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Abstract. The subject of this paper is beam deconvolution in small angular scale CMB experiments. The beam effect is
reversed using the Jacobi iterative method, which was designed to solved systems of algebraic linear equations. The beam is a
non circular one which moves according to the observational strategy. A certain realistic level of Gaussian instrumental noise is
assumed. The method applies to small scale CMB experiments in general (cases A and B), but we have put particular attention
on P mission at 100 GHz (cases C and D). In cases B and D, where noise is present, deconvolution allows to correct
the main beam distortion effect and recover the initial angular power spectrum up to the end of the fifth acoustic peak. An
encouraging result whose importance is analyzed in detail. More work about deconvolution in the presence of other systematics
is in progress.
This paper is related to the P LFI activities.
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1. Introduction

Many experiments have been designed to measure Cosmic
Microwave Background (CMB) anisotropies at small angular
scales. Recent and new generations of experiments make use
of multi-frequency and multi-beam instruments at a focus of
a meter class telescope. Since not all the feeds can be placed
along the optical axis of the telescope, the majority of them are
necessarily off-axis and the corresponding beams show more
or less relevant optical aberrations (see e.g. Page et al. 2003,
for a recent discussion of the main beam shape in the context
of the WMAP project), according to the experiment optical de-
sign. For example, in the context of the ESA P project 1

(see e.g. Bersanelli et al. 1996; Tauber 2000), significant efforts
have been carried out to significantly reduce the main beam
distortions produced by optical aberrations (see e.g. Villa et al.
1998; Mandolesi et al. 2000a). On the other hand, even opti-
mizing the optical design, a certain level of beam asymmetry
can not be completely eliminated (see e.g. Sandri et al. 2002,
2003).

If not taken into account in the data analysis, the main
beam distortion introduces a systematic effect in the data
(Burigana et al. 1998, 2000a; Mandolesi et al. 2000ab) that af-
fects the reconstructed map quality and, in particular, the re-
covery of the angular power spectrum of the CMB anisotropy

Send offprint requests to: C. Burigana,
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1 http://astro.estec.esa.nl/Planck/

(Burigana et al. 2001; Arnau et al. 2002; Fosalba et al. 2002).
The main topic of this paper is beam deconvolution in this
type of experiments with the aim of remove the main beam
distortion effect in the recovery of the angular power spec-
trum of CMB temperature anisotropy. We wish to reverse the
weighted average performed by a non-circular rotating beam in
the presence of a significant level of uncorrelated instrumental
noise. The true angular power spectrum (C � quantities before
beam smoothing) should be recovered from the deconvolved
maps, at least, in a large enough interval (�min, �max).

A preliminary work about beam deconvolution was pre-
sented in Arnau & Sáez (2000). In that paper, two methods
for beam deconvolution were considered. One of them (here-
after method I) is based on the Fourier transform, and the other
one (method II) uses the Jacobi algorithm for solving algebraic
systems of linear equations. Applications of these methods in
very simple cases were presented. The first method was ap-
plied in the case of elliptical non-rotating beams in the pres-
ence of a very low level of Gaussian instrumental noise. The
other method was only used for a spherical beam in the total
absence of noise. More realistic situations must be considered.
This is the main goal of this paper.

The formalism of our approach to deconvolution is pre-
sented in Sect. 2.

Beam deconvolution can be only studied using simulations.
Map making requires a pixelisation, and the accuracy of the an-
gular power spectrum obtained from pixelised maps strongly
depends on experiment sensitivity and resolution and on the
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sky coverage. In the case of small angular scales (� >∼ 100),
the angular power spectrum can be well estimated using small
squared maps with edges lesser than 20◦ (Sáez et al. 1996).
In this case, a good map making algorithm and an appropri-
ate power spectrum estimator were described in Arnau et al.
(2002). In a first step (first part of Sect. 3), we work with this
type of simulations by assuming a simple elliptical main beam
shape. An observational strategy involving repeated measures
in the same pixel but without a detailed reference to a specific
experiment is adopted at this stage.

Afterwards, we apply the method to more complicated
simulations carried out by using the HEALPix2 (Hierarchical
Equal Area and IsoLatitude Pixelization of the Sphere) package
by Gòrski et al. (1999) to pixelise the maps and compute the
angular power spectrum from them. The beam size, its asym-
metry, the variance of the instrumental noise, and the beam
rotation associated to an observational strategy simulating the
P observations at 100 GHz are considered in the second
part of Sect. 3 (see also Appendix A).

The main results and conclusions are displayed in Sect. 4
and, finally, the dependence of the results on the most relevant
experimental aspects and code parameters is taken into account
in Appendix B, to discuss the feasibility and robustness of the
proposed method.

We work in the framework of an inflationary flat universe
(adiabatic fluctuations) with dark energy (cosmological con-
stant) and dark matter (cold). In this ΛCDM model, the density
parameters corresponding to baryons, dark matter, and vacuum,
are Ωb = 0.05, Ωd = 0.25 and ΩΛ = 0.7, respectively, and the
reduced Hubble constant is h = 0.65. No reionization is consid-
ered at all. All the simulations are based on the CMB angular
power spectrum corresponding to this model, which has been
computed with the CMBFAST code by Seljak & Zaldarriaga
(1996).

2. Beam smoothing and deconvolution

Let us begin with an asymmetric non-rotating beam which
smoothes a map T to give another map T s. In the continuous
formalism, we can write:

Ts(θ, φ) =
∫

B(θ − θ′, φ − φ′)T (θ′, φ′)dΩ′ , (1)

where the beam is described by function B. If the beam centre
points towards a point with spherical coordinates (θ, φ), the
weight associated to another direction (θ ′, φ′) is a function of
the form B(θ − θ′, φ − φ′).

In the absence of rotation, function B only depends on the
differences θ−θ′ and φ−φ′ and, consequently, Eq. (1) is a math-
ematical convolution. In such a case, the Fourier transform can
be used (as it was explained by Arnau & Sáez 2000) to perform
beam deconvolution. Nevertheless, if the asymmetrical beam
rotates (as a result of the observational strategy), the function
describing the beam is of the form B = B(θ − θ ′, φ − φ′, θ, φ).
Since the beam is different (distinct orientations) when its cen-
tre points towards different points in the sky, a new dependence

2 http://www.eso.org/science/healpix/

on the angles θ and φ has appeared. With a B function involving
this dependence, Eq. (1) is not a mathematical convolution and
the method I, which is based on the Fourier transform, does not
work.

