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We report here a general solution of the double-exchange problem in the high-nuclearity mixed
valence systems containing arbitrary numberP of the electrons delocalized over the network ofN
(P,N) localized spins. The developed approach is based on the successive~chainlike!
spin-coupling scheme and takes full advantage from the quantum angular momentum theory. In the
framework of this approach the closed-form analytical expressions are deduced for the matrix
elements of the double exchange interaction, two-electron transfer, and three-center interaction that
can be referred to as the potential exchange transfer. For the arbitrary nuclearity mixed-valence
systems the matrix elements of all named interactions are expressed in terms of all relevant spin
quantum numbers and 6j symbols and do not contain higher order recoupling coefficients. We
describe also the combined approach taking into account both angular momentum consideration and
advantages of point symmetry adapted basis set. ©1996 American Institute of Physics.
@S0021-9606~96!00637-X#

I. INTRODUCTION

The interplay between electron delocalization and mag-
netic interactions play a crucial role in the properties of
many mixed-valence~MV ! compounds of current interest in
areas as diverse as solid state physics~bulk magnets,
superconductors1!, inorganic chemistry~mixed-valence clus-
ters, heteropolyblues2–5!, and biology ~iron–sulfur
proteins6–15!. These kinds of systems are formally formed by
localized magnetic moments and itinerant ‘‘extra’’ electrons
that can undergo a rapid hopping over the magnetic sites.
The main effect of this electron transfer is to couple two
localized magnetic moments through a kind of exchange in-
teraction namely double exchange. Since the itinerant elec-
tron keeps the orientation of its spin in course of transfer,
double exchange results in a strong spin polarization effect
which favors a ferromagnetic spin alignment in the system.
This mechanism of electron-spin interaction was first sug-
gested by Zener16 to explain the ferromagnetism observed in
MV manganites of perovskite structure, such as
~LaxCa12x!~Mn

13Mn14
12x!O3. The concept of the double

exchange has been formulated in Refs. 17 and 18. Anderson
and Hasegawa17 suggested a general solution of the double
exchange problem for a MV dimer deducing the spin depen-
dence of the double exchange splitting.

Till now the quantum evaluation of energy pattern
formed by the double exchange has been restricted to com-
paratively simple systems comprising one or two electrons
~or holes! delocalized over a restricted number of exchange-

coupled metal sites~dimers,6,11,19–22 trimers,23–30 and
tetramers,7,9,31–36basically!. However, even for these simple
cases the role of the electron delocalization has proved to be
different in each particular case. Thus, while in MV dimers
the electron transfer process results always in a strong stabi-
lization of the higher spin~ferromagnetic! states, in higher
nuclearity systems this process can also favor the stabiliza-
tion of other spin states different from the ferromagnetic one,
depending on the sign of the electron transfer integral and on
the topology of the MV cluster. That is why the conclusions
obtained for the relatively simple clusters can not be ex-
tended to high-nuclearity systems involving localized and
delocalized spins in a complicated molecular and crystal
structures.

A second important difference between dimers and
higher nuclearity systems comes from the fact that in the
later some additional electronic processes, should be also
considered for the correct evaluation of the electron delocal-
ization effects. One of these processes is associated with the
so called exchange-transfer interaction involving three cen-
ters. The parameters of the magnetic~Heisenberg! exchange
and exchange transfer are of the same order of magnitude
and thus the exchange transfer cannot be neglected so far as
the magnetic exchange is taken into account. In clusters con-
taining more than one delocalized electron, two-electron
transfer can be also important when the ground state is de-
generate and the one-electron processes increase Coulomb
energy of the system.

The previous remarks allows us to justify the need to
a!On leave from the Quantum Chemistry Department, Institute of Chemistry,
Academy of Sciences of Moldova, 277028 Kishinev, Moldova.
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develop a general approach to treat the problem of double
exchange in multinuclear MV magnetic clusters containing
several delocalized electrons. But besides this reason, we can
find at least two more reasons of interest. The first reason is
related to the existence of a variety chemical systems of large
nuclearites in which localized and delocalized electrons co-
exist and interact. That includes large magnetic MV clusters
and MV magnetic chains, which are systems of current in-
terest in molecular magnetism and magnetochemistry. We
can mention in this context the polyoxometalate clusters5,37

which are molecular metal oxides of high nuclearity that
resemble discrete fragments of extended metal oxide struc-
tures. The ability of polyoxometalates to accept various spe-
cific numbers of electrons, which are delocalized over a sig-
nificantly large number of metals, and to accommodate at
specific sites magnetic metal ions provide us with ideal
model systems to study the interplay between electron trans-
fer and exchange interactions in structures with different to-
pologies and symmetries. The problem of the interaction be-
tween localized and delocalized electrons can be also found
in chains compounds. Numerous examples of this kind are
found in the area of molecular conductors and charge trans-
fer salts which are usually formed by steakings of planar
p-electron donor organic molecules in a MV state.38 The
coupling between the magnetic moments through the delo-
calized electrons can be approached by assuming that the
magnetic properties of the infinite MV chain are obtained
from the extrapolation of the results obtained on finite chains
of increasing length.39 Such a procedure requires the exact
computation of finite chains having the maximum number of
sites in order to approach to the infinite chain behavior.

The second reason faces to the challenge to overcome
the limitations imposed by the existing conventional ap-
proaches to treat the problem of double exchange in these
kinds of high-nuclearity MV systems. The main difficulties
in this context may be realized taking as examples the cases
of dimeric, trimeric, and tetrameric clusters with one electron
delocalized over the spin sites.

Thus, in dimers in order to obtain the energy pattern one
should evaluate the matrix element of double exchange, link-
ing the states associated with the two sites of localization of
the extra electron~a and b!. The states, belonging to the
total spin S, are denoted as:usase(sa* )sbSM& and
usasbse(sb* )SM&, wheresa andsb are the spins of two para-
magnetic cores (sa5sb5s0), se51/2 is the spin of the mi-
grating electron,sa* andsb* are the spins of ionsa andb with
the trapped extra electron. The two localized states of a
dimer can be associated to two possible coupling schemes of
three spinssa , sb , andse namely:sa 1 se 5 sa* , sa* 1 sb 5 S
andsb 1 se5 sb* , sa 1 sb* 5 S. Spinssa* andsb* play the role of
the intermediate spins in these spin coupling schemes. The
matrix element of the double exchange operator turns out to
be proportional to the Racah 6j symbol, appearing in the
recoupling procedure leading thus to the linear dependence
of the energies on the total spin of the dimer17

E~S!56
t~S1 1

2!

2s011
,

wheret is the transfer integral.
The conventionally adopted basis for calculation of the

energy spectrum of MV trimeric clusters contains the states
of three types: ~1! usase(sa* )sb(Sab)SM&, ~2!
usbse(sb* )sc(Sbc)saSM&, and ~3! uscse(sc* )sa(Sca)sbSM&
corresponding to the following three coupling schemes of
four spins:~1! sa 1 se5 sa* , sa* 1 sb 5 Sab , Sab1sc5S, ~2! sb
1 se5 sb* , sb* 1 sc5 Sbc ,Sbc1sa5S, and~3!sc1 se5 sc* , sc*
1 sa 5 Sca , Sca1sb5S. The wave functions and the corre-
sponding spin addition schemes can be transformed one into
the another by means of cyclic permutations of the symbols
a, b, andc ~corresponding toC3 rotations!. From this point
of view it may be said that each spin-coupling scheme is
linked with a certain site of localization of the extra electron
and thus the matrix elements of the double exchange in the
trimeric systems turns out to be proportional to the 9j sym-
bols appearing in the four spin recoupling.

For more complicated tetrameric systems, we face the
recoupling procedure for five spins. In this case the matrix
elements of the double exchange operator prove to be pro-
portional to the 12j symbols. It is evident that for systems
with more than four centers the use of the spin coupling
schemes linked to the extra electron localization results in
the appearance of higher ordern j symbols. Because of the
lack of knowledge of the properties of higher-ordern j sym-
bols, the theoretical studies of such type polynuclear~oligo-
meric! systems have not been undertaken till now. The com-
putational procedure is also dramatically complicated when
we are dealing with the cases of more than one moving elec-
tron.

Here we propose a general approach to the problem of
the electronic interactions in the arbitrary nuclearity MV sys-
tems possessing arbitrary number of localized spins and itin-
erant electrons paying particular attention to the double ex-
change concept. In the framework of the proposed
computational scheme two-electron transfer and all three-
center interactions are considered along with the double ex-
change. For the reasons given below electron transfer
through three-center interactions can be referred to as poten-
tial exchange transfer, the associated parameter being of the
same order of magnitude as Heisenberg potential exchange.
The new approach is based on the successive~chainlike! spin
coupling scheme and takes full advantages of the angular
momentum technique. Utilization of the angular momentum
theory allows to derive the explicit analytical dependence of
the matrix elements of the double exchange, two-electron
transfer and exchange transfer, on all relevant spin quantum
numbers for an arbitrary MV systems. These analytical ex-
pressions contain 6j symbols and do not contain higher order
recoupling coefficients. In order to reduce the dimensions of
the energy matrices obtained in this way the point symmetry
arguments are taken into account.

