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An alternative derivation of many-body perturbation theory~MBPT! has been given, where a
coupled cluster parametrization is used for the wave function and the method of undetermined
Lagrange multipliers is applied to set up a variational coupled cluster energy expression. In this
variational formulation, thenth-order amplitudes determine the energy to order 2n11 and the
nth-order multipliers determine the energy to order 2n12. We have developed an iterative
approximate coupled cluster singles, doubles, and triples model CC3, where the triples amplitudes
are correct through second order and the singles amplitudes are treated without approximations due
to the unique role of singles as approximate orbital relaxation parameters. The compact energy
expressions obtained from the variational formulation exhibit in a simple way the relationship
between CC3, CCSDT-1a@Leeet al., J. Chem. Phys.81, 5906~1984!# CCSDT-1b models@Urban
et al., J. Chem. Phys.83, 4041~1985!#, and the CCSD~T! model@Raghavachariet al., Chem. Phys.
Lett. 157, 479 ~1989!#. Sample calculations of total energies are presented for the molecules H2O,
C2, CO, and C2H4. Comparisons are made with full CCSDT, CCSDT-1a, CCSDT-1b, CCSD~T!,
and full configuration interaction~FCI! results. These calculations demonstrate that CC3 and
CCSD~T! give total energies of a similar quality. If results obtained by CC3 and CCSD~T! differ
significantly, neither method can be trusted. In contrast to CCSD~T!, time-dependent response
functions can be obtained for CC3. ©1997 American Institute of Physics.
@S0021-9606~97!01747-3#
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I. INTRODUCTION

The coupled cluster~CC! model was introduced in the
early 1960s and has since gained increasing popularity.
coupled cluster model is size extensive and describes in
efficient way the dynamical correlation. Today the C
singles and doubles~CCSD! model is one of the most com
monly used methods for obtaining an accurate correlated
scription of the electronic structure of single configurati
dominated systems.1 The CCSD scale asN6, whereN is the
number of orbitals. Extensions of CCSD to a singl
doubles, and triples~CCSDT! model2,3 is desirable in order
to obtain a more accurate solution and also because tr
have shown some ability to recover static correlation con
butions. CCSDT calculations scale asN8 and triples ampli-
tudes must be stored. It is therefore desirable to deve
methods where triples are treated in an approximate fash
Two strategies have been advocated, both of which m
avoid the storage of triples amplitudes and reduce the c
putational effort to that of anN7 algorithm. In the first ap-
proach, simplifications are introduced in the CCSDT amp
tudes equations, and iterative methods are used to solve
amplitude equations.4–6 In the other and more popular ap
proach, the lowest-order perturbation energy contributi
from connected triples are added to the CCSD energy.6–9
1808 J. Chem. Phys. 106 (5), 1 February 1997 0021-9606/9
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The CCSD energy is correct through fourth order exc
for one fourth-order contribution from connected triple
This contribution is added in all perturbation energy co
rected CCSD models. In the first of these CCSD1T~CCSD!,
only the fourth-order energy contribution was added, b
with CCSD cluster amplitudes replacing the doubles corre
tion coefficients. The connected triples give one fifth-ord
contribution involving singles amplitudes. If this contribu
tion is added to the CCSD energy together with the c
nected triples fourth-order contribution, but with the CCS
single and double amplitudes replacing the single and dou
correlation coefficients, then the CCSD~T! model is
obtained.8 This approach is the most widely used appro
mate triples model and is also observed to be the best
haved. However, the CCSD~T! model is unsatisfactory from
a pure perturbational point of view, in the sense that
include two particular fifth-order triples contributions an
disregard all others, with no apparent justification. The eff
of considering all fifth-order contributions has been cons
ered by Bartlettet al.10

The CCSD~T! and all noniterative perturbation correcte
CCSD models are two-step procedures. First a CCSD ca
lation is carried out to determine the amplitudes and ene
next the effect of connected triples is taken into account
7/106(5)/1808/11/$10.00 © 1997 American Institute of Physics
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1809Koch et al.: The CC3 model
adding low-order perturbation triples energy terms that
absent in the CCSD model. Response functions canno
obtained in a consistent manner from such two-step
proaches. For example, the CCSD~T! model has a pole struc
ture corresponding to that of the CCSD wave functio
Therefore, excitation energies and frequency-dependent
lecular properties cannot be obtained that are consistent
the CCSD~T! model. The CCSD~T! model can thus only be
applied to ground state energies and static molecular pro
ties. Response functions with a well-defined pole structu
i.e., with only one set of poles obtained at the level of a
proximation of the reference wave function, can only be o
tained in models where the determination of parameters
energy can be viewed as a one-step approach. This is
case for the CC3 model and for the models where appr
mate triples amplitude equations are solved iteratively.

If the triples equation is approximated according
second-order perturbation theory, the cluster amplitude eq
tions of the CCSDT-1b model of Urbanet al. are obtained.6

The CCSDT-1b model is one of the many models propo
by Urbanet al., where approximations are introduced in t
CCSDT amplitude equations to arrive at models that scal
N7. The CCSDT-1a model is obtained from CCSDT-1b
neglecting the singles in the connected triples contributi
to the doubles equations. CCSDT-1a appears to be the
popular iterative approximation to CCSDT.

Perturbation analysis based on the Hartree–Fock en
shows that singles occur to second order in the wave fu
tion and to fourth order in the energy. They therefore app
to be much less important than the doubles, which occu
first order in the wave function and second order in the
ergy. However, if an external perturbation is applied to
system, the singles are first order in the external perturba
and zeroth order in the fluctuation potential. Singles are t
more important than suggested by the energy. The sin
have the unique role of being approximate orbital relaxat
parameters. We therefore require that the CC3 model in
duces no approximations in the treatment of singles. Th
the singles amplitudes are treated as zeroth order in the
tuation potential. We further require CC3 to treat triples c
rect to second order. In this way we obtain an iterative
proximate triples model that is well suited for describi
molecular properties. In a separate paper we have derive
CC3 linear response function. This includes a pole and r
due analysis to determine CC3 excitation energies and t
sition matrix elements. The CC3 linear response function
also been compared to the ones of the CCSDT-1a
CCSDT-1b models. The special treatment of singles in C
has been demonstrated to be extremely important in mol
lar property calculations, for example, single replacem
dominated excitation energies are correct through third o
in CC3 and only through second order in CCSDT-1a a
CCSDT-1b. The use of the CCSDT-1 ground state wa
function was first presented by Watts and Bartlett. Ben
mark calculations have demonstrated that little or no
provement are obtained in CCSDT-1 for single replacem
dominated excitation energies compared to CCSD while
nificant improvement is obtained in CC3. We refer to Ref.
J. Chem. Phys., Vol. 106,
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for a detailed derivation and discussion of the properties
the CC3 linear response function.

