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An alternative derivation of many-body perturbation thedWBPT) has been given, where a
coupled cluster parametrization is used for the wave function and the method of undetermined
Lagrange multipliers is applied to set up a variational coupled cluster energy expression. In this
variational formulation, thenth-order amplitudes determine the energy to order2 and the
nth-order multipliers determine the energy to ordemn+2. We have developed an iterative
approximate coupled cluster singles, doubles, and triples model CC3, where the triples amplitudes
are correct through second order and the singles amplitudes are treated without approximations due
to the unique role of singles as approximate orbital relaxation parameters. The compact energy
expressions obtained from the variational formulation exhibit in a simple way the relationship
between CC3, CCSDT-ldeeet al, J. Chem. Phys81, 5906(1984] CCSDT-1b model$Urban

et al, J. Chem. Phys83, 4041(1985], and the CCSDI') model[Raghavachart al, Chem. Phys.

Lett. 157, 479(1989]. Sample calculations of total energies are presented for the molecy@es H

C,, CO, and GH,. Comparisons are made with full CCSDT, CCSDT-1a, CCSDT-1b, QTED

and full configuration interactiofFCI) results. These calculations demonstrate that CC3 and
CCSOT) give total energies of a similar quality. If results obtained by CC3 and QTBaiffer
significantly, neither method can be trusted. In contrast to Q@C{0Oime-dependent response
functions can be obtained for CC3. €997 American Institute of Physics.

[S0021-96087)01747-3

I. INTRODUCTION The CCSD energy is correct through fourth order except

The coupled clustefCC) model was introduced in the for one fourth-order contribution from connected triples.

early 1960s and has since gained increasing popularity. TheiS contribution is added in all perturbation energy cor-
coupled cluster model is size extensive and describes in dffcted CCSD models. In the first of these CCSDCCSD,

efficient way the dynamical correlation. Today the ccOnly the fourth-order energy contribution was added, but
singles and double€CCSD model is one of the most com- v_\nth CCS!Z)_cIuster amplitudes repla_tcmg the double_s correla-
monly used methods for obtaining an accurate correlated ddion coefficients. The connected triples give one fifth-order
scription of the electronic structure of single configurationcontribution involving singles amplitudes. If this contribu-
dominated systemsThe CCSD scale aN® whereN is the tion is added to the CCSD energy together with the con-
number of orbitals. Extensions of CCSD to a singles,neCtEd triples fourth-order contribution, but with the CCSD
doubles, and triple6CCSDT) modef+ is desirable in order single and double amplitudes replacing the single and double
to obtain a more accurate solution and also because tripl&®rrelation coefficients, then the CC8D model is
have shown some ability to recover static correlation contriobtained? This approach is the most widely used approxi-
butions. CCSDT calculations scale 8 and triples ampli- Mmate triples model and is also observed to be the best be-
tudes must be stored. It is therefore desirable to developaved. However, the CC3D) model is unsatisfactory from
methods where triples are treated in an approximate fashio@ pure perturbational point of view, in the sense that we
Two strategies have been advocated, both of which mainclude two particular fifth-order triples contributions and
avoid the storage of triples amplitudes and reduce the contlisregard all others, with no apparent justification. The effect
putational effort to that of am’ algorithm. In the first ap- of considering all fifth-order contributions has been consid-
proach, simplifications are introduced in the CCSDT ampli-ered by Bartletiet all®

tudes equations, and iterative methods are used to solve the The CCSIT) and all noniterative perturbation corrected
amplitude equation®:® In the other and more popular ap- CCSD models are two-step procedures. First a CCSD calcu-
proach, the lowest-order perturbation energy contributiondation is carried out to determine the amplitudes and energy,
from connected triples are added to the CCSD enétdy. next the effect of connected triples is taken into account by
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adding low-order perturbation triples energy terms that ardor a detailed derivation and discussion of the properties of
absent in the CCSD model. Response functions cannot e CC3 linear response function.

obtained in a consistent manner from such two-step ap- To examine the structure of CC3 and other approximate
proaches. For example, the CCSDmodel has a pole struc- triples models we present an alternative and simple deriva-
ture corresponding to that of the CCSD wave function.tion of many-body perturbation theotiBPT). In this deri-
Therefore, excitation energies and frequency-dependent meation, we use a coupled cluster parametrization of the exact
lecular properties cannot be obtained that are consistent Witijave function to ensure that only size-extensive contribu-
the CCSIT) model. The CCSDN) model can thus only be  tions appear in the perturbation expansion. Perturbation
applied to ground state energies and static molecular propefheory based on a coupled cluster parametrization of the
Fies. Response functions with a Wel!-defined pole structureyave function has been considered by many authors; see
i.e., with only one set of poles obtained at the level of ap-,charski and Bartlet? for a recent reference. We further
proximation of the reference wave function, can only be 0b544yce a variational coupled cluster energy expression. To

tained in models where the determination of parameters angh, jo stand how this is done recall that the CC total energy is

energfy C;}” tz:ec\éleweéj Ia S ‘Z ?net—rs],tep a(;)plroachh. This is t}}:F:‘allculated from amplitudes that are obtained by solving the
case for the _model and for In€ models where apprOXIélmplitude equations. Thus the total energy is formally ob-
mate triples amplitude equations are solved iteratively.

