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ABSTRACT

Phase self-calibration (or selfcal) is an algorithm often used in the calibration of interferometric observations in astronomy. Although
a powerful tool, this algorithm presents strong limitations when applied to data with a low signal-to-noise ratio. We analyze the
artifacts that the phase selfcal algorithm produces when applied to extremely noisy data. We show how the phase selfcal may generate
a spurious source in the sky from a distribution of completely random visibilities. This spurious source is indistinguishable from a real
one. We numerically and analytically compute the relationship between the maximum spurious flux density generated by selfcal from
noise and the particulars of the interferometric observations. Finally, we present two simple tests that can be applied to interferometric
data for checking whether a source detection is real or whether the source is an artifact of the phase self-calibration algorithm.
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1. Introduction

Phase self-calibration (or selfcal) is an algorithm often used
in the calibration of radio astronomical data. It was intro-
duced by Readhead & Wilkinson (1978) and Cotton (1979),
and it has been essential for the success of Very Long
Baseline Interferometry (VLBI) imaging. Also, the antenna-
based calibrations obtained from the Global Fringe Fitting al-
gorithm (Schwab & Cotton 1983) are equivalent to a phase
self-calibration. The phase selfcal will also be an algorithm
widely used with future interferometric instruments, such as
the Atacama Large Millimeter Array (ALMA) or the Square
Kilometre Array (SKA), now under construction or planned.
Optical interferometric observations (like those in the Very
Large Telescope Interferometry, VLTI) will also eventually ben-
efit from some form of selfcal, although closure phases and am-
plitudes are measured in optical interferometry in a very differ-
ent way than in radio. Thus, the statistical analysis presented
here may need some substantial changes to rigorously describe
the probability of false detections by optical interferometers.

Given that part of the interferometric observations obtained
from all those instruments may come from very faint sources,
it is important to take into account the undesired and uncontrol-
lable effects that the instrumentation and/or the calibration and
analysis algorithms applied to the data could introduce in the in-
terferometric observations. A deep study of all our analysis tools
and their effects on noisy data is essential for discerning the re-
liability of detections of very faint sources. Some discoveries
made by pushing the interferometric instruments to their sensi-
tivity limits could turn out to be the result of artifacts produced
by the analysis tools.

The main limitations of the phase self-calibration algorithm
have been analyzed in many publications (e.g., Linfield 1986;
Wilkinson et al. 1988). It is well known that an unwise use of

selfcal can lead to imperfect images, even to the generation of
spurious source components, elimination of real components,
and deformation of the structure of extended sources. In this pa-
per, we focus on the effects that phase self-calibration produces
when applied to pure noise. We show that selfcal can generate a
spurious source from pure noise, with a relatively high flux den-
sity compared to the rms of the visibility amplitudes. We ana-
lytically and numerically study how the recoverable flux density
of such a spurious source depends on the details of the observa-
tions (the sensitivity of the interferometer, the number of anten-
nas, and the averaging time of the selfcal solutions). Finally, we
study the effects of phase self-calibration applied to the visibili-
ties resulting from observations of real faint sources, instead of
pure noise. We present two simple tests that can be applied to
real data in order to check whether a given faint source is real or
not, and apply these tests to real data, corresponding to VLBI ob-
servations of the radio supernova SN 2004et (Martí-Vidal et al.
2007).

2. Basics of phase self-calibration

The basics of phase self-calibration can be found in many publi-
cations (e.g., Readhead & Wilkinson 1978; Schwab 1980). Here,
we explain the essence of this algorithm in a few lines. Let us
suppose that we have made an interferometric observation us-
ing a set of N antennas. We obtain one visibility, Vi j, for each
baseline, that is, for each pair of antennas (i, j). Let us call φi j
the phase of the visibility Vi j. Any atmospheric or instrumental
effect on the optical path of the signals that arrived to antennas i
and j will affect the phase φi j in the way:

