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The excitation energies of parahydrogen clusters have been systematically calculated by the
diffusion Monte Carlo technique in steps of 1 molecule from 3 to 40 molecules. These clusters
possess a very rich spectra, with angular momentum excitations arriving up to L=13 for the heavier
ones. No regular pattern can be guessed in terms of the angular momenta and the size of the cluster.
Clusters with N=13 and 36 are characterized by a peak in the chemical potential and a large energy
gap of the first excited level, which indicate the magical character of these clusters. From the
calculated excitation energies, the partition function has been obtained, thus allowing for an estimate
of thermal effects. An enhanced production is predicted for cluster sizes of N=13, 31, and 36, which
is in agreement with the experiment. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2903462�

I. INTRODUCTION

Small �p-H2�N clusters of parahydrogen have been pro-
duced in a cryogenic free jet expansion and studied by
Raman spectroscopy.1 The Q�0� Raman line of the H2 mono-
mer is shifted as the number N of molecules in the cluster
changes, thus providing a method to identify the cluster
mass. The first seven resolved peaks next the monomer line
have been assigned to clusters with N=2, . . . ,8 molecules.
Although in that experiment the resolution was not enough to
resolve larger sizes, broad maxima were observed at N�13
and 33, and perhaps 55, which have been interpreted as a
propensity for geometric shell structures. Indeed, classical
static2–4 and molecular dynamics4,5 results, which are based
on the generic Lennard–Jones interaction potential, indicate
that the expected structures for such clusters are the so-called
Mackay icosahedra,6 which exhibit some magic sizes
�13,33,55,…� related to the packing of molecules in closed
icosahedral arrangements. A very complete discussion of
classical geometrical patterns and their relation to the inter-
action features can be found in Ref. 7 and references therein.
However, quantum effects play a major role in p-H2 clusters,
like in their helium droplets analogs. The path integral Monte
Carlo �PIMC� simulations of Sindzingre et al.8 have shown
that indeed the superfluid fraction in p-H2 clusters with 13
and 18 molecules become large at temperatures below
T�2 K. This prediction prompted both experimental9 and
theoretical10–13 research of small clusters consisting of p-H2

molecules surrounding a carbonyl sulfide chromophore,
confirming the existence of a superfluid response.

Quantum Monte Carlo �QMC� methods have been
widely used in recent years as a theoretical tool to study
p-H2 clusters. Several QMC techniques have been employed
to calculate their properties, namely, variational Monte
Carlo, diffusion Monte Carlo �DMC�,14–18 PIMC,8,19–22 rep-

tation Monte Carlo,23 and path integral ground state �PIGS�
Monte Carlo.24 Only some specific values of the number N
of constituents have been considered in the past, which are
related to the expected Mackay icosahedra structures. More
recently, systematic calculations as a function of the number
of molecules in the cluster have been performed. The ground
state energies and the one-body densities of p-HN clusters
have been calculated by the DMC technique in steps of
1 molecule from N=3 to 50,17 by the PIGS technique from
N=2 to 20,24 and by the PIMC from N=5 to 40.21,22 The
calculations show that �p-H2�N clusters exhibit a clear geo-
metrical order, with the molecules occupying concentric
spherical shells, which could be related to some polyhedric
arrangement. The apparent incompatibility between the large
superfluid fractions and the structured radial distribution den-
sities has been recently clarified21,22 by PIMC calculations
which show that superfluidity is localized at the surface of
the clusters.

Whereas up to N�22, these calculations are substan-
tially in agreement, for heavier clusters there are noticeable
differences between DMC and PIMC results, particularly for
N�26. PIMC chemical potentials show very prominent
peaks at N=26, 29, 34, and 39, in contrast to a smoother
behavior obtained with DMC. These differences subsist even
after an improved DMC calculation,18 and seem to be related
to thermal effects. According to Mezzacapo and
Boninsegni21 they should be associated with a coexistence of
solidlike and liquidlike phases, with a dominance of the lat-
ter at low T, as a result of both the zero-point motion and
quantum permutation exchanges. However, thermal effects
could manifest in enhanced stability thresholds at finite tem-
perature, similarly to what has been observed in 4He
droplets.25 Such droplets are definitely liquidlike and, never-
theless, they exhibit some magic numbers, which are not
related to enhanced ground state binding energies at specific
values of N. Instead, they are stability thresholds related toa�Electronic mail: navarro@ific.uv.es.
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the cluster sizes at which excited levels cross the chemical
potential curve and become stabilized.26 An analysis of the
possible existence of similar enhanced stabilities in p-H2

could be helpful to interpret the experimental results of
Ref. 1.