If the triples equation is approximated according totalned from a constrained optimization. The CC energy can

second-order perturbation theory, the cluster amplitude equéherefore be viewed as obtained from an unconstrained opt-

tions of the CCSDT-1b model of Urbaat al. are obtained mization of a variational energy expression where the cluster

The CCSDT-1b model is one of the many models proposeﬁlmpIitUde equation; are added as C(_)n§traints using .the
by Urbanet al, where approximations are introduced in the Méthod of undetermined Lagrange multipliers. Clearly, this
CCSDT amplitude equations to arrive at models that scale 2&VeS N0 simplification in the calculation of _the coupled glus—
N’. The CCSDT-1a model is obtained from CCSDT-1b byter total energy. However, when calculating perturbational
neglecting the singles in the connected triples contribution@PProximations to the coupled clustéxacy energy, the
to the doubles equations. CCSDT-1a appears to be the mo¥ariational property of this CC Lagrangian becomes impor-
popular iterative approximation to CCSDT. tant, as the energy through order21 can be obtained from
Perturbation analysis based on the Hartree—Fock enerdije nth-order correction to the cluster amplitudes and
shows that singles occur to second order in the wave fund-agrange multipliers. In fact, theth-order Lagrange muilti-
tion and to fourth order in the energy. They therefore appeapliers determine the energy to ordem22.2 The use of the
to be much less important than the doubles, which occur t@n+1 and +2 rules leads to compact energy expressions.
first order in the wave function and second order in the enThe coupled cluster parametrization ensures that only con-
ergy. However, if an external perturbation is applied to thenected contributions are contained in the energy expansion.
system, the singles are first order in the external perturbation The Lagrangian method is a completely general method
and zeroth order in the fluctuation potential. Singles are thugor handling nonvariational energies. In the special case of
more important than suggested by the energy. The singlegupled cluster theory with fixed orbitals, as in this paper, it
have the unique role of being approximate orbital relaxatioryecomes equivalent to the method of ArpoHem the
parameters. We therefore require that the CC3 model introga mework of the “normal exp®)” method. In the context

duces no approximations in the treatment of singles. Thusyt gptaining an efficient evaluation of coupled cluster energy

the singles amplitudes are treated as zeroth order in the flugagient the derivative of the variational functional was ob-
tuation potential. We further require CC3 to treat triples cor-i . q by Bartlett> The functional itself was first used in

rect to second order. In this way we obtain an iterative ap- . 6 .
. . . . o uantum chemistry by Helgaker andrdenseff to derive
proximate triples model that is well suited for descrlblngq y %y 9 g

molecular properties. In a separate paper we have derived tr(]:gqplgd clll;ster :angrgy dhgrlr\]/gtlvlez. ghe fu!:j strgngthfof a
CCa linear response function. This includes a pole and resygnaﬁona ormu atlor.1, which include conls; eration of or-
due analysis to determine CC3 excitation energies and tra _|th r.elaxat|on, was first given b.y Kogkt al.* in their de-
sition matrix elements. The CC3 linear response function ha§cr|pt'|on of the f|r§t '|mplementat|on of the CCSD mol.ecular
also been compared to the ones of the CCSDT-1a ankfessian. The variational property of the CC Lagrangian and
CCSDT-1b models. The special treatment of singles in ccae use of the 8+1 and 21+2 rules gives a very compact
has been demonstrated to be extremely important in molecformulation of the MBPT energy expansion that we use to
lar property calculations, for example, single replacementde”“fy the connected triples energy contributions in fourth
dominated excitation energies are correct through third ordefnd fifth orders and therefore to characterize the Ca3$D

in CC3 and only through second order in CCSDT-1a andnodel. CCSIT) can be interpreted as an approximate triples
CCSDT-1b. The use of the CCSDT-1 ground state wavenodel where the important connected triples are projected
function was first presented by Watts and Bartlett. Benchonto the single double space. The first iteration of
mark calculations have demonstrated that litttle or no im-CCSDT-1a can be used to obtain CGS$D In a similar way
provement are obtained in CCSDT-1 for single replacemernihe first iteration of CC3 can be used to obtain the perturba-
dominated excitation energies compared to CCSD while sigtive model CQ3). Energetically CC3) is very close to
nificant improvement is obtained in CC3. We refer to Ref. 11CCSOT).

J. Chem. Phys., Vol. 106, No. 5, 1 February 1997

Downloaded-29-Jan-2010-t0-147.156.182.23.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



1810 Koch et al.: The CC3 model

Il. THE APPROXIMATE COUPLED CLUSTER TRIPLES operatorsT,, T,, andT3, and the amplitudes are determined
MODEL CC3 by including triples in the projection manifold. Total ener-
A. Coupled cluster ansatz gies are obtained from Eg8).

The coupled cluster wave functid@C) can be written g Coupled-cluster derivation of many-body
as an exponential of a cluster operafoacting on a single-  perturbation theory
determinant wave function of noninteracting electrons, .
1. The coupled cluster Lagrangian

|CC)=exp(T)|HF). ) The CC energy is determined from E@&) subject to the
The reference wave function corresponds to the Hartreeconstraint that the cluster amplitudes are obtained from the
Fock statgHF). For anN-electron system, the cluster opera- amplitude equations, E¢9). The CC energy may therefore
tor is a sum of electron excitations defined with respect to théormally be determined by an unconstrained optimization of

Hartree—Fock state, the Lagrangian,
T=T+To+Ta+ -+ Ty, 2) L(t,t )=<HF|H exp(T)lHF)
with —
+ 2 t,(ulexg —T)H exp(T)|HF), (12)
T,=> t*ala (3) "
Log e where both the cluster amplitudég and the associated

Lagrange multipliers,, are variational. There is no advan-

T,=1 2 tﬁbagaiagaj , (4) tage in using the CC La_\grangia_n to calculate the total energy.
aibj For this purpose the simplest is to calculate the amplitudes

from Eq. (9) first, and then obtain the energy from H§).
Ts=% E tﬁﬁca;aiagajalak. (5) However, the variationa! property gf the parameters in Eq.
aibjck (11) makes the Lagrangian convenient for evaluating a per-

