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An extension of the finite difference time domain is applied to solve the Schro¨dinger equation. A
systematic analysis of stability and convergence of this technique is carried out in this article. The
numerical scheme used to solve the Schro¨dinger equation differs from the scheme found in
electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee
cell used by the electrical engineering community. A bound for the time step is derived to ensure
stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second
order, comparable to the analysis of electromagnetic devices with the Yee cell. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1753661#

I. INTRODUCTION

The finite difference in time domain~FDTD! is a widely
used tool in electromagnetics. The application of FDTD
technique for the analysis of quantum devices~FDTD-Q! is
based on the FDTD for electromagnetics, and extends this
technique to solve the Schro¨dinger equation. The FDTD
method solves the Maxwell curl equations using discrete de-
rivative operators.1 In the same way, the FDTD-Q solves a
discretized Schro¨dinger equation in an iterative process.

The FDTD-Q technique has been successfully used to
solve the problem of quantum dots~QD! in Refs. 2 and 3.
However, some aspects of the FDTD-Q cell, convergency,
and stability of the numerical scheme have not been explored
until now. In this article, the FDTD-Q technique is revised
and analyzed when applied to the Schro¨dinger equation with
a space-dependent potential, this is the case of QD or quan-
tum wires~QW!.

In one-dimensional cases, the numerical solution of the
Schrödinger equation is usually based on matrix methods
like Numerov’s technique.4 In cylindrical and spherical ge-
ometry it is possible to reduce the dimensionality by consid-
ering the symmetry of the problem, and rewriting it using a
suitable coordinate system. The computational cost increases
rapidly with matrix techniques when is not possible to reduce
the problem to the one-dimensional case. A solution to re-
duce the computational cost in two- and three-dimensional
problems is to use finite differences algorithms. The FDTD

technique has been successfully applied in electromagnetics,
and we have now extended this method to solve the Schro¨-
dinger equation. The FDTD-Q will provide us with a very
useful tool for the numerical study of quantum devices, like
QD and QW, which require a two- or three-dimensional co-
ordinate system to be correctly modeled.

The FDTD-Q technique simulates the time evolution of
the wave function in a three-dimensional space, where the
potential could be any arbitrary function. We will show in
this article how numerical values of the wave function in the
time marching scheme of FDTD-Q represent a good ap-
proach to the time behavior of the wave function for the
modeled structure.

In this article we present a detailed formulation of the
numerical FDTD-Q technique for the general three-
dimensional Schro¨dinger equation. We analyze the stability
of the time marching FDTD-Q scheme and derive a bound
for the time step. The maximum time step is a bound that
avoids the accumulation of numerical error. It is a must for
the stability of the time domain simulation in the same way
as the Courant stability condition in the FDTD technique for
electromagnetics. Finally, calculations with the FDTD-Q
have been carried out simulating a quantum device, specifi-
cally a quantum well wire~QWW! with a known analytical
solution. There are many numerical experiments, using dif-
ferent mesh resolutions, with different cell sizes, which ana-
lyze the numerical convergence of the method. The numeri-
cal error is calculated by comparing the numerical solutions
with the known analytical wave functions. Some plots of the
error versus cell size show that a second order accuracy is
achieved in the numerically obtained FDTD-Q wave func-
tion.
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II. FINITE DIFFERENCE TIME DOMAIN TECHNIQUE
FOR QUANTUM DEVICES

A formal description of the FDTD-Q technique is intro-
duced in this section. We explain step by step how to deduce
the discrete equations, and how to use them to obtain the
numerical solution of the Schro¨dinger equation. First, the
complex wave function is separated into two real functions
that correspond to its real and imaginary parts

C~rW,t !5CR~rW,t !1 j C I~rW,t !. ~1!

Then, the Schro¨dinger equation

j \
]C~rW,t !

]t
52

\2

2me
¹W 2C~rW,t !1V~rW !C~rW,t ! ~2!

is divided into two equations involving real functions corre-
sponding toCR andC I

\
]CR~rW,t !

]t
52

\2

2me
F ]2C I~rW,t !

]x2
1

]2C I~rW,t !

]y2

1
]2C I~rW,t !

]z2 G1V~rW !C I~rW,t !, ~3a!

\
]C I~rW,t !

]t
5

\2

2me
F ]2CR~rW,t !

]x2
1

]2CR~rW,t !

]y2

1
]2CR~rW,t !

