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We introduce an alternative to Alnfland Hzser's Laplace transform decomposition of orbital
energy denominators used in obtaining reduced scaling algorithms in perturbation theory based
methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite
matrices. We show that orbital denominators have a particular short and size-intensive Cholesky
decomposition. The main advantage in using the Cholesky decomposition, besides the shorter
expansion, is the systematic improvement of the results without the penalties encountered in the
Laplace transform decomposition when changing the number of integration points in order to
control the convergence. Applications will focus on the coupled-cluster singles and doubles model
including connected triples correctiofSCSO(T)], and several numerical examples are discussed.

© 2000 American Institute of Physids$0021-9606800)30713-9

I. INTRODUCTION Laplace based approach. As we shall see in this article it may
) ) ) ) require more than 50 integration points in the Gauss—

The aim of reducing the computational scaling of mod-| ggendre integration procedure in order to obtain machine
em electronic structure models is of7great_|mportance "brecision in all elements of the orbital denominator. Instead
quantum chemistry. The unphysicl® scaling of the e hronose to use a Cholesky decomposition of the energy
coupled-cluster singles and doubles model including congenominators entering the expressions in higher-order per-

nected triple excitationfCCSIT)], whereN is the number v iation theory-based models. The Cholesky decomposition
of orbitals, severely restricts the size of molecular Syswm?equires a much smaller number of vectors in order to give

that can be studied. Although we know that all modelsy,o same accuracy and as Wilkinddras shown, it is ex-

should eventually scale linearly with the size of the molecu-teedingly numerically stable. In addition, as we show later in

lar system, our inappropriate formulation of the algebraicis article, the Cholesky decomposition also allows for the
and computational expressions makes it difficult to eXplo'timpIementation of aN® algorithm for CCSIT) and related
this inherent sparsity. models.

Important advances in linear scaling have already been  1he jgea of using the Cholesky decomposition to obtain
made in several areas. For wave function-based methods lik@ ,,ceq scaling in electronic structure calculations is by no
the second-order Maller—Plesset perturbation thebt2)  aans new. In 1977, Beebe and LinderBéngroduced the
one obstacle is the orbital denominator that COnr?.emsZprOdCholesky decomposition of the two-electron integral matrix
ucts of two-electron integrals. In 1991 Aliiiland Hzser" _in order to reduce the computational effort in the transforma-
suggegted to use the Laplace transform to decompose Ol’bl%n of two-electron integrals from the atomic orbif@O)
denominators, i.e., basis to the molecular orbit&éMO) basis. Due to the com-

1 % putational limitations at that time, the authors could not com-
=f exp—(ea+e,—€—€)t)dt, (1)  pletely exploit the large reductions attainable. In this article
we focus on orbital energy denominators, although some of
and recently this concept has been used in an implementatigdhe conclusions also apply to the two-electron integral ma-
of linear scaling MP2.Haser and Almld also made another trix. We defer this analysis to a future publication.
important observation in this connection. Once the orbital  This article has been organized as follows. In Sec. Il we
denominator is decomposed the algebraic expression fatescribe the second- and third-rank decompositions. In Sec.
fourth-order Mgller—Plesset perturbation thedP4) may 1l we discuss the Cholesky CCSD) model, and numerical
be rearranged to obtain a® algorithm. However, thé\®  examples are presented in Sec. IV. Our final remarks are
computational step must be repeated for each integratiogiven in the last section.
point used in the numerical integration of the Laplace trans-
formation.

The use of the Laplace transform decomposition is no!l' RANK DECOMPOSITIONS
without complications as the numerical integration must be  Consider an orbital denominator of the form
performed at some point in the calculation and the number of 1

€qt Ep— €€ 0

integration points and accuracy will be very critical in deter- — )
mining the crossover point between the conventional and the pa Wyt wg
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where we assume th:{ltoplpzl,N} are positive real num- plicit calculation of the associated Cholesky vectors. This
bers. In the following, indiceg, q, r denote compound or- follows from the fact that the largest element is located on
bital indices. TheD matrix is positive semidefinite as is eas- the diagonal as the remainder is positive semidefinite. Given
ily shown by analyzing the quadratic form the order{J,|n=1N;} in which the Cholesky decomposi-

tion is to be performed, relevant parts of the Cholesky vec-

1 o 2 )
E Xpqu:j (2 X, eXp(— wpt)) dt=0, (3) tors may be calculated from the expression
pq pT Wq olp 1
2wy " wp— 0
wherex is an arbitrary nonzero vector and we have used the M"= . 7. (7)
Laplace transform to rewrite the quadratic form. The equal (wptoy)m1 | wpt oy
sign in the inequality in Eq(3) occurs in the case of degen- The decomposed matrix can now be written as
eratew-values, otherwise the matrix is positive definite. The Ny
semidefiniteness gives no complications in practice as the _ npgn
es n . \ Dpg= 2, MMy, ®