To examine the structure of CC3 and other approxim
triples models we present an alternative and simple der
tion of many-body perturbation theory~MBPT!. In this deri-
vation, we use a coupled cluster parametrization of the ex
wave function to ensure that only size-extensive contri
tions appear in the perturbation expansion. Perturba
theory based on a coupled cluster parametrization of
wave function has been considered by many authors;
Kucharski and Bartlett12 for a recent reference. We furthe
introduce a variational coupled cluster energy expression
understand how this is done recall that the CC total energ
calculated from amplitudes that are obtained by solving
amplitude equations. Thus the total energy is formally o
tained from a constrained optimization. The CC energy c
therefore be viewed as obtained from an unconstrained o
mization of a variational energy expression where the clu
amplitude equations are added as constraints using
method of undetermined Lagrange multipliers. Clearly, t
gives no simplification in the calculation of the coupled clu
ter total energy. However, when calculating perturbatio
approximations to the coupled cluster~exact! energy, the
variational property of this CC Lagrangian becomes imp
tant, as the energy through order 2n11 can be obtained from
the nth-order correction to the cluster amplitudes a
Lagrange multipliers. In fact, thenth-order Lagrange multi-
pliers determine the energy to order 2n12.13 The use of the
2n11 and 2n12 rules leads to compact energy expressio
The coupled cluster parametrization ensures that only c
nected contributions are contained in the energy expans

The Lagrangian method is a completely general meth
for handling nonvariational energies. In the special case
coupled cluster theory with fixed orbitals, as in this paper
becomes equivalent to the method of Arponen14 in the
framework of the ‘‘normal exp(S)’’ method. In the context
of obtaining an efficient evaluation of coupled cluster ene
gradient the derivative of the variational functional was o
tained by Bartlett.15 The functional itself was first used in
quantum chemistry by Helgaker and Jo”rgensen16 to derive
coupled cluster energy derivatives. The full strength o
variational formulation, which included consideration of o
bital relaxation, was first given by Kochet al.17 in their de-
scription of the first implementation of the CCSD molecu
Hessian. The variational property of the CC Lagrangian a
the use of the 2n11 and 2n12 rules gives a very compac
formulation of the MBPT energy expansion that we use
identify the connected triples energy contributions in fou
and fifth orders and therefore to characterize the CCSD~T!
model. CCSD~T! can be interpreted as an approximate trip
model where the important connected triples are projec
onto the single double space. The first iteration
CCSDT-1a can be used to obtain CCSD~T!. In a similar way
the first iteration of CC3 can be used to obtain the pertur
tive model CC~3!. Energetically CC~3! is very close to
CCSD~T!.
No. 5, 1 February 1997
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1810 Koch et al.: The CC3 model
II. THE APPROXIMATE COUPLED CLUSTER TRIPLES
MODEL CC3

A. Coupled cluster ansatz

The coupled cluster wave functionuCC& can be written
as an exponential of a cluster operatorT acting on a single-
determinant wave function of noninteracting electrons,

uCC&5exp~T!uHF&. ~1!

The reference wave function corresponds to the Hartr
Fock stateuHF&. For anN-electron system, the cluster oper
tor is a sum of electron excitations defined with respect to
Hartree–Fock state,

T5T11T21T31•••1TN , ~2!

with

T15(
ai

t i
aaa

†ai , ~3!

T25
1
4 (
aib j

t i j
abaa

†aiab
†aj , ~4!

T35
1
36 (

aib jck
t i jk
abcaa

†aiab
†ajac

†ak . ~5!

The labelsi jk ••• andabc••• are used for occupied and un
occupied spin orbitals in the Hartree–Fock reference de
minant andpqrs••• are used as labels for orbitals with u
specified occupation. The cluster operator truncates
excitation levelN, the number of electrons in the system.
a shorthand notation, the cluster operator is written as

T5 (
i51,N

Ti5 (
i51,N

tm itm i , ~6!

where thetm i
are the cluster amplitudes of excitation leveli ,

and tm i
the associated excitation operators. The CC w

function satisfies the Schro¨dinger equation

exp~2T!H exp~T!uHF&5EuHF&, ~7!

and the coupled cluster energy is obtained by projecting
~7! against̂ HFu,

E5^HFuH exp~T!uHF&. ~8!

The CC amplitudes are determined by projecting Eq.~7!
onto the excitation manifold̂mi u,

^m i uexp~2T!H exp~T!uHF&50, ~9!

where

^m i u5^HFutm i

† . ~10!

With no truncation in the cluster operator, Eqs.~8! and ~9!
give the full configuration interaction~FCI! solution. For
truncated manifolds, the Schro¨dinger equation is solved in
the projected space corresponding to the considered ex
tion level. For example, in the CC singles and doub
~CCSD! model, the wave function containsT1 and T2 and
the amplitudes are determined by projecting against
singles and doubles space. The CCSDT model contains
J. Chem. Phys., Vol. 106,
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operatorsT1, T2, andT3, and the amplitudes are determine
by including triples in the projection manifold. Total ene
gies are obtained from Eq.~8!.

B. Coupled-cluster derivation of many-body
perturbation theory

1. The coupled cluster Lagrangian

The CC energy is determined from Eq.~8! subject to the
constraint that the cluster amplitudes are obtained from
amplitude equations, Eq.~9!. The CC energy may therefor
formally be determined by an unconstrained optimization
the Lagrangian,

L~ t, t̄ !5^HFuH exp~T!uHF&

1(
m

t̄m^muexp~2T!H exp~T!uHF&, ~11!

where both the cluster amplitudestm and the associated
Lagrange multiplierst̄m are variational. There is no advan
tage in using the CC Lagrangian to calculate the total ene
For this purpose the simplest is to calculate the amplitu
from Eq. ~9! first, and then obtain the energy from Eq.~8!.
However, the variational property of the parameters in E
~11! makes the Lagrangian convenient for evaluating a p
turbation expansion of the energy. A coupled cluster form
lation of many body perturbation theory has the advantag
giving expressions that are size extensive term by term. T
is in contrast to Mo” ller–Plesset perturbation theory, whe
the energy is size extensive order by order, but where
energy to a given order contains spurious nonsize exten
terms that cancel each other. The MBPT has been formul
in terms of diagrammatic methods giving expressions t
are size extensive term by term. A coupled cluster formu
tion of many body perturbation theory requires no additio
rules or theory.