The purpose of the present article is to provide an accu-
rate microscopic description of the ground state and the low-
lying excited levels of �p-H2�N clusters. In the past, the ex-
cited states of the N=7 cluster were analyzed by McMahon
et al.27 Here, we present a systematic calculation of excita-
tions with angular momentum from L=0 to 13 for clusters
with N=3, . . . ,40. For a given L-state, the Schrödinger equa-
tion has been solved by means of stochastic DMC techniques
using the pairwise potential determined by Buck
et al.,28 hereafter referred to as BHKOS. Another popular
choice is the potential due to Silvera and Goldman,29 here-
after referred to as SG. Both potentials combine ab initio
calculations with properties of the gas �or solid� as well as
experimental information from collisions. The main differ-
ence among them is that SG contains a repulsive long-range
term �c9 /r9� to approximate the effective potential in a solid.
As shown in Ref. 18, the BHOKS potential provides more
binding than the SG one, and the BHOKS chemical potential
is slightly higher than the SG one.

This paper is organized as follows. In Sec. II, technical
details of the DMC calculations are given for the ground
state and low-lying excited states. The energy levels of
�p-H2�N clusters are presented and discussed in Sec. III. In
Sec. IV, the partition functions are obtained from the excita-
tion energies, and they are applied to the calculation of the
abundances in free jet expansions of parahydrogen clusters.
A summary and some general conclusions are finally given
in Sec. V.

II. THE DIFFUSION MONTE CARLO METHOD

The DMC method30 solves the imaginary-time
Schrödinger equation for a function f�R , t�
=�var�R���R , t� which is the product of the importance-
sampling wave function �var and the true ground state wave
function �. The variable R represents the set �r1 , . . . ,rN� of
3N coordinates of the N molecules which form the drop. The
solution for f is obtained by constructing an approximate
small-time Green’s function G�R ,R� ,�� which serves to
advance f by a small-time step �,

f�R�,t + �� =� dRG�R�,R,��f�R,t� . �1�

An initial set of walkers �R1 ,R2 , . . . ,RNw
	 is created to rep-

resent the function f�R ,0� at the initial time. After many
repeated applications of the short-time approximate Green’s
function, all components of the starting wave function or-
thogonal to the ground state wave function disappear and the
contributions of the other eigenstates go exponentially to
zero as the time goes to infinity. The remaining set of walk-
ers then provides a valid representation of the converged
solution. In order to have a good statistical accuracy, it is
convenient to continue the application of the Green’s func-
tion along a very large number of time steps and accumulate

the resulting set of walkers. Then, the mixed estimators of
the physically interesting quantities, such as the total energy,
can be computed. Of course, since the walkers are strongly
correlated, a block average is carried out in order to estimate
the variance.

Our ground state calculations are based on a Jastrow-like
importance-sampling wave function depending on just two
parameters.

�var = 

i�j

N

exp�−
1

2
� rij

b
�5

−
rij

p
� , �2�

where rij = ri−r j is the distance between the pair �i , j�. Once
the variational parameters for each value of N were deter-
mined, DMC calculations were carried out with very small
real-time steps �5�10−5–1�10−5 K−1, for the light and
heavier clusters, respectively� and very long number of
evaluation steps. Notice that the Bose symmetry of the above
guiding wave function is not modified in the DMC process.
The inclusion of triplet correlations in the importance-
sampling function leads to a noticeable improvement of the
variational energies, as shown in Ref. 18. However, the
DMC energies are essentially the same as those obtained
with only two-body correlations, with slightly more binding
in the heavier clusters. The main difference lies in the reduc-
tion in the standard deviation by typically a factor of 2.

