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ABSTRACT

Given f ∈ L1(T) we denote by wmo(f) the modulus of mean oscillation given
by

wmo(f)(t) = sup
0<|I|≤t

1

|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π

where I is an arc of T, |I| stands for the normalized length of I, and mI(f) =
1
|I|

∫
I
f(eiθ) dθ

2π
. Similarly we denote by who(f) the modulus of harmonic oscilla-

tion given by

who(f)(t) = sup
1−t≤|z|<1

∫
T
|f(eiθ)− P (f)(z)|Pz(e

iθ)
dθ

2π

where Pz(e
iθ) and P (f) stand for the Poisson kernel and the Poisson integral

of f respectively.

It is shown that, for each 0 < p < ∞, there exists Cp > 0 such that∫ 1

0

[wmo(f)(t)]p
dt

t
≤

∫ 1

0

[who(f)(t)]p
dt

t
≤ Cp

∫ 1

0

[wmo(f)(t)]p
dt

t
.
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O. Blasco/M. A. Pérez On functions of integrable mean oscillation

1. Introduction.

As usual we denote by BMO the space of functions f ∈ L1(T) such that

‖f‖∗ = sup
I⊆T

1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π
< ∞,

where I is an arc of the circle T, |I| stands for the normalized length of I and
mI(f) = 1

|I|
∫

I
f(eiθ) dθ

2π . We write ‖f‖BMO = |f̂(0)|+ ‖f‖∗ .
If f ∈ L1(T) and 0 < t ≤ 1, we define the modulus of mean oscillation of f at the

point t as

wmo(f)(t) = sup
0<|I|≤t

1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π
.

Clearly, for 0 < t ≤ s < 1, one has

sup
t<|I|≤s

1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π
≤ 2

t
‖f‖1.

Hence, for 0 < t ≤ s < 1, one has

wmo(f)(t) ≤ wmo(f)(s) ≤ max
{

wmo(f)(t),
2‖f‖1

t

}
. (1)

In particular, f ∈ BMO if and only if wmo(f)(t) < ∞ for some (or for all)
0 < t ≤ 1.

It is known that one can consider other equivalent moduli to define BMO. For
instance, for 0 < q < ∞,

wmo,q(f)(t) = sup
0<|I|≤t

(
1
|I|

∫
I

|f(eiθ)−mI(f)|q dθ

2π

)1/q

.

It is also well known, by the John-Nirenberg lemma (see [7, 8]), that there exist
C1, C2 > 0 such that for all λ > 0 and any arc I with |I| ≤ t,

|{ θ ∈ T : |f(eiθ)−mI | > λ }|
|I|

≤ C1e
− C2λ

wmo(f)(t) .

From here one gets that, for all t > 0,

wmo(f)(t) ≈ wmo,q(f)(t). (2)

One can also consider

w′
mo(f)(t) = sup

|I|≤t

(
1
|I|2

∫
I

∫
I

|f(eiθ)− f(eiϕ)| dθ

2π

dϕ

2π

)
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or

w̃mo(f)(t) = sup
|I|≤t

(
inf
c

(
1
|I|

∫
I

|f(eiθ)− c| dθ

2π

))
Clearly one gets

wmo(f)(t) ≤ w′
mo(f)(t) ≤ 2wmo(f)(t) (3)

and
w̃mo(f)(t) ≤ wmo(f)(t) ≤ 2w̃mo(f)(t).

A function f is said to have vanishing mean oscillation, in short f ∈ VMO, if

lim
|I|→0

1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π
= 0.

This is a closed subspace of BMO, which can be characterized in many ways
(see [7, 8, 15]).

Theorem 1.1. Let f ∈ BMO. The following statements are equivalent:

(i) f ∈ VMO.

(ii) limt→0+‖Ttf − f‖BMO = 0, where Ttf(eiθ) = f(ei(θ−t)).

(iii) limr→1‖Pr ∗ f − f‖BMO = 0, where Pr(eiθ) = <( 1+re−iθ

1−re−iθ ).

(iv) f belongs to the closure of C(T) in BMO.

(v) limt→0+ wmo(f)(t) = 0.

A generalization of BMO is the space BMO(ρ), consisting of functions f ∈ L1(T)
such that wmo(f)(t) = O(ρ(t)) for a fixed function ρ with certain properties. The
space BMO(ρ) has been considered by various authors (see [10,15,17]).

Our aim will be to analyze spaces where the function ρ is not explicitly given, but
we do know its behavior at the origin in terms of certain integrability conditions.