We shall derive the perturbation expressions where
zeroth-order HamiltonianF corresponds to the Fock operat
and the perturbation operatorU is the fluctuation potential:

H5F1U, ~12!

F5(
pq

~hpq1Vpq!ap
†aq5Sepap

†ap , ~13!

U5 (
pqrs

gprqsap
†aq

†asar2(
pq

Vpqap
†aq . ~14!

Here theep are the orbital energies andV the Fock potential.
The CC Lagrangian now reads as

L~ t, t̄ !5^HFuexp~2T!F exp~T!uHF&1^HFuUTuHF&

1^ t̄uexp~2T!F exp~T!uHF&1^ t̄uUTuHF&,

~15!

where we have introduced the notation

UT5exp~2T!U exp~T!, ~16!

^ t̄ u5(
m

t̄m^mu, ~17!
No. 5, 1 February 1997
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1811Koch et al.: The CC3 model
assuming real parameters. We note that the commutator
tweenF andtm are particularly simple

@F,tm#5emtm . ~18!

Here em is a linear combination of orbital energies, for e
ample

@F,t i j
ab#5~ea1eb2e i2e j !t i j

ab . ~19!

Therefore, we obtain

@F,T#5(
m

emtmtm , ~20!

and all higher commutators vanish:

†@F,T#,T‡5@†@F,T#,T‡,T#5•••50. ~21!

We may thus write the transformed unperturbed Hamilton
in the form

exp~2T!F exp~T!5F1(
m

emtmtm , ~22!

and obtain the following~transition! expectation values:

^HFuexp~2T!F exp~T!uHF&5^HFuFuHF&5E0 , ~23!

^ t̄ uexp~2T!F exp~T!uHF&5(
m

emtm^ t̄ utmuHF&

5(
mn

emtm t̄n^num&

5(
m

emtm t̄m . ~24!

Inserting Eqs.~23! and ~24! in the Lagrangian, Eq.~15!, we
obtain the following expression:

L~ t, t̄ !5E01(
m

emtm t̄m1^HFuUTuHF&1^ t̄ uUTuHF&.

~25!

We shall use this expression for the Lagrangian in our p
turbation analysis of the coupled-cluster energy.

2. The coupled-cluster variational conditions

Since the amplitudes and multipliers are variational
the Lagrangian, they can be obtained from the variatio
conditions

Lm5
]L

] t̄m
50, ~26!

L̄m5
]L

]tm
50, ~27!

which hold for all perturbational strengths. Before evaluat
these derivatives, we note that

]UT

]tm
5@UT ,tm#. ~28!
J. Chem. Phys., Vol. 106,
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We now obtain the following expressions for the differen
ated Lagrangian:

Lm5emtm1^muUTuHF& ~29!

L̄m5em t̄m1^HFuUTum&1^ t̄ u@UT ,tm#uHF&. ~30!

Except for the last term in Eq.~30!, the variational condi-
tions for the amplitudes and the associated multipliers
identical.

3. Perturbation expansion of the coupled-cluster
energy

We wish to determine an expansion of the coupled cl
ter energy,

E5E~0!1E~1!1E~2!1••• , ~31!

by expanding the Lagrangian, Eq.~25!, in powers of the
perturbation. In addition to the linear and explicit depe
dence onU, the Lagrangian, Eq.~25!, depends implicitly and
nonlinearly on the fluctuation potential through the amp
tudes and the associated multipliers:

t5t ~0!1t ~1!1t ~2!1••• , ~32!

t̄5 t̄ ~0!1 t̄ ~1!1 t̄ ~2!1••• . ~33!

The perturbation dependence of the amplitudes and t
multipliers is obtained by expanding the variational con
tions, Eqs.~26! and ~27!, in orders inU,

Lm5Lm
~0!1Lm

~1!1Lm
~2!1••• , ~34!

L̄m5L̄m
~0!1L̄m

~1!1L̄m
~2!1••• . ~35!

An order-by-order solution of the so-called response eq
tions,

Lm
~0!5Lm

~1!5Lm
~2!5•••50, ~36!

L̄m
~0!5L̄m

~1!5L̄m
~2!5•••50, ~37!

yields the perturbed amplitudes and multipliers, Eqs.~32!
and ~33!. We are interested in the energy equation~31! to
fifth order. According to the 2n11 rule for the amplitudes
and the 2n12 rule for the multipliers, we must then dete
mine the responses of the amplitudes and the multiplier
second order. The 2n11 and 2n12 rules are illustrated in
Table I. For a proof of the 2n12 rule for the Lagrange
multipliers, see Ref. 13.

4. Coupled-cluster response equations

To calculate the energy to fifth order, we must solve t
response equations~36! and ~37! to second order. The
zeroth-order equations become

TABLE I. The 2n11 rule for the amplitudes and the 2n12 rules for the
Langrange multipliers.

E~0! E~1! E~2! E~3! E~4! E~5!

t ( i ) 0 0 1 1 2 2
t̄ ( i ) 0 0 0 1 1 2
No. 5, 1 February 1997
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1812 Koch et al.: The CC3 model
Lm
~0!50⇒emtm

~0!50, ~38!

L̄m
~0!50⇒em t̄ m

~0!50, ~39!

which means that the zeroth-order amplitudes and multipl
vanish:

tm
~0!5 t̄ m

~0!50. ~40!

This fact will simplify higher-order expressions greatly. Th
first-order response equations are given by

Lm
~1!50⇒emtm

~1!1^muUuHF&50, ~41!

L̄m
~1!50⇒em t̄ m

~1!1^HFuUum&50. ~42!

Since these equations are the complex conjugates of
other and since real wave functions are assumed, we
clude that the first-order amplitudes and multipliers are id
tical:

t̄ m
~1!5tm

~1! . ~43!

Furthermore, since

^muUuHF&5^muHuHF& ~44!

and since the Brillouin conditions holds for the Hartre
Fock state, we conclude that first-order amplitudes and m
tipliers involve double excitations only.