The labelsijk--- andabc:-- are used for occupied and un- turbation expansion of the energy. A coupled cluster formu-
occupied spin orbitals in the Hartree—Fock reference detef@tion of many body perturbation theory has the advantage of
minant andpqrs:-- are used as labels for orbitals with un- giving expressions that are size extensive term by term. This
specified occupation. The cluster operator truncates dg in contrast to Mber—Plesset perturbation theory, where

excitation levelN, the number of electrons in the system. In the energy is size extensive order by order, but where the

a shorthand notation, the cluster operator is written as energy to a given order contains spurious nonsize extensive
terms that cancel each other. The MBPT has been formulated

_ E _ E in terms of diagrammatic methods giving expressions that
T_, Ti_, t,ui T,ui ’ (6) . N
i=IN are size extensive term by term. A coupled cluster formula-

i=1N
where thet, are the cluster amplitudes of excitation level tion of many body perturbation theory requires no additional
i rules or theory.

and 7, the associated excitation operators. The CC wave \ye ghall derive the perturbation expressions where the

function satisfies the Schiger equation zeroth-order Hamiltoniaf corresponds to the Fock operator

exp(—T)H exp(T)|HF) = E|HF), (7) ~ and the perturbation operatbr is the fluctuation potential:
and the coupled cluster energy is obtained by projecting Eq. H=F+U, (12)
(7) against(HF|, ¢ "

E— (HEH exp(T)[HP). @® F=% (Mgt Vpg)ajag=3 e,atay, (13)
The CC amplitudes are determined by projecting EA).
onto the excitation manifoldy;|, U= Gprgstpaiasa: — 2 Vpeaiag- (14)

pars pq

(wilexp(—T)H exp(T)[HF) =0, © Here thee, are the orbital energies aidthe Fock potential.
where The CC Lagrangian now reads as

(il =(HF|7], . (10 L(t,t )=(HF|exp(—T)F exp(T)|HF)+ (HF|U1|HF)
With no truncation in the cluster operator, E¢8) and (9) +(tfexp(—T)F exp(T)|HF)+(t[U|HF),

give the full configuration interactiofFCl) solution. For

truncated manifolds, the Schifimger equation is solved in ) )
the projected space corresponding to the considered excity1ere we have introduced the notation
tion level. For example, in the CC singles and doubles U;=exp—T)U exp(T), (16)
(CCSD model, the wave function containg; and T, and

the amplitudes are determined by projecting against the (t_|=zt_<,u|
singles and doubles space. The CCSDT model contains the w e

(15

17
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assuming real parameters. We note that the commutators bBABLE I. The 2n+1 rule for the amplitudes and thenz2 rules for the

tweenF and 7, are particularly simple

[F.7.)=¢€,7,. (18
Here ¢, is a linear combination of orbital energies, for ex-
ample

[F,Tﬁb]Z(ea—i-eb—ei—ej)rié}b. (19

Therefore, we obtain

[F.TI=2 €ut,r,, (20)
o

and all higher commutators vanish:

[[F,TL,TI=[[lF,T],T)T]=---=0. (21
We may thus write the transformed unperturbed Hamiltonia
in the form

exp(—T)F expT)=F+ X, €,t,7,, (22)

y23

and obtain the followindtransitior) expectation values:
(HFlexp(—T)F exp(T)|HF)=(HF|F|HF)=E,y, (23

{t |exp(—T)F expT)|HF) =2 €,t,(t [7,|HF)
y73
=ZV €ututu (vl u)

= €ut,t,. (24)
o

Inserting Eqs(23) and (24) in the Lagrangian, Eq15), we
obtain the following expression:

L(t,t )=Eo+ X €,t,t,+(HFU[HF)+{t [U{|HF).
y73
(25)

We shall use this expression for the Lagrangian in our per-

turbation analysis of the coupled-cluster energy.

2. The coupled-cluster variational conditions

Since the amplitudes and multipliers are variational in

Langrange multipliers.

gO E® E®@ E® E@ E®
o 0 0 1 1 2 2
t0 0 0 0 1 1 2

We now obtain the following expressions for the differenti-
ated Lagrangian:

LMIGMIM+<ILL|UT|HF> (29
L= €,t,+(HFU|u)+{t [[Ur,7,]|HF). (30)

Except for the last term in Eq30), the variational condi-
tions for the amplitudes and the associated multipliers are

Ndentical.

3. Perturbation expansion of the coupled-cluster
energy

We wish to determine an expansion of the coupled clus-
ter energy,

E=EQO+gV4+E@D 4... (31

by expanding the Lagrangian, EQ5), in powers of the
perturbation. In addition to the linear and explicit depen-
dence orlJ, the Lagrangian, Eq25), depends implicitly and
nonlinearly on the fluctuation potential through the ampli-
tudes and the associated multipliers:

t=tO4+tD4t@4... (32)
T=t O4t Dyt @4, (33

The perturbation dependence of the amplitudes and their
multipliers is obtained by expanding the variational condi-
tions, Eqs.(26) and(27), in orders inU,

L =L@ LD D4 @39
L,=LO+L O+ @ (39)

An order-by-order solution of the so-called response equa-
tions,

O M @=...=
L) =Ly'=L)=---=0, (36)
O D= @=...=
LY =LP=L?=-..=0, (37

the Lagrangian, they can be obtained from the variationayields the perturbed amplitudes and muiltipliers, E(&2)

conditions
JL
LM:::Q (26)
at,
-t 2
'U,_E_ il ( 7)

which hold for all perturbational strengths. Before evaluating

these derivatives, we note that

M1y 28
E_[ TiT,u,]' ( )

and (33). We are interested in the energy equati@d) to

fifth order. According to the 2+1 rule for the amplitudes
and the 2+2 rule for the multipliers, we must then deter-
mine the responses of the amplitudes and the multipliers to
second order. Ther2+1 and +2 rules are illustrated in
Table I. For a proof of the 2+2 rule for the Lagrange
multipliers, see Ref. 13.