Cholesky decomposition is terminated when all diagonal el- n=1

ements are smaller than a specified threskiid. The re-  \hereN; denote the number of Cholesky vectors needed in
mainder in a given step of the Cholesky decomposition iger to make all diagonal elements of the residual matrix

calculated recursively as less than. Usually N is referred to as the effective numeri-

ngngjl cal rank of the matrix.From the expression for the diagonal
ng:DBal_ — 1 (4)  in Eq. (6) we observe that the range of thevalues rather
DJan than the number of values determines the number of

whereJ, denotes the particular row and column that is beingChoIeSky vectors needed in order to make all _dlagonal ele-
removed in thenth step andD%zDij . In order to proceed, ments smaller_than the t_hreshoﬂj The quadratic product
we introduce the algebraic identity, dependgr_me nicely _explfauns the fast convergence of the de-
composition, especially if the-values are close-lying. Fur-
1 20, thermore, we also observe the size-intensive nature of the
wp+ wq_ (0p+ wy)(wg+ ;) decomposition as an orbital denominator, for identical non-
interacting subsystems can be decomposed with the same

_ 1 Wp— W3 Wq— By (5) number of Cholesky vectors as required for one subsystem.
wpt wg | wpt )/ | wg+ )’ We now consider the third-rank orbital denominator
that will be used in deriving simple analytical expressions for 1
the Cholesky vectors. The diagonal elements inritfestep pqr:wp+wq+ w,’ ©
are given by the expression . - .
9 Y P and we readily observe that when fixing one index, the re-
. 1 " wp— g 2 maining two indices define a positive semidefinite matrix. To
Dpp=zm L m (6) the best of our knowledge, the problem of decomposing
pm= P m

higher-rank tensors in a Cholesky manner does not seem to
Using this expression we may determine the order in whicthave been solved in the mathematical literature. Based on the
the Cholesky decomposition is performed without any ex-following algebraic identity,

1 _ (wp+20;)(wgt+20;)(w;+20;) (wp— wy)(wg—w)) (0~ w;)
wpt 0gt o, 3w3(wpt wgtw))(wyt o+ ) (0t o+ o)) 3o;(ep+ gt o) (w,+ o+ ;) (0t o+ ;)

_ (wp_wJ)(wq_wJ)(wr_wJ) 10
B (wpt wgt o) (wp+ gt o)) (wp+ o+ w))(0g+ o+ o) ’ (10

we suggest the following third-rank decomposition: evident that in order to obtain a4® scaling in the CCSIT)
model, two of theM and N matrices should be further de-
composed. However, even though the smaller numerical rank
of the decompositions, the total number of vectors may eas-
ily become larger than that of a second-rank decomposition.
where theM andN matrices are defined by successive ap-Nevertheless, we speculate that using the permutational sym-
plication of Eq.(10). These matrices can, if needed, be fur- metry of thew-indices, arlN® algorithm may be achieved by
ther decomposed using the Cholesky decomposition. The nijudst decomposing one of thd and N matrices. The third-
merical rank in Eq(11) is much smaller than for the second- rank decomposition may also become useful in higher orders
rank decomposition in Eq8) as the diagonal elements of the of perturbation theory or if the two-electron integrals are
residual matrix now have a cubic product dependence. It islecomposed in the expression of the CCBenergy. Any-

Ns
qur: nzl (_ 1)n_1{M BqM BrM gr_ NBQNBFNST}’ (11)
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way, we shall see in the next section how to obtainN$n  TABLE I. Largest absolute error in the elements of the CCBDorbital

algorithm in CCSDT) using the second-rank decomposition denominator using Cholesky and Laplace transform decompositions for dif-
" ferent number of vector@ntegration points

