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Polarizability and optical rotation calculated from the approximate
coupled cluster singles and doubles CC2 linear response theory
using Cholesky decompositions

Thomas Bondo Pedersena) and Alfredo M. J. Sánchez de Merás
Institute of Molecular Science, Department of Physical Chemistry, University of Valencia,
E-46100 Burjassot, Valencia, Spain

Henrik Koch
Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

~Received 30 January 2004; accepted 23 February 2004!

A new implementation of the approximate coupled cluster singles and doubles CC2 linear response
model using Cholesky decomposition of the two-electron integrals is presented. Significantly
reducing storage demands and computational effort without sacrificing accuracy compared to the
conventional model, the algorithm is well suited for large-scale applications. Extensive basis set
convergence studies are presented for the static and frequency-dependent electric dipole
polarizability of benzene and C60, and for the optical rotation of CNOFH2 and
(2)-trans-cyclooctene~TCO!. The origin-dependence of the optical rotation is calculated and
shown to persist for CC2 even at basis set convergence. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1705575#

I. INTRODUCTION

In a recent communication,1 we have demonstrated that
significant reductions in computational effort as well as stor-
age requirements are attainable using Cholesky decomposi-
tions in electronic structure theory. Specifically, we have
shown that the Cholesky representation of the two-electron
integral matrix2 can be immediately exploited for second or-
der Møller–Plesset~MP2! perturbation theory. As mentioned
in Ref. 1, Cholesky decomposition of the integral matrix is
formally similar to the socalled resolution-of-identity~RI!
~Refs. 3 and 4! or density-fitting~DF! ~Ref. 5! method. One
noticeable difference is that while the Cholesky decomposi-
tion yields a general-purpose integral representation of se-
lected precision relative to the exact Hamiltonian~within the
chosen basis set!, RI methods usually employ a pre-
optimized auxilliary basis set aimed at a specific subset of
integrals needed for the calculation at hand. For example, the
integrals needed for an MP2 energy calculation are (aiub j),
wherei , j refer to occupied anda,b to virtual orbitals in the
zeroth order wave function determined from a previous self-
consistent field~SCF! computation. The Cholesky integral
representation is used for both steps, whereas different aux-
illiary basis sets~i.e., different Hamiltonians! are used for
RI-SCF and RI-MP2.

The CC2 model was introduced by Christiansen, Koch,
and Jørgensen6 as a perturbation-based approximation to the
full coupled cluster singles and doubles~CCSD! ~Refs. 7 and

8! model with a computational cost similar to that of MP2.
The foremost advantage of CC2 over MP2 is the possibility
to calculate frequency-dependent molecular response proper-
ties, such as dynamic polarizabilities or optical rotations.
This additional feature, however, is accompanied by a com-
putational penalty arising from the iterative nature of CC2.

In analogy to canonical MP2, the CC2 doubles ampli-
tudes may be calculated analytically from integrals and a
given set of singles amplitudes, while the CC2 singles am-
plitudes are treated formally exact through the usual coupled
cluster equations. Consequently, an algorithm may be formu-
lated in which the CC2 doubles amplitudes need not be per-
manently stored, neither on disk nor in core, but rather cal-
culated ‘‘on-the-fly’’ and immediately contracted with the
necessary integrals to give three-index intermediates to be
stored on disk as opposed to the four-index intermediates
that must be stored using the integral-direct algorithm.9

Clearly, in order to make feasible calculations on large sys-
tems and basis sets, the ‘‘doubles-direct’’ algorithm, devel-
oped for RI-CC2 by Ha¨ttig and co-workers,10–14 is manda-
tory for a Cholesky-based CC2 implementation.

An obvious utilization of linear response theory is the
calculation of electric dipole polarizabilities. Although the
correlation level of the CC2 model has been shown to be
insufficient for highly accurate calculations of
polarizabilities,15,16 CC2 linear response theory still repre-
sents an improvement over uncorrelated methods. Thus, we
present in this paper calculations of electric dipole polariz-
abilities to demonstrate the large-scale applicability of the
Cholesky-based algorithm.

Since absolute configuration of a chiral molecule may in
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principle be determined from knowledge of its optical rota-
tion, recent years have witnessed increased activity inab
initio calculations in this field, see, e.g., Ref. 17, and refer-
ences therein. The major obstacle inab initio calculations of
optical rotation has been, and still is, the often intractable
size of chiral molecules which, moreover, tend to have little
or no point group symmetry to help reduce computational
effort as well as storage demands. As electron correlation has
been shown to be important for the accurate calculation of
optical rotation,17 we find it natural to test the doubles-direct
Cholesky-based CC2 linear response model in this area.

This paper is organized as follows: Section II contains a
brief survey of the Cholesky decomposition of two-electron
integrals and presents the implementation of CC2 linear re-
sponse theory on this basis. Sections III and IV present cal-
culations of polarizabilities and optical rotations, respec-
tively, and a summary and concluding remarks are given in
Sec. V.

II. IMPLEMENTATION

In this section we first give a brief outline of the
Cholesky integral representation followed by a discussion of
the implementation of CC2 linear response theory, mainly
focusing on the differences between our Cholesky-based ap-
proach and the RI-CC2 method of Ha¨ttig and
co-workers.10–14 The code has been included in a develop-
ment version of theDALTON program,18 and the overall strat-
egy ~apart, of course, from the integral handling! closely fol-
lows the one described in Ref. 9.

A. The Cholesky integral representation

From the positive~semi-!definite nature of the atomic
orbital ~AO! two-electron integral matrix it follows that a set
of Cholesky vectors$Lab

J ,J51,2,3,...,M % may be calculated
such that1,2

~abuab!2(
J

~Lab
J !2<D, ~1!

wherea andb, and laterg andd, denote AOs. The decom-
position thresholdD>0 may in principle be chosen arbi-
trarily small, although floating-point arithmetic imposes a
lower limit in practice. As demonstrated through SCF and
MP2 sample calculations in Ref. 1, the Cholesky integral
representation

~abugd!'(
J

Lab
J Lgd

J , ~2!

produces errors in total ground state energies on the order of
D, i.e., the Hamiltonian operator

H5(
pq

hpqEpq1(
J

(
pqrs

Lpq
J Lrs

J epqrs , ~3!

is approximated with an accuracyO~D!. In Eq. ~3!, indices
p,q,r ,s refer to an orthonormal set of molecular orbitals
~MOs!, hpq are the usual one-electron MO integrals,epqrs

5EpqErs2dqrEps , and Epq5(saps
† aqs is expressed in

terms of creation and annihilation operators~the summation
being over spin projection!. It should be noted that the inte-

gral accuracy is absolute and, consequently, the relative ac-
curacy shows considerable variation with the numerical
value of the exact integral.

