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A new implementation of the approximate coupled cluster singles and doubles CC2 linear response
model using Cholesky decomposition of the two-electron integrals is presented. Significantly
reducing storage demands and computational effort without sacrificing accuracy compared to the
conventional model, the algorithm is well suited for large-scale applications. Extensive basis set
convergence studies are presented for the static and frequency-dependent electric dipole
polarizability of benzene and & and for the optical rotation of CNOFEH and
(—)-trans-cyclooctend TCO). The origin-dependence of the optical rotation is calculated and
shown to persist for CC2 even at basis set convergenc@0@! American Institute of Physics.

[DOI: 10.1063/1.1705575

I. INTRODUCTION 8) model with a computational cost similar to that of MP2.
The foremost advantage of CC2 over MP2 is the possibility
In a recent communicatiohye have demonstrated that to calculate frequency-dependent molecular response proper-
significant reductions in computational effort as well as stortjes, such as dynamic polarizabilities or optical rotations.
age requirements are attainable using Cholesky decomposfhis additional feature, however, is accompanied by a com-
tions in electronic structure theory. Specifically, we havepytational penalty arising from the iterative nature of CC2.
shown that the Cholesky representation of the two-electron |, analogy to canonical MP2, the CC2 doubles ampli-
integral matri¥ can be immediately exploited for second or- tudes may be calculated analytically from integrals and a
der Mgller—PlessgiMP2) perturbation theory. As mentioned given set of singles amplitudes, while the CC2 singles am-

Ln Refl.l 1 QhIC)Iesky ﬁecompﬁsgion Ofl the i”tfgéa' matrix is yjiv des are treated formally exact through the usual coupled
c;rnfwa é S"S' ar tg t ?ts?.‘,f? € D'r:es??u?on—o "thendt'tgl) cluster equations. Consequently, an algorithm may be formu-
( els. s an .nor ensity-n mg(. ) (Ref. 5 method. One .lated in which the CC2 doubles amplitudes need not be per-
noticeable difference is that while the Cholesky decomposi-

. : . . manently stored, neither on disk nor in core, but rather cal-
tion yields a general-purpose integral representation of se-

. . L culated “on-the-fly” and immediately contracted with the
lected precision relative to the exact Hamiltoniavithin the . . ) . .
. necessary integrals to give three-index intermediates to be
chosen basis get RI methods usually employ a pre-

optimized auxilliary basis set aimed at a specific subset O§tored on disk as opposed to the four-index intermediates

integrals needed for the calculation at hand. For example, th at mu;t be stored using the mtegral-@rect algorithm.
integrals needed for an MP2 energy calculation (), learly, in ordgr to make ff:a5|ble caliculajtilons on large sys-
wherei, | refer to occupied and,b to virtual orbitals in the tems and basis sets,__th_e doubles-direct 0§1I1%9r|thm, devel-
zeroth order wave function determined from a previous selfoP€d for RI-CC2 by Huig and cp-workeré, s manda-
consistent field SCH computation. The Cholesky integral Y for a Cholesky-based CC2 implementation. _
representation is used for both steps, whereas different aux- An obvious utilization of linear response theory is the
illiary basis sets(i.e., different Hamiltoniansare used for calculation of electric dipole polarizabilities. Although the
RI-SCF and RI-MP2. correlation level of the CC2 model has been shown to be
The CC2 model was introduced by Christiansen, Kochinsufficient — for — highly — accurate  calculations  of
and Jargenséras a perturbation-based approximation to thePolarizabilities}>*® CC2 linear response theory still repre-
full coupled cluster singles and doubl&CSD) (Refs. 7and ~ sents an improvement over uncorrelated methods. Thus, we
present in this paper calculations of electric dipole polariz-

abilities to demonstrate the large-scale applicability of the
dpresent address: Department of Theoretical Chemistry, Chemical Cente) 9 PP y

University of Lund, P.O. Box 124 S-221 00 Lund, Sweden. Electronic éhc’le_Sky'based algomhm' ) ) ]
mail: Thomas.Pedersen@teokem.lu.se Since absolute configuration of a chiral molecule may in
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principle be determined from knowledge of its optical rota-gral accuracy is absolute and, consequently, the relative ac-
tion, recent years have witnessed increased activitalin curacy shows considerable variation with the numerical
initio calculations in this field, see, e.g., Ref. 17, and referwvalue of the exact integral.
ences therein. The major obstacleain initio calculations of In the RI approach, the integrals are approximated in a
optical rotation has been, and still is, the often intractablesimilar fashion according to
size of chiral molecules which, moreover, tend to have little
or no point group symmetry to help reduce computational  (ag|ys)~>, 555555: (4)
effort as well as storage demands. As electron correlation has P
been shown to be important for the accurate calculation of
optical rotation'” we find it natural to test the doubles-direct BEB=E (aBlQ[V ¥?gp, (5)
Cholesky-based CC2 linear response model in this area. Q

This paper is organized as follows: Section Il contains avhere P and Q denote auxilliary basis functions, usually
brief survey of the Cholesky decomposition of two-electronpreoptimized Gaussian functions centered on the atomic nu-
integrals and presents the implementation of CC2 linear reglei, andVqp=(Q|P). The accuracy of the RI approxima-
sponse theory on this basis. Sections Ill and 1V present cakion is determined by the ability of the auxilliary basis set to
culations of polarizabilities and optical rotations, respec-describe the subset of the integrals needed for the calculation
tively, and a summary and concluding remarks are given irat hand. Thus, different auxilliary basis set are optimized for

Sec. V. different wave function models, although we note that aux-
illiary basis sets optimized for MP2 have been shown to be
1I. IMPLEMENTATION applicable to the CC2 model as Wé(n—.l4 In contrast, the

