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We introduce an alternative to Almlo¨f and Häser’s Laplace transform decomposition of orbital
energy denominators used in obtaining reduced scaling algorithms in perturbation theory based
methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite
matrices. We show that orbital denominators have a particular short and size-intensive Cholesky
decomposition. The main advantage in using the Cholesky decomposition, besides the shorter
expansion, is the systematic improvement of the results without the penalties encountered in the
Laplace transform decomposition when changing the number of integration points in order to
control the convergence. Applications will focus on the coupled-cluster singles and doubles model
including connected triples corrections@CCSD~T!#, and several numerical examples are discussed.
© 2000 American Institute of Physics.@S0021-9606~00!30713-9#
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I. INTRODUCTION

The aim of reducing the computational scaling of mo
ern electronic structure models is of great importance
quantum chemistry. The unphysicalN7 scaling of the
coupled-cluster singles and doubles model including c
nected triple excitations@CCSD~T!#, whereN is the number
of orbitals, severely restricts the size of molecular syste
that can be studied. Although we know that all mod
should eventually scale linearly with the size of the mole
lar system, our inappropriate formulation of the algebr
and computational expressions makes it difficult to exp
this inherent sparsity.

Important advances in linear scaling have already b
made in several areas. For wave function-based methods
the second-order Møller–Plesset perturbation theory~MP2!
one obstacle is the orbital denominator that connects p
ucts of two-electron integrals. In 1991 Almlo¨f and Häser1,2

suggested to use the Laplace transform to decompose o
denominators, i.e.,

1

ea1eb2e i2e j
5E

0

`

exp~2~ea1eb2e i2e j !t !dt, ~1!

and recently this concept has been used in an implementa
of linear scaling MP2.3 Häser and Almlo¨f also made anothe
important observation in this connection. Once the orb
denominator is decomposed the algebraic expression
fourth-order Møller–Plesset perturbation theory~MP4! may
be rearranged to obtain anN6 algorithm. However, theN6

computational step must be repeated for each integra
point used in the numerical integration of the Laplace tra
formation.

The use of the Laplace transform decomposition is
without complications as the numerical integration must
performed at some point in the calculation and the numbe
integration points and accuracy will be very critical in dete
mining the crossover point between the conventional and
5080021-9606/2000/113(2)/508/6/$17.00
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Laplace based approach. As we shall see in this article it m
require more than 50 integration points in the Gaus
Legendre integration procedure in order to obtain mach
precision in all elements of the orbital denominator. Inste
we propose to use a Cholesky decomposition of the ene
denominators entering the expressions in higher-order
turbation theory-based models. The Cholesky decomposi
requires a much smaller number of vectors in order to g
the same accuracy and as Wilkinson4 has shown, it is ex-
ceedingly numerically stable. In addition, as we show late
this article, the Cholesky decomposition also allows for t
implementation of anN6 algorithm for CCSD~T! and related
models.

The idea of using the Cholesky decomposition to obt
reduced scaling in electronic structure calculations is by
means new. In 1977, Beebe and Linderberg5 introduced the
Cholesky decomposition of the two-electron integral mat
in order to reduce the computational effort in the transform
tion of two-electron integrals from the atomic orbital~AO!
basis to the molecular orbital~MO! basis. Due to the com
putational limitations at that time, the authors could not co
pletely exploit the large reductions attainable. In this arti
we focus on orbital energy denominators, although some
the conclusions also apply to the two-electron integral m
trix. We defer this analysis to a future publication.

This article has been organized as follows. In Sec. II
describe the second- and third-rank decompositions. In S
III we discuss the Cholesky CCSD~T! model, and numerica
examples are presented in Sec. IV. Our final remarks
given in the last section.

II. RANK DECOMPOSITIONS

Consider an orbital denominator of the form

Dpq5
1

vp1vq
, ~2!
© 2000 American Institute of Physics
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where we assume that$vpup51,N% are positive real num-
bers. In the following, indicesp, q, r denote compound or
bital indices. TheD matrix is positive semidefinite as is ea
ily shown by analyzing the quadratic form

(
pq

xp

1

vp1vq
xq5E

0

`S (
p

xp exp~2vpt ! D 2

dt>0, ~3!

wherex is an arbitrary nonzero vector and we have used
Laplace transform to rewrite the quadratic form. The eq
sign in the inequality in Eq.~3! occurs in the case of degen
eratev-values, otherwise the matrix is positive definite. T
semidefiniteness gives no complications in practice as
Cholesky decomposition is terminated when all diagonal
ements are smaller than a specified thresholdd.0. The re-
mainder in a given step of the Cholesky decomposition
calculated recursively as

Dpq
n 5Dpq

n212
DpJn

n21DqJn

n21

DJnJn

n21 , ~4!

whereJn denotes the particular row and column that is be
removed in thenth step andDi j

0 5Di j . In order to proceed
we introduce the algebraic identity,

1

vp1vq
2

2vJ

~vp1vJ!~vq1vJ!

