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We demonstrate that substantial computational savings are attainable in electronic structure
calculations using a Cholesky decomposition of the two-electron integral matrix. In most cases, the
computational effort involved calculating the Cholesky decomposition is less than the construction

of one Fock matrix using a direct O8N procedure. ©2003 American Institute of Physics.
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INTRODUCTION atomic orbitals. Furthermore, the calculation of the decom-
position must be carried out in an efficient integral direct

manner, which avoids both storage of the precalculated inte-
gﬁals and recalculation of these integrals.

The notion of decomposing the two-electron integral
matrix was first suggested by Beebe and LinderBetigw-
ever, the idea does not seem to have received much attenti . . . . .
in the quantum chemistry literature. Although some applica- A related idea is used in the resolution Of. identigy)
tions have been seen, the potential of the method has nﬁloproach, also put forwar.d by Beebe angélr_mde_rberg and
been fully explored. Most noteworthy of these applications isater developed by Feyereisen and co-workern this ap-

the developments by Rgeggen and co-workéfswever the proach the two-electron integrals are written as an inner pro-
most recent integral-direct implementatias limited to fam- Jection in terms of an auxiliary basis set labeledibandQ

ily basis sets and as such of limited applicability. There are 1

several reasons for this limited interest. First, the implemen- (“18|75):P2Q (aBIP)(PIQ)"(Qlyd). @

tation for large general basis sets and large systems is by no

means straightforward. Second and more important, the use- However, the procedure does not prescribe the construc-

fulness of the decomposition in subsequent computations #on of the auxiliary basis and this may typically be obtained

not transparent, thus rendering the advantages inconclusiv®y Preoptimization. The clear drawback of this approach is
However, there is a need in state of the art quanturﬁhe matrix inversion entering the expression together with

chemistry to pursue different routes to reduce the computa’ihe fact that errors scale with the size of the molecular sys-

tional requirements involved in accurate studies of large motem and these are statistical in natre.

lecular systems. One approach to this problem is the so-

called linear scaling techniques that make frequent use of theLGORITHMS

multipole expansion of the two-electron Coulomb interaction  1he problem we face implementing the Cholesky de-
in order to reduce the computational scaling. However, thesgomposition is that the integral matrix is not positively defi-
methods deteriorate as the size of the basis set on each atqfe ¢ rather semidefinite. Actually, the integral matrix has
increases and becomes more diffuse. Thus, we must segl,st |ikely a slightly negatively definite part due to round off
methods that combine the sparsity for large systems and €¥;rors in the integral calculations, as we have shown by di-
ploit the linear dependence in the product space of atomicet giagonalization for small cases, and there is no reason to
orbitals. We believe the Cholesky approach is a viable atpejieve this should be any different for larger systems and

tempt to attain this goal. . . larger basis sets. The decomposition of a positive semidefi-
The Cholesky decomposition of the atomic orbitdD)  pite matrix does not enjoy the stability of the procedure for
two-electron integrals may be written as strictly positive definite matrices. Round off errors are
M closely related to the dimension of the matrix and will in-
(aB|y5)=JEl LiﬁLJyﬁ, (1) crease with the dimension. Even employing full pivoting the

Cholesky procedure has been shown to fail for semidefinite
where Greek letters denote atomic orbitals avidis the — matrices’
number of Cholesky vectors. This representation is only The decomposition to an accuragy proceeds in the
useful if the number of Cholesky vectors needed in order tdollowing manner: Initially we calculate the diagonal ele-
numerically represent the integrals is significantly less tharmentsM ,,=(«8|aB), wherep and laterq will be used to
the full dimensionN(N+1)/2, whereN is the number of denote compound AO indices. Based on the information in
the diagonal we perform a prescreening and zero out ele-
dpermanent address: Department of Chemistry, Norwegian University ofnents that are smaller tha®/Xna, Where Xmax 1S t[he
Science and Technology, N-7491 Trondheim, Norway. Electronic mail:Maximum diagonal element. Once this initial screening has
koch@phys.chem.ntnu.no been carried out further improvements of the accuracy be-