]z2 G2V~rW !CR~rW,t !. ~3b!

A mesh is defined in a given boundary value problem,
where the continuous complex wave function is represented
in our computational domain as two discrete functions, the
discretized real part of the wave function and the discretized
imaginary part of the wave function

CR~rW,t !.CR
n~ i , j ,k!5CR~ iDx, j Dy,kDz,nDt !,

~4!
C I~rW,t !.C I

n~ i , j ,k!5C I~ iDx, j Dy,kDz,nDt !.

The second-order derivatives in Eqs.~3a! and ~3b! are
discretized using centered differences. Therefore, the calcu-
lation of Eqs.~3a! and ~3b! at a given mesh point (i , j ,k)
involves the points (i 11,j ,k), (i 21,j ,k), (i , j 11,k), (i , j
21,k), (i , j ,k11), and (i , j ,k21).1 For example, to update
the real part of the wave function at the discrete point
( i , j ,k); at the instant (n11)Dt, we need the imaginary part
of the wave function at the points (i , j ,k), (i 11,j ,k), (i
21,j ,k), (i , j 11,k), (i , j 21,k), (i , j ,k11), and (i , j ,k
21) at the instant (n11/2)Dt. This evaluation involves the
real and imaginary parts of the wave function at each node.
Second-order derivatives are calculated at each point of the
discrete space then, in our numerical scheme both the real
and imaginary parts of the wave function are located at the
same nodes. This detail makes a difference with the FDTD
technique when applied to electromagnetic problems. The
unit cell in FDTD-Q is shown in Fig. 1.

Once the differential operators are replaced by their cor-
responding discrete operators using centered differences, we

write CR
n11 as a function ofCR

n andC I
n11/2. The FDTD-Q

equation obtained to update the real part of the wave func-
tion is

CR
n11~ i , j ,k!5CR

n~ i , j ,k!1F\Dt

me
S 1

Dx2
1

1

Dy2
1

1

Dz2D
1

V~ i , j ,k!Dt

\ GC i
n11/2~ i , j ,k!2

\Dt

2meDx2

3~C i
n11/2~ i 11,j ,k!1C i

n11/2~ i 21,j ,k!!

2
\Dt

2meDy2
~C i

n11/2~ i , j 11,k!

1C i
n11/2~ i , j 21,k!!2

\Dt

2meDz2

3~C i
n11/2~ i , j ,k11!1C i

n11/2~ i , j ,k21!!

~5!

with a similar equation for the imaginary part.
The above equations are solved in an iterative process,

with the necessary boundary conditions, in which the time is
incrementedDt in the numerical loop.

Numerical FDTD-Q loop:
~1! Impose initial boundary conditions onCR andC I at

t50.
~2! Calculation ofC I at time t1Dt/2.
~3! Boundary conditions onC I .
~4! Calculation ofCR at time t1Dt, using Eq.~5!.
~5! Boundary conditions onCR .
~6! Time is incrementedt5t1Dt.
~7! If t,NDt then Goto 2. Else STOP the loop.
The wave function propagates in the numerical space of

the computer following the above iterative process. In this
way, it simulates the time behavior of the wave function,

FIG. 1. FDTD-Q cell.
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derived from the time domain Schro¨dinger equation. The
loop stops when the conditiont5NDt is verified,NDt is the
total simulation time.

A rough analogy between the FDTD technique in elec-
tromagnetism and the above presented FDTD-Q is the iden-
tification of the electric field components with the real part of
the wave function, and the magnetic field components with
the imaginary part. However, some epistemological differ-
ences arise. The FDTD technique was developed to solve the
Maxwell curl equations involving the electromagnetic fields,
that are vectorial magnitudes; whereas Schro¨dinger equation
is a scalar equation involving the scalar wave function. Dif-
ferences can also be extended to the boundary conditions:
The boundary conditions in FDTD are defined in the field
components separately, up to six electromagnetic compo-
nents. Whereas in FDTD-Q the boundary conditions are en-
forced only onCR andC I . Also, the electric and magnetic
field components are sampled at distinct spatial points,
whereas the real and imaginary parts of the wave function
are evaluated at the same spatial point.

The computational cost of FDTD-Q is lower than the
cost of the FDTD technique used for electromagnetic prob-
lems. There are two components per cell in FDTD-Q, real
and imaginary parts of the wave function, and six field com-
ponents per cell in FDTD, three electric and three magnetic.