Cholesky decomposition lengtl <N(N+ 1)/2, whereN is
In this section we first give a brief outline of the the number of basis functions, is implicitly determined by
Cholesky integral representation followed by a discussion ofhe chosen threshold and as a rule of thunM.~ 10N for
the implementation of CC2 linear response theory, mainlya =108, Furthermore, the Cholesky integrals may be em-
focusing on the differences between our Cholesky-based agioyed in conjunction with any electronic structure model.
proach and the RI-CC2 method of tlg and \while the storage requirements clearly depend\on the
co-workers'®~**The code has been included in a develop-gependence is not necessarily linear, as the sparsity of the
ment version of th@ALTON progran,® and the overall strat-  Cholesky vectors may be utilized to further minimize storage
egy (apart, of course, from the integral handlirdosely fol- a5 well as I/0. Moreoveiy affects the computational cost in
lows the one described in Ref. 9. a twofold manner. FirstM equals the minimum number of
A. The Cholesky integral representation columns of the integral matrix that need to be calculated
N ) o ~during the decomposition, although the number actually cal-
[From the positive(semijdefinite nature of the atomic ¢yjated usually is somewhat larger, as the integrals are cal-
orbital (AO) two-electron integral matrix it follows that a set jated in shell-pair distributior’sSecond, if sparsity is not

J _ . . .
of Cholesky vectorgl,;,J=1,2,3,..,M} may be calculated  employed,M directly determines the operation count for a

such that? subsequent electronic structure calculation.
An integral-direct Cholesky decomposition algorithm is
(alap)—2 (Lig)?<A, (1) presented in Ref. 1 along with applications to SCF and MP2
’ calculations.

wherea and B, and latery and 8, denote AOs. The decom-
position thresholdA=0 may in principle be chosen arbi-
trarily small, although floating-point arithmetic imposes aB. Cholesky-based CC2 linear response theory

lower limit in practice. As demonstrated through SCF and The CC2 model was introduced by Christiansen, Koch
MP2 sample calculations in Ref. 1, the Cholesky integral ’ '

. and Jergenséras an approximation to the full CCSD model
representation based on perturbation theory and with a computational cost
P similar to MP2. An integral-direct implementation of CC2

(“'BW‘S)%; Laglye: 2 linear response theory is described in Ref. 9 where the model
is treated as a special case of the CCSD algorithm. Memory
produces errors in total ground state energies on the order @fyd disk requirements are consequently the same for

A, i.e., the Hamiltonian operator integral-direct CC2 and CCSD, thus severely limiting the
size of the systems and basis sets that can be treated.
H=2> hpquq+; > Lpols€pars: 3) Recently, Haig and co-worker®1*have presented an
pa pars

alternative algorithm in which the doubles amplitudes are
is approximated with an accura€9(A). In Eq. (3), indices assembled on-the-fly from integrals and singles amplitudes,
p.q,r,s refer to an orthonormal set of molecular orbitals and their contributions to key intermediates are immediately
(MOs), h,,q are the usual one-electron MO integradg,,s  calculated. While a doubles- and integral-direct algorithm
=EpgErs— dq:Eps, and quzigaggaqg is expressed in formally is feasible, an efficient implementation would still
terms of creation and annihilation operat@ifse summation require storagéin core or on diskof half-transformed inte-
being over spin projectign|t should be noted that the inte- grals roughly the same size as the doubles amplitudes them-
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selves. Therefore, in order not to trade efficiency for storage -3 N
demands, an alternative integral representation is mandatory. Lai= > AbaARLYg, (15
Comparing Eqgs(2) and (4), we see that the Cholesky vec- i
tors may straightforwardly be used in the doubles—direct al- . .
gorithm of Hatig et al®~*#Thus, we refer to Refs. 10 and =2 (APAR+ARAR LY, (16)
12 for the partioning of the CC2 equations and for formulas, o’
and focus instead on some implementational aspects. _

Apart from the prerequisite Cholesky decomposition and ~ Lai= D (AR AR +AR ALY, 17)
SCF optimization, a CC2 linear response calculation requires i
the solution of three sets of equations for the zeroth ordewith similar definitions for the integrals of the one-electron
amplitudes, for the zeroth order Lagrangian multipliers, ancbperatorB representing an external perturbation, such as
for the first order response of the amplitudes to an externatlectric or magnetic multipole operators. The “particle” and

(one-electroi perturbation of frequency. Analytical ex-  “hole” transformation matrices are given in terms of the
pressions for the doubles parts of these amplitudes can ®CF MO coefficient matrixC, and the singles amplitudes
derived as and multipliers as
~ pP— —tr
(ab_ itgab_ _ (ai|bj) © AP=C(1-1y), (18
Do arateag AP=C(1+1y), (19
o (ia]jb) + PE tuF o] AP=APL, (20)

tﬁbz ittﬁb'f' nitt_ﬁbz _(2_ P|J)

J— + — . ~
€Ea €T EpT € Ah= —Ah_t-{, (21)
—2(2—P--)—(ia”b) (7 AP=—APB{] (22)
e, —etep—¢’ = 1(w),
) . Ah_ Ah
Btf}b(w)= 't'Btﬁb-f- n't’Btﬁb AN=AMBt (w). (23