φi j = φ
str
i j + φ

atm
i − φatm

j , (1)
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where φatm
l represents all the undesired (i.e., atmospheric and

instrumental) contributions to the optical path of the signal re-
ceived by the antenna l and φstr

i j the contribution to the phase that
comes purely from the structure of the observed source, that is,
the so called source structure phase. It can be easily shown that
the quantities known as closure phases, and defined as (Jennison
1958; Rogers et al. 1974):

Ci jk = φi j + φik − φ jk (2)

are independent of φatm
l . That is, the closure phases Ci jk are only

defined by the structure of the observed source. Thus, they are in-
dependent of any atmospheric or instrumental contribution that
may affect the signals received by the antennas of the interfer-
ometer. The phase self-calibration algorithm takes advantage of
the closure phases to estimate the undesired antenna-dependent
contributions φatm

l . In short, the phase selfcal finds which set of

antenna-dependent quantities φgain
l (called phase gains) generate

the set of phases:

φself
i j = φi j − φgain

i + φ
gain
j , (3)

where φself
i j are the phases that better represent the source struc-

ture given by the closure phases Ci jk. In the ideal case, φgain
l =

φatm
l and φself

i j = φ
str
i j . The process from which the values φgain

l
(for l = i, j) are obtained is called hybrid mapping, and its ex-
planation can be found in many publications (e.g., Cornwell &
Wilkinson 1981). Here, suffice to say that the phase gains of the
antennas are obtained from a least-square fit of the raw visibili-
ties to the source model obtained from the mapping.

The hybrid mapping is an iterative process from which the
structure of the source model is refined step by step. Often, the
model used in the first iteration of hybrid mapping is a point
source located at the center of the map (obviously, the flux den-
sity of this point source will not affect the phase calibration).
The successive steps of hybrid mapping and selfcal correct this
point source model until the structure that better represents all
the closure phases is obtained.

3. Probability distribution of the visibilities due
to pure noise

When an interferometer observes a given source with a flux den-
sity well below the sensitivity limit of its baselines (that is, when
the interferometric data contain only noise), both the real and
imaginary parts of the resulting visibilities follow Gaussian dis-
tributions, centered at the origin. The amplitudes and phases of
the visibilities follow distributions different from Gaussian. It
can be shown that, for each baseline, the probability distribution
of the phases is uniform between −π and π, and that instead the
distribution of the amplitudes is given by:

g(A) =
A

σ2
i j

exp

⎛⎜⎜⎜⎜⎜⎝− A2

2σ2
i j

⎞⎟⎟⎟⎟⎟⎠ (4)

where g(A) is the probability density of the amplitudes and σi j is
the width of the Gaussian distributions of the real and imaginary
parts of the visibilities of the baseline (i, j). The width σi j is
related to the thermal noise of the baseline (i, j). We assume, for
simplicity, that all the baselines of the interferometer have the
same value of σ. It can be shown that the rms of the visibility
amplitudes of a pure noise signal is ρ =

√
2σ and that the mean

amplitude, 〈A〉, is
√
π/2σ, different from zero.

4. Probability of generating a spurious source
from pure noise

Given that the real part of a visibility with phase in the range
(−π/2, π/2) is positive, all the visibilities with phases in that
range bring a positive mean flux density to the map. We call
phase close to zero to a phase in the range (−π/2, π/2) and phase
distant from zero to a phase outside that range.

The distribution of closure phases is uniform between−π and
π, as it is also the case for the distribution of phases. This means
that there is a subset of closure phases that by chance are close to
zero, being compatible with a point source. However, there are
also closure phases distant from zero, which are totally incom-
patible with a compact source. If self-calibration is not applied
to the data, then the uniform distribution of phases (and closure
phases) will result in a noisy map with no source defined in it.
But if a single iteration of phase self-calibration is applied, there
is a selection process of the closure phases in the calibration,
which may generate a spurious source with a flux density com-
parable to the rms of the amplitudes (which can be much higher
than the rms of the image), as we show below.