II. THE MODEL OF THE MIXED-VALENCE SYSTEM

We consider the most general case of MV system of the
type Pdn111(N2P)dn. This system containsN dn ions
occupying the sites 1,2,...,N, andP extra electrons delocal-
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ized over these sites. We start our study by considering ions
with less than half-filledd shells ~n11<5!. The case of
more than half-filledd shell ~n11.5! will be studied sepa-
rately in Sec. VII. Eachj th site (j51,2,...,N) hasn11 or-
bitals in such a way thatn of these orbitalswjv (v
51,2,...,n) are supposed to be singly occupied forming
high-spin~Hund’s! ions with spinss05n/2 ~spin cores!. The
remaining~highest in energy! cj orbital is singly occupied
when sitej contains adn11 ion, or empty for adn ion ~Fig.
1!. Thedn11 ions are also high-spin ones so the spins of ions
will be eithersj5s0 for dj

n ion orsj5s01
1
2 for dj

n11 ion. All
orbitals are supposed to be orthogonal~Wannier functions!.

III. THE WAVE FUNCTIONS OF THE LOCALIZED
SYSTEM

There areN!/[ P!(N2P)!] possibilities to distributeP
extra electrons amongN sites. Let us suppose that we are
dealing with the definite electronic distributionD fixing thus
the sites occupied bydn anddn11 ions. Thevth spin–orbital
of the j th ion with the spin projections j (v) will be denoted
as [s j (v)][w jv~r2Rj !us j (v)&, where Rj is the position
vector of the sitej , and us j (v)& is the spin function. The
wave function of thedj

nj ion belonging tosjmj state~spin of
ion and its projection! is built from Slater determinants in
nj21 steps using the successive coupling of the electronic
spins to give total spinsj :

usjmj&5(
a j ãj

^a j ã j usjmj&u@s j~1!#@s j~2!#•••@s j~nj !#u,

~1!

where u•••u stands for the Slater determinants. The coeffi-
cients of the unitary transformation~1! are the following
products of Clebsch–Gordan coefficients:

^a j ã j usjmj&5C
~1/2!s j ~1! ~1/2!s j ~2!

1s̃ j ~2!
C
1s̃ j ~2! ~1/2!s j ~3!

~3/2!s̃ j ~3!
•••

3C
@~nj21!/2#s̃ j ~nj21! ~1/2!s j ~nj !

sjmj , ~2!

whereaj and ã j are the combined symbols:

a j[$s j~1!,s j~2!,...,s j~nj !%,
~3!

ã j[$s̃ j~2!,s̃ j~3!,...,s̃ j~nj21!%,

and s̃ j (2)5s j (1)1s j (2), s̃ j (3)5s̃ j (2)1s j (3), etc., are
the intermediate spin projections in the successive spin addi-
tion.

Let us introduce the$Dm% representation with the basis
functions of the whole system related to the electronic dis-
tributionD and to the definite set of spin projections of ions
m[$m1 ,m2 ,...,mN%. For a given distributionD the basis
functions can be represented as antisymmetrized products of
the singly ion wave functions of type~1!. These wave func-
tions will be denoted as

u~s1m1!~s2m2!•••~si21mi21!~si5s01
1
2,mi !

~si11mi11!•••~sk21mk21!~sk5s0 ,mk!

~sk11mk11!•••~sNmN!&. ~4!

For this givenD the sitei is assumed to be occupied by
an extra electron, meanwhile the sitek (k. i ) is of the dn

type. This is explicitly shown in Eq.~4! and schematized in
Fig. 1. The remaining sites~bÞi ,k! can be either ofdn or
dn11 type depending on the distributionD. One can consider
also the$Dm% state in which the extra electron is transferred
from sitei to sitek. If i,k the corresponding wave function
will be

u~s1m1!~s2m2!•••~si21mi21!~si5s0 ,mi !

~si11mi11!•••~sk21mk21!~sk5s01
1
2,mk!

~sk11mk11!•••~sNmN!&. ~5!

Finally, we can pass to the$D(S̃)SM% representation
corresponding to the coupled spins of the whole system. In
this notationD is the electronic distribution~later on symbol
D will be omitted in the notations of the wave functions!, S
andM are total spin and its projection,S̃ symbolizes the full
set of intermediate spins of theN-spin system. There are
many possibilities to choose a spin coupling scheme. Further
on we will use the successive~‘‘chainlike’’ ! spin-addition
scheme which seems to be convenient for the problem under
consideration:

s11s25S̃2 , S̃21s35S̃3 ,...,S̃N211sN5S. ~6!

In the successive coupling scheme a short notation is
used for the chain of intermediate spin valuesS̃2[S̃12,
S̃3[S̃123..., etc.,S̃12•••N[S, giving rise to a certain total spin
S. The numbers 1,2,...,N are assigned to the constituent metal
sites arbitrarily and independently of the geometry of the
system but once adopted enumeration is assumed to be fixed
for all electronic distributionsD. The last determines only
the positions ofdn anddn11 ions defining thus the individual
~ionic! spins sj ~s0 or s01

1
2! and possible full sets

(S̃)[$S̃2 ,S̃3 ,...,S̃N21% of intermediate spins.
The wave functions in the$D(S̃)SM% representation

FIG. 1. Scheme of the one-electron transfer in the case of less than half-
filled d shells~dashed boxes show spin cores!.
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corresponding to the electronic distribution withdn11 ion in
the sitei anddn ion in the sitek ~the remaining sites have

definite set of occupation numbers corresponding to the
given distributionD! can be expressed as follows:

us1 ,s2~S̃2!s3~S̃3!•••~S̃i22!si21~S̃i21!~si5s01
1
2!~S̃i !si11~S̃i11!•••~S̃k22!sk21~S̃k21!~sk5s0!

~ S̃k!sk11~S̃k11!•••~S̃N21!sNSM&[u~sb ,bÞ i ,k!~si5s01
1
2,sk5s0!~S̃!SM&

5 (
all mM̃

Cs1m1s2m2

S̃2M̃2 C
S̃2M̃2s3m3

S̃3M̃3 •••C
S̃i22M̃ i22si21mi21

S̃i21M̃ i21 C
S̃i21M̃ i21@s01~1/2!#mi

S̃i M̃ i C
S̃i M̃ isi11mi11

S̃i11M̃ i11 •••C
S̃k22M̃k22sk21mk21

S̃k21M̃k21 C
S̃k21M̃k21s0mk

S̃kM̃k

3C
S̃kM̃ksk11mk11

S̃k11M̃k11 •••C
S̃N21M̃N21sNmN

SM u~s1m1!~s2m2!•••~si5s01
1
2,mi !•••~sk5s0 ,mk!•••~sNmN!&. ~7!

HereM̃2 ,M̃3 ,... are the quantum numbers of intermediate spin projections. The wave function for the cluster with electron
transferred fromi th to kth ion has the form

u~sb ,bÞ i ,k!~si85s0 , sk85s01
1
2!~S̃8!S8M 8&

5 (
all m8M̃8

C
s
18m18s28m28

S̃28M̃28 C
S̃
28M̃28s38m38

S̃38M̃38 •••C
S̃
i228 M̃

i228 s
i218 m

i218

S̃i218 M̃ i218
C
S̃
i218 M̃

i218 s0mi8

S̃i8M̃ i8 C
S̃
i8M̃ i8si118 m

i118

S̃i118 M̃ i118
•••C

S̃
k228 M̃

k228 s
k218 m

k218

S̃k218 M̃k218

3C
S̃
k218 M̃

k218 @s01~1/2!#mk8

S̃k8M̃k8 C
S̃
k8M̃k8sk118 m

k118

S̃k118 M̃k118
•••C

S̃
N218 M̃

N218 s
N8mN8

S8M8 u~s18m18!~s28m28!•••~si8

5s0 ,mi8!•••~sk85s01
1
2,mk8!•••~sN8mN8 !&, ~8!

where the quantum numbers of ionic, intermediate and total
spins related to the final state are primed. The last two for-
mulas are to be used for the evaluation of the matrix element
corresponding to thei→k electron transfer.

IV. DOUBLE EXCHANGE HAMILTONIAN

The Hamiltonian of the system can be written as

H5h1g, ~9!

where one-electron operatorh involves kinetic and potential
energies of all electrons andg is the interelectronic repulsion
term.

Let us pass to the second quantization representation and
write down the Hamiltonian acting in the space of the states
belonging to the ground manifold@states of the type~4!, ~5!
belonging to all possible electronic distributionsD and quan-
tum numberssjmj of constituent ions#. This Hamiltonian can
be expressed as:

H5H01Hex
P 1Htr

~1!1Htr
~2!1Hex2tr

P . ~10!

The termH0 includes all interatomic interactions and
interatomic Coulomb repulsion. The operatorHex

P is the iso-
tropic potential exchange~the effect of this term as well as
the computational procedure are well known40–42 and we
will not focus our attention on this term!. The operatorHtr

~1! is
responsible for the one-electron transfer, which usually is the
leading term in the Hamiltonian~10!. When this transfer oc-
curs over paramagnetic spin cores we are dealing with the
double exchange interaction.17 The last two termsHtr

~2! and

Hex2tr
P represent the two-electron transfer and potential ex-

change transfer correspondingly. These two terms will be
considered in detail in Secs. VIII and IX.

In this section we focus on the double exchange Hamil-
tonian for the case of less than half-filledd shells. One can
represent one-electron transfer operatorHtr

~1! as a sum of two-
center contributions:

Htr
~1!5(

i ,k
iÞk

Htr
~1! ~ i→k!, ~11!

whereHtr
~1! ( i→k) contains two terms:

Htr
~1! ~ i→k!5T i→k1Fi→k . ~12!