5
1

vp1vq
S vp2vJ

vp1vJ
D S vq2vJ

vq1vJ
D , ~5!

that will be used in deriving simple analytical expressions
the Cholesky vectors. The diagonal elements in thenth step
are given by the expression

Dpp
n 5

1

2vp
)
m51

n21 S vp2vJm

vp1vJm

D 2

. ~6!

Using this expression we may determine the order in wh
the Cholesky decomposition is performed without any
p
r
n

d-
e
It
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plicit calculation of the associated Cholesky vectors. T
follows from the fact that the largest element is located
the diagonal as the remainder is positive semidefinite. Gi
the order$Jnun51,Nd% in which the Cholesky decompos
tion is to be performed, relevant parts of the Cholesky v
tors may be calculated from the expression

M p
n5

A2vJn

~vp1vJn
! )

m51

n21 S vp2vJm

vp1vJm

D . ~7!

The decomposed matrix can now be written as

Dpq5 (
n51

Nd

M p
nMq

n , ~8!

whereNd denote the number of Cholesky vectors needed
order to make all diagonal elements of the residual ma
less thand. UsuallyNd is referred to as the effective numer
cal rank of the matrix.5 From the expression for the diagon
in Eq. ~6! we observe that the range of thev-values rather
than the number of values determines the number
Cholesky vectors needed in order to make all diagonal
ments smaller than the thresholdd. The quadratic produc
dependence nicely explains the fast convergence of the
composition, especially if thev-values are close-lying. Fur
thermore, we also observe the size-intensive nature of
decomposition as an orbital denominator, for identical no
interacting subsystems can be decomposed with the s
number of Cholesky vectors as required for one subsyst

We now consider the third-rank orbital denominator

Tpqr5
1

vp1vq1v r
, ~9!

and we readily observe that when fixing one index, the
maining two indices define a positive semidefinite matrix.
the best of our knowledge, the problem of decompos
higher-rank tensors in a Cholesky manner does not seem
have been solved in the mathematical literature. Based on
following algebraic identity,
1

vp1vq1v r
2

~vp12vJ!~vq12vJ!~v r12vJ!

3vJ~vp1vq1vJ!~vp1v r1vJ!~vq1v r1vJ!
1

~vp2vJ!~vq2vJ!~v r2vJ!

3vJ~vp1vq1vJ!~vp1v r1vJ!~vq1v r1vJ!

52
~vp2vJ!~vq2vJ!~v r2vJ!

~vp1vq1v r !~vp1vq1vJ!~vp1v r1vJ!~vq1v r1vJ!
, ~10!
-
ank
as-

ion.
ym-

y

ers
re
we suggest the following third-rank decomposition:

Tpqr5 (
n51

Nd

~21!n21$M pq
n M pr

n Mqr
n 2Npq

n Npr
n Nqr

n %, ~11!

where theM and N matrices are defined by successive a
plication of Eq.~10!. These matrices can, if needed, be fu
ther decomposed using the Cholesky decomposition. The
merical rank in Eq.~11! is much smaller than for the secon
rank decomposition in Eq.~8! as the diagonal elements of th
residual matrix now have a cubic product dependence.
-
-
u-

is

evident that in order to obtain anN6 scaling in the CCSD~T!
model, two of theM and N matrices should be further de
composed. However, even though the smaller numerical r
of the decompositions, the total number of vectors may e
ily become larger than that of a second-rank decomposit
Nevertheless, we speculate that using the permutational s
metry of thev-indices, anN6 algorithm may be achieved b
just decomposing one of theM and N matrices. The third-
rank decomposition may also become useful in higher ord
of perturbation theory or if the two-electron integrals a
decomposed in the expression of the CCSD~T! energy. Any-
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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way, we shall see in the next section how to obtain anN6

algorithm in CCSD~T! using the second-rank decompositio

III. CHOLESKY CCSD „T…

The connected triple excitation amplitudes that enter
expression for the CCSD~T! energy is given by6

t i jk
abc52Pi jk

abcH (dt i j
ad~ckubd!

