentaldeterminations of some observables, some of them are the same as in the universal senariosbut as we will show the tightest restritions ome from the modi�ation of the value of GF ,that is modi�ed already at tree level. Modi�ations at the tree-level are now possible beauseof the non-onservation of the KK number. As usual we will de�ne a = mtπR and denote thelightest KK mode by M = R−1.6.1.2.1 The ρ parameterThe orretions to the ρ parameter proportional to the mt mass are the same as in SM,essentially beause the Higgs �eld propagates in the �fth dimension while the fermions do not.Sine the top quark has no KK tower assoiated, the only possible soure of terms proportionalto mt are the Yukawa ouplings, but these do not ontribute at one-loop to the self-energiesof the Z and W masses.



Setion 6.1. One ontinuous extra dimension 696.1.2.2 Radiative orretions to the Z → bb deayThe ontributions to this proess will be parametrized using the F (a) funtion de�ned inEq. (3.53). The diagrams that ontribute an be obtained from the diagrams in Fig. 3.3replaing the fermioni modes inside the loops by the lines of the SM fermions
Q

(n)
t → tL U (n) → tR. (6.4)The result turns out to be [14℄

F (a) = −1 + 2a

∫ ∞

0
dx

x2

(1 + x2)2
coth(ax) ≈

(
2

3
log(π/a) − 1

3
− 4

π2
ζ ′(2)

)
a2 (6.5)In the expansion an be found a logarithm that relates the two sales: mt, the only mass wemaintain in the SM and M , the mass of the �rst KK mode. It is beause the KK-numberis not onserved, what permits in this kind of model the appearane of e�etive operators atthe tree level that modify the deay at the one-loop level in the e�etive theory1. Using thebound F (a) ≤ 0.39 at 95% CL derived in Se. 3.2.1, one an �nd the next bound to M

M = R−1
HG > 1 TeV 95% CL. (6.6)6.1.2.3 Radiative orretions to b→ sγThe ontributions in this senario ame from diagrams that an be obtained from the onesin Fig. 3.4 by performing the hange of Eq. (6.4). In addition, eah vertex between thefermions and the Higgs modes (the ones dotted in the �gure) get an extra √

2 fator, and asa onsequene all diagrams get an overall fator of 2. The ontribution per mode to the valueof the C7 oe�ient de�ned in Eq. (3.57) when also the new spetrum is taken into aountis
Cn7 = 2
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)] (6.7)and the value of C7 in this model is therefore
CHG

7 (MW ) = CSM
7 (MW ) +

∞∑

n=1

Cn7 (MW ) ≈ −0.195 + 0.265a2 − 2

9
a2 ln(a). (6.8)It is easy to hek that Cn7 vanishes for eah mode when its mass is taken to in�nity, as it shouldbe beause of the deoupling theorem. Notie again the presene of the logarithm relating thetwo sales. But what we need, is CHG

7 (mb), that an be obtained by using Eq. (3.60) providedwe know CHG
2 (MW ). This reeives ontributions at tree level from the virtual exhange of Wmodes that ould in priniple modify appreiably its value, see Fig. 6.1. Although the fulltower must be onsidered, the modi�ation to the SM result happens to be �nite and small

CHG2 (MW ) = 1 − M2
WR

2π2

3
, (6.9)whih represents a modi�ation at the level of 2 %, muh lower than the error we are om-mitting ignoring the ontribution of the W (n)

µ and W (n)
5 �elds inside the loops. The proess1For a more detailed explanation see Ref. [14℄.
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�W�(n)
b



s

Figure 6.1: The virtual exhange of the KK modes W±(n) modi�es the value of C2 with respet to theSM value.
b → clν will also a�eted at the tree level by an amount of the same order, therefore we willagain ignore it. In addition, CHG8 (MW ) will be of the same order and its ontribution will benegleted. When experimental bound on the value of C7(mb) is used, Eq. (3.68), one an �ndthe next bound for M , Ref. [103℄

R−1
HG > 1.2 TeV 95% CL. (6.10)6.1.2.4 Radiative orretions to the B0 −B

0 systemThis ase is fully studied in Ref. [103℄ were all the details are given. The diagrams an beobtained from the ones in Fig. 3.6 with the same modi�ations as in the previous setionsand also the orrespondent fators have to be onsidered. The ontributions to S(xt) an beparametrized in G(a), de�ned in Eq. (3.86)
GHG(a) = 2a2