(ai|_bj) In Egs.(6)—(8) the amplitudes and multipliers are written as
= a sum of iterative(“it” ) and noniterativg“nit” ) parts, the
€a— €T Ep— €0 latter entering the right-hand side of the corresponding effec-
acs ab tive (partitioned problem(for the general form of the effec-
ab clij Boo™ Zili By tive i tions for determining the multipli E
a2 —=, (8) ive linear equations for determining the multipliers, see Egs.
Ea— €T Ep— €W (31) and (32) of Ref. 12; similar expressions exist for the
linear response equations for the amplitudes
The vast majority of the CPU time of a Cholesky-based
CC2 linear response calculation is spend calculating a par-
ticular class of intermediates, defined through an expression

for zeroth order amplitudes, multipliers, and first order am-
plitude response, respectively. Indicad,c andi,j,k are
used to denote virtual and occupied M@g,is the canonical
SCF orbital energy of orbitalp, P;MZ°=M3", and

ji o
PE°M{P=M{"+MP2. The various modified MO integrals of the form
are defined in terms of Cholesky vectors as 5 b
Yaizgj X2z}, (24)
Fia=2>, (2(ialkc)—(kalic))tek, 9
a % (2(ialko) ~ (kalic) tex © whereX2®, in turn, is defined in terms of the relevant itera-
tive doubles vector of Eq$6)—(8). For the calculation of the
N TR 33 CC2 singles vector functionX’=(2—P;;)"3" and z};
(ia]jb)=(ia|jb) ; Liabib (10 =L}, for left transformations with the effective Jacobian,
X3P=1"2 and z};=Ly,;, and finally for right transforma-
(ai~|bj):2 Iy (11) tions with the effective Jacobiarxf}b=(2—Pij)"*Bt;”}b(w)
7 aithi andzj; =L}, . Assuming that the relevant MO Cholesky vec-
tors are available on disk, the calculation of these
L5, A Y-intermediates proceeds in two steps scalingOgy/?M
__pab JiJ
(ia]jb) =P ; Lialio 12 _o2Nein the following manner:
 Loop A (subset of virtual orbita)s
— ~ - Loop B (subset of virtual orbita)s
Thiy_ pab I7
(aifbj)=Pf EJ: Lailb; (13 * CalculateX?” for ae A andb e B, contracting as
many MO Cholesky vectors according to Ef),
where (7), or (8) as can be stored in remaining memory.
* Loop J (subset of Cholesky vectors
J
L2= C,iCpl?,, 14 - ReadYy; forae A andJe J.
'a % '~patap (14 - Readz}; for be BandJe J.
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- Calculate contribution th;i according to Eq.  often in the neighborhood of 16 and smaller, implying that

(24) for Je J, be B, andac A. a too large amount of the amplitudes becomes identically
- Store updated/jli forae A andJe Jon disk. zero in the Cholesky representation with a decomposition
* End loop J. threshold of, sayA=10*.
- End loopB. In the integral-direct approachevaluation of the linear
* End loop A. response function from known amplitudes and their F-matrix

As indicated, main memory is split in two parts, one for thetransformed counterparts is a straightforward series of dot-
amplitudes and another one for MO Cholesky vectors in thgroducts. In the doubles-direct approach, however, the linear
first step andr- andZ-vectors in the second step. The split is response function must be evaluated with doubles amplitudes
set up dynamically, depending on the relative sizes of ampliassembled on-the-fly from the expression
tudes and vectors, thereby ensuring that even very large cal-
culations may be carried out with minimum memory require-
ments. On the other hand, I/O operations on the various
vectors in the two steps decrease as available memory is F(A,B,w)= >, ng[At(—w)]qu
increased. In almost any case, more than 90% of the total Pq
time is spend calculating matrix—matrix multiplications. ~

The ground state amplitudes, E(), are constructed +> ng[Bt(w)]quJrZ Atyi(— o)

[8]¢] al

from the positive definite integralsa(~|bj) and, conse-
quently,tf}b form a negative definite matrix. Hence, as has
been demonstrated for the MP2 enefgye may employ

Cholesky decomposition of either thai(bj) integral ma-

trix or of the amplitudes themselves to reduce the operation +> Fai,bjckBtjblf(w))+2 B, ()
count of the first step in the calculation of the ground state bjck al
Y-intermediates. Specifically, using either

(A.B),=3(F(AB,w)+ FA"B',— w)*), (27)

X(%% Faibj “thj(®)

X(%% Faipj thj(— )

M!
(ai[bj)~ 2, N3iNg;, (25
+ 2 Faipjok i~ ), (28
or bjck
M for one-electron operato’s andB. The modified MO inte-
3~ — > NN, (26) gralsAyg and~qu.are defined from the AO integrals of tie
J=1 andB operators in analogy to the definition of modified MO

Cholesky vectors in Eq.15). Immediately after solving the
equations for the first order amplitudes, thHe-matrix
transformations are carried out along lines similar to the

= min[OV.M] and so Eq(25) will certainly reduce the com- Jacobian t_ransformatioﬁ%,thus involving calculation of
putational cost of calculating the amplitudes when the cost O?(-mtermedlgtes,_Eq(.24), from ful ampllt_udes_(lteranve as
the decomposition itself is negligible. The number of vectorsweII as nonlterz_mve parlsan_d the resulting smgles V(_actors
M" needed to decompose the amplitudes is also bounded are stored on d|s!<. The partial f|_rst order denglty matrices are
OV, but may, on account of the orbital energy denominator, lculated from first order amplitudes according to
in principle be larger thaiM. In practice we have found that _
M”>M’, making Eq.(25) preferable to Eq(26). However, DI[Bt(w)]=—2 Btyi(w)Dp— > By, (29
the advantage is far less pronounced than in the MP2 case, as 2 ack

the second step of th¥-intermediate calculation must be

done for the full original set of Cholesky vectors in any case.  DA[Pt(w)]=2 Btaj(w)D}— X DpBtyi(w)

Instead, once the equations have been solved for the ground ' °

state amplitudes, E¢26) may be employed once and for all

the scaling of the first step in thé-intermediate calculation
is reduced, provided that the number }; vectors is less
than the number of original vectotd. As for MP21 M’