~ea2e i2e j !1~ec2ek1eb!

2
( l t i l

ab~cku l j !

~ea2e i1eb!1~ec2ek2e j !
J , ~12!

where t i j
ab denotes the coupled-cluster singles and doub

~CCSD! amplitudes and we have arranged the orbital en
gies to indicate the way we will decompose the denomi
tors. The denominator is not symmetric as partitioned in
~12! and thus we cannot use the second-rank decompos
directly. However, by defining thev-values as elements o
the vector

vp5S ea 2e i 2e j

ea 2e i 1eb
D

p

, ~13!

we may decompose the denominator as

1

~ea2e i2e j !1~ec2ek1eb!
5 (

n51

Nd

Mai j
n Mckb

n , ~14!

where the Cholesky vectors should now be calculated fr
the decomposition determined by thev-values defined in Eq
~13!. Consequently, only the nondiagonal part of the deco
position is used and as the residual matrix is positi
semidefinite, the errors in the nondiagonal elements will
smaller than in diagonal elements. Inserting the expres
for the decomposition in Eq.~14! into Eq.~12! we may write
the triples amplitudes as

t i jk
abc52Pi jk

abc(
n51

Nd H(
d

Vai jd
n Zckbd

n 2(
l

Waibl
n Yck jl

n J ,

~15!

where theV, Z, W, and Y matrices are implicitly defined
Using this decomposed form of the triple excitation amp
tudes in the expression for the CCSD~T! energy, we obtain
an algorithm that scales asNdN6. We shall denote this
method in brief as Cholesky CCSD~T! and the Laplace trans
form counterpart as Laplace CCSD~T!. In principle, the basic
idea2 behind Cholesky CCSD~T! is to contract one Cholesk
vector from the decomposition with the corresponding in
gral~s! before the summations over thed andl indices in Eq.
~12! are carried out. The detailed discussion and implem
tation of this algorithm will be described elsewhere.

For iterative perturbation theory based connected tr
excitation models, such as the CC3 model,6 similar reduc-
tions may also be obtained. Large scale applications of th
models are virtually impossible due to the computatio
cost. However, if the scaling is reduced to theN6 level, then
the CC3 model might actually be used for more than j
benchmark calculations.
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IV. NUMERICAL EXAMPLES

In order to compare the Cholesky decomposition and
Laplace transform decomposition we make a simple varia
substitution in the Laplace transform integral and write t
denominator as

1

vp1vq
5E

0

1

expS 2~vp1vq!
s

12sD 1

~12s!2 ds. ~16!

The numerical integration will be carried out using standa
Gauss–Legendre quadrature integration.7 This integration
procedure might not be the optimal. Indeed, Ha¨ser and
Almlöf2 have suggested a least-squares quadrature-type
gration procedure in order to choose the best possible i
gration points for a given set of orbital energies. Howev
we have found standard Gauss–Legendre quadrature inte
tion to be very accurate and thus we believe the comparis
are reasonable. In the following, we have decomposed all
possible denominators and not only the totally symme
part.

In Table I we compare the Cholesky and the Lapla
decompositions of the orbital energy denominator appea
in the CCSD~T! correction energy. We have chosen ozone
one of the test systems due the rather large triples contr
tion to the total energy. All calculations are carried out at t
experimental geometry and we have used the cc-pVQZ b
set from Dunning’s group.8 As large ranges of orbital ener
gies are the most difficult cases for both methods, we h
chosen to test both methods for a molecular system show
these characteristics. In particular, we have studied the
sidual errors in Mg2 at the experimental geometry using a
aug-cc-pCVTZ basis extended with a set of midbo
functions.9 The core orbitals are frozen in the ozone calcu
tions, but all electrons are included for Mg2. We first observe
that even for Mg2 we have a maximum error of the orde
1023 using only five Cholesky vectors. Similarly, an acc
racy to six decimal digits may be accomplished with abo
ten vectors. This should be compared to the 20 and 30 i

TABLE I. Largest absolute error in the elements of the CCSD~T! orbital
denominator using Cholesky and Laplace transform decompositions for
ferent number of vectors~integration points!.