According to the 2n11 rule, the first-order response
determine the energy to third order. To calculate the fou
and fifth order energies, we also need the second-orde
sponses. We therefore collect terms to second order in
variational conditions and obtain

Lm
~2!50⇒emtm

~2!1^mu@U,T~1!#uHF&50, ~45!

L̄m
~2!50⇒em t̄ m

~2!1^HFu@U,T~1!#um&

1^ t̄ ~1!u@U,tm#uHF&50, ~46!

where we use the notation

T~n!5(
m

tm
~n!tm . ~47!

We note that since@U,T~1!# is a rank-three operator
^mu@U,T~1!#uHF& in Eq. ~45! can involve no higher than triple
excitations. Therefore, the second-order amplitudes con
single, double, and triple excitations only. The second-or
multipliers, in contrast, involve single, double, triple, an
quadruple excitations. To see this, we note that in Eq.~46!
the second term vanishes for all excitations but the last t
gives nonvanishing contributions for singles, doubles, trip
and quadruples. Quintuple and higher excitationstm make no
contribution in Eq.~46! since@U,tm#uHF& in such cases cor
responds to excitations higher than doubles.

We now show that Eq.~45! and Eq.~46! are identical for
the single, double, and triple excitation components, diff
ing only in the quadruple excitation component. Expand
the commutators, we may write the second-order respo
equations in the form

emtm
~2!52^muUut ~1!&1^muT~1!UuHF&, ~48!
J. Chem. Phys., Vol. 106,
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em t̄ m
~2!52^ t̄ ~1!uUum&1^ t̄ ~1!utmUuHF&, ~49!

where

ut ~1!&5T~1!uHF&5(
m

tm
~1!um&. ~50!

Further simplifications are possible by invoking the reso
tion of identity. In Eq.~48! we thus write

^muT~1!UuHF&5^muT~1!uHF&^HFuUuHF&

5(
n

tn
~1!^mun&^HFuUuHF&

5tm
~1!^HFuUuHF&. ~51!

Note that only the Hartree–Fock state gives a nonvanish
contribution in the resolution of identity. The Brillouin con
dition eliminates all terms in the resolution of identity exce
the Hartree–Fock state and the doubles, and doubles do
contribute since thêmu in Eq. ~48! represent no higher tha
triple excitations. We may also simplify Eq.~49! since for all
excitationstm we obtain

^ t̄ ~1!utmUuHF&5^ t̄ ~1!utmuHF&^HFuUuHF&

5 t̄ m
~1!^HFuUuHF&. ~52!

The second-order response equations may now be writte
the form

emt m
~2!52^muŪut ~1!&, ~53!

em t̄ m
~2!52^ t̄ ~1!uŪum&, ~54!

where

Ū5U2^HFuUuHF&. ~55!

These equations are the complex conjugate of each o
since t̄ m

(1)5tm
(1). Therefore, the second-order single, doub

and triple amplitudes and multipliers are identical to ea
other. For quadruples, the situation is quite different sin
the second-order quadruple amplitudes are zero while
second-order multipliers are nonzero and are obtained f
Eq. ~54!. We point out that it is the form of the second-ord
equations in Eq.~45! and ~46! in terms of commutators be
tweenU and the excitation operator that is needed to ha
each term in the energy expansion be connected. WhenŪ is
introduced in Eqs.~53!–~55!, disconnected energy terms wi
occur that are cancelled out when Eqs.~45! and ~46! are
used.

5. Perturbed energies

Having derived the equations that determine the CC a
plitudes and multipliers to second order, we turn to the
ergies. The contributions from the amplitudes and multipli
to the energies~in terms of orders of perturbation! are listed
in Table I. Since the excitation levels contained in the fir
and second-order amplitudes and multipliers are now kno
we may list the contributions from the amplitudes and m
tipliers to the MBPT energies; see Table II. We note th
No. 5, 1 February 1997
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1813Koch et al.: The CC3 model
singles and connected triples make their first appearanc
the fourth-order energy, and that connected quadruples m
a fifth-order contribution.

To determine the coupled-cluster energies to a given
der, we first expand the Lagrangian equation~25! to the same
order. Since the Lagrangian is variational, the resulting
pansion may be simplified considerably by taking into a
count the variational conditions to first order Eqs.~41! and
~42! and to second order Eqs.~45! and ~46!. The zero- and
first-order energies are particularly simple, however, a
straightforward expansion of the Lagrangian Eq.~25! yields

E~0!5E05(
i

e i , ~56!

E~1!5^HFuUuHF&, ~57!

which means that the Hartree–Fock energy is recovere
first-order in perturbation theory:

EHF5E~0!1E~1!. ~58!

In accordance with the 2n11 and 2n12 rules, there are no
first-order contributions from the amplitudes and multiplie
to the first-order energy.

We now consider the second-order energy. Expansio
the Lagrangian equation~25! yields the following expres-
sion:

E~2!5(
m

emtm
~1! t̄ m

~1!1^HFu@U,T~1!#uHF&

1^ t̄ ~1!uUuHF&. ~59!

According to the 2n12 rule, the first-order multipliers mak
no contribution to the second-order energy. We should th
fore be able to eliminate from the energy all terms that
volve t̄ ~1!. Indeed, we note that Eq.~59! may be written in
the form

E~2!5(
m

Lm
~1! t̄ m

~1!1^HFuUut ~1!&, ~60!

and since the conditionLm
~1!50 holds@see Eq.~41!#, we ar-

rive at the simple expression

E~2!5^HFuUut ~1!&, ~61!

in agreement with the 2n11 and 2n12 rules. The second
order energy thus depends on the connected doubles on

We now turn to the third-order energy. Collecting a
terms to third order in the Lagrangian equation~25!, we ob-
tain

TABLE II. Contributions from connected amplitudes and multipliers
MBPT energies.

Energy E~1! E~2! E~3! E~4! E~5!

Excitations HF D D SDT SDTQ
J. Chem. Phys., Vol. 106,

Downloaded¬29¬Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subject¬
in
ke

r-

-
-

d

to

of

e-
-

.

E~3!5(
m

emtm
~1! t̄ m

~2!1(
m

emtm
~2! t̄ m

~1!

1^HFu@U,T~2!#uHF&

1 1
2 ^HFu†@U,T~1!#,T~1!

‡uHF&

1^ t̄ ~1!u@U,T~1!#uHF&1^ t̄ ~2!uUuHF& ~62!