4. Coupled-cluster response equations

To calculate the energy to fifth order, we must solve the
response equation£36) and (37) to second order. The
zeroth-order equations become
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L{?'=0=¢,t\"=0, (39) et ==t WUl +(t V|7, UHF), (49
LO=0=¢,t =0, (39  Where
wh|9h means that the zeroth-order amplitudes and multipliers |t<1)>=T(1)|HF>= 2 tf)|M>- (50)
vanish: “
tiLO):t_LO):O- (40) Further simplifications are possible by invoking the resolu-

. o ) tion of identity. In Eq.(48) we thus write
This fact will simplify higher-order expressions greatly. The

first-order response equations are given by (| TOUIHF) = (u| TV [HF)(HF|U|HF)
(1) (1) =
L =0=¢,t M+ (HFU|u)=0. (42

_(D)
Since these equations are the complex conjugates of each ~ L (HF{U[HF). (52)
other and since real wave functions are assumed, we comNote that only the Hartree—Fock state gives a nonvanishing
clude that the first-order amplitudes and multipliers are idencontribution in the resolution of identity. The Brillouin con-
tical: dition eliminates all terms in the resolution of identity except
T 43 the H_artree_—Fock state and the doubles, and dpubles do not
A contribute since théu| in Eq. (48) represent no higher than
Furthermore, since triple excitations. We may also simplify EG9) since for all
excitationsr, we obtain

(1|U[HF)=(u|H|HF) (44) L L
. L g (t W7, UHF)=(t |7, [HF)(HFU|HF)
and since the Brillouin conditions holds for the Hartree—
Fock state, we conclude that first-order amplitudes and mul- =t_(M1)<HF|U|HF>. (52

tipliers involve double excitations only. : . .
: ; The second-order response equations may now be written in
According to the 2+1 rule, the first-order responses the form

determine the energy to third order. To calculate the fourth

and fifth order energies, we also need the second-order re- ¢t (/= —(p|UJtDY, (53
sponses. We therefore collect terms to second order in the —2 o —
variational conditions and obtain et =~ (tP[Ulw), (54)
L =0=€,t2+(u|[U, TV]HF) =0, (45 ~ where
L@ =0= e, @+ (HF[U, V]| ) U=U—(HFU|HF). (55
Iz “ J
—1) These equations are the complex conjugate of each other
+(t Y[V, 7,][HF) =0, (46) sincet (N=t{1). Therefore, the second-order single, double,
where we use the notation and triple amplitudes and multipliers are identical to each
other. For quadruples, the situation is quite different since
T(n):E N (47) the second-order quadruple amplitudes are zero while the
M Mot N .
M second-order multipliers are nonzero and are obtained from

Eq. (54). We point out that it is the form of the second-order

i D7 -
XVT[UH;?ESM;’::a;tinsl'znci%)’zar]] irllsvof\llerﬁgkhithrr]ee? tr?;f:f}tcire’ equations in Eq(45) and (46) in terms of commutators be-
ML, 9. 9 P tweenU and the excitation operator that is needed to have

excitations. Therefore, the second-order amplitudes contain ; . .
; X oo each term in the energy expansion be connected. When
single, double, and triple excitations only. The second-order . . .
. . : . : introduced in Eqs(53)—(55), disconnected energy terms will
multipliers, in contrast, involve single, double, triple, and

guadruple excitations. To see this, we note that in #6) occur that are cancelled out when Eq45) and (46) are

the second term vanishes for all excitations but the last ternlﬁjsed'

gives nonvanishing contributions for singles, doubles, triples,
and quadruples. Quintuple and higher excitatiopnmake no
contribution in Eq.(46) since[U,r#:HHF) in such cases cor- _ _ _ _
responds to excitations h|gher than doub'es_ HaV|ng derived the equatlonS that determine the CC am-
We now show that Eq(45) and Eq.(46) are identical for ~ Plitudes and multipliers to second order, we turn to the en-
the sing'e, doub'e, and tr|p|e excitation ComponentS, differ_ergies. The contributions from the amp|itudeS and multipliers
ing only in the quadruple excitation component. Expanding© the energiegin terms of orders of perturbatipmre listed
the commutators, we may write the second-order respondg Table I. Since the excitation levels contained in the first-

5. Perturbed energies

equations in the form and second-order amplitudes and multipliers are now known,
2 " " we may list the contributions from the amplitudes and mul-
€ty =—(u|U[tH) +(u|THUIHF), (48)  tipliers to the MBPT energies; see Table Il. We note that
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TABLE II. Contributions from connected amplitudes and multipliers to

g (3)— (D)5 (2) (2)+ (1)
MBPT energies. E —; f,utﬂ t# +§ eﬂtlu t p
Energy E® E®@ E® E® E®
Excitations HF D D sDT SDTQ +(HF|[U, T?]|HF)

+ 3 (HF[[U, TV, TOTHF)
+{t WI[U, TN HF) +(t @|U|HF) (62

singles and connected triples make their first appearance [ expression may be simplified considerably. First we

the_ fourth-order e_nergy, and that connected quadruples malffleote that the fourth term vanishes since the double commu-
a fifth-order contribution.

To determine the coupled-cluster energies to a given Ort_ator is a rank four operator containing double or higher ex-

. ) citations. Next, according to then2-1 and 2 +2 rules,E®
der, we first expand the Lagrangian equaii2b) to the same . : -

) 2 ) . does not involve second-order amplitudes and mutlipliers.
order. Since the Lagrangian is variational, the resulting ex- ' . .

