Triazolopyridines 22. ${ }^{1}$ Description of new
 7,9-di(2-pyridyl)[1,2,3]triazolo[5',1':6,1]pyrido[3,2-d]pyrimidines

Belén Abarca,* Rafael Ballesteros, and Mimoun Chadlaoui
Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain.
E-mail: Belen.Abarca@uv.es
(received 09 Sep 2002; accepted 08 Nov 2002; published on the web 16 Nov 2002)

Abstract

The new heteroaromatic compounds, 7,9-di(2-pyridyl)[1,2,3]triazolo[5',1':6,1]pyrido[3,2-d] pyrimidines 11a-c, were synthesized in two steps from readily available triazolopyridines 1a-c. Regioselective lithiation of $\mathbf{1 a} \mathbf{- c}$ followed by treatment with 2-cyanopyridine gave a mixture of compounds 5a-c, and 11a-c in moderate to low yields, together with gums. Similar reactions with the triazolopyridine 1d gave as the only identified compound the triazolopyridine derivative 5d.

Keywords: Nitrogen heterocycles, helicating ligands, lithiation

Introduction

The synthetic chemical mimicry of the double-helix structural motif is an interesting area of research with intense activity in recent years. ${ }^{2}$ Oligopyridines and related compounds are very useful helicating ligands. ${ }^{2,3}$ We have recently discovered a facile route to new potential helicating ligands 2a-d, 3a-d, 5d, and $\mathbf{6}$ from triazolopyridines 1a-d (scheme 1). ${ }^{4,5}$ Following this study we have designed new ligands $\mathbf{7 - 1 0}$, which can be easily accessible from compound $\mathbf{5 d}$ if the methodology summarized above is applicable (see scheme 2). The understanding that the availability of $\mathbf{5 d}$ is important to success, led us to try its synthesis in an attempt to improve the reported yield. ${ }^{5}$ We wish to report here our results in this project, and the discovery of a new heterocyclic system, $[1,2,3]$ triazolo[5 ', 1 ':6,1]pyrido[3,2-d] pyrimidine 11, when we have tested the generality of the studied reaction.

Scheme 1

Results and Discussion

We have reported that reaction of triazolopyridine $\mathbf{1 d}$ in THF solution at $-40^{\circ} \mathrm{C}$ with LDA gave the 7-lithio derivative $\mathbf{4 d}$ which reacted with 2-pyridine carbaldehyde to form an unstable diarylmethyl alkoxide intermediate, which provides rapid access to ketone $\mathbf{5 d}$ by spontaneous air oxidation in work-up, with 35% yield. ${ }^{5}$ As we have found later that lithiation reactions of triazolopyridines $\mathbf{1}$ give better results using toluene as solvent and n-BuLi as lithiating agent, ${ }^{6}$ we thought that in these conditions, and with 2-cyanopyridine as coreagent, we could improve the yield of $5 \mathbf{d}$. However the new reaction gave, as only characterized product, the compound $5 \mathbf{d}$ in almost the same yield.

Scheme 2

In the context of our research with triazolopyridines it was also interesting to know the scope of this type of reaction, and it was performed with compounds 1a-c. In the conditions above indicated, the 7-lithio derivatives 4a-c were formed. Subsequent reactions with 2-cyanopyridine gave the corresponding 7-pyridylcarbonyl derivatives 5a-c together with other compounds (scheme 3). In all cases a new compound was found. A careful study of their analytical and spectroscopic data suggests that this was a novel triazolopyridopyrimidine system 11.

Scheme 3

We will discuss the more interesting features for compound 11b with molecular weight of 339.1233 consistent with a molecular formula of $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{7}$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed the expected 19 signals. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed the characteristic pattern of two different 2-substituted pyridines. In addition, in the ${ }^{1} \mathrm{H}$ NMR spectrum, contains an interesting AB pair of doublets at $\delta 8.65$ and 7.51 with a coupling constant of 9.6 Hz , corresponding to H 4 and H 5 protons in a triazolo[1,5-a]pyridine ring.