The operatorT i→k is of the form

T i→k5F ^ckuhuc i&1(
jv

^ckw jvuguc iw jv&

1 (
jÞ i ,k

^ckc j uguc ic j&NjcG(
s

Ckcs
1 Cics , ~13!

whereCics
1 ~Cics! is the operator of creation~annihilation!

of the electron on thec orbital of the sitei with spin projec-
tion s, Njc5(sCics

1 Cics is the operator of the number of
the electrons onc orbital of i th site. The bielectronic inte-
grals in Eq.~13! are defined as

^ckw jvuguc iw jv&5E E ck~1!w jv~2!g~1,2!c i~1!

3w jv~2!dt1dt2 etc.
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The contribution to the transfer~double-exchange! pa-
rameter fromT i→k term is defined as

b ik5^ckuhuc i&1(
jv

^ckw jvuguc iw jv&

1 (
jÞ i ,k

~dj
n11 centers!

^ckc j uguc ic j&. ~14!

The first sum in Eq.~14! involves all core’s orbitals of
all centers including centersi andk while the second sum-
mation runs over alldn11 centers with the exception of cen-
ters i andk which change their oxidation degrees in course
of transfer process. The term̂ckuhuci& arises from the mono-
electronic part of the Hamiltonian~9!, all the remaining
terms describe the influence of the localized electrons on the
i→k transfer overc orbitals. Using definition~14! we can
represent operatorT i→k in the standard form:

T i→k5b ik(
s

Ckcs
1 Cics . ~15!

Different contributions to the overall transfer process are
schematized in Table I for the simple case of two orbitals per
center.

The operatorFi→k is written as

Fi→k5 (
j5 i ,k

(
v

^ckw jvuguw jvc i&(
ss8

Cjvs
1 Ckcs8

1 Cjvs8Cics .

~16!

Sum over j involves two terms withj5 i and j5k. Two
bielectronic processes associated with this operator are
shown in Table I. Conventionally they are depicted as the
two step processes. One step represents the transition be-
tweenc andw orbitals belonging to the same center, another
one is the interionic transfer involving core orbitalw and
orbital c. The Fi→k contribution seems to be smaller than
that of T i→k . Latter on we will show that the operator
T i→k1Fi→k can be represented as one effective operator of
the type~15! in which instead ofbik one should write some
effective transfer parametert ik .

V. MATRIX ELEMENTS OF THE DOUBLE EXCHANGE
IN THE $Dm % REPRESENTATION (LESS THAN
HALF FILLED d SHELLS)

We start with the evaluation of the matrix element of the
operatorT i→k @Eq. ~15!# in the $Dm% representation corre-
sponding to the uncoupled spins of ions. One can easily
prove that the matrix element of the operatorT i→k linking
two electronic distributionsD andD8 is nonvanishing ifD
andD8 differ in occupation numbers of two sites, say,i and
k corresponding thus to one-electron transfer. Using the
properties of Slater’s determinants and Clebsch–Gordan co-
efficients one can find the following expression for the ma-
trix element ofi→k electron transfer~we suppose thati,k!:

^~s18m18!~s28m28!•••~si85s0 ,mi8!•••~sk85s0

1 1
2,mk8!•••~sN8mN8 !

uTi→ku~s1m1!~s2m2!•••~si5s01
1
2,mi !•••~sk

5s0 ,mk!•••~sNmN!&

5~21!2s012~si111si121•••sk21!b ik )
f51
fÞ i ,k

N

dsfsf8dmfmf8

3 (
p56

1
2

C
s0mi8~1/2!p

@s01~1/2!#miC
s0mk~1/2!p

@s01~1/2!#mk8, ~17!

wherebik is the double exchange parameter already defined
@Eq. ~14!#. Product ofd symbols in Eq.~17! shows explicitly
that only one-electron jump from sitei to sitek is possible,
meanwhile all remaining electrons occupy their initial sites
conserving at the same time their spins (•••sf•••
5 •••sf8•••) in course of transfer keeping unchanged their
spin projections (•••mf••• 5 •••mf8•••). One can see that
only spin projections of two ions participating in the transfer
processes are changed. The moving electron keeps its spin
projectionp and as it is clear from Eq.~17!, the conservation
law for the full spin projection of two ions involved in trans-
fer is valid (mi1mk5mi81mk8).

TABLE I. The electronic processes described by the operatorH tr
~1!( i→k) in

the simple case of Pd21~N2P!d1-system~only the processes withs5s85↑
are shown!.
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Let us calculate now the matrix element of the operator
Fi→k . Two terms of this operator~j5 i and j5k! generate

two processes visualized in the lines 6(j5k) and 7(j5 i ) of
Table I. Considering in Eq.~16! term with j5k we get

(
ss8

Ckvs
1 Ckcs8

1 Ckvs8Cics5(
s

Ckvs
1 Cics(

s8
Ckcs8

1 Ckvs8

and hence, we can apply the formula for the matrix element of the product of two operators. Thus we obtain

K ~s18m18!~s28m28!•••~si85s0 ,mi8!•••~sk85s01
1
2,mk8!•••~sN8mN8 !U(

ss8
Ckvs

1 Ckcs8
1 Ckvs8CicsU~s1m1!~s2m2!•••~si5s0

1 1
2,mi !•••~sk5s0 ,mk!•••~sNmN!L

5 (
s19 ,s29 ,...,sN9

(
m19 ,m29 ,...,mN9

K ~s18m18!~s28m28!•••~si85s0 ,mi8!•••~sk85s01
1
2,mk8!~sN8mN8 !

U(
s

Ckvs
1 CicsU~kv !0~s19m19!~s29m29!•••~si95s01

1
2,mi9!•••~sk95s0 ,mk9!•••~sN9mN9 !L

3K ~kv !0~s19m19!~s29m29!•••~si95s01
1
2,mi9!•••~sk95s0 ,mk9!•••~sN9mN9 !

U(
s8

Ckcs8
1 Ckvs8U~s1m1!~s2m2!•••~si5s01

1
2,mi !•••~sk5s0 ,mk!•••~sNmN!L . ~18!

Equation~18! shows explicitly that the whole transfer process is represented as two step process~Table I, line 6!. The quantum
numbers of the intermediate states are double primed. Symbol (kv)0 indicates that the summation in Eq.~18! involves only
those intermediate states in whichvth core orbital ofkth ion is empty and orbitalc is singly occupied~the result of the first
jump!. The second matrix element in the right side of Eq.~18! describes the intraionic transferwkv→ck ~first step!. The first
matrix element corresponds to interionicc i→wkv transfer restoring thekth spin core~second step!.

For the second matrix element in Eq.~18! one can obtain the following result:

K ~kv !0~s19m19!~s29m29!•••~si95s01
1
2,mi9!•••~sk95s0 ,mk9!•••~sN9mN9 !

U(
s8

Ckcs8
1 Ckvs8U~s1m1!~s2m2!•••~si5s01

1
2,mi !•••~sk5s0 ,mk!•••~sNmN!L 5~21!2s02v)

f51

N

ds
f9sf

dm
f9mf

. ~19!

One can see that the interionic transfer does not change the spins and spin projections of all constituent ions. Therefore,
only one intermediate state~with all sf9 5 sf andmf9 5 mf! contributes to the matrix element in Eq.~18!.

Using Eq.~19! and taking into account the properties of Slater determinants and Clebsch–Gordan coefficients one can
represent the matrix element in Eq.~18! as follows:

K ~s18m18!~s28m28!•••~si85s0 ,mi8!•••~sk85s01
1
2,mk8!•••~sN8mN8 !U(

ss8
Ckvs

1 Ckcs8
1 Ckvs8CicsU~s1m1!~s2m2!•••~si5s01

1
2,mi !•••

~sk5s0 ,mk!•••~sNmN!5~21!2s02v^~s18m18!~s28m28!•••~si85s0 ,mi8!•••~sk85s01
1
2,mk8!•••~sN8mN8 !

U(
s

Ckvs
1 CicsU~kv !0~s1m1!~s2m2!•••~si5s01

1
2,mi !•••~sk5s0 ,mk!•••~sNmN!L

5~21!112s012~si111si121•••sk21! )
f51
fÞ i ,k

N

dsfsf8dmfmf8 (
p561/2

C
s0mi8~1/2!p

@s01~1/2!#miC
s0mk~1/2!p

@s01~1/2!#mk8. ~20!
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Comparing Eqs.~20! and ~17! we arrive at the following
relation of equivalence for the product of Fermion operators:

(
ss8

Ckvs
1 Ckcs8

1 Ckvs8Cics52(
s

Ckcs
1 Cics . ~21!

Analogously, considering in the operatorFi→k the term
with j5 i we get

(
ss8

Civs
1 Ckcs8

1 Civs8Cics52(
s

Ckcs
1 Cics . ~22!