Ozone Mg

I1l. CHOLESKY CCSD(T) Vectors  Cholesky Laplacé Cholesky Laplace
. . . . — 4 — 2 — 3 —2
The connected triple excitation amplitudes that enter the > 6.5¢107  10<107 131070 2.5¢10°7

ion for the CCSID) energy is given by 10 9.1 10 1.7%10 6.1} 10 2.7x10
expression gyisg 15 15¢10°°  52x10°5  39x10°  1.1x10°3
—12 —6 —11 —4
Edtﬁd(ck“)d) 20 1.1x 10 2.2%X 1073 2.2%X 10713 2.1% 1075

tabe= — pabe 25 3.5¢10 2.0x10 2.3x10
! Ml (ea—€—€)) + (€.~ &t €p) 30 1.0<10710 1.3x10°©
b ) 35 1.6x10 1! 3.9x10°®
ZitiR(ck) 40 5.3¢10713 6.3x 10" 10
- (12 45 7.6<10° 14 4.7x10°1

—€t+ep)t(ec—e—e€)]’
(ea— €+ e€p)t (€~ ek €) 50 5.1x 1012

Wheretf}b denotes the coupled-cluster singles and doublegTh — ror 25 vect T bovond are loss -
. . - € apbsolute errors 1or vectors an eyond are Iess than macnine pre-

(.CCSD.amplltudes and we ha_ve arranged the orbital eNeT-ision.

gies to indicate the way we will decompose the denominasthe absolute errors for 50 points and beyond are less than machine preci-

tors. The denominator is not symmetric as partitioned in Eq.sion.

(12) and thus we cannot use the second-rank decompositio?ﬁhe absolute errors for 30 vectors and beyond are less than machine pre-

directly. However, by defining the-values as elements of aision.

the vector
<€a —€ € 13 IV. NUMERICAL EXAMPLES
@ €2 —€ Tep p’ In order to compare the Cholesky decomposition and the
q he d ) Laplace transform decomposition we make a simple variable
we may decompose the denominator as substitution in the Laplace transform integral and write the
1 Ns denominator as
= M2 M2 14
(€a— €~ €)+ (€~ et e€p) n§=:1 aij T ckb: 4 1 1 s 1
= ex —(wp-l- wq)l— l—zdS (16)
where the Cholesky vectors should now be calculated from @pt@q Jo —s/(1-9)

the decomposition determined by thevalues defined in Eq.  The numerical integration will be carried out using standard
(13). Consequently, only the nondiagonal part of the decomgayss—Legendre quadrature integrafiofhis integration
position is used and as the residual matrix is pOSitiVe‘procedure might not be the optimal. Indeed:; skia and
semidefinite, the errors in the nondiagonal elements will bex|m|5f2 have suggested a least-squares quadrature-type inte-
smaller than in diagonal elements. Inserting the expressiogration procedure in order to choose the best possible inte-
for the decomposition in Ed14) into Eq.(12) we may write  gration points for a given set of orbital energies. However,

the triples amplitudes as we have found standard Gauss—Legendre quadrature integra-
Ns tion to be very accurate and thus we believe the comparisons
tﬁECI _ ﬂﬁc 2 Vgijdzgkbd_z ngmYijl , are rgasonable. _In the following, we have decomposed all t_he
n=1d ! possible denominators and not only the totally symmetric
(15) part.
where theV, Z, W, andY matrices are implicitly defined. In Table | we compare the Cholesky and the Laplace

Using this decomposed form of the triple excitation ampli-decompositions of the orbital energy denominator appearing
tudes in the expression for the CC8D energy, we obtain in the CCSOT) correction energy. We have chosen ozone as
an algorithm that scales a¥sN®. We shall denote this one of the test systems due the rather large triples contribu-
method in brief as Cholesky CC$D and the Laplace trans- tion to the total energy. All calculations are carried out at the
form counterpart as Laplace CCSD. In principle, the basic  experimental geometry and we have used the cc-pVQZ basis
ide& behind Cholesky CCS@) is to contract one Cholesky set from Dunning’s group.As large ranges of orbital ener-
vector from the decomposition with the corresponding inte-gies are the most difficult cases for both methods, we have
gral(s) before the summations over thdeandl indices in Eq.  chosen to test both methods for a molecular system showing
(12) are carried out. The detailed discussion and implementhese characteristics. In particular, we have studied the re-
tation of this algorithm will be described elsewhere. sidual errors in Mg at the experimental geometry using an
For iterative perturbation theory based connected tripleaug-cc-pCVTZ basis extended with a set of midbond
excitation models, such as the CC3 motisimilar reduc-  functions® The core orbitals are frozen in the ozone calcula-
tions may also be obtained. Large scale applications of thed®ns, but all electrons are included for Md/Ve first observe
models are virtually impossible due to the computationalthat even for Mg we have a maximum error of the order
cost. However, if the scaling is reduced to ti&level, then 10 2 using only five Cholesky vectors. Similarly, an accu-
the CC3 model might actually be used for more than justacy to six decimal digits may be accomplished with about
benchmark calculations. ten vectors. This should be compared to the 20 and 30 inte-
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TABLE II. The maximum diagonal element in the residual matrix for the TABLE Ill. The CCSI(T) triples correction E;,) in H,O for different num-