For each scan, the effects of the least-square fit described in
Sect. 2 can be understood in the following way: selfcal searches
for the visibilities corresponding to the antennas most commonly
appearing in the closure phases that are close to zero (which
usually correspond to phases that can be modelled with a point
source). Then, selfcal minimizes the phases of such visibilities
by calibrating those antennas, leaving all the other visibilities
with the phases dispersed between −π and π. In other words, the
phases of the visibilities with large closure phases contribute to
increase the value of the χ2 at the minimum, but the position
of such minimum only depends on the visibilities with phases
that can be modelled with a point source. That is, all the visi-
bilities susceptible of producing a compact source are calibrated
and their phases concentrate around zero. All the other visibili-
ties tend to have their phases uniformly distributed between −π
and π, thus generating, after the Fourier inversion, a null mean
flux density in the map. Thus, selfcal always produces a positive
bias in the mean flux density of the map, given that selfcal only
acts, effectively, on the phases that can be approached to zero,
because their corresponding closure phases are close to zero.

One might think that it is very difficult for an antenna to be
involved in a large number of closure phases close to zero, given
that the distribution of phases is uniform. One might think that,
in average, a given antenna is involved in the same number of
closure phases that are close to zero than in the closure phases
that are distant from zero. In such case, it would be impossible
for selfcal to select which antenna should be calibrated, given
that all the antennas participating in each scan would have the
same chances for being calibrated. But this is only true in aver-
age. In the distributions of all the interferometric observations,
there are statistical fluctuations, which are always used by self-
cal for the generation of a spurious point source. For a given
antenna i, the probability of finding n closure phases (in which
that antenna is involved) close to zero is:

Pi(n) =
1

2N′
(N′)!

n!(N′ − n)!
(5)

where N′ = (N − 1)(N − 2)/2 is the total number of closure
phases in which antenna i is involed. (Notice that even though
all closure phases are not independent, the closure phases with
one common antenna are.) Thus, there is a finite probability of
finding an antenna that appears in more than N′/2 closure phases
close to zero. In such cases, the phases of the baselines in which
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the antenna i appears will be minimized with success, generat-
ing a positive mean flux density in the map. Actually, even the
cases in which n < N′/2 can also be used by selfcal for the
generation of a spurious point source. In such cases, the closure
phases in which antenna i appears will tend to gather around −π
and π, meaning that there are other antennas that will appear in
a large number of closure phases close to zero (i.e., the anten-
nas belonging to the closure phases distant from zero in which
antenna i appears).

In short, there are always statistical fluctuations in the pure
noise distribution of phases that can be used by selfcal to produce
(by a selection process of the antennas most commonly being
involved in the closure phases close to zero) a point source with
a spurious source flux density.

It must be said that Global Fringe Fitting, when applied to
noisy data, can also generate a spurious source from pure noise,
given that this algorithm also finds antenna-based calibrations
for adjusting the interferometric fringes of all the baselines in
each scan. The spurious source is generated as long as the min-
imum SNR of the fringes to be considered in the fit is set to
a small value (lower than 2 or 3)1. In those cases, the Fringe
Fitting would work on correlation peaks (fringes) produced, in
many cases, by spurious noise fluctuations. Then, by the same
reasons given above, there would be a relatively high probability
of generating a spurious point source from pure noise.

5. Dependence of the flux density of the spurious
source on the characteristics of the observations

In this section we consider how the flux density of the spurious
source generated by selfcal depends on the parameters defining a
set of observations. The parameters that we consider are the sen-
sitivity of the array (for simplicity, we assume the same sensitiv-
ity for all the baselines of the interferometric array), the number
of antennas of the interferometer, and the averaging time of the
selfcal solutions. For the case of the Global Fringe Fitting algo-
rithm, the averaging time of the solutions is equal to the duration
of the scans.

5.1. Numerical study

We generated a set of synthetic interferometric data with the pro-
gram fake of the Caltech Package (Pearson 1991). We gener-
ated 6 h of observations using a set of 20 antennas. All these
antennas had the same diameters (25 m) and the same system
temperatures (60 K). The correlator integration time was set to
2 s. The source model used by fake consisted on a single point
source with a flux density of 1 nJy (of course, completely unde-
tectable by the interferometer). The data generated this way thus
contain 6 h of pure noise observations made at 20 identical an-
tennas under identical conditions. The mean of all the visibility
amplitudes is 106 mJy.