Combining Eqs.~21!, ~22!, and~15! one can rewrite the
double exchange operatorHtr

~1!( i→k) in the following form:

Htr
~1!~ i→k!5t ik(

s
Ckcs

1 Cics , ~23!

where

t ik5b ik2 (
j5 i,k

(
v

^ckw jvuguw jvc i& ~24!

is the new effective double exchange parameter associated
with physical processes resulting in thei→k transfer. It
should be noted that these processes involves two centers
only. Three center processes leading toi→k transfer will be
considered later on. Since the operator parts ofHtr

~1!( i→k)
andT i→k are equivalent the matrix element ofHtr

~1!( i→k) in
the $Dm% representation can be calculated using Eq.~17! in
which bik must be substituted byt ik . In this way one can

built the matrix of one-electron transfer. Diagonalizing this
matrix one can obtain the energies of tunnel states. However,
following this way it is hardly possible to handle with the
large clusters containing many sites and many electrons. In
fact the number of basis states in$Dm% representation
for Pdn111(N2P)dn cluster is given as
2P(s011)P(2s011)N2PN![ P!(N2P)!] 21. Taking for ex-
ample the systemd22d22d32d3 ~N54, P52, s051! we
obtain the matrix 8643864. One can see that even for this
comparatively simple system we have to diagonalize a big
matrix.

VI. MATRIX ELEMENT OF THE DOUBLE EXCHANGE
OPERATOR IN THE $D(S̃)SM% REPRESENTATION

A significant reduction of the dimensions of the matrices
can be achieved taking as a basis set the states in$D(S̃)SM%
representation. Taking the advantage of the angular momen-
tum theory we will show in this section that the matrix ele-
ment of the double exchange operator may be represented as
a simple closed-form expression for the arbitrary nuclearity
MV systems. The developed approach will be called angular
momentum approach. Using the wave functions in
$D(S̃)SM% representation@Eqs.~7! and~8!#, and Eq.~17! for
the matrix element in$Dm% representation, one can repre-
sent the matrix element corresponding to thei→k transfer
( i,k) as follows:

^~sb85sb ,bÞ i ,k!~si85s0 , sk85s01
1
2!~S̃8!S8M 8uHtr

~1!~ i→k!u~sb , bÞ i ,k!~si5s01
1
2, sk5s0!~S̃!SM&

5~21!2s012~si111si121•••1sk21!t ik (
all m,M̃,M̃8

(
mi8mk8

(
p561/2

C
s0mi8~1/2!p

@s01~1/2!#miC
s0mk~1/2!p

@s01~1/2!#mk8Cs1m1

S̃2M̃2C
S̃2M̃2s3m3

S̃3M̃3 •••C
S̃i22M̃ i22si21mi21

S̃i21M̃ i21

3C
S̃i21M̃ i21@s01~1/2!#mi

S̃i M̃ i C
S̃i M̃ isi11mi11

S̃i11M̃ i11 •••C
S̃k22M̃k22sk21mk21

S̃k21M̃k21 C
S̃k21M̃k21s0mk

S̃kM̃k C
S̃kM̃ksk11mk11

S̃k11M̃k11 •••C
S̃N21M̃N21sNmN

SM
C
s1m1s2m2

S̃28M̃28

3C
S̃
28M̃28s3m3

S̃38M̃38 •••C
S̃
i228 M̃

i228 si21mi21

S̃i218 M̃ i218
C
S̃
i218 M̃

i218 s0mi8

S̃i8M̃ i8 C
S̃
i8M̃ i8si11mi11

S̃i118 M̃ i118
•••C

S̃
k228 M̃

k228 sk21mk21

S̃k218 M̃k218
C
S̃
k218 M̃

k218 @s01~1/2!#mk8

S̃k8M̃k8

3C
S̃
k8M̃k8sk11mk11

S̃k118 M̃k118
•••C

S̃
N218 M̃

N218 sNmN

S8M8 . ~25!

Using the well known properties of Clebsch–Gordan coefficients one can carry out the summations in Eq.~25!. Because
of the importance of this procedure for the following calculations and for the related electron transfer problems we will
consider it in detail. First by using the unitarity property of Clebsch–Gordan coefficients we get

(
m1m2•••mi21

(
M̃2•••M̃i22

(
M̃28•••M̃i228

Cs1m1s2m2

S̃2M̃2 C
S̃2M̃2s3m3

S̃3M̃3 •••C
S̃i22M̃ i22si21mi21

S̃i21M̃ i21 C
s1m1s2m2

S̃28M̃28 C
S̃
28M̃28s3m3

S̃38M̃38 •••C
S̃
i228 M̃

i228 si21mi21

S̃i218 Mi218

5d S̃2S̃28
d S̃3S̃38

•••d S̃i21S̃i218 d M̃ i21M̃ i218 . ~26!

In order to perform further calculations we will employ the formula for the sums of the products of three Clebsch–Gordan
coefficients43
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(
abg

Caabb
cg Cddbb

ee Caa fw
dd 5~21!b1c1d1 fA~2c11!~2d11!Ha b c

e f dJCcg fw
ee , ~27!

and the well-known symmetry property

Caabb
ca1b5~21!a1b2cCbbaa

ca1b . ~28!

In Eq. ~27! $e
a

f
b

d
c% is a 6j symbol. Using Eqs.~26! and ~27! we find

(
mimi8M̃i21

C
s0mi8~1/2!p

@s01~1/2!#miC
S̃i21M̃ i21@s01~1/2!#mi

S̃i M̃ i C
S̃i21M̃ i21s0mi8

S̃i8M̃ i8

5~21!2~1/2!2s02 S̃i212 S̃iA2~s011!~2S̃i811!H s0 1/2 s01~1/2!

S̃i S̃i21 S̃i8
JCS̃

i8M̃ i8~1/2!p

S̃i M̃ i . ~29!

After that one should perform several successive summations of the same type. The first summation of this series yields

(
M̃i M̃ i8mi11

C
S̃i M̃ isi11mi11

S̃i11M̃ i11 C
S̃
i8M̃ i8si11mi11

S̃i118 M̃ i118
C
S̃
i8M̃ i8~1/2!p

S̃i M̃ i

5~21!~1/2!1si111S̃i118 1 S̃iA~2S̃i118 11!~2S̃i11! H S̃i8

S̃i11

1/2
Si11

S̃i
S̃i118 JCS̃

i118 M̃
i118 ~1/2!p

S̃i11M̃ i11 . ~30!

Using the result of this summation one can perform the second summation of this series

(
M̃i11M̃ i118 mi12

C
S̃i11M̃ i11si12mi12

S̃i12M̃ i12 C
S̃
i118 M̃

i118 si12mi12

S̃i128 M̃ i128
C
S̃
i118 M̃

i118 ~1/2!p

S̃i11M̃ i11

5~21!~1/2!1si121 S̃i128 1 S̃i11A~2S̃i128 11!~2S̃i1111!H S̃i118

S̃i12

1/2
Si12

S̃i11

S̃i128 JCS̃
i128 M̃

i128 ~1/2!p

S̃i12M̃ i12 . ~31!

This series of summations involvesk2 i21 similar stages. The last one is the following:

(
M̃ k22M̃ k228 mk21

C
S̃k22M̃k22sk21mk21

S̃k21M̃k21 C
S̃
k228 M̃

k228 sk21mk21

S̃k218 M̃k218
C
S̃
k228 M̃

k228 ~1/2!p

S̃k22M̃k22

5~21!~1/2!1sk211 S̃k218 1 S̃k22A~2S̃k218 11!~2S̃k2211! H S̃k228 1/2 S̃k22

S̃k21 Sk21 S̃k218 JCS̃
k218 M̃

k218 ~1/2!p

S̃k21M̃k21 . ~32!

Taking into account the result of the last summation of the series@Eq. ~32!# one can perform just one more summation,
appearing in the initial Eq.~25!, namely

(
pM̃ k21mk

C
S̃k21M̃k21s0mk

S̃kM̃k C
s0mk~1/2!p

@s01~1/2!#mk8C
S̃
k218 M̃

k218 ~1/2!p

S̃k21M̃k21
5~21!112s012S̃k218 A2~s011!~2S̃k2111!

3H s0 1/2 s01~1/2!

S̃k218 S̃k S̃k21
JC@s01~1/2!#mk8 S̃k218 M̃

k218

S̃kM̃k . ~33!

The remaining summations can be easily made by means of the unitarity property of Clebsch–Gordan coefficients and Eq.
~28!. The result is the following:
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(
mk8mk11mk12•••mN

(
m̃km̃k11•••m̃N21

(
m̃k218 m̃k8m̃k118 •••m̃N218

C
@s01~1/2!#mk8 S̃k218 M̃

k218

S̃kM̃k C
S̃
k218 M̃

k218 @s01~1/2!#mk8

S̃k8M̃k8 C
S̃kM̃ksk11mk11

S̃k11M̃k11

3C
S̃k11M̃k11sk12mk12

S̃k12M̃k12 •••C
S̃N21M̃N21snmN

SM
C
S̃
k8Mk8sk11mk11

S̃k118 M̃k118
C
S̃
k118 M̃

k118 Sk12Mk12

S̃k128 M̃k218
•••C

S̃N21M̃N218 sNmn

S8M8

5~21!~1/2!1s01 S̃k218 2 S̃kd S̃kS̃k8
d S̃k11S̃k118 •••d S̃N21S̃N218 dSS8dMM8. ~34!

Now we have everything we need for the calculation of the matrix element fori→k transfer in the$D(S̃)SM%-
representation. Substituting Eqs.~26!–~34! into Eq. ~25! we obtain the following final result for the matrix element of the
double exchange Hamiltonian:

^~sb85sb , bÞ i ,k!~si85s0 , sk85s01
1
2!~S̃8!SMuHtr

~1!~ i→k!u~sb , bÞ i ,k!~si5s01
1
2, sk5s0!~S̃!SM&

5~21!2s0t ikZi→k@~sb85sb , bÞ i ,k!~si5s01
1
2, si85s0 , sk5s0 , sk85s01

1
2!~S̃!~S̃8!S#. ~35!