The formation of the new triazolopyridopyrimidine system could be explained by the following mechanism (scheme 4). Reaction of the corresponding lithio derivative with a mole of 2-cyanopyridine gives the intermediate 12 which reacts with a second mole of reagent forming a new intermediate 13 that could in turn produce 14. Here the negative charge is delocalized through a strongly acceptor system made of two nitrogen atoms in the pyrimidine part of the structure, which permits the proposed cyclization. Then compounds $\mathbf{1 1}$ are formed by a hydride elimination. Another possibility is an electrocyclic process (6π) from N-protonated 13 followed by oxidation.

Py = 2-pyridyl

Scheme 4

In the reaction with triazolopyridine 1a two minor (5\% and 2\%) compounds were also formed, one identified as $\mathbf{1 5}$ (see scheme 3), easily formed from $\mathbf{5 a}$ by triazolo ring opening and loss of dinitrogen in acid medium. ${ }^{7}$ The other one was unexpected, and it was shown by HRMS to have formula $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5}$. A study of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra shows the presence of two different 2-substituted pyridines. A 2,3,6-trisubstituted pyridine was also present (a pair of doublets at 9.25 and 7.42 ppm with a coupling constant of 8.5 Hz in the ${ }^{1} \mathrm{H}$ NMR spectrum) and a methyl group. All these data lead us to propose the structure $\mathbf{1 6}$ for this compound. Its formation could be explained from the same intermediate $\mathbf{1 3}$ proposed to interpret the formation of compounds 11. This anion could undergo a ring-closure/triazole-ring opening leading to a diazo anion 17, a 1,5-transfer of hydrogen in this anion to form 18 that, after protonation and nitrogen elimination, gives $\mathbf{1 6}$ as is shown in scheme 5. In the reaction with triazolopyridine $\mathbf{1 b}$ a further compound was identified as 19 probably formed from 12b by hydride reduction, in this reaction the known compound $\mathbf{2 0}$ was also formed in very low yield (5\%).

Scheme 5

Experimental Section

General Procedures. Melting points were determined on a Kofler heated stage and are uncorrected. NMR spectra were recorded on a Bruker AC 300 MHz in CDCl_{3} as solvent. COSY experiments were done for all compounds. HRMS (EI) determinations were made using a VG Autospec Trio 1000 (Fisons). Infrared spectra were recorded in KBr discs on a Bio-Rad FTS-7.
[1,2,3]Triazolo[1,5-a]pyridine 1a, 3-methyl-[1,2,3]triazolo[1,5-a]pyridine 1b, 3-(2-thienyl)-[1,2,3]triazolo[1,5-a]pyridine 1c and 3-(2-pyridyl)-[1,2,3]triazolo[1,5-a]pyridine 1d. Prepared as described elsewhere. ${ }^{8,9,5}$