We used the program difmap (Shepherd et al. 1995) for hy-
brid mapping. We applied the natural weighting scheme to the
visibilities, for sensitivity optimization, and applied an initial
selfcal using a centered point source. The hybrid mapping steps
were repeated until the χ2 of the fit of selfcal arrived to conver-
gence. Then, we deconvolved the resulting point source using

1 Even though a SNR of 2−3 is not generally used in the calibration
of typical observations (being SNR cutoffs of ∼5 more common), low
SNR cutoffs may be applied with very small delay/rate windows, say,
after a phase-reference pre-calibration.
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Fig. 1. Flux densities of an spurious point source, Fsp, in units of ampli-
tude rms, ρ, recovered from hybrid mapping using pure noise synthetic
visibilities, as a function of the number of antennas (N) and the averag-
ing time of the selfcal solutions (t). The lines correspond to our model
(Eq. (7)) and the dots to the numerical simulations.

the CLEAN algorithm to see how much flux density was gener-
ated by selfcal. This process was repeated for different numbers
of antennas and for different averaging times of the selfcal so-
lutions. The spurious point source flux densities obtained in all
these cases are shown in Fig. 1 as filled circles.

5.2. Analytical study

When the interferometer observes only noise, the sensitivity of
the baselines defines the value of the standard deviation, σ, of
the Gaussian distributions of the real and imaginary parts of the
visibilities. As the sensitivity increases, the thermal noise of the
baselines decreases, decreasing also the value of σ. Given that
selfcal has to do only with phases and leaves the amplitudes un-
altered, the recoverable flux density of the spurious source de-
pends linearly on the rms of the amplitudes, which in turn also
depends linearly on the value of σ. Thus, an increase in the sen-
sitivity of the interferometer decreases the amount of spurious
flux density recoverable from the data using selfcal. The con-
stant factor in the ratio between the flux density recovered and
the rms of the visibility amplitudes depends on the method used
to estimate the flux density (i.e. different deconvolution algo-
rithms or modelfitting to the visibilities). In our case, from the
numerical study described in the previous section, we determine
it to be 0.907 ± 0.002.

The averaging time of the selfcal solutions also has an effect
on the spurious source flux density. If we have one observation
every t0 seconds (usually, t0 is 2 s) and find only one solution
of selfcal every t seconds, with t > t0, then the spurious source
flux density decreases. Finding a single solution of selfcal every
t seconds is equivalent to averaging all the observations in bins
of t seconds and, afterwards, self-calibrating the resulting visi-
bilities. When we average the visibilities in blocks of t seconds,
we are averaging separately the real and imaginary parts of the
visibilities, which follow Gaussian distributions. The effect of
this average is that the standard deviations of the resulting distri-
butions decrease by a factor

√
t/t0, because of the Central Limit

Theorem.
The dependence of the spurious source flux density on the

number of antennas is more difficult to find. There are lots of
possible combinations of phases and baselines that help selfcal
to generate a spurious source, and each one of these combina-
tions has a different weight in the final spurious flux density.
We can use a simplified phenomenological model to find out the
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recovered flux density as a function of the number of antennas.
In principle, the recovered flux density depends directly on how
well the point model fits the data. A good indicator of the ad-
justability of the data, with the phases randomly distributed, is,
for each scan, equal to the number of visibility phases divided by
the number of phase gains to fit. That is, the number of phases
per parameter. When the number of phases per parameter in-
creases, one single parameter must account for the minimization
of more phases, and the quality of the fit decreases. In our case,
the number of parameters is equal to N − 1, given that one an-
tenna (the reference antenna) has a null phase gain by definition.
Thus, the number of phases per gain to be fitted is:

#phases
#gains

=
N(N − 1)

2
1

N − 1
=

N
2
· (6)

We can now look for a model of the dependence of the recov-
ered spurious source flux density on the number of antennas us-
ing the quantity N/2 as variable. From the numerical simulations
described in the previous section, we have found that the spuri-
ous source flux density is fitted very well using the simple model
Fsp ∝ (N/2)γ, with γ = −0.413 ± 0.001.