III. STABILITY

The time discretizationDt is the time increment between
consecutively calculated fields in the numerical approach de-
scribed in Eq. ~5!. The choice ofDt is critical in the
FDTD-Q simulations. The computational cost decreases as
Dt increases, because longer time steps provide us with
longer simulation times with the same number of numerical
iterations. On the other hand, from our numerical experi-
ments, the longer the time steps are the less stable is the
behavior of our simulation.

The time step should be chosen as a balance between
computational cost and stability. Of course, the best time step
to choose would be the longer one so that the algorithm’s
stability is maintained. So, it is important to establish a maxi-
mum time step that ensures the stability of our simulation. A
relationship between the spatial and temporal discretizations
is necessary to keep the numerical error under control as the
simulation process progresses.

If we separate the finite difference problem into two ei-
genvalue problems, a spatial eigenvalue and a temporal ei-
genvalue problem, the study of the numerical stability is ana-
lytically feasible. The wave packet is supposed to be a
superposition of plane waves, and each plane wave is an
eigenfunction of the numerical domain. The eigenvalues as-
sociated to the spatial differentiation and the eigenvalues as-
sociated to the temporal operators are calculated. If the spa-
tial eigenvalue spectrum is enclosed in the temporal
eigenvalue spectrum then the algorithm will be numerically
stable.5 In this way, the numerical stability is guaranteed by
preventing the uncontrolled growth of the numerical error at
each time iteration.

A. Temporal eigenvalues

The temporal eigenvaluesl of the Schro¨dinger equation
are analyzed from left side of Eq.~2!

j \
]C

]t
5lC. ~6!

Where both the real and imaginary parts ofC are con-
sidered, the differential operator is introduced, through its
equivalent discrete operator, to obtain a numerical differen-
tiation:

j \
Cn11/2~ i , j ,k!2Cn21/2~ i , j ,k!

Dt
5lCn~ i , j ,k!. ~7!

The ‘‘growth factor’’ q determines the growth of the
wave function at each time iteration

q5
Cn11/2

Cn
~8!

if q is introduced in Eq.~7!, and the resulting equation is
solved in order to obtain the growth factor as a function of
Dt andl

q21 j
lDt

\
q2150, ~9!

q52 j
lDt

2\
6A12S lDt

2\ D 2

. ~10!

The instability appears when the eigenfunction associ-
ated to thel eigenvalue grows on each iteration. The stabil-
ity of the temporal dependence of any spatial mode is as-
sumed by imposing the conditionuqu<1. This is verified
automatically if

• Im~l!50: This condition establishes that all eigenval-
ues must be real. If we assume that the Hamiltonian is an
hermitian operator, it will always be true because all eigen-
values associated to an hermitian operator are real.

• Re(l)Dt<2\: A stability condition is derived from this
relationship, involving both the spatial and temporal discreti-
zation.

B. Spatial eigenvalues

The process described above is repeated again for the
spatial eigenvalues. The right side of Eq.~2! is analyzed as a
spatial eigenvalue problem

lsC~rW,t !52
\2

2m S ]2C~rW,t !

]x2
1

]2C~rW,t !

]y2
1

]2C~rW,t !

]z2 D
1V~rW !C~rW,t !. ~11!

The most general solution for the wave equation can be
described as a superposition of plane waves.

C~x,y,z,t !5ej ~kxx1kyy1kzz2vt !. ~12!

The operator¹2 is replaced by another expression that is
the resulting from its application to a plane wave
C(x,y,z,t)'ej (kxiDx1kyj Dy1kzkDz2vnDt)
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]2C~x,y,z,t !

]x2
'

ej ~kx~ i 11!Dx!22ej ~kxiDx!1ej ~kx~ i 21!Dx!

Dx2

524 sin2S kxDx

2 DCn~ i , j ,k!. ~13!

The associated eigenvalues are derived

ls5
2\2

m
F sin2S kxDx

2 D
Dx2

1

sin2S kyDy

2 D
Dy2

1

sin2S kzDz

2 D
Dz2

G
1V. ~14!

The numerical solution requires that both the temporal
and spatial eigenvalues associated to the temporal and spatial
parts of the Schro¨dinger equation are the same. Taking into
account the conditions imposed to getuqu<1 the following
relationship is obtained:

2\

Dt
>

2\2

m
F sin2S kxDx

2 D
Dx2

1

sin2S kyDy

2 D
Dy2

1

sin2S kzDz

2 D
Dz2

G1V

<
2\2

m F 1

Dx2
1

1

Dy2
1

1

Dz2G1V

>
\2

m F 1

Dx2
1

1

Dy2
1

1

Dz2G1V. ~15!

