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ABSTRACT

Context. Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal
structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in
the immediate vicinity of the central black holes in AGN.
Aims. We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known
quasar 3C 273.
Methods. We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for
the jet by Lobanov & Zensus (2001, Science, 294, 128), and one in which the effects of jet precession and the injection of discrete
components have been taken into account. We compare the model with the structures observed in 3C 273 using very long baseline
interferometry and constrain the basic properties of the flow.
Results. We find growing perturbation modes in the simulation with similar wavelengths to those observed, but with a different set
of wave speeds and mode identification. If the observed longest helical structure is produced by the precession of the flow, longer
precession periods should be expected.
Conclusions. Our results show that some of the observed structures could be explained by growing Kelvin-Helmholtz instabilities
in a slow moving region of the jet. However, we point towards possible errors in the mode identification that show the need of
more complete linear analysis in order to interpret the observations. We conclude that, with the given viewing angle, superluminal
components and jet precession cannot explain the observed structures.
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1. Introduction

The structure and kinematics of parsec-scale outflows is typi-
cally explained in terms of shocks (Marscher 1980; Marscher &
Gear 1985; Gómez et al. 1993, 1994a,b) and Kelvin-Helmholtz
(K-H) instabilities (Hardee 1982, 1984, 1987; Hardee et al.
1997; Hardee 2000, 2003; Hardee et al. 2005) developing in
a relativistic fluid. Relativistic shocks may dominate the jet
dynamics and emission at small scales, but are likely to dis-
sipate at distances larger than ∼10 pc (Lobanov & Zensus
1999) due to the interaction with the slower flow. On interme-
diate scales (∼10–100 pc) shocks and plasma instabilities may
play equally important roles in jets (Lobanov & Roland 2001).
Distributions of the synchrotron turnover frequency obtained for
3C 273 (Lobanov et al. 1997) and 3C 345 (Lobanov 1998) indi-
cate that both shocks and instabilities are present on these scales,
while larger scales are most likely dominated by plasma instabil-
ities alone.

Recent studies by Hardee (2000) have shown that K-H in-
stability may produce complex, three-dimensional ribbon-like
and thread-like patterns inside a relativistic jet. In these ribbons
and threads, a substantial increase of particle pressure and ra-
dio emissivity can be expected. This model has been success-
fully applied to the jet in 3C 120 (Hardee 2003; Hardee et al.
2005). The threaded structure forming a double helix has been
detected in a space VLBI image of 3C 273 made at 5 GHz

(Lobanov et al. 2000). It was explained in terms of K-H instabil-
ity developing in a relativistic flow with a modest Lorentz fac-
tor γ = 2.1 and a relativistic Mach number M = 3.5 (Lobanov
& Zensus LZ01, hereafter LZ01). The analytical approach used
in LZ01 is based on linear perturbation analysis of a K-H in-
stability developed by Hardee (1987, 2000). A similar approach
applied to kiloparsec-scale jet in M87 allowed for accurate deter-
mination of physical parameters and modelling of radio emission
to be made (Lobanov et al. 2003).

However, results from numerical simulations of relativistic
flows indicate that, after the linear regime of instability growth,
the jets can be easily disrupted (Perucho et al. 2004b). In addi-
tion to this, the bulk Lorentz factor γ = 2.1 derived in LZ01
is below the values required to explain the apparent speeds
of βapp ∼ 5−8c of enhanced emission features observed in
3C 273. LZ01 suggest that the K-H instability is developing in
a slower, underlying flow, and the fast components are most
likely faster shock waves produced in the jet by the periodic ejec-
tions associated with the nuclear flares. The presence of such
shocks may disrupt the linear growth of the K-H instability as
well, and it is not clear whether the linear stability analysis can
be still applied in the presence of these kind of non-linear effects
in the flow.

In view of these concerns, it is important to confront the
results of LZ01 with numerical simulations, and attempt to
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address several fundamental issues about the stability and propa-
gation of relativistic flows similar to the one observed in 3C 273.
Numerical simulations can be used to verify whether the linear
theory can be applied for explaining self-consistently the mor-
phology and kinematics of parsec-scale flows, and whether these
flows preserve fingerprints of linear modes even when the non-
linear regime has developed or non-linear features, such as fast
components, appear. Numerical simulations provide a means to
address these problems by following the transition from linear
to non-linear regimes of instability development (Perucho et al.
2004a,b). The ultimate goal of this work is to probe the advan-
tages and limitations of the combination of different approaches
(linear theory, numerical simulations and observations) to stud-
ies of parsec-scale jets.

3C 273 is the second quasar discovered (Hazard et al. 1963),
and the first one for which the emission lines were identified with
red-shifted hydrogen lines (Schmidt 1963). In the same work,
Schmidt (1963) also pointed out the presence of a jet-like struc-
ture in this object. During the last four decades, the active nu-
cleus and the relativistic outflow in 3C 273 have been studied
in great detail (Courvoisier 1998). The parsec-scale radio jet in
3C 273 has been monitored for almost three decades (Pearson
et al. 1981; Unwin et al. 1985, 1989; Zensus et al. 1988, 1990;
Davis et al. 1991; Abraham et al. 1996; Krichbaum et al. 2000;
Lobanov et al. 2000; Asada et al. 2002). The emission associ-
ated with the relativistic outflow on kiloparsec scales has been
probed extensively in the radio (Conway et al. 1981, 1993), near
infrared (Neumann et al. 1997; Hutchings et al. 2004), optical
(Thompson et al. 1993; Jester 2001; Jester et al. 2001) and X-ray
(Röser et al. 2000; Marshall et al. 2001; Sambruna et al. 2001)
wavebands.

The relativistic jet observed in the quasar 3C 273 is one-
sided, with no signs of emission on the counter-jet side at
dynamic ranges of up to 16,000:1 (Unwin et al. 1985). This
is evidence for strong relativistic boosting in an intrinsically
double-sided outflow powered by an accretion disk around
the central black hole (Begelman et al. 1984). The mass of
the central black hole in 3C 273 is estimated to be Mbh =
5.5+0.9
−0.8 × 108 M� (Kaspi et al. 2000). The enhanced emission

features (jet components) identified in the jet on scales of up to
∼20 milliarcseconds (mas) are moving at apparent speeds ex-
ceeding the speed of light by factors of 5–8 (Abraham et al.
1996). Plausible ranges of the Lorentz factor γ ≈ 5–10 and
viewing angles θjet ≈ 10◦–15◦ have been inferred from these
measurements.

Ejections of new components into the jet occur roughly once
every year (Krichbaum et al. 2000), and they are likely to be
related to weak optical flares observed with a similar periodicity
(Belokon 1981). The position angle at which the components
are ejected shows regular variations with a likely period of about
13–15 years (Abraham et al. 1996; Abraham & Romero 1999),
correlated with the long-term variability observed in 3C 273 in
the optical (Babadzhanyants & Belokon 1993) and radio (Turler
et al. 1999) bands. Abraham & Romero (1999) have suggested
that this periodicity may reflect changes of the jet axis induced
by the relativistic precession of the inner part of the accretion
disk.