0021-9606/2003/118(21)/9481/4/$20.00 9481 © 2003 American Institute of Physics

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


https://core.ac.uk/display/70997695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

9482 J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Koch, Sanchez de Meras, and Pedersen

yond A are not possible. In order to proceed we find theThis is implemented in a batched loop over theand b
largest diagonal element and calculate the integralsirtual orbital indices, making the algorithm virtually open
(** |AB), where AB is the shell pair that contains the diag- ended with minimal storage requirements. The first part of
onal element in question. We may now calculate the assocthe calculation involves the construction of transformed
ated Cholesky vector entering the equation for the update@holesky vectoriii. From these we generate the integrals

matrix in the MP2 expression
M M M
~ _ pJ al| _ 9
Mpg=Mpq (W;)(W}J) Mpq~LoLa ® (ailbj)=> LyLY;, ®)
J=1

where the vector is implicitly defined. In an algorithm em- ) . o ]
ploying full pivoting we would have to discard the rest of the and process the;e by direct summatlon qf thezcozntrlbutlons in
integrals in this shell pair unless the largest diagonal elemerftd- (5). We obtain the computational scaligV=O*, where

of the M matrix belongs to the same shell pair. This is how-.v Is the ”“”?ber of virtual orb!tals. We may reduce thg scal-
ever very unlikely and would lead to a prohibitively large ing further directly decomposing th@(]bj) integrals using
number of integral recalculations. A more sound approac he transformed Cholesky vectors in the process. This gives a

would be to decompose the remaining integrals in the sheﬁIgnlflcantly smallem in Eq. (8) leading to an overall re-
pair. However, treating all diagonals larger thamakes the

duction in computational requirements.
decomposition unstable even for small systems. Thus, we A few remarks about scaling and screening are now ap-
must control the size of diagonal elements treated in the shell

ropriate. Screening by the Cauchy—Schwarts inequality is
pair and tailor these to the largest diagonal element at ar:gjn integral part of the Cholesky decomposition as the update
given step in the decomposition. We have simply require

atrix in Eq.(3) is positive semidefinite. Thus, at each step
that only diagonals larger thaX,,,/1000 are decomposed. of the decomposition
This will of course lead to some recalculation of integrals but

as we shall see later these are actually negligible. The pro- |'V|pq|$\/|\/| ppMgq= \/M ppXmax (7)
cess now continues until all diagonal elements are smaller
thanA. assuming negligible round off errors. However, round off

The SCF implementation is facilitated by a modified €rrors occur and we use a weaker criteria normally dividing
Fock matrix construction algorithm. We express the two-by 1000. The inequality may be used for the individual di-
electron part of the AO Fock matrix in terms of the Choleskyagonal elements as well as at shell level in the calculation of
decomposed integrals the (** |AB) integrals. In the current implementation the

Cholesky vectors are stored and read from disk, and one
S )_z ENE ) @ would_ be inc.Iin.ed to believe .this is a limiting factor. How-
< Yoo L makmpk ) ever, in the limit of large basis sets the number of elements

needed to be stored scaleM$ much less than the potential
where the AO density matrix is given &,5=>,C,Cpg, N* number of raw two-electron integrals or th& scaling
in terms of the molecular orbital coefficien®;,, wherek  suggested in Ref. 1. Performing a method specific decompo-
label occupied orbitals. The implementation of He) is  sition preselecting or dynamically selecting the relevant parts
straightforward resulting in the computational scalingof the two-electron integral matrix can facilitate linear scal-

Fap=2 | 2L,
af 2( af

2MN?0, whereO is the number of occupied orbitals. ing in the number of elements to be stored. In this sense the
We now proceed to the canonical orbital MP2 energycurrent implementation delivers an all purpose decomposed
expression integral matrix. Exploiting the sparsity of the individual

. . o Cholesky vectors is an important goal as this will reduce the
(2(ailbj) —(aj|bi))(ailbj) (5)  scaling of the SCF and MP2 algorithms discussed above. For
€atep—gi—g; ' instance, in the limit of a large system and assuming linear

Eppo= ! >
MPZ_Zaibj

TABLE |. Absolute errors in SCF energies reported in units of the particular decomposition threshdlee numbers of Cholesky vectors are given in
parentheses. The total dimension of the two-electron integral matrix is reporig . asnd the number of atomic orbitals Bis The number of orbitals that
needed to be projected out of the basis is reported in parentheses in the last column. Errors for benzene aug-cc-pV6Z is with respect to thelaeergy calcu
using a threshold of 10°.