Writing Dt as a function of the spatial discretization and
remaining constants, a maximum value for the time step that
ensures the stability of the algorithm can be obtained:

Dt<
\

\2

m F 1

Dx2
1

1

Dy2
1

1

Dz2G1V

~16!

We named ‘‘critical step’’ or Dtcritical , the maximum
time step which maintains the algorithm’s stability, this value
is obtained from the right side of Eq.~16!.

Some numerical experiments were carried out to check
the validity of the above stability condition. In all cases, the
stability was observed when the condition of Eq.~16! was
verified.

A rectangular two-dimensional QWW was simulated
with a regular meshDx5Dy. The simulation time wasNDt,
where the number of time iterations wasN>100 000, andDt
was varied aroundDtcritical .

The excitation consists of a set of narrow pulses in the
time domain that are arbitrarily distributed on the cross sec-
tion of the QWW. The boundary conditions in our example
were introduced in the wave function by defining a rectan-
gular boundary in which the potential is infinite. Then, the
wave function is zero at that boundary.

The time evolution of the wave function at a given point
of the mesh was filed at each step of the simulation loop. The
time evolution of the wave function is plotted in Figs. 2, 3,
and 4 for three distinctDt. The wave function evolved under
a bound when the time step was lower thanDtcritical . In Figs.
2 and 3 we show two different simulations for the first ten
thousand iterations of the FDTD-Q simulation. However,
during more than one million time steps of the simulations,
not shown in Figs. 2 and 3, the maximum value of the wave

FIG. 2. Absolute value of the wave function at an arbitrary point of the
mesh during the first ten thousand iterations.Dt5Dtcritical .

FIG. 3. Absolute value of the wave function at an arbitrary point of the
mesh during the first ten thousand iterations.Dt50.5Dtcritical .

FIG. 4. Time evolution of the wave function at an arbitrary point of the
mesh.Dt51.005Dtcritical . Left: First three hundred iterations. Right: The
first one thousand iterations.
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function can be observed evolving under a bound. That is,
stability was observed whenDt<Dtcritical .

Numerical experiments with a time step longer than
Dtcritical are observed to diverge. In Fig. 4 the time evolution
of the wave function at a given point of the mesh forDt
51.005Dtcritical is presented. In the logarithmic scale of Fig.
4 we can see how the FDTD-Q algorithm diverges quickly
when the selected time step is a little greater thanDtcritical .

IV. CONVERGENCE

Once the stability of the FDTD-Q algorithm is ensured,
under certain conditions aboutDt, the next step consists of
checking that the numerical solution obtained with FDTD-Q
converges in a given boundary value problem. The study of
the convergence has been carried out by analyzing a quan-
tum structure with known analytical solution, this is the case
of the QWW that are numerically treated as two-dimensional
structures. Then, a large set of numerical simulations have
been carried out for a given QW, and FDTD-Q results are
compared against analytically obtained solutions. A QWW
was simulated with different spatial discretizations, in order
to analyze the numerical error as a function of the spatial
discretization. The errors were calculated as the difference
between the numerical and analytically obtained eigenvalues
and eigenfunctions.

The analysis of a particle in a QWW is mathematically
similar to the analysis of an electromagnetic waveguide.6

A. Numerical eigenvalues and eigenfunctions in a
QWW

After the introduction of a time-domain–space-domain
pulsed excitation, only eigenfunctions are allowed inside the
two-dimensional cross-section of the QWW. These have time
harmonic dependence with the energies of the bound states.
After the time pulsed excitation the wave function can be
expressed as a superposition of eigenfunctions, whose eigen-
values are included in the spectrum of the introduced time
domain pulse

C~rW,t !5 (
m51

`

Amwm~rW !e2 jEmt /h. ~17!

In the above equationwm(rW) appears, it is the space dis-
tribution of the m-eigenfunction along the cross section of
the QWW, and the eigenvalue or eigenenergyEm associated
to them-eigenfunction. The complex constantAm establishes
the contribution of them-eigenfunction to the wave function.