Results from the linear analysis and numerical modelling
are presented, compared and discussed in Sect. 2 in connection
to explaining the observed properties of parsec-scale outflow in
3C 273. Main results of the work are discussed in Sect. 3.

Throughout the paper, we adopt the flat ΛCDM Cosmology
with the Hubble constant H0 = 71 h km s−1 Mpc−1, where h
is a constant with a likely value of 1, and matter density

Table 1. Identified wavelengths, modes and their amplitudes from ob-
servations (LZ01). H stands for helical, E for elliptical modes, and sub-
scripts refer to surface (s, fundamental) or body modes (b, reflection).
The latter are followed by the index identifying the exact body mode.
∗ stands for identified resonant modes.

λ [mas] Amplitude [mas] Mode
P1 P2 P1 P2

18 1.5 Hs

12 1.4 E∗s
3.9 4.1 2.2 1.5 H∗b1

3.8 1.2 E∗b1
1.9 0.25 H∗b2

ΩM = 0.27. The positive definition of spectral index, S ∝ να
is used. For 3C 273 (z = 0.157, Strauss et al. 1992), the
adopted cosmological parameters correspond to the luminos-
ity distance DL = 0.7 h−1 Gpc. The respective linear scale is
2.69 h−1 pc mas−1, and a proper motion of 1 mas/yr corresponds
to an apparent speed of 10.1 h−1 c.

2. Numerical simulations

In this section, we present numerical simulations performed with
the aim to provide a counterpart to the analytical modelling of
the jet structure in 3C 273 made in LZ01. To give a better ac-
count of the connection between the analytical and numerical ap-
proaches, basic results from the linear model of LZ01 are briefly
summarized below.

2.1. Results from the linear analysis

Linear perturbation analysis of Kelvin-Helmholtz instability
(cf. Hardee 1987, 2000 and Hardee et al. 1997) was applied
in LZ01 to explaining the internal structure of the jet in 3C 273.
The locations of two thread-like features identified inside the jet
(the features P1 and P2, in the nomenclature of LZ01) were ap-
proximated by combinations of several oscillatory modes. These
modes were identified with different modes of Kelvin-Helmholtz
instability. The parameters of these modes are given in Table 1.
The characteristic wavelengths of different instability modes can
be related to the jet speed (βj), Mach number (Mj) and the den-
sity ratio (η = ρj/ρa) between the jet and the ambient medium.
These wavelengths are obtained by approximating the disper-
sion relation in the small frequency limit (ω → 0) and large
frequency limit (ω 	). Both are obtained for highly supersonic
jets (Mj 	 1). The longest unstable wavelength, λl

nm (obtained in
the low-frequency limit), and the resonant wavelength, λ∗nm (ob-
tained in the high frequency limit), are given by (Hardee 1987):

λl
nm =

4γjRj(M2
j − 1)1/2

n + 2m − 1/2
, (1)

λ∗nm =
2πRj

βs,a/βj (n + m + 1/2)

×
γj(M2

j − β2
j )1/2

(M2
a − β2

j )1/2 + γj(M2
j − β2

j )1/2
, (2)

where βs,a is the sound speed of the external medium in units of
the speed of light, γj is the Lorentz factor of the jet, Ma = βj/βs,a,
Rj is the jet radius, and n (the azimuthal number) and m give the
number of nodes around the jet surface and the number of nodes
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Table 2. Jet parameters from the fit. γj is Lorentz factor, Mj,r is the relativistic Mach number, η is the jet-to-ambient rest mass density ratio, φj is
jet half opening angle, θj is jet viewing angle, cs,j,a are sound speeds, and l is the projected linear scale.

γj Mj,r η Rj[pc] φj [◦] θj [◦] cs,j [c] cs,a [c] l [pc/mas]
2.1 3.5 0.023 0.8 1.5 15 0.53 0.08 2.43

between the axis and the surface, respectively. The first equation
gives the longest unstable wavelength for a body mode (m > 0)
and the zero frequency limit for a surface mode (m = 0), as
the latter do not show the long wavelength cut, and the second
stands for the most unstable wavelength of a given mode. A to-
tal of five wavelengths were identified from fits to the double
ridge line found in the observations presented in LZ01. Physical
parameters of the jet were obtained in LZ01 by relating these
wavelengths to the wavelengths of the oscillatory modes from
the fit to the internal structure of the jet. The jet parameters ob-
tained are given in Table 2. Four of the observed wavelengths
were associated with resonant wavelengths of helical and ellip-
tical modes and the longest wavelength (18 mas) was associated
with the helical surface mode driven externally at approximately
twice the resonant wavelength.

It should be noted that the Lorentz factor γ = 2.1 derived for
the jet is below the values given by other authors in order to ex-
plain superluminal motions observed in 3C 273. This may result
from Kelvin-Helmholtz instability developing in an underlying,
slower flow, and not in the flow that contains ballistic, superlu-
minal features (LZ01).

The results from the linear stability analysis are compared to
the numerical solutions of the stability problem obtained from
the individual simulation runs described below.

2.2. General properties of the numerical models

Numerical simulations were performed using a three-
dimensional finite-difference code based on a high-resolution
shock-capturing scheme which solves the equations of relativis-
tic hydrodynamics written in conservation form. This code is
an upgrade to 3D of the code described in Martí et al. (1997) and
shares many features with the 3D code GENESIS (Aloy et al.
1999). It was parallelised using OMP directives. Simulations
were performed in an SGI Altix 3000.

In the numerical models, the initial properties of a stationary
flow in pressure equilibrium with the external medium are set ac-
cording to the results of the linear modelling (see Table 2). It has
to be noted, however, that no opening angle has been taken into
account. Perturbations are applied at the inlet. Boundary condi-
tions are: 1) injection at the inlet (with the parameters given by
LZ01), and 2) outflow at the side boundaries and at the axial
end of the grid. An extended grid with a decreasing resolution
is added on each side of the main grid and at its axial end, in
order to avoid spurious numerical reflections of the solution at
the main grid boundaries.

In order to achieve a steady initial model, we add a smooth
transition (i.e., shear layer) between the jet and the ambient
medium, of the form:

ρ(r) = ρa − (ρa − ρj)/cosh(r)m, (3)

vz(r) = vz,0/cosh(r)m, (4)

where ρ stands for rest mass density and vz for axial velocity (vz,0
is the value at the axis corresponding to the Lorentz factor γj =
2.1), subscripts a and j correspond to ambient medium and jet,

respectively, and r is the radial coordinate. The smaller the res-
olution, the smaller the exponent m has to be in order to reduce
the numerical noise below the amplitudes of the perturbations.