In the RI approach, the integrals are approximated in a
similar fashion according to

~abugd!'(
P

Bab
P Bgd

P , ~4!

Bab
P 5(

Q
~abuQ!@V21/2#QP , ~5!

where P and Q denote auxilliary basis functions, usually
preoptimized Gaussian functions centered on the atomic nu-
clei, andVQP5(QuP). The accuracy of the RI approxima-
tion is determined by the ability of the auxilliary basis set to
describe the subset of the integrals needed for the calculation
at hand. Thus, different auxilliary basis set are optimized for
different wave function models, although we note that aux-
illiary basis sets optimized for MP2 have been shown to be
applicable to the CC2 model as well.10–14 In contrast, the
Cholesky decomposition lengthM<N(N11)/2, whereN is
the number of basis functions, is implicitly determined by
the chosen threshold and as a rule of thumb,1 M;10N for
D51028. Furthermore, the Cholesky integrals may be em-
ployed in conjunction with any electronic structure model.
While the storage requirements clearly depend onM , the
dependence is not necessarily linear, as the sparsity of the
Cholesky vectors may be utilized to further minimize storage
as well as I/O. Moreover,M affects the computational cost in
a twofold manner. First,M equals the minimum number of
columns of the integral matrix that need to be calculated
during the decomposition, although the number actually cal-
culated usually is somewhat larger, as the integrals are cal-
culated in shell-pair distributions.1 Second, if sparsity is not
employed,M directly determines the operation count for a
subsequent electronic structure calculation.

An integral-direct Cholesky decomposition algorithm is
presented in Ref. 1 along with applications to SCF and MP2
calculations.

B. Cholesky-based CC2 linear response theory

The CC2 model was introduced by Christiansen, Koch,
and Jørgensen6 as an approximation to the full CCSD model
based on perturbation theory and with a computational cost
similar to MP2. An integral-direct implementation of CC2
linear response theory is described in Ref. 9 where the model
is treated as a special case of the CCSD algorithm. Memory
and disk requirements are consequently the same for
integral-direct CC2 and CCSD, thus severely limiting the
size of the systems and basis sets that can be treated.

Recently, Ha¨ttig and co-workers10–14 have presented an
alternative algorithm in which the doubles amplitudes are
assembled on-the-fly from integrals and singles amplitudes,
and their contributions to key intermediates are immediately
calculated. While a doubles- and integral-direct algorithm
formally is feasible, an efficient implementation would still
require storage~in core or on disk! of half-transformed inte-
grals roughly the same size as the doubles amplitudes them-
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selves. Therefore, in order not to trade efficiency for storage
demands, an alternative integral representation is mandatory.
Comparing Eqs.~2! and ~4!, we see that the Cholesky vec-
tors may straightforwardly be used in the doubles–direct al-
gorithm of Hättig et al.10–14 Thus, we refer to Refs. 10 and
12 for the partioning of the CC2 equations and for formulas,
and focus instead on some implementational aspects.

Apart from the prerequisite Cholesky decomposition and
SCF optimization, a CC2 linear response calculation requires
the solution of three sets of equations for the zeroth order
amplitudes, for the zeroth order Lagrangian multipliers, and
for the first order response of the amplitudes to an external
~one-electron! perturbation of frequencyv. Analytical ex-
pressions for the doubles parts of these amplitudes can be
derived as

t i j
ab5 itt i j

ab52
~ai ũ b j !

ea2e i1eb2e j
, ~6!

t̄ i j
ab5 it t̄ i j

ab1nit t̄ i j
ab52~22Pi j !

~ ia û jb !1Pi j
ab@ t̄ aiF̃ jb#

ea2e i1eb2e j

22~22Pi j !
~ iau jb !

ea2e i1eb2e j
, ~7!

Bt i j
ab~v!5 it,Bt i j

ab1nit,Bt i j
ab

52
~ai ū b j !

ea2e i1eb2e j2v

2Pi j
ab

(ct i j
acB̃bc2(kt ik

abB̃k j

ea2e i1eb2e j2v
, ~8!

for zeroth order amplitudes, multipliers, and first order am-
plitude response, respectively. Indicesa,b,c and i , j ,k are
used to denote virtual and occupied MOs,ep is the canonical
SCF orbital energy of orbitalp, Pi j M i j

ab5M ji
ab , and

Pi j
abM i j

ab5Mi j
ab1M ji

ba . The various modified MO integrals
are defined in terms of Cholesky vectors as

F̃ ia5(
ck

~2~ iaukc!2~kau ic !!tck , ~9!

~ iau jb !5~ ia ũ jb !5(
J

Lia
J L jb

J , ~10!

~ai ũ b j !5(
J

L̃ai
J L̃b j

J , ~11!

~ ia û jb !5Pi j
ab(

J
Lia

J L̂ jb
J , ~12!

~ai ū b j !5Pi j
ab(

J
L̃ai

J L̄b j
J , ~13!

where

Lia
J 5(

ab
Ca iCbaLab

J , ~14!

L̃ai
J 5(

ab
Laa

p Lb i
h Lab

J , ~15!

L̂ ia
J 5(

ab
~L̂a i

p Lba
h 1La i

p L̂ba
h !Lab

J , ~16!

L̄ai
J 5(

ab
~L̄aa

p Lb i
h 1Laa

p L̄b i
h !Lab

J , ~17!

with similar definitions for the integrals of the one-electron
operatorB representing an external perturbation, such as
electric or magnetic multipole operators. The ‘‘particle’’ and
‘‘hole’’ transformation matrices are given in terms of the
SCF MO coefficient matrix,C, and the singles amplitudes
and multipliers as

Lp5C~12t1
T!, ~18!

