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Reduced scaling in electronic structure calculations using Cholesky
decompositions
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We demonstrate that substantial computational savings are attainable in electronic structure
calculations using a Cholesky decomposition of the two-electron integral matrix. In most cases, the
computational effort involved calculating the Cholesky decomposition is less than the construction
of one Fock matrix using a direct O(N2) procedure. ©2003 American Institute of Physics.
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INTRODUCTION

The notion of decomposing the two-electron integ
matrix was first suggested by Beebe and Linderberg.1 How-
ever, the idea does not seem to have received much atte
in the quantum chemistry literature. Although some appli
tions have been seen, the potential of the method has
been fully explored. Most noteworthy of these applications
the developments by Røeggen and co-workers.2 However the
most recent integral-direct implementation3 is limited to fam-
ily basis sets and as such of limited applicability. There
several reasons for this limited interest. First, the implem
tation for large general basis sets and large systems is b
means straightforward. Second and more important, the
fulness of the decomposition in subsequent computation
not transparent, thus rendering the advantages inconclus

However, there is a need in state of the art quant
chemistry to pursue different routes to reduce the comp
tional requirements involved in accurate studies of large m
lecular systems. One approach to this problem is the
called linear scaling techniques that make frequent use o
multipole expansion of the two-electron Coulomb interact
in order to reduce the computational scaling. However, th
methods deteriorate as the size of the basis set on each
increases and becomes more diffuse. Thus, we must
methods that combine the sparsity for large systems and
ploit the linear dependence in the product space of ato
orbitals. We believe the Cholesky approach is a viable
tempt to attain this goal.

The Cholesky decomposition of the atomic orbital~AO!
two-electron integrals may be written as

~abugd!5 (
J51

M

Lab
J Lgd

J , ~1!

where Greek letters denote atomic orbitals andM is the
number of Cholesky vectorsL. This representation is only
useful if the number of Cholesky vectors needed in orde
numerically represent the integrals is significantly less th
the full dimensionN(N11)/2, whereN is the number of
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atomic orbitals. Furthermore, the calculation of the deco
position must be carried out in an efficient integral dire
manner, which avoids both storage of the precalculated i
grals and recalculation of these integrals.

A related idea is used in the resolution of identity~RI!
approach, also put forward by Beebe and Linderberg
later developed by Feyereisen and co-workers.4,5 In this ap-
proach the two-electron integrals are written as an inner p
jection in terms of an auxiliary basis set labeled byP andQ

~abugd!5(
PQ

~abuP!~PuQ!21~Qugd!. ~2!

However, the procedure does not prescribe the const
tion of the auxiliary basis and this may typically be obtain
by preoptimization. The clear drawback of this approach
the matrix inversion entering the expression together w
the fact that errors scale with the size of the molecular s
tem and these are statistical in nature.6

ALGORITHMS

The problem we face implementing the Cholesky d
composition is that the integral matrix is not positively de
nite but rather semidefinite. Actually, the integral matrix h
most likely a slightly negatively definite part due to round o
errors in the integral calculations, as we have shown by
rect diagonalization for small cases, and there is no reaso
believe this should be any different for larger systems a
larger basis sets. The decomposition of a positive semid
nite matrix does not enjoy the stability of the procedure
strictly positive definite matrices. Round off errors a
closely related to the dimension of the matrix and will i
crease with the dimension. Even employing full pivoting t
Cholesky procedure has been shown to fail for semidefi
matrices.7

The decomposition to an accuracyD proceeds in the
following manner.1 Initially we calculate the diagonal ele
mentsM pp5(abuab), wherep and laterq will be used to
denote compound AO indices. Based on the information
the diagonal we perform a prescreening and zero out
ments that are smaller thanD2/Xmax, where Xmax is the
maximum diagonal element. Once this initial screening h
been carried out further improvements of the accuracy

of
l:
1 © 2003 American Institute of Physics
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yond D are not possible. In order to proceed we find t
largest diagonal element and calculate the integ
(** uAB), where AB is the shell pair that contains the dia
onal element in question. We may now calculate the ass
ated Cholesky vector entering the equation for the upda
matrix

M̃ pq5M pq2S M pJ

MJJ
1/2D S MqJ

MJJ
1/2D 5M pq2Lp

JLq
J , ~3!