This expression may be simplified considerably. First
note that the fourth term vanishes since the double com
tator is a rank four operator containing double or higher
citations. Next, according to the 2n11 and 2n12 rules,E~3!

does not involve second-order amplitudes and mutliplie
Indeed, we find that Eq.~62! may be written in the form

E~3!5(
m

Lm
~1! t̄ m

~2!1(
m

L̄m
~1!tm

~2!1^ t̄ ~1!u@U,T~1!#uHF&,

~63!

which reduces to the expression

E~3!5^ t̄ ~1!u@U,T~1!#uHF&, ~64!

by invoking the first-order variational conditions, Eqs.~41!
and ~42!, in agreement with the 2n11 rule. Equation~64!
may be rewritten by expanding the commutator and int
ducing the resolution of identity, yielding

E~3!5^ t̄ ~1!uŪut ~1!&. ~65!

Equation ~65! is the form that is obtained in convention
Rayleigh Schro¨dinger perturbation theory. It contains disco
nected energy contributions in contrast to Eq.~64! where the
commutator ensures that all energy contributions are c
nected.

As indicated in Table II, the fourth-order energy shou
involve contributions from singles, doubles, and triples.
derive the detailed form of this energy, we expand the L
grangian to fourth order:

E~4!5(
m

emtm
~1! t̄ m

~3!1(
m

emtm
~2! t̄ m

~2!1(
m

emtm
~3! t̄ m

~1!

1^HFu@U,T~3!#uHF&1^HFu†@U,T~2!#,T~1!
‡uHF&

1 1
6^HFu@†@U,T~1!#,T~1!

‡,T~1!#uHF&

1^ t̄ ~1!u@U,T~2!#uHF&

1 1
2^ t̄

~1!u@@U,T~1!#,T~1!#uHF&

1^ t̄ ~2!u@U,T~1!#uHF&1^ t̄ ~3!uUuHF&. ~66!

The fifth and sixth terms in this expression vanish since
commutators involve too high excitation levels. The ener
may therefore be written in the simpler form:

E~4!5(
m

Lm
~1! t̄ m

~3!1(
m

Lm
~2! t̄ m

~2!1(
m

tm
~3!L̄m

~1!

1^ t̄ ~1!u@U,T~2!#uHF&

1 1
2^ t̄

~1!u†@U,T~1!#,T~1!
‡uHF&, ~67!

which yields~invoking the variational conditions!
No. 5, 1 February 1997
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1814 Koch et al.: The CC3 model
E~4!5^ t̄ ~1!u@U,T~2!#uF&1 1
2 ^ t̄ ~1!u†@U,T~1!#,T~1!

‡uHF&,
~68!

in accordance with the 2n11 and 2n12 rules. Sincet̄ ~2!

does not have quadruple contributions, the fourth-order
ergy does not have contributions from connected quadrup
The commutators in Eq.~68! ensure that all energy contribu
tions are connected. Eq.~68! may be rewritten to the form
that is obtained in conventional Rayleigh Schro¨dinger pertur-
bation theory and that contains disconnected energy co
butions. To do this, we expand the ommutators, yielding

E~4!5^ t̄ ~1!uŪut ~2!2 1
2t

~1!t ~1!&2^ t̄ ~1!ut ~1!&E~2!, ~69!

where we use the notation

ut ~2!2 1
2t

~1!t ~1!&5~T~2!2 1
2T

~1!T~1!!uHF&. ~70!

The fourth-order energy in Eq.~69! arises from interactions
of connected doubles with singles, connected doubles,
nected triples, disconnected quadruples, and also
Hartree–Fock state. There are no contributions from c
nected quadruples. Also, there are no interactions that do
involve connected doubles.

Proceeding finally to fifth order, we obtain the expre
sion

E~5!5(
m

Lm
~1! t̄ m

~4!1(
m

Lm
~2! t̄ m

~3!1(
m

tm
~3!L̄m

~2!

1(
m

tm
~4!L̄m

~1!1 1
2^HFu†@U,T~2!#,T~2!

‡uHF&

1^ t̄ ~1!u†@U,T~2!#,T~1!
‡uHF&

1^ t̄ ~2!u@U,T~2!#uHF&

1 1
2^ t̄

~2!u@@U,T~1!#,T~1!#uHF&, ~71!

and by invoking the first and second-order variational con
tions we arrive at the expression

E~5!5 1
2^HFu@†U,T~2!#,T~2!

‡uHF&

1^ t̄ ~1!u†@U,T~2!#,T~1!
‡uHF&

1^ t̄ ~2!u@U,T~2!#uHF&

1 1
2^ t̄

~2!u†@U,T~1!#,T~1!
‡uHF&, ~72!

for the fifth-order energy, in agreement with the 2n11 rule.
Clearly, we have contributions from connected quadruple
the terms involvingt̄ ~2!. Using the coupled cluster parametr
zation of the wave function, we obtain directly that all e
ergy contributions are connected.

C. The CCSD(T) model

Since the CCSD model contains singles and doub
only, it is correct to third order in perturbation theory. T
higher orders connected triples make their appearance
any improvement on the CCSD model must take into
count the effect of these excitations. Let us identify all e
J. Chem. Phys., Vol. 106,
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ergy contributions from connected triples to fourth and fi
orders in the perturbation. The connected triples give o
fourth-order contribution

ET
~4!5^ t̄ 2

~1!u@U,T3
~2!#uHF&, ~73!

where, for example,T3
~2! represents the part ofT~2! containing

triples. In fifth order, several contributions arise. From a co
sideration of excitation levels, the first two terms in Eq.~72!
are seen not to contain contributions from connected trip
The remaining two terms give rise to the following fifth
order connected triples contributions:

ET
~5!5^ t̄ 1

~2!u@U,T3
~2!#uHF&1^ t̄ 2

~2!u@U,T3
~2!#uHF&

1^ t̄ 3
~2!u@U,T3

~2!#uHF&1^ t̄ 4
~2!u@U,T3

~2!#uHF&

1^ t̄ 3
~2!u@U,T2

~2!#uHF&

1 1
2^ t̄ 3

~2!u†@U,T2
~1!#,T2

~1!
‡uHF&. ~74!

Connected triples thus give a fourth-order contribution wh
projected against the doubles space and fifth-order contr
tions when projected against the singles, doubles, triples,
quadruples space.