Lh5C~11t1!, ~19!

L̂p5Lp t̄1 , ~20!

L̂h52Lh t̄1
T , ~21!

L̄p52Lp Bt1
T~v!, ~22!

L̄h5Lh Bt1~v!. ~23!

In Eqs.~6!–~8! the amplitudes and multipliers are written as
a sum of iterative~‘‘it’’ ! and noniterative~‘‘nit’’ ! parts, the
latter entering the right-hand side of the corresponding effec-
tive ~partitioned! problem@for the general form of the effec-
tive linear equations for determining the multipliers, see Eqs.
~31! and ~32! of Ref. 12; similar expressions exist for the
linear response equations for the amplitudes#.

The vast majority of the CPU time of a Cholesky-based
CC2 linear response calculation is spend calculating a par-
ticular class of intermediates, defined through an expression
of the form

Yai
J 5(

b j
Xi j

abZb j
J , ~24!

whereXi j
ab , in turn, is defined in terms of the relevant itera-

tive doubles vector of Eqs.~6!–~8!. For the calculation of the
CC2 singles vector function,Xi j

ab5(22Pi j )
itt i j

ab and Zb j
J

5L jb
J , for left transformations with the effective Jacobian,

Xi j
ab5 it t̄ i j

ab and Zb j
J 5L̃b j

J , and finally for right transforma-
tions with the effective Jacobian,Xi j

ab5(22Pi j )
it,Bt i j

ab(v)
andZb j

J 5L jb
J . Assuming that the relevant MO Cholesky vec-

tors are available on disk, the calculation of these
Y-intermediates proceeds in two steps scaling asO2V2M
;O2N3 in the following manner:

• Loop A ~subset of virtual orbitals!.
- Loop B ~subset of virtual orbitals!.

* CalculateXi j
ab for aPA andbPB, contracting as

many MO Cholesky vectors according to Eq.~6!,
~7!, or ~8! as can be stored in remaining memory.

* Loop J ~subset of Cholesky vectors!.
• ReadYai

J for aPA andJPJ.
• ReadZb j

J for bPB andJPJ.
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• Calculate contribution toYai
J according to Eq.

~24! for JPJ, bPB, andaPA.
• Store updatedYai

J for aPA andJPJ on disk.
* End loopJ.

- End loopB.
• End loopA.

As indicated, main memory is split in two parts, one for the
amplitudes and another one for MO Cholesky vectors in the
first step andY- andZ-vectors in the second step. The split is
set up dynamically, depending on the relative sizes of ampli-
tudes and vectors, thereby ensuring that even very large cal-
culations may be carried out with minimum memory require-
ments. On the other hand, I/O operations on the various
vectors in the two steps decrease as available memory is
increased. In almost any case, more than 90% of the total
time is spend calculating matrix–matrix multiplications.

The ground state amplitudes, Eq.~6!, are constructed

from the positive definite integrals (ai ũ b j) and, conse-
quently, t i j

ab form a negative definite matrix. Hence, as has
been demonstrated for the MP2 energy,1 we may employ

Cholesky decomposition of either the (ai ũ b j) integral ma-
trix or of the amplitudes themselves to reduce the operation
count of the first step in the calculation of the ground state
Y-intermediates. Specifically, using either

~ai ũ b j !'(
J51

M8

Nai
J Nb j

J , ~25!

or

t i j
ab'2 (

J51

M9

Nai
J Nb j

J , ~26!

the scaling of the first step in theY-intermediate calculation
is reduced, provided that the number ofNai

J vectors is less
than the number of original vectorsM . As for MP2,1 M 8
<min@OV,M# and so Eq.~25! will certainly reduce the com-
putational cost of calculating the amplitudes when the cost of
the decomposition itself is negligible. The number of vectors
M 9 needed to decompose the amplitudes is also bounded by
OV, but may, on account of the orbital energy denominator,
in principle be larger thanM . In practice we have found that
M 9.M 8, making Eq.~25! preferable to Eq.~26!. However,
the advantage is far less pronounced than in the MP2 case, as
the second step of theY-intermediate calculation must be
done for the full original set of Cholesky vectors in any case.
Instead, once the equations have been solved for the ground
state amplitudes, Eq.~26! may be employed once and for all
to obtain a compact representation, useful for response cal-
culations. By default, we use the same threshold for the am-
plitude decomposition as for the integral decomposition. For
sufficiently small thresholds, this default value does not sig-
nificantly reduce the accuracy of the final linear response
function. As we shall see below, care must be exercised for
larger thresholds, as the errors in the amplitude representa-
tion may in some cases lead to significant errors in the cal-
culated response properties. The reason for this behavior is
straightforward: the numerical value of the diagonal ele-
ments of the matrix formed by the ground state amplitudes is

often in the neighborhood of 1023 and smaller, implying that
a too large amount of the amplitudes becomes identically
zero in the Cholesky representation with a decomposition
threshold of, say,D51024.

In the integral-direct approach,9 evaluation of the linear
response function from known amplitudes and their F-matrix
transformed counterparts is a straightforward series of dot-
products. In the doubles-direct approach, however, the linear
response function must be evaluated with doubles amplitudes
assembled on-the-fly from the expression

^̂ A,B&&v5 1
2 ~F~A,B,v!1F~A†,B†,2v!* !, ~27!

F~A,B,v!5(
pq

Dpq
h @At~2v!#B̃pq

1(
pq

Dpq
h @Bt~v!#Ãpq1(

ai

Atai~2v!

3( 1
2 (

b j
Fai,b j

Btb j~v!

1 (
b jck

Fai,b jck
Bt jk

bc~v!)1(
ai

Btai~v!

3( 1
2 (

b j
Fai,b j

Atb j~2v!