In practice, non-circular beams rotate due to the observa-
tional strategy and, moreover, the effect of this rotation is not
negligible in many cases (see Arnau et al. 2002 for an estima-
tion and Burigana et al. 2001 for an application to P LFI
(Low Frequency Instrument, Mandolesi et al. 1998)). In this
situation, method I cannot be used; however, as we are going
to show along the paper, method II works.

Let us assume a certain pixelisation and an asymmetric
beam which smoothes maps of the CMB sky. We first consider
that only one observation per pixel is performed. The beam
could have either the same orientation for all the pixels or dif-
ferent orientations for distinct pixels; in both cases, the beam
smoothes the sky temperature T to give T s according to the re-
lation:

T i
s =

M∑
i=1

Bi jT
j , (2)

where M is the total number of pixels in the map. Quantity Bi j

is the beam weight corresponding to pixel j when the beam
centre points inside pixel i. Equation (2) can be seen as a sys-
tem of M linear algebraic equations, in which, the indepen-
dent terms T i

s are the observed temperatures, and the M un-
knowns are the true sky temperatures T j. The Jacobi method
can be tried in order to solve this system. The solution would
be the deconvolved map with temperatures T j. No problems
with pixel dependent beam orientations (rotation) are expected
a priori; nevertheless, rotating asymmetric beams lead to a Bi j

matrix which is more complicated than that corresponding to
a circular beam (studied in Arnau & Sáez 2000); by this rea-
son, we are going to verify that Jacobi method works for any
beam, first in the absence of noise and, then, when there is an
admissible noise level. In matrix form, Eq. (2) can be written
as follows: Ts = BT .

If we now consider that each pixel is observed N times ei-
ther with an unique beam and different orientations per pixel
or with various non-circular rotating beams (as it occurs in
projects as P where there are various beams for each
frequency), then, we can write N matrix equations (one for
each measure) of the form T (α)

s = B(α)T , where index α ranges
fro 1 to N. The average temperature assigned to pixel i is
T i

a = (1/N)
∑N
α=1 T (α)i

s and the above system of N matrix equa-
tions leads to

Ta = BaT, (3)

where matrix Ba describes the average beam, which can be cal-
culated as follows:

Bi j
a =

1
N

N∑
α=1

B(α)i j. (4)

Hence, for a given experiment involving various measurements
per pixel, the average beam (4) might be calculated at each
pixel and, then, we can try to use the Jacobi method to solve
the system of linear Eq. (3).
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We see that, in the absence of noise, method II could work
in the most general case, in which various beams move accord-
ing to the most appropriate observational strategy. For a multi-
beam experiment one should in principle simulate the effective
scanning strategy and the convolution with the sky signal for
each beam and then apply the formalism described above by
taking into account the various resolutions and shapes of the
beams. On the other hand, the power of this method is that it
works independently of the small differences between the reso-
lutions and shapes of the various beams at the same frequency
in a given experiment. Therefore, considering the data from a
single average beam, instead of the data from the whole set of
beams, but with the sensitivity per pixel obtained by consider-
ing the whole set of receivers at the given frequency in the case
in which the noise is taken into account, allows to reduce the
amount of data storage and simplify the analysis without intro-
ducing a significant loss of information about the accuracy of
the method.

Instrumental uncorrelated Gaussian noise makes beam de-
convolution more problematic; nevertheless, as we demonstrate
in this work (Sects. 3.2 and 3.4), method II works for experi-
ments with a level of noise similar to that of P, or better,
since the effect of deconvolution on the noise can be quite ac-
curately understood with Monte Carlo simulations.

3. Applying method II

In this section, the deconvolution method II is applied in vari-
ous cases using appropriate simulations. First, in cases A and B,
method II is applied to deconvolve a set of small sky patches
with regular pixelisation. To make this part of the work almost
independent of the detailed scanning strategy of the consid-
ered CMB anisotropy experiment, we adopted an observational
strategy involving multiple observations of a given pixel and
only roughly mimicking that of P. The beam shape is
assumed to be elliptical. Case A does not involve any noise.
Case B is identical to case A except for the presence of noise.
Method II is then applied to deconvolve larger sky patches but
using the HEALPix package for the sky pixelization and the
computation of the angular power spectrum from coadded and
deconvolved maps, simulating the P observational strat-
egy, and assuming one of the beam shapes simulated in the past
year for LFI, both in the absence of noise (case C) and in the
presence of noise (case D).

3.1. Case A: Noiseless, small patches

An elliptical beam of the form

B(θ − θ′, φ − φ′) = WN e

[
− (θ−θ′ )2

2σ2
θ

− (φ−φ′ )2
2σ2
φ

]
(5)

is assumed, as in Burigana et al. (1998) and Arnau et al. (2002).
It is also assumed that quantities σθ and σφ obey the re-

lations σθσφ = σ2 and σθ/σφ = 1.3, where σ = 4.54′
(θFWHM � 10.68′). With this choice, the elliptical beam (5) mim-
ics the 100 GHz P beams for some locations of the de-
tectors over the focal plane.

We simulate squared 14.6◦ × 14.6◦ patches, with 256 (128)
nodes per edge; thus, our pixel size is ∆ = 3.43 ′ (∆ = 6.86′).
These sizes are allowed by HEALPix and, consequently, this
choice will facilitate some comparisons. We use seventy five
of these regions covering about the forty per cent of the sky.
With this coverage and ∆ = 3.43′ (∆ = 6.86′), the angular
power spectrum can be estimated (from simulated maps) with
good accuracy from �min = 100 to �max = 10 800/∆ � 3100
(�max � 1550). See Sáez & Arnau (1997) for details about par-
tial coverage. In the theoretical model under consideration (see
Sect. 1), the CMB temperature is a Gaussian homogeneous and
isotropic statistical two dimensional field. In such a case, a cer-
tain method proposed by Bond & Efstathiou (1987) can be used
to make the 14.6◦ ×14.6◦ maps used in this paper. This method
is based on the following formula:

δT
T
=

N∑
s1,s2=−N

D(�1, �2)e−i(θ�1+φ�2), (6)

where �1 = 2πs1/Λ, �2 = 2πs2/Λ, and Λ stands for the an-
gular size of the square to be mapped. This equation defines
a Fourier transform from the position space (θ, φ) to the mo-
mentum space (�1, �2). The Gaussian quantities D(�1, �2) have
zero mean, and their variance is proportional to C �, where
� = (�2

1 + �
2
2)1/2. Since δT/T is real, the relation D(−�1,−�2) =

D∗(�1, �2) must be satisfied. From given C� coefficients, the
above D(�1, �2) quantities can be easily calculated and, then,
according to Eq. (6), a Fourier transform leads to the map. Sáez
et al. (1996) used this map making algorithm to get very good
simulations of 20◦ × 20◦ squared regions.

