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Abstract. We have performed hydrodynamic simulations of relativistic rotational supernova core collapse in axisymmetry and
have computed the gravitational radiation emitted by such an event. The Einstein equations are formulated using the confor-
mally flat metric approximation, and the corresponding hydrodynamic equations are written as a first-order flux-conservative
hyperbolic system. Details of the methodology and of the numerical code have been given in an accompanying paper. We have
simulated the evolution of 26 models in both Newtonian and relativistic gravity. The initial configurations are differentially rotat-
ing relativistic 4/3-polytropes in equilibrium which have a central density of 1010 g cm−3. Collapse is initiated by decreasing the
adiabatic index to some prescribed fixed value. The equation of state consists of a polytropic and a thermal part for a more realis-
tic treatment of shock waves. Any microphysics like electron capture and neutrino transport is neglected. Our simulations show
that the three different types of rotational supernova core collapse and gravitational waveforms identified in previous Newtonian
simulations (regular collapse, multiple bounce collapse, and rapid collapse) are also present in relativistic gravity. However, ro-
tational core collapse with multiple bounces is only possible in a much narrower parameter range in relativistic gravity. The
relativistic models cover almost the same range of gravitational wave amplitudes (4 × 10−21 ≤ hTT ≤ 3 × 10−20 for a source at
a distance of 10 kpc) and frequencies (60 Hz ≤ ν ≤ 1000 Hz) as the corresponding Newtonian ones. Averaged over all models,
the total energy radiated in the form of gravitational waves is 8.2× 10−8 M�c2 in the relativistic case, and 3.6× 10−8 M�c2 in the
Newtonian case. For all collapse models that are of the same type in both Newtonian and relativistic gravity, the gravitational
wave signal is of lower amplitude. If the collapse type changes, either weaker or stronger signals are found in the relativistic case.
For a given model, relativistic gravity can cause a large increase of the characteristic signal frequency of up to a factor of five,
which may have important consequences for the signal detection. Our study implies that the prospects for detection of gravita-
tional wave signals from axisymmetric supernova rotational core collapse do not improve when taking into account relativistic
gravity. The gravitational wave signals obtained in our study are within the sensitivity range of the first generation laser interfer-
ometer detectors if the source is located within the Local Group. An online catalogue containing the gravitational wave signal
amplitudes and spectra of all our models is available at the URL http://www.mpa-garching.mpg.de/Hydro/hydro.html.
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1. Introduction

At the end of their thermonuclear evolution, massive stars de-
velop a core composed of iron group nuclei (hence iron core)
which becomes dynamically unstable against gravitational col-
lapse. The iron core collapses to a neutron star or a black
hole, releasing gravitational binding energy of the order ∼3 ×
1053 erg (M/M�)2(R/10 km)−1, which is sufficient to power a
supernova explosion. If the core collapse and/or the supernova
explosion are nonspherical, part of the liberated gravitational
binding energy will be emitted in the form of gravitational
waves. Nonsphericity can be caused by the effects of rotation,
convection and anisotropic neutrino emission leading either to
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a large-scale deviation from spherical symmetry or to small-
scale statistical mass-energy fluctuations (for a review, see e.g.,
Müller 1998).

According to present knowledge the energy radiated away
in form of gravitational waves does not exceed 10−6 M�c2 in
rotational core collapse (Müller 1982; Finn & Evans 1990;
Mönchmeyer et al. 1991; Bonazzola & Marck 1993; Yamada &
Sato 1994a; Zwerger & Müller 1997; Rampp et al. 1998; Fryer
et al. 2002) and from convection or anisotropic neutrino emis-
sion in neutrino-driven supernovae (Müller & Janka 1997). The
frequency of the emitted radiation ranges from about a few Hz
to a few kHz, and the (dimensionless) signal amplitudes for
a source located at a distance of 10 Mpc (within the Virgo
cluster) do not exceed ∼10−22. The smallness of the signals
calls for accurate waveform templates to alleviate the technical
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difficulties in extracting the signal from noisy data (Pradier
et al. 2001). For the current generation of laser interferomet-
ric detectors (GEO 600, LIGO, VIRGO, TAMA) such small
amplitudes imply that the prospects for detection of gravita-
tional waves from core collapse supernovae are limited to those
events occurring within the Local Group. However, if mea-
sured, a gravitational wave signal does provide (as observations
of neutrinos) a direct diagnosis of the dynamics of the events.

Investigations of rotational core collapse are also important
in the context of the supernova explosion mechanism (Müller &
Hillebrandt 1981; Bodenheimer & Woosley 1983; Symbalisty
1984; Mönchmeyer & Müller 1989; Janka & Mönchmeyer
1989; Imshennik & Nadezhin 1992; Yamada & Sato 1994b;
Fryer & Heger 2000) and for the collapsar scenario of gamma-
ray bursts, where the collapse of a rotating massive star leads
to the formation of a Kerr black hole and a relativistic jet
(MacFadyen et al. 2001; Aloy et al. 2000; Wheeler et al. 2000).

Numerous studies have addressed quite different aspects
of rotational core collapse at different levels of sophistication.
Ideally, such studies should incorporate a relativistic treatment
of gravity and hydrodynamics without symmetry restrictions, a
detailed description of the complex microphysics and of the
neutrino transport, and should use consistent initial models
from evolutionary calculations of rotating stars. The latter point
is still a nagging problem (for a major step forward in this con-
text see Heger et al. 2000), as up to now all studies, except
that of Fryer et al. (2002), have relied on parameterized initial
models.

As the general relativistic corrections of the gravitational
potential during supernova core collapse, and for a neutron star,
do not exceed 30%, it is often argued that they can be neglected
or only taken into account approximately. While this approach
may be justified to some degree in the case of non-rotational
core collapse, it becomes very questionable when the core pos-
sesses a significant amount of angular momentum. In the latter
case, a relativistic treatment of gravity is much more impor-
tant, because the stabilizing effect of rotation is counteracted
by the destabilizing effect of the deeper relativistic potential.
This is reflected in the expression for the critical adiabatic in-
dex γcrit, below which a rigidly rotating relativistic configura-
tion is dynamically unstable against pseudo-radial (linear) isen-
tropic perturbations (see, e.g., Chap. 14 of Tassoul 1978):

γcrit =
4
3
− 2

9
Ω2I
|Epot| + k

RS

R
· (1)

Here Ω, I, Epot, RS, and R are the (constant) angular velocity,
the moment of inertia about the center of mass, the gravitational
potential energy, the Schwarzschild radius, and the radius of
the star, respectively. The positive constant k depends on the
density distribution of the star.

Axisymmetric Newtonian hydrodynamic collapse and ex-
plosion simulations using a realistic equation of state (EoS)
and some treatment of weak interaction processes have been
performed by Müller (1982), Bodenheimer & Woosley (1983),
Symbalisty (1984) and Bonazzola & Marck (1993) neglect-
ing neutrino transport, and by Mönchmeyer & Müller (1989),
Janka & Mönchmeyer (1989), Mönchmeyer et al. (1991),
Imshennik & Nadezhin (1992), Fryer & Heger (2000) and

Fryer et al. (2002) employing some approximative descrip-
tion of neutrino transport. In addition, Finn & Evans (1990),
Yamada & Sato (1994b) and Zwerger & Müller (1997) have
performed Newtonian parameter studies of the axisymmetric
collapse of rotating polytropes. Rampp et al. (1998) and Brown
(2001) have extended the work of Zwerger & Müller (1997) by
relaxing the assumption of axisymmetry.

Wilson (1979), Evans (1986), Nakamura (1981, 1983) and
Stark & Piran (1985) pioneered investigations of axisymmet-
ric collapse of rotating configurations in full general relativ-
ity (GR). Wilson (1979) computed neutron star bounces of γ =
2 polytropes, while Nakamura (1981) (see also Nakamura et al.
1987) simulated the formation of rotating black holes resulting
from the collapse of a 10 M� “core” of a massive star with dif-
ferent amounts of rotational energy and an initial central den-
sity of 3 × 1013 g cm−3. Nakamura (1983) (see also Nakamura
et al. 1987) considered a configuration consisting of a neutron
star (M = 1.09 M�, ρc = 1015 g cm−3) with an accreted enve-
lope of 0.81 M�, which was thought to mimic mass fall-back
in a supernova explosion. To this configuration he added ro-
tation and infall velocity, and simulated the evolution depend-
ing on the prescribed rotation rates and rotation laws. In both
scenarios the EoS consisted of a relativistic degenerate lepton
gas (γ = 4/3) at low densities (ρ ≤ ρ∗ ≡ 3 × 1014 g cm−3,
and of a stiff (γ = 2) component at large densities (ρ > ρ∗).
Stark & Piran (1985) were the first to compute the gravita-
tional radiation from the relativistic collapse of a rotating poly-
tropic (γ = 2) star to a black hole. The initial model was
a spherically symmetric relativistic polytrope in equilibrium
of mass M, central density 1.9 × 1015 (M/M�)−2, and radius
6 GM/c2 = 8.8 × 105 M/M� cm. Rotational collapse was in-
duced by lowering the pressure in the initial model by a pre-
scribed fraction, and by simultaneously adding an angular mo-
mentum distribution approximating rigid-body rotation. Stark
& Piran (1985) found a low efficiency of gravitational wave
emission (Erad tot/Mc2 < 7 × 10−4, where Erad tot is the total
energy radiated by graviational waves), and that for sufficient
rotation the star bounces and no black hole forms.

After the work of Stark & Piran (1985) it took about
15 years before the next simulations of GR rotational core col-
lapse were published. This was mainly caused by persistent nu-
merical problems occurring in axisymmetric GR simulations
due to coordinate singularities at the symmetry (= rotation)
axis. These coordinate singularities hamper the development
of methods which guarantee accuracy and stability in long term
(covering many dynamical time scales) simulations. Alcubierre
et al. (2001) proposed a method which does not suffer from sta-
bility problems and where, in essence, Cartesian coordinates
are used even for axisymmetric systems. Using this method
Shibata (2000) investigated the effects of rotation on the crite-
rion for prompt adiabatic collapse of rigidly and differentially
rotating (γ = 2) polytropes to a black hole. Collapse of the
initial approximate (computed by assuming a conformally flat
spatial metric) equilibrium models was induced by a pressure
reduction. Shibata (2000) found that the criterion for black hole
formation depends strongly on the amount of angular momen-
tum, but only weakly on its (initial) distribution. He also stud-
ied the effects of shock heating using a gamma-law EoS, and
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found that shock heating is important in preventing prompt col-
lapse to black holes in case of large rotation rates.