Equations~3a! and ~3b! are defined for a given spatial
discretizationDt chosen along with boundary conditions de-
fining the edges of the QWW. The potential is assumed to
become infinite at the walls of the QWW, so the wave func-
tion becomes zero there. From the FDTD-Q algorithm, the
real and imaginary parts of the wave function are computed
in alternate time steps, giving the time evolution of the wave
function componentsCR andC I .

From now on we will use a two-dimensional description
of the FDTD-Q equations, because the QWW constitutes a

two-dimensional structure with translational symmetry along
the z-axis. In particular, the FDTD-Q technique provides a
time series at a given mesh point (i , j )

Cn~ i , j !5C~ iDx, j Dy,nDt ! n50,1,2,...,N21, ~18!

where the total simulation time isNDt.
A method to reconstruct the eigenfunctions is described

in Ref. 2, in the discrete case it is the evaluation of the
equation

wm~ i , j !5
1

AN
(
n50

N21

Cn~ i , j !e2 jEmnDt /\. ~19!

The application of the inverse discrete fourier transform
~IDFT! to Cn( i , j ) in Eq. ~19! will result in a discrete func-
tion of frequency,

wm~ i , j !5
1

N (
n50

N21 S (
p50

N21

cp~ i , j !ej ~2pp/N!nD e2 jEmnDt /\

5
1

N (
p50

N21

cp~ i , j !
12e2 j ~EmNDt !/\

12e2 j ~~EmDt !/\2~2pp/N!
. ~20!

This equation shows that the information to reconstruct
each eigenfunction is shared in all discrete frequency com-
ponents. If we pay attention to the term@1
2e2 j ((EmDt)/\2(2pp)/N)#, we notice that the most important
contribution to them-eigenfunction is due to the component
namedpm which makes the following term the closest to
zero:

S EmDt

\
2

2ppm

N D'0. ~21!

Numerically, the eigenvalue associated to the
m-eigenfunction is evaluated as

Em-FDTD5
2p\

NDt
pm ~22!

and the energy sensitivity achievable by the discrete fourier
transform~DFT! is

DE5
2p\

NDt
, ~23!

which is related to the number of time stepsN, and the cell
dimensionsDx and Dy by the stability criterion derived
above. Apart from this factor, the achievable accuracy to be
gained in the numerical calculation also depends on the
space-time discretization process undertaken by the
FDTD-Q. This will be discussed in the following section.

The numerical error also depends on the feasibility of
the imposed numerical boundary conditions, and inevitable
numerical roundoff. The relative error between numerical
and analytical energies is calculated to evaluate the accuracy
of our procedure

er~%!5
uEm-FDTD2Em-analyticalu

uEm-analyticalu
100. ~24!

The field distribution for each eigenfunction can be cal-
culated once the eigenvalue is known. The shape of each
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m-eigenfunction is obtained by calculating the DFT compo-
nent associated to the energyEm , over the entire cross sec-
tion of the QWW.

B. Numerical analysis of eigenvalues

In order to simplify the numerical analysis we simulated
a two-dimensional QWW. To avoid degeneration alongx and
y axis, we simulated a QWW with a rectangular cross section
of 2243336 nm2.

After the introduction of the time-domain–space-domain
pulsed excitation in the two-dimensional FDTD-Q mesh, the
wave function is sampled at different mesh points, providing
the time domain numerical behavior of the wave function.
The sampling was done at three different points of the mesh
to avoid nulls of the eigenfunctions. The DFT of these tem-
poral series provide us with the spectral amplitude of the
wave function in the sampled mesh points. This frequency
response has maximum values, or peaks, at the frequencies
associated to the eigenenergies of the confined states. These
are theEm-FDTD numerical values.

The accuracy in the numerical estimation of the obtained
eigenvalues is expected to depend on the spatial discretiza-
tion. As cell dimensions decrease, numerical eigenvalues be-
come closer to the analytical values given in the following
equation:

Ep,q5
p2\2

2me
S p2

a2
1

q2

b2D , ~25!

wherea5224 nm andb5336 nm are the dimensions of the
QWW, the integersp andq define each eigenvalue.

As we have already said,Dt is limited by cell dimen-
sions to ensure the algorithm’s stability. The number of time
iterationsN was increased for smaller cell dimensions, in
order to maintain the DFT sensitivity when the same QWW
is simulated with denser meshes. The error’s decrease in the
eigenvalue estimation when the mesh size increases is
mainly due to the effect of cell dimensions, because the DFT
resolution remains constant.