In the case of small squared maps, the above map mak-
ing method suggests the power spectrum estimator used in
Sects. 3.1 and 3.2 and also in Arnau et al. (2002). Given one
of these maps δT/T (θ, φ), an inverse Fourier transform leads
to quantities D(�1, �2) and, then, the average

〈
|D(�1, �2)|2

〉
can

be calculated on the circumference �2 = �2
1 + �

2
2. Some inter-

polations are necessary to get the D(�1, �2) values at the points
located on the circumference. The resulting average is propor-
tional to C�, where � is the radius of the circumference.

For ∆ = 3.43′ (∆ = 6.86′), the beam average can be
restricted to a square with seventeen (nine) nodes per edge.
Outside this square, beam weights given by Eq. (5) appear to
be negligible in this context3.

Our elliptical beam is rotating while it covers a given
14.6◦ × 14.6◦ patch. In order to simulate beam rotation (see
Fig. 1), the squared patch is located with random orientation
(angle α) in the plane (θ , φ), and a different beam orientation
is assigned to each pixel of the patch. If Q is the centre of a cer-
tain pixel, we find a point P on the θ-axis which is the centre of
an auxiliary circumference with radius 85◦ which passes by Q
and, then, the beam orientation – in the pixel under considera-
tion – is fixed by assuming that the major axis of the elliptical

3 The signal entering at angles larger than ∼1◦ from the beam centre
direction produces the so-called straylight contamination, dominated
by the Galactic emission (see e.g. Burigana et al. 2001, 2003), a sys-
tematic effect different from the main beam distortion effect consid-
ered in this work.
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Fig. 1. Patch location and beam orientation in the cases A and B de-
fined in the text. The points C and Q are the centres of the patch and
the pixel, respectively. The angle α and the angular distance DC < 74◦

define the patch location. The point P is the centre of a circumference
with an angular radius of 85◦, which passes by the point Q. The tan-
gent to this curve at the point Q defines the beam orientation (see also
the text).

beam is tangent – at point Q – to the auxiliary circumference.
The distance from the patch centre, C, to the θ-axis is random,
but it is constrained to be smaller than 74◦ in order to ensure the
existence of an auxiliary circunference passing by the centre of
every pixel.

For each patch, the sky (T field) is simulated using ei-
ther 256 or 128 nodes per edge and, afterwards, the beam de-
scribed above is used to get the smoothed map (T s)4. The pixel
temperatures of the T s map are the independent terms of Eq. (2)
and, moreover, the terms of the B matrix can be built up when
necessary using Eq. (5) and beam orientation. Taking into ac-
count that all the terms of the B diagonal are identical to the
central weight of the beam b, the n + 1 iteration of the Jacobi
method can be written as follows:

T (n+1) = T (n) + b−1Ts − b−1BT (n), (7)

where T (n) is the previous one. At zero order, we take T (0) = Ts.
Since the map is a 256 × 256 (128 × 128) square and the

beam is another 17 × 17 (9 × 9) square (see Fig. 2), when the
beam centre points towards a pixel located outside the ninth
(fifth) row or column (counting from the nearest boundary),
there are no map temperatures to be weighted. In practice,
for CMB maps, we have verified that the following procedure
works very well: write an equation for every internal node
where the beam average is well defined and, then, solve the
resulting system, which has 240 × 240 (120 × 120) equations
and the same unknowns. The remaining temperatures (external
points) are used when required by beam smoothing, but they
are not altered along the iterative process.

Figure 3 shows the main results obtained in case A. Top
(bottom) left panel shows quantities �(� + 1)C �/2π in units

4 For simplicity, all the convolutions between the beam and the sky
map are centred about the nodes of the underlying pixelization. We
have verified that this slightly improves the deconvolution accuracy
and has to be then considered as an “ideal” best case for our code. This
working condition will be no longer employed in Sects. 3.3 and 3.4
where the P data sampling is considered.

Fig. 2. Boundary conditions for the application of the Jacobi method
in cases A and B (see the text). An equation is written at each internal
node (diamonds). No equations are associated to external points (as-
terisks). The temperatures of the external nodes keep unaltered along
the iterative process.

of µK2 before smoothing (continuous line) and after deconvo-
lution (pointed line) for ∆ = 3.43 (∆ = 6.86). Both curves are
indistinguishable except at the largest � values included in the
figure. The relative deviations between the dotted and dashed
lines of each panel are given in the corresponding right panels.
The relative error introduced by deconvolution – in the absence
of noise – is smaller than 5% (0.5%) for � ≤ 1900 (� ≤ 1480)
in the case ∆ = 3.43 (∆ = 6.86); the deviations grow beyond
the sixth (fifth) acoustic peak.

3.2. Case B: Noisy, small patches

In this case, beam, rotation, coverage and pixelizations are
identical to those of case A; however, there is instrumental un-
correlated Gaussian noise with σN = 9 µK (σN = 4.5 µK), in
terms of antenna temperature, for ∆ = 3.43 (∆ = 6.86), just
the noise expected by combining all the beams of P at
100 GHz. A joint treatment of the impact of main beam dis-
tortions and of correlated 1/ f α type noise (see e.g. Seiffert
et al. 2002) and other kinds of instrumental systematics (see
e.g. Mennella et al. 2002) is out of the scope of this paper.
On the other hand, this does not represents a crucial limita-
tion, since blind destriping algorithms can strongly reduce the
impact of these effects (see e.g. Delabrouille 1998; Maino et al.
1999; Mennella et al. 2002) also in the presence of optical dis-
tortions (Burigana et al. 2001) and, possibly, of non negligible
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Fig. 3. Top left panel displays quantities �(� + 1)C�/2π, in units of µK2, extracted from simulated maps with a pixel size ∆ = 3.43. The solid
(dotted) line has been obtained from unconvolved (deconvolved) maps. Top right panel shows the relative deviations between the spectra of the
top left panel. Bottom panels are the same as top ones, but for ∆ = 6.86 (see also the text).

foreground fluctuations (Maino et al. 2002). The system to be
solved has the form:

T i
s =

M∑
i=1

Bi jT
j + Ni , (8)

where Ni is the noise at pixel i. Using matrices, this equation
can be written as follows:

Ts = B
(
T + B−1N

)
. (9)