Vectors

Ozone Mg2

Choleskya Laplaceb Choleskyc Laplace

5 6.531024 1.031022 1.331023 2.531022

10 9.131027 1.731023 6.131026 2.731023

15 1.531029 5.231025 3.931028 1.131023

20 1.1310212 2.231026 2.2310211 2.131024

25 3.531028 2.0310213 2.331025

30 1.0310210 1.331026

35 1.6310211 3.931028

40 5.3310213 6.3310210

45 7.6310214 4.7310211

50 5.1310212

aThe absolute errors for 25 vectors and beyond are less than machine
cision.

bThe absolute errors for 50 points and beyond are less than machine p
sion.

cThe absolute errors for 30 vectors and beyond are less than machine
cision.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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gration points required by the Laplace transform for ozo
and Mg2, respectively. The most important feature to
stressed is the slow convergence of the Laplace transf
decomposition compared to the Cholesky. As a conseque
more than 50 integration points are required in order to
tain machine precision for Mg2.

We analyze the behavior of Cholesky CCSD~T! with
respect to molecular size and report the results for differ
systems in Table II. The linear water cluster calculations
carried out using a 3-21G basis set10 and constructed by re
peating a basic unit consisting of a single water molecule
the experimental geometry with a 2 a.u. separation betwee
adjacent oxygen atoms. For the benzene–argon comple
use an aug-cc-pVTZ basis set extended with midbo
functions.9 The first point to note is that beyond a certain s
the number of Cholesky vectors required to get a predefi
accuracy is essentially constant. For the cluster of five m
ecules~with 975 single excitation energies! 1023 accuracy
may be accomplished with six vectors, the same number
quired in the ten molecules case~with dimension 3850!.
Only one additional vector is needed for~H2O!15 with 8550
single excitation energies. The largest considered syste
the benzene–argon complex~dimension 14 130! and requires
five vectors to get a maximum difference in the diago
elements of 7.931024. We recall as discussed above,
larger accuracy is obtained in the nondiagonal element
the decomposed matrix. Similarly, the number of vect
needed for a 1026 precision varies from 11@benzene–argon
and ~H2O!5# to 13 in the case of~H2O!10.

The effect of increasing the basis set size in the c
nected triples correction to the CCSD energy is examine
Table III. We present in this table the triples correction fo
single water molecule using correlation-consistent basis s
We start by mentioning that the convergence of energy
much faster than of the individual elements of the deno

TABLE II. The maximum diagonal element in the residual matrix for t
Cholesky decomposition of the CCSD~T! orbital denominator.a

n H2O (H2O)5 (H2O)10 (H2O)15 C6H6–Ar

1 4.531022 2.031021 2.631021 5.931021 1.131021

2 8.831023 3.931022 5.131022 1.131021 2.231022

3 2.731023 1.231022 1.531022 2.231022 6.731023

4 7.131024 7.131023 9.231023 2.031022 4.031023

5 1.431024 1.131023 1.531023 4.031023 7.931024

6 1.531025 3.731024 8.931024 2.431023 6.231024

7 1.331026 1.131024 2.031024 6.131024 1.231024

8 7.931027 9.031025 5.431025 1.431024 4.231025

9 2.331028 5.031026 3.431026 2.431025 2.731025

10 5.731029 1.431026 2.231026 3.631026 3.831026

11 2.131029 4.531027 9.531027 1.631026 9.931027

12 9.3310211 7.431028 4.031027 1.631026 3.231027

13 1.831028 7.731028 1.931027 1.231027

14 7.431029 1.131028 5.131028 4.331028

15 2.731029 2.631029 1.531028 7.931029

16 6.1310211 5.7310210 1.731029 4.931029

17 2.4310211 1.131029 2.931029

18 6.5310211 2.0310210

19 1.6310210

20 1.2310211

aAll-electron calculations.
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nator matrix. In fact, millihartree accuracy can be obtain
with only two vectors in the three cases considered and
vectors are enough for microhartree accuracy. In addit
the obtained accuracy with a given number of vectors is
proximately the same, independently of the considered ba
We should recall that in most of the studied cases we
proach to the exact CCSD~T! correction from above. Never
theless, in the cc-pVTZ basis set calculation the CCSD~T!
correction is overestimated with three vectors and the us
trend is recovered only when the fifth vector is included.