Hayashi et al. (1999) investigated the possibility of secular,
i.e. quasi-static, core contraction from white dwarf to neutron
star densities using equilibrium sequences of rapidly rotating,
general relativistic compact stars with phenomenological equa-
tions of state. They demonstrated that there is a possibility for
the existence of “fizzlers” in the framework of GR, at least for
the simplified equations of state used in their study.

The above discussion shows that previous investigations
in GR rotational core collapse were mainly concerned with
the question of black hole formation under idealized condi-
tions, but none of these studies has really addressed the prob-
lem of supernova core collapse which proceeds from white
dwarf densities to neutron star densities, involves core bounce,
shock formation, and shock propagation. Exactly this is the
motivation for the present work. To this end, we apply the
numerical methodology presented in an accompanying paper
(Dimmelmeier et al. 2002, hereafter Paper I) and study the dy-
namics of axisymmetric, relativistic rotational supernova core
collapse and the associated emission of gravitational radiation.
In particular, we have simulated the collapse of a comprehen-
sive set of rotating relativistic stellar models parameterized by
the initial degree of differential rotation, the initial rotation rate
and the adiabatic indices at subnuclear (supranuclear) matter
densities. Thus, our study is a GR extension of the previous
work of Zwerger (1995) and Zwerger & Müller (1997), who
computed the gravitational radiation from rotational core col-
lapse supernovae using Newtonian gravity. First results from
our study have already been published in a short communica-
tion (Dimmelmeier et al. 2001)1.

The organization of the paper is as follows: Sect. 2 con-
tains a brief repetition of the assumptions made in our study
(for more details see Paper I). In Sect. 3 we analyze in detail
the collapse dynamics and introduce the three different types
of collapse and gravitational waveforms we have identified.
Section 4 is devoted to the gravitational wave emission of the
models, and to the prospects of detectability of gravitational
waves from core collapse supernovae. We conclude with a sum-
mary in Sect. 5. Additional information is given in Appendix A
where we discuss the issue of gravitational wave extraction.

2. Model assumptions

The matter model obeys an ideal gas EoS with the pressure P
consisting of a polytropic and a thermal part for a more realis-
tic treatment of the effects of shock waves (Janka et al. 1993;
Zwerger & Müller 1997). Since we are mostly interested in
the gravitational radiation emission, which is controlled by the
bulk motion of the fluid, we neglect microphysics like elec-
tron capture and neutrino transport. The initial configurations
are differentially rotating relativistic 4/3-polytropes in equilib-
rium (Komatsu et al. 1989a,b; Stergioulas & Friedman 1995)

1 Note that due to a programming error, which we found only af-
ter the Letter was published, the values of some quantities (e.g., the
bounce densities and maximum wave amplitudes) given in the Letter
differ from those presented here, but all qualitative results remain un-
changed.

which are marginally stable, and which have a central density
ρc ini = 1010 g cm−3. Collapse is initiated by decreasing the adi-
abatic index (initially 4/3 in all models) to some prescribed
fixed value γ1 (for more details see Paper I).

The initial models are determined by three parameters,
which are also used to name the models. The first parameter A
is a length scale, which specifies the degree of differential ro-
tation (see Eq. (33) of Paper I). The smaller the value of A the
more differentially rotating the model is. Model parameters A1,
A2, A3 and A4 correspond to A = 5×109 cm, A = 108 cm, A =
5 × 107 cm, and A = 107 cm, respectively. The second param-
eter is the initial rotation rate βrot ini, which is given by the ratio
of rotational energy and the absolute value of the gravitational
binding energy. Model parameters B1, B2, B3, B4 and B5 cor-
respond to βrot ini = 0.25%, 0.5%, 0.9%, 1.8% and 4%, respec-
tively. The third parameter γ1 is the adiabatic index at subnu-
clear densities (ρ < ρnuc), with model parameters G1, G2, G3,
G4 and G5 corresponding to γ1 = 1.325, 1.320, 1.310, 1.300
and 1.280, respectively. The name of a simulated model is
then given by a combination of parameters from the three
sets (e.g., A3B4G5). We define the nuclear matter density ρnuc

as 2.0 × 1014 g cm−3.
The adiabatic index at supranuclear densities (ρ ≥ ρnuc) is

fixed to γ2 = 2.5, except in one model which has also been run
with γ2 = 2.0 in order to test the influence of a softer supranu-
clear EoS on the collapse dynamics.

In total, we have simulated the evolution of 26 models
(see Table 1). In order to identify the relativistic effects on
the collapse dynamics, we have simulated these models also
in Newtonian gravity. Note that the Newtonian simulations are
a subset of those performed by Zwerger (1995) and Zwerger &
Müller (1997).

The Einstein equations are formulated using the so-called
conformally flat (CF) metric approximation (Wilson et al.
1996, conformal flatness condition – CFC) and the correspond-
ing hydrodynamic equations are formulated as a first-order
flux-conservative hyperbolic system (Banyuls et al. 1997),
well-adapted to numerical schemes based on Riemann solvers.
The applicability and quality of the CFC for rotational core col-
lapse has been discussed in detail in Paper I, where we demon-
strated that its usage is appropriate.

3. Collapse dynamics

3.1. Collapse and waveform types

Zwerger (1995) first identified three distinct classes of core col-
lapse types. This classification is based on the form of the grav-
itational wave signal. However, as the gravitational radiation
waveform is closely linked to the collapse dynamics, it also
mirrors the collapse behavior. Thus, the signal types can gen-
erally be used to classify the collapse type, too.

In our relativistic simulations, each of the examined mod-
els belongs to one of Zwerger’s three collapse types, which
he called type I, II and III. In the following we describe a
representative model from each class, discuss its characteris-
tic properties and explain the physical effects which lead to its
collapse classification.
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In general, the evolution of any supernova core collapse can
be divided into three phases (see, e.g., Müller 1998):

Infall phase: this phase covers the initial collapse of the
core from the onset of the gravitational instability triggered by
the sudden softening of the EoS due to the reduction of the
subnuclear adiabatic index. The inner part of the core, which
collapses homologously (vr ∼ r), constitues the “inner core”,
while the “outer core” is falling supersonically. Depending on
the model parameters the infall phase lasts between 30 ms
and 100 ms.

Bounce phase: when the EoS stiffens because repulsive nu-
clear forces become important at densities above nuclear den-
sity ρnuc = 2 × 1014 g cm−3, or when centrifugal forces begin
to dominante over gravitational attraction due to angular mo-
mentum conservation and rotational spin-up, the inner core de-
celerates on a timescale of about 1 ms. Because of its large
inertia and infall kinetic energy, the inner core does not come
to rest immediately. The core overshoots the equilibrium con-
figuration it will eventually approach, and bounces back, which
results in the formation of a shock wave at the outer edge of the
inner core. During core bounce the amplitude of the gravita-
tional wave signal is largest.

Ring-down phase, or re-expansion phase: if centrifugal
forces remain sufficiently small until nuclear density is reached
in the center of the core, the bounce occurs at central densi-
ties slightly in excess of nuclear density due to the stiffening
of the EoS. In this case the inner core rapidly settles down
into a new equilibrium state, which we will call the “compact
remnant”2 in the following. While the shock wave propagates
outwards, the inner core oscillates for about 10 ms with a su-
perposition of several damped eigenmodes with frequencies of
about 103 Hz (ring-down). If the infall is moderately fast (col-
lapse timescale longer than about 50 ms), we will talk of a reg-
ular collapse model giving rise to a type I gravitational wave
signal according to the nomenclature of Zwerger & Müller
(1997). In case of a very rapid infall (collapse timescale of
about 30 ms), the core plunges unimpeded by centrifugal forces
deeply into the gravitational potential well, with its central den-
sity significantly exceeding nuclear density. In such rapid col-
lapse models, the gravitational waveform (type III according to
the nomenclature of Zwerger & Müller 1997) is qualitatively
different from that of a regular (type I) collapse model (see
below).

On the other hand, if core collapse is only or predominantly
stopped by centrifugal forces, the inner core experiences sev-
eral distinct sequences of infall, bounce, and re-expansion sep-
arated by up to 50 ms before it eventually settles down into
an equilibrium state. During each bounce an outward shock
is generated. The multiple large scale bounces occur because
the deceleration by centrifugal forces is less abrupt than that
due to the stiffness of the supranuclear EoS. The latter is char-
acterized by an adiabatic index γ2 = 2.5 (see Sect. 2), while

2 Due to neutrino cooling and other microphysical processes, which
we do not consider in our models, the compact remnant later evolves
into a neutron star. This may be accompanied by mass accretion due
to fall-back. We have not investigated this late time evolution of the
compact remnant.

rotation acts like a γ = 5/3 gas according to the virial theorem
(see, e.g., Tassoul 1978, Chap. 14). Multiple bounce models
produce type II gravitational wave signals (Zwerger & Müller
1997) which consist of a distinct large amplitude peak for every
bounce.

If the peak central density at bounce is close to (or ex-
ceeds) nuclear matter density, and if the core rotates differen-
tially and rapidly, a mixture of a regular and multiple collapse
type model can occur. In these transition models of type I/II the
core re-expands less than in a genuine multiple bounce model,
but it still exhibits distinct bounces and coherent large scale
oscillations.

3.1.1. Regular collapse – type I

As in the work of Zwerger & Müller (1997) we choose
model A1B3G3 as a representative model for a regular col-
lapse. Figure 1 shows the time evolution of the central den-
sity ρc and the gravitational wave signal amplitude AE2

20 ; the
definition of the wave amplitude AE2

20 and the description of the
numerical wave extraction technique are given in Appendix A.
The three phases of the collapse are clearly identifiable in both
panels. During the infall phase ρc increases and exceeds nu-
clear matter density at 48.26 ms. The peak value of the density
is reached at the time of bounce at tb = 48.63 ms with ρc b =

4.23 × 1014 g cm−3, which is about twice nuclear matter den-
sity. Subsequently, the core slightly re-expands and rings down
to an equilibrium state with a central density of ρc f ≈ 1.5ρnuc.