This last equation is formally identical to the matrix form of
Eq. (2) and it can be solved in the same way – using Jacobi
method – to find the map T+B−1N. After applying this method,
some numerical error E is expected and, consequently, the nu-
merical solution of system (9) is of the form

T ∗ = T + B−1N + E. (10)

In general, T ∗ is different from T (sky temperature before
smoothing); hence, the angular power spectrum extracted from

the map T ∗ is different from that of the unconvolved sky, which
can be extracted from the map T . Results are shown in Fig. 4,
which has the same structure as Fig. 3. We see that the spectra
before smoothing and after deconvolution (which are obtained
from maps T and T ∗, respectively) separate at middle � values.
In the right panels, we can verify that the deviation produced by
deconvolution – in the presence of the assumed level of noise –
is smaller than five per cent for � ≤ 1100 (� ≤ 950) in the case
∆ = 3.43 (∆ = 6.86). The relative deviations rapidly increases
for greater � values. From the comparison of Figs. 3 and 4 it fol-
lows that the presence of noise with σN = 9 µK (σN = 4.5 µK)
has important consequences for beam deconvolution.

Fortunately, the angular power spectrum of the map N ∗ =
B−1N can be estimated and subtracted from that of the T ∗ map.
In order to do that, we first solve the matrix equation:

N′ = BN∗. (11)
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Fig. 4. The same as in Fig. 3 but in the presence of a level of noise σN = 9 µK for the pixel size ∆ = 3.43 (top panels) and σN = 4.5 µK for
∆ = 6.86 (bottom panels). No correction for noise effects is performed (see also the text).

This equation can be also solved using the Jacobi method.
The independent terms are the temperatures N ′ corresponding
to a new noise realization different from N. We can now ex-
tract the C� quantities from the map N ∗. New numerical errors
should appear when we use the Jacobi method in the presence
of noise. On the other hand, we can try a Monte Carlo approach
to evaluate the deconvolution effect on the noise. We can take
various N ′ noise realizations to get an average spectrum of the
corresponding N maps; in this way, the effect of the noise vari-
ance in the estimate of the angular power spectrum of N ∗ is
strongly reduced (forty noise realizations suffice). When we
subtract this spectrum from that of T ∗, namely, when we cor-
rect the T ∗ spectrum taking into account noise effects, results
are much better than those showed in Fig. 45. These new results

5 We observe that an analogous approach can be pursued also in the
presence of correlated noise, provided that the noise properties can be
known from laboratory measures and/or directly reconstructed from
the data (Natoli et al. 2002). Of course, in this context, destriping (or,
possibly, map-making, see e.g. Natoli et al. 2001) should be previously
applied both to the data and to the simulated pure noise data.

are presented in Fig. 5. The structure of this figure is identical
to that of Figs. 3 and 4. As in Fig. 3, the range of � values – in
the left panels – has been appropriately chosen to include the
region where the displayed curves separate significantly. The
deconvolution is better than that of Fig. 4, where no correction
for the noise has been considered. According to the right panels
of Fig. 5, the relative deviation produced by deconvolution plus
correction is smaller than five per cent for � ≤ 1500 (� ≤ 1300)
in the case ∆ = 3.43 (∆ = 6.86). For ∆ = 3.43 (∆ = 6.86), de-
convolution works very well up to the end of the fifth (fourth)
acoustic peak. For equivalent levels of noise in different pix-
els, we see that – as expected – deconvolution has recovered
more C� coefficients for ∆ = 3.43; hence, we can say that re-
sults corresponding to ∆ = 3.43 are sensibly better than those
of ∆ = 6.86. On account of this fact and also for the sake of
briefness, pixels with ∆ = 6.86 are not considered in cases C
and D below.
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Fig. 5. The same as in Fig. 4, but with correction for noise effects on the angular power spectrum (see also the text).

3.3. Case C: Application to PLANCK in the absence
of noise

The selected orbit for P is a Lissajous orbit around
the Lagrangian point L2 of the Sun-Earth system (see e.g.
Bersanelli et al. 1996). The spacecraft spins at 1 r.p.m. and
the field of view of the two instruments – LFI and HFI (High
Frequency Instrument, Puget et al. 1998) – is about 10 ◦ × 10◦
centered at the telescope optical axis (the so-called telescope
line of sight, LOS) at a given angle α from the spin-axis direc-
tion, given by a unit vector, s, chosen to be pointed in the oppo-
site direction with respect to the Sun. In this work we consider
values of α ∼ 85◦, as adopted for the baseline scanning strat-
egy. The spin axis will be kept parallel to the Sun–spacecraft
direction and repointed by �2.5 ′ every �1 hour (baseline scan-
ning strategy). Hence Pwill trace large circles in the sky
and we assume here, for simplicity, 60 exact repetitions of the
set of the pointing directions of each scan circle. A precession
of the spin-axis with a period, P, of �6 months at a given angle
β ∼ 10◦ about an axis, f , parallel to the Sun–spacecraft direc-
tion (and outward the Sun) and shifted of �2.5 ′ every �1 hour,

may be included in the scanning strategy, possibly with a mod-
ulation of the speed of the precession in order to optimize data
transmission (Bernard et al. 2002). The quality of our decon-
volution code is of course almost independent of the details
of these proposed scanning strategies, and we assume here the
baseline scanning strategy for sake of simplicity.

The code implemented for simulating P observa-
tions for a wide set of scanning strategies is described in de-
tail in Burigana et al. (1997, 1998) and in Maino et al. (1999).
In this study we do not include the effects introduced by the
P orbit, to be currently optimized, by simply assuming
P located in L2, because they are fully negligible in this
context.

We compute the convolutions between the antenna pattern
response and the sky signal as described in Burigana et al.
(2001) by working at ∼3.43 ′ resolution and by considering
spin-axis shifts of ∼2.5′ every hour and 7200 samplings per
scan circle. We simulate 11 000 hours of observations (about
15 months) necessary to complete two sky surveys with all the
P beams.
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With respect to the reference frames described in Burigana
et al. (2001), following the recent developments in optimizing
the polarization properties of LFI main beams (see e.g. Sandri
et al. 2003), the conversion between the standard Cartesian tele-
scope frame x, y, z and the beam frame xbf , ybf, zbf actually re-
quires a further angle ψB other than the standard polar coordi-
nates θB and φB defining the colatitude and the longitude of the
main beam centre direction in the telescope frame. Appendix A
provides the transformation rules between the telescope frame
and the beam frame, as well as the definition of the reference
frames adopted in this work.