Unlike the iterative triples corrected models,
CCSD~T! the accuracy of the orbital energy denominato
may be disregarded, as long as the final energy correctio
accurate enough. Therefore, in Table IV we present a c
parison of the convergence of Cholesky and Lapla
CCSD~T! correction energy for ozone. As stated before
usually approach the exact CCSD~T! correction from above
and this is also the case for the two Cholesky CCSD~T!
calculations presented here. Unfortunately, the converge
is not uniformly decreasing~cf. the correction for cc-pVQZ
basis when four vectors have been included! and this makes
it difficult to establish an extrapolation procedure. Anywa
millihartree accuracy is obtained with only three vectors a
microhartree accuracy requires no more than six vectors.
the other hand, it seems that this system is a difficult case
the Laplace transform decomposition. Actually, even w

TABLE III. The CCSD~T! triples correction (Eh) in H2O for different num-
ber of Cholesky vectors and correlation consistent basis sets.a

Cholesky vectors cc-pVTZ cc-pVQZ cc-pV5Z

1 20.004 936 09 20.005 661 02 20.005 782 95
2 20.007 847 95 20.009 270 56 20.009 811 94
3 20.007 867 99 20.009 373 03 20.009 993 90
4 20.007 863 54 20.009 377 86 20.010 002 24
5 20.007 864 73 20.009 380 35 20.010 006 73
6 20.007 865 54 20.009 381 61 20.010 008 39
7 20.007 865 61 20.009 381 68 20.010 008 50
8 20.007 865 63 20.009 381 70 20.010 008 54
9 20.007 865 63 20.009 381 70 20.010 008 57

10 20.007 865 63 20.009 381 70 20.010 008 58

Exact 20.007 865 63 20.009 381 70 20.010 008 58

aAll-electron calculations.

TABLE IV. The CCSD~T! triples correction (Eh) in ozone using Cholesky
and Laplace decompositions and correlation consistent basis sets.

Vectors
Cholesky
cc-pVTZ

Laplace
cc-pVTZ

Cholesky
cc-pVQZ

Laplace
cc-pVQZ

1 20.024 088 79 20.009 903 40 20.025 521 67 20.010 181 77
2 20.045 415 72 20.036 888 62 20.048 908 70 20.038 336 39
3 20.047 067 59 20.045 485 94 20.051 079 89 20.047 377 95
4 20.047 095 00 20.046 983 16 20.051 106 11 20.050 128 31
5 20.047 101 33 20.047 121 01 20.051 093 53 20.050 919 30
6 20.047 116 89 20.047 118 49 20.051 107 46 20.051 062 50
7 20.047 116 96 20.047 115 97 20.051 107 56 20.051 092 03
8 20.047 116 98 20.047 116 96 20.051 107 58 20.051 102 61
9 20.047 117 00 20.047 117 14 20.051 107 67 20.051 106 21

10 20.047 117 00 20.047 117 00 20.051 107 69 20.051 107 20

Exact 20.047 117 00 20.047 117 00 20.051 107 69 20.051 107 69
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ten integration points only a precision of 4.931027 is
achieved, while four and five vectors are needed for m
hartree accuracy for the triple and quadruple-zeta basis
respectively. Moreover, the exact triples contribution to e
ergy is overestimated for the cc-pVTZ basis with five or s
points in the Gauss–Legendre quadrature integration.

To complete the study initiated in Table I, we have a
studied the convergence of the approximated triples con
bution to the exact contribution in Mg2. Surely, CCSD~T! is
not well suited for Mg2, but we must remember that we a
really interested in the ability of the approximate method
give the exact result, irrespective of the quality of the ex
value. The results are presented in Table V and show
this is indeed an extremely difficult case. Actually, the f
1028 accuracy can only be obtained by Cholesky CCSD~T!
using ten vectors in the expansion of the orbital energy
nominators, even though millihartree accuracy was reac
with only three vectors. This last number should be co
pared to the six integration points required in Lapla
CCSD~T!, which furthermore cannot reach microhartree a
curacy with ten integration points. On the other hand, b
methods show a satisfactory uniform convergence behav

We have finally studied the dissociation energy in Ar2 as
this property is very sensitive to the errors in the compu
total energies. In fact, the exact counterpoise correc
CCSD~T! value is only 99.75 cm21 in this aug-pVTZ basis
extended with midbond functions.9 In Table VI the Cholesky
CCSD~T! results are reported and the corresponding ones
Laplace CCSD~T! are given in Table VII. As the dissociatio
energy is calculated as the difference between the total
ergy of the van der Waals complex at equilibrium distan
and the counterpoise corrected total energy of the atom
uniform behavior of the calculated dissociation energ
should not be expected. This is confirmed by inspection
the results in the tables. The complications arising from
extreme high accuracy required clearly emerge, taking
account the number of vectors or integration points nec
sary to achieve the exact result. Indeed, at least se
Cholesky vectors should enter the expansion to recover
exact CCSD~T! dissociation energy. One could argue that t
Laplace CCSD~T! behaves better than the Cholesky a
proach in this case, since with only four integration poin

TABLE V. The CCSD~T! triples correction (Eh) for Mg2 using Cholesky
and Laplace decompositions and an aug-cc-pCVTZ basis set extended
midbond functions.