. ; b~ A
to obtain a compact representation, useful for response cal- +%: Btﬂ Db (30
culations. By default, we use the same threshold for the am-
plitude decomposition as for the integral decomposition. For  p78t(4,)]=0, (31)

sufficiently small thresholds, this default value does not sig-

nificantly reduce the accuracy of the final linear response —

function. As we shall see below, care must be exercised for ng[Bt(“’)]:Zi DQiBtbi(“’HijEc ti&}CBtibjc’ (32
larger thresholds, as the errors in the amplitude representa-

tion may in some cases lead to significant errors in the cawhereD” is the CC2 ground state density matrix calculated
culated response properties. The reason for this behavior fsom multipliers and Cholesky decomposed zeroth order am-
straightforward: the numerical value of the diagonal ele-plitudes. Obviously, the most expensive terms in the calcu-
ments of the matrix formed by the ground state amplitudes igation of the partial first order densities are those that require
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TABLE |. The zzcomponent of the static polarizabilifin a.u) calculated from frozen core CC2 linear response theory for benzene using conventional and
Cholesky algorithms. For Cholesky, the erroes,{ Cholesky — «,] Conventiona])/A are given. Total CPU timing$in minutes are also given for the
coupled cluster calculations, i.e., excluding integral evaluations/decompositions and SCF optimikht®tiee number of basis functions.

Conventional A=10"% A=10"6 A=10"8
Basis set N ayy Time Error Time Error Time Error Time
6-311+ + G(2d,2p) 222 43.978 998 82 52.0 -16.5 2.8 -19.8 4.3 -20.1 6.0
6-311+ + G(3df,3pd) 342 45.218 442 97 347.8 —-25.0 8.6 —25.1 12.7 —14.0 17.8
aug-cc-pvVDZ 192 46.014 923 45 265 -—231 2.1 -6.8 3.0 20.0 4.0
aug-cc-pvTZ 414 45.652 888 91 604.9 —-37.0 11.1 —2.7 16.4 -59 27.5

assembly of doubles according to E¢8) and (8) using a S| units ise?a?/E,~1.648 77& 10 2* C2m2J~ %, while that
loop structure similar to that of thgé-intermediates. to volume polarizability isagmolmg 184 7 B. To evaluate
With the AO Cholesky vectors available on disk, the the CC2 polarizability at a given nonzero frequency, we must
additional disk space requirements for a CC2 calculationsplve six equations for the first order amplitude responses:
based on Cholesky decomposed integrals is t@VM, o for each Cartesian component of the electric dipole op-
which is substantially smaller than theO?V? requirement erator (one atw and one at—w). In the static case
of the integral-direct approach, especially for large molecules_ 0), only three equations need to be solved. The worst-case
(large number of occupied®)). Whereas the memory re- gcenario within the doubles-direct algorittiire., solving the
guirements for Cholesky-based CC2 and RI-CC2 are 'de”t'partitioned response problgraccur when the three compo-

cal, the latter requires less disk space, as the three-centgtns of the electric dipole operator transform according to
integrals of Eq/(5) are never stored on disk but recalculated iterent irreducible representations of the molecular point

as neede&i‘? , i , group. In this case, we are forced to solve each of the six
While crucial for formulating the doubles-direct algo- (times the number of frequencieamplitude response equa-

. . . 1014
frlthm, the gartltlodnlngt:] 0; th? C%Z Ja;obi%ln I:eads .toh? tions separately, thereby loosing the advantages of spanning
requency-dependent effective Jacobi@s well as right- all response amplitudes in one common set of trial vectors.

hand sidegand, thus, has the side-effect that the response Polarizability calculations are performed for the benzene

equations must be solved separately for each perturbatiognd G, molecules. For benzene we employ the following
frequency. Therefore, the total number of linear transforma- 0

; . o ) : geometry: roc=1.397 A, rcy=1.080A, and 2 (CCC)
tions (effective Jacobian times trial vecjas usually larger — / (CCH)=120°, placing the molecule in they-plane

for the doubles-direct implementation than for the convens ith the z-axis through the center of mass. For the fullerene,

tional one. On the other hand, the partioning also implies thaWe use the same geometry as Ruud, Jonsson, and Tgfor.

the doubles parts of the equations are in fact explicitly ) : .
solved, which tends to decrease the number of iterations Table | presents results obtained with rather modest basis

needed for convergence and thus decrease the total numbsertS for benzene using conventional as well as Cholesky

of linear transformations. The calculation of static properties(?ecompos't'on'b"’ISGd doubles-direct algorithms. In order to

(zero frequency therefore generally requires fewer linear ensure that discrepancies between_the two algorithms are due
transformations for the doubles-direct implementation,SOIer to the Cholesky decomposition of the two-electron

whereas calculation of dynamic propertiesnzero frequen- Ntegrals, we have imposed very tight convergence thresh-
cies requires more. The reason for this somewhat peculia

plds(i.e., 10" *for errors in MOs, 10 for the CC2 energy,
8 .
behavior is that the Hermitian symmetrization of the linear@nd 10" for the residual norm for the CC2 response equa-
response function in Eq27) forces us to solve the linear

tions). All calculations were carried out on an IBM/RS6000
response equations not only at the perturbation frequencie¥orkstation equipped with a Powerlll processor. For the con-
of interest but also at minus those frequencies. Thus, in gertentional calculations, the AO integrals were stored on disk
eral, the doubles-direct algorithm requires solution of twice?nd thus avoiding expensive recalculations. Nonetheless, the
the number of perturbation frequencies distinct blocks ofaving in computational time is substantial, up to a factor of