TheET
(4) term in Eq.~73! and the first two terms inET

(5)

of Eq. ~74! are the only fourth- and fifth-order contribution
that result from the projection of connected triples onto
singles and doubles space. For singles and doubles we
write

^tCCSDu5^ t̄ 1
~2!u1^ t̄ 2

~1!u1^ t̄ 2
~2!u1O~ t1

~3! ,t2
~3!!. ~75!

We may therefore account for the effects of the fourth- a
fifth-order triples projected against singles and doubles
calculating the following correction to the CCSD energy:8

Ecorr
CCSD~T!5^tCCSDu@U,T3

~2!#uHF&. ~76!

The terms differing from the true MBPT expansion becau
of the use of^tCCSDu rather than^ t̄ 1

(2)1 t̄ 2
(1)1 t̄ 2

(2)u are at
least of sixth order and are thus of little importance relat
to the remaining fifth-order terms in Eq.~74!.

D. The CC3 model

Approximate coupled cluster triples models may altern
tively be obtained by simplifying the cluster amplitude equ
tions of the CCSDT model and iterating these until conv
gence. Here we present one such approximate sche
referred to as the CC3 model, where approximations
guided by the following requirements:~1! the triples ampli-
tudes should be correct to the first nonvanishing order
perturbation theory; and~2! the singles amplitudes should b
treated as zeroth-order parameters because of their un
role as orbital relaxation parameters. The CCSDT amplitu
equations may be written as

^m1uexp~2T12T22T3!H exp~T11T21T3!uHF&50,
~77!

^m2uexp~2T12T22T3!H exp~T11T21T3!uHF&50,
~78!
No. 5, 1 February 1997
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1815Koch et al.: The CC3 model
^m3uexp~2T12T22T3!H exp~T11T21T3!uHF&50.
~79!

Introducing the modified two-electron Hamiltonian,

Ĥ5exp~2T1!H exp~T1!, ~80!

we may write the singles and doubles equations in the fo

^m1uexp~2T2!Ĥ exp~T2!uHF&1^m1u@H,T3#uHF&50,
~81!

^m2uexp~2T2!Ĥ exp~T2!uHF&1^m2u@Ĥ,T3#uHF&50.
~82!

Expanding the triples equations~79!, we obtain

^m3u@F,T3#uHF&1^m3u@Û,T2#uHF&

1 1
2 ^m3u†@Û,T2#,T2‡uHF&1^m3u@Û,T3#uHF&

1^m3u†@U,T3#,T2‡uHF&50, ~83!

with H0 andU defined as in Eqs.~12!–~14! and

Û5exp~2T1!U exp~T1!. ~84!

The computational costs of the five terms in Eq.~83! scale as
N6, N7, N7, N8, andN8, respectively. When the transforme
operatorsĤ and Û are used in Eqs.~81!–~83!, the singles
amplitudes are treated as zeroth-order parameters. Also
of the first two terms in Eq.~83! ensures that the connecte
triples are correct to second order in perturbation theo
Thus, in the CC3 model we determine the wave funct
from the singles and doubles equations Eqs.~81! and ~82!
together with the triples equation

^m3u@F,T3#uHF&1^m3u@Û,T2#uHF&50. ~85!

This equation ensures that the triples are correct to sec
order and also treats orbital relaxation in an approxim
fashion. The simple form of Eq.~85! allows an explicit so-
lution for the triples in terms of the singles and doub
amplitudes:

tm3
52em3

21^m3u@Û,T2#uHF&. ~86!

Introducing the notation
J. Chem. Phys., Vol. 106,
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em3

21^m3u@Û,T2#HF&tm3
, ~87!

for the approximate triples amplitudes, we may write t
CC3 cluster amplitude equations as

^m1uexp~2T2!Ĥ exp~T2!uHF&1^m1u@H,Q3#uHF&50,
~88!

^m2uexp~2T2!Ĥ exp~T2!uHF&1^m2u@Ĥ,Q3#uHF&50.
~89!

The first term in Eqs.~88! and ~89! represents the contribu
tions to the singles and doubles equations that appea
CCSD. The second term represents the nonvanishing
nected triples contributions. The singles and doubles eq
tions in Eqs.~88! and~89! are similar to the CCSDT single
and doubles equations, whereT3 is replaced by the perturba
tion correct formQ3.

The CC3 model is similar in spirit to the CCSDT-n mo
els of Urbanet al.6 Thus CCSDT-1b is obtained from CC3
Û in Eq. ~87! is replaced byU. The CCSDT-1a model is
obtained if, in addition,Ĥ in the last term of the double
equations, Eq.~89!, is replaced byH. In the more elaborate
CCSDT-n models~n52,3,4!, various contributions from the
last three terms in Eq.~83! are retained in the triples equa
tions. We note that such approximations may become un
anced if the terms to be included are not carefully selec
according to perturbation theory:

emtm
~3!52^mu@U,T~2!#uHF&2 1

2^mu†@U,T~1!#,T~1!
‡uHF&.

~90!

If both terms are included, the model scales asN8 and it is
then probably better to resort to a full CCSDT treatme
which also scales asN8. Indeed, the results obtained by U
banet al.6 confirm that the CCSDT-2 and CCSDT-3 may b
unbalanced since they perform no better than CCSDT-
The inclusion of the singles does not give similar proble
because of the unique role of singles as approximate orb
relaxation parameters.

The CCSD(T) energy can be generated by carrying ou
CCSD calculation and multiplying the correction term of t
first CCSDT-1a iteration by the CCSD singles and doub
ve

TABLE III. Total energies~a.u.! in coupled cluster calculations and FCI calculations on H2O at various OH
bond length using the cc-pVDZ basis.WHF is the weight of the Hartree–Fock configuration in the FCI wa
function.