Cholesky decomposition of the CC8D orbital denominatof. ber of Cholesky vectors and correlation consistent basis*sets.
n H,O (H,0)s (H,0)19 (H,0)45 CgHg—Ar Cholesky vectors cc-pVvVTZ cc-pvVQz cc-pVvsZ
1 45102 2.0x10' 26x10Y 59x10' 1.1x10°*! 1 —0.00493609 —0.00566102 —0.005 78295
2 88x10°% 39x10? 51x10? 1.1x10' 22x10°7? 2 —0.00784795 —0.00927056 —0.00981194
3 27x10°°% 1.2x10°%2 15x10% 22x107% 6.7x10°° 3 —0.007 86799 —0.00937303 —0.009 993 90
4  7.1x104  7.4x10°°% 9.2x10°°% 2.0x10°% 4.0x10°° 4 —0.00786354 —0.00937786 —0.01000224
5 14x107% 1.1x10°% 15x10°% 4.0x10°° 7.9x10°* 5 —0.00786473 —0.00938035 —0.010006 73
6 15x<10°° 3.7x107% 8.9x10°* 24x10°° 6.2x10°¢ 6 —0.00786554 —0.00938161 —0.010008 39
7 1.3x10°% 1.1x10% 2.0x10* 6.1x10*4 1.2x10°¢ 7 —0.00786561 —0.00938168 —0.01000850
8 7.9x1077 9.0x10°° 54x10°° 1.4x10°* 4.2x10° 8 —0.007 86563 —0.00938170 —0.010008 54
9 23x10% 50x10°® 34x10°% 24x10° 2.7x10° 9 —0.007 86563 —0.00938170 —0.01000857
10 57x10°° 1.4x10°% 22x10% 36x10°% 3.8x10°° 10 —0.007 86563 —0.00938170 —0.010008 58
11 2.1x10°° 45x107 9.5x107 1.6x10° 9.9x10°7
12 93101 7.4x10°° 40x107 16x10° 3.2x10°7 Exact —0.007 86563 —0.00938170 —0.01000858
13 1.8<10°8 7.7x10°® 1.9x1077 1.2x10°° -
14 710°  11x10-® 51x10-° 43¢ 10-® @All-electron calculations.
15 2.7x107°  2.6x10°° 15x10°% 7.9x10°°
16 6.1x10° 1! 57x10°° 1.7x10°° 4.9x10° . - .
17 o101 11x10°° 2.9x10° nator matrix. In fact, millihartree accuracy can be obtained
18 65<10° % 20x10 with only two vectors in the three cases considered and six
19 1.6x10 10 vectors are enough for microhartree accuracy. In addition,
20 1210t the obtained accuracy with a given number of vectors is ap-

proximately the same, independently of the considered basis.
We should recall that in most of the studied cases we ap-
proach to the exact CC3D) correction from above. Never-
theless, in the cc-pVTZ basis set calculation the CCOSD
gration points required by the Laplace transform for ozone:qrrection is overestimated with three vectors and the usual
and Mg, respectively. The most important feature to betrend is recovered only when the fifth vector is included.
stressed is the slow convergence of the Laplace transform yplike the iterative triples corrected models, in
decomposition compared to the Cholesky. As a consequencecspT) the accuracy of the orbital energy denominators
more than 50 integration points are required in order to obmay be disregarded, as long as the final energy correction is
tain machine precision for Mg accurate enough. Therefore, in Table IV we present a com-
We analyze the behavior of Cholesky COSDwith  narison of the convergence of Cholesky and Laplace
respect to molecular size and report the results for differen@csm-) correction energy for ozone. As stated before we
systems in Table Il. The linear water cluster calculations argisually approach the exact CCED correction from above
carried out using a 3-21G basis Yeind constructed by re- and this is also the case for the two Cholesky CCBD
peating a basic unit consisting of a single water molecule aga|culations presented here. Unfortunately, the convergence
the experimental geometry Wita 2 a.u. separation between jg not uniformly decreasingct. the correction for cc-pvQZ
adjacent oxygen atoms. For the benzene—argon complex Wgsis when four vectors have been includadd this makes
use an aug-cc-pVTZ basis set extended with midbong; gifficult to establish an extrapolation procedure. Anyway,
functions? The first point to note is that beyond a certain sizemjjjihartree accuracy is obtained with only three vectors and
the number of Cholesky vectors required to get a predefineghicrohartree accuracy requires no more than six vectors. On
accuracy is essentially constant. For the cluster of five molthe other hand, it seems that this system is a difficult case for