System(Basis set A=10"4 A=10"° A=10"8 A=10"10 M max N
TCO (aug-cc-pVDZ 0.64(1284) 0.58 (2163 0.42 (3687 6.00 (5427 48 205 310(0)
TCO (aug-cc-pVTZ 0.542794 2.08 (4584 2.39 (7255 2.0010547 238395 690(0)
Benzenegaug-cc-pVDZ 0.04 (933 0.35 (1584 0.12 (2548 2.17 (3479 18528 192(0)
Benzene(aug-cc-pVTZ 0.341931) 0.05 (3239 0.64 (4891 0.08 (6714 85905 414(1)
Benzenelaug-cc-pvVQZ 0.12(3270 0.20 (5375 0.74 (8019 1.27(11178 286 146 756(2)
Benzengaug-cc-pV52 0.025437) 0.81 (8756 0.01(124419) 0.06(16455 771903 124210
Benzenegaug-cc-pV624 0.668415H 0.101275% 0.5017836 — (23600 1798 356 189@7)
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TABLE II. Absolute errors in MP2 energies reported in units of the particu- data we should note the amazing fact that only 27 orbitals
lar decomposition thresholl. The numbers of Cholesky vectors required to had to be projected out of the aug-cc-pV6Z basis due to
decomposedi|bj) integrals are given in parentheses. The total dimension . . . .
of the (ailbj) integral matrix is reported o, small eigenvalues in the overlap matr!x. This clearly demon-
strates that even this large basis set is far from saturation or
System(Basis set ~ A=10"* A=10° A=10° Mg,  what we might term numerical completeness. Turning to

TCO (aug-cc-pvVDZ 1.29 356 4.08 geag T1COin Table I, we see that errors are slightly higher than in
TCO (aug-cc-pVTZ 1.12 15.7 15.1 20429 benzene. Otherwise we note that the reduction factor for aug-
Benzene(aug-cc-pVDZ 2.6 (427) 2.9 (816  3.21420 3591  cc-pVTZ is 32.8 for the 108 threshold.

Benzeneaug-cc-pVT4 95 (700 631323  8.22139 8232 We now turn our attention to the errors in the calculated

Benzengaug-cc-pVQZ 20.3106) 10.31976 12.1(3015 15393 L . . ~
Benzeneaug-co-pvsd  23.61530 53.92790 1044109 25431 MP2 energies in Table Il. Two different computational strat

Benzenelaug-cc-pV62 34.32147 31.23766 76.25482 38808 egies have been employed. For TCO we used the full set of
Cholesky vectors and for benzene we decomposed the
(ailbj) integral matrix before summing the contributions.
We first observe that the errors are larger then for SCF, this
Mas a natural explanation as the MP2 energies depend lin-
early on the errors in the orbitals. The MP2 accuracy also
depends on the error in thai(bj) integrals scaled by the
orbital energy denominators, potentially increasing the MP2
APPLICATIONS error beyond the decomposition threshold. For benzene the

First we would like to address the accuracy of the de-errors refer to 10'° threshold, as for basis sets larger than
composition. For this purpose we have chosen to use trangug-cc-pVTZ it was impossible to carry out the calculations
cycloocteng TCO) and benzene as illustration. In Table | the using our integral-direct coupled cluster code. Regarding the
errors in calculated SCF energies are reported for differendecomposition of theg(i|bj) integral matrix we note that the
levels of accuracy in the decomposition. The main features toeductions are not as pronounced as for the atomic orbital
notice in these errors are that the accuracy obtained in théecomposition; however the maximum rank is also several
SCF energy is mainly determined by the threshold in theorders of magnitude smaller. Even though we use a canonical
decomposition. The errors are seen to be consistent arzhsis the reductions are significant spanning from 2.5 to 7.1
stable with respect to the threshold. for the threshold equal 16.