. S : L Indeed, we find that Eq62) may be written in the form
pansion may be simplified considerably by taking into ac-
count the variational conditions to first order E¢$1) and — —
3)— (15 (2) (D4(2) (1) (1)

(42) and to second order Eq&5) and (46). The zero- and E _g Lt +§ Lyt +(t VIV, TH]HF),
first-order energies are particularly simple, however, and (63

straightforward expansion of the Lagrangian ields
g P grangian EZB) y which reduces to the expression

EO=E,= «, (56) E®=({t W|[U, TV]|HF), (64)
' by invoking the first-order variational conditions, Eq41)
EW=(HF|U[HF), (57) and(42), in agreement with the i2+1 rule. Equation(64)

may be rewritten by expanding the commutator and intro-
which means that the Hartree—Fock energy is recovered tducing the resolution of identity, yielding
first-order in perturbation theory: —
P Y E®={t Wut®). (65)

Equation(65) is the form that is obtained in conventional

In accordance with therf+1 and h+2 rules. there are no Rayleigh Schrdinger perturbation theory. It contains discon-

first-order contributions from the amplitudes and multipliers"€cted energy contributions in contrast to Eaf) where the
to the first-order energy. commutator ensures that all energy contributions are con-

Epe=E@+EW, (58

We now consider the second-order energy. Expansion diected-

the Lagrangian equatiof5) yields the following expres- As indica'ted 'in Table II,_the fourth-order energy should
sion: involve contributions from singles, doubles, and triples. To

derive the detailed form of this energy, we expand the La-
grangian to fourth order:

ED=Y e+  (CT21 ¢t
" “ M

E@=2 Ut +(HF[U, TV]HF)
"

+{t W|U|HF). (59)
According to the 2+2 rule, the first-order multipliers make +(HF|[U, T®][HF) + (HF|[[U, T?], TV] HF)
no contribution to _th(_a second-order energy. We should th(_ere— 4 %(HF|[[[U ’T(l)],T(l)],T(l)]|HF>
fore be able to eliminate from the energy all terms that in- o
volve t . Indeed, we note that E459) may be written in +{t W|[U, TP HF)
the form —
+ 3t P|[[U, TV, TO][HF)
E?= LWt W+ (HFU[tD), (60) +{t P|U, TV HF) +(t ®|U[HF). (66)
o

The fifth and sixth terms in this expression vanish since the
and since the conditiohﬁ})zo holds[see Eq.(41)], we ar- commutators involve too high excitation levels. The energy

rive at the simple expression may therefore be written in the simpler form:
E@ =(HFU|tD), 61 a_ (15773) (27572) (37 (1)
(HAU[™) (61 EO=3 LI+ 3 LR+ L]
in agreement with the2+1 and Z+2 rules. The second- o
order energy thus depends on the connected doubles only. +(t W|[U, T |HF)
We now turn to the third-order energy. Collecting all 17771 (1)1 (1)
terms to third order in the Lagrangian equati@®), we ob- +5(t YU, TP, TY]HF), (67)
tain which yields(invoking the variational conditions
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E@={t D|[U, TR+ {t D|[[U, TV, TOHF), ergy contributions from connected triples to fourth and fifth
(68)  orders in the perturbation. The connected triples give one

. . . fourth-order contribution
in accordance with the r2+1 and h+2 rules. Sincet?

does not have quadruple contributions, the fourth-order en-  E{"=(t V|[U, T ]|HF), (73
ergy does not havg contributions from connected quad'ruplea.lhere’ for exampleT? represents the part af2 containing
The commutators in Eq68) ensure that all energy contribu- _ . , I .
) : triples. In fifth order, several contributions arise. From a con-
tions are connected. E¢68) may be rewritten to the form . . o . .
. ) . ; . o sideration of excitation levels, the first two terms in EfR)

that is obtained in conventional Rayleigh Sdirger pertur- . Lo .

. . : are seen not to contain contributions from connected triples.
bation theory and that contains disconnected energy contr

butions. To do this, we expand the ommutators, yielding The remaining tW(.) terms give rise .to the following fifth-
order connected triples contributions:

@ — /1 W1+ — L4 (DD _ 1 (D[1(DVER)
EW=(t P|U]t sty — (¢ WHYEE) (69 ES =t 2|[U, TR]HF) +{t P|[U, TR]|HF)
where we use the notation

|t — DDy = (TR — LTOTD)|HF). (70)

+(t DU, TPIHR) +(t P|[U, T HF)

+(t DIV, TS IHF)

The fourth-order energy in Eq69) arises from interactions 1 T2) 1)
1 (1)

of connected doubles with singles, connected doubles, con- +5(t 5[V, T3] T3 1 HF). (74)

nected triples, disconnected quadruples, and also thgonnected triples thus give a fourth-order contribution when

Hartree—Fock state. There are no cqntrlbutlpns from conprojected against the doubles space and fifth-order contribu-

nected quadruples. Also, there are no interactions that do n@ibns when projected against the singles, doubles, triples, and

involve connected doubles. quadruples space.
Proceeding finally to fifth order, we obtain the expres-  TheE{*) term in Eq.(73) and the first two terms iE{>
sion of Eq. (74) are the only fourth- and fifth-order contributions
L that result from the projection of connected triples onto the
5)_ 1 4 2 3 3) (2 i i
EO= LWt W+> LEt 3+ > (L@ singles and doubles space. For singles and doubles we may
K © H write
+ 2 ti:l)l-_ful)’l' %(HF| [[U ,T(Z)],T(2)]| HF) <tCCSE1 = <t_(12)| + <t_gl)| +<t_(22)| + O(t(ls) ,t(23)). (75
a We may therefore account for the effects of the fourth- and
+<ﬁl>|[[u,T(2>],T<l>]|H|:> fifth-order triples projected against singles and doubles by
. calculating the following correction to the CCSD enefgy:
H (2)|[U’T(2)]|HF> ccsoT) ccs 2)
Econ 1 =(t°q[U, TP HF). (76)

+ K@U, TV TOIHR, (79) ny |
The terms differing from the true MBPT expansion because
and by invoking the first and second-order variational condiof the use of(t“S rather than(t ¥+t P+t 2| are at
tions we arrive at the expression least of sixth order and are thus of little importance relative

E®) = XHF[[U,T?], T?]HF) to the remaining fifth-order terms in E(4).