The gravitational wave amplitude (lower panel of Fig. 1)
increases during the infall phase, but has a negative peak value
with |AE2

20 |max = 659 cm at tgw = 48.99 ms > tb. In all regular
collapse models the maximum signal amplitude is negative. For
some models (not in model A1B3G3) the signal amplitude ex-
hibits a small local minimum around the time of bounce, a fea-
ture which was identified and discussed by Zwerger & Müller
(1997). The ring-down phase of the pulsating inner core is di-
rectly reflected in the wave signal which oscillates accordingly.
As in the Newtonian runs of Zwerger & Müller (1997), we find
that during the ring-down phase the maxima of AE2

20 are less
damped than the minima, because larger accelerations are en-
countered at the high density extrema of the core.

3.1.2. Multiple bounce collapse – type II

For an adiabatic index γ1 close to the initial value γini = 4/3
(see Sect. 2), and for rapid and highly differential rotation, cen-
trifugal forces can halt the collapse at densities below nuclear
matter density. Such subnuclear bounces can indeed be ob-
served in some of our collapse models, e.g. model A2B4G1,
for which the time evolution of the central density ρc and the
gravitational wave signal amplitude AE2

20 are shown in Fig. 2.
In both the central density evolution and the signal wave-

form distinct extrema are discernable. The (negative) maxi-
mum of the signal amplitude |AE2

20 |max = 548 cm is reached at
a time tgw = 101.16 ms, which is shortly after the time tb =
99.78 ms when the central density reaches its first peak ρc b =

0.90× 1014 g cm−3 ≈ 0.45ρnuc. During the subsequent bounces
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Fig. 1. Time evolution of the central density ρc (upper panel) and the
gravitational wave signal amplitude AE2

20 (lower panel) for the regular
collapse model A1B3G3. The horizontal dotted line in the upper panel
marks nuclear matter density ρnuc, and the vertical dotted line indicates
the time of peak central density tb.

the peaks of the central density are significantly smaller than
the peak value at first bounce. The prominent peaks in the grav-
itational wave signal are clearly associated with the distinct
bounces visible in the density evolution.

We point out that model A1B3G1, which shows multiple
bounces in Newtonian gravity (Zwerger & Müller 1997), does
not exhibit such a behavior in the relativistic simulations. This
change of collapse type due to relativistic effects is discussed
in Sect. 3.3.

3.1.3. Rapid collapse – type III

If the core collapses very rapidly due to values of γ1 which
are much smaller than 4/3, the qualitative behavior of the den-
sity evolution is very similar to that of the regular (type I)
collapse model, except that the bounce and equilibrium densi-
ties are slightly higher, and the post-bounce pulsations of the
inner core are even more strongly suppressed. For example,
in model A1B3G5 (Fig. 3), which is a typical rapid collapse
model, the values of the peak and the final central density are
ρc b = 4.55× 1014 g cm−3 ≈ 2.5ρnuc (reached at tb = 30.20 ms),
and ρc f ≈ 1.8ρnuc.

On the other hand, the shape of the gravitational wave sig-
nal amplitude is qualitatively different compared to type I mod-
els. This is shown in the lower panel of Fig. 3, where the time
evolution of AE2

20 is plotted. The maximum signal amplitude
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Fig. 2. Time evolution of the central density ρc (upper panel) and the
gravitational wave signal amplitude AE2

20 (lower panel) for the multiple
bounce collapse model A2B4G1. The vertical dotted lines mark the
times of peak central density for each bounce.

|AE2
20 |max = 124 cm at tgw = 30.03 ms is now assigned to the

first positive peak of the waveform contrary to the signal wave-
form of the regular collapse models. In the case of rapid col-
lapse, the negative peak is almost entirely suppressed and the
overall amplitude of the signal is significantly smaller. There is
no clear feature in the waveform allowing one to identify the
time of bounce tb.

For a given initial model, the transition between type I and
type III collapse models occurs gradually with decreasing val-
ues of γ1. In the gravitational wave signal this is reflected by a
decrease of the negative main peak and an increase of the first
positive peak (Zwerger & Müller 1997).

3.1.4. Additional remarks

In the above models the central density ρc coincides with ρmax,
the maximum density of the model at any time. However, very
rapidly and differentially rotating models, like all “A4” mod-
els, either already possess a toroidal density distribution ini-
tially, or develop one during their evolution. In such models
the maximum density is attained at some off-center location,
and ρc < ρmax holds. Nevertheless, the time evolution of ρmax

can be used to classify the collapse type according to the crite-
ria discussed above.

Our results show that relativistic simulations of rotational
core collapse exhibit the same qualitative collapse dynamics
and allow for the same classification as Newtonian simulations
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Fig. 3. Time evolution of the central density ρc (upper panel) and the
gravitational wave signal amplitude AE2

20 (lower panel) for the rapid
collapse model A1B3G5. The horizontal dotted line in the upper panel
marks nuclear matter density ρnuc, and the vertical dotted line indicates
the time of peak central density tb. Note the qualitative difference in
the waveform compared to the regular collapse (type I) model shown
in Fig. 1.

(Zwerger 1995, 1997). However, there exist important differ-
ences in other aspects of the collapse arising from relativistic
effects. These are discussed in the subsequent sections.

3.2. Compactness of the core remnant

For all models the central density at bounce ρc b (for all
A4 models and model A3B5G4 the off-center maximum den-
sity ρmax b) is larger in the relativistic simulation than in the
corresponding Newtonian one, the relative increase reach-
ing ∼700% in special cases (see Table 1). This also holds for
the maximum density of the compact remnant after ring-down
in case of instant formation of a stable equilibrium state (types I
and III). This generic property is illustrated in the upper panel
of Figs. 4 and 5 for the type I model A3B2G4soft (where rel-
ativistic effects are particularly large due to its soft EoS and
thus high central density) and the type II model A2B4G1,
respectively.

When comparing models of the same collapse type in
Newtonian and relativistic gravity, we find that although all
relativistic models reach higher central and/or maximum den-
sities and, on average, larger infall and rotation velocities, only
six models (see Table 1) have also larger maximum signal
amplitudes than their Newtonian counterparts. The maximum
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Fig. 4. Time evolution of the central density ρc (upper panel) and the
gravitational wave signal amplitude AE2

20 (lower panel) in the relativis-
tic (solid lines) and Newtonian (dashed lines) simulation of the regu-
lar collapse model A3B2G4soft. The horizontal dotted line in the upper
panel marks nuclear matter density ρnuc. The vertical dotted line indi-
cates the time of peak central density tb.
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Fig. 5. Same as Fig. 4, but for the multiple bounce collapse
model A2B4G1. The vertical dotted lines mark the times of peak cen-
tral density tb for each bounce.

signal amplitudes of all other relativistic models are (up
to 57%) smaller than those of the corresponding Newtonian
ones (Table 1). As already discussed in Dimmelmeier et al.
(2001), the reduced maximum signal strength can be explained
by the fact that the amplitude, which is calculated using the
quadrupole formula (see Appendix A), is determined by the
bulk motion of the core rather than just by the motion of
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Table 1. Summary of important quantities for all models in relativistic (R) and Newtonian (N) gravity. tb is the time of bounce, ρmax b is the
maximum density at bounce, |AE2

20 |max is the maximum gravitational wave amplitude, νmax is the frequency of maximum spectral energy density,
βrot max is the maximum rotation rate, ρmax f is the maximum density after ring-down, and Type specifies the collapse type (for a definition
see text). If the maximum density is located off-center, the respective density value is marked with an asterisk. For models of type II or I/II,
ρmax f cannot be determined.

Model tb ρmax b
ρR

max b

ρN
max b

− 1 |AE2
20 |max

|AE2
20 |Rmax

|AE2
20 |Nmax

− 1 νmax
νRmax

µN
max
− 1 βrot max

βR
rot max

βN
rot max

− 1 ρmax f Type

[ms]
[
1014 g

cm3

]
[%] [cm] [%] [Hz] [%] [%] [%]

[
1014 g

cm3

]