Importance-sampling wave functions with a nonzero an-
gular momentum may equally well be considered and, cor-
respondingly, the initial state will be an admixture of eigen-
states of a specified angular momentum L. A convenient trial
function with angular momentum L is as follows:

�var
�L��R� = �

i=1

N

Re�ri − RcmLYLL��̄i�	�var�R� , �3�

where �̄i stands for the spherical angles of the vector
ri−Rcm which defines the position of the ith particle with
respect to the center-of-mass coordinate Rcm=�iri /N, and
YLM is a spherical harmonic. Note that the sum over all the
constituent particles and the subtraction of the center-of-
mass coordinate Rcm are required to maintain the Bose sym-
metry and the translational invariance, respectively. Again,
the application of the imaginary-time Green’s function will
select the lowest eigenstate in the subspace of angular mo-
mentum L, the remaining contributions being exponentially
suppressed as the time increases. The prefactor entering
Eq. �3� is identical to zero when L=1. In that case, we have
used

�var
�1��R� = �

i=1

N

Re�ri − Rcm3Y11��̄i�	�var�R� . �4�

A similar procedure to deal with L-states has been used in
Ref. 27 for the N=7 cluster, and in Ref. 26 for 4He droplets.

Certainly, the trial function for L�0 states is not posi-
tive definite and, consequently, cannot be interpreted as a
probability distribution function. We have used the so-called
fixed-node approximation31 assuming that the nodal surfaces
are fixed by the importance-sampling function. In this ap-
proximation, an exact energy for the lowest angular momen-
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tum L state is, in fact, not obtained. The improved variational
wave function and the corresponding mixed estimator of the
energy, which is derived, does, however, provide a varia-
tional upper bound.

Besides the excited states with angular momentum L,
one should also consider vibrational excitations character-
ized by a radial quantum number n. In short, let us represent
each state by �n ,L�. With the previous trial wave function,
the DMC method selects the lowest eigenstate �0,L� in the
subspace of angular momentum L. A useful estimate of the
energies of the average vibrational excitations �n�1,L� in
each L subspace is obtained by using sum rules,32,33 which
only require the knowledge of the lowest L-state wave func-
tions. Consider the exact lowest state for a given angular
momentum L and the full set of eigenstates of this subspace
in order of increasing energy, represented by �0

�L� and
��n

�L� ,En
�L�	, respectively, where n=0,1. . ., is the vibrational

quantum number. Let Q�R� be an arbitrary operator, as-
sumed to be scalar under rotations, for which the sum rule of
order p is given by

Mp
�L��Q� = �

�n,����0,L�
�En

��� − E0
�L��p��n

���Q�0
�L��2, �5�

where the sum extends over all eigenstates of the Hamil-
tonian with the exception of the lowest energy state �0,L� of
angular momentum L. An upper bound to the energy of the
first excited state of the subspace L is obtained as

E1
�L� − E0

�L� �
M1

�L��Q�
M0

�L��Q�
, �6�

which involves the energy weighed and the nonenergy
weighed sum rules. Using the completeness relation of the
set of functions ��n

�L�	, they can be written as

M0
�L��Q� = ��0

�L�Q2�0
�L�� − ��0

�L�Q�0
�L��2, �7�

M1
�L� =

	2

2m
��0

�L��
i=1

N

�iQ2�0
�L�� . �8�

The computation of these expressions only requires a knowl-
edge of the lowest state wave function of the angular
momentum L subspace.

Here, we present the results for the first vibrational state
of the subspace L=0, employing a general monopolar
operator

Q�R� = �
p=1

5

cp�
i�j

rij
p . �9�

The parameters cp have been optimized so as to obtain the
lowest upper bound to the first excited state. Notice that the
excitations obtained are approximate because mixed matrix
elements are used to calculate the required sum rules, so that
strict variational character is lost.