In Table | we also report the number of Cholesky vectors  Table Ill summarizes the decomposition for 1,4FBi¢4-
needed to decompose the integral matrix to a given threstdiphenylamino-phenyvinyl] benzene denoted stilbene-
old. There are several aspects to consider and let us initiallipD(6) in the table, G, and benzene. The ratio between the
focus onA =102 for benzene. We observe that the numbernumber of Cholesky vectors and the number of basis func-
of Cholesky vectors compared to full dimension decreaséions ranges from 9.4 for benzene to 12.5 for stilbeneg®)D
rapidly with the size of the basis; such that for aug-cc-pVDZIn all casedM is less than 5% oM ., hotably 1.8% for G
we obtain a reduction of 7.3 and this increase to 101 forand 1.0% for benzene, showing that the amount of integrals
aug-cc-pV6Z. For a standard application basis set like augthat must be calculated to numerically represent the integral
cc-pVTZ the factor is 17.6. The factor between the numbematrix is minimal. For all systems and basis sets, the actual
of Cholesky vectors and basis functions does not show suchumber of integral distributions is less than 8%, of which a
large variation. For aug-cc-pVDZ and aug-cc-pVTZ the fac-negligible number of shell pairs must be recalculated as a
tor is 13.3 and 11.8 respectively, and decreases further to 9gbnsequence of the algorithm. The time spent recalculating
for aug-cc-pV6Z. We then look at the number of Choleskyintegrals is minimized by employing segmented basis sets.
vectors for different thresholds. Evidently, increasing the acFinally, we note that the total time required for the Cholesky
curacy from 108 to 107 1° has a fairly high cost; around decomposition algorithm is comparable to that of a single
30-40% in the number of vectors. The difference betweerintegral-direct Fock matrix build using density and integral
10 ¢ and 108 thresholds is around 40—-60% with larger prescreening. The total number of elements in the Cholesky
variation depending on the basis. In general we recommendectors scale abl? although the prefactor can be large. For
using 10 8 or maybe 106 depending on the properties that benzene the prefactor increases 95% going from aug-cc-
need to be calculated. As a final remark about the benzengvDZ to aug-cc-VTZ, but when going from aug-cc-pV5Z to

scaling in the AO density, the evaluation of the exchange pa
of the Fock matrix will scale abl?>. Method specific decom-
position should reduce this even further.

TABLE Ill. The number of Cholesky vectofd and the maximum dimension. Furthermore, the number of shell gifé\8) that need to be calculated and
the maximum §P andSPR,,,,). The last column report timing ratio between one Fock matrix construction and the total time for the Cholesky decomposition
thresholdA =108,

System Basis set M M max SP S Prax Tosce/ Tep
Stilbene-DI6) (CyeN,Hze) 6-31G 6301 127 260 215@1) 48828 1.05
6-31G+ + 7574 268 278 264329) 98 790 1.35
Buckminster fullerene () aug-cc-pvVDZ 17 390 952 890 25@) 3321 0.38
Benzene aug-cc-pVe6Z 17 836 1798 356 238) 7750 1.75

3ntegral threshold in decomposition 19.
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aug-cc-pV6Z the increase is only 40%. A method specific  Integral-direct techniques for highly correlated initio

decomposition should make this sequence converge fast. models have expanded the application range for coupled
cluster methods. These methods are still very demanding and

CONCLUSIONS are considered a serious bottleneck. We anticipate the

We have demonstrated the small numerical rank of the(:holesky approach will remove this limitation and the future

two-electron integral matrix for large molecular systems anodevglopments of these method; will focus on reducing t'he
large basis sets. The proposed algorithm is stable and can Bgallng, as well as an emba_lr_rassujgly parallel im pI_emenFatlon
used as a black box generator of the Cholesky vectors. The the Cholesky decomposition will make applications viriu-

current implementation still requires some improvements a?”y open ended.
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