A1B1G1R 91.17 4.78
+48

943 −44
623

+21
5.5

+6
3.5 I

A1B1G1N 92.23 3.22 1698 515 5.2 — I/II
A1B2G1R 91.92 4.45

+54
1803 −23

930
+109

8.9
+9

3.4 I
A1B2G1N 93.10 2.89 2355 446 8.2 — II
A1B3G1R 93.25 4.07

+88
2679

+84
1053

+446
12.6

+18
3.2 I

A1B3G1N 94.70 2.17 1463 193 10.7 — II
A1B3G2R 69.45 4.23

+45
1718 −18

1018
+127

11.9
+12

3.2 I
A1B3G2N 69.87 2.83 2084 448 10.6 — II
A1B3G3R 48.63 4.23

+25
659 −32

702
+22

10.6
+33

3.2 I
A1B3G3N 48.57 3.38 976 576 8.0 2.5 I
A1B3G5R 30.20 4.55

+7
124 −5

904
+6

5.1
+50

3.6 III
A1B3G5N 29.98 4.26 131 852 3.4 3.0 III

A2B4G1R 99.78 0.90
+718

548 −16
86

+41
17.3

+47
— II

A2B4G1N 99.71 0.11 652 61 11.8 — II

A3B1G1R 91.63 4.61
+54

1965 −22
1044

+117
9.1

+21
3.5 I

A3B1G1N 92.72 3.00 2510 482 7.5 — II
A3B2G1R 92.86 4.24

+86
2896

+69
1133

+148
13.8

+25
3.1 I

A3B2G1N 94.32 2.28 1711 456 11.0 — II
A3B2G2R 69.53 4.10

+53
2183 −9

1128
+128

13.9
+19

3.1 I
A3B2G2N 69.98 2.68 2407 494 11.7 — II
A3B2G4R

soft 39.38 6.03
+36

618 −21
925

+23
13.6

+43
4.1 I

A3B2G4N
soft 39.14 4.45 781 755 9.5 2.7 I

A3B2G4R 39.34 4.05
+19

517 −26
838

+14
13.0

+44
3.2 I

A3B2G4N 39.07 3.41 703 737 9.0 2.5 I
A3B3G1R 95.26 3.49

+642
982 −10

827
+347

20.1
+75

— I/II
A3B3G1N 96.57 0.47 1087 185 11.5 — II
A3B3G2R 71.28 3.58

+225
1353 −5

846
+209

20.4
+49

— I/II
A3B3G2N 71.77 1.10 1420 274 13.7 — II
A3B3G3R 49.73 3.35

+41
1279 −14

895
+147

20.3
+48

— I/II
A3B3G3N 49.64 2.38∗ 1480 363 15.7 — I/II
A3B3G5R 30.65 3.75

+9
256 −3

1074
+14

13.7
+47

3.4 III
A3B3G5N 30.36 3.45∗ 263 964 9.3 2.3∗ III
A3B4G2R 74.66 0.79

+394
594 −34

101
+19

20.7
+41

— II
A3B4G2N 73.99 0.16∗ 894 85 14.7 — II
A3B5G4R 44.46 0.30∗

+100
487 −8

103 −9
28.8

+39
— III

A3B5G4N 44.31 0.15∗ 528 113 20.7 — III

A4B1G1R 90.77 4.93∗
+69

2520
+27

1309
+126

10.5
+42

3.5∗ I
A4B1G1N 91.77 2.92∗ 1992 580 7.4 — II
A4B1G2R 68.39 4.72∗

+53
2220

+9
1268

+34
12.6

+48
3.3∗ I

A4B1G2N 68.69 3.09∗ 2034 946 8.5 — II
A4B2G2R 68.61 4.79∗

+85
3393

+59
1346

+189
18.4

+46
3.1∗ I

A4B2G2N 69.02 2.59∗ 2132 466 12.6 — II
A4B2G3R 48.87 4.37∗

+53
2535

+14
1336

+261
24.0

+55
2.9∗ I

A4B2G3N 48.74 2.85∗ 2217 370 15.5 — I/II
A4B4G4R 40.29 2.18∗

+199
1245 −29

155 −31
31.8

+41
— I/II

A4B4G4N 39.66 0.73∗ 1748 226 22.6 — I/II
A4B4G5R 32.32 3.08∗

+37
1033 −52

227
+5

43.2
+54

— I/II
A4B4G5N 31.91 2.25∗ 2149 217 28.0 — I/II
A4B5G4R 38.26 0.98∗

+158
1651 −44

90
+18

38.4
+38

— I/II
A4B5G4N 37.29 0.38∗ 2965 76 27.9 — I/II
A4B5G5R 31.39 3.24∗

+22
2356 −57

106 −33
48.6

+28
— I/II

A4B5G5N 30.82 2.65∗ 5444 159 38.1 — I/II
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Fig. 6. Radial density profiles ρe along the equator near bounce time
for model A3B2G4soft (upper panel) and model A2B4G1 (lower
panel). In both models, the density of the relativistic simulation (solid
line) is larger than that of the Newtonian simulation (dashed line) in
the central region. At r ≈ 6 km (upper panel) and r ≈ 35 km (lower
panel) the density of the relativistic model drops below that of the
Newtonian one. The radii of the density crossing are indicated by the
vertical dotted lines, and the horizontal dotted lines mark nuclear mat-
ter density ρnuc.

the densest mass shells, strictly speaking by the second time
derivative of the quadrupole moment. Therefore, a core which
is more condensed in the center can give rise to a smaller grav-
itational wave signal than a core which is less centrally con-
densed, but which is denser and moves faster in its outer re-
gions. This is reflected by the weight factor r2 in the integrand
of the quadrupole formula (A.4). Due to this factor matter at
moderately large r contributes significantly to the gravitational
wave signal amplitude, while at very large radii (outside the
inner core) the decrease in density more than compensates the
increase of the weight factor.

The upper panel of Fig. 6 shows the equatorial density
profiles in the inner core of model A3B2G4soft for both the
relativistic (solid line) and the Newtonian (dashed line) sim-
ulation at bounce. As already seen in the central density evo-
lution (Fig. 4), the simulation in relativistic gravity yields up
to 36% larger densities in the central regions. However, at radii
r >∼ 5 km the density in the Newtonian model exceeds that of
the relativistic one. This “density crossing”, which takes place
at different radii for different polar angles θ, can be observed
in all the models we have investigated, at all times t > tb and
at all polar angles. The surface of density crossing is located
inside the compact remnant for type I and type III models, and
in the case of type II multiple bounce models in the coherently
re-expanding and contracting inner core, which has not yet set-
tled into a compact remnant at the end of the simulation. The
effect is persistent in time as demonstrated in Fig. 7, which
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Fig. 7. Time evolution of the density at different radii in the rel-
ativistic (solid lines) and Newtonian (dashed lines) simulation of
model A3B2G4soft. Whereas the central density (upper panel) is larger
in relativistic gravity, the (equatorial) density of the Newtonian model
exceeds that of the relativistic model at a radius of r = 12.9 km (lower
panel). The vertical dotted lines indicate the time of bounce tb, and
the horizontal dotted line in the upper plot indicates nuclear matter
density ρnuc. Note the different vertical scale of the two plots.

shows the time evolution of the density for model A3B2G4soft

at two different radial locations in the equatorial plane. After
bounce, the central density ρc of the relativistic configuration
is always larger than the corresponding Newtonian one (up-
per panel). However, at larger radii, but still inside the compact
remnant (lower panel), the density of the relativistic model is
smaller by up to 50%.

The analysis of the multiple bounce model A2B4G1, which
yields a smaller signal amplitude in relativistic gravity (see
lower panel of Fig. 5), leads to a similar result as the regu-
lar bounce model A3B2G4soft. In the relativistic case, the cen-
tral density at bounce is more than 8 times larger than in the
Newtonian one. As in model A3B2G4soft, the equatorial den-
sity profiles cross (lower panel of Fig. 6), but now the cross-
ing occurs at a much larger radius r ≈ 35 km. Hence, the
region where the relativistic model is denser is considerably
more extended. Inside the crossing radius, the cores of both
the relativistic and the Newtonian model oscillate coherently.
The density of the relativistic model is considerably higher in
this region, and the matter experiences stronger accelerations,
which causes narrower density peaks and shorter time intervals
between two consecutive bounces (Fig. 5).

The effects of the reduced density in the outer regions
of the inner core in relativistic gravity on the gravitational
wave signal can be inferred from Fig. 8, which shows the
equatorial density profile weighted by a factor r2. Inside the
crossing radius r ≈ 6 km, the profiles of the weighted den-
sity ρr2 of model A3B2G4soft (upper panel) coincide closely in
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Fig. 8. Weighted radial density profile ρer2 along the equator (solid
lines denote relativistic models; dashed lines denote Newtonian mod-
els) close to the time of core bounce for model A3B2G4soft (upper
panel; t = 39.25 ms) and model A2B4G1 (lower panel; t = 99.75 ms),
respectively. The crossing radii are indicated by the vertical dotted
lines.

both relativistic and Newtonian gravity. On the other hand, for
6 km <∼ r <∼ 13 km the weighted density ρr2 of the Newtonian
model is significantly larger than that of the relativistic model.
Consequently, as the density crossing occurs at all polar an-
gles, the resulting quadrupole moment (Eq. (A.4)) is larger,
too. In order to see whether the enhanced quadrupole moment
also gives rise to a stronger gravitational wave signal, one has
to consider the second time derivative of the quadrupole mo-
ment (see Eq. (A.4)), which results from the acceleration of the
matter distribution in the core. We find that despite the some-
what lower average acceleration in Newtonian gravity which
is reflected in the 18% lower frequency of the gravitational
wave signal, the large quadrupole moment of the more ex-
tended density distribution results in a maximum signal am-
plitude |AE2

20 |max, which is 26% larger than that of the centrally
denser compact remnant in relativistic gravity (see lower panel
of Fig. 4 and Table 1).

For the multiple bounce model A2B4G1, the situation is
similar (lower panel). In relativistic gravity the weighted den-
sity ρr2 is enhanced in the central parts of the inner core, and
reduced in the outer parts compared to the Newtonian profile.
Contrary to model A3B2G4soft, the relativistic density increase
close to the center has a strong effect on the weighted density
profile inside the crossing radius r ≈ 35 km. Nevertheless, and
despite the higher accelerations (i.e., larger second time deriva-
tives) of the coherently oscillating inner core in relativistic
gravity, the smaller densities at larger radii again yield a smaller

gravitational wave signal (see lower panel of Fig. 5). However,
in relativistic gravity the increase of both the central density
(718% vs. 36%) and the frequency (41% vs. 23%) are larger
in model A3B2G4soft compared to model A2B4G1. Thus, the
maximum signal amplitude |AE2

20 |max of the former model is
only reduced by 16% instead of 21% in model A2B4G1 when
changing from Newtonian to relativistic gravity (see Table 1).

The above considerations also explain the much weaker
gravitational wave signal of model A1B1G1 in case of rela-
tivistic gravity (see upper panel in Fig. 9). In general relativity
the central parts of the inner core collapse to almost 2.5ρnuc,
and rapidly settle down to an equilibrium state with constant
density after a single bounce (middle panel). Since the matter is
more concentrated towards the center, the density is relatively
small in the outer parts of the core (lower panel). The fluid mo-
tion in the outer regions of the core near r = 13.0 km, where the
shock forms, is not in phase with the fluid motion in the inner
regions (see two lower panels in Fig. 9). In Newtonian gravity
the inner core is much less compact. It has a lower central den-
sity (middle panel), but a much higher density at r = 13.0 km
(lower panel). In this case the entire inner core oscillates coher-
ently with large amplitude motions, which give rise to a large
time variation of the quadrupole moment and thus a large grav-
itational wave signal, the maximum amplitude being almost
twice as large as the corresponding one in relativistic gravity
(see Table 1).

3.3. Change of the collapse dynamics

In the comprehensive study of Newtonian rotational core col-
lapse carried out by Zwerger & Müller (1997), models with
multiple bounces were observed quite often. Relativistic grav-
ity can have a qualitative impact on the dynamics of these
models. If the density increase due to the deeper relativistic
potential is sufficiently large, a collapse which is stopped by
centrifugal forces at subnuclear densities (and thus undergoes
multiple bounces) in a Newtonian simulation, becomes a regu-
lar, single bounce collapse in relativistic gravity.