Vectors Cholesky Laplace

1 20.002 543 67 20.001 649 68
2 20.005 452 62 20.003 234 80
3 20.007 857 15 20.005 167 52
4 20.007 922 71 20.006 423 92
5 20.008 381 41 20.007 275 92
6 20.008 384 81 20.007 789 78
7 20.008 387 48 20.008 064 18
8 20.008 388 36 20.008 206 39
9 20.008 388 36 20.008 283 05

10 20.008 388 77 20.008 326 79

Exact 20.008 388 77 20.008 388 77
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the error of the approximated dissociation energy is no m
than 0.03 cm21. As a matter of fact, it is also clear by in
spection of the last two columns in Table VII that this e
tremely good result is obtained due to a favorable cance
tion of errors. Actually, to reach an accuracy of 1 cm21

requires roughly microhartree accuracy in the absolute e
gies, an accuracy that Laplace CCSD~T! cannot deliver with
ten integration points. On the other hand, Choles
CCSD~T! gives microhartree accuracy in both terms w
seven vectors. To conclude, we would like to mention t
for this particular case the Gauss–Legendre quadrature
gration may give better results than the least-squares fit
procedure proposed by Ha¨ser and Almlo¨f. In fact, we treat
the complex and the counterpoise corrected atom on an e
footing, as neither the selected abscissas, nor the wei
depend on the actual values of orbital energies. This wo
not be the case if different least-squares fittings were us

V. SUMMARY AND CONCLUSION

We have convincingly shown that the orbital energy d
nominators entering the expressions for perturbation the
based triple excitation methods can be efficiently Chole
decomposed. The simple analytical expression in Eq.~7! for
the Cholesky vectors makes it possible to evaluate the
evant parts of the vectors whenever needed in a comp
tional implementation. Thus no precalculation and storage

ith
TABLE VI. Cholesky CCSD~T! counterpoise corrected dissociation ener
of Ar2 and triples corrections to total energies.

Cholesky vectors De /cm21 EAr2
/Eh EAr

c /Eh

1 201.81 20.011 286 40 20.005 350 25
2 103.38 20.016 198 54 20.008 030 56
3 97.97 20.016 386 70 20.008 136 96
4 99.61 20.016 378 01 20.008 128 89
5 99.63 20.016 378 54 20.008 129 10
6 99.44 20.016 377 69 20.008 129 10
7 99.75 20.016 377 69 20.008 128 40
8 99.75 20.016 377 68 20.008 128 40
9 99.75 20.016 377 69 20.008 128 39

10 99.75 20.016 377 68 20.008 128 39

Exact 99.75 20.016 377 68 20.008 128 39

TABLE VII. Laplace transform CCSD~T! counterpoise corrected dissocia
tion energy of Ar2 and triples corrections to total energies.

Integration points De /cm21 EAr2
/Eh EAr

c /Eh

1 79.66 20.017 645 40 20.008 676 08
2 100.36 20.013 705 62 20.006 791 03
3 99.35 20.015 596 01 20.007 738 47
4 99.78 20.016 046 81 20.007 962 90
5 99.75 20.016 270 00 20.008 074 55
6 99.76 20.016 344 61 20.008 111 85
7 99.76 20.016 365 42 20.008 122 25
8 99.75 20.016 371 15 20.008 125 12
9 99.75 20.016 373 41 20.008 126 26

10 99.75 20.016 374 79 20.008 126 94

Exact 99.75 20.016 377 68 20.008 128 39
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vectors are needed and the order in which the decompos
should take place is easily determined using the expres
for the diagonal elements in Eq.~6!.

The large variety of applications presented demonstr
the robustness of the approach with respect to numerical
bility and convergence. The Cholesky decomposition is s
nificantly shorter than the Laplace transform decomposit
and offers a systematic approach to increase the accura
the results without additional cost.

Having established this numerical tool, we are convinc
that Cholesky CCSD~T! is worth implementing and will cer-
tainly make integral-direct CCSD~T! much more attractive to
computational chemists. The potential for making additio
reductions in the computational scaling of Choles
CCSD~T! is clearly possible using an integral prescreen
approach.
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