. . . . . . H — —4
equations, whereas a single block in principle suffices in th@4 for the aug-cc-pVTZ basis set fdr=10"", and even
conventional approach. more pronounced savings can of course be anticipated for

calculations requiring integral-direct techniques in the con-

ventional scheme. We observe that the errors stemming from

Il POLARIZABILITY Cholesky decomposition vary systematically and, as ex-
The Cartesiaijk component of the electric dipole polar- pected, the error approaches zero for low decomposition
izability tensor is related to the linear response function acthresholds. Note, however, that the error in general is one

cording to order of magnitude larger thak, which can be traced back
o 33 to the decomposition of the ground state amplitudes. As an
(@)= =k pucdo (33 example, decreasing the threshold for amplitude decomposi-

where u is the electric dipole operator. We report the polar-tion to 10 1° while keepingA =10~ * with the aug-cc-pVTZ
izability in atomic units, noting that the conversion factor to basis set reduces the error+®2.2x 10" 4 a.u. We point out

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



8892 J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Pedersen, Sanchez de Meras, and Koch

TABLE Il. The xx- andzzcomponents of the static polarizabilitin a.u) TABLE Ill. The average polarizabilityin a.u) calculated from frozen core
calculated from frozen core CC2 linear response theory for benzene usinGC2 linear response theory forgCusing Cholesky algorithmN is the
Cholesky algorithmN is the number of basis functions. number of basis functions.

Basis set N Qyy ayy Wave
3-21G 66 67.95 14.70 Basis set N A= A=1064 nm
4-31G 66 69.68 16.64
6-31G 66 70.87 18.40 6-31G 540 495.94 506.88
6-31G" 96 71.89 20.33 6-31++G 780 586.75 600.77
6-31G* 114 72.40 20.76 6-31+ + G* 1080 606.80 622.59
6-31G(3f,3pd) 282 79.85 37.82 cc-pvDz 840 541.46 554.46
6-311G 96 74.04 25.19 aug-cc-pvDZ 1380 623.70 640.15
6-311G(aif,2pd) 264 78.29 31.89 All electrons correlated.
3-21++G 96 76.95 39.72
6-31++G 96 78.32 40.97
6-31+ +G* 126 79.19 41.29 Table III ¢ | | licati f th
6-314 + G+ 144 7956 41.48 able reports a large-scale application of the
6-311+ + G(2d,2p) 222 82.34 43.98 Cholesky CC2 linear response formalism to the calculation
6-311+ + G(3df,3pd) 342 83.79 45.22 of static and dynamic polarizabilities for thes@Omolecule
aug-cc-pvDZ 197 84.46 46.01 using decomposmon threshold=10"" and t_h7e following
aug-cc-pvTZ 414 8451 45 65 wave function convergence threshold5s>.<50 for MOs
aug-cc-pvQzZ 756 84.36 45.37 (SCH and the CC2 energy, and>5L0" > for the CC2 re-
aug-cc-pV5Z 1242 84.28 45.28 sponse equations. With the aug-cc-pVDZ basis set, the CC2
aug-cc-pvez 1896 84.24 4522 wave function contains 2.8 billion doubles amplitudes and an
aug-cc-pV7Z 2742 84.22 45.21

integral-direct calculation would require approximately 113
Gb of memory. As for benzene, we find that diffuse functions
are essential for accurately calculating the polarizability.
Note, however, that the percentwise changes going from
6-31++G or 6-314++G* to aug-cc-pVDZ are in fact

that for practical purposes, a decomposition threshold of

— 76 . . . . _
107 should be sufficient to obtain essentially exact re smaller for Gy than for benzene. Hence, the assumption used

sults. 19 . R
. : ... by Ruudet al:*® (for SCF calculations of the polarizability
A basis set convergence study of the static polarizability, at 6-31 +G constitutes a reasonable compromise be-

E%r:ﬁi?]negttsléogggigzzztes'z%/fqg;_ aprlr?;;éjsclgi;zgl;:‘n ween computational effort and quality of the results seems

were pgrfo)r/med with default thresho.lds for convergence o pplicable to CC2 caIleéations as well. Comparing to the

SCF and CC2 wave function parametétisat is, 10°° for CE results of Ruu_ét al* and to the SCF_ anq DFT results
b ’ of Xie et al,*® we find that the CC2 polarizability is some-

MOs in the SCF procedure, 18 for the CC2 energy, and : .

10°5 for the respgnse equationsoth componentsg):)f the what larger. This may to some extent be explained by the use
- L : . of more diffuse basis sets in the present study. At the same

polar|zab_|l|ty show r_emarkable .stab|I|ty V.Vlth respect to ba.lS'stime, the rather low level of correlation of the CC2 approach

set, provided that diffuse functions are included. In particu-

L : opens for possible reductions using full CCSD or better.
lar, the aug-cc-pVXZ series is essentially converged alread)éuch reductions are to be expected, as the experimental po-
at the double-zeta level. The largest calculation, i.e., aug-c .

. " ! Garizabilities are 51654 a.u. (76.58 A%) (Ref. 39 at \
pV7Z, involves 100 million doubles amplitudes and would _ and 533-27au. (7%4A% (Ref. 37 at \

require more than 13 Gb of memory using the conventional_ 1064 nm. Note, however, that the dispersion is reasonably
integral-direct algorithm. The average of the polarizability § ' '

. ) well described at the CC2 level, the polarizability increasing
tensor is 71.22 a.u. at the aug-cc-pV7Z level, in reasonabl . . A,
! . , ly 3% f h I 1064 nm.
agreement with experimenfr0.05 a.u. by Proutre and gpproxmateys 6 going from the static limit to 1064 nm