Only two of the 26 models of our sample, A2B4G1
and A3B4G2, show unambiguous multiple bounces in relativis-
tic gravity. These two models share some common features.
In the relativistic simulations their peak central densities as-
sociated with the individual bounces are much larger (up to a
factor 7) compared to those of the Newtonian runs (Table 1).
Consequently, the time elapsed between subsequent bounces
decreases by a factor of up to 4. These type II models also show
the effect of density crossing (see Sect. 3.2). As a result, despite
the increase of the central density and the decrease of the os-
cillation timescale (giving rise to a larger average acceleration
of the inner parts of the core), the maximum gravitational wave
amplitude is lower for the relativistic models.

When the central densities become very large, relativistic
gravity can even change the collapse dynamics qualitatively,
i.e. the collapse type is altered with respect to the Newtonian
case (see Table 1). We have observed mostly transitions from
a Newtonian type II (multiple bounce collapse) to a relativistic
type I (regular collapse) case, and less frequently transitions
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Fig. 9. Effects of a coherent motion of the inner core on the grav-
itational wave signal in the relativistic (solid lines) and Newtonian
(dashed lines) simulation of model A1B1G1. In the upper panel the
evolution of the gravitational wave amplitude AE2

20 is plotted. The mid-
dle and lower panels show the evolution of the central density ρc and
of the equatorial density ρr e evaluated at a radius r = 13.0 km, re-
spectively. Contrary to the relativistic simulation, the inner core shows
large amplitude oscillations in Newtonian gravity, which causes a
much larger gravitational wave signal. The vertical dotted lines indi-
cate the time of bounce tb, and the horizontal dotted line in the middle
panel marks nuclear matter density ρnuc.

from or to type I/II. A typical example is model A1B3G1
(Fig. 10). The change of type is clearly visible both in the evo-
lution of the central density (upper panel) and of the gravita-
tional wave signal (lower panel).

Centrifugal forces cause most of the type II multiple bounce
models of Zwerger & Müller (1997) to bounce at densities be-
low ρnuc. Only a few models collapse to nuclear matter den-
sity, the largest maximum density at bounce being ρmax b =

3.09×1014 g cm−3 in the case of model A4B1G2. Accordingly,
in the two relativistic type II models the maximum bounce den-
sity does not exceed this threshold. Whenever the deeper rela-
tivistic gravitational potential drives the maximum density in
the core beyond the threshold of ρmax b >∼ 3 × 1014 g cm−3, a
type transition occurs (see Table 1).

A collapse type transition does not only alter the signal
waveform qualitatively, but also has important consequences
for the maximum gravitational wave signal amplitude, as e.g. in
the case of model A1B1G1 (Fig. 9). In this Newtonian type I/II
model the concurrence of both high densities and a coherent
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Fig. 10. Evolution of the central density ρc (upper panel) and the
gravitational wave signal amplitude AE2

20 (lower panel) in the rel-
ativistic (solid lines) and Newtonian (dashed lines) simulation of
model A1B3G1. The vertical dotted lines mark the times of peak cen-
tral density for each bounce, and the horizontal dotted line in the den-
sity plot marks nuclear matter density ρnuc.
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Fig. 11. Parameter space spanned by the rotation law parameter A and
the rotation rate βrot for multiple bounce collapse models in relativis-
tic and Newtonian simulations. Filled circles mark models which are
of multiple bounce type both in relativistic and Newtonian gravity,
and empty circles mark those models which show multiple bounces in
Newtonian gravity only.

motion of the inner core yields a large gravitational wave am-
plitude of ∼1700 cm. As the stronger relativistic gravitational
potential leads to the almost immediate formation of a new
equilibrium state, efficiently suppressing coherent large ampli-
tude motions of the inner core, the maximum signal amplitude
is only 943 cm, which is 44% less than in the Newtonian case.

In Newtonian gravity and for an adiabatic index γ1 = 1.325
or γ1 = 1.320 (i.e. close to the initial value γini = 4/3) even
models with rather small rotation rates βrot ini and moderately
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Fig. 12. Equatorial density profiles of the moderately rapidly rotat-
ing model A3B3G5 in case of relativistic (solid line) and Newtonian
(dashed line) gravity, depicted after ring-down. In relativistic grav-
ity the core has an oblate density structure. The less deep Newtonian
gravitational potential leads to the development of a toroidal density
configuration. The horizontal dotted line marks nuclear matter den-
sity ρnuc.

differential rotation (i.e. larger values of A) show multiple
bounces. Our simulations demonstrate that relativistic gravity
drastically narrows the region in the parameter space of βrot ini

and A where multiple bounce models are possible. Figure 11
shows that only models with high rotation rates and moderate
differential rotation undergo an unambiguous type II multiple
bounce collapse.

3.4. Rapidly and highly differentially rotating core
collapse

When rapidly (large βrot ini) and strongly differentially (small A)
rotating initial models collapse on a short timescale due to a
low adiabatic exponent γ1, angular momentum conservation
results in a considerable spin-up of the core. Consequently, the
increasing centrifugal forces stop the collapse before or slightly
above nuclear matter density, as in type II multiple bounce
models. However, the maximum density is reached off-center,
the topology of the density distribution in the core being torus-
like. Some initial models (e.g. A4B4 and A4B5) already exhibit
a toroidal structure. During collapse the toroidal character of
such a model is significantly enhanced, and the maximum den-
sity ρmax can exceed the central density ρc by up to two orders
of magnitude. Other rapidly and highly differentially rotating
initial models, like A3B5, A4B1 and A4B2, in general do not
change their initial oblate density stratification during the evo-
lution. However, for particular values of the parameter γ1, they
also develop a toroidal topology during the infall phase.

Due to their deeper gravitational potential, relativistic con-
figurations tend to be more compact compared to the corre-
sponding Newtonian ones (see Sect. 3.2). This also holds for
relativistic models with a toroidal density stratification, i.e.
for models rotating rapidly and strongly differentially. These
models have off-center density maxima which exceed those of
their Newtonian counterparts (see Table 1). In some borderline

models which rotate moderately fast and not too differen-
tially, the core develops a toroidal density stratification only in
Newtonian gravity and possesses an oblate spheroidal density
stratification in relativistic gravity. A prototype of such a case
is model A3B3G5 (see Fig. 12).

In both relativistic and Newtonian simulations of rapidly
and highly differentially rotating cores, the gravitational wave
amplitudes are generally large, because of the large quadrupole
moments of toroidal configurations (see Table 1). If the rota-
tion rate is modest (models A4B1 and A4B2), the density in
the torus at bounce can reach high supranuclear densities in
relativistic gravity. The characteristic frequencies of the gravi-
tational wave signal of these toroidal models become particu-
larly high, as they change to regular collapse type models in
relativistic gravity. The combination of a high density torus
and large accelerations (reflected by the higher frequencies)
yields very large wave amplitudes up to almost 3400 cm, which
is significantly larger than in Newtonian gravity. However,
in the case of the extremely rapidly rotating models A4B4
and A4B5, centrifugal forces surmount relativistic gravity. The
collapse type does not change, and the bounce is partially due
to centrifugal forces (type I/II collapse). Consequently, the den-
sities at bounce are less extreme and the average accelera-
tions are smaller than in less rapidly rotating toroidal models.
Therefore, the maximum signal amplitudes |AE2

20 |max of mod-
els A4B4 and A4B5 are smaller than in the corresponding
Newtonian models.

Compared to models with a moderate amount of rota-
tion, the propagation of the shock wave is drastically differ-
ent in a rapidly and differentially rotating model, as e.g. in
model A4B5G5 (Fig. 13). In this model the density maximum
is located off-center already during collapse (left panel). After
core bounce the inner core settles down to an approximate equi-
librium state with a distinctive toroidal density stratification
surrounded by an equatorial disk from which matter is accreted
onto the torus (middle panel). In this accretion disk the shock
encounters relatively dense matter with large infall velocities
between 0.1c and 0.15c, and thus it propagates outward com-
paratively slowly along this direction. On the other hand, the
region close to the rotation axis has been emptied of matter
during the collapse, the average density being orders of mag-
nitude lower than close to the equatorial plane. Therefore, here
the shock propagates out very rapidly (right panel). As a re-
sult, the flow velocity in the meridional plane exhibits a jet-like
structure, with matter being ejected from the inner core pre-
dominantly along the rotation axis.

3.5. Evolution of the rotation rate

The influence of relativistic gravity on the evolution of the rota-
tion rate during core collapse is demonstrated in Fig. 14, which
shows the radial profiles of vϕ =

√
v3v3 at the time of core

bounce for several representative models. Both the maximum
and average rotation velocities are higher in the relativistic
models, and the maximum of vϕ is shifted to smaller radii. Note
that this maximum is located near the edge of the compact rem-
nant. The differences are most pronounced for model A1B3G1
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Fig. 13. Formation of a torus and shock-propagation in the very rapidly and highly differentially rotating model A4B5G5. The three snapshots
show color coded contour plots of the logarithm of the density, log ρ (scaled to nuclear matter density), together with the meridional flow field
during the infall phase at t = 25.0 ms (left panel), shortly before the centrifugal bounce at t = 31.2 ms (middle panel), and at t = 35.0 ms
(right panel) when the torus is surrounded by large scale flow vortices. The length of the velocity vectors is scaled to the maximum value in the
plotted region. Note that the size of the displayed region and the color coding (which is given above each panel) vary from plot to plot.

(lower panel), which changes from multiple bounce collapse
to regular collapse due to relativistic effects (see Sect. 3.3).
Model A1B3G1 also shows the largest rotation velocities of
all our models, vϕ approaching 0.2c at r ≈ 15 km during core
bounce. This corresponds to a rotation period of T ∼ 1.6 ms
at the edge of the inner core. When collapsing from the same
initial model (A1B3), but imposing a larger initial reduction
of the adiabatic index to γ1 = 1.280 (i.e. model A1B3G5;
upper panel in Fig. 14), the spin-up is less and vϕ <∼ 0.08c.
This result can be explained as follows: in model A1B3G1
the reduced adiabatic index γ1 = 1.325 is very close to 4/3,
i.e. a large fraction of the core collapses nearly homologously
(Goldreich & Weber 1980). However, this does not hold for
model A1B3G5, where the outer parts of the core fall much
slower than in model A1B3G1, and hence also fall less far in
radius until the time of bounce. Consequently, the spin-up of
mass zones located initially at the same radial position in both
models is less in model A1B3G5 than in model A1B3G1 ex-
cept for the very center of the core.