III. THE ENERGY LEVELS OF PARAHYDROGEN
CLUSTERS

Once calculated for each cluster the ground state
E0

�0��N� and the excited-state energies E0
�L��N� and E1

�0��N�,
the excitation energies are defined as


EL�0�N� = E0
�L��N� − E0

�0��N� , �10�


E0�N� = E1
�0��N� − E0

�0��N� . �11�

They are plotted as a function of N in Figs. 1–3. For the sake
of clarity, we have separately displayed them for each value
of L in Figs. 1 and 2 and the full spectra are shown in Fig. 3.
The chemical potential or dissociation energy

��N� = E0
�0��N − 1� − E0

�0��N� , �12�

defined as the difference between the ground state energies
of the neighboring clusters, has also been plotted in all cases.
Indeed, the chemical potential defines the energetic region in
which excited states are stable. Only stable states have been
plotted in Figs. 1–3.

As previously discussed in Refs. 17 and 18, the most
prominent result regarding the chemical potential is the en-
hanced stability of the cluster N=13, which confirms its
magical character. A mild peak also appears at N=36, but

FIG. 1. �Color online� Excitation energies �in K� of �p-H2�N clusters as a
function of the number N of constituents for states �0,L� with L=1–6. The
chemical potential ��N� is also displayed to indicate the stability limit.

FIG. 2. �Color online� Excitation energies �in K� of �p-H2�N clusters as a
function of the number N of constituents for states �0,L� with L=7–13
and the vibrational state �1,L� with L=0. The chemical potential ��N� is
also displayed to indicate the stability limit.
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one cannot exclude that it could simply be a statistical fluc-
tuation. An additional confirmation of its magicity will be
given later on. In contrast, PIMC calculations of Refs. 21 and
22 at T=1 and 0.5 K, respectively, showed an enhanced sta-
bility at N=13, 26, 29, 34, and 39.

The main characteristics of the spectra displayed in Figs.
1 and 2 can be summarized as follows. All clusters exhibit
stable excitations for L=2, 3, and 0 at N=3 and onward. The
next excited level with L=4 starts to be bound at N=4, the
following levels with L=5 and 1 appear at N=6. The next
L=6, . . ., levels appear at regularly increasing size thresh-
olds. In the considered size range the highest stable excited
level corresponds to L=13, which appears at N=31 and on-
ward. The quadrupolar L=2 excitation is the lowest one for
all sizes, except at N=26, 28, 29, and 37, for which the
octupolar L=3 state lies at a slightly lower energy. The ex-
citations with L�7 do not cross each other: The higher the
angular momentum is, the higher the excitation energy. The
vibrational excitation energies of the state �n=1,L=0�
present a smooth behavior as a function of N, apart from a
mild minimum at N=13. We have not pushed our calcula-
tions to the vibrational states �1,L�0�. Presumably, they
would also present a monotonic behavior with respect to
their corresponding �0,L� states. In contrast, the excitation
energies of the states �n=0,L�0� have a nonmonotonic
behavior with N.

The N=13 cluster is very peculiar. Its excitation energies
present a prominent peak for the states with L=1–5, a
prominent minimum for L=6, and a pronounced change of
trend for L=7, 8, and 9. This cluster has no stable excited
states for L�9. No other enhanced bumps appear up to N
=40. Such a behavior is related to the truly magic character
of this size. Its enhanced stability results in a repulsion of the
excitations, similarly to what has been observed in classical
Lennard–Jones calculations.4,34 The prominent minimum
found for L=6 at N=13 means that this value of the angular
momentum is also special. A similar phenomenon was ob-
served in the study of doped parahydrogen clusters
CO@�p-H2�N by reputation QMC calculations,23 where the
time-correlation functions of the various multipole moments
in the rotating-axes frame have been computed. A persistent
crystal structure for N=12 and a persistent time correlation

of the L=6 multipole has been observed by these authors.
Their explanation for these facts was based in the property
that the only non-null multipolar moments for the N=13
cluster with icosahedral symmetry are L=6 and L=10.