The orientation of these frames as the satellite moves is
implemented in the code. For each integration time, we deter-
mine the orientations in the sky of the telescope frame and of
the beam frame, thus performing a direct convolution with the
sky signal by exploiting the detailed main beam response in
each considered sky direction. The detailed main beam shape
and position on the telescope field of view adopted in this ap-
plication is that computed in the past year for the feed LFI9
(Sandri et al. 2002) which shows an effective FWHM reso-
lution of 10.68′ and deviations from the symmetry producing
a typical ellipticity ratio of 1.25. Such values of resolution and
asymmetry parameter are in the range of them that it is possible
to reach with a 1.5 m telescope like that of P by optimiz-
ing the optical design (see e.g. Sandri et al. 2003). Although our
deconvolution method is largely independent of the details of
the considered beam shape, it is interesting to exploit its relia-
bility under quite realistic conditions.

The CMB anisotropy map has been projected into the
HEALPix scheme (Gòrski et al. 1999) starting from the angular
power spectrum of the assumed ΛCDM model (see Sect. 1).

To make the application of the deconvolution code easier
and the system solution possible without large RAM require-
ment and in a reasonable computational time6 we implemented
a code that identify in the simulated time ordered data (TOD)
all and only the beam centre pointing directions in an equato-
rial patch (in ecliptic coordinates) of 1024 × 1024 pixels with
a ∼3.43′ side (nside = 1024). We keep the exact information
on the beam centre pointing direction and the beam orienta-
tion (defined for instance by an angle between the axis x bf and
the parallel in the beam centre pointing direction) as computed
by our flight simulator. All the samples of the TOD within the
same pixel are identified and restored in contiguous positions.
At this aim, we take advantage from the nested, hierarchical
ordering of the HEALPix. This is quite simple in the current
simplified simulation, but it will require the development of
efficient and versatile tools to manage the more general case
in which all the samples from the experiment multi-beam ar-
ray are considered, particularly for the ecliptic polar patches,
which pixels are observed many and many times because of
the P scanning strategy. In the context of the P
project, this effort will be pursued by taking advantage from
the development of P Data Model (see e.g. Lama et al.
2003).

6 In the current implementation, about 19 hours of computation are
required to deconvolve a single patch with 10242 pixels on an 64 bit al-
pha digital unix machine with single cpu at 533 MHz and 1 Gb RAM.

From the simulated TOD, possibly restored as described
above, we extract a map of a patch of simply coadded data and
a map of a patch deconvolved by applying method II. The latter
map can be then symmetrically smoothed with a beam FWHM
of 10.68′ by using the HEALPix tools for comparison with the
former one, obtained from the convolution with the simulated
asymmetric beam and taking into account the scanning strat-
egy. Of course, from the input map we can extract the same sky
patch.

We consider four different patches covering an equatorial
region of �28.3% of the sky (analogously to the case of small
patches, see Sect. 3.1, avoiding the boundary regions of the four
patches slightly reduces the originally considered,�33.3%, sky
coverage).

All the above maps are inverted with the anafast code
of HEALPix to extract the correponding angular power spec-
tra. The result is shown in Fig. 6. Of course, all the angular
power spectra are in strict agreement at multipoles <∼200, where
the main beam distortion effect is negligible for a beam with
a FWHM of about 10′ and a reasonable ellipticity. Note the
very good agreement between the power spectrum of the in-
put map and that derived with method II: the difference be-
comes critical only at the seventh acoustic peak (compare the
solid (black) line with the dashed (green) line). Note the power
excess at high � introduced by the beam distortions, compared
with the power spectrum derived from the deconvolved map
subsequently symmetrically smoothed (compare the dash-three
dots (fuchsia) with the dash-dots (blue)). Also, the power spec-
trum derived from coadded map when divided by the win-
dow function corresponding to the symmetric equivalent beam,
exp[−(σ�)2], significantly exceeds that of the input map at �
larger than the fourth acoustic peak (compare the dots (red)
with the solid line (black)). We find a similar disagreement even
by varying the assumed value of the symmetric beam width σ:
an improvement on a limited range of multipoles results in a
worsening on a different range of multipoles.

This demonstrates that a kind of deconvolution is necessary
to remove the main beam distortion effect at very high multi-
poles and that method II works well in the absence of noise.
The impact of instrumental noise is discussed in the next sub-
section.

3.4. Case D: Application to PLANCK in the presence
of noise

Analogously to the Case B (see Sect. 3.2) we have simulated
four patches (of 10242 pixels, as in the previous section) of in-
strumental uncorrelated Gaussian noise with σN = 9 µK (in
terms of antenna temperature) for a pixel of 3.43 ′, as appropri-
ate to the global P sensitivity at 100 GHz; for simplicity
we have assumed a uniform noise.

This realization of noise map has been added to the map of
signal and then method II has been applied to deconvolve the
map of signal plus noise, as described in Sect. 3.2. We produced
also four realizations of pure noise maps to be deconvolved in
the same way. Finally, we generated another map of noise to be
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Fig. 6. The two panels are identical except for the binning in � in the right panel and a different range for the ordinates. No noise is considered.
Angular power spectrum from the four considered patches. Solid (black) line: angular power spectrum of the input map without convolution;
dash-three dots (fuchsia): angular power spectrum of the map convolved with the simulated beam assuming the P scanning strategy;
dots (red): angular power spectrum of the map convolved with the simulated beam assuming the P scanning strategy and divided by the
symmetric beam window function; dashes (green): angular power spectrum of the deconvolved map; dash-dots (blue): angular power spectrum
of the deconvolved map subsequently convolved with a symmetric beam with the effective resolution (see also the text).

superimposed to the coadded map obtained from the convolu-
tion with the simulated beam including scanning strategy, for
comparison.

We computed the angular power spectrum of the four maps
of pure noise and of the four maps of pure noise deconvolved
with method II. Fig. 7 (left panel) compares the averages of
the four realizations of these power spectra and their relative
variance (right panel). As evident, deconvolution increases the
noise: a rough approximation of the ratio between the noise
angular power spectrum after deconvolution and before decon-
volution is given by ∼2(FWHM/∆)2exp[(σ�/2)2 + (σ�/2)6]
where, as usual, FWHM =

√
8ln2σ (=10.68′) and ∆ is the

pixel side (=3.43′). On the other hand, the relative variance of
these power spectra is almost similar.

In spite of the relatively large increase of the noise power,
we find that method II results to work quite well in removing
the effect of main beam distortions up to the end of the fifth
acoustic peak, when the average power spectrum of the decon-
volved pure noise maps is subtracted to the power spectrum
of the deconvolved noisy map (see the dashed (green) line in
Fig. 8).