+({t M[[[U,T?], TV HF)
+{t P|[U, T?7|HF) D. The CC3 model

171 (2) (17 T Approximate coupled cluster triples models may alterna-

IO THLTHIRE), (72 tively be obtained by simplifying the cluster amplitude equa-
for the fifth-order energy, in agreement with the-21 rule.  tions of the CCSDT model and iterating these until conver-
Clearly, we have contributions from connected quadruples igence. Here we present one such approximate scheme,
the terms involving®. Using the coupled cluster parametri- referred to as the CC3 model, where approximations are
zation of the wave function, we obtain directly that all en- guided by the following requirement§l) the triples ampli-
ergy contributions are connected. tudes should be correct to the first nonvanishing order in
perturbation theory; an®) the singles amplitudes should be
treated as zeroth-order parameters because of their unique
C. The CCSD(T) model role as orbital relaxat?on parameters. The CCSDT amplitude

equations may be written as
Since the CCSD model contains singles and doubles

only, it is correct to third order in perturbation theory. To (ma|exp(=Ty =T~ Ty)H exp(T1+T2+T3)|HF)=O7,
higher orders connected triples make their appearance and (
any improvement on the CCSD model must take into ac-  (u,|exp(—T;—T,—T3)H exp(T;+ T,+ T3)|HF) =0,
count the effect of these excitations. Let us identify all en- (78)
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<,U,3|EX[X—T1—T2—T3)H eXF(T1+T2+T3)|HF>=O _ ~
(79 Qs=—2 €. (ual[U,TolHF) 7, 87
H3
Introducing the modified two-electron Hamiltonian, for the approximate triples amplitudes, we may write the
H=exp —T)H exp(Ty), (80)  CC3 cluster amplitude equations as

we may write the singles and doubles equations in the form (,u1|exp(—T2)I:| exp(T,)|HF) +{uq|[H,Q3]|HF) =0,
(8

(p1lexp(—To)H exp(T,)|HF)+ (| [H, To][HF) =0, ) )
(82) (uolexp—T)H exr(Tz)|HF)+<,u2|[H,Q3]|HF):(08_9)

(polexp(—To)H exp(To)[HF) +(uo|[H, T5]|HF) =0. _ _ _
(82 The first term in Eqs(88) and (89) represents the contribu-
tions to the singles and doubles equations that appear in

Expanding the triples equationgd), we obtain CCSD. The second term represents the nonvanishing con-

(w3l [F, T3] HF) +(ul[0, T HF) nected triples contributions. The singles and doubles equa-
) A tions in Eqgs.(88) and(89) are similar to the CCSDT singles
+ 3 (usl[[U, ToLL Tl HF) + (w3l [U, T3] | HF) and doubles equations, wheFg s replaced by the perturba-
tion correct formQ,.
+(usl[[U, T3], T2lHF) =0, (83 The CC3 model is similar in spirit to the CCSDT-n mod-
with H, andU defined as in Eq€12—(14) and le_ of Urbanet _al.6 Thus CCSDT-1b is obtained from CC3_ if
R U in Eq. (87) is replaced byJ. The CCSDT-1a model is
U=exp —T)U expT,). (84) obtained if, in addition,H in the last term of the double

. . . equations, Eq(89), is replaced byH. In the more elaborate
The computational costs of the five terms in EBB) scale as CCSDT-n model$n=2,3.4. various contributions from the

6 7 7 8 8 :
N" N', N, N°, andN", respectively. When the transformed last three terms in EQ83) are retained in the triples equa-

H in Eqs(81)— he singl . . .
opergtors andU are used in Eqsi81)~(83), the singles tions. We note that such approximations may become unbal-
amplitudes are treated as zeroth-order parameters. Also, use

of the first two terms in Eq(83) ensures that the connected anced _|f the terms to _be mclude.d are not carefully selected
. ; . according to perturbation theory:

triples are correct to second order in perturbation theory.

Thus, in the CC3 model we determine the wave function Eﬂtf):_<,LL|[U,T(2>]|HF>_%(,LL|[[U,T(1)],T(1)]|HF>.

from the singles and doubles equations E&4) and (82) (90)

together with the triples equation . o
9 P q If both terms are included, the model scales\&sand it is

(,u,3|[F,T3]|HF)+(M3|[0,T2]|HF>:0. (85)  then probably better to resort to a full CCSDT treatment,
. . . which also scales as®. Indeed, the results obtained by Ur-
This equation ensures that the triples are correct to seco net al® confirm that the CCSDT-2 and CCSDT-3 may be
orde_r and alsq treats orbital relaxation in an app_rOXimate[analanced since they perform no better than CCSDT-1b.
fas_hlon. The S'mple f(_)rm of Eq85) aIIov_vs an explicit so- The inclusion of the singles does not give similar problems
lution for the triples in terms of the singles and dOUbIeSbecause of the unique role of singles as approximate orbital

amplitudes: relaxation parameters.
ty,=— 6;31<,M3|[U T,]|HF). (86) The CCSD) energy can be generated by carrying out a
CCSD calculation and multiplying the correction term of the
Introducing the notation first CCSDT-1a iteration by the CCSD singles and doubles

TABLE lIl. Total energies(a.u) in coupled cluster calculations and FCI calculations g@+t various OH
bond length using the cc-pVDZ basM/ ¢ is the weight of the Hartree—Fock configuration in the FCI wave

function.