Ee 1.5Re 2Re 2.5Re 3Re

RHF 276.024 039 275.802 397 275.587 711 275.441 244 275.344 392
WHF 0.941 0.849 0.589 0.337 0.230
ECCSD 276.238 116 276.062 305 275.929 633 275.897 684 275.901 097
ECCSD~T! 276.241 202 276.070 717 275.955 485 275.960 555 276.002 458
ECC~3! 276.241 202 276.070 697 275.954 928 275.961 190 276.003 528
ECCSDT-1a 276.241 273 276.070 747 275.953 780 275.943 580 275.955 745
ECCSDT-1b 276.241 273 276.070 759 275.953 401 275.945 461 275.958 153
ECC3 276.241 274 276.070 726 275.952 809 275.943 671 •••
ECCSDT 276.241 367 276.070 925 275.953 070 275.942 743 275.952 072
EFCI 276.241 860 276.072 348 275.951 665 275.917 991 275.911 946~1!
No. 5, 1 February 1997
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TABLE IV. Total energies~a.u.! for C2 at different internuclear distances using cc-pVDZ basis.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3 CCSDT

2.0 275.608 608 275.635 114 275.635 473 275.634 497 275.634 003 275.633 445
3.0 275.626 299 275.658 899 275.662 029 275.661 521 275.662 270 275.657 850
4.0 275.501 214 275.549 216 275.552 255 275.543 871 275.544 332 275.575 108
5.0 275.482 059 275.573 037 275.574 948 275.537 687 275.537 277 275.546 522
5.5 275.482 395 275.592 087 275.593 459 275.540 558 275.540 179 275.548 803
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amplitudes. In a similar spirit, we introduce the CC~3!
model, where the total energy is obtained from the CC
energy by adding to it the term generated by multiplying
correction term from the first CC3 iteration by the CCS
amplitudes. Energetically, CC~3! does not differ much from
CCSD~T!.

E. Closed shell CC3

In the CC3 model, Eqs.~88! and ~89! are solved using
the triples amplitudes generated according to Eq.~87!. The
total energy is obtained from Eq.~8! using the converged
singles and doubles amplitudes. We now consider in gre
detail a closed-shell system. Since the nonlinear amplit
equations are solved iteratively, the major computatio
task is to construct the vector functions in Eqs.~88! and~89!
for a set of trial amplitudes. The right-hand sides in Eqs.~88!
and ~89! appear in standard CCSD theory for closed-sh
systems and are given in Ref. 18 using the notation of
paper. The singles and doubles projection manifold is par
etrized in terms of a biorthonormal basis:

K ai U5^HFuEia , ~91!

K a b

i j
U5 1

3
^HFu~2EjbEia1EibEja!, ~92!

The one- and two-electron cluster operators are

T15(
ai

t i
aEai ~93!

T25
1
2 (
abi j

t i j
abEaiEb j , ~94!

where t i j
ab is symmetric with respect to permutation

(ai)↔(b j). The three-electron cluster operator is para
etrized as

TABLE V. Error relative to CCSDT in mH for C2.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3

2.0 224.837 1.669 2.028 1.052 0.55
3.0 231.551 1.049 4.179 3.671 4.42
4.0 273.894 225.892 222.853 231.237 230.776
5.0 264.462 226.515 228.426 28.835 29.245
5.5 266.408 243.284 244.656 28.245 28.624
J. Chem. Phys., Vol. 106,
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T35
1
6 (
aib jck

t i jk
abcEaiEb jEck , ~95!

where the amplitudes are symmetric with respect to the p
mutations (ai)↔(b j)↔(ck). Assuming that̂m3u refers to a
biorthonormal basis, the triples amplitudes can be de
mined from Eq.~84! as

t i jk
abc52

G i jk
abc

e i jk
abc , ~96!

where

e i jk
abc5ea1eb1ec2e i2e j2ek , ~97!

G i jk
abc5Pi jk

abcH(
d

t i j
ad~ck ûbd!2(

l
t i l
ab~ck û l j !J . ~98!

In Eq. ~99! Pi jk
abc is an operator that permutes the indices

Pi jk
abc5S abci jk D1S acbik j D1S bacj ik D1S cabki j D1S bcajki D

1S cbak j i D . ~99!

Using the triples amplitudes, Eq.~96!, the contributions that
are added to the standard CCSD amplitude equations@see
Eqs.~88! and ~89!# become

^ i
au@H,T3#uHF&52(

b jck
~ t i jk
abc2tk j i

abc!L jbkc , ~100!

^ i j
abu@Ĥ,T3#uHF&

52Pi j
abH(

ck
~ t i jk
abc2tk j i

abc!F̂kc1(
ckd

~2t j ik
bcd2tki j

bcd2t jki
bcd!

3~ac ûkd!2(
ckl

~2t jkl
bac2t lk j

bac2t j lk
bac!~ki û lc !J , ~101!

where

Pi j
ab5S abi j D1S baji D , ~102!

F̂pq5ĥpq1(
k
L̂kkpq, ~103!

L̂pqrs52~pq û rs!2~ps û rq !, ~104!
No. 5, 1 February 1997
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TABLE VI. Total energies~a.u.! for CO at different internuclear distances using cc-pVDZ basis.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3 CCSDT

1.6 2112.641 639 2112.647 129 2112.647 249 2112.647 327 2112.647390 2112.647390
1.8 2112.924 689 2112.931 696 2112.931 935 2112.932 086 2112.932015 2112.932015
2.0 2113.030 265 2113.039 292 2113.039 782 2113.040 113 2113.040685 2113.039685
2.5 2112.995 571 2113.012 957 2113.015 485 2113.018 147 2113.018608 2113.013608
3.0 2112.861 713 2112.894 160 2112.904 689 2112.923 328 2112.920757 2112.894757
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and (pq û rs) denotes integrals for the modified Hamiltonia
We refer to Ref. 18 for details about the integrals of t
modified Hamiltonian.

III. SAMPLE CALCULATIONS

The performance of the CC3 and CC~3! models has been
tested by carrying out calculations on H2O, C2, CO, and
C2H4. For all molecules except ethylene we stretch the bo
to investigate how well the models describe the increas
size of the static correlation contribution. For comparison
give results of the approximate triples models CCSD~T!,
CCSDT-1a, CCSDT-1b and full CCSDT. For water we a
quote the full configuration interaction~FCI! results.19 The
CCSDT calculations were carried out using theACESII
program.20 CCSD~T!, CCSDT-1a, and CCSDT-1b resul
have been checked againstACESII results.

The water calculations are carried out inC2v symmetry,
using geometries from previous FCI calculations. The HO
bond angle is fixed as 110.6° and the OH distances are
sen asRe , 1.5Re , 2.0Re , 2.5Re , and 3.0Re , with Re

51.84345 a.u. The Cartesian coordinates of these geome
are given in Ref. 19. We have used the spherical cc-pV
basis of Dunning21 and all ten electrons are correlated. FC
CCSD, CCSDT, and CCSD~T! results have previously bee
reported for the same geometries and basis set. The weig
the Hartree–Fock configuration in the FCI wave functi
~WHF! and the FCI natural orbital occupation numbers w
also reported in Ref. 19. In Table III we list the results of t
approximate triples calculations CC3, CC~3!, CCSDT-1a,
and CCSDT-1b together with the above-mentioned resul

The approximate triples results can be divided in t
groups, the iterative results CC3, CCSDT-1a, and CCSD
1b, and the perturbative results CC~3! and CCSD~T!. Close
to the equilibrium geometry, the Hartree–Fock configurat
dominates and very small differences are observed betw
the iterative and perturbative methods. Both the iterative
the perturbation-based models approximate very well the

TABLE VII. Error relative to CCSDT in mH for CO.