Table I shows the FDTD-Q calculated eigenvalues, and
their deviation from the analytical ones. The eigenenergies of

E1-1, E2-2, E1-4, andE3-2 are compared in Table I to show
the convergence of our technique. In Table II we show the
convergence of the energy levels when the sensitivity of the
DFT is increased. The increase ofN leads to greater accuracy
in the estimation of the eigenvalues, see Eq.~23!. However
there is no linear relationship between the deviation and nu-
merical results in Table II. The deviation in the numerical
energy levels is associated to the discretization, and we ob-
tain these numerical results using the DFT, however the DFT
sensitivity covers the numerical error. Then, by increasing
the DFT sensitivity we observe a convergence of the devia-
tion to a constant value that is associated to the numerical
discretization 40360 cells.

C. Numerical analysis of eigenfunctions

The numerically obtained eigenfunction comes closer to
the analytical value when cell dimensions are reduced. The
most general solution of the Schro¨dinger equation for a par-

TABLE I. Estimated FDTD-Q energy levels for the 2243336 nm2 quantum well wire in million electron volt, and their relative error.

mesh

Eigenfunction 1-1 Eigenfunction 2-2 Eigenfunction 1-4 Eigenfunction 3-2

energy~meV! % energy~meV! % energy~meV! % energy~meV! %

639 1.0687 1022 1.27 4.0305 1022 6.92 5.3130 1022 12.6 6.8702 1022 14.9
10315 1.0687 1022 1.27 4.2137 1022 2.69 5.7710 1022 5.06 7.6030 1022 5.871
12318 1.0687 1022 1.27 4.2443 1022 1.98 5.8626 1022 3.55 7.7252 1022 4.36
14321 1.0687 1022 1.27 4.2748 1022 1.27 5.9237 1022 2.55 7.8168 1022 3.22
16324 1.0687 1022 1.27 4.2748 1022 1.27 5.9542 1022 2.05 7.8778 1022 2.47
18327 1.0687 1022 1.27 4.3053 1022 0.57 5.9847 1022 1.55 7.9084 1022 2.09
20330 1.0687 1022 1.27 4.3053 1022 0.57 6.0153 1022 1.04 7.9389 1022 1.71
22333 1.0687 1022 1.27 4.3053 1022 0.57 6.0153 1022 1.04 7.9694 1022 1.33
24336 1.0687 1022 1.27 4.3053 1022 0.57 6.0153 1022 1.04 8.0000 1022 0.96
28342 1.0687 1022 1.27 4.3053 1022 0.57 6.0458 1022 0.54 8.0000 1022 0.96
32348 1.0687 1022 1.27 4.3053 1022 0.57 6.0458 1022 0.54 8.0305 1022 0.58
36354 1.0687 1022 1.27 4.3359 1022 0.14 6.0458 1022 0.54 8.0305 1022 0.58
40360 1.0687 1022 1.27 4.3359 1022 0.14 6.0458 1022 0.54 8.0305 1022 0.58
44366 1.0687 1022 1.27 4.3359 1022 0.14 6.0763 1022 0.04 8.0611 1022 0.20

TABLE II. Estimated FDTD-Q energy levels for the 2243336 nm2 quantum
well wire in million electron volt, and their relative error. The mesh size is
40360 cells,Dt51.3544 10217 s.

Iterations

Eigenfunction 1-1 Eigenfunction 2-2

Energy~meV! Error ~%! Energy~meV! Error ~%!

5000 1.2214 1022 12.829 4.2748 1022 1.275
8000 1.1450 1022 5.777 4.1985 1022 3.038
9000 1.0178 1022 5.976 4.4105 1022 1.859

10 000 1.2214 1022 12.829 4.2748 1022 1.275
20 000 1.0687 1022 1.275 4.2748 1022 1.275
30 000 1.1196 1022 3.426 4.2748 1022 1.275
50 000 1.0992 1022 1.546 4.3359 1022 0.135
80 000 1.0687 1022 1.275 4.3130 1022 0.394
90 000 1.0857 1022 0.292 4.3087 1022 0.491

100 000 1.0687 1022 1.275 4.3359 1022 0.135
200 000 1.0840 1022 0.135 4.3206 1022 0.217
300 000 1.0789 1022 0.335 4.3257 1022 0.100
500 000 1.0809 1022 0.147 4.3237 1022 0.147
800 000 1.0802 1022 0.217 4.3244 1022 0.129
900 000 1.0823 1022 0.021 4.3223 1022 0.178