E. 1.5R. 2R, 2.5R, 3R,
Rue —76.024 039 —75.802 397 —75.587 711 —75.441 244 —75.344 392
Wye 0.941 0.849 0.589 0.337 0.230
Eccsp —76.238 116 —76.062 305 —75.929 633 —75.897 684 —75.901 097
Eccsom —76.241 202 —76.070 717 —75.955 485 —75.960 555 —76.002 458
Eccp) —76.241 202 —76.070 697 —75.954 928 —75.961 190 —76.003 528
Eccsor1a —76.241 273 —76.070 747 —75.953 780 —75.943 580 —75.955 745
Eccsor-1b —76.241 273 —76.070 759 —75.953 401 —75.945 461 —75.958 153
Eccs —76.241 274 —76.070 726 —75.952 809 —75.943 671
Eccsor —76.241 367 —76.070 925 —75.953 070 —75.942 743 —75.952 072
Erc —76.241 860 —76.072 348 —75.951 665 —75.917 991 —75.911 9461)
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TABLE IV. Total energiesa.u) for C, at different internuclear distances using cc-pVDZ basis.

R (a.u) CCsD CCsDT) CC(3) CCSDT-1a CC3 CCSDT
2.0 —75.608 608 —75.635114 —75.635473 —75.634497 —75.634003 —75.633445
3.0 —75.626299 —75.658899 —75.662029 —75.661521 —75.662270 —75.657 850
4.0 —75.501214 —75549216 —75.552255 -75543871 —75.544332 -75.575108
5.0 —75.482059 —75.573037 —75.574948 —75.537687 —75.537277 —75.546522
55 —75.482395 —75592087 —75.593459 —-75.540558 —75.540179 —75.548803

amplitudes. In a similar spirit, we introduce the @GC . abe

model, where the total energy is obtained from the CCSD  T3=% a%:ck tik EaiEpjEck. (95

energy by adding to it the term generated by multiplying the

correction term from the first CC3 iteration by the CCSD where the amplitudes are symmetric with respect to the per-

amplitudes. Energetically, G8) does not differ much from mutations @i)« (bj)« (ck). Assuming thatu,| refers to a

CccsOT). biorthonormal basis, the triples amplitudes can be deter-
mined from Eq.(84) as

ngc
E. Closed shell CC3 abc__ ijk
tijk - Eﬁ, (96)
In the CC3 model, Eq988) and (89) are solved using ijk

the triples amplitudes generated according to @&d). The  \here
total energy is obtained from E@8) using the converged

singles and doubles amplitudes. We now consider in greater eﬁE°= €ateptec—€— €€, (97)
detail a closed-shell system. Since the nonlinear amplitude

equations are solved iteratively, the major computational abc_ pabc ad, ] ab, 1

task is to construct the vector functions in E€&8) and(89) T =Pl (zd“ iy (ck| bd)_Z i (ck]1] )]' (98)
for a set of trial amplitudes. The right-hand sides in £§8)

and (89) appear in standard CCSD theory for closed-shelln Ed. (99) P° is an operator that permutes the indices
systems and are given in Ref. 18 using the notation of this

. o ) : abc acbh bac cab bca
paper. The singles and doubles projection manifold is param- f}EC: T R TN R TV R BT R
etrized in terms of a biorthonormal basis: J J J J J
a +[cP2 99
<i =(HF|Eja, (91) kji |- (99
a b 1 Using the triples amplitudes, E¢R6), the contributions that
<. .:§<HF|(ZEjbEia+ EibEja). (92 are added to the standard CCSD amplitude equafises
r Egs.(88) and(89)] become
The one- and two-electron cluster operators are
(FIIH T HR) =22 (t83°~ {7 L jokc, (100
1= (e, C I
al
(i°I[H, T3] |HF)
To=3 > tia}bEaiEbja (94
> =2P-a-b[2 (R tOFct 2 (2050t~ the)
where tf}b is symmetric with respect to permutations e ! ¢tk v
(ai)«(bj). The three-electron cluster operator is param- . .
etrized as X(aclkd)— X (2tha*—tpac—thao(ki|lc)}, (10D
ckl
where
TABLE V. Error relative to CCSDT in mH for &
ap_ (@b ba
R(au) CCSD CCSDT) CC@B  CCSDT-la  CC3 Pi=\ij )T ji ) (102
2.0 —24.837 1.669 2.028 1.052 0.558
3.0 —31.551 1.049 4.179 3.671 4.420 A ~ ~
4.0 —-73.894 —25892 —22.853 —31.237 —30.776 qu:hqu“; Lkkpas (103
5.0 —64.462 —26.515 —28.426 —8.835 —9.245
55 —66.408 —43.284 —44.656 —8.245 —8.624 - - -
Lpars=2(pq|rs)—(ps|rq), (104
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TABLE VI. Total energiesa.u) for CO at different internuclear distances using cc-pVDZ basis.

R (a.u) CCSD CCsDrT) CC(3) CCSDT-1a CC3 CCSDT
1.6 —112.641 639 —112.647 129 —112.647 249 —112.647 327 —112.647390 —112.647390
1.8 —112.924 689 —112.931696 —112.931935 —112.932086 —112.932015 —112.932015
2.0 —113.030 265 —113.039292 —113.039 782 —113.040 113 —113.040685 —113.039685
2.5 —112.995571 —113.012957 —113.015485 —113.018 147 —113.018608 —113.013608
3.0 —112.861 713 —112.894160 —112.904 689 —112.923 328 —112.920757 —112.894757

and (pq|rs) denotes integrals for the modified Hamiltonian. CCSDT results. For example, at equilibrium the largest de-

We refer to Ref. 18 for details about the integrals of theViation between the approximate triples and full triples result
modified Hamiltonian. is 0.16 mH and occurs for G8) and CCSI)T). At larger

internuclear distances the perturbation models show some
degradence, while the iterative approaches approximate the
full CCSDT result quite well. For example, aRg, where