In Eq. ~35! Zi→k@•••# is the function of local spinssi ,sk andsi8 ,sk8 for the initial and final electronic distributions, and the
corresponding sets of intermediate spins (S̃) and ~S̃8! and total spinS. For the case under consideration (i,k) this function
has the form

Zi→k@ i,k,~sb85sb , bÞ i ,k!~si ,si8 ,sk ,sk8!~S̃!~S̃8!S#5~21!112~si1sk!1si81sk81~1/2!~k2 i !2 S̃i212 S̃i2 S̃k218 2 S̃k

3A~2si11!~2sk811!~2S̃i811!~2S̃k2111!d S̃2S̃28
d S̃3S̃38

•••d S̃i21S̃i218 d S̃kS̃k8
d S̃k11S̃k118 •••d S̃N21S̃N218 H si8 1/2 si

S̃i S̃i21 S̃i8
J

3H sk 1/2 sk8

S̃k218 S̃k S̃k21
J )

f51

k2 i21

~21!2si1 f1 S̃i1 f8 1 S̃i1 f21A~2S̃i1 f2111!~2S̃i1 f8 11!H S̃i1 f218 1/2 S̃i1 f21

S̃i1 f si1 f S̃i1 f8
J . ~36!

In the notation ofZi→k@•••# corresponding toi→k transfer the remaining spinssb8 5 sb ~bÞi ,k! conserving their values are
indicated also. Although they do not enter explicitly in the right side of Eq.~36!, these spins determine the sets of intermediate
spins (S̃) and ~S̃8!, i.e., the arguments of the functionZi→k@•••#.

One can prove that the result~35! is valid also providingi.k but Zi→k@•••# in this case should be taken as follows:

Zi→k@ i.k,~sb85sb , bÞ i ,k!~si ,si8 ,sk ,sk8!~S̃!~S̃8!S#5~21!112~si1sk!1si81sk81~1/2!~ i2k!2 S̃k212 S̃k2 S̃i218 2 S̃i

3A~2sk811!~2si11!~2S̃k811!~2S̃i2111!d S̃2S̃28
d S̃3S̃38

•••d S̃k21S̃k218 d S̃i S̃i8
d S̃i11S̃i118 •••d S̃N21S̃N218 H sk8 1/2 sk

S̃k S̃k21 S̃k8
J

3H si 1/2 si8

S̃i218 S̃i S̃i21
J )

f51

i2k21

~21!2sk1 f1 S̃k1 f8 1 S̃k1 f21A~2S̃k1 f2111!~2S̃k1 f8 11!H S̃k1 f218 1/2 S̃k1 f21

S̃k1 f sk1 f S̃k1 f8
J . ~37!

Some remarks should be made concerning the use of Eq.
~35!. First of all, for the valuesS̃0, S̃08 , S̃1, andS̃18 one must
use the following rules:S̃15s1 , S̃18 5 s18 , S̃0 5 S̃08 5 0. In ad-
dition to these rules, one should take into account that
S̃N5S, S̃N8 5 S8. Besides, in the particular casek5 i11 ~or
k5 i21! the products in Eq.~36! @or Eq. ~37!# should be
substituted by 1.

Equation ~35! shows that the following conservation
rules occur for thei→k transfer:

~1! The total spin and its projection are conserved
~S85S, M 85M !.

~2! All intermediate spins remain unchanged in thei→k
transfer process with the exception ofS̃i ,S̃i11•••S̃k21 for the
casei,k and S̃k ,S̃k11•••S̃i21 for the casei.k. Using the
triangle rules for 6j symbols we obtain the following relation
between these intermediate spins in the initial and final states

providingi,k: S̃i8 5 S̃i 6
1
2, S̃i118 5 S̃i116 1

2,•••S̃k218 5 S̃k21

6 1
2. Similarly for the casei.k we can write:S̃k8 5 S̃k 6 1

2,

S̃k118 5S̃k116 1
2,•••S̃i218 5S̃i216 1

2.
Figure 2 illustrates three domains of intermediate spins

behavior in course ofi→k transfer for the casei,k. There
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are two domains of the intermediate spins conservation. The
first one includes the set of sites with the numbers 1,2,...,i21
in the initially adopted enumeration scheme. The second do-
main involves the sitesk,k11,...,N. The sites with the num-
bers i ,i11,...,k21 forms active domain in which interme-
diate spins are changed in the transfer process. It should be
noted that the final sitek is out of the active domain.

One can see that as distinguished from the case of
$Dm%-representation in$D(S̃)SM% representation instead of
one large matrix one should diagonalize several matrices of
smaller dimensions corresponding to the differentS values.

Finally, a useful property ofZ@•••# functions should be
pointed out. This property is given by the following relation:

Zk→ i@~sb85sb , bÞk,i !~sk ,sk8 ,si ,si8!~S̃!~S̃8!S#

5F ~2si811!~2sk11!

~2si11!~2sk811! G
1/2

Zi→k@~sb85sb , bÞ i ,k!

~si ,si8 ,sk ,sk8!~S̃!~S̃8!S]. ~38!

This relation can be easily proved using the definitions
~36! and ~37!.

VII. MATRIX ELEMENTS OF THE DOUBLE
EXCHANGE (MORE THAN HALF-FILLED d SHELLS)

Let us proceed to elucidate how the developed theory
should be modified in the case of the cluster
Pd92n1(N2P)d102n with more than half-filledd shells
~n<4!. This system containsN2P extra electrons orP extra
holes. Providingn54 the extra electron is hopping over the
lowestwi1 orbitals forming thus double occupied~wi1!

2 states
of d6 ions. Spin cores in the systemPd51(N2P)d6 are
formed byd5 ions, i.e., by the ions without extra electrons as
in the case of less than half-filledd shells. These spin cores
and the scheme of transfer process (di

6dk
5)→(di

5dk
6) are sche-

matized in Fig. 3~a!. Provided thatn,4, all ions~d92n and
d102n! possess double occupiedd orbitals as shown in

Fig. 3~b!. The lowest equivalent orbitals@denoted byxi in
Fig.3~b!# are doubly occupied in bothPd92n and
(N2P)d102n subsystems and do not participate in the trans-
fer processes. These orbitals form an inactive zone framed in
the dotted box in Fig. 3~b!. The extra electron jumps from
the doubly occupiedwi1 orbital ~lying above the box! to the
singly occupiedwk1 orbital. In this case, the spin cores are
formed by the half-filled orbitals of thed92n ions and the
d92n residues of thed102n ions as shown by the dashed
boxes in Fig. 3~b!. Denoting the spin cores ass0 one can see
that for more than half-filled d-shells ~n<4!
s(d92n)5s05(n11)/2, s(d102n)5s02

1
25n/2.

We will use the double-exchange operator
Htr

~1!( i→k)5t ik(sCk1s
1 Ci1s adapted to the case of more than

half-filled d shells. The transfer parametert ik in this case
contains one-electron integral^wk1uhuwi1& and two-electron
integrals like in the case of less than half-filledd shells~see
Sec. V!.

The calculations of the matrix element ofHtr
~1!( i→k) are

quite similar to those described in Sec. VI. With the use of
the properties of Slater determinants and Clebsch–Gordan
coefficients one can obtain the matrix element of the double
exchange in the$Dm% representation. In the case ofi,k the
result has the form

FIG. 2. The domains of different behavior of the intermediate spins fori→k
transfer (i,k) in chainlike coupling scheme.

FIG. 3. Scheme of the one-electron transfer in the case of more than half-
filled d shells ~dotted box show inactive zone, dashed boxes show spin
cores!: ~a! n55, ~b! n57.
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^~s18m18!~s28m28!•••~si85s0 ,mi8!•••~sk85s02
1
2,mk8!•••~sN8mN8 !uHtr

~1!~ i→k!u~s1m1!~s2m2!•••~si5s02
1
2,mi !•••~sk

5s0 ,mk!•••~sNmN!&5~21!2s012~si111si121•••sk21!t ik
2s011

2s0
)
f51
fÞ i ,k

N

dsfsf8dmfmf8 (
p561/2

C
s0mi8~1/2!p

@s02~1/2!#miC
s0mk~1/2!p

@s02~1/2!#mk8. ~39!

Using this expression and following the method described in the previous section one can calculate the matrix element
associated with thei→k transfer in the$D(S̃)SM% representation. Omitting the details of the calculations we give the final
result only

^~sb85sb ,bÞ i ,k!~si85s0 ,sk85s02
1
2!~S̃8!SMuHtr

~1!~ i→k!u~sb ,bÞ i ,k!~si5s02
1
2,sk5s0!~S̃!SM&

5~21!2s0
2s011

2s0
t ikZi→k@~sb85sb ,bÞ i ,k!~si5s02

1
2,si85s0 ,sk5s0 ,sk85s02

1
2!~S̃!~S̃8!S#. ~40!

One can see that this expression contains the functionZ@•••# already defined, the local and intermediate spin values being
specific for the case under consideration.