1 (
b jck

Fai,b jck
At jk

bc~2v!), ~28!

for one-electron operatorsA andB. The modified MO inte-
gralsÃpq andB̃pq are defined from the AO integrals of theA
andB operators in analogy to the definition of modified MO
Cholesky vectors in Eq.~15!. Immediately after solving the
equations for the first order amplitudes, theF-matrix
transformations are carried out along lines similar to the
Jacobian transformations,12 thus involving calculation of
Y-intermediates, Eq.~24!, from full amplitudes~iterative as
well as noniterative parts!, and the resulting singles vectors
are stored on disk. The partial first order density matrices are
calculated from first order amplitudes according to

Di j
h @Bt~v!#52(

a

Btbi~v!Db j
L 2(

ack

Bt ik
act̄ jk

ac , ~29!

Dia
h @Bt~v!#5(

j

Bta j~v!Di j
L2(

b
Dba

L Btbi~v!

1(
b j

Bt i j
abDb j

L , ~30!

Dai
h @Bt~v!#50, ~31!

Dab
h @Bt~v!#5(

i
Dai

L Btbi~v!1(
i jc

t̄ i j
acBt i j

bc , ~32!

whereDL is the CC2 ground state density matrix calculated
from multipliers and Cholesky decomposed zeroth order am-
plitudes. Obviously, the most expensive terms in the calcu-
lation of the partial first order densities are those that require
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assembly of doubles according to Eqs.~7! and ~8! using a
loop structure similar to that of theY-intermediates.

With the AO Cholesky vectors available on disk, the
additional disk space requirements for a CC2 calculation
based on Cholesky decomposed integrals is thus;OVM,
which is substantially smaller than the;O2V2 requirement
of the integral-direct approach, especially for large molecules
~large number of occupieds,O). Whereas the memory re-
quirements for Cholesky-based CC2 and RI-CC2 are identi-
cal, the latter requires less disk space, as the three-center
integrals of Eq.~5! are never stored on disk but recalculated
as needed.10

While crucial for formulating the doubles-direct algo-
rithm, the partitioning of the CC2 Jacobian10–14 leads to a
frequency-dependent effective Jacobian~as well as right-
hand sides! and, thus, has the side-effect that the response
equations must be solved separately for each perturbation
frequency. Therefore, the total number of linear transforma-
tions ~effective Jacobian times trial vector! is usually larger
for the doubles-direct implementation than for the conven-
tional one. On the other hand, the partioning also implies that
the doubles parts of the equations are in fact explicitly
solved, which tends to decrease the number of iterations
needed for convergence and thus decrease the total number
of linear transformations. The calculation of static properties
~zero frequency! therefore generally requires fewer linear
transformations for the doubles-direct implementation,
whereas calculation of dynamic properties~nonzero frequen-
cies! requires more. The reason for this somewhat peculiar
behavior is that the Hermitian symmetrization of the linear
response function in Eq.~27! forces us to solve the linear
response equations not only at the perturbation frequencies
of interest but also at minus those frequencies. Thus, in gen-
eral, the doubles-direct algorithm requires solution of twice
the number of perturbation frequencies distinct blocks of
equations, whereas a single block in principle suffices in the
conventional approach.

III. POLARIZABILITY

The Cartesianjk component of the electric dipole polar-
izability tensor is related to the linear response function ac-
cording to

a jk~v!52 ^̂ m j ,mk&&v , ~33!

wherem is the electric dipole operator. We report the polar-
izability in atomic units, noting that the conversion factor to

SI units ise2a0
2/Eh'1.648 778310224 C2 m2J21, while that

to volume polarizability isa0
3'0.148 184 7 Å3. To evaluate

the CC2 polarizability at a given nonzero frequency, we must
solve six equations for the first order amplitude responses:
two for each Cartesian component of the electric dipole op-
erator ~one at v and one at2v). In the static case (v
50), only three equations need to be solved. The worst-case
scenario within the doubles-direct algorithm~i.e., solving the
partitioned response problem! occur when the three compo-
nents of the electric dipole operator transform according to
different irreducible representations of the molecular point
group. In this case, we are forced to solve each of the six
~times the number of frequencies! amplitude response equa-
tions separately, thereby loosing the advantages of spanning
all response amplitudes in one common set of trial vectors.

Polarizability calculations are performed for the benzene
and C60 molecules. For benzene we employ the following
geometry: r CC51.397 Å, r CH51.080 Å, and /(CCC)
5/(CCH)5120°, placing the molecule in thexy-plane
with thez-axis through the center of mass. For the fullerene,
we use the same geometry as Ruud, Jonsson, and Taylor.19,20

Table I presents results obtained with rather modest basis
sets for benzene using conventional as well as Cholesky
decomposition-based doubles-direct algorithms. In order to
ensure that discrepancies between the two algorithms are due
solely to the Cholesky decomposition of the two-electron
integrals, we have imposed very tight convergence thresh-
olds~i.e., 10210 for errors in MOs, 10210 for the CC2 energy,
and 1028 for the residual norm for the CC2 response equa-
tions!. All calculations were carried out on an IBM/RS6000
workstation equipped with a PowerIII processor. For the con-
ventional calculations, the AO integrals were stored on disk
and thus avoiding expensive recalculations. Nonetheless, the
saving in computational time is substantial, up to a factor of
54 for the aug-cc-pVTZ basis set forD51024, and even
more pronounced savings can of course be anticipated for
calculations requiring integral-direct techniques in the con-
ventional scheme. We observe that the errors stemming from
Cholesky decomposition vary systematically and, as ex-
pected, the error approaches zero for low decomposition
thresholds. Note, however, that the error in general is one
order of magnitude larger thanD, which can be traced back
to the decomposition of the ground state amplitudes. As an
example, decreasing the threshold for amplitude decomposi-
tion to 10210 while keepingD51024 with the aug-cc-pVTZ
basis set reduces the error to22.231024 a.u. We point out

TABLE I. The zz-component of the static polarizability~in a.u.! calculated from frozen core CC2 linear response theory for benzene using conventional and
Cholesky algorithms. For Cholesky, the errors (azz@Cholesky#2azz@Conventional#)/D are given. Total CPU timings~in minutes! are also given for the
coupled cluster calculations, i.e., excluding integral evaluations/decompositions and SCF optimizations.N is the number of basis functions.