We performed two simulations to investigate the general de-
velopment of a K-H instability in the flow and to analyse the
effect of fast components and the jet precession. In the first sim-
ulation (3C 273-A) we perturb a stationary flow so as to observe
which modes and wavelengths dominate the jet structure. In the
second simulation (3C 273-B) we try to see if similar instability
structures can be generated by the precession of the jet and peri-
odic injections of faster components into the flow. In both sim-
ulations, the parameters of the steady flow are those from LZ01
(see Table 2). We use the perfect gas equation of state with the
adiabatic exponent Γ = 4/3.

2.3. Simulation 3C 273-A

2.3.1. Initial setup

In this simulation we introduce perturbations at frequencies cal-
culated such that they are expected to reproduce the observed
wavelengths in the jet structure if these are propagating at the
given speed in LZ01. The grid extends over 844 cells in the ax-
ial direction and 128 cells in both lateral directions (including
the extended grid). We use a resolution of 16 cells/Rj, with Rj
the radius of the jet, in the transversal direction and 4 cells/Rj in
the direction of the flow. Simulation lasted for a time 1097 Rj/c
(i.e., about 2852 yr when scaled to source units; see next para-
graph), and it used 
11 Gb of RAM memory and 8 processors
during around 30 days in a SGI Altix 3000 computer.

Assuming an angle to the line of sight of 15◦ and redshift
z = 0.158 (1 mas = 2.43 pc) the observed jet is 169 pc long.
Considering the jet radius given in LZ01 (0.8 pc), the numerical
grid extends over 211 Rj (axial) times 8 Rj times 8 Rj (transver-
sal), i.e., 169 pc × 6.4 pc × 6.4 pc. This allows us to accommo-
date all relevant relativistic and sub-relativistic structures which
could give rise to the wavelengths observed in the patterns P1
and P2 from LZ01. A shear layer of 2 Rj width (m = 2) in
Eqs. (3)–(4) is included in the initial rest mass density and ax-
ial velocity profiles to keep numerical stability of the initial jet.
To avoid reflection of the numerical noise from the main grid
boundaries, an extended grid is introduced, with a cell size in-
creasing progressively by 20%, as we do not need fine cells in
this extended region because we are mainly interested in the lin-
ear regime, which does not involve large radial distortions of the
jet. The extended grid has 24 cells in the radial directions, reach-
ing up to 36 Rj on each side of the jet, and 168 cells axially,
reaching up to 316.5 Rj. Elliptical and helical modes are induced
at the inlet using the following expression:

P′ =
A0

cosh2 r
cos(ωt + n θ) sin2(πr), (5)

where A0(= 10−4) is the initial amplitude, r is the radial coordi-
nate, ω is the frequency of the mode, n = 1 for helical modes and
n = 2 for elliptical ones, θ is the polar angle in cylindrical coor-
dinates, and sin2(πr) is used in order to give an initial transver-
sal structure to the modes. The evolution of perturbations and
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Fig. 1. Structure of perturbations (axial and transversal cuts) in a generic 3D jet, as described by Eq. (5). Top left: pinching mode (n = 0). Top
right: helical mode (n = 1). Bottom left: elliptical mode (n = 2). Bottom right: triangular mode (n = 3).

Table 3. Correspondence between the observed wavelength and the perturbations used for the simulation 3C 273-A. λobs is the observed, projected
wavelength, λtheor is the intrinsic wavelength, and ω is the derived frequency for the given intrinsic wavelength and wave speed (see text). Fourth
to seventh columns give the wavelengths and wave speeds derived from the dispersion relation solution, marked in Fig. 2 as ω1, ω2 and ω3.

λobs [mas] λtheor [Rj] ω [c/Rj] Pinch b1 Helical s Elliptical s Elliptical b1
λ; vω λ; vω λ; vω λ; vω

12 (E∗s ) 110.0 0.013 (ω1) – 38.5; 0.081 18.5; 0.077 –
4 (H∗b1,E

∗
b1) 37.4 0.039 (ω2) – 16.0; 0.10 6.1; 0.078 –

2 (H∗b2) 18.7 0.078 (ω3) 7.0; 0.088 12.1; 0.15 5.4; 0.14 3.2; 0.08

their coupling to K-H modes have been shown to be independent
from this transversal structure (Perucho et al. 2005). In Fig. 1, we
show axial and transversal cuts for a three-dimensional jet with
periodic boundary conditions in the axial directions, like those
used in Perucho et al. (2005). The axial structure shown in the
axial cuts is added to Eq. (5) as a term kz z in the cosinus func-
tion. Typical structures induced by Eq. (5) in such a generic jet
are those shown in the transversal cuts. The sum of all the input
modes gives the total perturbation. The simulation has to repro-
duce the resonant wavelengths of the basic modes identified in
Table 2 (2, 4 and 12 mas). It should be noted that the helical
surface mode at λHs = 18 mas is driven externally and therefore
cannot be reproduced in this simulation.

Frequencies of the excited modes, both helical and elliptical,
are introduced in Eq. (5). These frequencies are computed from
the observed wavelengths in LZ01, λobs, corrected for projection
effects and relativistic motion of the wave (time delay), with ve-
locity vw(=0.23c). We use ω = 2 π vw/λtheor (see Table 3), where

λtheor =
λobs(1 − vw/c cos θj)

sin θj
, (6)

where θj is the angle to the line of sight. We observe that, when
computing the numerical solutions for the stability problem for
the proposed jet parameters, the wavelengths and speeds ob-
tained for the relevant modes (see Table 3) are different to those
given in LZ01. This fact may be caused by errors in the angle to
the line of sight or in the derived parameters in LZ01, including
the wave speeds which are used in the transformation.

2.3.2. Results

To compare the results of the simulation with the numerical so-
lution of the stability problem, we have solved the dispersion

relation equation (e.g., Hardee 2000) for the parameters given
in Table 2. Figure 2 shows the solutions for the pinching, heli-
cal and elliptical surface, first and second body modes. Table 4
shows the characteristic wavelengths of the relevant modes.