In Fig. 9 we report the relative (per cent) errors intro-
duced by beam distortions in the absence of deconvolution,
in the presence of deconvolution without applying the sub-
traction of the average deconvolved noise spectrum and by

applying the deconvolution and the subtraction of average de-
convolved noise spectrum. As evident, in the last case the
power spectrum can be recovered with a good accuracy up to
high multipoles (relative errors <∼5, 10, 15, 20% respectively for
� <∼ 1250, 1470, 1500, 1650 – see the dashed (green) line in
the middle panel – to be compared with errors �10, 20, 30%
at � � 1200, 1250, 1300 – see the dotted (red) line in the mid-
dle panel – and then dramatically increasing with � in the ab-
sence of deconvolution). The right panel shows what already
found for the noiseless case (Sect. 3.3): even by varying the as-
sumed value of the symmetric beam width σ, an improvement
in the C� recovery can not be reached simultaneously on the
whole relevant range of multipoles.

The results found in this (previous) section are slightly
worse than those found in Sect. 3.2 (3.1), where the convo-
lutions were “ad hoc” centred about the pixelization nodes.
Results obtained as in Sect. 3.2 (3.1) but relaxing this working
condition have appeared to be in good agreement with those
presented in these two last subsections, with only small differ-
ences due to the distinct number of equations considered in the
two cases (see also Appendix B).

We have considered here for simplicity only equatorial
patches. On the other hand, we have verified that the main beam
distortion affects the reconstructed power spectrum in a similar
way also on polar patches. In fact, even at high ecliptic latitudes
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Fig. 7. Left panel: comparison between the noise power spectrum before (red) and after (green) deconvolution for the four noise realizations
(the inner (black) “curves” represent the two average noise power spectra). Right panel: ratio between the power spectrum of each of the four
noise realizations and the average noise power spectrum, before and after deconvolution, multiplied by 10 in the latter case for graphic purposes
(see also the text).

Fig. 8. The two panels are identical except for the binning in � in the right panel and a different range for the ordinates. The noise is included.
Angular power spectrum from the four considered patches. Solid (black) line: angular power spectrum of the input map without convolution
and without noise; dash-three dots (fuchsia): angular power spectrum of the map convolved with the simulated beam assuming the P
scanning strategy and adding a noise realization; dots (red): angular power spectrum of the map convolved with the simulated beam assuming
the P scanning strategy and adding a noise realization, after the subtraction of the averaged power spectrum of four noise realizations and
then divided by the symmetric beam window function; dotted (black) bottom line: averaged power spectrum of four noise realizations; dash-
dots (green): angular power spectrum of the deconvolved map in the presence of a noise realization; dashes (green): angular power spectrum
of the deconvolved map in the presence of a noise realization after the subtraction of the averaged power spectrum of four noise realizations
deconvolved in the same way; dashed (black) bottom (at low �) line: averaged power spectrum of four noise realizations deconvolved in the
same way (see also the text).
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Fig. 9. The left and middle panels are identical except for the binning in � in the middle panel. Errors in the angular power spectrum recovery
from the four considered patches. Dash-three dots (fuchsia): angular power spectrum of the map convolved with the simulated beam assuming
the P scanning strategy and adding a noise realization; dots (red): angular power spectrum of the map convolved with the simulated
beam assuming the P scanning strategy and adding a noise realization, after the subtraction of the averaged power spectrum of four noise
realizations and then divided by the symmetric beam window function; dash-dots (blue): angular power spectrum of the deconvolved map in the
presence of a noise realization; dashes (green): angular power spectrum of the deconvolved map in the presence of a noise realization after the
subtraction of the averaged power spectrum of four noise realizations deconvolved in the same way. In the right panel we report the same line
(dots, red) of the middle panel and four other power spectra obtained in similar way by assuming different values of effective angular resolution,
with an effective FWHM increased or decreased by 0.05′ and 0.1′. Clearly, an improvement at � ∼ 400−800 implies a worsening at � >∼ 1000
and vice versa: therefore, even allowing for changes in the assumed effective angular resolution, the simple symmetric beam approximation can
not improve the power spectrum recovery simultaneously in the two above ranges of � (see also the text).

a given pixel is preferentially observed with a limited number
of beam orientations. In polar patches the P sensitivity is
significantly better than the average. Therefore, in spite of the
more complex data storage, deconvolution will be there less
affected by the noise7.

4. Discussion and conclusions

We have presented the basic formalism for a robust, general
and feasible method for deconvolution in noisy CMB maps.
The resulting method is based on the joint exploitation of the
data streams and the derived maps, and it is applicable, by con-
struction, to both single-beam and multi-beam experiments.

We have implemented and tested this method for two com-
pletely different situations: small patches observed with an el-
liptical beam and with a scanning strategy involving repeated

7 For example, the average sensitivity on a polar region of about
25 squared degrees is about 5 times better (i.e. � 2 µK on pixel
of 3.43′!) than the average full sky sensitivity: then, we expect there
a deconvolution quality intermediate between that found here and that
found in the previous section.

measures of the same pixel but not related to a specific exper-
iment and quite large sky areas observed with a realistic beam
and a scanning strategy like that of the P satellite. A
sensitivity level and a beam resolution typical of the P
experiment at 100 GHz have been exploited.

We have first considered noiseless cases to verify that, after
removing the main beam distortion effect, the angular power
spectrum given by our deconvolution code is good enough in
a wide set of situations, which proves its robustness and fea-
sibility. Afterwards, the code has been applied to noisy maps.
We demonstrate that it is possible to accurately evaluate the
effect of deconvolution on pure noise simulated maps so de-
riving, with Monte Carlo simulations, a good estimation of the
average deconvolved noise angular power spectrum to be sub-
tracted from the deconvolved noisy maps.