Basis set N

Conventional D51024 D51026 D51028

azz Time Error Time Error Time Error Time

6-31111G(2d,2p) 222 43.978 998 82 52.0 216.5 2.8 219.8 4.3 220.1 6.0
6-31111G(3d f ,3pd) 342 45.218 442 97 347.8 225.0 8.6 225.1 12.7 214.0 17.8

aug-cc-pVDZ 192 46.014 923 45 26.5 223.1 2.1 26.8 3.0 20.0 4.0
aug-cc-pVTZ 414 45.652 888 91 604.9 237.0 11.1 22.7 16.4 25.9 27.5
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that for practical purposes, a decomposition threshold ofD
51026 should be sufficient to obtain essentially exact re-
sults.

A basis set convergence study of the static polarizability
components for benzene is given in Table II using Pople- and
Dunning-style basis sets andD51026. These calculations
were performed with default thresholds for convergence of
SCF and CC2 wave function parameters~that is, 1028 for
MOs in the SCF procedure, 1028 for the CC2 energy, and
1025 for the response equations!. Both components of the
polarizability show remarkable stability with respect to basis
set, provided that diffuse functions are included. In particu-
lar, the aug-cc-pVXZ series is essentially converged already
at the double-zeta level. The largest calculation, i.e., aug-cc-
pV7Z, involves 100 million doubles amplitudes and would
require more than 13 Gb of memory using the conventional
integral-direct algorithm. The average of the polarizability
tensor is 71.22 a.u. at the aug-cc-pV7Z level, in reasonable
agreement with experiment~70.05 a.u. by Proutie´re and
Camail,21 67.48 a.u. by Almset al.,22 and 68.7 a.u. by
Okrusset al.23!. Numerous theoretical calculations of the po-
larizability of benzene are available in the literature, see, e.g.,
Refs. 24–33. Most of these use the SCF method with results
ranging from approximately 64 a.u. to 68 a.u. for the average
polarizability. Among the correlated calculations, Chris-
tiansen, Ha¨ttig, and Jørgensen31 obtained an average polariz-
ability of 69.17 a.u. at the CCSD level with Sadlej’s basis
set, while Soscu´n et al.33 reported 67.25 a.u. using DFT/
B3LYP and a modified 6-311G(d,p) basis set. Thus, the
CC2 method seems to overstimate the correlation effects on
the average polarizability of benzene. Recently, we have car-
ried out a detailed study of the static and frequency–
dependent polarizability of benzene and a few small
@4n12#-annulenes.34

Table III reports a large-scale application of the
Cholesky CC2 linear response formalism to the calculation
of static and dynamic polarizabilities for the C60 molecule
using decomposition thresholdD51026 and the following
wave function convergence thresholds: 531027 for MOs
~SCF! and the CC2 energy, and 531025 for the CC2 re-
sponse equations. With the aug-cc-pVDZ basis set, the CC2
wave function contains 2.8 billion doubles amplitudes and an
integral-direct calculation would require approximately 113
Gb of memory. As for benzene, we find that diffuse functions
are essential for accurately calculating the polarizability.
Note, however, that the percentwise changes going from
6-3111G or 6-3111G* to aug-cc-pVDZ are in fact
smaller for C60 than for benzene. Hence, the assumption used
by Ruudet al.19 ~for SCF calculations of the polarizability!
that 6-3111G constitutes a reasonable compromise be-
tween computational effort and quality of the results seems
applicable to CC2 calculations as well. Comparing to the
SCF results of Ruudet al.19 and to the SCF and DFT results
of Xie et al.,35 we find that the CC2 polarizability is some-
what larger. This may to some extent be explained by the use
of more diffuse basis sets in the present study. At the same
time, the rather low level of correlation of the CC2 approach
opens for possible reductions using full CCSD or better.
Such reductions are to be expected, as the experimental po-
larizabilities are 516654 a.u. (76.568 Å3) ~Ref. 36! at l
5` and 533627 a.u. (7964 Å3) ~Ref. 37! at l
51064 nm. Note, however, that the dispersion is reasonably
well described at the CC2 level, the polarizability increasing
approximately 3% going from the static limit to 1064 nm.

IV. OPTICAL ROTATION

A. Theoretical background

The specific rotation, in units of deg@dm g/cm3#21, of a
chiral molecule is defined as38

@a#528800p2NAa0
4 ñ2b8~v!

M
, ~34!

whereNA is Avogadro’s number,a0 is the bohr radius in cm,
ñ is the frequency of the light in cm21 ~v is the frequency in
atomic units!, M is the molecular weight in g/mol, and

b8~v!52Im
Tr^̂ m,m&&v

3v
, ~35!

TABLE II. The xx- andzz-components of the static polarizability~in a.u.!
calculated from frozen core CC2 linear response theory for benzene using
Cholesky algorithm.N is the number of basis functions.

Basis set N axx azz

3-21G 66 67.95 14.70
4-31G 66 69.68 16.64
6-31G 66 70.87 18.40
6-31G* 96 71.89 20.33
6-31G** 114 72.40 20.76
6-31G(3d f ,3pd) 282 79.85 37.82
6-311G 96 74.04 25.19
6-311G(2d f ,2pd) 264 78.29 31.89

3-2111G 96 76.95 39.72
6-3111G 96 78.32 40.97
6-3111G* 126 79.19 41.29
6-3111G** 144 79.56 41.48
6-31111G(2d,2p) 222 82.34 43.98
6-31111G(3d f ,3pd) 342 83.79 45.22

aug-cc-pVDZ 192 84.46 46.01
aug-cc-pVTZ 414 84.51 45.65
aug-cc-pVQZ 756 84.36 45.37
aug-cc-pV5Z 1242 84.28 45.28
aug-cc-pV6Z 1896 84.24 45.22
aug-cc-pV7Z 2742 84.22 45.21

TABLE III. The average polarizability~in a.u.! calculated from frozen core
CC2 linear response theory for C60 using Cholesky algorithm.N is the
number of basis functions.