Assuming angular momentum conservation for the core,
the rotation rate βrot scales like the inverse of the radius of the
core (see, e.g., Shapiro & Teukolsky 1983),

βrot =
Erot

|Epot| ∼
J2

M3R
∝ 1

R
, (2)

where Erot, Epot, M, R and J are the rotational energy, poten-
tial energy, mass, radius and angular momentum of the core,
respectively.

Knowing the behavior of the evolution of βrot during core
collapse is important for several reasons. Firstly, the rotation
state of the inner core after bounce determines the rotation rate
and profile of the compact remnant provided no significant fall-
back of matter occurs later in the evolution. Pulsar observations
show that neutron stars can spin with very high rotation peri-
ods of the order of milliseconds (see Lorimer 2001 and refer-
ences therein). However, such millisecond pulsars are believed
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Fig. 14. Radial profiles of the rotation velocity vϕ in the equato-
rial plane plotted shortly after core bounce obtained in the relativis-
tic (solid lines) and Newtonian (dashed lines) simulation of mod-
els A1B3G5 (upper panel), A2B4G1 (middle panel) and A1B3G1
(lower panel). The vertical dotted lines mark the radius of maximum
rotation velocity.
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izontal lines mark the critical rotation rates above which MacLaurin
spheroids are secularly (βrot sec) and dynamically (βrot dyn) unstable
against triaxial perturbations in Newtonian gravity.

to be born not as fast rotators, but are thought to be old objects
which are spun up via mass transfer from a companion star
much later in their evolution. Observations of pulsars in young
supernova remnants (see, e.g. Kaspi 2000) provide only upper
limits on the rotational state of newborn neutron stars, because
significant angular momentum losses may have occurred since
their formation. Presently, the fastest known young pulsar is the
16 ms X-ray pulsar in the Crab-like supernova remnant N157B
(Marshall et al. 1998). Secondly, at sufficiently high rotation
rates the core will become unstable against triaxial perturba-
tions due to various mechanisms (see Stergioulas 1998 and
references therein). Such nonaxisymmetric rotating configura-
tions are an additional source of gravitational radiation.

For uniformly rotating, constant density MacLaurin
spheroids in Newtonian gravity, the threshold values for the
development of triaxial instabilities on secular and dynamic
timescales are βrot sec ≈ 13.8% and βrot dyn ≈ 27.4%, respec-
tively (see, e.g., Tassoul 1978).

The secular instability, which is driven for example by
gravitational radiation or viscosity, has been analyzed in com-
pressible stars, both uniformly and differentially rotating,
within linear perturbation theory in full general relativity by
Bonazzola et al. (1996, 1998), Stergioulas & Friedman (1998),
and Yoshida & Eriguchi (1999). The analysis shows that βrot sec

depends on the compactness of the star, on the rotation law, and
on the dissipative mechanism. Whereas βrot sec < 0.14 for the
gravitational radiation-driven instability (for extremely com-
pact or strongly differentially rotating stars βrot sec < 0.1), sec-
ular instabilities driven by viscosity occur for larger rotation
rates, i.e. for values βrot sec > 0.14, when the configurations be-
come more compact.

The dynamic instability, on the other hand, is driven by
hydrodynamics and gravity. The onset of the dynamic bar-
mode instability has been investigated in full general relativity
only recently (Shibata et al. 2000; Saijo et al. 2001), because
it requires fully nonlinear multidimensional simulations (for
Newtonian investigations see, e.g., New et al. (2000), and refer-
ences therein). The simulations show that in relativistic gravity
the critical rotation rates for the onset of the dynamic bar-mode
instability are only slightly smaller (βrot dyn ∼ 0.24−0.25) than
in the Newtonian case, and depend only very weakly on the
degree of differential rotation (within the moderate range sur-
veyed by the investigations).

What do these general considerations concerning triaxial
instabilities imply for our models? Since the rotation rates are
larger in relativistic gravity than in the Newtonian case for the
same initial conditions, we expect that the criteria for the de-
velopment of dynamic and secular triaxial instabilities are ful-
filled in more models and for longer time intervals in relativistic
gravity. To see whether this statement is correct we consider the
evolution of the rotation rate βrot for models A2B4G1, A4B4G4
and A4B5G4 (see Fig. 15). In all these models βrot reaches its
maximum value at the time of bounce. If the core experiences
multiple bounces, this is reflected in multiple peaks of βrot (see
upper panel). As expected, the rotation rate in the relativis-
tic models exceeds that of the corresponding Newtonian ones.
This holds both for the maximum value and the average value
of the rotation rate.

Using the Newtonian thresholds βrot sec and βrot dyn (see dis-
cussion above) to judge whether a model is prone to develop-
ing triaxial instabilities, we see that relativistic effects do not
cause an important change in the case of model A2B4G1 (up-
per panel of Fig. 15), because βrot > βrot sec for less than 10 ms.
On the other hand, the behaviour of the rapidly rotating
model A4B4G4 (middle panel) is quite different. Its rotation
rate exceeds βrot sec near bounce time and remains above that
value after core bounce in relativistic gravity (even exceeding
βrot dyn for a short time), while in Newtonian gravity it falls be-
low βrot sec again after ring-down. Since relativistic effects tend
to lower the threshold value βrot sec in case of the gravitational
radiation-driven instability (see discussion above), this model
demonstrates that Newtonian simulations can yield incorrect
predictions about the development of secular instabilities. On
the other hand, in the extremely rapidly and differentially ro-
tating model A4B5G4 (lower panel), secular instabilities are
likely to develop in both Newtonian and relativistic gravity.
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However, instabilities on a dynamic timescale should only ap-
pear in the latter case, where βrot > βrot dyn for almost 4 ms. We
note that for a neutron star with an average density of ∼ρnuc and
a radius of ∼20 km, the dynamical timescale (= sound crossing
timescale) is roughly 1 ms.

Note that in this discussion βrot is the ratio of rotational en-
ergy to potential energy of the entire core. Strictly speaking,
the criteria for triaxial instabilities should only be evaluated for
the rotation rate βrot ic of the inner core (which eventually be-
comes the compact remnant), because the outer core is a sepa-
rate entity as far as the dynamics is concerned. However, due to
the rapid drop of density and rotation velocity observed in all
models at the outer boundary of the inner core, the outer core
contributes only little to the total rotation rate. Thus, we can
safely assume that βrot ic ≈ βrot. This behavior has also been ob-
served in the Newtonian core collapse simulations of Zwerger
(1995).

Despite the knowledge of the evolution of βrot during core
collapse, predictions about the actual development of triaxial
instabilities are difficult. The thresholds originate from a linear
stability analysis and involve restrictions (e.g. homogeneous
density, uniform rotation, etc.). Unfortunately, we cannot simu-
late the actual nonlinear growth of triaxial instabilities, because
our code is restricted to axisymmetric flows. Therefore, we
have begun to extend our code to three spatial dimensions. The
results of the 3D simulations planned to be performed with the
extended code will be presented in a future publication. Still, at
present our results may help to predict the behavior and conse-
quences of βrot of fully three-dimensional models (Houser et al.
1994; Smith et al. 1996; Rampp et al. 1998).

For large values of βrot the neutron star is highly nonspher-
ical. In this regime we expect deviations of the CF metric from
the exact metric in the range of a few percent (see Sect. 5.5
in Paper I). Additionally, in the equation for βrot (see Sects. 1
and 5.4 in Paper I), the potential energy Epot is determined by
the (small) difference between the gravitational mass Egrav and
proper mass Eproper. Even for strongly gravitating systems like
neutron stars, this difference is only about 10% of the individ-
ual terms. Thus, if the values for Egrav and Eproper are subject
to an error of a few percent in the CFC approximation, we
expect βrot to deviate by several 10% relative to its value in
an exact spacetime. In simulations of rapidly rotating neutron
stars in equilibrium we could observe relative deviations be-
tween βrot exact and βrot CFC of about 15%. Owing to the uncer-
tainties with the stability thresholds and the calculation of the
rotation rate in the CFC approximation, the above predictions
from the evolution of βrot for the actual development of triaxial
instabilities should be regarded as an estimate.

4. Gravitational wave emission

4.1. Gravitational wave energy spectrum and emission

A detailed discussion of the spectra of gravitational waves
emitted during Newtonian rotational core collapse, and their
dependence on the collapse type and dynamics can be found
in the work of Zwerger & Müller (1997). In the quadrupole
approximation and in axisymmetry, the gravitational radiation

field is solely determined by the amplitude AE2
20 (see

Appendix A). The total energy radiated away by gravitational
waves is then given by

Erad tot =
1

32π

∫ ∞

−∞

∣∣∣∣∣∣
dAE2

20

dt

∣∣∣∣∣∣
2

dt. (3)

By replacing the gravitational wave amplitude in the time do-
main AE2

20 (t) by its Fourier transform in the frequency do-
main ÂE2

20 (ν), the total radiated energy Erad tot can be expressed
as a frequency integral:

Erad tot =
1

16π

∫ ∞

0
ν2

∣∣∣ÂE2
20

∣∣∣2 dν. (4)

The spectral energy distribution is then

dErad

dν
=

1
16π
ν2

∣∣∣ÂE2
20

∣∣∣2 . (5)

As a characteristic spectral measure of the gravitational wave
signal we define the frequency νmax at which the energy spec-
trum dErad/dν has its maximum (see also Zwerger & Müller
1997).

As discussed in Sect. 3.2, the average and peak central den-
sities of our relativistic models are larger than those of the
Newtonian ones. This leads to an increase of the oscillation
frequencies of the inner core during the ring-down phase in a
regular collapse situation, and to a decrease of the time inter-
val between consecutive bounces in multiple bounce models.
Therefore, the gravitational wave spectrum is shifted towards
higher frequencies in the relativistic models. This shift can
be as large as a factor 5 in frequency (see Table 1 and lower
panel of Fig. 16). The models with the largest frequency shift
are those where the deeper relativistic gravitational potential
changes a multiple bounce collapse into a regular collapse (see
Sect. 3.3). We find that in Newtonian gravity only three mod-
els have a higher characteristic frequency νmax than the corre-
sponding relativistic ones. However, the energy spectra of these
models show many local maxima near νmax having almost the
same spectral energy density. Fitting the energy spectra of the
three models by a smooth function yields again a higher value
of νmax in case of relativistic gravity.