ecules(with 975 single excitation energied0 * accuracy  the Laplace transform decomposition. Actually, even with
may be accomplished with six vectors, the same number re-

quired in the ten molecules caswith dimension 3850 _ _ _ _
Only one additional vector is needed fd,0);5 with 8550 TABLE IV. The CCS[IT)_ triples correcnon_ Ep) in ozone using Cholesky
single excitation energies. The Iargest considered system ?§Id Laplace decompositions and correlation consistent basis sets.

@All-electron calculations.

the benzene—argon complékimension 14 130and requires Cholesky Laplace Cholesky Laplace
five vectors to get a maximum difference in the diagonalvectors  cc-pvTz cc-pVTZ cc-pvVQz cc-pvVQz
_4 .
elements of 7.9(_10 . _We r_ecall as dl_scussed above, a 1 —0.024 088 79 —0.009 903 40 —0.025 521 67 —0.010 181 77
larger accuracy is obtained in the nondiagonal elements of 5 _ 04541572 —0.036 888 62 —0.048 908 70 —0.038 336 39
the decomposed matrix. Similarly, the number of vectors 3 -0.04706759 —0.045 485 94 —0.051 079 89 —0.047 377 95
needed for a 10° precision varies from 1{benzene—argon 4 —0.047 09500 —0.046 98316 —0.051106 11 —0.050 128 31
and (H,0)s] to 13 in the case ofH,0);o. 5 —0.047 10133 —0.047 121 01 —0.051 093 53 —0.050 919 30
The effect of increasing the basis set size in the con- o 04711689 ~0.04711849 ~0.051 10746 ~0.051 06250
, ' g - : , 7 —0.047116 96 —0.047 115 97 —0.051 107 56 —0.051 092 03
nected trlples correction to the CCSD energy Is examined in 8 —0.047 11698 —0.047 116 96 —0.051 107 58 —0.051 102 61
Table 1ll. We present in this table the triples correction fora 9 -0.04711700 —0.047 117 14 —0.051 107 67 —0.051 106 21
10 —0.047 117 00 —0.047 117 00 —0.051 107 69 —0.051 107 20

single water molecule using correlation-consistent basis sets.

We start by mentioning that the convergence of energy iSgyact —0,047 11700 —0.047 117 00 —0.051 107 69 —0.051 107 69
much faster than of the individual elements of the denomi
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TABLE V. The CCSOT) triples correction E;,) for Mg, using Cholesky ~ TABLE VI. Cholesky CCSIT) counterpoise corrected dissociation energy
and Laplace decompositions and an aug-cc-pCVTZ basis set extended witif Ar, and triples corrections to total energies.
midbond functions.

Cholesky vectors  D./cm ! Ear,/En ES/En
Vectors Cholesky Laplace

1 201.81 —0.01128640 —0.005 35025
1 —0.002 543 67 —0.001 649 68 2 103.38 —0.01619854  —0.008 030 56
2 —0.005 452 62 —0.003 234 80 3 97.97 —0.01638670 —0.008 136 96
3 —0.007 857 15 —0.005 167 52 4 99.61 —0.01637801  —0.008 128 89
4 —0.007 92271 —0.006 423 92 5 99.63 —0.01637854  —0.008 129 10
5 —0.008 38141 —0.007 27592 6 99.44 —0.01637769  —0.008 129 10
6 —0.008 384 81 —0.007 789 78 7 99.75 —0.01637769 —0.008 128 40
7 —0.008 387 48 —0.008 064 18 8 99.75 —0.01637768  —0.008 128 40
8 —0.008 388 36 —0.008 206 39 9 99.75 —0.01637769 —0.008 128 39
9 —0.008 388 36 —0.008 283 05 10 99.75 —0.01637768  —0.008 128 39