To the best of our knowledge, there are only two avail-
able calculations of excited states of parahydrogen clusters.
Costa and Clary35 performed a calculation in a large basis for
both the dimer and the trimer by using the surface potential
of Schaeffer and Meyer.36 No bound 0+ excitation was found
for the trimer, in contrast to our findings. There is no contra-
diction because of the variational character of the results of
Costa and Clary. The other calculation for the cluster with
N=7 is due to McMahon et al.27 These authors have per-
formed a DMC calculation using the BHKOS interaction and
a trial wave function for L-excited states analogous to
Eq. �3�. It can be seen in Table I that their calculations and
ours are in substantial agreement within at most two standard
deviations.

Our calculated DMC excitation energies are collected in
Fig. 3, omitting error bars for the sake of clarity. The ob-
tained spectrum for each �p-H2�N cluster is complex, in the
sense that it does not resemble any of the simple models of
excitations. The states with L=2 are the lowest lying, apart
from the few cases mentioned before. It is worth mentioning
the presence of relevant energy gaps at N=13 and N=36, in
coincidence with peaks in the chemical potential. Both facts
indicate a magical character of these clusters. Note that
analogous energy gaps have been determined in classical
Lennard–Jones clusters.4

There is almost no information, neither experimental nor
theoretical, of the spectrum of clusters weakly bound by van
der Waals-like interactions. An indirect determination of the
�p-H2�2 dimer excitations has been reported in Refs. 37–39.
These interesting experiments refer to the absorption of in-
frared radiation by parahydrogen gas at 20 K, slightly above
the triple point. Just focusing on the region around the Q1�0�
line, there has been observed an absence of absorption at
exactly the frequency of the free Q1�0� line, and the presence
of two satellites at energies above and below the free parahy-
drogen frequency, interpreted as a signal of the dimer excited
states. In practice, absorption experiments provide an indi-
rect way of detecting the two-body ground state p-H2–p-H2

and measuring its spectrum.
In the case of 4He droplets, an indirect determination of

their excitation energies results from the temperature-
dependent analysis of the production abundances of such
clusters in ultrasonic expansion of pressurized gas.26 Sudden
jumps have been observed in the quantum partition function

FIG. 3. �Color online� Excitation energies �in K� of �p-H2�N clusters as a
function of the number of constituents. The chemical potential ��N�
�green dots� is also displayed to indicate the stability limit. Levels �n=0,
L=2� and �n=1, L=0� are plotted in red and blue, respectively.

TABLE I. Cluster with N=7. The DMC results of Ref. 27 are compared to
the present results. All energies are in K.

McMahon et al. Present results

E0
�0� −98.89�15� −98.76�1�

� 25.90�15� 25.37�2�

E2 8.3�3� 7.92�13�

E3 13.2�2� 12.92�17�

E5 15.4�2� 14.74�18�
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at cluster sizes which can just accommodate one more addi-
tional stable excitation. The nice agreement between the ex-
perimental magic sizes and theoretical stability thresholds
provides a confirmation of the calculated energy levels of
these clusters.

In principle, one could expect some parallelism between
the spectra of 4He droplets and those made of parahydrogen:
Both constituents are bosons and the interaction is rather
similar. However, our calculations rule out such an analogy,
as helium clusters present regularly spaced spectra. In con-
trast, no simple pattern can be guessed for the spectra of
parahydrogen clusters. Only the excitation energy of the
L=0 level has a smooth behavior with the number of p-H2

molecules, with a small inflection at N=13. Its value is
roughly constant near 20 K, quite far away from the
dissociation limit, in contrast 10 the analogous level in 4He
droplets which is close to the dissociation limit.

The �n=0,L�1� of 4He excitations correspond to sur-
face modes, described by ripplonlike oscillations with radial
frequencies given by40–42

� = � 0

m�0R0
3L�L − 1��L + 2��1/2

. �13�

Certainly, the smooth behavior related to the angular mo-
mentum dependence �L�L−1��L+1��1/2 does not emerge
from our calculated spectra of p-H2 clusters. These frequen-
cies were corrected by Tamura43 to include finite size effects.
The corrected expression reproduces very well the calculated
DMC spectra of helium clusters26 but not the present spectra
of p-H2 clusters.