The energy spectra of three models are plotted in Fig. 16.
They are obtained by Fourier transforming the gravitational
signal. A Welch filter is applied in the Fourier transformation to
reduce the noise caused by the finite length of the wave signal
(Press et al. 1992). To compensate for the power loss due to fil-
tering, the spectrum is rescaled by the requirement that the total
energy in the time domain, Eq. (3) equals that of the frequency
domain, Eq. (4). The energy spectra are similar for both rela-
tivistic and Newtonian simulations in cases where the collapse
type does not change (see upper and middle panel in Fig. 16).
On the other hand, when a Newtonian model exhibiting multi-
ple bounces changes to a regular collapse model in relativistic
gravity, like e.g. model A3B3G1, the shape of its energy spec-
trum is shifted significantly (see lower panel in Fig. 16).

By integrating the spectral energy distribution, Eq. (5), over
all frequencies, one obtains the total energy radiated away by
the system in gravitational waves, as given in Eq. (4). However,
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Fig. 16. Spectral energy distribution dErad/dν of the gravitational
wave signal in the relativistic (solid lines) and Newtonian (dashed
lines) simulations of models A1B3G3 (upper panel), A3B3G1 (mid-
dle panel) and A1B3G1 (lower panel). The energy spectrum of
model A1B3G3, with a strong low frequency part and a weaker
high frequency part, is typical for the signal of a regular col-
lapse. Model A3B3G1 is a multiple bounce collapse model in both
Newtonian and relativistic gravity. In its energy spectrum a broad
low frequency peak dominates. In model A1B3G1 relativistic effects
change the collapse type from multiple bounce collapse to regular col-
lapse. The energy spectrum reflects this change. The left (right) verti-
cal dotted lines mark the maxima of the energy spectrum in Newtonian
(relativistic) gravity. Due to higher average central densities in the rel-
ativistic simulations, the maximum of the energy spectrum is shifted
to higher frequencies.

when analyzing numerical data this method is inappropri-
ate, because high frequency noise contributes significantly
to Erad tot. For most models it is impossible to unambiguously
define a cutoff frequency beyond which there exists only noise,
as Erad does not drop sharply at some specific frequency. On
the other hand, applying a filter (like the Welch filter used in
Fig. 16) causes a leakage of spectral energy density, and thus
leads to a underestimate of Erad tot. Therefore, we use Eq. (3) to
calculate Erad tot.

We find that the total energy (measured in units of M�c2)
radiated in form of gravitational waves lies in the range 3.0 ×
10−10 ≤ Erad tot ≤ 3.7 × 10−7 for the relativistic models, and in
the range 3.8 × 10−10 ≤ Erad tot ≤ 1.5 × 10−7 for the Newtonian

ones. Averaged over all models, Erad tot = 8.2 × 10−8 in the
relativistic case, and Erad tot = 3.6× 10−8 in the Newtonian one,
which corresponds to an increase of 128% due to relativistic
effects.

4.2. Gravitational wave amplitudes and frequencies

The distribution of the dimensionless signal amplitude seen by
an observer located in the equatorial plane of the source, i.e.
the gravitational wave strain (see Eq. (A.3) with θ = π/2)

hTT =
1
8

√
15
π

AE2
20

r

= 8.8524 × 10−21

 AE2
20

103 cm


(

10 kpc
r

)
, (6)

is shown in Fig. 17 for all 26 models, scaled to a distance of
r = 10 kpc from the source. The corresponding wave ampli-
tudes AE2

20 are listed in Table 1.

A comparison of Fig. 17 with Fig. 8 in Zwerger & Müller
(1997) proves that our sample, encompassing 25 of the 78 mod-
els considered in the parameter study of Zwerger & Müller
(1997) – we have simulated the additional model A3B2G4soft –
covers almost the same range of wave amplitudes (4 × 10−21 ≤
hTT ≤ 3 × 10−20) and frequencies (60 Hz ≤ ν ≤ 1000 Hz).
Thus, relativistic effects have no significant impact on the gross
distribution of expected signals in the amplitude–frequency di-
agram. Only in the high frequency, low amplitude region of
the diagram, i.e. for models which collapse rapidly and have
type I or III waveforms, the weaker signal amplitudes cause a
discernible change in the model distribution. The bulk of the
models falls into the range of detectability of the LIGO I inter-
ferometer (Gustafson et al. 1999) provided the source is located
at a distance of less than 10 kpc (see Fig. 17).

For all models which are of the same type in both
Newtonian and relativistic gravity, the gravitational wave sig-
nal has a lower amplitude. When selecting those 13 models
which are of type II in Newtonian gravity (see Sect. 3.1.2), the
influence of relativistic effects on the signal amplitude is not as
clearcut. The two relativistic models which remain of type II
(see Table 1) yield smaller maximum amplitudes |AE2

20 |max. If
the collapse type changes due to the higher central densities
reached in relativistic gravity, some models exhibit signifi-
cantly higher signal amplitudes than in Newtonian gravity (e.g.
+84% for model A1B3G1), whereas others possess smaller
signal amplitudes (e.g. −22% for model A3B1G1). In mod-
els which change their collapse type, the increase or decrease
of the signal strength, and thus the change of location in the
amplitude–frequency diagram, depends very strongly on the
rotational state of the initial model and on the value of γ1.
However, as in all other models, relativistic gravity always
causes a rise of the characteristic signal frequencies.
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Fig. 17. Prospects of detection of the gravi-
tational wave signal from axisymmetric ro-
tational supernova core collapse in relativis-
tic (black filled circles) and Newtonian (red
unfilled circles) gravity. The figure gives
the (dimensionless) gravitational wave am-
plitude hTT and the frequency range for
all 26 models. For a source at a distance
of 10 kpc the signals of all models are above
the burst sensitivity of the LIGO I detector
(except for some low amplitude, high fre-
quency models), and well above that of the
LIGO II interferometer. The burst sensitiv-
ity gives the rms noise amplitude hrms ∼√
νS (ν) over a bandwith of width ν at a

frequency ν for the instrument noise power
spectral density S (ν). The error bars mark
the frequency range inside which the spec-
tral energy density is within 50% of its peak
value.

100.0 1000.0

ν [Hz]

0.3

0.4

0.5

0.6

0.7

0.8
0.9
1.0

2.0

3.0

hT
T

(and amplitude)
frequency

shift
detector

a

b

sensitivity

Fig. 18. Impact of the frequency and wave
amplitude shift on the signal detectability for
relativistic models which experience mul-
tiple bounces in Newtonian gravity. In the
“best case”, both amplitude and frequency
increase in relativistic gravity (a). However,
on average only the frequency increases (b).
In neither case the shift is as steep as the high
frequency sensitivity curve of an interferom-
eter detector, and thus a relativistic model
may fall out of the sensitivity window of
the detector, if the Newtonian model is just
within detection range. Note that the vertical
scale is arbitrary. Symbols and error bars as
in Fig. 17.

The overall behaviour of the 13 models which are of type II
in Newtonian gravity, can be summarized by considering the
arithmetic mean of their peak amplitudes and peak frequencies:

νNmean = 394 Hz

νRmean = 930 Hz

 + 136%,

hTT N
mean = 1.55 × 10−20

hTT R
mean = 1.69 × 10−20

 + 9% .

(7)

Our simulations show that while the average gravitational wave
signal amplitude hTT does not change significantly, the fre-
quency more than doubles.

This large frequency shift can have important consequences
for the prospects of detection of gravitational waves. If the sig-
nal of a particular model is close to the detection threshold of

a detector, as shown in Fig. 18 for the 13 models which expe-
rience multiple bounces in Newtonian gravity, the influence of
relativity can be twofold. In the “best case scenario” the signal
is shifted to both higher frequencies and amplitudes (case a).
However, more frequently the location of the model will only
shift towards higher frequencies in the amplitude-frequency di-
agram (case b – see Eq. (7)), and therefore in a borderline
case the signal may actually leave the sensitivity window of
the detector.

5. Summary and conclusions

We have presented hydrodynamic simulations of relativistic ro-
tational supernova core collapse in axisymmetry and have ana-
lyzed the gravitational radiation emitted by such an event. We
have simulated the evolution of 26 models in both Newtonian
and relativistic gravity. Collapse of the initial configurations,
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which are differentially rotating relativistic 4/3-polytropes in
equilibrium, is induced by decreasing the adiabatic index to
some prescribed fixed value γ1 with 1.28 ≤ γ1 ≤ 1.325. The
stiffening of the equation of state at nuclear matter density and
the thermal pressure in the matter heated by the prompt shock
are simulated by means of a simplified equation of state con-
sisting of a polytropic and a thermal part. Microphysics like
electron captures and neutrino transport is neglected.

Our simulations show that the three different types of ro-
tational supernova core collapse and gravitational waveforms
identified in previous Newtonian simulations (regular collapse,
multiple bounce collapse, and rapid collapse) are also present
in relativistic gravity. We find, however, that rotational core col-
lapse with multiple bounces, which occurs when the collapse
is only or predominantly stopped by centrifugal forces, is pos-
sible only in a much narrower parameter range in relativistic
simulations. Only two of the 26 models of our sample show
unambiguous multiple bounces in relativistic gravity. The peak
central densities associated with the individual bounces in such
models are much larger (up to a factor of 8) in the relativis-
tic models compared to the corresponding Newtonian ones.
Consequently, the time elapsed between subsequent bounces
decreases by a factor of up to 4.

We further find that relativistic gravity can have a quali-
tative impact on the dynamics. If the density increase due to
the deeper relativistic potential is sufficiently large, a collapse
which is stopped by centrifugal forces at subnuclear densities
(and thus undergoes multiple bounces) in a Newtonian simu-
lation, becomes a regular, single bounce collapse in relativistic
gravity. A collapse type transition also has important conse-
quences for the maximum gravitational wave signal amplitude.