Camail? 67.48 a.u. by Aimsetal,??> and 68.7 a.u. by

Okrusset al?%. Numerous theoretical calculations of the po- IV. OPTICAL ROTATION

larizability of benzene are available in the literature, see, e.g., _

Refs. 24—-33. Most of these use the SCF method with resultd- Theoretical background

ranging from approximately 64 a.u. to 68 a.u. for the average  The specific rotation, in units of ddgim g/cn?] %, of a
polarizability. Among the correlated calculations, Chris- chiral molecule is defined &

tiansen, Heig, and Jargenséhobtained an average polariz- 26" ()

ability of 69.17 a.u. at the CCSD level with Sadlej's basis _ o 40 PO

set, while Sosau et al® reported 67.25 a.u. using DFT/ L] =28800m Nadg—y— (34

B3LYP and a modified 6-3tG(d,p) basis set. Thus, the \\hereN,, is Avogadro’s numbe, is the bohr radius in cm
CC2 method seems to overstimate the correlation effects o 5 the frequency of the light in ciit (w is the frequency in
the average polarizability of benzene. Recently, we have catsomic unit3, M is the molecular weight in g/mol, and
ried out a detailed study of the static and frequency—

dependent polarizability of benzene and a few small B (@)= _ImTf«Mam»w 35
4n+ 2]-annulenes? 3w

[
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TABLE IV. All-electron CC2 specific rotation[(]p , in deg[dm g/cn?]~1) at the sodium D line in length gaugerigin at the center of masfor CNOFH,
using conventional and Cholesky algorithms. For Cholesky, the efraiig(Cholesky)-[ a]p(Conventional), are given. Total CPU timin¢ia hours are
also given for the coupled cluster calculations, i.e., excluding integral evaluations/decompositions and SCF optinNzistithesnumber of basis functions.

Conventional A=10"% A=10"° A=10"8
Basis set N [a]lp Time Error Time Error Time Error Time
cc-pvDZz 66 44.684 230 1.2 —0.093 165 0.1 0.000 816 0.2 0.000 005 0.3
cc-pvTZ 148 68.968 184 21.9 0.026 980 1.4 —0.000 357 2.3 —0.000 005 3.7
aug-cc-pvDZ 110 73.557 159 8.0 —0.156 513 0.5 —0.000 608 0.9 0.000 003 1.3
aug-cc-pvTZ 230 77.270 983 113.4 —0.304 409 5.6 —0.000 175 8.4 0.000 005 13.0
in atomic units eé). Following tradition, we have employed In the following sections, we report sample calculations

the length gauge in Ed35), and the tracéTr) is over Car- of [a]p for two molecules, CNOFK and (—)-trans-
tesian elements of the electric dipole-magnetic dipole polareycloocteng(TCO).
izability tensor(u is the electric dipole operatam the mag-
netic dipole operat9r Evaluation of the specific rotation thus ) _
requires exactly twice as much effort as for the frequencyB- Optical rotation of CNOFH
dependent electric dipole polarizability, that is, twelve first Following Ruudet al,'” we employ CNOFH, derived
order amplitude response equations for each requested freom 2-F-oxirane by substituting the ring GHvith NH, as
quency, making the calculation of optical rotation dispersiontest system for probing the basis set convergence of the spe-
a rather costly affair. On the other hand, specific rotations argific rotation. We use the DFT/B3LYP/6-3¥GC; geometry
often reported at the sodiu@ line (i.e., at 589.3 nm, de- of Ref. 17.
noted[ «]p) so that calculations need be done for only one  |n Table IV we have collected some results for the opti-
frequency. cal rotation using conventional as well as Cholesky CC2

Origin dependence is a recurring problem in coupledinear response theory with the same tight convergence
cluster calculations of response properties for perturbationghresholds as for the case of benzene above. All calculations
that involve a time-dependent magnetic field. As discussegyere performed on the same computer as used for benzene.
on several other occasiohs?® **London (or gauge includ-  The basis sets are sufficiently small that the conventional
ing) orbitals can not be used to ensure origin invariance ircalculations may be carried out with integrals on disk and,
standard coupled cluster theory in these cases, although tlgain, the Cholesky algorithm is nevertheless significantly
problem may be solved by enforcing gauge invarianceaster than the conventional one. The errors in the specific
through optimizing orbitals alongside the double and highekotation caused by the approximate Cholesky integral repre-
order excitation cluster amplitudéthe NOCC model*” Un-  sentation are clearly controllable, decreasing systematically
der a translation of the origin along the vectri.e.,r—r  with the decomposition threshold. Note that the errors mea-
—a, the optical rotation transforms according to sured in a.ufi.e., the errors i3’ (»)] are on the order oA,

except for theA =10"* results for the augmented basis sets
[a]—[a]+aA® (36 Wherg the error is roughly an order o? magnitude larger.

The componenA®®, i.e., the change in specific rotation per Again, this increased error can be attributed to the decompo-
jor e e . .
unit length along thgth Cartesian direction, can be derived Sition of the ground state amplitudes. For example, using a

as threshold of 101° for the amplitude decomposition while
keepingA =104, the error in the specific rotation becomes
23 i€l P e —0.015 883 degdm g/cn?]~* with the aug-cc-pVTZ basis
AjOR:—28800nZNAa3VIm 6o » (87 set. In all, as for the benzene static polarizability, we thus
find thatA=10"© suffices for essentially exact results.
wheree is the Levi—Civita tensor; is the position operator, Taking advantage of the open-ended nature of the

and p the momentum operator. WhilA®R vanishes for doubles-direct algorithm, we perform an extensive basis set

variational methods in the limit of basis set completeness, itonvergence study of the specific rotation and its origin-

is nonzero for truncated coupled cluster models, includinglependence at the CC2 level. The results are presented in

CC2 and CCSD, even with a complete orbital basis. ThusTable V with all electrons correlated and in Table VI with

the length gauge specific rotation calculated from CC2 lineafrozen core approximation usiny=10"° and default con-

response theory depends on the chogeathematical ori-  vergence thresholds for the wave function paramdtdrshe

gin. benzene polarizability calculations presented ahoide
Ruudet all’ calculate specific rotations with the origin largest calculatior(all-electron CC2 with the aug-cc-pV6Z

at the molecular center of mass. Although certainly a reasorbasis setincorporates nearly 126 million doubles amplitudes

able choice, inconsistencies would arise when calculating viand would require more than 8.5 Gb of memory for the con-

brational effects for different isotopomers, 85(w) values  ventional algorithm.

would be different. As expected! the all-electron results in Table V show
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TABLE V. All-electron CC2 specific rotation at the sodium D linga{p, in deg[dm g/cn?]™1) in length
gauge(origin at the center of mas$éor CNOFH, using Cholesky algorithm. The Cartesian origin-dependence
vector (in deg[dm g/cn?]~* bohr ) is also reportedN is the number of basis functions.