The excitation energy of the translationally invariant
forbidden 1 mode, which requires a nodal surface in the ra-
dial coordinate space, has a quite high energy compared to
the allowed levels �2,3,…�, like in the case of helium drop-
lets. Nevertheless, its energy is again far away from the dis-
sociation limit, in contrast to the case of 4He clusters. With
respect to the variation with the number of molecules, it is
noticeably smoother than the levels of low angular momen-
tum �up to L=4� but reveals a prominent bump near N=13.

At the light of our calculations, we infer a coexistence of
liquid and crystal structure near N=13, the liquid part being
responsible for the L=2,3 , . . ., excitations, and the crystal
part responsible for the L=6 excitation. The region around
N=13 where the energy of the L=6 mode decreases up to
N=13 and afterward increases up to a plateau will corre-
spond to a partial icosahedral symmetry. We have analyzed
the known crystal structures related to Lennard–Jones clus-
ters reported in the Cambridge cluster data base,44 by com-
puting the multipolar moments. There are three significant
cases worth mentioning. First, the N=19 cluster, for which
the multipolar moments L=3 and L=4 are null and for which
we obtain a very low L=2 excitation and much higher L=3
�a peak� and L=4. Second, the N=26 case, whose first non-
null multipole is L=3 and appears in our calculations with a
minimum for this excitation. Finally, the N=38 cluster,
whose first non-null multipole is L=4 appearing again in our
calculations as a valley around this value of the number of
constituents. In conclusion, even if we do not find a simple
or familiar model to describe the excitations of parahydrogen

clusters, some aspects of the spectrum are qualitatively de-
scribed by assuming a coexistence of liquid and solid phases.

IV. THERMAL EFFECTS AND MAGIC NUMBERS

The knowledge of the full spectra allows us to analyze
different thermal effects by means of the partition function.
In particular, in this section, we consider the expectation
value of the temperature-dependent energy E�T� and the
effect of excited states on the production abundances of
clusters in free jet expansion of pressurized gas.

The partition function of each cluster is expressed as the
product

�N = ZN�N �14�

of the center-of-mass �ZN� and internal ��N� partition func-
tions. The former can be written as

ZN = �NmkT

2�	2 �3/2
. �15�

The internal partition function is given in terms of bound
state energy levels Ej of the state j= �n ,L� of the N-molecule
cluster by

�N = �
j

gj�N�exp�−
Ej�N�

kT
� , �16�

where the degeneracy factor for the state with the radial
quantum number n and angular momentum L is given by
gj =2L+1.

By using the notation of Sec. III, Eqs. �10� and �11�, the
internal partition function may be written in a computation-
ally convenient form

�N = exp�−
E0

�0��N�
kT

��1 + �
L

�2L + 1�exp�−

EL�N�

kT
�� ,

�17�

where 
EL�N� are the excitation energies for angular mo-
mentum L, and the statistical factor has been written in the
explicit form �2L+1�.

The internal energy of a given cluster at a temperature T
is given by

EN�T� = E0
�0��N� +

1 + �L�2L + 1�
EL�N�e−
EL�N�/kT

1 + �L�2L + 1�e−
EL�N�/kT .

�18�

Sizable thermal effects on the energy values will start to
appear at temperatures close to the energy of the first excited
state. Thus, at T=1 K, the energy changes are minimal, with
a maximum of 0.4 K for N�20, related to the minimum of

E2 �see Fig. 1�. The energy of the other clusters remains
practically unaltered and, consequently, the chemical poten-
tial at T=1 K has practically the same shape as at T=0. This
observation is interesting in relation to the PIMC calcula-
tions, which have been carried out at T=0.5 K �Ref. 22� and
T=1 K.21 The series of peaks observed in the PIMC chemi-
cal potential as a function of the number of molecules is not
reproduced by the present extension of DMC to T=1 K. Al-
though different interactions have been used in these calcu-
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lations, namely, BHKOS in DMC and SG in PIMC, we do
not expect this as the origin of the differences. Indeed, DMC
results using both interactions18 give substantially the same
chemical potential shape, apart from the mentioned mild
peak at N=36, not visible with the SG interaction.