Basis set N

aave

l5` l51064 nm

6-31G 540 495.94 506.88
6-3111G 780 586.75 600.77
6-3111G* 1080 606.80 622.59
cc-pVDZ 840 541.46 554.46
aug-cc-pVDZa 1380 623.70 640.15

aAll electrons correlated.
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in atomic units (a0
4). Following tradition, we have employed

the length gauge in Eq.~35!, and the trace~Tr! is over Car-
tesian elements of the electric dipole-magnetic dipole polar-
izability tensor~m is the electric dipole operator,m the mag-
netic dipole operator!. Evaluation of the specific rotation thus
requires exactly twice as much effort as for the frequency-
dependent electric dipole polarizability, that is, twelve first
order amplitude response equations for each requested fre-
quency, making the calculation of optical rotation dispersion
a rather costly affair. On the other hand, specific rotations are
often reported at the sodiumD line ~i.e., at 589.3 nm, de-
noted@a#D) so that calculations need be done for only one
frequency.

Origin dependence is a recurring problem in coupled
cluster calculations of response properties for perturbations
that involve a time-dependent magnetic field. As discussed
on several other occasions,17,39–41London ~or gauge includ-
ing! orbitals can not be used to ensure origin invariance in
standard coupled cluster theory in these cases, although the
problem may be solved by enforcing gauge invariance
through optimizing orbitals alongside the double and higher
order excitation cluster amplitudes~the NOCC model!.42 Un-
der a translation of the origin along the vectora, i.e., r→r
2a, the optical rotation transforms according to

@a#→@a#1a"DOR. ~36!

The componentD j
OR, i.e., the change in specific rotation per

unit length along thej th Cartesian direction, can be derived
as

D j
OR5228800p2NAa0

4 ñ2

M
Im

(k,l 51
3 e jkl ^̂ r k ,pl&&v

6v
, ~37!

wheree is the Levi–Civita tensor,r is the position operator,
and p the momentum operator. WhileDOR vanishes for
variational methods in the limit of basis set completeness, it
is nonzero for truncated coupled cluster models, including
CC2 and CCSD, even with a complete orbital basis. Thus,
the length gauge specific rotation calculated from CC2 linear
response theory depends on the chosen~mathematical! ori-
gin.

Ruudet al.17 calculate specific rotations with the origin
at the molecular center of mass. Although certainly a reason-
able choice, inconsistencies would arise when calculating vi-
brational effects for different isotopomers, asb8(v) values
would be different.

In the following sections, we report sample calculations
of @a#D for two molecules, CNOFH2 and (2)-trans-
cyclooctene~TCO!.

B. Optical rotation of CNOFH 2

Following Ruudet al.,17 we employ CNOFH2, derived
from 2-F-oxirane by substituting the ring CH2 with NH, as
test system for probing the basis set convergence of the spe-
cific rotation. We use the DFT/B3LYP/6-31G* C1 geometry
of Ref. 17.

In Table IV we have collected some results for the opti-
cal rotation using conventional as well as Cholesky CC2
linear response theory with the same tight convergence
thresholds as for the case of benzene above. All calculations
were performed on the same computer as used for benzene.
The basis sets are sufficiently small that the conventional
calculations may be carried out with integrals on disk and,
again, the Cholesky algorithm is nevertheless significantly
faster than the conventional one. The errors in the specific
rotation caused by the approximate Cholesky integral repre-
sentation are clearly controllable, decreasing systematically
with the decomposition threshold. Note that the errors mea-
sured in a.u.@i.e., the errors inb8(v)] are on the order ofD,
except for theD51024 results for the augmented basis sets
where the error is roughly an order of magnitude larger.
Again, this increased error can be attributed to the decompo-
sition of the ground state amplitudes. For example, using a
threshold of 10210 for the amplitude decomposition while
keepingD51024, the error in the specific rotation becomes
20.015 883 deg@dm g/cm3#21 with the aug-cc-pVTZ basis
set. In all, as for the benzene static polarizability, we thus
find thatD51026 suffices for essentially exact results.

Taking advantage of the open-ended nature of the
doubles-direct algorithm, we perform an extensive basis set
convergence study of the specific rotation and its origin-
dependence at the CC2 level. The results are presented in
Table V with all electrons correlated and in Table VI with
frozen core approximation usingD51026 and default con-
vergence thresholds for the wave function parameters~cf. the
benzene polarizability calculations presented above!. The
largest calculation~all-electron CC2 with the aug-cc-pV6Z
basis set! incorporates nearly 126 million doubles amplitudes
and would require more than 8.5 Gb of memory for the con-
ventional algorithm.

As expected,17 the all-electron results in Table V show

TABLE IV. All-electron CC2 specific rotation (@a#D , in deg@dm g/cm3#21) at the sodium D line in length gauge~origin at the center of mass! for CNOFH2

using conventional and Cholesky algorithms. For Cholesky, the errors,@a#D(Cholesky)2@a#D(Conventional), are given. Total CPU timings~in hours! are
also given for the coupled cluster calculations, i.e., excluding integral evaluations/decompositions and SCF optimizations.N is the number of basis functions.

Basis set N

Conventional D51024 D51026 D51028

@a#D Time Error Time Error Time Error Time

cc-pVDZ 66 44.684 230 1.2 20.093 165 0.1 0.000 816 0.2 0.000 005 0.3
cc-pVTZ 148 68.968 184 21.9 0.026 980 1.4 20.000 357 2.3 20.000 005 3.7

aug-cc-pVDZ 110 73.557 159 8.0 20.156 513 0.5 20.000 608 0.9 0.000 003 1.3
aug-cc-pVTZ 230 77.270 983 113.4 20.304 409 5.6 20.000 175 8.4 0.000 005 13.0

8893J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Polarizability from linear response