Let us compare now the matrices of one-electron transfer for the MV systems of two typesPd92n1(N2P)d102n and
Pdn111(N2P)dn providing n<4. One can see that the ionsdn andd102n posses equal spins~complementary states!. The
spins for ionsdn11 andd92n are also equal. The matrix element ofi→k transfer for the systemPd92n1(N2P)d102n @core
spin s05(n11)/2# is obtained from Eq.~40! as follows:

K ~sb85sb ,bÞ i ,k!S si85
n11

2
,sk85

n

2D ~S̃8!SMUHtr
~1!~ i→k!U~sb ,bÞ i ,k!S si5n

2
,sk5

n11

2 D ~S̃!SML
5~21!n11

n12

n11
t ikZi→kF ~sb85sb ,bÞ i ,k!S si5n

2
,si85

n11

2
,sk5

n11

2
,sk85

n

2D ~S̃!~S̃8!SG . ~41!

Let us pass now to the systemPdn111(N2P)dn and consider the matrix element linking the states with the same sets of
site spins and intermediate spins as in Eq.~41! @all sites which were occupied byd102n(d92n) ions in the previous case now
must be occupied bydn(dn11) ions#. One can see that this matrix element corresponds to thek→ i transfer in the system with
less than half-filledd shells and core spins05n/2. Changing in Eq.~35! indicesi andk by places and using the property~38!
we get

K ~sb85sb ,bÞk,i !S sk85
n

2
,si85

n11

2 D ~S̃8!SMUH~1!
~k→ i !U~sb ,bÞk,i !S sk5n11

2
,si5

n

2D ~S̃!SML
5~21!ntkiZk→ iF ~sb85sb ,bÞk,i !S sk5n11

2
,sk85

n

2
,si5

n

2
,si85

n11

2 D ~S̃!~S̃8!SG
5~21!n

n12

n11
t ikZi→kF ~sb85sb ,bÞ i ,k!S si5n

2
,si85

n11

2
,sk5

n11

2
,sk85

n

2D ~S̃!~S̃8!SG . ~42!

Comparing Eqs.~41! and ~42! one can see that the ma-
trices of one-electron transfer for the ‘‘complementary’’ sys-
tems Pd92n1(N2P)d102n and Pdn111(N2P)dn differ
only in sign. Therefore the double exchange energy pattern
of Pd92n1(N2P)d102n system can be viewed as the over-
turned energy patternPdn111(N2P)dn system and vice
versa. The particular cases of this general theorem have been
mentioned several times for trimeric24 and tetrameric35 clus-
ters.

The final formulaes for the matrix elements of one-
electron transfer in the case of less than half-filledd shells
@Eq. ~35!# and more than half-filledd shells@Eq. ~41!# give
the general solution of the double exchange problem for
high-nuclearity MV clusters with the arbitrary number of the
moving electrons sharing among the network of spin cores.
These formulas are expressed in terms of the products of 6j

symbols only and do not contain Clebsch–Gordan coeffi-
cients~appearing in the spin-coupling procedures! and high-
order recoupling coefficients. Therefore these formulaes pro-
vide simple and very efficient tool for the theoretical study of
the electronic energy spectrum of complex MV systems.

VIII. TWO-ELECTRON TRANSFER

The one-electron transfer processes~double exchange!
so far discussed@the termHtr

~1! in the Hamiltonian~10!# usu-
ally play the most important role in the formation of spin-
levels pattern of MV systems. The total Hamiltonian~10!
contains also the termHtr

~2! responsible for the two-electron
transfer processes. This term can be represented as

Htr
~2!5 (

l ,k,i , j
~ lÞkÞ iÞ j !

Htr
~2!~ i→k, j→ l !. ~43!
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Considering the case of less than half-filledd shells we
can find the contribution corresponding to the jump from the
sitesi j to the siteskl as

Htr
~2!~ i→k, j→ l !

5^ckc l uguc ic j&(
ss8

Clcs
1 Ckcs8

1 Cics8Cjcs . ~44!

As distinguished from the operatorHtr
~1!( i→k) the opera-

tor Htr
~2!( i→k, j→ l ) changes simultaneously the localization

sites of two electrons~Table II!.
The contribution ofHtr

~2! is expected to be smaller than
that associated with the one-electron transfer Hamiltonian
Htr

~1! . Nevertheless many physical situations require to take
into consideration this smaller contribution. One example
represents the 2e-reduced MV polyoxometalates with Keg-
gin and Wells–Dawson structures containing the electronic
pair delocalized over the network of the metal ions. In this

case two-electron transfer splits the low lying levels mean-
while the one-electron transfer increases the Coulomb energy
of the pair giving thus only a second order contribution.44

Similar situation takes place in complex polyoxovanadates45

with delocalized electronic pairs. As a second example the
high-nuclearity clusters containing triangular faces can be
pointed out, particularly, metal skeleton of iron–sulfur pro-
teins @Fe4S4#

21 ~d5–d5–d6–d6 system!. Strong double ex-
change in these systems results in the accidentally degenerate
ground state comprising a set of different spin states~transfer
frustration26!. In this case the low-temperature magnetic be-
havior may be determined by the two-electron transfer.

The expressions so far obtained for the matrix elements
of one-electron transfer make it possible to evaluate also the
matrix elements of two-electron transfer operatorHtr

~2! . Let
us consider two-electron transferi→k, j→ l for the case of
less than half-filledd shells~the case of more than half-filled
d shells can be considered similarly!. The corresponding op-
eratorHtr

~2!( i→k, j→ l ) can be represented as the product of
the one-electron transfer operators:

Htr
~2!~ i→k, j→ l !

5^ckc l uguc ic j&(
s

Clcs
1 Cjcs(

s8
Ckcs8

1 Cics8 .

Applying now the formula for the matrix element of the
product of two operators we get

K ~sb85sb ,bÞ i ,k, j ,l !~si85s0 ,sk85s01
1
2,sj85s0 ,sl85s01

1
2!~S̃8!SM

U Htr
~2!~ i→k, j→1!U~sb ,bÞ i ,k, j ,l !~si5s01

1
2,sk5s0 ,sj5s01

1
2,sl5s0!~S̃!SML

5^ckc l uguc ic j&(
~S̃9!

K ~sb85sb ,bÞ i ,k, j ,l !~si85s0 ,sk85s01
1
2,sj85s0 ,sl85s01

1
2!~S̃8!SM

U(
s

Clcs
1 CjcsU~sb95sb ,bÞ i ,k, j ,l !~si95s0 ,sk95s01

1
2,sj95s01

1
2,sl95s0!~S̃9!SML

3 K ~sb95sb ,bÞ i ,k, j ,l !~si95s0 ,sk95s01
1
2,sj95s01

1
2,sl95s0!~S̃9!SM

U(
s8

Ckcs8
1 Cics8U~sb ,bÞ i ,k, j ,l !~si5s01

1
2,sk5s0 ,sj5s01

1
2,sl5s0!~S̃!SML . ~45!

One can see that the matrix element of two-electron transfer operator is expressed in terms of the one-electron transfer
matrix elements already calculated@see Sec. VI Eq.~35!#. Substituting these matrix elements into Eq.~45! we obtain

^~sb85sb ,bÞ i ,k, j ,l !~si85s0 ,sk85s01
1
2,sj85s0 ,sl85s01

1
2!~S̃8!SMuHtr

~2!~ i→k, j→1!u~sb ,bÞ i ,k, j ,l !~si5s01
1
2,sk5s0 ,sj

5s01
1
2,sl5s0!~S̃!SM&5^ckc l uguc ic j&(

~S̃9!

Zj→ l@~sb95sb85sb ,bÞ i ,k, j ,l !~si95si85s0 ,sk95sk85s01
1
2!~sj95s01

1
2,sj8

5s0 ,sl95s0 ,sl85s01
1
2!~S̃9!~S̃8!S#Zi→k@~sb95sb ,bÞ i ,k, j ,l !~sj5sj95s01

1
2,sl5sl95s0!~si5s01

1
2,si95s0 ,sk5s0 ,sk9

5s01
1
2!~S̃!~S̃9!S#, ~46!

TABLE II. The electronic process associated with the operator
Htr

~2!( i→k, j→1) ~only the processes withs5s85↑ are shown!.
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whereZj→ l@•••# and Zi→k@•••# are given by Eqs.~36! and
~37!. Sum in Eq.~46! involves all sets of intermediate spins
admitted by the given set of spins of the ions indicated ex-
plicitly in the notation ofZj→ l@•••# and Zi→k@•••# for the
given intermediate~double primed! state.

Let us discuss now briefly the case of more than half-
filled d shells. Two electron jump from double occupiedwi1
andwj1 orbitals to singly occupiedwk1 andwl1 orbitals, so
the associated two-electron transfer parameter will be
^wk1w l1uguw i1w j1&. The matrix element of two-electron trans-
fer can be represented in terms of the products of constituent
one-electron transfer matrix elements just as in the case of
less than half-filledd shells. Therefore, as distinguished from
the energy patterns formed by double exchange~Sec. VII!,
the energy patterns formed by two-electron jumps will
be the same for both ‘‘complementary’’ states
Pd92n1(N2P)d102n andPdn111(N2P)dn.

IX. POTENTIAL EXCHANGE TRANSFER

Now we consider the last term in the Hamiltonian~10!
Hex-tr
P . For the reasons given below we will refer the corre-

sponding physical interaction to as the potential exchange
transfer. The potential exchange transfer operator can be ex-
pressed as

Hex-tr
P 5(

iÞk
Hex-tr
P ~ i→k!. ~47!