Given 0 < p < ∞, we shall denote by MOp(T) the space of integrable functions
such that

∫ 1

0
[wmo(f)(t)]p dt

t < ∞.
Due to (2), the spaces MOp

q of functions such that
∫ 1

0
[wmo,q(f)(t)]p dt

t < ∞ are all
the same for 0 < q < ∞.

These spaces were considered in [12] (see page 74), under a different notation. Also
some spaces MOα

s,r, which are closely related to the ones considered in this paper,
were introduced in [13].

We use the notations

ω∞(f)(t) = sup
|θ−ϕ|≤t

|f(eiθ)− f(eiϕ)|
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and

ωq(f)(t) = sup
|u|≤t

(∫
T
|f(ei(θ+u))− f(eiθ)|q dθ

2π

)1/q

for 0 < q < ∞.
Now, for 0 < s < 1 and 0 < p, q ≤ ∞, the Besov space Bs

q,p(T) consists of
functions in Lq(T) such that t−sωq(f) ∈ Lp((0, 2π), dt

t ). Of course the cases Bs
q,∞

where 0 < q ≤ ∞ correspond to Lipschitz or Hölder classes, to be denoted Lips(T)
instead of Bs

∞,∞(T).
We denote by Xp the space consisting of functions L∞(T) such that ω∞(f) ∈

Lp((0, 2π), dt
t ).

From (3) we easily obtain, for any t > 0,

wmo(f)(t) ≤ Cω∞(f)(t).

Hence Xp ⊂ MOp(T) for any 0 < p < ∞.
On the other hand, if I, J are arcs on T such that I ⊂ J then

|mJ(f)−mI(f)| ≤ |J |
|I|

wmo(f)(|J |). (4)

Now, given I with |I| ≤ t, using the Lebesgue differentiation theorem, one gets

f(eiθ) = lim
n

mIn
f, for a.a. θ ∈ I,

where In is a decreasing sequence of arcs containing θ such that |In| = 2|In+1|.
Hence using (4), we have that for any f ∈ MO1(T)

|f(eiθ)−mI | ≤ lim
n
|mIn

f −mIf |

≤
∞∑

k=1

|mIk
f −mIk−1f |

≤ C
∞∑

k=1

wmo(f)(2−kt)

≤ C

∫ t

0

wmo(f)(s)
ds

s
.

Therefore we obtain, for any t > 0,

ω∞(f)(t) ≤ 2C

∫ t

0

wmo(f)(s)
ds

s
. (5)

This implies that MO1(T) ⊂ Lipφ, where Lipφ stands for the space of continuous
functions such that

|f(eiθ)− f(eiϕ)| ≤ Cφ(|θ − ϕ|),
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for φ(t) = sup{
∫ t

0
wmo(f)(s)ds

s :
∫ 1

0
wmo(f)(t)dt

t ≤ 1}.
BMO-type characterizations of these spaces have been extensively considered in

the literature. The reader is referred to [2, 3, 9] for the case p = ∞ and to [4, 5] for
the cases 0 < s and 1 < p < ∞.

We shall consider a description of MOp(T) where the averages over arcs are re-
placed by averages with respect the Poisson kernel.

We denote by BMOH the space of functions f ∈ L1(T) such that

‖f‖∗∗ = sup
z∈∆

∫
T
|f(eiθ)− P (f)(z)|Pz(eiθ)

dθ

2π
< ∞,

where ∆ denotes the open unit disc, P (f)(z) =
∫

T f(eiθ)Pz(eiθ) dθ
2π and Pz(eiθ) =

<( 1+ze−iθ

1−ze−iθ ). We write ‖f‖BMOH = |P (f)(0)|+ ‖f‖∗∗.
It is not difficult to prove (see [7,8]) that f ∈ BMO if and only if f ∈ BMOH with

equivalent norms.
In this situation we define the modulus of harmonic oscillation of f at the point t

as
who(f)(t) = sup

1−t≤|z|<1

∫
T
|f(eiθ)− P (f)(z)|Pz(eiθ)

dθ

2π
.

Hence, f ∈ BMO (respect. BMOH) if and only if wmo(f)(1) < ∞ (respect. who(f)(1)
< ∞).