Downloaded 29 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



that diffuse functions are essential for describing optical ro-
tation. It should be noted, however, that for the popular
6-31G-type basis sets, augmentation with diffuse functions
seems to correct the specific rotation in the opposite direction
of the basis set limit. In general, the Pople-style basis sets are
rather ill-suited for the correlated calculation of specific ro-
tation, as also reflected by the, in most cases, severe origin-
dependence. Nevertheless, it should be stressed that the
6-3111G* and 6-3111G** basis sets might provide a
reasonable compromise between computational effort and
accuracy for large-scale applications. If possible, the 6-311
11G(3d f ,3pd) basis set should also be considered for
such applications. Dunning’s basis sets, on the other hand,
provide a well balanced hierarchy for CC2 calculations of
specific rotation. Note also that the origin-dependence is re-

duced to a minimum with the augmented series, although
DOR definitely does not approach zero. Double augmentation
of the basis set is seen to be less important than to increase
the cardinal number of the basis set. Moreover, inclusion of
core-correlating functions does not significantly improve the
description, indicating validity of the frozen core approxima-
tion. This is confirmed by comparing to the frozen core re-
sults in Table VI, although we note that for the largest basis
sets, the effect of freezing core orbitals is comparable to the
effect of increasing the cardinal number of the basis set.
However, for the smaller sets of interest for larger calcula-
tions, one may invoke the frozen core approximation with
impunity. Selecting among Dunning’s basis sets, the aug-cc-
pVDZ or, preferably, the aug-cc-pVTZ basis set should be
used for accurate calculations.

TABLE V. All-electron CC2 specific rotation at the sodium D line (@a#D , in deg @dm g/cm3#21) in length
gauge~origin at the center of mass! for CNOFH2 using Cholesky algorithm. The Cartesian origin-dependence
vector ~in deg @dm g/cm3#21 bohr21) is also reported.N is the number of basis functions.

Basis set N @a#D Dx
OR Dy

OR Dz
OR

STO-3G 22 163.69 10.345 25.426 215.012
3-21G 40 111.76 31.000 24.095 22.579
4-31G 40 113.37 21.063 27.249 4.753
6-31G 40 115.82 17.061 25.699 6.155
6-31G* 60 88.20 8.262 27.512 6.475
6-31G** 66 88.59 7.101 27.677 5.376
6-31G(3d f ,3pd) 156 104.56 2.334 20.668 24.658
6-311G 58 80.18 6.437 26.239 9.640
6-311G* 78 58.54 1.522 210.945 8.474
6-311G** 84 57.62 23.264 29.725 3.766
6-311G(2d f ,2pd) 148 70.90 20.875 22.094 1.119

3-2111G 58 63.06 1.320 9.172 6.275
6-3111G 58 111.67 210.149 20.303 6.216
6-3111G* 78 94.30 28.697 0.781 6.788
6-3111G** 84 96.42 210.737 0.340 4.399
6-31111G** 102 114.52 210.321 23.249 1.191
6-31111G(2d,2p) 128 101.11 24.743 0.502 0.195
6-31111G(3d f ,3pd) 192 82.13 22.109 1.712 21.865

cc-pVDZ 66 44.69 20.194 23.105 5.265
cc-pVTZ 148 68.97 23.586 1.182 2.839
cc-pVQZ 280 80.58 22.858 2.257 0.759
cc-pV5Z 474 78.44 23.176 2.501 21.088
cc-pV6Z 742 81.51 22.376 1.755 21.594

aug-cc-pVDZ 110 73.56 23.679 3.711 24.323
aug-cc-pVTZ 230 77.27 22.022 0.775 23.246
aug-cc-pVQZ 412 79.23 21.641 0.335 23.025
aug-cc-pV5Z 668 80.60 21.745 0.281 23.051
aug-cc-pV6Z 1010 81.04 21.729 0.286 22.983

daug-cc-pVDZ 154 71.76 21.158 20.871 24.414
daug-cc-pVTZ 312 76.69 21.714 20.186 23.296
daug-cc-pVQZ 544 79.49 21.734 0.105 23.115
daug-cc-pV5Z 862 80.60 21.745 0.210 23.024

cc-pCVDZ 82 44.70 20.009 23.351 5.303
cc-pCVTZ 200 70.06 23.088 0.488 3.477
cc-pCVQZ 396 80.72 22.906 2.230 0.836
cc-pCV5Z 690 78.55 23.123 2.482 21.072

aug-cc-pCVDZ 126 72.69 23.410 3.701 24.105
aug-cc-pCVTZ 282 77.48 21.781 0.948 23.111
aug-cc-pCVQZ 528 79.44 21.613 0.408 22.954
aug-cc-pCV5Z 884 80.72 21.733 0.306 23.017
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C. Optical rotation of TCO

Whereas numerousab initio studies of the electronic
natural circular dichroism of TCO are available in the litera-
ture, see, e.g., Refs. 40, 41, 43, and 44 and references
therein, none has appeared on the specific rotation. We use
the DFT/B3LYP/cc-pVTZ C2 geometry of Ref. 41 for the
present computations. As TCO represents a more realistic
application of CC2 linear response theory to the calculation
of specific rotation, we perform a limited basis set conver-
gence study to test the main conclusions of the previous
section.

Table VII contains a study of accuracy and timings. As
for the similar calculations above, tight convergence criteria
were employed for the wave function parameters. Once
again, significantly reduced computational effort is gained
from using the Cholesky-based algorithm and, measured in
a.u., the errors are on the order ofD. In this case, too, the
larger errors occurring for the diffuse basis sets atD51024

are due to the ground state amplitude decomposition: de-
creasing the threshold for amplitude decomposition to 10210

and keepingD51024 with the aug-cc-pVDZ basis set gives
an error of20.029892 deg@dm g/cm3#21. The sizes of the
cc-pVDZ and 6-3111G* basis sets differ by 4, which is
reflected in the similar CPU times for these two basis sets.
Note, however, that while the conventional algorithm is more
time consuming for the largest basis set, the opposite is ob-
served for the Cholesky algorithm. The reason for this pecu-
liarity is that slightly more Cholesky vectors are needed for
the decomposition of the cc-pVDZ integrals than for the

6-3111G* integrals, implying that the CC2 work load is
slightly larger for the former even though the number of
basis functions is smaller. A decomposition threshold ofD
51026 is, again, sufficient for minimal Cholesky errors.