We consider the case of less than half-filledd shells, for
which each term in Eq.~47! has the form

Hex-tr
P ~ i→k!5 (

jÞ i ,k
@Hex-tr

P ~c,i→ j→k!

1Hex-tr
P ~w,i→ j→k!#, ~48!

where

Hex-tr
P ~c,i→ j→k!

5^ckc j uguc jc i&(
ss8

Cjcs
1 Ckcs8

1 Cjcs8Cics , ~49!

Hex-tr
P ~w,i→ j→k!

5(
v

^ckw jvuguw jvc i&(
ss8

Cjvs
1 Ckcs8

1 Cjvs8Cics . ~50!

One can see that exchange transfer operator is expressed
in terms of three-center contributions. Each of them can be
apparently viewed as the thei→k transfer process via the
third center j . Electron transfer occurs throughcj orbital
@Eq. ~49!, Table III, line 1# or through thewjv orbitals of spin
cores@Eq. ~50!# of intermediate centers~in Table III lines 2
and 3 correspond to the intermediatedn anddn11 centers!.
Therefore, the operator~48! takes into account all pathways

of i→k transfer through the intermediate centers. These pro-
cesses are quite similar to those involved in the so-called
exchange transfer interaction.19,46–49This interaction arises
in the second order of perturbation theory like kinetic ex-
change, and therefore, it can be referred to as kinetic ex-
change transfer. The matrices of the kinetic exchange trans-
fer have been recently calculated for the MV clusters of
arbitrary nuclearity.48,49 On the contrary, operator~48! acts
within the ground manifold and thus appears as a first-order
effect like potential exchange. This accounts for the term
‘‘potential exchange transfer’’ introduced here. The detailed
discussion of the analogy between potential and kinetic ex-
change transfer interactions and the differences between their
magnetic manifestations is out of the scope of this paper, and
will be given elsewhere. It should be noted only that the
potential exchange transfer parameter~Table III! and the
magnetic ~Heisenberg-type! potential exchange parameter
may be estimated as the same order parameters. Therefore as
far as the exchange interactions in MV systems are con-
cerned the exchange transfer processes should be taken into
account at the same level of approximation.

Now we proceed to the calculation of the matrix ele-
ments of the potential exchange transfer operator~48!. Like
the double exchange operator, the operatorHex-tr

P ( i→k)
changes the site of localization of one electron meanwhile all
remaining electrons keep their places.

Using the results of the previous section one can
obtain the formula for the matrix element of the
operatorHex-tr

P (c,i→ j→k). In fact this operator can be ob-
viously regarded as a particular case of the two-electron
transfer operator so we can writeHex-tr

P (c,i→ j→k)
5Htr

(2)( j→k,i→ j ).
Applying Eq. ~46! and making the necessary modifica-

tions we get

TABLE III. The electronic processes associated with the operator
Hex2tr
P ( i→k) ~only the processes withs5s85↑ are shown!.
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^~sb85sb ,bÞ i ,k, j !~si85s0 ,sj85s01
1
2,sk85s01

1
2!~S̃8!SMuHex-tr

P ~c,i→ j→k!u~sb ,bÞ i ,k, j !

~si5s01
1
2,sj5s01

1
2,sk5s0!~S̃!SM&

5^ckc j uguc jc i&(
~S̃9!

Zi→ j@~sb95sb85sb ,bÞ i ,k, j !~sk95sk85s01
1
2!~si95s01

1
2,si85s0 ,sj95s0 ,sj85s01

1
2!~S̃9!~S̃8!S#

Zk→ j@~sb95sb ,bÞ i ,k, j !~si95si5s01
1
2!~sk95s01

1
2,sk5s0 ,sj95s0 ,sj5s01

1
2!~S̃9!~S̃!S#. ~51!

For the calculation of the matrix element of the operatorHex-tr
P (w,i→ j→k) it is convenient to rearrange this operator in

the following way:

Hex-tr
P ~w,i→ j→k!5(

v
^ckw jvuguw jvc i&(

s
Cjvs

1 Cics(
s8

Ckcs8
1 Cjvs8 .

Then one can express the matrix element under consideration in terms of the matrix elements describing two successive
one-electron transfer processes. Thus we get

^~sb85sb ,bÞ i ,k, j !~si85s0 ,sk85s01
1
2,sj85sj !~S̃8!SMuHex-tr

P ~w,i→ j→k!u~sb ,bÞ i ,k, j ,l !

~si5s01
1
2,sk5s0 ,sj5s01

1
2!~S̃!SM&

5(
v

^ckw jvuguw jvc i&(
~S̃9!

K ~sb85sb ,bÞ i ,k, j !~si85s0 ,sk85s01
1
2,sj85sj !~S̃8!SMU(

s
Cjvs

1 CicsU~ jv !0~sb95sb ,b

Þ i ,k, j !~si95s01
1
2,sk95s01

1
2,sj95sj2

1
2!~S̃9!SML ^~ jv !0~sb95sb ,bÞ i ,k, j !~si95s01

1
2,sk95s01

1
2,sj95sj2

1
2!

~ S̃9!SMU(
s8

Ckcs8
1 Cjvs8U~sb ,bÞ i ,k, j !~si5s01

1
2,sk5s0 ,sj !~S̃!SM, ~52!

where symbol (jv)0 shows thatwjv orbital is empty in the intermediate~double primed! state.
The calculation of the matrix elements of the one-electron transfers involved in Eq.~52! is based on the angular momen-

tum approach developed in Sec. VI. Omitting the details we give the result

K ~sb85sb ,bÞ i ,k, j !~si85s0 ,sk85s01
1
2,sj85sj !~S̃8!SMU(

s
Cjvs

1 CicsU~ jv !0~sb95sb ,bÞ i ,k, j !

~si95s01
1
2,sk95s01

1
2,sj95sj2

1
2!~S̃9!SML

5~21!vu i j ~sj !Zi→ j@~sb95sb85sb ,bÞ i ,k, j !~sk95sk85s01
1
2!

~si95s01
1
2,si85s0 ,sj95sj2

1
2,sj85sj !~S̃9!~S̃8!S], ~53!

whereu i j (sj ) is a factor defined as

u i j ~sj !5 H 21, if i, j
~21!2~s01sj ! if i. j . ~54!

We also have
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K ~ jv !0~sb95sb ,bÞ i ,k, j !~si95s01
1
2,sk95s01

1
2,sj95sj2

1
2!~S̃9!SMU(

s8
Ckcs8

1 Cjvs8U
~sb ,bÞ i ,k, j !~si5s01

1
2,sk5s0 ,sj !~S̃!SM&

5K ~sb ,bÞ i ,k, j !~si5s01
1
2,sk5s0 ,sj !~S̃!SMU(

s8
Cjvs8

1 Ckcs8

U~ jv !0~sb95sb ,bÞ i ,k, j !~si95s01
1
2,sk95s01

1
2,sj95sj2

1
2!~S̃9!SML

5~21!vuk j~sj !Zk→ j@~sb95sb ,bÞ i ,k, j !~si95si5s01
1
2!~sk95s01

1
2,sk5s0 ,sj95sj2

1
2,sj !~S̃9!~S̃!S#. ~55!

Substitution of Eqs.~53! and ~54! into Eq. ~52! leads to the following expression:

^~sb85sb ,bÞ i ,k, j !~si85s0 ,sk85s01
1
2,sj85sj !~S̃8!SMuHex-tr

P ~w,i→ j→k!u~sb ,bÞ i ,k, j ,l !

~si5s01
1
2,sk5s0 ,sj5s01

1
2!~S̃!SM&

5u i j ~sj !uk j~sj !(
v

^ckw jvuguw jvc i&(
~S̃9!

Zi→ j@~sb95sb85sb ,bÞ i ,k, j !~sk95sk85s01
1
2!

~si95s01
1
2,si85s0 ,sj95sj2

1
2,sj85sj !~S̃9!~S̃8!S]Zk→ j@~sb95sb ,bÞ i ,k, j !~si95si5s01

1
2!

~sk95s01
1
2,sk5s0 ,sj95sj2

1
2,sj !~S̃9!~S̃!S]. ~56!

Comparing this formula with Eq.~51! one can see that when the ‘‘intermediate’’~in the transfer processes! ion j is of the
typedj

n11, both formulas give the same dependence on the site spins and on the intermediate spins. Therefore, we can combine
Eqs. ~56! and ~51!, taking also into account Eqs.~48!–~50!, to obtain the following final result for the potential exchange
transfer matrix element:

^~sb85sb ,bÞ i ,k!~si85s0 ,sk85s01
1
2!~S̃8!SMuHex-tr

P ~ i→k!u~sb ,bÞ i ,k!~si5s01
1
2,sk5s0!~S̃!SM&

5 (
jÞ i ,k

u i j ~sj !uk j~sj !L i jk
P (

~S̃9!

Zi→ j@~sb95sb85sb ,bÞ i ,k, j !~sk95sk85s01
1
2!~si95s01

1
2,si85s0 ,sj95sj2

1
2,sj85sj !~S̃9!

~S̃8!S]Zk→ j@~sb95sb ,bÞ i ,k, j !~si95si5s01
1
2!~sk95s01

1
2,sk5s0 ,sj95sj2

1
2,sj !~S̃9!~S̃!S#. ~57!