Taking these considerations into account, the recoverable
flux density using selfcal on a set of randomly distributed data
can be written as:

Fsp = 0.907ρ

√
t0
t

(N
2

)−0.413

(7)

where Fsp is the spurious source flux density that can be gener-
ated by selfcal, ρ is the root-mean-square (rms) of the visibility
amplitudes, t0 is the averaging time used in the correlator (typ-
ically, t0 = 2 s), t is the averaging time of the selfcal solutions,
and N is the number of antennas of the interferometer. We note
that the duration of the whole set of observations does not af-
fect Fsp, since this flux density depends on the ratio between the
number of phases close to zero and the number of phases distant
from zero, but does not depend on the total amount of visibilities
used in the Fourier inversion. This model is shown in Fig. 1.

5.3. The use of selfcal in specific situations

Equation (7) gives an estimate of the contribution of the artifacts
of selfcal to the flux density of a source obtained by calibrating
the antennas with the hybrid mapping technique. For cases of
high SNR data, such contribution to the total flux density of the
sources is negligibly small. However, when the flux density of a
source is comparable to the rms of the visibility amplitudes, care
must be exercised with the use of selfcal or the Global Fringe
Fitting algorithm.

We note that in the worst situation for the use of selfcal (i.e.,
3 antennas and t = t0) the amount of spurious source flux den-
sity is as large as 76% of the rms of the visibility amplitudes. For
10 antennas (the case of the VLBA) the recoverable flux density
decreases to 46% of the rms (and can be lower if we set t > t0).
For interferometers with a large number of antennas, the amount
of spurious source flux density is, of course, smaller. For exam-
ple, if we extrapolate the results shown in Fig. 1 to 50 antennas
(the case of ALMA), the spurious source flux density generated
by selfcal would be 24% of the rms of the visibility amplitudes,
using t = t0.

All these results assume the same sensitivity for all the base-
lines. In real cases, each baseline has its own sensitivity, with
the longest baselines noisier than the shortest ones. The use of
data from all the baselines in the fit can worsen the situation. A

good alternative for avoiding the spurious source generated by
selfcal or, at least, to make its flux density smaller is to flag or
downweight the longest baselines in the fit and/or to increase the
statistical weight of the data coming from the most sensitive an-
tennas of the array. Nevertheless, even doing so, the statistical
fluctuations of the closure phases will always tend to make, after
the use of selfcal, a spurious source with a considerably large
flux density.

A better way to calibrate faint source data is using the phase-
reference technique (e.g., Beasley & Conway 1995). When us-
ing this technique, scans of a strong (reference) source are in-
troduced between the scans of the faint (target) source. Then,
the antenna gains are determined from the observations of the
strong source and then interpolated to the scans of the faint (tar-
get) source. This technique is rather insensitive to the artifacts
of selfcal and the probability of generating a fake signal from
noise is practically zero. This is so, because the calibration of
the target source comes from the analysis of data coming from
another source (the reference source). Therefore, the noise in the
data of the faint source does not affect the antenna calibrations.
However, it is common to use the antenna gains determined from
the phase reference as an a priori calibration, performing then a
Global Fringe Fitting on the target source data using small search
windows (based on the calibration from the reference source
data) or applying self-calibration to the target visibilities in order
to improve the dynamic range of the final image. In some cases,
this might be malpractice, because the probability of generating
a spurious source flux density from noise appears anew with full
strengh, wasting all the benefits of the phase referencing.

6. Tests of the reliability of a source detection
from noisy data

In this section we present two simple tests that can be per-
formed on real data in order to check the reliability of a possible
source detection, or to check if part of the flux density of a de-
tected source may come from artifacts of selfcal. These tests are
only meaningful when they are applied to extremely noisy data.
However, the application of these tests to high SNR data can
still give us an idea of the possible contribution of the artifacts
of selfcal to the flux density recovered from a source.