On the other hand, the effect of the temperature on the
mechanism by which clusters are formed in the free jet ex-
pansion turns out to be very interesting. The analysis which
follows is similar to the one carried out for helium
droplets25,26 which explained the experimentally observed
anomalously high production rates of clusters with a specific
number of constituents; the anomalies being related to the
excitation spectrum of the clusters and not to a magical char-
acter.

Let us assume that cluster growth is dominated by the
chemical equilibrium reaction

�p-H2�N−1 + p-H2 + X � �p-H2�N + X , �19�

where X is a spectator particle required to fulfill the energy
and momentum conservation laws. The related equilibrium
constant is independent of the spectator particle and is given
by a quotient of partition functions

KN =
�N

�N−1�1
. �20�

The equilibrium constant is dominated by the quotient
�N /�N−1, which is conveniently written as

�N

�N−1
= � N

N − 1
�3/2

e��N�/kT 1 + �LgLe−
EL�N�/kT

1 + �LgLe−
EL�N−1�/kT . �21�

Neither the chemical potential nor the excitation energies are
smooth functions of N, as has been show in Fig. 3. One can
expect that the above quotient will reflect such a nonmono-
tonic behavior as jumps at particular values of N. The quo-
tient of partition functions �N /�N−1 is displayed in Fig. 4 as
a function of N for several values of temperature, lower than
the source temperatures of Ref. 1, about 40 K. As these ra-
tios span several orders of magnitude as T varies, we have
arbitrarily given the value 1 to the case N=40.

Clearly pronounced peaks are observed at N=13, 31, and
36, and less pronounced at N=26. Other peaks exist, such as
N=19 and N=29, but they only appear at specific values of

T. The pronounced peaks give an explanation of the experi-
mentally determined production peaks at N=13 and 33. It
should be mentioned that the relation between the Raman
shift and the number of molecules of the clusters in the work
of Tejeda et al.1 is an extrapolation from small values of N,
and the position of the peak at N=33 may be imprecise. It is
worth noticing that the last value is halfway between the
theoretical peaks at N=31 and N=36 related to an enhanced
production.

V. CONCLUSIONS

In this work, we have determined the excited-state en-
ergy levels of parahydrogen clusters containing up to
40 molecules by means of a DMC calculation based on an
importance-sampling function with a nonzero angular mo-
mentum L plus the fixed-node approximation. A variational
upper bound has been obtained for the lowest-lying energy
of a given L-state. Bound excited states have been found for
states �n=0,L=1–13� and �n=1,L=0�, the size threshold for
binding increases as L increases. It turns out that the spectra
are complex in the sense that no simple pattern can be
guessed to fit them as a function of the angular momentum of
the state and the size number. In particular, and contrary to
what happens in the analogous system of helium droplets,
the liquid drop model formula is excluded. Perhaps an ap-
propriate description could be found considering the inter-
play between solid and liquid structures.

The N=13 and N=36 clusters are magic, as indicated by
the existence of peaks in the chemical potential in coinci-
dence with energy gaps for their first low-lying excited state,
relative to their neighbors.

The spectra of weakly bound van der Waals clusters
have not yet been experimentally measured. Only an indirect
determination25,26 has resulted from the analysis of enhanced
production of clusters of 4He in terms of the successive sta-
bilization of excited levels at growing values of the number
of constituents of the clusters. The analysis of the partition
function of parahydrogen clusters has revealed the existence
of production enhancements at N=13, 31, and 36, in nice
agreement with the experiment.1 The effect is similar to the
case of helium clusters, but the nature is very different. In-
stead of the stability threshold reason of helium clusters,
here, the enhanced production is basically related to the ex-
istence of energy gaps in the excitations at the mentioned
values of the number of constituents. There may be some
corrections due to not including the �n=1,L�0� levels in the
partition function. We expect, however, these effects to be
small, as presumably such vibrational excitations would be
some 20 K above the nonvibrational �n=0,L� corresponding
level.
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FIG. 4. �Color online� The ratio of the partition functions �N /�N−1 is plot-
ted vs N for several values of temperature: 1, 5, 10, 15, and 20 K. The scale
has been arbitrarily fixed at N=40.
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