HereLi jk
P represent the parameters associated with the potential exchange transfer. These parameters depend on the number of

the electrons in the centerj as follows:

L i jk
P 5H ^ckc j uguc jc i&1(

v
^ckw jvuguw jvc i&, for dj

n11 ions

(
v

^ckw jvuguw jvc i&, for dj
n ions

. ~58!

Summation in Eq.~57! involves the sites of both types
dj
n11 anddj

n, possessing spinssj5s01
1
2 andsj5s0 , corre-

spondingly.
Equation~57! makes it possible to built the matrix of the

potential exchange transfer for the high-nuclearity MV sys-
tems containing arbitrary number of moving electrons in the
case of less than half-filledd shells. The case of more than
half-filled d shells can be considered quite similarly.

X. SYMMETRY CONSIDERATION

The dimensions of the matrices to be diagonalized in-
crease dramatically with the increase of the number of sites

and the number of electrons. That is why the problem of
reducing the matrices becomes of crucial importance for the
higher nuclearity MV systems. For clusters exhibiting high
symmetry the most efficient way to attack this problem is to
take advantage of the point symmetry arguments. Let us con-
sider briefly how the symmetry can be added to our general
approach.

Since Hamiltonian~10! is isotropic, there will be matrix
elements only between states exhibiting the same values for
the total spinS and its projectionM , and belonging to the
same irreducible representationG of the point symmetry
group of the cluster. In the angular momentum approach the
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uD(S̃)SM& basis@each basis function is characterized by a
definite electronic distributionD and a definite set (S̃) of
intermediate spins# has been used. Point symmetry opera-
tions produce interchanges of sites~permutations of the or-
bitals in the Slater determinants! mixing thus theuD(S̃)SM&
states with differentD and (S̃) belonging however to the
sameSM space. The symmetry operationR̂ applied to an
arbitrary functionuD(S̃)SM& generates a linear combination
of wave functions with the sameS andM values but with
different distributionsD and sets (S̃)

R̂uD~S̃!SM&5 (
D8~S̃8!

GD8~ S̃8!,D~ S̃!~R̂!uD8~S̃8!SM&,

~59!

whereG is the matrix ofR̂ in the $D(S̃)SM% representation

GD8~ S̃8!,D~ S̃!~R̂!5^D8~S̃8!SMuR̂uD~S̃!SM&. ~60!

Therefore, the set of the wave functionsuD(S̃)SM& for each
givenS andM can be regarded as the basis of some repre-
sentation of the cluster’s symmetry group. This representa-
tion is generally speaking reducible and we denote it asGr .

The wave functionsuD(S̃)SM& can be expressed in
terms of a linear combinations of Slater determinants~Sec.
III !. Therefore, applying the symmetry operations to each
Slater determinant of these linear combinations one can cal-
culate all matrix elementsGD8( S̃8),D( S̃)(R̂) and then find the
characters of the representationGr

xGr~R̂!5 (
D~S̃!

GD~ S̃!,D~ S̃!~R̂!. ~61!

DecomposingGr into the irreducible parts one can find
all SG terms admitted by the symmetry of the system before
finding their energies~an alternative method of group-
theoretical classification has been recently proposed50 based
on the properties of the permutation group!.

The next step is to construct theuSGMg& basis belong-
ing to the total spinS and irreducible representationG ~g
enumerates the basis functions ofG!. This can be reached by
means of the point group projection operator

P̂gg8
~G!

5
f G

g (
R̂

Ggg8
~G!

~R̂!* R̂, ~62!

wheref G is the dimension of the irreducible representationG,
Ggg8
(G) (R̂) is the matrix element of the matrix of the irreduc-

ible representationG corresponding to the operationR̂. The
projection operator is to be applied to the arbitrary wave
function uD(S̃)SM&. Fixing the second indexg8 we obtain
f G functionsuSGMgg8& forming the basis of the irreducible
representationG. Since the second indexg8 can takef G val-
ues we can obtainf G independent basis sets. Using any of
these sets one can strongly reduce the dimensions of the
matrices to be diagonalized. This is because in the new basis
besides the diagonal matrix elements, only those off-
diagonal matrix elements linking the states belonging to the
repeating irreducible representations can be nonzero.

The symmetry adapted wave functions built in this way
are the linear combinations of the wave functionsuD(S̃)SM&
of the initial set:

uSGMg&5
f G

g (
R̂

Ggg8
~G!

~R̂!

3 (
D8~S̃8!

GD8~ S̃8!D~ S̃!~R̂!uD8~S̃8!SM&. ~63!

This basis set corresponds to a certain fixedg8, symbol
g8 is omitted in the labeling ofSG term.

The matrix elements of the Hamiltonian~10! in the sym-
metry adapted basis can be represented in terms of the matrix
elements of the typêD8(S̃8)SMuHuD(S̃)SM& that have
been already calculated in the previous sections.

The tetrameric cubane-type clusters provide~due to their
high symmetryTd! a very good example illustrating the ad-
vantages of the symmetry adapted approach. Let us consider,
for instance, the tetramerd4–d5–d5–d5 ~total spinS5 1

2,
3
2,...,

19
2 !. For eachS we have reducible representationG r(S) with
the basisuD(S̃)SM&. So forS57/2 the basis set contains 88
states~the dimension of this representationG r(S57/2) is the
biggest one!. Following the method described above one can
reduceG r(S57/2) to the irreducible representations ofTd
group as follows:

G r SS5
7

2D83A115A217E112T1110T2 .

Since only the matrix elements linking the states with
the sameG andg can be nonvanishing, we obtain instead of
the initial matrix 88388, five matrices of smaller dimensions
~333, 535, 737, 12312, and 10310!.

For the distorted cluster ofD2d symmetry for the same
S57/2 we get

G r SS5
7

2D810A1112B1110B2112A2122E.

Therefore, now we should diagonalize two matrices 10
310, two matrices 12312, and one matrix 11311. One can
see that even in this case of comparatively low symmetry,
the group theoretical approach provides significant simplifi-
cations of the computational procedure. The advantages of
the use of symmetry adapted basis set increase with the in-
crease of nuclearity of the system and local spins.

XI. CONCLUDING REMARKS

The evaluation of the exchange interactions effects in
localized and delocalized spin systems is quite different.
Thus, in the former case it is well known that under some
restrictions the full Hamiltonian may be replaced by an ef-
fective spin Hamiltonian involving the spin exchange inter-
actions. The required computational procedure~based on the
use of irreducible tensors! is well developed and allows one
to express the matrix of the spin Hamiltonian in terms of spin
exchange parameters and relevant spin quantum numbers.
This kind of semiempirical approach can not be applied to
the MV systems containing delocalized electrons because the
magnetic moments on each site are not well defined. In these
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systems besides the usual spin exchange coupling, there is an
additional spin coupling due to electron delocalization
namely double exchange that can not be expressed in terms
of a spin Hamiltonian. Hence, the general form of the effec-
tive Hamiltonian for these systems is unknown. As a conse-
quence the resolution of the double exchange problem has
required until now a particular procedure for each kind of
MV system.

In this paper, we have presented a new efficient and
general approach and a computational procedure for the
evaluation of the electronic and magnetic properties of MV
clusters of arbitrary nuclearity. This approach is based on the
angular momentum theory and chainlike spin coupling
scheme and avoids the stage to derive a generalized effective
Hamiltonian. Thus, starting from the real Hamiltonian that
includes all the relevant electronic interactions, we have built
directly the energy matrix. This has allowed us to express the
matrix elements of double exchange in terms of one-electron
transfer parameters~involving all the relevant electronic pro-
cesses! and the full set of spin quantum numbers in the initial
and final localized states of the MV system. In the frame-
work of the developed approach the two-electron transfer
processes and three-center interactions~exchange transfer!
are considered as well.

The computational procedure is rather simple and con-
sists of the following steps:

~1! We define the network of theN active metal sites
involved in the transfer processes, and the number of delo-
calized electronsP;

~2! We derive all the localized distributionsD of P elec-
trons overN sites, defining at the same time the spin on each
site ~s0 ands01

1
2 or s02

1
2!. TheN active sites are enumer-

ated (j51,2...,N); this enumeration is independent of the
electronic distribution;

~3! For each electronic distributionD possessing the set
of local spinss1 ,s2 ,...,sN ~sj5s0 or s06

1
2 depending on the

distributionD!, we build the full set of spin quantum num-
bers: S̃2 ,S̃3 ,...,S̃N21 ~intermediate spins in the successive
spin coupling scheme! andS̃N5S ~total spin of the system!;

~4! Matrix element of the double exchange can be non-
zero if two electronic distributionsD andD8 differ in the
occupation numbers of two sites only~one-electron transfer!.
To evaluate this matrix element one should use Eqs.~35! and
~40! substituting in these equations full sets of spin quantum
numbers for the distributionD and D8. Each total spinS
(S85S) provides a block of the full double exchange matrix;

~5! The matrices of the two-electron transfer and poten-
tial exchange transfer are also blocked according to the val-
ues of total spinS. The matrix elements are given by Eqs.
~46! and ~57! correspondingly. The matrix elements of all
named interactions are expressed through the universal func-
tion Z@•••# @Eqs. ~36! and ~37!# containing products of 6j
symbols.

In this paper, we have described the developed approach
only. This approach is now being exploited to treat some
complex MV magnetic systems as the high nuclearity MV
polyoxometalate clusters3 and the diphthalocyanine MV
chains.39 The results will be reported in future papers.
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