For 0 < p < ∞, we denote by HOp(T) the space of f ∈ L1(T) such that∫ 1

0
[who(f)(t)]p dt

t < ∞.
Of course one can also use other moduli to define this space. For instance, for

0 < q < ∞,

who,q(f)(t) = sup
1−t≤|z|<1

(∫
T
|f(eiθ)− P (f)(z)|qPz(eiθ)

dθ

2π

)1/q

,

or
w̃ho(f)(t) = sup

1−t≤|z|<1

inf
c

∫
T
|f(eiθ)− c|Pz(eiθ)

dθ

2π
.

The main objective of the paper is to show that, for 0 < p < ∞, we have MOp(T) =
HOp(T) and with equivalent “norms”.

The paper is divided into two sections. The first one is devoted to introducing
MOp(T) and proving some of its properties and the second one to introducing HOp(T)
and to showing that HOp(T) coincides with MOp(T).

2. Integrable mean oscillation.

We will see first that the modulus of mean oscillation is continuous. We shall use the
following lemma.
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Lemma 2.1. Let f ∈ L1(T). If {In} is a sequence of arcs such that limn→∞ In = I
for some arc I with |I| > 0 then

lim
n→∞

1
|In|

∫
In

|f(eiθ)−mIn(f)| dθ

2π
=

1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π
.

Proof. Let us first estimate

1
|In|

∫
In

|f(eiθ)−mIn
(f)| dθ

2π
− 1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π

≤ 1
|In|

∫
In

|f(eiθ)−mI(f)| dθ

2π
+ |mIn

(f)−mI(f)|

− 1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π

≤ 1
|I|

(∫
In

|f(eiθ)−mI(f)| dθ

2π
−

∫
I

|f(eiθ)−mI(f)| dθ

2π

)
+ |mIn(f)−mI(f)|+ 2‖f‖1

( 1
|In|

− 1
|I|

)
.

Notice that ν(A) =
∫

A
f(eiθ) dθ

2π and µI(A) =
∫

A
|f(eiθ)−mI(f)| dθ

2π are a complex and
a positive measure respectively with integrable densities. Therefore the result follows
passing to the limit as n goes to ∞.

Proposition 2.2. Let f ∈ BMO. Then wmo(f) is increasing and continuous in (0, 1].

Proof. Monotonicity has already been proved in our formula (1).
Let 0 < t0 ≤ 1 and let us prove that it is left continuous at t0. Given ε > 0 we

find It0 ⊂ T such that 0 < |It0 | ≤ t0 and

wmo(f)(t0) ≤
1
|It0 |

∫
It0

|f(eiθ)−mIt0
(f)| dθ

2π
+

ε

2
.

Let (tn) be a sequence such that tn ≤ t0 for all n ∈ N and converges to t0.
If |It0 | = t0, we can find In ⊂ It0 such that limn→∞ In = It0 . Hence

wmo(f)(t0)− wmo(f)(tn) ≤

≤ 1
|It0 |

∫
It0

|f(eiθ)−mIt0
(f)| dθ

2π
− 1
|In|

∫
In

|f(eiθ)−mIn(f)| dθ

2π
+

ε

2
.

Now use Lemma 2.1 to get limn→∞ wmo(f)(t0)− wmo(f)(tn) = 0.
If |It0 | < t0 there exists n0 such that |It0 | ≤ tn for n ≥ n0. Hence wmo(f)(t0) −

wmo(f)(tn) < ε
2 for n ≥ n0.
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To see that it is right continuous at t0, we shall argue as follows: Let (tn) be
a sequence such that tn ≥ t0 for all n ∈ N and converges to t0. We shall find a
subsequence (tnk

) such that limk→∞ wmo(f)(tnk
) = wmo(f)(t0).

Given ε > 0 we find In ⊂ T such that 0 < |In| ≤ tn and

wmo(f)(tn) ≤ 1
|In|

∫
In

|f(eiθ)−mIn
(f)| dθ

2π
+ ε.

Let F = {n ∈ N : |In| > t0}. If F is finite then |In| ≤ t0 for n ≥ n0 and

wmo(f)(tn)− wmo(f)(t0) < ε for n ≥ n0.

Without loss of generality we assume |In| > t0 for all n ∈ N.
Call I0 = ∪∞n=1 ∩∞k=n Ik. It is easy to see that I0 is an arc and that |I0| = t0. Take

a subsequence nk such that (Ink
) converges to I0. We have

wmo(f)(tnk
)− wmo(f)(t0) ≤ wmo(f)(tnk

)− 1
|I0|

∫
I0

|f(eiθ)−mI0(f)| dθ

2π

≤ 1
|Ink

|

∫
Ink

|f(eiθ)−mInk
(f)| dθ

2π
− 1
|I0|

∫
I0

|f(eiθ)−mI0(f)| dθ

2π
+ ε.