General procedure for lithiation of [1,2,3]triazolo[1,5-a]pyridines 1

To a solution of the corresponding [1,2,3]triazolo[1,5-a]pyridine $\mathbf{1}(1 \mathrm{~g})$ in anhydrous toluene $(50 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$, a solution of n-butyllithium in hexane $(5 \mathrm{~mL}, 2.5 \mathrm{M})$ was added with stirring. A deep red colour developed. The mixture was kept at $-40^{\circ} \mathrm{C}(4 \mathrm{~h})$. Treatment with a dry toluene solution (40 mL) of an equimolar amount of the 2-cyanopyridine produced a change to yellow colour. The mixture was left at room temperature overnight, treated with 10% solution of HCl (5 mL), stirried for 1 h and neutralised with aqueous NaOH . The organic layer was separated and the aqueous layer extracted with dichloromethane. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the organic solvents, a residue was obtained which was purified. The conditions of the purification are given for each compound.
2-Pyridyl-[1,2,3]triazolo[1,5-a]pyridin-7-ylmethanone (5a) and 7,9-di(2-pyridyl)-[1,2,3] triazolo[5',1':6,1]pyrido[3,2-d]pyrimidine (11a). Purification by alumina (IV) chromatography, elution with ethyl acetate/hexane with increasing amount of ethyl acetate gave first starting material 1a (15\%), then a yellow solid identified as 5 a (15% yield). Mp $158-160{ }^{\circ} \mathrm{C}$ (AcOEt). HRMS found M^{+}224.0691; $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ requires 224.0698. $v_{\text {max }}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right)$ 1688(CO), 1596, 1322, 1287, 814, 741. $\lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon) 235$ (4.31), 275.5 (3.99), 356.5 (3.55). ${ }^{1} \mathrm{H}$ NMR $\delta 8.44$ (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=1.68, \mathrm{~J}_{3}=0.93 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (ddd, $\mathrm{J}_{1}=7.71, \mathrm{~J}_{2}=1.10, \mathrm{~J}_{3}=$ $0.93 \mathrm{~Hz}, 1 \mathrm{H}$), $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (ddd, $\mathrm{J}_{1}=\mathrm{J}_{2}=7.71, \mathrm{~J}_{3}=1.68 \mathrm{~Hz}, 1 \mathrm{H}$), $7.84\left(\mathrm{dd}, \mathrm{J}_{1}=8.85, \mathrm{~J}_{2}=\right.$ $1.50 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, $\left.\mathrm{J}_{1}=7.71, \mathrm{~J}_{2}=4.71, \mathrm{~J}_{3}=1.10 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37\left(\mathrm{dd}, \mathrm{J}_{1}=6.78, \mathrm{~J}_{2}=1.50 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
7.29 (dd, $\mathrm{J}_{1}=8.85, \mathrm{~J}_{2}=6.78 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\delta 188.60$ (CO), 153.38 (C), 149.58 (CH), 137.80 (CH), 134.96 (C), 134.41 (C), 128.14 (CH), 126.23 (CH), 125.01 (CH), 124.27 (CH), 121.08 (CH), 118.84 (CH). MS m/z (\%), 224 (45), 196 (80), 168 (16), 132 (36), 106 (55), 78 (100), 63 (11). Further elution gave the alcohol 15 as a yellow solid. (5% yield). Mp 211-212 ${ }^{\circ} \mathrm{C}$ (DMSO). HRMS found M^{+}214.0744; $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 214.0742. $v_{\text {max }}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) 3523,3434(\mathrm{OH})$, 1669(CO), 1591, 1322, 989, 952, 826, 748. $\lambda_{\max }(\mathrm{nm})(\log \varepsilon) 204.5$ (4.06), 239.0 (4.13), 280.5 (4.22), 291.5 (4.21). ${ }^{1} \mathrm{H}$ NMR $\delta 8.74(\mathrm{~d}, \mathrm{~J}=4.5,1 \mathrm{H}), 8.19-8.06(\mathrm{~m}, 4 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.28 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72-7.67 (m, 1H), 7.06 (br s, 1H), 6.64 (s, 2H). ${ }^{13} \mathrm{C}$ NMR $\delta 193.64$ (CO), 149.45 (CH), 142.17 (C), $141.05(\mathrm{CH}), 138.12(\mathrm{CH}), 137.49(\mathrm{CH}), 127.29(\mathrm{CH}), 125.08(\mathrm{CH}), 123.63(\mathrm{CH}), 122.37$ (CH), $60.52\left(\mathrm{CH}_{2}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%), 214$ (100), 213 (8), 185 (33), 169 (56), 108 (34), 78 (93). Then compound 16 was eluted as an oil (2% yield). HRMS found M^{+}299.1177; $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires 299.1171. $v_{\max }(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) 3057,1600,1555,1463,1371,1336,1269,999,796,750 .