10 —0.008 388 77 —0.008 326 79
Exact 99.75 —0.01637768  —0.008 128 39

Exact —0.008 388 77 —0.008 388 77

the error of the approximated dissociation energy is no more

ten integration points 0n|y a precision of X907 is than 0.03 cm'. As a matter of fact, it is also clear by in-
achieved, while four and five vectors are needed for milli-spection of the last two columns in Table VII that this ex-
hartree accuracy for the triple and quadruple-zeta basis sef§emely good result is obtained due to a favorable cancella-
respectively. Moreover, the exact triples contribution to enion of errors. Actually, to reach an accuracy of 1 ¢m
ergy is overestimated for the cc-pVTZ basis with five or sixrequires roughly microhartree accuracy in the absolute ener-
points in the Gauss—Legendre quadrature integration. gies, an accuracy that Laplace CA$Dcannot deliver with

To complete the study initiated in Table I, we have alsoten integration points. On the other hand, Cholesky
studied the convergence of the approximated triples contriCCSD(T) gives microhartree accuracy in both terms with
bution to the exact contribution in MgSurely, CCSDT) is  Seven vectors. To conclude, we would like to mention that
not well suited for Mg, but we must remember that we are for this particular case the Gauss—Legendre quadrature inte-
really interested in the ability of the approximate method togration may give better results than the least-squares fitting
give the exact result, irrespective of the quality of the exacfrocedure proposed by Ber and AImld. In fact, we treat
value. The results are presented in Table V and show thdhe complex and the counterpoise corrected atom on an equal
this is indeed an extremely difficult case. Actually, the full footing, as neither the selected abscissas, nor the weights
108 accuracy can only be obtained by Cholesky CCBD depend on the actual values of orbital energies. This would
using ten vectors in the expansion of the orbital energy debot be the case if different least-squares fittings were used.
nominators, even though millihartree accuracy was reached
with only three vectors. This last number should be com+, syMMARY AND CONCLUSION
pared to the six integration points required in Laplace
CCSDT), which furthermore cannot reach microhartree ac-  We have convincingly shown that the orbital energy de-
curacy with ten integration points. On the other hand, botHl0minators entering the expressions for perturbation theory
methods show a satisfactory uniform convergence behaviopased triple excitation methods can be efficiently Cholesky

We have finally studied the dissociation energy ip a5  decomposed. The simple analytical expression in(Exfor
this property is very sensitive to the errors in the computedhe Cholesky vectors makes it possible to evaluate the rel-
total energies. In fact, the exact counterpoise correcte§vant parts of the vectors whenever needed in a computa-
CCSOT) value is only 99.75 cm® in this aug-pVTZ basis tional implementation. Thus no precalculation and storage of
extended with midbond functiorfdn Table VI the Cholesky
CCSOT) results are reported and the corresponding ones for _ o
Laol CCSIDT) are given in Table VII. As the dissociation TABLE VII. Laplace tra_nsform CCSQ') counterpoise (?orrected dissocia-

ap ace, 9 . tion energy of Ay and triples corrections to total energies.

energy is calculated as the difference between the total en
ergy of the van der Waals complex at equilibrium distance Integration points ~ D/cm™* Enr,/En EA/En
and the counterpoise corrected total energy of the atom, a

; . ; o i 1 79.66 —0.01764540 —0.008 676 08
uniform behavior of the calculated dissociation energies 2 100.36 001370562 —0.00679103
should not be expected. This is confirmed by inspection of 3 99.35 —0.01559601  —0.007 738 47
the results in the tables. The complications arising from the 4 99.78 —0.01604681  —0.007 962 90
extreme high accuracy required clearly emerge, taking into 5 99.75  —0.01627000  —0.00807455

t the number of vectors or integration points neces- 6 99.76 001634461 = ~000811185
accoun , 9 p 7 99.76  —0.01636542 —0.008 122 25
sary to achieve the exact result. Indeed, at least seven 8 99.75 001637115 —0.008 125 12
Cholesky vectors should enter the expansion to recover the 9 99.75 —0.01637341  —0.008 126 26
exact CCSIDT) dissociation energy. One could argue that the 10 99.75 —0.01637479  —0.008 126 94

Laplace CCSDT) behaves better than the Cholesky ap- Exact 99.75  —0.01637768 —0.008 128 39
proach in this case, since with only four integration points
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