Figure 3 presents axial cuts made at two different times of
the simulation. In Fig. 3 we observe a λ ∼ 20−25 Rj helical
structure in the upper plot that could be associated to ω2 (see
Table 3). Figure 4 shows several transversal cuts of the jet illus-
trating competition between the helical and elliptical modes. We
can see how excited modes dominate at different positions and
times in the jet. It is remarkable that elliptical structures show
up close to the injection point, while helical modes, develop in
the jet farther downstream. This agrees with the conclusions pre-
sented in LZ01. Nevertheless, we have not been able to clearly
identify the elliptical mode in the longitudinal cuts. Figure 5
shows longitudinal cuts of pressure perturbation (defined as the
difference between the value of the pressure in a cell and the
initial equilibrium pressure, P− P0, with P0 ∼ 0.03 ρa c2) at dif-
ferent jet radii, from which the dominant wavelengths could be
identified in the simulated jet. We identify a λ ∼ 40−50 Rj struc-
ture at z < 60 Rj which we interpret as due to beating between
two wavelengths of the first body helical mode at wavelengths
4.5 Rj and 4 Rj, like that derived from the fits to the observations
by LZ01, and given in Table 1 (3.9 and 4.1 mas). From plots of
pressure perturbation at different radii (Fig. 5) we conclude that
the radial structure of this beat can only be produced by the heli-
cal first body mode, as the fluctuations are stronger at Rj/2. The
beating could also be produced by the elliptical surface mode,
but the fact that pressure fluctuations are smaller at the jet sur-
face rules out this possibility (see, e.g., Hardee 2000). At larger
distance (z > 70 Rj) we have identified a large amplitude helical
∼25 Rj wavelength and a shorter 2.5 Rj wavelength superposed
on the former one. In an axial cut of the pressure perturbation
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Fig. 2. Solution of the stability problem for the parameters given in Table 2. In the upper plots, real (dashed lines) and imaginary (dotted lines) parts
of the wavenumber are given as a function of frequency. In the lower plots, corresponding wavelengths and wave speeds are shown. Frequenciesω1,
ω2 and ω3 correspond to those given in Table 3 for the simulation 3C 273-A. Note that wavelengths for the elliptical modes in the plot are for
a 180◦ rotation of the ellipse and needs to be doubled for a complete rotation. This is because such a 180◦ rotation generates a repetition of the
structure in elliptical modes, therefore giving the impression of a complete wavelength. Arrows connecting the wavelength and wave speed plots
indicate identified modes in the simulation 3C 273-A (see text).

Table 4. Solutions of the stability problem in the fastest growing or
resonant frequencies (indicated with an asterisk, column one lists the
frequencies, column two the wavelengths and column three the wave
speeds) and longest unstable wavelength (fourth column, λl).

Mode ω∗ (c/Rj) λ∗ (Rj) v∗ω (c) λl (Rj)
Pinch b1 0.46 3.5 0.26 7.5
Pinch b2 0.86 1.8 0.25 3.1
Helical s 0.24 7.6 0.28 –

Helical b1 0.66 2.5 0.26 4.5
Helical b2 1.07 1.5 0.25 2.4
Elliptic s 0.19 5.3 0.16 –

Elliptic b1 0.85 1.9 0.26 3.2
Elliptic b2 1.27 1.3 0.25 2.0

close to the axis we have identified an elliptical fluctuation with
wavelength ∼3.5 Rj at z ∼ 70−95 Rj and a helical one with wave-
length 2.5 Rj at z > 100 Rj. All the modes that are reported in
this paragraph are pointed in Fig. 2 with arrows indicating their
wavelengths and wave speeds. We should keep in mind that the
stability problem has been solved for the vortex sheet case and
the jet in the simulations has a thick shear layer. This fact can in-
troduce inaccuracies in the detection of modes in the simulation.

We have used all the identified structures in order to produce
theoretical cuts of the pressure perturbation. Results are shown
in Fig. 6. Note that here we have plotted P/P0, whereas in Fig. 5
we plot P − P0. The similarity to that obtained from the simula-
tion is remarkable taking into account the fact that the presence
of a shear layer, which may modify the stability problem solution
(Perucho et al. 2005), has not been considered in the interpreta-
tion of the results.

When comparing the results given in the previous para-
graphs with those from LZ01, we find differences in the typical
wave speeds for the modes observed in the simulation (∼0.1c),
obtained from the solution to the stability problem (Fig. 2),
compared to those given in LZ01 from the linear approxima-
tions (0.23c). This could be caused by the uncertainties of the
linear approximations, Eqs. (1) and (2), used in LZ01. In deriv-
ing approximations, a large classical Mach number is assumed
(Mj = vj/cs,j 	 1), but this is not generally the case for hot
jets, for which cs,j 
 0.57, and thus, Mj ≤ 1.75. To investigate
the uncertainties introduced by this fact, we have used numer-
ical solutions of the dispersion relation for different cases and
compared them with the results of the approximations. Results
show that the errors in the determination of characteristic wave-
lengths with linear approximations can reach a factor two for
small Mach numbers, while for Mj > 5, the errors are smaller
than 30%. This could result in significant errors with the iden-
tification of the modes. Another difference we find comes from
the fact that we do not observe the elliptical surface mode in the
simulation, although it is fitted from observations in LZ01 and
we find in the solution to the stability problem that it has a short
growth length (Fig. 2). This could be due to the radial structure
of the initial perturbation (∝sin(πr)/ cosh(r)) giving zero initial
amplitudes at the jet surfaces, and therefore suppressing the sur-
face modes. Otherwise we would expect the elliptical surface
mode to dominate at z < 60 Rj and maybe also farther down-
stream, as seen in the growth rates shown. Somehow, however,
the helical surface mode seems to develop at distances z > 70 Rj,
and we think that this may be due to slight changes in the radial
structure of the perturbations with downstream evolution as they
grow in amplitude and modes interact among them.

In the frame of the comparison between results from the sim-
ulation and linear analysis and from the fits in LZ01, we now
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Fig. 3. Map of Lorentz factor distribution of a portion of the jet at a time before disruption, where a large amplitude wave is apparent (top panel,
t = 320 Rj/c) and at the last frame (bottom panel, t = 1097 Rj/c). Coordinates are in jet radii. The vertical scale size is increased by a factor of 4
to better represent the jet structure.

Fig. 4. Transversal structure of pressure perturbations (lighter shading indicates higher pressure values). Solid line indicates vz = 0.8c contour.
Three left panels: Cuts at 35 Rj, for t = 70, 140, 200 Rj/c where the elliptical or double helical mode rotation is apparent. Three right panels: Cuts
at 105 Rj, for t = 210, 220, 240 Rj/c where the helical mode rotation is apparent.