{ }^{1} \mathrm{H}$ NMR $\delta 9.25(\mathrm{~d}, \mathrm{~J}=8.5,1 \mathrm{H}), 8.83-8.82(\mathrm{~m}, 2 \mathrm{H}), 8.75$ (ddd, $\left.\mathrm{J}_{1}=4.89, \mathrm{~J}_{2}=1.70, \mathrm{~J}_{3}=0.75 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.47$ (dd, $\mathrm{J}_{1}=7.92, \mathrm{~J}_{2}=0.93 \mathrm{~Hz}, 1 \mathrm{H}$), $7.93-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H})$, $2.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 168.65$ (C), 166.53 (C), 162.61 (C), 160.26 (C), 156.31 (C), 155.21 (C), $150.39(\mathrm{CH}), 149.12(\mathrm{CH}), 137.98(\mathrm{CH}), 137.94(\mathrm{CH}), 137.32(\mathrm{CH}), 126.35(\mathrm{CH}), 125.42(\mathrm{CH})$, $125.35(\mathrm{CH}), 125.11(\mathrm{CH}), 124.84(\mathrm{CH}), 115.83(\mathrm{C}), 26.41\left(\mathrm{CH}_{3}\right)$. The last compound eluted was 11a. Yellow solid. (7\% yield). Mp 256-258 ${ }^{\circ} \mathrm{C}$ (EtOH). HRMS found $\mathrm{M}^{+} 325.1078$; $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{7}$ requires 325.1076. $v_{\max }(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) 1608,1562,1532,1511,1395,1373,776,719$. $\lambda_{\max }(\mathrm{nm})(\log \varepsilon) 237.0$ (4.35), 285.5 (4.40), 359.0 (4.17). ${ }^{1} \mathrm{H}$ NMR $\delta 8.87$ (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=$ $\left.1.70 \mathrm{~Hz}, \mathrm{~J}_{3}=0.96,1 \mathrm{H}\right), 8.84(\mathrm{~d}, \mathrm{~J}=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, \mathrm{~J}=9.60 \mathrm{~Hz}, 1 \mathrm{H}), 8.77\left(\mathrm{dd}, \mathrm{J}_{1}=1.7, \mathrm{~J}_{2}=\right.$ $0.96 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, \mathrm{~J}=7.92,1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=9.61 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48-7.40 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\delta 164.10$ (C), 161.70 (C), 155.55 (C), 153.65 (C), 150.40 (CH), 149.21 (C), 148.91 (CH), 137.66 (CH), 137.22 (CH), 134.13 (C), 128.44 (CH), 126.08 (CH), $125.64(\mathrm{CH}), 125.21(\mathrm{CH}), 125.09(\mathrm{CH}), 124.46(\mathrm{CH}), 117.14(\mathrm{CH}), 113.35(\mathrm{C}) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)$, 325 (57), 297 (100), 271 (16), 193 (22), 78 (22).
2-Pyridyl-3-methyl-[1,2,3]triazolo[1,5-a]pyridin-7-ylmethanone (5b) and 3-methyl-7,9-di(2pyridyl)[1,2,3]triazolo [5',1':6,1]pyrido[3,2-d]pyrimidine (11b). Purification by chromatotron, elution with ethyl acetate/hexane with increasing amount of ethyl acetate gave first starting material 1 b (15%), then an oil identified as 19 (5% yield). HRMS found $\mathrm{M}^{+} 239.1171 ; \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires 239.1171. $v_{\max }(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) 3367$ (broad), 1638, 1591, 1470, 1436. ${ }^{1} \mathrm{H}$ NMR $\delta 8.46(\mathrm{~d}$, $\mathrm{J}=4.71,1 \mathrm{H}), 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.46\left(\mathrm{dd}, \mathrm{J}_{1}=8.85, \mathrm{~J}_{2}=1.14 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}$, $\mathrm{J}=6.96,1 \mathrm{H}), 5.95$ (s, 1H), 4.75 (br s, 2H), 2.53 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta 159.25$ (C), 143.95 (CH), 141.21 (C), $136.78(\mathrm{CH}), 134.66$ (C), 132.05 (C), $124.01(\mathrm{CH}), 123.03(\mathrm{CH}), 122.73(\mathrm{CH})$, 115.93 (CH), $112.42(\mathrm{CH}), 56.10(\mathrm{CH}), 10.44\left(\mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%), 239$ (3), 211 (59), 107 (100). This was followed by a yellow solid identified as 5 b (34% yield). Mp $165-167{ }^{\circ} \mathrm{C}$ (AcOEt). HRMS found M^{+}238.0853; $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$ requires 238.0854. $v_{\text {max }}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) 3048,1692(\mathrm{CO})$, 1580, 1544, 1437, 1315, 1285, 1020, 775, 745. ${ }^{1} \mathrm{H}$ NMR $\delta 8.45$ (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=1.70, \mathrm{~J}_{3}=$ $0.93 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (ddd, $\mathrm{J}_{1}=7.71, \mathrm{~J}_{2}=1.32, \mathrm{~J}_{3}=0.93 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (ddd, $\mathrm{J}_{1}=\mathrm{J}_{2}=7.71, \mathrm{~J}_{3}=1.70 \mathrm{~Hz}$, 1 H), 7.73 (dd, $\mathrm{J}_{1}=8.64, \mathrm{~J}_{2}=1.11 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, $\mathrm{J}_{1}=7.71, \mathrm{~J}_{2}=4.71, \mathrm{~J}_{3}=1.32 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34
$\left(\mathrm{dd}, \mathrm{J}_{1}=6.78, \mathrm{~J}_{2}=1.11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23\left(\mathrm{dd}, \mathrm{J}_{1}=8.64, \mathrm{~J}_{2}=6.78 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ 188.71 (CO), 153.53 (C), 149.54 (CH), 137.73 (CH), 135.09 (C), 134.79 (C), 132.39 (C), 127.99 $(\mathrm{CH}), 124.26(\mathrm{CH}), 123.38(\mathrm{CH}), 120.80(\mathrm{CH}), 118.89(\mathrm{CH}), 10.79\left(\mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%), 238$ (42), 210, (100), 209 (57), 182 (22), 181 (98), 156 (15), 155 (9), 106 (8), 104 (23), 78 (57). Further elution gave 20 (5% yield). Mp 238-240 ${ }^{\circ} \mathrm{C}$ (AcOEt/hexane), lit. ${ }^{4}$ 238-240 ${ }^{\circ} \mathrm{C}$ (AcOEt/hexane). The last compound eluted was 11b. Yellow solid. (24\% yield). Mp 255-257 ${ }^{\circ} \mathrm{C}$ (AcOEt). HRMS found $\mathrm{M}^{+} 339.1233 ; \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{7}$ requires 339.1232. $v_{\text {max }}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) 1618$, 1561, 1547, 1377, 776. $\lambda_{\max }(\mathrm{nm})(\log \varepsilon) 232.0$ (5.35), 285.5 (5.33), 374.5 (4.12). ${ }^{1} \mathrm{H}$ NMR δ 8.87 (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=1.68, \mathrm{~J}_{3}=0.93 \mathrm{~Hz}, 1 \mathrm{H}$), 8.81 (ddd, $\mathrm{J}_{1}=7.89, \mathrm{~J}_{2}=1.71, \mathrm{~J}_{3}=0.93 \mathrm{~Hz}, 1 \mathrm{H}$), 8.77 (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=1.71, \mathrm{~J}_{3}=0.75 \mathrm{~Hz}, 1 \mathrm{H}$), $8.65(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49$ (ddd, $\mathrm{J}_{1}=7.89, \mathrm{~J}_{2}=$ $\left.1.68, \mathrm{~J}_{3}=0.75 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.97-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta 163.75$ (C), 161.40 (C), 155.65 (C), 153.68 (C), 150.33 (CH), 149.38 (C), 148.89 (CH), $137.59(\mathrm{CH}), 137.59(\mathrm{C}), 137.19(\mathrm{CH}), 131.50(\mathrm{C}), 125.87(\mathrm{CH}), 125.59(\mathrm{CH})$, $125.12(\mathrm{CH}), 125.00(\mathrm{CH}), 122.80(\mathrm{CH}), 117.00(\mathrm{CH}), 113.51(\mathrm{C}), 10.36\left(\mathrm{CH}_{3}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)$, 339 (13), 311 (100), 206 (10).