∫ ∞

0
dx

x3

(1 + x2)2
coth2(ax) ≈ 1 − 1.143a2 − 4

3
a2 log(a) + 2a2 ln(ns), (6.11)where a = mtπR and ns = Λs/M . Λs omes from the ut-o� that has been performed inthe sum of the modes, see Ref. [14℄. Λs is the sale where the sale where the more ompletetheory starts to be important.Again the e�etive �eld theory point of view helps us to understand the results: the reasonfor the presene of ln(a) is the same as in the previous observables. There is now a new ln(ns)term, that ames from utting the summation on the KK modes, whih at the end is justutting the integration of the �fth omponent of the momentum from the point of view of the�ve dimensional theory. The presene of this logarithm implies that a full alulation in thetheory in whih HG is supposedly embedded ontains these logarithmi piees. But now, weannot diretly hek this beause the details of the orresponding full theory are unknown.Finally, using the last experimental determinations of Ref. [27, 28℄ the bounds an beextrated. The one oming from this observable is

R−1
HG > [560, 900] GeV 95% CL, (6.12)the variations are present beause we have to hoose a value for ns. We have taken ns = 10and ns = 100 respetively.
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Figure 6.2: The deay of the muon through virtual KK modes modi�es the value of GF .6.1.2.5 Γ(Z → ℓℓ) restritions. GF modi�ations.In UED and LUED this observable reeives ontributions at the one loop level and thereforeit will be dominated by the SM tree level ontributions, that is why it was not studied inthose ases. On the ontrary in HG (and later on in LHG) it reeives ontributions already athe tree level and ould be substantially modi�ed, see Ref. [104, 105℄. In the presene of KKmodes, the relation between the oupling onstant g,MW and the Fermi onstant as extratedfrom the muon lifetime, GF , is modi�ed at tree level due to the virtual exhange of the KKtower of W (n), Fig. 6.2:
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]
, (6.13)while for SM the relation an be obtained by setting R = 0 in the previous formula. The fatthat this relation is di�erent for HG and SM has as a onsequene that the preditions for

Γ(Z → ℓℓ), when expressed in terms of GF , are di�erent2
ΓHG = ΓSM

[
1 − (MWπR)2

3

]
. (6.15)Using the experimental bound [25℄ ∣∣ Γexp

ΓSM − 1
∣∣ < 0.0028 at 95% CL one gets

R−1
HG > 2.8 TeV 95% CL. (6.16)Inluding radiative orretions redues a bit this number, see Ref. [104℄.Summarizing, the results of all the observables are olleted in table 6.1, where it is learlyshown that the sale of the new physis in this senario is above the TeV.2The predition for Γ(Z → ℓℓ) when written in terms of g is exatly the same for HG and SM

Γ(Z → ℓℓ) =
MZ

24π

g2

c2
W

(g2
R + g2

L). (6.14)It is the di�erent relationship between g and the low energy parameter GF what auses the disrepany.
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Z → bb b→ s+ γ B

0 −B0 GFM(TeV) 1.0 1.2 [0.5,0.9℄ 2.8Table 6.1: Bounds oming from the di�erent observables to the mass of the �rst KK mode M .6.2 One lattiized extra dimension6.2.1 The modelThe steps are nearly the same as in the previous setion. It an be found that the spetrum isthe same provided one hanges mn → Mi, de�ned in Eq. (4.21), and onsiders the �nitenessof the spetrum, i.e. i = 0, 1, . . . , N − 1.Again for the ρ parameter the mt proportional orretions are the same as in SM. TheYukawa setor is the usual one, but with the fermions oupled only to the zero-th opy of theHiggs doublet
LY = −QLỸuHc

0uR + h.., (6.17)and by resorting to the mass �elds we �nd the important part for us
LY =

N−1∑

n=1

2mt

v
Vtj cos

( nπ
2N

)
tΦ̃+

nPLdj + h.. (6.18)The Φ̃+
n are the physial degrees of freedom. Notie that the oupling is the SM one with theaddition of an extra √

2 fator and the presene of a osine that vanishes in the limit of large
N . The osine appears beause there is only one Higgs �eld. Finally the ouplings with the
Z boson an be obtained straightforwardly

LZ =
g

2cw
Zµ

N−1∑

i=1

(−1 + 2s2w)[Φ̃+
i i∂

µΦ̃−
i ] + h.. (6.19)The absene of any osine is beause there are two Higgs �elds. Thus the ouplings of the Zare the same as for HG and the di�erenes are enoded in the spetrum. With this we areprepared for extrating the di�erent ontributions.6.2.2 BoundsTo extrat the bounds, Ref. [103℄, we an use the results derived for HG. The orrespondingresults an be found from the ones in HG by adding an extra fator of cos2(nπ/2N). Theosines appear only in the Yukawa verties, and in every diagram that we onsider there arealways two of these verties. In the ase of the the radiative orretions to the Z → bb deaythe result is