Basis set N [alp AQR A?R AR
STO-3G 22 163.69 10.345 —5.426 —15.012
3-21G 40 111.76 31.000 —4.095 —2.579
4-31G 40 113.37 21.063 —7.249 4.753
6-31G 40 115.82 17.061 —5.699 6.155
6-31G" 60 88.20 8.262 —7.512 6.475
6-31G™* 66 88.59 7.101 —7.677 5.376
6-31G(3f,3pd) 156 104.56 2.334 —0.668 —4.658
6-311G 58 80.18 6.437 —6.239 9.640
6-311G 78 58.54 1.522 —10.945 8.474
6-311G™ 84 57.62 —3.264 —9.725 3.766
6-311G(alf,2pd) 148 70.90 —0.875 —2.094 1.119
3-21++G 58 63.06 1.320 9.172 6.275
6-31++G 58 111.67 —10.149 —0.303 6.216
6-31+ +G* 78 94.30 —8.697 0.781 6.788
6-31+ + G** 84 96.42 —10.737 0.340 4.399
6-311+ +G** 102 114.52 —10.321 —3.249 1.191
6-311+ + G(2d,2p) 128 101.11 —4.743 0.502 0.195
6-311+ + G(3df,3pd) 192 82.13 —2.109 1.712 —1.865
cc-pvDZ 66 44.69 —0.194 —3.105 5.265
cc-pvTZ 148 68.97 —3.586 1.182 2.839
cc-pvVQZ 280 80.58 —2.858 2.257 0.759
cc-pV5Z 474 78.44 —3.176 2,501 —1.088
cc-pVez 742 81.51 —2.376 1.755 —1.594
aug-cc-pVDZ 110 73.56 —3.679 3.711 —4.323
aug-cc-pvVTZ 230 77.27 —2.022 0.775 —3.246
aug-cc-pvVQZz 412 79.23 —1.641 0.335 -3.025
aug-cc-pV5sZ 668 80.60 —1.745 0.281 —3.051
aug-cc-pVez 1010 81.04 -1.729 0.286 —2.983
daug-cc-pvVDZ 154 71.76 —1.158 -0.871 —4.414
daug-cc-pVTZ 312 76.69 -1.714 —0.186 —-3.296
daug-cc-pvVQZ 544 79.49 —1.734 0.105 -3.115
daug-cc-pV5Z 862 80.60 —1.745 0.210 —3.024
cc-pCvDZ 82 44.70 —0.009 -3.351 5.303
cc-pCVTZ 200 70.06 —3.088 0.488 3.477
cc-pCvQz 396 80.72 —2.906 2.230 0.836
cc-pCVv5Z 690 78.55 -3.123 2.482 -1.072
aug-cc-pCvDZ 126 72.69 —3.410 3.701 —4.105
aug-cc-pCVTZ 282 77.48 -1.781 0.948 —-3.111
aug-cc-pCvVQZ 528 79.44 -1.613 0.408 —2.954
aug-cc-pCVv5z2 884 80.72 —1.733 0.306 —3.017

that diffuse functions are essential for describing optical ro-duced to a minimum with the augmented series, although
tation. It should be noted, however, that for the popularA°R definitely does not approach zero. Double augmentation
6-31G-type basis sets, augmentation with diffuse function®f the basis set is seen to be less important than to increase
seems to correct the specific rotation in the opposite directiothe cardinal number of the basis set. Moreover, inclusion of
of the basis set limit. In general, the Pople-style basis sets a@re-correlating functions does not significantly improve the
rather ill-suited for the correlated calculation of specific ro-description, indicating validity of the frozen core approxima-
tation, as also reflected by the, in most cases, severe origition. This is confirmed by comparing to the frozen core re-
dependence. Nevertheless, it should be stressed that tkalts in Table VI, although we note that for the largest basis
6-31++G* and 6-31 +G** basis sets might provide a sets, the effect of freezing core orbitals is comparable to the
reasonable compromise between computational effort andffect of increasing the cardinal number of the basis set.
accuracy for large-scale applications. If possible, the 6-31However, for the smaller sets of interest for larger calcula-
++G(3df,3pd) basis set should also be considered fortions, one may invoke the frozen core approximation with
such applications. Dunning’s basis sets, on the other handnpunity. Selecting among Dunning’s basis sets, the aug-cc-
provide a well balanced hierarchy for CC2 calculations ofpVDZ or, preferably, the aug-cc-pVTZ basis set should be
specific rotation. Note also that the origin-dependence is redsed for accurate calculations.
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TABLE VI. As Table V but using the frozen core approximation.