We assume, in all our discussion, that the detected source is
compact enough to be considered point-like, without any impor-
tant loss of precision. As in the previous sections, to simplify the
expressions we also assume that all the baselines of the interfer-
ometer have the same sensitivity.

6.1. Test based on the averaging time of the selfcal solutions

The dependence of the spurious source flux density on the aver-
aging time of the selfcal solutions is determined by the depen-
dence of the standard deviation σ on the averaging time. That
dependence translates into Eq. (7). However, the flux density of
a real source in the data is independent of the averaging time
of the selfcal solutions. We can use this condition to estimate
the flux density of a (possibly real) source detected under crit-
ical circumstances. If we apply phase self-calibrations to a real
data set for different averaging times, t, of the selfcal solutions,
the flux densities recovered after each self-calibration, Fself , are
given by the formula:

Fself = Fsp + Freal =
K√

t
+ Freal (8)
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Fig. 2. Theoretical dependence of the flux density of a real observed source (in units of the rms of the visibility amplitudes), as a function of “π/2
minus the mean absolute values of the closure phases” (left side) and as a function of the mean cosine of the closure phases (right side). These
theoretical behaviors have been obtained from Eq. (10).

where K (related to the specifics of the interferometer) and Freal
(an estimate of the flux density of the real source) are parameters
to be fitted.

6.2. Test based on the distribution of closure phases

In the case that the signal of a real source is included in the vis-
ibilities, the probability distributions of the real and imaginary
parts are still Gaussian, but the mean value of the real part of
the visibilities (if such visibilities are well calibrated) will be
equal to the flux density of the real source. Then, it can be easily
shown that the probability distribution of the resulting visibility
amplitudes and phases is:

g(A, φ) =
A
σ2

exp

(
− (A + F)2

2σ2

)
exp

(AF cosφ
σ2

)
(9)

where g(A, φ) is the probability density of amplitudes (vari-
able A) and phases (variable φ), F is the flux density of the real
source, and σ is the width of the distributions of the real and
imaginary parts of the visibilities.

Equation (9) turns into Eq. (4) for F = 0. When F is dif-
ferent from zero, the distribution of phases is not uniform. As F
increases, the phases gather around zero in a Gaussian-like man-
ner. The distribution of amplitudes also changes, increasing the
ratio between the rms of the visibility amplitudes and σ.

How could the information provided by Eq. (9) be used to
check the reliability of a possible source detection? The closure
phases are robust quantities that can be used to check the reli-
ability of a source detection. The closure phases are sensitive
to F and are not affected by the phase self-calibration. The dis-
tribution of closure phases tends to gather around zero if there
is signal of a real source in the data (and particularly so if the
source has no structure) and is uniformly distributed if there is
only noise in the data. From the definition of closure phase (see
Eq. (2)) we conclude that, if the visibility phases are well cali-
brated, the probability distribution of closure phases is equal to:

c(β) =
∫ π

−π

∫ π

−π
p(φ1)p(φ2)p(β − φ1 − φ2)dφ1dφ2 (10)

where c(β) is the probability density of the closure phase, β, and

p(φ) =
∫ ∞

0
g(A, φ)dA. (11)

Let us ellaborate on this: for the case of a perfect calibration,
the phases of data from a given baseline (i, j) are independent

of the phases from any other baseline, given that all the contri-
butions to φi j come from noise, which is uncorrelated between
the different baselines. Thus, the probability distribution func-
tion of any linear combination of visibility phases (as it is the
case of the closure phase) is equal to the product of the proba-
bility distributions of the visibility phases. However, for the case
of a non-perfect calibration, in which selfcal has introduced a
spurious source flux density in the data, the distributions of the
phases from the different baselines will no longer be indepen-
dent and Eq. (10) will not quite apply. In such cases, the phase
distributions, p(φ), will be more peaked around zero, but corre-
lations will appear among the phases of the different baselines.
Therefore, the probability distribution function of a linear com-
bination of phases will not be equal to a simple product of p(φ).
Nonetheless, the correlations between baselines that selfcal in-
troduces in the data keep the distribution of closure phases, c(β),
unaltered. That is, even after a selfcal iteration has generated a
spurious source in the map, the distribution of closure phases
is still equal to c(β), as computed from the distribution of the
phases, p(φ), corresponding to perfectly calibrated data.