where the vector is implicitly defined. In an algorithm em
ploying full pivoting we would have to discard the rest of th
integrals in this shell pair unless the largest diagonal elem
of the M̃ matrix belongs to the same shell pair. This is ho
ever very unlikely and would lead to a prohibitively larg
number of integral recalculations. A more sound appro
would be to decompose the remaining integrals in the s
pair. However, treating all diagonals larger thanD makes the
decomposition unstable even for small systems. Thus,
must control the size of diagonal elements treated in the s
pair and tailor these to the largest diagonal element at
given step in the decomposition. We have simply requi
that only diagonals larger thanXmax/1000 are decomposed
This will of course lead to some recalculation of integrals b
as we shall see later these are actually negligible. The
cess now continues until all diagonal elements are sma
thanD.

The SCF implementation is facilitated by a modifie
Fock matrix construction algorithm. We express the tw
electron part of the AO Fock matrix in terms of the Choles
decomposed integrals

Fab5(
J

S 2Lab
J S (

gd
DgdLgd

J D 2(
k

Lak
J Lbk

J D , ~4!

where the AO density matrix is given asDab5(kCakCbk ,
in terms of the molecular orbital coefficientsCbk , wherek
label occupied orbitals. The implementation of Eq.~4! is
straightforward resulting in the computational scali
2MN2O, whereO is the number of occupied orbitals.

We now proceed to the canonical orbital MP2 ener
expression

EMP25
1

2 (
aib j

~2~aiub j !2~a j ubi !!~aiub j !

«a1«b2« i2« j
. ~5!
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This is implemented in a batched loop over thea and b
virtual orbital indices, making the algorithm virtually ope
ended with minimal storage requirements. The first part
the calculation involves the construction of transform
Cholesky vectorsLai

J . From these we generate the integra
in the MP2 expression

~aiub j !5 (
J51

M

Lai
J Lb j

J , ~6!

and process these by direct summation of the contribution
Eq. ~5!. We obtain the computational scalingMV2O2, where
V is the number of virtual orbitals. We may reduce the sc
ing further directly decomposing the (aiub j) integrals using
the transformed Cholesky vectors in the process. This giv
significantly smallerM in Eq. ~6! leading to an overall re-
duction in computational requirements.

A few remarks about scaling and screening are now
propriate. Screening by the Cauchy–Schwarts inequalit
an integral part of the Cholesky decomposition as the upd
matrix in Eq.~3! is positive semidefinite. Thus, at each st
of the decomposition

uM̃ pqu<AM̃ ppM̃qq<AM̃ ppX̃max, ~7!

assuming negligible round off errors. However, round
errors occur and we use a weaker criteria normally divid
by 1000. The inequality may be used for the individual d
agonal elements as well as at shell level in the calculation
the (** uAB) integrals. In the current implementation th
Cholesky vectors are stored and read from disk, and
would be inclined to believe this is a limiting factor. How
ever, in the limit of large basis sets the number of eleme
needed to be stored scale asN2 much less than the potentia
N4 number of raw two-electron integrals or theN3 scaling
suggested in Ref. 1. Performing a method specific decom
sition preselecting or dynamically selecting the relevant pa
of the two-electron integral matrix can facilitate linear sc
ing in the number of elements to be stored. In this sense
current implementation delivers an all purpose decompo
integral matrix. Exploiting the sparsity of the individua
Cholesky vectors is an important goal as this will reduce
scaling of the SCF and MP2 algorithms discussed above.
instance, in the limit of a large system and assuming lin
in

y calcu
TABLE I. Absolute errors in SCF energies reported in units of the particular decomposition thresholdD. The numbers of Cholesky vectors are given
parentheses. The total dimension of the two-electron integral matrix is reported asMmax and the number of atomic orbitals asN. The number of orbitals that
needed to be projected out of the basis is reported in parentheses in the last column. Errors for benzene aug-cc-pV6Z is with respect to the energlated
using a threshold of 10210.