R ~a.u.! CCSD CCSD~T! CC~3! CCSDT-1a CC3

1.6 25.751 20.261 20.141 20.063 20.052
1.8 27.326 20.319 20.080 20.071 0.084
2.0 29.420 20.393 0.097 0.428 0.440
2.5 218.037 20.651 1.877 4.539 4.410
3.0 233.044 20.597 9.932 28.571 26.160
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CCSDT results. For example, at equilibrium the largest
viation between the approximate triples and full triples res
is 0.16 mH and occurs for CC~3! and CCSD~T!. At larger
internuclear distances the perturbation models show s
degradence, while the iterative approaches approximate
full CCSDT result quite well. For example, at 2Re , where
the weight of the Hartree–Fock configuration is 0.589,
CC3 energy is 0.26 mH above the full CCSDT energy, wh
the CCSD~T! energy is 2.41 mH below CCSDT. At internu
clear distances up to 2Re CCSDT is quite close to FCI
whereas for larger OH distances significant degradence
curs. Significantly, even for distances where full CCSDT b
haves poorly compared to FCI do the iterative models
proximate well CCSDT for example at 2.5Re CC3 is 0.93
mH below CCSDT, while CCSDT-1a and CCSDT-1b a
0.84 and 2.72 mH below, respectively. In water CC3 th
approximates very well CCSDT, even when the static cor
lation is so large that the performance of CCSDT deteriora
compared to FCI.

In Table IV total energies are given for C2 in CCSD,
CCSD~T!, CC~3!, CCSDT-1a, CC3, and CCSDT. The inte
nuclear distance varies between 2.0 and 5.5 a.u. The
pVDZ basis set is used. In Table V, we list the errors
CCSD and in the approximate triples models relative
CCSDT. Close to equilibrium all triples methods reduce t
CCSD error by about 90%, with the error now being of o
posite sign. At 3.0 a.u., CC3 is the triples method with t
largest error relative to CCSDT~4 mH!. In the region 4.0–
5.5 a.u. the errors increase significantly—the errors of
triples methods are about half the error of CCSD relative
CCSDT. For all geometries CC~3! is close to CCSD~T! and
CCSDT-1a is close to CC3. The perturbative approaches
fer significantly from the iterative approaches at some d
tances. Since errors of the same size occur in the inte
4.0–5.5 a.u. for both iterative and not-iterative models,
systematic trends can be identified.

For CO total energies have been calculated in the in
val 1.6–3.0 a.u. using the cc-pVDZ basis set. The energie
the different approaches are given in Table VI, and in Ta
VII the errors relative to CCSDT are listed. CCSD~T! is
within 0.7 mH of CCSDT at all geometries, while the oth
methods show a significant degradence with increasing in
nuclear distance. Note that the behavior of CC~3! is quite
different from CCSD~T!. The iterative models are within 0.
mH of CCSDT forR51.6–1.8 a.u.

The results for ethylene at equilibrium geometry usi
the cc-pVDZ basis set are given in Table VIII. All approx
No. 5, 1 February 1997
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1818 Koch et al.: The CC3 model
mate triples methods account for more than 90% of the ef
of triples. The CCSD~T! and CC~3! results are very close
~0.01 mH! and the same holds for CC3 relative to CCSD
1a. The extra singles contributions in CC~3! and CC3 thus
seem to be insignificant.

IV. SUMMARY

We have developed an iterative approximate trip
model, CC3, where the triples amplitudes are correct thro
second order, and where no approximations are made in
treatment of the singles amplitudes because of their un
role as orbital relaxation parameters.

To better understand the structure of the approxim
triples models, we have given an alternative deviation
many-body perturbation theory, using the coupled cluster
rametrization of the wave function and the method of un
termined Lagrange multipliers to set up a variational coup
cluster energy. In this formulation, thenth-order cluster pa-
rameters and Lagrange multipliers determine the energ
order 2n11. In fact, only thenth-order multipliers are
needed to obtain the energy to order 2n12. The compact
expressions obtained from the variational formulation rev
in a simple manner the connection between the itera
CC3. CCSDT-1a, and CCSDT-1b models and the pertu
tive CCSD~T! model. It shows that the first iteration o
CCSDT-1a can in a simple manner be used to obtain
CCSD~T! energy. From the first iteration of CC3, we obta
in the same way the perturbative CC~3! energy.

We have performed a comparative analysis of CC3
CC~3! with CCSDT-1a and CCSD~T!, with benchmarks
against FCI and CCSDT for H2O, C2, CO, and C2H4. Close
to equilibrium, where the reference state is dominated b
single configuration, they all give about 90%–95% of t
effect of triples. Far from equilibrium, where static correl
tion is more important, they behave similarly—for one mo
ecule some of the models work well whereas for other m
ecules it may be different models that work well.

In general, the iterative approximate triples methods c
not be expected to be better than the noniterative models,

TABLE VIII. Total energies~a.u.! for C2H4 using various coupled cluste
models using cc-pVDZ basis.

CCSD 275.349 900
CCSD~T! 278.359 864
CC~3! 278.359 871
CCSDT-1a 278.360 069
CC3 278.360 073
CCSDT 278.360 488
J. Chem. Phys., Vol. 106,
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vice versa. All models are constructed by perturbational
guments and in this sense the numerical tests just confirm
limitations of perturbation theory. Similarly, based on t
present study, there is no reason to believe that the spe
treatment given to singles improves or degrades the accu
of the total energy. It therefore appears that CC3 for ma
purposes can be viewed as a good approximation to CCS
with an accuracy and a robustness with respect to static
relation that is similar to that of CCSD~T!. However, the
advantage of CC3 is that it is well suited for calculations
time-dependent properties in contrast to CCSD~T!. The re-
sponse properties of the CC3 model is the subject of a s
sequent publication.
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