Standard methods for beam deconvolution and denois-
ing involve some regularization condition in a minimiza-
tion/maximization technique (see e.g. Press et al. 1992). These
methods are used in many branches of science, as for ex-
ample, in photography, where they are often used to recon-
struct images. Of course, similar methods could be also used
to reconstruct the CMB sky from convolved noisy realistic
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maps and, afterward, the CMB angular power spectrum could
be extracted from the reconstructed maps. The formalism of
these standard methods is general, but the choice of the func-
tional to be minimized/maximized (regularization procedure),
largely depends on the properties (smoothness) of the image or
map to be reconstructed and, consequently, we cannot be sure
“a priori” that one of these methods applies to the case of sta-
tistical CMB maps. More work is necessary to extend standard
techniques to the CMB analysis, namely, to choose appropri-
ate functionals (regularizations). Such a study is not the pur-
pose of this work. We propose here a new independent method
(see Sects. 3.2 and 3.4) to get deconvolved noisy maps, which
subtracts the noise power (as estimated through Monte Carlo
simulations from deconvolved pure noise maps) from the over-
all (signal plus noise) power of deconvolved noisy maps, and
that, finally, allows to derive the signal power spectrum of the
considered maps. This method has the advantage to be, by def-
inition, completely blind with respect to the sky properties and,
in spite of this, it leads to significant improvements in the data
analysis. Furthermore, the method is expected to work, also by
construction, for any type of noise (see footnote 5). These facts
strongly suggest that it should work in more and more real-
istic cases. Although adequate to reach multipoles about the
end of the fifth acoustic peak for the resolution and noise level
considered here, the increase of the noise level in the decon-
volved maps with respect to that in the non deconvolved ones
prevents the recovery of the very large multipole tail of the an-
gular power spectrum. In the future, it will be interesting to de-
sign regularization methods properly dedicated to microwave
anisotropy images and able to work under quite general condi-
tions about sky properties, including foregrounds. The recov-
ery of the spectrum tail at very high multipoles corresponding
to these methods could be then compared with that of the blind
method designed here8.

In practice, for the considered sensitivity, �9 µK for a pixel
of 3.43′, and beam resolution, FWHM � 10′−11′, our decon-
volution code allows to efficiently remove the main beam dis-
tortion effect and accurately reconstruct the CMB power spec-
trum up to the end of the fifth acoustic peak, i.e. to gain about
one–two acoustic peaks more than in the absence of correction
for main beam distortion effect.

Clearly, in the context of the P project, the measure
of the very high multipole region of the CMB angular power
spectrum will take advantage from the cosmological frequency
channels at highest resolution, namely the 217 GHz channel
(having a FWHM � 5′), where Poisson fluctuations from
extragalactic sources (see e.g. Toffolatti et al. 1998) are ex-
pected to be at a very low level and anisotropies from thermal
Sunyaev-Zeldovich effects are, if not exactly null because of
possible unbalanced contributions within the bandwidth, cer-
tainly very small. On the other hand, the frequency range about
100 GHz is where the global (Galactic plus extragalactic) fore-
ground contamination is expected to be minimum. Therefore,

8 On the other hand, we have to keep in mind that a faithful recovery
of the very high multipole tail of the CMB angular power spectrum
requires to catch also with all the other, possibly coupled, systematics
and a very accurate separation of the astrophysical foregrounds.

it is extremely relevant to extract at these frequencies an ac-
curate estimation of the sky angular power spectrum, cleaned,
as better as possible, from all the systematic effects. In addi-
tion, the removal of the main beam distortion effect, relevant
at large multipoles, greatly helps the comparison between the
results obtained at different frequency channels.

Of course, we plan to apply this method in the future also
to lowest and highest beam resolutions and in the presence of
other kinds of systematic effects. We believe that the results
found here are very encouraging, suggesting that the main
beam distortion effect, previously reduced by optimizing the
optical design, can be further reduced in the data analysis.

Coloured versions of Figs. 6–9 are available in the
electronic form of this paper on the A&A web site,
http://www.edpsciences.org
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Appendix A: Transformation rules between
PLANCK telescope frame and beam frame

Let s be the unit vector, choosen outward the Sun direction,
of the spin axis direction and k that of the direction, z, of the
telescope line of sight (LOS), pointing at an angle α ∼ 85 ◦
from the direction of s.

On the plane tangent to the celestial sphere in the direction
of the LOS we choose two coordinates x and y, respectively
defined by the unit vector i and j according to the convention
that the unit vector i points always toward s and that x, y, z is a
standard Cartesian frame, referred here as telescope frame.

Let ibf , jbf , kbf be the unit vectors corresponding to the
Cartesian axes xbf , ybf , zbf of the beam frame; kbf defines the
direction of the beam centre axis in the telescope frame. The
beam frame is defined with respect to the telescope frame by
three angles: θB, φB, ψB (θB and φB, two standard polar coor-
dinates defining the direction of the beam centre axis, range
respectively from 0◦, for an on-axis beam, to some degrees,
for LFI off-axis beams, and from 0◦ to 360◦).

Let i′bf , j′bf , k′bf′ (k′bf = kbf) be the unit vectors cor-
responding to the Cartesian axes x′, y′, z′ of an intermediate
frame, defined by the two angles θB and φB, obtained by the
telescope frame x, y, z when the unit vector of the axis z is ro-
tated by an angle θB on the plane defined by the unit vector of
the axis z and the unit vector kbf up to reach kbf:

k′bf = kbf

= cos(φB)sin(θB)i + sin(φB)sin(θB) j + cos(θB)k (A.1)
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i′bf =
[
cos(φB)2cos(θB) + sin(φB)2

]
i

+[sin(φB)cos(φB)(cos(θB) − 1)] j

−sin(θB)cos(φB)k (A.2)

j′bf =
[
sin(φB)cos(φB)(cos(θB) − 1)

]
i

+
[
cos(θB)sin(φB)2 + cos(φB)2

]
j

−sin(θB)sin(φB)k. (A.3)

The beam frame is obtained from the intermediate frame
through a further (anti-clockwise) rotation of an angle ψ B

(ranging from 0◦ to 360◦9) around kbf and is therefore ex-
plicitely given by:

ibf =
[
cos(ψB)i′bf,x + sin(ψB) j′bf,x

]
i

+
[
cos(ψB)i′bf,y + sin(ψB) j′bf,y

]
j

+
[
cos(ψB)i′bf,z + sin(ψB) j′bf,z

]
z (A.4)

jbf =
[−sin(ψB)i′bf,x + cos(ψB) j′bf,x

]
i

+
[
−sin(ψB)i′bf,y + cos(ψB) j′bf,y

]
j

+
[−sin(ψB)i′bf,z + cos(ψB) j′bf,z

]
z, (A.5)

where the bottom index x (y, z) indicates the component of in-
termediate frame unit vector along the axis x (y, z) of the tele-
scope frame, as defined by Eqs. (A1)–(A3).

Appendix B: Code feasibility

The applicability and the precision of the deconvolution
method presented in this work depends in principle on various
parameters related to experimental and numerical aspects.