System~Basis set! D51024 D51026 D51028 D510210 Mmax N

TCO ~aug-cc-pVDZ! 0.64~1284! 0.58 ~2163! 0.42 ~3687! 6.00 ~5427! 48 205 310~0!
TCO ~aug-cc-pVTZ! 0.54~2794! 2.08 ~4584! 2.39 ~7255! 2.00~10547! 238 395 690~0!
Benzene~aug-cc-pVDZ! 0.04 ~933! 0.35 ~1584! 0.12 ~2548! 2.17 ~3479! 18 528 192~0!
Benzene~aug-cc-pVTZ! 0.34~1931! 0.05 ~3238! 0.64 ~4891! 0.08 ~6714! 85 905 414~1!
Benzene~aug-cc-pVQZ! 0.11~3270! 0.20 ~5375! 0.74 ~8014! 1.27~11178! 286 146 756~2!
Benzene~aug-cc-pV5Z! 0.02~5437! 0.81 ~8756! 0.01~12441! 0.06~16455! 771 903 1242~10!
Benzene~aug-cc-pV6Z! 0.66~8415! 0.10~12757! 0.50~17836! – ~23600! 1 798 356 1896~27!
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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9483J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Calculations using Cholesky decomposition
scaling in the AO density, the evaluation of the exchange p
of the Fock matrix will scale asN2. Method specific decom
position should reduce this even further.

APPLICATIONS

First we would like to address the accuracy of the d
composition. For this purpose we have chosen to use tr
cyclooctene~TCO! and benzene as illustration. In Table I th
errors in calculated SCF energies are reported for diffe
levels of accuracy in the decomposition. The main feature
notice in these errors are that the accuracy obtained in
SCF energy is mainly determined by the threshold in
decomposition. The errors are seen to be consistent
stable with respect to the threshold.

In Table I we also report the number of Cholesky vect
needed to decompose the integral matrix to a given thre
old. There are several aspects to consider and let us init
focus onD51028 for benzene. We observe that the numb
of Cholesky vectors compared to full dimension decre
rapidly with the size of the basis; such that for aug-cc-pVD
we obtain a reduction of 7.3 and this increase to 101
aug-cc-pV6Z. For a standard application basis set like a
cc-pVTZ the factor is 17.6. The factor between the num
of Cholesky vectors and basis functions does not show s
large variation. For aug-cc-pVDZ and aug-cc-pVTZ the fa
tor is 13.3 and 11.8 respectively, and decreases further to
for aug-cc-pV6Z. We then look at the number of Choles
vectors for different thresholds. Evidently, increasing the
curacy from 1028 to 10210 has a fairly high cost; around
30–40% in the number of vectors. The difference betwe
1026 and 1028 thresholds is around 40–60% with larg
variation depending on the basis. In general we recomm
using 1028 or maybe 1026 depending on the properties th
need to be calculated. As a final remark about the benz

TABLE II. Absolute errors in MP2 energies reported in units of the partic
lar decomposition thresholdD. The numbers of Cholesky vectors required
decompose (aiub j) integrals are given in parentheses. The total dimens
of the (aiub j) integral matrix is reported asMmax.

System~Basis set! D51024 D51026 D51028 Mmax

TCO ~aug-cc-pVDZ! 1.29 3.56 4.08 8 649
TCO ~aug-cc-pVTZ! 1.12 15.7 15.1 20 429
Benzene~aug-cc-pVDZ! 2.6 ~427! 2.9 ~816! 3.2~1420! 3 591
Benzene~aug-cc-pVTZ! 9.5 ~700! 6.3~1323! 8.2~2139! 8 232
Benzene~aug-cc-pVQZ! 20.3~1061! 10.3~1976! 12.1~3015! 15 393
Benzene~aug-cc-pV5Z! 23.6~1530! 53.9~2790! 10.4~4109! 25 431
Benzene~aug-cc-pV6Z! 34.3~2147! 31.2~3766! 76.2~5482! 38 808
Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AI
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data we should note the amazing fact that only 27 orbi
had to be projected out of the aug-cc-pV6Z basis due
small eigenvalues in the overlap matrix. This clearly demo
strates that even this large basis set is far from saturatio
what we might term numerical completeness. Turning
TCO in Table I, we see that errors are slightly higher than
benzene. Otherwise we note that the reduction factor for a
cc-pVTZ is 32.8 for the 1028 threshold.