FLHG(a) = 1 +

∫ 1

0
dx

N−1∑

n=1

2(1 − x)rn cos2(nπ/2N )

(1 − x)rn + x
(6.20)

= 1 +

∫ 1

0
dx

N−1∑

n=1

2(1 − x)a2 cos2(nπ/2N )

(1 − x)a2 + 4(N − 1)2x sin2(nπ/2N)
(6.21)
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Figure 6.3: The bounds on M as a funtion of the number of sites, N , in the LHG senario.from the bound F (a) < 0.39 the bounds on M an be extrated as a funtion of N .The radiative orretions to b→ sγ an be easily found from the HG ones
CLHG

7 (MW ) = CSM
7 + 2

N−1∑

n=1

cos2(nπ/2N)Cn7 , (6.22)where Cn7 is de�ned in Eq. (6.7). The funtion that parametrizes the orretions to the B0−B0system is now
GLHG(a) = 1 + 2

∫ 1

0

N−1∑

n=1

2a2x(1 − x) cos2(nπ/2N) dx

4(N − 1)2 sin2(nπ/2N)(1 − x) + a2x
. (6.23)Finally, the branhing ratio Γ(Z → ℓℓ) is modi�ed to

ΓLHG = ΓSM

[
1 − 1

2

(
MWπR

N − 1

)2 N−1∑

n=1

cos2(nπ/2N)

sin2(nπ/2N)

]
. (6.24)With these expressions it is possible to extrat bounds to the �rst mode as a funtion ofthe number of sites N . These bounds are displayed in Fig. 6.3, where it is shown that theontinuous limit is rapidly reahed. If the number of sites is small, the bound an be reduedby a fator of about 20%-40%, thus allowing new modes ranging between 1.5 − 2.0 TeV.
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Chapter 7Outlook and onlusionsThe possibility of the existene of more dimensions di�erent than those we an experienediretly with our senses has been for a long time a very ative �eld of interest for physiists.They were initially introdued to ahieve a more elegant formulation of the equations ofnature, soon the extra dimensions beame a key piee in important theories like supergravityor string theory, whih tried to give a quantum treatment to gravity. It was realized in thelatter that, under some assumptions, the extra dimensions ould be of the size as low asthe TeV without ontraditing any of the experimental results. Extra dimensions have beenalso studied using the quantum �eld theory formalism, and many extensions of the SM havebeen proposed. In general, the sale assoiated with the extra dimensions in these extensionsis again of the order of TeV, what o�ers a relatively aessible, and rih, phenomenology forfuture experiments. Plaing a new sale at the TeV has important onsequenes: it ould solvethe hierarhy problem, senarios of grand uni�ation are modi�ed beause the running of theoupling onstants is greatly modi�ed above this sale, the possible loalization of the wavefuntions for the di�erent fermions in the spae of the extra dimensions ould be the originof the fermion masses, even the value of the osmologial onstant ould be modi�ed, just toite some. This variety of phenomena explains the interest in extra dimensional theories inthe last years.Among the above mentioned extensions of the SM, there is one of speial interest in whiha single extra dimension is onsidered and all the �elds propagate through it, a fat that givesit the name �universal extra dimension�. In this senario there are no tree-level modi�ationsto the SM results, therefore all the orretions are, at least, one-loop suppressed. This outomeis a onsequene of the loal extra-dimensional Lorentz symmetry of the theory, whih impliesthe existene of a �onserved� number alled Kaluza-Klein number. Due to this suppression inthe SM modi�ations, the sale of the new physis an be as low as hundreds of GeV, learlya hallenging situation for the next generation of aelerators.In the �rst part of this work we have studied in detail the phenomenology of this senario.In partiular, we have onentrated on observables that display a strong dependene on themass of the top-quark, mt, beause this enhanes the orretions oming from the new physis:
Z → bb, ρ parameter and B0−B0 mixing. We have also studied the proess b→ sγ; althoughit does not present a strong dependene with mt, the relative importane of the new physis isalso enhaned beause the SM ontribution to this transition is suppressed. This is so beausethis proess is forbidden at tree level due to gauge invariane and is only allowed throughradiative orretions. The details of the study are given in Chapter 3 and the bounds on the75