1 000 000 1.0809 1022 0.147 4.3237 1022 0.147
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ticle in a rectangular QWW can be written as a linear com-
bination of its corresponding eigenfunctions, see Eq.~26!. In
a two dimensional case

C~x,y,t !5 (
p51

`

(
q51

`

Ap,qwp,q~x,y!e2 j ~Ep,q!t/\,

~26!

wp,q~x,y!5sinS pp

a
xD sinS pq

b
yD ,

where wp,q(x,y) is the space distribution of the
(p,q)-eigenfunction along the cross section of the QWW, its
associated eigenenergy isEp,q , andAp,q is a complex con-
stant that establishes the contribution of the (p,q)-
eigenfunction to the wave function.

To obtain the eigenfunctions,6 the DFT is performed dur-
ing the FDTD-Q simulation at each mesh point@see Eq.
~19!#. The DFT is done at some selected frequencies associ-
ated to the lowest numerical eigenenergies obtained in the
eigenvalue analysis of previous section. Figure 5 shows the
calculated FDTD-Q eigenfunctions~1-1! and ~2-2!.

To analyze the convergence of the FDTD-Q, we evalu-
ated the deviation, or error, as the difference between ana-
lytical and numerical solutions at each mesh point (i , j ).7 In
this particular case, maximum absolute error and average
error were obtained for two given eigenfunctions: The 1-1,
and 2-2. The average or mean error is calculated averaging
the error at all the mesh points for a given mesh. In Fig. 6 we
present the maximum and average error for the first numeri-
cal eigenfunction~1-1! versus cell size. The least-squares
regression provides a slope of 1.74 for the average error, and
1.51 for the maximum error, in both cases the correlation
coefficient is higher than 0.9. Similar results for the 2-2
eigenfunction are presented in Fig. 7, where the least-squares
regression gives a slope of 2.35 for the average error and
2.11 for the maximum error, also with correlation coeffi-
cients higher than 0.9. The regression line of the error versus
cell size is also plotted in Figs. 6 and 7 for both the average
and maximum error, where the convergence versus cell size
of the proposed technique is demonstrated. The average error
is more significant and reduces faster~versus cell size! than

the maximum error. Then, we can say, as a first approach,
that the calculation of the eigenfunctions is second-order ac-
curate versus discretization.

A second-order accuracy was expected in the finite dif-
ference time domain results, because centered differences ap-
proach for numerical derivatives provide a second-order
accuracy.1 However, the used excitation and the numerical
DFT influenced the final error for the numerically obtained
eigenfunctions in the spectral domain. We observed this in-
fluence in our simulations. The pulsed excitation distributes
its energy between the eigenfunctions, but the best coupling
between excitation and a given eigenfunction is when the
pulse is located in the maximum of the spectral distribution.
The location of the maximum is not known beforehand, then
heuristic excitation can distort the spectral distribution of the
numerically calculated eigenfunction. The DFT also influ-
ences the accuracy of the numerically obtained eigenfunc-
tions, because its sensitivity influences the numerical spec-
trum.

V. CONCLUSIONS

The numerical finite difference time domain technique
that solves the Schro¨dinger equation is named FDTD-Q. In
the present work, the FDTD-Q is presented, analyzed, and
successfully applied in the analysis of a cross-sectional
QWW. A relationship between the spatial discretization and

FIG. 5. Numerical eigenfunctions of the 2243336 nm2 two-dimensional
quantum well, regular mesh of 40360 square cells. Up: eigenfunction 1-1.
Down: eigenfunction 2-2.

FIG. 6. Decimal logarithm of the numerical error in calculating the 1-1
eigenfunction versus decimal logarithm of the cell size:~s! maximum error,
and ~1! average error.

FIG. 7. Decimal logarithm of the numerical error in calculating the 2-2
eigenfunction versus decimal logarithm of the cell size:~s! maximum error,
and ~1! average error.
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the maximum time increment is derived to ensure the stabil-
ity of the numerical technique. A detailed analysis of the
convergence is carried out, with many numerical experi-
ments simulating a QWW. The FDTD-Q has a unit cell dis-
tinct from the Yee cell, however a second-order dependence
is obtained in the analysis of the numerical error versus the
discretization. Our results validate the use of the FDTD-Q in
the analysis of quantum devices like QWW and QW, and
guarantee a future successful application in three-
dimensional structures like QD.
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