This invariance property of the closure phase distribution,
c(β), can be used to check the reliability of a possible source de-
tection. In Fig. 2, the theoretical flux density of a real source (in
units of the rms of the amplitudes, ρ) is shown as a function of
the mean absolute value of the closure phases and as a function
of the mean cosine of the closure phases. Both quantities are di-
rectly related to the deviation of the closure phase distribution
from a uniform distribution. If the closure phases are uniformly
distributed between −π and π, the average of their absolute val-
ues will be equal to π/2 and the mean cosine will be equal to
zero. Any concentration of closure phases around zero (i.e., the
existence of any real source in the data) will result in a decrease
of the first value and an increase of the second.

If a faint source is detected and the reliability of the detec-
tion needs to be checked, the average of the absolute values of
the closure phases of the observations (or the average of their
cosines) can be computed and compared in Fig. 2 to determine
how concentrated around zero the closure phases are. This way,
it can be seen whether the flux density of our detection is con-
sistent with a real source or not.

6.2.1. Comments on the closure-phases test

At this stage, it must be said that, even though the self-calibration
does not affect the closure phases, a time average of a set
of self-calibrated visibilities will change the closure phase
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distribution. That is, if selfcal generates a spurious source from
noise and the visibilities are averaged in time bins of t seconds,
with t > t0, the closure phase distribution changes and the result-
ing closure phases concentrate around zero, creating the effect of
a source that is completely indistinguishable from a real one us-
ing any test.

For very small values of the flux density F, this test is not as
good as the first one. As we can see in Fig. 2, the closure phases
do not dramatically change their distribution for flux densities
in the range between 0 and ∼15% of the rms of the visibility
amplitudes. For tentative detections under critical circumstances
in that range, this test could lead us to the wrong conclusion
about the reliability of a source detection. Looking at it from a
different viewpoint, Fig. 2 provides an interesting lesson: for a
given dataset, there can exist a real faint source (appearing in a
map with a dynamic range of 6 or more) even if the distribution
of closure phases is uniform, that is, even if the closure phase
distribution is noise-like. Thus, a conclusion on the reliability of
a source detection based only on the closure phase distribution
being extremely noisy, is not definitive.

Another thing worth-noticing is that this test assumes the
same sensitivity for all the antennas and a source compact
enough for generating closure phases close to zero even for
the longest baselines (which may not be the case, specially for
sources with a very low flux density per unit beam). These as-
sumptions impose limitations to the use of this test. However, it
could still be applied by restricting its use to the shortest base-
lines with similar antennas. For an array with a large antenna,
the closure phases in which that antenna appears could still be
used (for sensitivity optimization in the closure phase distribu-
tion), but then the flux density estimated from the amplitude rms
might have a bias produced by the very different rms in different
baselines.

We must also note that in cases of high SNR, the rms of
the visibility amplitudes is no longer related only to the thermal
noise of the baselines (the flux density of the source affects the
value of the rms), and the fraction F/ρ shown in Fig. 2 should be
accordingly corrected. For cases of high SNR, the quantity that
will substitute ρ in the fraction F/ρ shown in Fig. 2 is

√
ρ2 − F2.

6.3. Application to real cases

Real data do not obey the simplifying assumptions that we have
used in the earlier sections. The baselines of a real interferome-
ter have different sensitivities, which also vary in time. Thus, in
order to check the reliability of a source detection from real data
we must search a subset of observations in which the sensitivity
of the antennas is approximately constant. Moreover, we must
only work with the subset of most sensitive antennas of the in-
terferometer. If there is one antenna in our interferometer that is
clearly more sensitive than the others, we should compute only
the average of the closure phases in which this more sensitive
antenna appears, in order to insure the possible signature of the
source in the closure phase distribution. In what follows, we ap-
ply our reliability criteria to real data corresponding to the radio
supernova SN 2004et (Martí-Vidal et al. 2007).