Basis set N [a]p AQR AQR AR
6-31G 40 116.92 16.978 —6.049 5.912
6-31G 60 88.87 8.199 ~7.776 6.344
6-311G 58 82.05 6.068 ~7.028 9.139
6-311G(aif,2pd) 148 71.33 ~1.279 ~2.645 0.906
6-31++G 58 112.60 ~10.430 ~0.604 5.951
6-31+ +G* 78 94.84 ~8.994 0.533 6.596
6-311+ +G(2d,2p) 128 101.43 ~5.374 0.037 -0.108
6-311+ + G(3df,3pd) 192 82.06 —2.704 1.272 —2.142
aug-cc-pvVDZ 110 73.78 —3.918 3.550 —4.438
aug-cc-pVTZ 230 77.22 ~2.501 0.428 —3.486
aug-cc-pvQZ 412 78.92 —2.246 —0.147 ~3.367
aug-cc-pV5Z 668 80.10 ~2.368 ~0.240 —3.422
aug-cc-pVeZ 1010 80.45 ~2.363 ~0.250 ~3.370

C. Optical rotation of TCO 6-31+ + G* integrals, implying that the CC2 work load is

Whereas numerousb initio studies of the electronic Slightly larger for the former even though the number of
natural circular dichroism of TCO are available in the litera-Pasis functions is smaller. A decomposition thresholdAof
ture, see, e.g., Refs. 40, 41, 43, and 44 and references10 © is, again, sufficient for minimal Cholesky errors.
therein, none has appeared on the specific rotation. We use Using, therefore,A=10"° and default convergence
the DFT/B3LYP/cc-pVTZ G geometry of Ref. 41 for the thresholds for wave function parametésse abovk specific
present computations. As TCO represents a more realistiotations for TCO with various basis sets are given in Table
application of CC2 linear response theory to the calculationvIll along with the origin-dependence vector. There are 207
of specific rotation, we perform a limited basis set conver-million doubles amplitudes in the largest calculatiang-cc-
gence study to test the main conclusions of the previoupvQz basis setwhich would require more than 11.6 Gb of
section. memory with the conventional algorithm. Diffuse functions

Table VII contains a study of accuracy and timings. ASare once again observed to be important, although the cc-
for the similar calculations above, tight convergence crlterlapvxz series is in fact closer to the converged result than the

were employed for the wave function parameters. ONC&p5jier augmented Pople-style basis sets. The exceptions are

again, significantly reduced computational effort is gained6_311++G 2d .2 d 6-31% +G(3df 3pd hich
from using the Cholesky-based algorithm and, measured in. (2d,2p) an (3df,3pd) whic

a.u., the errors are on the order &f In this case, too, the yield specific rotations in the prqximity of the aug—cc—pVTZ
Iarg;ar errors occurring for the diffuse basis set $ atl(),*“ and aug-cc-pVQZ results despite the substantially smaller

are due to the ground state amplitude decomposition: déquber of basis functions. The basis s.et.cgnvergence of the
creasing the threshold for amplitude decomposition 90 origin-dependence towards a nonzero limit is even more pro-
and keeping\ =104 with the aug-cc-pVDZ basis set gives nounced Sfor TCO than for CNOFH above. Experi-

an error of—0.029892 deddm g/cn?] 1. The sizes of the mentally?® the specific rotation of TCO is—440 deg
cc-pVDZ and 6-3% +G* basis sets differ by 4, which is [dmg/cn?] ™! in CH,CI, solution. Our best CC2 result is
reflected in the similar CPU times for these two basis sets38% above this value. While some of this discrepancy may
Note, however, that while the conventional algorithm is morebe ascribed to insufficient correlation treatment of the CC2
time consuming for the largest basis set, the opposite is ognodel;’ solvent effects can be expected to contribute signifi-
served for the Cholesky algorithm. The reason for this pecuecantly to the experimental value. In conclusion, the aug-cc-
liarity is that slightly more Cholesky vectors are needed forpVDZ and 6-3% +G* basis sets are found to be reasonable
the decomposition of the cc-pVDZ integrals than for thecandidates for large-scale applications.

TABLE VII. Frozen core CC2 specific rotatiof ¢]p , in deg[dm g/cnt] 1) at the sodium D line in length gauderigin at the center of chargéor TCO
using conventional and Cholesky algorithms. For Cholesky, the efrefg(Cholesky)-[ «]p(Conventional), are given. Total CPU timings hourg are
also given for the coupled cluster calculations, i.e., excluding integral evaluations/decompositions and SCF optinNzistithesnumber of basis functions.

Conventional A=10"4 A=10° A=10%

Basis set N [a]p Time Error Time Error Time Error Time
6-31G 140 —168.945833 7.5 0.189215 0.6 —0.005446 1.0 —0.000012 15
6-31+ + G* 186 —247.278086 21.8 2.596908 1.2 —0.001086 2.0 —0.000018 33
cc-pvDZ 182 —259.507167 19.4 —0.045570 1.3 0.001378 2.2 0.000004 3.6
aug-cc-pVDZ 310 —286.227181 141.1 2.462699 5.2 —0.001901 9.1 —0.000019 15.5
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TABLE VIIl. Frozen core CC2 specific rotation[¢]p, in deg  §.314 4+ G set with an additional set of polarization func-
[dm g/cn?] 1) at the sodium D line in length gaugerigin at the center of . . .
tions, is a good candidate.

charge for TCO using Cholesky algorithm. The only symmetry-allowed

Cartesian element of the origin-dependence vector iszteemponent, Calculations of specific rotations in the length gauge for-
which is reported in de§dm g/cn?]~* bohr . N is the number of basis mulation are somewhat obscured by the inherent origin-
functions. dependence. Our basis set study clearly demonstrates that

this problem does not disappear in the limit of a complete
basis set for the nonvariational CC2 model. Investigations
6-31G 100 —102.32 20.068 are underway regarding inherently origin invariant calcula-

Basis Set N [alp AR

6‘31G* 140 ~168.95 ~2201 tions of specific rotations without resorting to London orbit-
6-31G" 182 —-167.19 —0.643 o .

6-311G 146 _158.67 14.718 als for variational as well as nonvariational mod®ls.
6-311G(alf,2pd) 436 —137.79 —10.697

6-31++G 146 ~194.85 16882 ~ ACKNOWLEDGMENTS
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