We now turn our attention to the errors in the calculat
MP2 energies in Table II. Two different computational stra
egies have been employed. For TCO we used the full se
Cholesky vectors and for benzene we decomposed
(aiub j) integral matrix before summing the contribution
We first observe that the errors are larger then for SCF,
has a natural explanation as the MP2 energies depend
early on the errors in the orbitals. The MP2 accuracy a
depends on the error in the (aiub j) integrals scaled by the
orbital energy denominators, potentially increasing the M
error beyond the decomposition threshold. For benzene
errors refer to 10210 threshold, as for basis sets larger th
aug-cc-pVTZ it was impossible to carry out the calculatio
using our integral-direct coupled cluster code. Regarding
decomposition of the (aiub j) integral matrix we note that the
reductions are not as pronounced as for the atomic orb
decomposition; however the maximum rank is also seve
orders of magnitude smaller. Even though we use a canon
basis the reductions are significant spanning from 2.5 to
for the threshold equal 1028.

Table III summarizes the decomposition for 1,4-bis@2-~4-
diphenylamino-phenyl!-vinyl# benzene denoted stilbene
DD~6! in the table, C60 and benzene. The ratio between t
number of Cholesky vectors and the number of basis fu
tions ranges from 9.4 for benzene to 12.5 for stilbene-DD~6!.
In all casesM is less than 5% ofMmax, notably 1.8% for C60

and 1.0% for benzene, showing that the amount of integ
that must be calculated to numerically represent the inte
matrix is minimal. For all systems and basis sets, the ac
number of integral distributions is less than 8%, of which
negligible number of shell pairs must be recalculated a
consequence of the algorithm. The time spent recalcula
integrals is minimized by employing segmented basis s
Finally, we note that the total time required for the Choles
decomposition algorithm is comparable to that of a sin
integral-direct Fock matrix build using density and integ
prescreening. The total number of elements in the Chole
vectors scale asN2 although the prefactor can be large. F
benzene the prefactor increases 95% going from aug
pVDZ to aug-cc-VTZ, but when going from aug-cc-pV5Z t

-

n

d
osition
TABLE III. The number of Cholesky vectorsM and the maximum dimension. Furthermore, the number of shell pairs (** uAB) that need to be calculated an
the maximum (SP andSPmax). The last column report timing ratio between one Fock matrix construction and the total time for the Cholesky decomp
thresholdD51028.

System Basis set M Mmax SP SPmax TDSCF/TCD

Stilbene-DD~6! (C46N2H36) 6-31G 6301 127 260 2159~21! 48 828 1.05
6-31G11 7574 268 278 2640~29! 98 790 1.35

Buckminster fullerene (C60) aug-cc-pVDZ 17 390 952 890 253~0! 3 321 0.35a

Benzene aug-cc-pV6Z 17 836 1 798 356 238~10! 7 750 1.75

aIntegral threshold in decomposition 10240.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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aug-cc-pV6Z the increase is only 40%. A method spec
decomposition should make this sequence converge fas

CONCLUSIONS

We have demonstrated the small numerical rank of
two-electron integral matrix for large molecular systems a
large basis sets. The proposed algorithm is stable and ca
used as a black box generator of the Cholesky vectors.
current implementation still requires some improvements
the calculations done in the inner most loop of the deco
position do not exploit the sparsity in the Cholesky vecto

With respect to the practical applicability of the pr
sented method an efficient approach to geometrical der
tives is imperative. Such an approach is obtained includ
certain derivative product functions and decomposing an
panded integral matrix. To be more explicit we write the fi
derivative integrals as

~abugd!(1)5~a (1)bugd!1~ab (1)ugd!1~abug (1)d!

1~abugd (1)! ~8!

and observe that including the product functionsa (1)b in the
decomposition we may express the derivative integrals
terms of Cholesky vectors. Higher derivative integrals can
calculated in a similar manner. This might greatly impro
the cost of higher derivatives as the inclusion of additio
product function will incur an even larger degree of line
dependence in the product space.
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Integral-direct techniques for highly correlatedab initio
models have expanded the application range for coup
cluster methods. These methods are still very demanding
are considered a serious bottleneck. We anticipate
Cholesky approach will remove this limitation and the futu
developments of these methods will focus on reducing
scaling, as well as an embarrassingly parallel implementa
of the Cholesky decomposition will make applications virt
ally open ended.
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