Using, therefore,D51026 and default convergence
thresholds for wave function parameters~see above!, specific
rotations for TCO with various basis sets are given in Table
VIII along with the origin-dependence vector. There are 207
million doubles amplitudes in the largest calculation~aug-cc-
pVQZ basis set! which would require more than 11.6 Gb of
memory with the conventional algorithm. Diffuse functions
are once again observed to be important, although the cc-
pVXZ series is in fact closer to the converged result than the
smaller augmented Pople-style basis sets. The exceptions are
6-31111G(2d,2p) and 6-31111G(3d f ,3pd) which
yield specific rotations in the proximity of the aug-cc-pVTZ
and aug-cc-pVQZ results despite the substantially smaller
number of basis functions. The basis set convergence of the
origin-dependence towards a nonzero limit is even more pro-
nounced for TCO than for CNOFH2 above. Experi-
mentally,45 the specific rotation of TCO is2440 deg
@dm g/cm3#21 in CH2Cl2 solution. Our best CC2 result is
38% above this value. While some of this discrepancy may
be ascribed to insufficient correlation treatment of the CC2
model,17 solvent effects can be expected to contribute signifi-
cantly to the experimental value. In conclusion, the aug-cc-
pVDZ and 6-3111G* basis sets are found to be reasonable
candidates for large-scale applications.

TABLE VI. As Table V but using the frozen core approximation.

Basis set N @a#D Dx
OR Dy

OR Dz
OR

6-31G 40 116.92 16.978 26.049 5.912
6-31G* 60 88.87 8.199 27.776 6.344
6-311G 58 82.05 6.068 27.028 9.139
6-311G(2d f ,2pd) 148 71.33 21.279 22.645 0.906

6-3111G 58 112.60 210.430 20.604 5.951
6-3111G* 78 94.84 28.994 0.533 6.596
6-31111G(2d,2p) 128 101.43 25.374 0.037 20.108
6-31111G(3d f ,3pd) 192 82.06 22.704 1.272 22.142

aug-cc-pVDZ 110 73.78 23.918 3.550 24.438
aug-cc-pVTZ 230 77.22 22.501 0.428 23.486
aug-cc-pVQZ 412 78.92 22.246 20.147 23.367
aug-cc-pV5Z 668 80.10 22.368 20.240 23.422
aug-cc-pV6Z 1010 80.45 22.363 20.250 23.370

TABLE VII. Frozen core CC2 specific rotation (@a#D , in deg@dm g/cm3#21) at the sodium D line in length gauge~origin at the center of charge! for TCO
using conventional and Cholesky algorithms. For Cholesky, the errors,@a#D(Cholesky)2@a#D(Conventional), are given. Total CPU timings~in hours! are
also given for the coupled cluster calculations, i.e., excluding integral evaluations/decompositions and SCF optimizations.N is the number of basis functions.

Basis set N

Conventional D51024 D51026 D51028

@a#D Time Error Time Error Time Error Time

6-31G* 140 2168.945833 7.5 0.189215 0.6 20.005446 1.0 20.000012 1.5
6-3111G* 186 2247.278086 21.8 2.596908 1.2 20.001086 2.0 20.000018 3.3

cc-pVDZ 182 2259.507167 19.4 20.045570 1.3 0.001378 2.2 0.000004 3.6
aug-cc-pVDZ 310 2286.227181 141.1 2.462699 5.2 20.001901 9.1 20.000019 15.5
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V. SUMMARY AND CONCLUDING REMARKS

We have presented an implementation of the linear re-
sponse function at the CC2 level of theory based on
Cholesky decompositions, notably of the two-electron
integrals.1,2 The algorithm is designed to avoid storage, in
core as well as on disk, of four-index intermediates along the
lines deviced by Ha¨ttig and co-workers10–14 for the RI–CC2
method. Through examples involving as many as 2.8 billion
coupled cluster doubles amplitudes, we have demonstrated
the large-scale applicability of the implementation. By com-
paring CPU times to those of the conventional integral-direct
algorithm,9 we have shown that significant reductions in
computational effort are obtained using Cholesky decompo-
sitions. Equally important, we have explicitly demonstrated
that the errors introduced by the Cholesky representation of
the two-electron integrals are controllable through the de-
composition threshold and, in particular, our results indicate
that a decomposition threshold ofD51026 guarantees es-
sentially exact linear response properties as compared to
those obtained from a conventional calculation.

In the present implementation, no use has been made of
the symmetric nature of the amplitudes, i.e.,Xi j

ab5Xji
bi . Em-

ploying this symmetry to restrict summations in the time-
determining steps@i.e., calculation ofY-intermediates, Eq.
~24!# will additionally decrease the computational effort in-
volved in the Cholesky-based CC2 linear response model.

Basis set convergence studies of static and dynamic elec-
tric dipole polarizabilities and of optical rotations have been
reported and discussed. As might have been expected, the
frozen core approximation may be invoked and, as a general
rule of thumb, one should employ Dunning’s aug-cc-pVXZ
basis set series for calculating these properties whenever pos-
sible. If more modest basis set sizes are called for, Pople’s

6-3111G set with an additional set of polarization func-
tions, is a good candidate.

Calculations of specific rotations in the length gauge for-
mulation are somewhat obscured by the inherent origin-
dependence. Our basis set study clearly demonstrates that
this problem does not disappear in the limit of a complete
basis set for the nonvariational CC2 model. Investigations
are underway regarding inherently origin invariant calcula-
tions of specific rotations without resorting to London orbit-
als for variational as well as nonvariational models.46
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6-31G** 182 2167.19 20.643
6-311G 146 2158.67 14.718
6-311G(2d f ,2pd) 436 2137.79 210.697

6-3111G 146 2194.85 16.882
6-3111G* 186 2247.28 23.533
6-3111G** 228 2243.22 23.267
6-31111G(2d,2p) 356 2268.21 29.650
6-31111G(3d f ,3pd) 564 2273.68 28.439

cc-pVDZ 182 2259.51 27.606
cc-pVTZ 436 2258.95 29.538
cc-pVQZ 860 2268.46 28.751

aug-cc-pVDZ 310 2286.23 29.309
aug-cc-pVTZ 690 2276.35 28.392
aug-cc-pVQZ 1284 2272.06 28.374
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