For all relativistic models the peak density at bounce is
larger than in the corresponding Newtonian models, the rela-
tive increase reaching ∼700% in some cases. This also holds
for the maximum density of the compact remnant after ring-
down in case of instant formation of a stable equilibrium state
(types I and III). Nevertheless, we find that only six mod-
els have also larger maximum signal amplitudes than their
Newtonian counterparts. The maximum signal amplitudes of
all other relativistic models are (up to 57%) smaller than those
of the corresponding Newtonian ones. The reduced maximum
signal strength can be explained by the fact that the quadrupole
amplitude is determined by the bulk motion of the core rather
than just by the motion of the densest mass shells. Therefore,
a core which is more condensed in the center can give rise to
a smaller gravitational wave signal than a core which is less
centrally condensed, but which is denser and moves faster in
its outer regions. However, the fact that all relativistic models
show an increased central and reduced peripheral density of the
collapsed core relative to their Newtonian counterparts does not
necessarily imply a weaker gravitational wave signal, as in 6
of 26 relativistic models the maximum gravitational wave am-
plitudes are larger than in the corresponding Newtonian mod-
els. In all these six cases the collapse changes from type II (or
type I/II) to type I when changing from Newtonian to relativis-
tic gravity.

Overall, the relativistic models cover almost the same range
of gravitational wave amplitudes (4× 10−21 ≤ hTT ≤ 3× 10−20)

and frequencies (60 Hz ≤ ν ≤ 1000 Hz) as the corresponding
Newtonian ones. For all models which are of the same col-
lapse type in both Newtonian and relativistic gravity, the grav-
itational wave signal is of lower amplitude. If the collapse type
changes, either weaker or stronger signals are found in the rel-
ativistic case. Averaged over all models, the total energy radi-
ated in form of gravitational waves is 8.2 × 10−8 M�c2 in the
relativistic case, and 3.6 × 10−8 M�c2 in the Newtonian one.

For a given model, relativistic gravity can cause a large in-
crease of the characteristic signal frequency of up to a factor of
five. This frequency shift is an effect common to all models, and
can have important consequences for the prospects of detec-
tion of gravitational waves. If the signal of a particular model
is close to the high-frequency detection threshold of a detector,
the influence of relativity can be twofold. In the “best case sce-
nario” both the signal frequency and amplitude increase; how-
ever, more often only the signal frequency increases. In either
case, in a borderline situation the signal may actually leave the
sensitivity window of the detector, as the high-frequency de-
tection threshold of a laser interferometer rises steeply with
increasing frequency. Hence, within the limits of our physical
model of rotational core collapse, relativistic effects on average
tend to decrease the prospects of detectability of gravitational
radiation by interferometric detectors. Nevertheless, the gravi-
tational wave signals obtained in our study are within the sensi-
tivity range of the first generation laser interferometer detectors
if the source is located within the Local Group.

In our study we have restricted ourselves to simplified su-
pernova core models. The complicated microphysics (electron
captures and other weak interactions, equation of state) and
neutrino transport processes have all been absorbed in one
model parameter (γ1). Although this is an extreme simplifica-
tion, we nevertheless think that it does not change the qualita-
tive nature of our results. In particular, we do not expect that
more realistic (axisymmetric) core collapse models will pro-
duce significantly stronger gravitational wave signals. Larger
initial rotation rates and lower values of the (effective) adia-
batic index γ1, which could lead to stronger gravitational wave
signals, are most likely excluded. This is also supported by the
fact that the signal strengths of the microscopically more realis-
tic, but Newtonian models of Mönchmeyer et al. (1991) agree
well with those of our simplified models. To check whether
these expectations are indeed correct we plan to incorporate a
realistic equation of state and a simplified treatment of neutrino
transport into our relativistic code in the near future.

In several models the rotation rate of the compact remnant
exceeds the critical value where MacLaurin spheroids become
secularly, and in some cases even dynamically unstable against
triaxial perturbations (βrot sec ≈ 13.8% and βrot dyn ≈ 27.4%). It
has been have pointed out that if such instabilities indeed occur,
a much stronger gravitational wave signal might be produced
than by cores which remain axisymmetric (for a review, see e.g.
Thorne 1995). According to this idea, the core will be trans-
formed into a bar-like configuration that spins end-over-end
like an American football. One has further speculated, whether
the core might even break up into two or more massive pieces,
if βrot > βrot dyn. In that case the resulting gravitational radiation
could be almost as strong as that from coalescing neutron star
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binaries (Thorne 1995). The strength of the gravitational signal
sensitively depends on what fraction of the angular momentum
of the non-axisymmetric core goes into gravitational waves,
and what fraction into hydrodynamic waves. These sound and
shock waves are produced as the bar or lumps, acting like a
twirling-stick, plow through the surrounding matter. In order to
investigate these effects, three-dimensional relativistic simula-
tions of rotational core collapse have to be performed, which
can follow the growth of non-axisymmetric instabilities (bar
modes and gravitational wave driven unstable inertial modes).
To this end we are currently extending our code to three spatial
dimensions.
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Appendix A: Gravitational wave extraction

In the appendix we summarize the technical aspects related to
the gravitational wave extraction and the different methods we
have used. As stated in Paper I, the use of a CF metric implies
the removal of the gravitational radiation degrees of freedom.
Therefore, in order to compute the waveforms we apply the
Newtonian quadrupole formula.

In that approximation and for an axisymmetric source in
spherical coordinates, it can be shown (Thorne 1980) that
the transverse traceless gravitational field has one independent
component hTT

θθ , which depends only on the quadrupole signal
amplitude AE2

20 ,

hTT
θθ =

1
r

AE2
20 (t − r)T E2 20

θθ . (A.1)

As the l = 2, m = 0 spherical tensor harmonic T E2 20
θθ is defined

according to

T E2 20
θθ =

1
8

√
15
π

sin2 θ, (A.2)

the quadrupole radiation field hTT
θθ is given by

hTT
θθ =

1
8

√
15
π

sin2 θ
AE2

20

r
· (A.3)

A.1. Different formulations of the quadrupole formula

The amplitude AE2
20 in Eq. (A.3) is the second time derivative of

the mass quadrupole moment of the source,

AE2
20 =

d2

dt2

(
k
∫

r4dr dz ρ

(
3
2

z2 − 1
2

))
, (A.4)

where z = cos θ, and k = 16π3/2/
√

15. This formulation of the
radiation field is known as the standard quadrupole formula.

A direct numerical implementation of this formula is prob-
lematic, as the discretization of the second time derivative
causes high frequency noise in the gravitational wave signal.

The amplitude of this noise can be larger than the total ampli-
tude of the signal. The problem is worsened by the fact that the
density distribution in the integrand of Eq. (A.4) is weighted
by r4, i.e. mass elements in the outer parts of the star – where
the grid resolution is coarser – contribute strongly to the signal.

To overcome this problem a standard practice is to replace
the time derivatives by spatial derivatives (Finn 1989; Blanchet
et al. 1990). This procedure leads to the stress formula for the
gravitational wave amplitude:

AE2
20 = k

∫
r2dr dz ρ

(
v2r (3z2 − 1) + v2θ(2 − 3z2) − v2ϕ

−6vrvθz
√

1 − z2 − r
∂Φ

∂r
(3z2 − 1) + 3

∂Φ

∂θ
z
√

1 − z2

)
,

(A.5)

where Φ is the Newtonian gravitational potential. This mod-
ified formulation of the quadrupole formula was used in our
analysis.

A.2. Ambiguity of the stress formula
in the CFC approximation

In a mathematically strict sense the quadrupole approxima-
tion of the radiation field, Eq. (A.1), is only defined for a flat
Minkowski spacetime where the gravitational waves propagate
as a linear perturbation. However, the multipole amplitudes and
the tensor harmonics, although defined in flat spacetime, con-
tain information about the wave source, which is situated in
a strong field and high velocity region. In our simulations the
quadrupole moment AE2

20 is computed as a spatial integral over
the relativistic matter configuration in a curved spacetime, as
the metric gµν is not Minkowskian. Therefore, our methods to
compute the radiation field are hampered by several ambigui-
ties in the quadrupole formula.

Whereas in the Newtonian formulation, which is based on
Euclidean geometry, the definition of the radius coordinate r
is no source of ambiguity, in the Riemannian geometry of a
curved spacetime the circumferential radius and the coordi-
nate radius do not necessarily coincide. In our simulations we
use the isotropic radial coordinate r in the computation of the
quadrupole moment. Tests where we replaced r by the circum-
ferential radius in the wave extraction produced almost identi-
cal waveforms.

The spatial derivatives of the Newtonian potential present
in Eq. (A.5) need particular attention. When simply using
Poisson’s equation,

∆Φ1 = 4πρ, (A.6)

which we solve by an expansion into Legendre polynomials
(Zwerger 1995), the waveform shows an offset, particularly af-
ter core bounce (see the dashed-dotted line in Fig. A.1). For
strong gravity, the Newtonian potential Φ1 is therefore inap-
propriate for describing the radiation field. Another manifesta-
tion of this problem is a large constant offset in AE2

20 for rapidly
rotating neutron stars in equilibrium, where the gravitational
radiation should vanish.
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Fig. A.1. Reduction of the offset in the gravitational wave ampli-
tude AE2

20 for model A3B2G4 with the weighting method applied to
the stress formula. If the Newtonian potential Φ1 is used, the wave
signal shows a large positive offset (dashed-dotted line). If the combi-
nation of metric components Φ2 is used, a large negative offset occurs
(dashed line). The weighted sum Φweighted of these two signals yields
a waveform with practically zero offset (solid line). This combined
signal exhibits no high frequency noise, as its constituents have been
obtained using the stress formula.

The Newtonian potential can also be computed accurately
up to the first post-Newtonian order by setting g11 ≈ (1 − 2Φ)
equal to the conformal factor φ4. This leads to

Φ2 =
1
2

(1 − φ4). (A.7)

The waveforms obtained from this expression also show an
offset, but this time a negative one (see the dashed line
in Fig. A.1). However, combining both expressions for Φ,
Eqs. (A.6) and (A.7), into

Φweighted =
Φ1 + aΦ2

1 + a
, (A.8)

where a = const. is a parameter with an appropriate value, one
is able to reduce the offset almost to zero in all core collapse
models (see the solid line in Fig. A.1).
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