2-Pyridyl-3-(2-thienyl)[1,2,3]triazolo[1,5-a]pyridin-7-ylmethanone 5c and 7,9-di(2-pyridyl)-3-(2-thienyl)-[1,2,3]triazolo [5',1':6,1]pyrido[3,2-d]pyrimidine (11c). Purification by chromatotron, elution with ethyl acetate/hexane with increasing amount of ethyl acetate gave first starting material 1c (15\%), then a yellow solid identified as 5c (15% yield). Mp $172-174{ }^{\circ} \mathrm{C}$ (AcOEt). HRMS found $\mathrm{M}^{+} 306.0575 ; \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$ requires 306.0575. $v_{\max }(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right)$ 1679(CO), 1578, 1438, 1311, 1216, 825, 725. $\lambda_{\max }(\mathrm{nm})(\log \varepsilon) 249.5$ (4.29), 281.0 (4.30), 401.0 (3.71). ${ }^{1} \mathrm{H}$ NMR $\delta 8.45$ (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=1.68, \mathrm{~J}_{3}=0.93 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 (ddd, $\mathrm{J}_{1}=7.89, \mathrm{~J}_{2}=1.11$, $\mathrm{J}_{3}=0.96 \mathrm{~Hz}, 1 \mathrm{H}$), $8.09\left(\mathrm{dd}, \mathrm{J}=5.1, \mathrm{~J}_{2}=0.96,1 \mathrm{H}\right), 7.89\left(\mathrm{ddd}, \mathrm{J}_{1}=\mathrm{J}_{2}=7.74, \mathrm{~J}_{3}=1.61 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52$ (dd, $\mathrm{J}_{1}=3.75, \mathrm{~J}_{2}=1.11 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (ddd, $\mathrm{J}_{1}=7.74, \mathrm{~J}_{2}=4.79, \mathrm{~J}_{3}=1.11 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38(\mathrm{~d}, \mathrm{~J}=5.1$, $1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=4.89,1 \mathrm{H}), 7.32\left(\mathrm{dd}, \mathrm{J}_{1}=5.10, \mathrm{~J}_{2}=1.11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11\left(\mathrm{dd}, \mathrm{J}_{1}=4.53, \mathrm{~J}_{2}=3.57 \mathrm{~Hz}\right.$, 1H). ${ }^{13} \mathrm{C}$ NMR $\delta 188.24$ (CO), 152.94 (C), $149.22(\mathrm{CH}), 137.32(\mathrm{CH}), 135.04$ (C), 133.60 (C), 132.94 (C), 129.93 (C), 127.78 (CH), 127.72 (CH), 125.28 (CH), 125.13 (CH), $124.20(\mathrm{CH})$, 123.67 (CH), 120.86 (CH), 118.33 (CH). MS m/z (\%), 306 (9), 278 (100), 249 (15), 200 (8), 172 (26), 78 (24). The last compound eluted was 11c. Yellow solid. (15% yield). Mp 248-250 ${ }^{\circ} \mathrm{C}$ (cyclohexane). HRMS found M^{+}407.0968; $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{~S}$ requires 407.0953. $v_{\text {max }}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right)$ 1609, 1573, 1558, 1507, 1462, 1427, 1378, 777, 723. $\lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon) 247.0$ (4.36), 288.0 (4.41), 408.0 (4.05). ${ }^{1} \mathrm{H}$ NMR $\delta 8.88$ (ddd, $\mathrm{J}_{1}=4.71, \mathrm{~J}_{2}=1.70 \mathrm{~Hz}, \mathrm{~J}_{3}=0.96,1 \mathrm{H}$), 8.84 (d, $\mathrm{J}=$ $9.60 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, \mathrm{~J}=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 8.78$ (ddd, $\left.\mathrm{J}_{1}=4.89, \mathrm{~J}_{2}=1.68, \mathrm{~J}_{3}=0.93 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.53(\mathrm{~d}, \mathrm{~J}=$ $7.92,1 \mathrm{H}$), $7.97-7-91(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=9.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.64\left(\mathrm{dd}, \mathrm{J}_{1}=3.57, \mathrm{~J}_{2}=1.11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39\left(\mathrm{dd}, \mathrm{J}_{1}=5.07, \mathrm{~J}_{2}=1.11 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{dd}, \mathrm{J}_{1}=5.07, \mathrm{~J}_{2}=3.57 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 163.78$ (C), 161.74 (C), 155.47 (C), 153.59 (C), 150.35 (CH), 149.38 (C), 148.90 (CH), 137.60 $(\mathrm{CH}), 137.22(\mathrm{CH}), 136.33$ (C), 132.12 (C), 129.42 (C), $127.96(\mathrm{CH}), 126.00(2 \mathrm{CH}), 125.67$ (CH), 125.26 (CH), 125.21 (CH), $125.10(\mathrm{CH}), 124.73(\mathrm{CH}), 117.36(\mathrm{CH}), 113.65(\mathrm{C}) . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%), 407 (8), 379 (100), 378 (25), 334 (6), 284 (6), 78 (6).
2-Pyridyl-3-(2-pyridyl)-[1,2,3]triazolo[1,5-a]pyridin-7-ylmethanone 5d.