The performance of the CC3 and (3t models has been the weight of the Hartree—Fock configuration is 0.589, the
tested by carrying out calculations on,® C,, CO, and CC3 energy is 0.26 mH above the full CCSDT energy, while
C,H,. For all molecules except ethylene we stretch the bondghe CCSIIT) energy is 2.41 mH below CCSDT. At internu-
to investigate how well the models describe the increasinglear distances up toR, CCSDT is quite close to FCI,
size of the static correlation contribution. For comparison weyhereas for larger OH distances significant degradence oc-
give results of the approximate triples models CCBD  curs. Significantly, even for distances where full CCSDT be-
CCSDT-1a, CCSDT-1b and full CCSDT. For water we alsOhaves poorly compared to FCI do the iterative models ap-
quote the full configuration interactiofFCl) results® The proximate well CCSDT for example at B5 CC3 is 0.93
CCSDT calculations were carried out using tRe€ESll  mH pelow CCSDT, while CCSDT-1a and CCSDT-1b are
program’® CCSD(T), CCSDT-1a, and CCSDT-1b results g4 and 2.72 mH below, respectively. In water CC3 thus
have been checked againstesil results. approximates very well CCSDT, even when the static corre-

~ The water calculations are carried out@3, SYmmetry, |ation is so large that the performance of CCSDT deteriorates
using geometries from previous FCI calculations. The HOHcompared to ECI

bond angle is fixed as 110.6° and the OH distances are cho- In Table IV total energies are given for,@ CCSD

sen asR., 1R,, 2R,, 2.RK,, and 3R, with Re  ccgpT) CO3), CCSDT-1a, CC3, and CCSDT. The inter-
=1.84345 a.u. The Cartesian coordinates of these geometries |-« ‘distance varies between 2.0 and 5.5 a.u. The cc-
are given in Ref. 19. We have used the spherical CC'pVDZpVDZ basis set is used. In Table V, we list the errors in
basis of Dunning! and all ten electrons are correlated. FCI, CCSD and in the approximate triples models relative to
CCSD, CCSDT, and CCIM) rgsults have.prewously bgen CCSDT. Close to equilibrium all triples methods reduce the
reported for the same geometries and basis set. The weight CSD error by about 90%, with the error now being of op-

the Hartree—Fock configuration in the FCI wave function _ . . . .
(W,y0) and the FCI natural orbital occupation numbers Werqposne sign. At 3.0 a.u., CC3 is the triples method with the

also reported in Ref. 19. In Table Il we list the results of the Sa ;gzsltj e:{fg ;:?)trlgeirfcc:)recagsZ(imnr;‘]ilzgnltr: ifhgegelﬁgrg'%f_ the
approximate triples calculations CC3, @ CCSDT-1a, o g y

and CCSDT-1b together with the above-mentioned results.g'glgg_lr_n ca;:thodlsl are ab(:qt half the elr ror ?c %%SSD relatl(\j/e 0
The approximate triples results can be divided in two - For all geometries G8) is close to or) an

groups, the iterative results CC3, CCSDT-1a, and CCSI:).l.g:CSDT—la is close to CC3. The perturbative approaches dif-

1b, and the perturbative results BT and CCSDT). Close fer signifi(_:antly from the iterative approaches _at some dis-
to the equilibrium geometry, the Hartree—Fock configuration2Ces- Slncef erLorsh of the samed Siz€ occur in thz |Tterval
dominates and very small differences are observed betwee“ho_s'5 a.u. for ot |tera}t|ve an not-iterative models, no
the iterative and perturbative methods. Both the iterative angystematic trends can be identified.

the perturbation-based models approximate very well the full  For CO total energies have been calculated in the inter-
val 1.6—3.0 a.u. using the cc-pVDZ basis set. The energies of

the different approaches are given in Table VI, and in Table
TABLE VII. Error relative to CCSDT in mH for CO. VIl the errors relative to CCSDT are listed. CCAD is
within 0.7 mH of CCSDT at all geometries, while the other
methods show a significant degradence with increasing inter-

IIl. SAMPLE CALCULATIONS

R (a.u) CCSD CCsDm) CC(3) CCSDT-1a CC3

1.6 -5751  -0.261  —0.141 —0.063 -0.052  nuclear distance. Note that the behavior of (8Qs quite
;'g _;'igg _gg;g _%00207 _0601;8 060220 different from CCSIDT). The iterative models are within 0.1
2.5 18037  —0.651 1877 4539 4410 MHOf CCSDT forR=1.6-1.8 a.u.

3.0 33044 —0597 0.932 28571 26.160 The results for ethylene at equilibrium geometry using
the cc-pVDZ basis set are given in Table VIII. All approxi-
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TABLE VIII. Total energies(a.u) for C;H, using various coupled cluster yjce versa. All models are constructed by perturbational ar-

models using cc-pVDZ basis. guments and in this sense the numerical tests just confirm the
cCsD —75.349 900 limitations of perturbgtion theory. Simila_lrly, based on the_
ccsoT) —78.359 864 present study, there is no reason to believe that the special
CcCE) —78.359 871 treatment given to singles improves or degrades the accuracy
CCSDT-1a —78.360 069 of the total energy. It therefore appears that CC3 for many
cc3 —78.360 073

purposes can be viewed as a good approximation to CCSDT,
with an accuracy and a robustness with respect to static cor-
relation that is similar to that of CCSD). However, the
advantage of CC3 is that it is well suited for calculations of
mate triples methods account for more than 90% of the effedime-dependent properties in contrast to CCBD The re-

of triples. The CCSIDT) and CGQ3) results are very close sponse properties of the CC3 model is the subject of a sub-
(0.01 mH and the same holds for CC3 relative to CCSDT-sequent publication.

la. The extra singles contributions in B and CC3 thus
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