76 Chapter 7. Outlook and onlusionssize of the ompati�ation sale or, equivalently, on the mass of the �rst Kaluza-Klein modeare given in table 3.1.We have also studied a non-universal senario, in whih only the Higgs and gauge bosons ofthe SM are allowed to propagate through the extra dimension, we have given this senario thename of HG. We have alulated the new physis ontributions to several one loop proesseswhih depend strongly on the top-quark mass and used them to set bounds on the mass ofthe lightest KK mode, M . The results are summarized in table 6.1 and ompared with otherrelevant bounds found in the literature.In the HG ase the new physis sale should be above 1 TeV but surprisingly in the UEDase it an be well below the TeV. One might think that the sale for UED should be biggerthan for HG sine UED represents a bigger modi�ation to SM than HG (beause in HG onlyHiggs and gauge bosons propagate in the extra dimension). Nevertheless, the ontributionsof the fermioni KK modes in the UED ase are suh that produe several anellations inthe amplitudes. The reason is the above mentioned KK number onservation due to the loalLorentz symmetry. The lak of this symmetry in the HG ase permits some observables to bemodi�ed already at the tree level; as a onsequene the most restritive bound omes from avery well measured quantity, GF .These extra dimensional models are non-renormalizable beause the oupling onstantshave anonial dimensions of mass to some negative power. This does not mean at all thatthese models should be wrong, on the ontrary, this indiates that they must be regarded ase�etive �eld theories that are valid only below some sale at whih new physis should enter toorret the bad behaviour of the theory. There is a lass of string theories whih ould providesuh a new physis, however, this is only one among the possible ultraviolet ompletions.Another kind of ompletion, proposed initially in Ref. [30, 31, 32℄, used a disretization orlattization of the �fth dimension. In these models, the number of modes is �nite and theirmasses are modi�ed with respet to the ontinuous ases. As a possible extension of the SM,it is also interesting to study the phenomenology that stems from these senarios. In this workwe have studied the lattiized versions of UED and HG, alled LUED and LHG. Among theresults we obtained, we found that the preditions are the same as in the respetive ontinuousases when the extra dimension is lattiized in a relatively small number of (four dimensional)sites. For a very small number, the results show that in all ases the natural sale ouldbe further lowered with respet to the ontinuous senarios what makes more aessible thenew physis for future experiments. The sale an be redued by fator of about 10%-25%,thus allowing new modes ranging between 320 − 380 GeV in the ase of UED and of about20%-40%, with the new modes ranging between 1.5− 2.0 TeV in the ase of LHG. The detailsan be found in Fig. 4.2 and Fig. 6.3.On the other hand, it has been suggested that the existene of extra dimensions ould makethe gauge ouplings to run as a power of the energy sale instead of the usual logarithmirunning. This is a very interesting property beause Grand Uni�ation Theories in extradimensions ould ahieve uni�ation at muh lower energies (few TEV) than the usual fourdimensional GUT's. This would allow us to test uni�ation at the planned aelerators, learlya very exiting possibility. This senario is also hallenging from the theoretial point of viewbeause gauge ouplings in extra dimensions are dimensionful and gauge theories in extradimensions are not renormalizable. Therefore, the behaviour of ouplings an depend on theapproah to renormalization of non-renormalizable theories: Wilsonian e�etive �eld theoryor ontinuum e�etive theory. We have attempted a pure ontinuum e�etive �eld theoryapproah based in dimensional regularization. In this approah the running of ouplings, at



77most, logarithmi and power orretions are reovered as mathing onditions at the (extra-dimensional) GUT sale. Therefore, to ompute them one needs to know the omplete details(full spetrum and pattern of symmetry breaking) of the GUT model. This is quite di�erentfrom the usual four-dimensional GUT's that an be tested to good auray without knowingthe details of the GUT model.To onlude, we have studied the phenomenology of two extra-dimensional models withall or only part of the SM partiles propagating in the extra dimensions. We have also studiedtheir lattiized versions. We have foused on one-loop e�ets that display a strong depen-dene on the top-quark mass whih ontribute to observables whih are measured with goodpreision. For the models onsidered, those e�ets provide the best limits on the ompati-�ation radius. We have also studied the question of power-law running in extra dimensionsby using the ontinuum e�etive �eld theory framework with dimensional regularization anddisussed its impat in (extra-dimensional) GUT's. We found that, at di�erene from thefour-dimensional ase, uni�ation an depend strongly on the details of the GUT model if itis dominated by power orretions.
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