The most important experimental parameters in this context
are the beam resolution and the level of beam asymmetry which
are clearly related to the experiment optical design. The level
of beam asymmetry considered in this work (r ∼ 1.25−1.3) is
quite realistic for P and also for future CMB anisotropy
multi-feed experiments. If these experiments are designed tak-
ing advantage from the state of the art of the microwave tech-
nology, the asymmetry r will be <∼1.3 and, consequently, the
parameter r does not require further investigations. The most
relevant “effective” parameter, related to the instrument opti-
cal properties and to the code application, is the ratio between
the beam size and the pixel size, FWHM/∆. The quality of our
deconvolution has been studied for several values of this pa-
rameter. In order to do that, the values ∆ = 3.43 ′ and r ∼ 1.3
have been fixed, whereas the beam FWHM has been varied.
The Case A) described in Sect. 3.1 has been considered to
this aim (more realistic cases would mix the effect of varying
FWHM/∆ with other effects due to noise, pointing, pixeliza-
tion, and so on). Results are shown in the left panel of Fig. B.1,

9 We note that, in other conventions, angles φ′B and ψ′B ranging
from −180◦ to 180◦ are given, instead of φB and ψB. The angles φB

and ψB here defined are equal to φ′B and ψ′B when they are positive
and are given respectively by 360◦ + φ′B and 360◦ +ψ′B for negative φ′B
and ψ′B.

where an improvement on the recovered C � for decreasing
FWHM/∆ can be observed. The smaller the ratio FWHM/∆,
greater the index �max for which the error on C� is about 5%.
On the contrary, it is obvious that to reach the highest multi-
poles it is necessary to keep the smallest scale information cor-
responding to smallest pixel size which allows to have a negli-
gible number of unobserved pixels in the considered patch, an
aspect related to the data sampling assumed for the telemetry
data. In practice, the pixelizations adopted in CMB anisotropy
experiments are typically based on hierarchical schemes start-
ing from a given pixel size to allow simple algebraic operations
in mega-pixel maps. This makes the ratio FWHM/∆ be a dis-
crete, not a continuous, function. For the cases considered here
(FWHM ∼ 10′ and about three samples per beam provided by
the telemetry data as in the case of P), it is clear that a
HEALPix pixel size ∆ � 3.43′ is a good compromise between
the optimization of FWHM/∆ and the necessity to have a pixel
small enough to reach high multipoles. Similar considerations
can be easily applied to other P frequency channels and
to different experiments.

We have verified that the deconvolution accuracy improves
with the increasing of the number of iterations, n it, for nit <∼
25−30, whereas no significant improvements are found with
further iterations: by these reasons, our codes give the system
solution after nit � 30 iterations.

In principle, for a given pixel size, it seems that increasing
the patch area considered in the deconvolution could reduce
possible boundary effects; on the contrary, the corresponding
increasing of the number of equations could imply a worsen-
ing of the system solution accuracy. By carrying out several
simulations – exploiting the Case A) described in Sect. 3.1 –
for different patch area sizes corresponding to different number
of equations, and extracting the final spectrum from a num-
ber of patches which cover about 1.6 × 10 4 squared degrees in
all cases, we have verified that these effects associated to the
patch size only weakly impact the accuracy of the system so-
lution (see the right panel of Fig. B.1). The test shows that the
results obtained from patches with a side of a few hundreds
of 3.43′ pixels (∼105 equations) are slightly better than those
corresponding to larger patches with �103 pixels. This conclu-
sion is not surprising at all because it is well known that very
large maps are only necessary to calculate the angular power
spectrum at small multipoles, for which deconvolution is not
necessary. Anyway, the low impact of the number of equations
allow us the use of large patches.

From the above discussion it follows that our code
works for realistic values of the main parameters involved
in the deconvolution method: asymmetry parameter (r <∼
1.3), FWHM/∆ ratio, and patch area (number of equations).
Furthermore, deconvolution has been also possible for the
HEALPix pixelization with irregular pointing and in the pres-
ence of uniform uncorrelated noise. These encouraging re-
sults strongly suggest we have designed a robust and feasible
method for the estimate of the CMB angular power spectrum,
able to correct, through deconvolution, the main beam distor-
tion effect.

Nevertheless, more work is necessary in this field because,
in practice, at very large multipoles we expect that the main
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Fig. B.1. Value of the maximum � for which the relative error on Cl recovery is less than 5% as function of FWHM/∆ (left panel) or of the
number of equations (right panel). (See also the text).

limitation in the sky Cl recovery will derive from our capa-
bility to accurately subtract the combined effect of the differ-
ent classes of systematic effects and, ultimately, the accuracy
in the CMB Cl recovery will rely on our capability to separate
the CMB anisotropy from the foreground signals. In the context
of the P project, a very careful attention has been ded-
icated to control/reduce each systematic effect in the mission
and instrument design (see e.g. Burigana et al. 2001; Seiffert
et al. 2002; Mennella et al. 2002) and in the data analysis, while
the study of all the combined systematics, currently at the be-
ginning, will be pursued in the next future on the basis of the
detailed instrument specification. The aspects that we believe
may be more critical in this context, and that we intend to in-
vestigate in future works, are the impacts in the power spectrum
estimation at large multipoles of the pointing and main beam
reconstruction (Burigana et al. 2000b, 2002) uncertainties, the
non-ideality of the instrumental noise, the non-uniformity of
the sensitivity per pixel, and the long term drifts.
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Bernard, J. P., Puget, J. L., Sygnet, J. F., & Lamarre, J. M. 2002, Draft

note on HFI’s view on Planck Scanning Strategy, Technical Note
PL-HFI-IAS-TN-SCAN01, 0.2.1

Bersanelli, M., et al. 1996, ESA, COBRAS/SAMBA Report on the
Phase A Study, D/SCI(96)3

Bond, J. R., & Efstathiou, G. 1987, MNRAS, 226, 655
Burigana, C., Malaspina, M., Mandolesi, N., et al. 1997, Int. Rep.

TeSRE/CNR 198/1997, November [astro-ph/9906360]
Burigana, C., Maino, D., Mandolesi, N., et al. 1998, A&AS, 130, 551
Burigana, C., Maino, D., Mandolesi, N., et al. 2000a, Astroph. Lett.

Comm., 37, 253

Burigana, C., Maino, D., Natoli, P., et al. 2000b, Straylight effects
and beam reconstruction in P/LFI observations, talk at
the P Scanning Strategy Meeting, Villa Mondragone –
Monteporzio Catone (Roma), Italy, 22–23 June 2000
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