Fig. 5. Longitudinal cuts of pressure perturbation at different radii (Rj/8
top left, 3Rj/8 top right, 5Rj/8 bottom left, 7Rj/8 bottom right) and in
symmetric positions with respect to the jet axis at t = 250 Rj/c.

focus our discussion on the three main structures observed in the
simulation. We define λsim

1 = 4 Rj, λsim
2 = 25 Rj and λsim

3 = 50 Rj
as the characteristic wavelengths in the simulation. Propagation
speeds of the perturbations can be measured in the section of the
jet dominated by the linear growth of instability. Although this
is difficult due to the sparsity of the data frames, we derive the
wave speed of the disruptive mode (λsim

2 ) following the motion
of the large amplitude wave (see Fig. 3) from frame to frame,
which gives vw,2 
 0.38c, or any fraction of this number. From
Fig. 2 we can tell that the mode must be moving at vw ∼ 0.09c.
Another wave speed of the system is obtained from the rota-
tion of the elliptical patterns similar to those shown in Fig. 4,
which yields vw 
 0.2c. Unfortunately, we have not been able
to find the wavelength of this elliptical mode in the pressure

Fig. 6. Theoretical computation of the pressure perturbation produced
by the combination of modes identified in the simulation, compared to
Fig. 5. Lines indicate cuts at different distances from the axis. Dotted
line stands for pressure perturbation at Rj/8, dashed line at 3Rj/8, dash-
dot line at 5Rj/8, and long dashed line for 7Rj/8. The wavelengths and
wave speeds of the modes applied in this plot are indicated with arrows
in Fig. 2. These are the helical first body mode at λ = 4.53 Rj, λ =
4.04 Rj for z < 60 Rj, the helical surface mode at λ = 24.3 Rj and
first body mode at λ = 2.47 Rj and the elliptical first body mode at
λ = 3.22 Rj for z > 70 Rj. We have used a linearly growing amplitude
between z = 70 Rj and z = 120 Rj for the helical surface mode, between
z = 70 Rj and z = 105 Rj for the helical first body mode, and constant
amplitude from those distances. We have also used constant amplitude
at z < 70 Rj for the elliptical body mode.

perturbation plots. We note that this speed is close to the value
of vw given in LZ01 and it is different from the one predicted
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Table 5. First column give identified wavelengths in LZ01 from
shorter to longer, in the second column we have written characteris-
tic wavelengths in the simulation also in increasing order, and the last
three columns give the wavelengths as observed depending on the wave
speed.

λobs [mas] λsim [Rj] λsim
vw=0.09c [mas] λsim

vw=0.23c [mas] λsim
vw=0.88c [mas]

2 4 0.36 0.44 2.27
4 25 2.28 2.7 14.3

12 50 4.56 5.5 28.5

by the solution of the stability problem (Fig. 2) for the heli-
cal first body modes that we claimed to generate this long scale
structure as a beating pattern. This can be due to the presence of
a thick shear layer that certainly changes the picture of the solu-
tion to the stability problem. It could also be due to the structure
that we have used to measure the speed having been artificially
generated by the interaction of helical modes in 180◦ phase, and
therefore giving a different velocity to those of single modes.
Also, we use, as a limit for small wavelength perturbations,
a wave speed equal to that of the flow (vw,1 
 0.88c).

The parameters of the simulated and resulting observed
structures are given in Table 5. To reconcile the simulations
with the observational results we calculate λobs from λsim (λtheor

in Eq. (6)), using the three different values of vw mentioned in
the previous paragraph. It should be noted that the two longest
modes identified in the simulation have an observational coun-
terpart when we take vw = 0.09c, which is a value close to that
given by the stability problem for most of the identified modes
in the simulation (see Fig. 2). The λsim

2 mode could be identified
with the fitted helical second body mode with the wavelength
of 2 mas in LZ01. The λsim

3 mode could correspond to the fitted
first body modes at the wavelength of 4 mas in LZ01. However,
λsim

2 is identified as a helical surface mode, thus not coincident
with the fitted second body mode to the 2 mas structure and we
have used the long envelope of the beating structure in order to
derive a 4 mas structure, which is interpreted as two helical body
modes with a similar wavelength in LZ01. Using the given wave
speed of vw = 0.09c, the term sin θj has larger influence on the
result than the term 1 − vw cos θj in Eq. (6), so only larger an-
gles to the line of sight would give larger λobs from a given λsim:
the 4 Rj wavelength would result in a 1 mas observed structure
at 45◦ and the 25 Rj wavelength would result in a 6 mas observed
structure at the same angle to the line of sight. Nevertheless, this
angles are ruled out by jet to counter-jet (still not observed) flux
ratios and by recent observations by Jorstad et al. (2005). At that
wave speed, shorter angles to the line of sight would result in
even shorter observed wavelengths. This translates into the need
of larger wavelengths in the simulation in order to fit them to ob-
servations, but Fig. 2 tells us that we are in the longest unstable
wavelength limit for body modes, so this seems unrealistic.

Why we do not see the 12 mas elliptical surface mode is
thought to be due to the radial structure of the initial perturba-
tion (∝sin(πr)/ cosh(r)) which, as stated above, gives zero ini-
tial amplitudes at the jet surfaces, therefore suppressing these
modes. Moreover, the 12 mas mode, with the wave speed given
in LZ01, would require a 110 Rj wavelength in the simulation,
which is difficult to observe even in a grid as large as was used
here, in particular when shorter harmonics grow fast and disrupt
the flow.

2.3.3. Nonlinear regime

Nonlinear effects become important at time t = 350 Rj/c with
the disruption of the head of the jet due to the longest helical
mode λsim

2 
 25 Rj. After that point perturbations produced at
the disruption point propagate backwards slowly as a backflow.
The disruption point itself moves downstream due to constant
injection of momentum at the inlet and the change of condi-
tions around the jet. The disruption point advances from 160 Rj
to 180 Rj by the end of the simulation (see Fig. 3).

Morphology of the jet at the end of the run (lower panel of
Fig. 3) is thus different from the observed source mainly due to
the disruption of the jet. These difference may result from the
development of a disruptive mode in the simulation which is
not present in the real jet due to, for example, magnetic fields
or an opening angle in the jet, not taken into account here.
Uncertainties in the calculation of the physical parameters from
the characteristic wavelengths following Eqs. (1) and (2), as dis-
cussed in previous paragraphs, can be a source of error in the
determination of the parameters of the jet, which, in turn, influ-
ence the long term stability properties.

Disruption of the jet in the simulation contradicts apparently
the fact that the jet is observed on much larger scales. It should
be noted however that the disruption point still propagates out-
ward at v ∼ 0.03c, at the end of the simulations. This implies that
the simulation has not run long enough to reach a quasi-steady
stage. It is also possible that the disruption observed is a tran-
sitory phase and that the simulation should have run longer in
order to allow the jet to move downstream. If a stabilizing fac-
tor is needed in order to explain the jet in 3C 273, we suggest
several possibilities: 1) a thicker shear layer (Birkinshaw 1991;
Hardee & Hugues 2003; Perucho et al. 2006), 2) inclusion of
the superluminal components in the simulations, as faster jets
are much more stable against K-H instability (see Perucho et al.
2004b; Perucho et al. 2005), 3) a decreasing density atmosphere
(Hardee 1982, 1987; Hardee et al. 2005, where it is shown, in
the case of the jet in 3C 120, that the expansion of the jet pro-
vides a stabilizing influence), which must be the case as can be
derived from the outward dimming due to adiabatic expansion
of the observed jet in the parsec scale, 4) a stabilizing configura-
tion of magnetic field (Rosen et al. 1999; Frank et al. 1996; Jones
et al. 1997; Ryu et al. 2000; Asada et al. 2002). The cumulative
effect of these factors would effectively make the jet more stable
already on the time scales probed by the simulation.