6.3.1. Supernova SN 2004et

We observed this supernova on 20 February 2005. From all data
reported in Martí-Vidal et al. (2007), we have chosen the fol-
lowing subset of antennas: Brewster, Fort Davis, Green Bank,
Hancock, Kitt Peak, and Owens Valley. We have only computed

the closure phases in which the antenna Green Bank appears, and
we have used data only from 14 h to 20 h (UT). These choices
are based on the quality of the data for our purposes (i.e., the sta-
bility of the antenna sensitivities, which we assume proportional
to the system temperatures registered for each station).

First test: we self-calibrated the SN 2004et data using differ-
ent averaging times, ranging from 2 to 120 s (roughly, the dura-
tion of one scan). The fit of the flux densities recovered from the
SN 2004et data as a function of the averaging time of the selfcal
solutions, Eq. (8), results in a value of Freal = 0.90 ± 0.13 mJy.
This value is clearly higher than zero, indicating that there is a
real signal in the data. This value is also close to the flux density
of SN 2004et reported by Martí-Vidal et al., 0.87 ± 0.03 mJy, re-
covered from phase referenced data with a deconvolution using
CLEAN.

Second test: even though we know that it is not quite appro-
priate, we have also performed this test on the SN 2004et data.
The flux density of SN 2004et is too low compared to the rms of
the visibility amplitudes (∼20 mJy) for obtaining a good result
with the test of the closure phase distribution. The average value
of the cosines of all the closure phases considered in these obser-
vations is equal to 0.005 ± 0.002. This average value is slightly
higher than 0. The average of the absolute values of the closure
phases is 0.0065 ± 0.0020. From Fig. 2 we estimate a flux den-
sity of the supernova of 0.18± 0.08 times the rms of the visibility
amplitudes, ρ, used in our computations, which, as said above, is
∼20 mJy. Hence, the estimated flux density of the (real) source
in the data is, then, 3.8 ± 1.6 mJy. This value is too high, but
compatible (at a 2-sigma level) with the flux density estimated
from the other reliability test. As expected, also the uncertainty
of the flux density estimated is much higher in this case.

Thus, the reliability tests for this source are successful. We
must note that Martí-Vidal et al. calibrated the data of SN 2004et
using the phase-reference technique, in which they interpo-
lated the antenna gains obtained from the observations of the
source J2022+614 to the scans of the supernova. These authors
did not refine afterwards such a calibration applying a Global
Fringe Fitting to the supernova data. This procedure assured a
reliable detection of the supernova. These authors did not apply
any other calibration (selfcal) to the phased-referenced super-
nova data, in order to avoid any possible artifact introduced by
the use of selfcal.

7. Conclusions

We have analyzed the consequence of the phase-self-calibration
algorithm when it is applied to extremely noisy data. We have
studied how this algorithm and the statistical fluctuations of the
visibility phases can create a spurious source from pure noise.
The flux density of the spurious source can be a considerable
fraction of the rms of the visibility amplitudes. The applica-
tion of other other antenna-based calibration algorithms (like
the Global Fringe Fitting) to noisy data can have similar conse-
quences to those of selfcal if the SNR cutoff of the gain solutions
is set to small values.

We have considered numerical and analytic studies to show
how the flux density of a spurious source created by selfcal de-
pends on the number of antennas, the sensitivity of the array,
and the averaging time of the selfcal solutions. We have also
presented two simple tests that can be applied to real data in or-
der to check if the detection of a faint source could be the result
of the application of an antenna-based calibration algorithm to
noisy data. These tests basically relate the averaging time of the
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selfcal solutions and the characteristics of the closure phase dis-
tribution to the flux density of a compact source possibly present
in the data. To show a practical case, we have applied these tests
to a set of real VLBI observations of supernova SN 2004et and
found good agreement between the flux density recovered by
CLEAN from the (phase-referenced) visibilities of this super-
nova (Martí-Vidal et al. 2007) and the flux density estimate pro-
vided by our reliability tests.
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