Compound 5d was obtained with 38% yield. Two crystalline phases can be obtained from AcOEt/hexane. At $194-195^{\circ} \mathrm{C}$ there is a phase transition forming needles that melt at $220-221^{\circ} \mathrm{C}$. lit. ${ }^{5}$ m.p.194-195 ${ }^{\circ} \mathrm{C}$ (AcOEt/hexane).

Acknowledgements

Our thanks are due to Sectretaría de Estado de Política Científica y Tecnológica del Ministerio de Ciencia y Tecnología (Project PB98-1422) for its financial support, and to SCSIE for the realization of the HRMS and MS spectra. The authors also thank the referees for their careful and constructive comments.

References

1. Last part in the series: Abarca, B.; Ballesteros, R.; Elmasnaouy, M. ARKIVOC 2002, 3 (v), 145.
2. Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725.
3. Constable, E. C. Tetrahedron 1992, 48, 10013.
4. Jones, G.; Pitman, M. A.; Lunt, E.; Lythgoe, D. J.; Abarca, B.; Ballesteros, R.; Elmasnaouy, M. Tetrahedron 1997, 53, 8257.
5. Abarca, B.; Ballesteros, R.; Elmasnaouy, M. Tetrahedron 1998, 54, 15287.
6. Abarca, B.; Ballesteros, R.; Chadlaoui, M. Preliminary communication, $11^{\text {th }}$ FECHEM Conference on Heterocycles in Bio-Organic Chemistry. 2002, Sitges (Barcelona), Spain.
7.Jones, G.; Mouat, D. J.; Tonkinson, D. J. J. Chem. Soc., Perkin Trans. 1 1985, 2719.
7. Bower, D. J.; Ramage, G. R. J. Chem. Soc. 1957, 4506.
8. Mineo, S.; Kawamura, S.; Nakagawa, K. Synth. Commun. 1976, 6, 69.