2.4. Simulation 3C 273-B

2.4.1. Initial setup

In this simulation, the stationary flow is perturbed by precession
and periodical ejections of faster components. The initial con-
ditions are similar to those in the first simulation. The width of
the shear layer is ∼0.6 Rj (m = 8). The precession frequency is
derived from the observed ∼15 yr (6 Rj/c in the code units) pe-
riodicity of position angle variations (Abraham et al. 1996). The
frequency of ejections of components is set by the reported∼1 yr
(0.4 Rj/c) periodicity in the optical light curve (Babadzhanyants
& Belokon 1993). The duration of each ejection is estimated
to be ∼2 months (0.066 Rj/c), set by the approximate inspi-
ralling time from an orbit at ≈6 RG around a 5.5 × 108 M� black
hole. The amplitude of the precession is set by the true open-
ing angle (0.4◦) of the jet obtained by deprojecting the apparent
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Fig. 7. Solution of the stability problem for the parameters given in Table 2 with the characteristic frequencies for simulation 3C 273-B.
Frequency ωh = 1.01c/Rj corresponds to that excited in the simulation 3C 273-B. Arrows connecting the wavelength and wave speed plots
indicate identified modes in the simulation 3C 273-B (see text).

opening of 1.5◦. This precession is included in transversal veloc-
ities at the injection point as follows:
−→v⊥ = A0vz(cos(ωt), sin(ωt)) (7)

where −→v⊥ and vz are the transversal and axial components of the
velocity, t is time, A0 = 6.83 × 10−3 is the initial amplitude,
and ω ∼ 1.01c/Rj is the angular frequency calculated from the
precession period of ∼15 yr.

The fluid in the injected components is considered to have
the same density as the underlying flow and to be in pressure
equilibrium with it. Velocity of the fluid in components is taken
as constant, with the mean value of Lorentz factor γc 
 5 as re-
ported in Abraham et al. (1996). The components are generated
as shells of fluid with a diameter of 0.5 Rj ejected along the axis.

The numerical grid for this simulation covers 30 Rj (axial)
times 6 Rj times 6 Rj (transversal), i.e., 24 pc × 4.8 pc × 4.8 pc.
The axial dimension of the grid is related to the ejection of the
components. We take into account that the wavelength induced
by the precession of components, if they move ballistically, is
λc ∼ P vc, where P is the precession period and vc is the injection
velocity of the fluid in the components. This gives λc ∼ 6 Rj,
and we have chosen the grid of 5 λc to allow the wave to become
apparent.

The resolution of the grid is 16 cells/Rj in the transversal di-
rection and 32 cells/Rj in the direction of the flow. An extended
grid is introduced in both transversal and axial directions. In the
radial directions, it has 36 cells reaching out to 15 Rj on each
side of the jet (increasing the cell size by 7.7% from one cell to
the next). In the axial direction the extended grid has 192 cells,
reaching up to 45 Rj. This simulation has lasted for a time of
70 Rj/c (i.e., more than two light crossing times of the grid).

2.4.2. Results

Figure 7 shows the solutions of the linear stability problem
for the jet parameters given in Table 2 and indicates the

characteristic wavelengths arising un this simulation. Figure 8
shows longitudinal cuts of pressure perturbation at different jet
radii at time 40 Rj/c. Inspection of the longitudinal cuts in-
dicates that, close to the injection point and to the jet axis,
a symmetric, short wavelength perturbation generated by the
fast components dominates the structure of the flow. Its wave-
length is λsim

1 = 0.4 Rj, and it is clearly related to the ejection
period of components (0.4 Rj/c). After 3−4 Rj, the presence
of the fast components is also evident in the jet boundary (at
r = 7/8 Rj). These high-frequency and short-wavelength struc-
tures are damped at z > 10 Rj, as expected to occur for perturba-
tions with wavelengths smaller than the shear layer width. Close
to the jet boundary, the most pronounced structure is the typical
antisymmetric pattern of helical motion induced by the preces-
sion (λsim

2 ∼ 3.7 Rj). This structure is driven by the precession
of the injected components and it couples to the helical surface
mode at a frequency of 0.8 c/Rj. A pinch mode structure with
a wavelength λsim

2 = 3.7 Rj is also observed at r = Rj/8, coincid-
ing with the maximum growth of the first body mode (see Fig. 7
and Table 4).

Farther downstream and close to the jet center, there is
a λsim

3 = 0.9 Rj wavelength on top of the longer pinch
mode (λsim

2 ). This short wavelength coincides with the maximum
growth rate of the elliptical third body mode at the helical driv-
ing frequency (1.01 c/Rj) (see Fig. 7 and Table 4). We remind
the reader that this is frequency correspond to a 360◦ turn, as ex-
plained in the caption of Fig. 2. The radial structure of this mode
in the simulation is also coincident with the theoretical structure
of the third body elliptical mode, with the maximum amplitude
at r = Rj/4 and decreasing amplitude at larger radii. The heli-
cal driving frequency falls very close to the maximum growth
of the second body helical mode with wavelength λsim

4 = 1.5 Rj,
observed in Fig. 8. However, the radial structure found in the
simulation is somehow a mixture of the second body mode with
that of the first body mode. We expect the second body mode to
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Fig. 8. Longitudinal cuts of pressure perturbation at different radii (Rj/8
top left, 3 Rj/8 top right, 5 Rj/8 bottom left, 7 Rj/8 bottom right) and
in symmetric positions with respect to the jet axis at t = 40 Rj/c. Short
wavelength (λsim

1 = 0.4 Rj and λsim
3 = 0.9 Rj) structures are observed

close to the jet axis. The amplitude of the first structures decrease down-
stream as a consequence of the drift of components to outer radial po-
sitions due to the precessional motion and their interaction with the un-
derlying flow. Also at positions close to the axis, we find a structure with
wavelength λsim

3 = 1.5 Rj. Short wavelength symmetric (λsim
1 = 0.4 Rj)

and longer wavelength antisymmetric (λsim
2 = 4 Rj) structures are also

observed at outer radial positions. The longer structure dominates close
to the injection, before the components expand and/or drift from the axis
to the jet boundaries, when short scale structures can be observed to be
modulated by the longer one (from z ∼ 4 Rj). After this, at z = 9 Rj, the
antisymmetric longer structure grows in amplitude, with some spikes
that can be associated with the drift of the components due to their pre-
cessional motion.

have an amplitude maximum at r = 1/8 Rj, but we find that this
maximum occurs at r = 3/8 Rj. The first body mode at this wave-
length develops an amplitude maximum at r = 3/8 Rj, which is
coincident with the one found in the simulation, although the
amplitude at r = 1/8 Rj found in the simulation is too large
for this mode. We interpret this as the second body mode be-
ing triggered at the driving frequency, which in turn excites the
first body mode at the same wavelength. Both modes seem to
be triggered out of phase and interfere destructively in the inner
jet, but the first body mode dominates in the mid jet region and
both decline in amplitude towards the jet surface. Comparison of
smaller and larger radius plots of pressure perturbation in Fig. 8
shows large positive offsets observed at larger radii. This indi-
cates possible drifting of components (shocks) to outer radii of
the jet as they follow the helical path given by the surface mode
(similar to what has been reported by LZ01). This feature would
produce enhanced emission regions at the positions of the helix
in which the flow moves in a direction closer to the line of sight.
Using all of the modes identified in the simulation we have com-
puted a theoretical representation of the pressure perturbation
in the jet. Figure 9 shows the resulting axial cuts of the pres-
sure perturbation and indicates that the theoretical calculation
generates most of the structures found in the simulation, except
those which are intrinsically nonlinear (for instance, the injected
components at the jet inlet and those structures at outer jet radii
farther downstream).

The complexity of the structure is further illustrated by
the surface plot of the flow Lorentz factor shown in Fig. 10.
Although in this figure we only see patterns in the fluid, com-
parison of the wavelengths seen here and in Fig. 8 allows us

Fig. 9. Theoretical computation of the pressure perturbations produced
by the combination of modes identified in the simulation. Different pan-
els indicate cuts at different distances from the axis in the X − Z plane.
The wavelengths and wave speeds of the modes contributing to this per-
turbations are marked by arrows in Fig. 7. These are the first pinch body
mode at λ = 3.7 Rj, the helical surface mode at λ = 3.7 Rj, helical first
and second body modes at λ = 1.5 Rj, and the elliptical third body
mode at λ = 0.9 Rj. We have used a linearly growing amplitude for the
modes. This perturbations can be compared with the structures identi-
fied in Fig. 8. Main differences between this plot and Fig. 8 are due to
nonlinearities introduced by injected components, mainly close to the
injection on the jet axis and at outer radii farther downstream.

to identify the wavelengths derived from the fluid patterns in
Fig. 10 and from the frequency of injection of components. The
middle panel of Fig. 10 (Lorentz factor γ = 2.5) indicates that
the periodicity induced by individual jet components dominates
the structure up to distances z ∼ 10−15 Rj, but farther down-
stream the components expand longitudinally and start to inter-
act with each other, generating a semi-continuous structure that
is dominated by the helical motion induced by the precession.
The top panel of Fig. 10 (Lorentz factor γ = 3.0) indicates that
the distinct regions of the flow moving at higher speed disap-
pear downstream. This can be explained by the deceleration of
the fluid in the components. The deceleration can be caused ei-
ther by the interaction with the background flow, or by a radial
and longitudinal expansion. These results are in agreement with
results by Lobanov & Zensus (1999), and Lobanov & Roland
(2001), suggesting that shocks dominate the jet structure close
to the nucleus, and that fluid instabilities become important far-
ther downstream. On the other hand, it is not clear at the mo-
ment whether stronger fluid components (i.e., faster and denser)
could survive longer in the jet. We finally note that the preces-
sion wavelength obtained from the simulations is smaller than
the one calculated theoretically from the advance speed of com-
ponents (λsim

2 = 4 Rj versus λc ∼ 6 Rj), which maybe taken as
an indication of non-ballistic motion of the components.

In Table 6 we list possible observed wavelengths corre-
sponding to the two main wavelengths identified from the sim-
ulation. It is clear that the observed wavelength of precession
(18 mas) cannot be recovered even with extremely fast com-
ponents (vw = c gives λobs = 10 mas) with the adopted view-
ing angle of 15◦. Moreover, if we consider the mean apparent
proper motion of 0.93 h−1mas/yr (Abraham et al. 1996), the ap-
parent speed is βapp ∼ 10. This speed cannot be reconciled with
a viewing angle of 15◦, as the resulting intrinsic speed is larger
than 1, and it would require a Lorentz factor of γ = 10 if the
viewing angle is reduced to 10◦. Recent work by Jorstad et al.
(2005) indicates that the jet in 3C 273 can have a viewing an-
gle as small as 6◦ and component Lorentz factors of γ ∼ 10.6.
These numbers would transform λsim

2 = 4 Rj into an observed
wavelength 14.1 mas. This wavelength is in fair agreement with
the 18 mas mode assigned to precession in LZ01. In summary,
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Fig. 10. Surface plots for three different values of Lorentz factor: Upper panel, γ = 3.0; middle panel, γ = 2.5; lower panel, γ = 2.0. The
precession motion, coupled to a helical mode, is more apparent on the slower, underlying flow, moving at γ = 2.0−2.5, as shown in LZ01. The
surface plot for γ = 3.0 illustrates the appearance of the jet at higher frequencies and smaller viewing angles, where the emission is dominated by
a more relativistic plasma.

Table 6. First column gives the observed wavelengths in the simulation, and the last three columns give this wavelengths as observed depending
on the wave speed. We have used, for the wave speed, some of those obtained from Fig. 7 for the identified modes (second to fourth columns), the
underlying flow speed (fifth column) and the maximum speed from the components (sixth column).

λsim [Rj] λobs
vw=0.25c[mas] λobs

vw=0.4c[mas] λobs
vw=0.5c[mas] λobs

vw=0.88c[mas] λobs
vw=0.94c[mas]

0.4 0.045 0.05 0.07 0.23 0.37
0.9 0.1 0.12 0.15 0.51 0.83
1.5 0.17 0.2 0.25 0.85 1.4
4 0.45 0.53 0.67 2.27 3.7

either the precession period should be longer, or the viewing an-
gle should be smaller than 15◦ and component Lorentz factors
higher than γ = 3, in order to reconcile the 18 mas structure
with precession.

Another question addressed by this simulation is whether
the periodic injection of fast components could generate smaller
structures observed by LZ01 (the 2 mas and 4 mas modes),
where these wavelengths are identified with the elliptical modes
of Kelvin-Helmholtz instability. In our simulation, the fast com-
ponents generate mainly pinching modes, although this is sim-
ply due to their symmetric nature. Again, we find that the struc-
tures generated in the simulation are small compared to those
observed. However, in the simulation, the fluid in the compo-
nents moves with a smaller speed than the injection one (γ = 5,
see Fig. 10) and therefore, smaller than that found from the
observations (γ ∼ 5−10). We relate this fact to the possible
slowing of the components themselves as they propagate down-
stream. As pointed out before, a possible cause for this could
be that the simulated fluid injected in components has the same
density as the background flow, whereas if it was denser (as
could be expected as generated from strong accretion activity) or

propagating in a decreasing density atmosphere, this fluid would
have larger inertia and would generate faster components. We
find that, in order to produce a 4 mas structure, we need the
Lorentz factor of components to be γ ∼ 30, whereas γ ∼ 15
is required to explain the 2 mas wavelength, if we keep the 1 yr
period. Adopting the longest measured period of the ejections
of 1.7 yr (Abraham & Romero 1999), these values would be re-
duced to γ ∼ 17 and γ ∼ 8.5, respectively. The same authors
gave a periodicity in the injection Lorentz factor of about 4 yr; if
we consider this period as the generator of short modes, γ ∼ 7.5
and γ ∼ 4 could explain those structures. The latter values agree
well with the Lorentz factors inferred from the observed kine-
matics of the jet. This means that the 2 and 4 mas wavelengths
should be associated only with the strongest and fastest ejec-
tions occurring roughly once every 4 yr. With the jet parameters
given by Jorstad et al. (2005), the inferred wavelength for the
shortest symmetric structure (0.4 Rj) is 1.4 mas, which is within
a factor of 3 from the 4 mas wavelength identified in LZ01 with
the elliptical first body mode. The symmetric or pinching nature
of the perturbations induced by such components could not ex-
plain the double helix structure in the jet, but we observe in the
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simulation that elliptical modes can be triggered by the presence
of pinching and helical perturbations.

3. Conclusions

We have performed two numerical RHD simulations with differ-
ent initial setups in order to study the physical processes gener-
ating the observed structures in the parsec-scale radio jet in the
quasar 3C 273. In the simulation 3C 273-A, we have included
a general set of helical and elliptical perturbations in a long jet
with the basic physical parameters adopted from LZ01. In the
simulation 3C 273-B, we have used a shorter jet with the same
physical parameters and have included precession and injection
of fast components. The simulation 3C 273-A was aimed to
generate structures with wavelengths similar to those measured
by LZ01 from the growth of Kelvin-Helmholtz perturbations.
The simulation 3C 273-B was designed to check if by combin-
ing the ejection of superluminal components and jet precession,
with the periodicities reported in Babadzhanyants & Belokon
(1993) and Abraham et al. (1996), the same structures could be
generated.

We find that the structures generated in simulation 3C 273-A
are of the same order in size as those observed, if the relativis-
tic propagation effects of the waves are taken into account. We
observe in the solution of the stability problem that the instabil-
ity modes found in the simulation propagate at mildly relativis-
tic speeds. These wave speeds differ from those derived from
the approximations used in LZ01. This can be due to the uncer-
tainties introduced by the approximations to the characteristic
wavelengths in the interpretation of the observations in LZ01.
However, we show that wavelengths similar to the observed ones
are found for the wave speed given by the solution of the linear
problem, although the modes fitted in LZ01 and those used here
for the same wavelengths are not coincident. The solutions of
the stability problem applied to the adopted wave speeds (0.23c)
and line of sight (15◦) show that any body modes present in the
jet should be much shorter than those fitted in LZ01. It should
be noted that these differences do not rule out the presence of
Kelvin-Helmholtz instability in parsec-scale jets. Despite diffi-
culties in the mode identifications, the structures generated in
the simulation are similar to those observed by LZ01.

Regarding the long-term stability of the flow, we note that
the jet in the simulation 3C 273-A is disrupted at ∼170 pc from
the inlet, contrary to the observations tracing the jet in 3C 273 up
to 60 kpc away from the source. The reasons for this difference
may be found in the conjunction of several factors. 1) The nu-
merical simulation does not run long enough to reach a fully
steady-state regime. The disruption point moves downstream
along the simulation, which could imply that the disruption is
a transitory phase. 2) Magnetic fields have not been taken into
account neither in the linear analysis, nor in the numerical sim-
ulation – and it should be noted that the magnetic fields may
be dynamically important at parsec scales (Rosen et al. 1999;
Frank et al. 1996; Jones et al. 1997; Ryu et al. 2000; Asada
et al. 2002). 3) We only simulate the underlying flow, without
considering the faster and possibly denser fluid in the superlu-
minal components. 4) Inaccuracies in the linear analysis approx-
imations can lead to large uncertainties in physical parameters
derived. 5) Differential rotation of the jet, shear layer thickness
(Birkinshaw 1991; Hardee & Hugues 2003; Perucho et al. 2006),
and a decreasing density external medium could also play an im-
portant role (implying jet expansion; see Hardee 1982, 1987; and
Hardee et al. 2005). 6) Arbitrary initial amplitudes of perturba-
tions were chosen for the simulation, so we could have included

too large perturbations. A combination of these factors could
well change the picture of the evolution of the jet in terms of
its stability properties. The effects of the rotation and magnetic
fields on the stability of jets remain unclear, since no systematic
numerical study has been performed up to now.

In the simulation 3C 273-B, we studied the effect of pre-
cession on the jet evolution and investigated the possibility that
the short wavelength structures found in LZ01 were not due
to K-H instabilities but due to the periodicities induced in the
flow by the ejection of components. We demonstrate that such
non-linear features as superluminal components generate linear
structures in the form of Kelvin-Helmholtz instabilities which
can be analyzed in the framework of linear perturbation analy-
sis. One of the main conclusions that can be derived from this
simulation is that helical twists can be excited by periodic in-
jections if there is some induced helicity in the system. This he-
licity is induced in our simulation by the helical perturbation
frequency, but in real jets this helicity could be induced by heli-
cal jet magnetic fields and/or by jet rotation. We have also shown
that, in order to explain the observed 18 mas wavelength in terms
of precession, either longer driving periodicities than the 15 yr
suggested by Abraham & Romero (1999) would be needed, or
this wavelength must be induced by very fast components ob-
served in a jet moving at a viewing angle θ < 15◦. The fast
components could only generate the shorter wavelengths given
in LZ01 (λ = 2 mas and λ = 4 mas) if a proper combination
of the velocities and injection periodicities is used. Altogether,
we find that inclusion of faster components and precession with
the 15 yr periodicity does not explain well the observed wave-
lengths and periodicities. This gives more weight to the general
conclusion about K-H instability acting prominently in the flow.

In the future, numerical simulations of this kind may be
used to constrain the basic parameters of the flow such as the
viewing angle and the component speed. Inclusion of magnetic
fields, differential rotation and the effects of an atmosphere with
a decreasing density could help reconciling better the simula-
tions with the observed structures. In this way, for example,
an increase of the jet radius due to decreasing external density
could cause a downstream increase of wavelengths of K-H in-
stability modes (Hardee et al. 2005). This remains to be seen
with future, full-fledged RMHD simulations of the relativistic
jet in 3C 273. The scope of the present work could be expanded
to other sources, and applied to prominent jets for which the
transversal structure may be resolved, such as 3C 120, extending
the work done by Hardee et al. (2005) by performing numerical
simulations.
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