The proof is complete invoking Lemma 2.1.

Remark 2.3. Let f ∈ BMO and take a(f) = limt→0+ wmo(f)(t). Hence f ∈ VMO if
and only if a(f) = 0.

For each 0 < p < ∞, we define the quasi-norm (norm for p ≥ 1) on MOp(T) by

‖f‖MOp = ‖f‖L1(T) +
(∫ 1

0

[wmo(f)(t)]p
dt

t

)1/p

.

Although the next result is probably known, we include a proof for the sake of
completeness.

Theorem 2.4. Let 0 < p < ∞. Then (MOp(T), ‖.‖MOp) is a complete space.

Proof. Let {fn} be a Cauchy sequence in MOp(T). In particular, there exists f ∈ BMO
such that {fn} converges to f .

Let |I| ≤ t, 0 < t ≤ 1. Using that fn → f in L1(T) we get that mI(fn) → mI(f)
and that there exists a subsequence (nk), such that fnk

→ f a.e.
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Now

1
|I|

∫
I

|fn(eiθ)− f(eiθ)−mI(fn − f)| dθ

2π

=
1
|I|

∫
I

|fn(eiθ)− lim
k

fnk
(eiθ)− lim

k
mI(fn − fnk

)| dθ

2π

=
1
|I|

∫
I

lim
k
|fn(eiθ)− fnk

(eiθ)−mI(fn − fnk
)| dθ

2π

≤ lim inf
k

1
|I|

∫
I

|fn(eiθ)− fnk
(eiθ)−mI(fn − fnk

)| dθ

2π

≤ lim inf
k

wmo(fn − fnk
)(t).

Therefore
wmo(fn − f)(t) ≤ lim inf

k
wmo(fn − fnk

)(t).

Hence ∫ 1

0

[
wmo(fn − f)(t)

dt

t

]p

≤
∫ 1

0

lim inf
k

[wmo(fn − fnk
)(t)]p

dt

t

≤ lim inf
k

∫ 1

0

[wmo(fn − fnk
)(t)]p

dt

t

Finally, using that fn is a Cauchy sequence we get limn→∞‖fn−f‖MOp = 0 and that
f ∈ MOp.

Proposition 2.5. Let 0 < p ≤ q < ∞ and s > 0.

(i) MOp(T) ⊆ MOq(T).

(ii) Lips(T) ⊂
⋂

p>0 MOp(T) ⊂ MO1(T) ⊂ C(T).

(iii)
⋃

p>0 MOp(T) ⊂ VMO.

Proof. (i) It is a consequence of the following fact:(∫ 1

0

[wmo(f)(t)]p
dt

t

)1/p

≈
( ∞∑

k=0

[wmo(f)(2−k)]p
)1/p

.

(ii) Note that f ∈ Lips if and only if wmo(f)(t) ≤ Cts. This gives the first
inclusion.

The fact that MO1(T) ⊂ C(T) follows by (5).
(iii) Observe that, for any p > 0 and t > 0, one has

wmo(f)p(t) log
1
t
≤

∫ 1

t

wmo(f)p(u)
du

u
≤ ‖f‖MOp .

Hence limt→0+ wmo(f)(t) = 0 for f ∈ ∪p>0 MOp(T).
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Let us point out some properties of BMO that are shared by these spaces.

Proposition 2.6. If f ∈ MOp(T) then |f | ∈ MOp(T).

Proof. Let t ∈ (0, 1) and I ⊂ T with |I| ≤ t. Then

1
|I|

∫
I

∣∣|f(eiθ)| −mI(|f |)
∣∣ dθ

2π
≤ 1
|I|

∫
I

∣∣|f(eiθ)| − |mI(f)|
∣∣ dθ

2π

+
∣∣mI(|f |)− |mI(f)|

∣∣
≤ 2
|I|

∫
I

∣∣|f(eiθ)| − |mI(f)|
∣∣ dθ

2π

≤ 2
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π

This shows that wmo(|f |)(t) ≤ 2 wmo(f)(t) and the proof is complete.

Recall that Tt denotes the translation operator, that is Ttf(eiθ) = f(ei(θ−t)). We
have the following result.

Theorem 2.7. Let 0 < p < ∞ and f ∈ MOp(T). Then

lim
s→0+

‖Tsf − f‖MOp = 0.

Proof. Due to (iii) in Proposition 2.5 f ∈ VMO. Now Theorem 1.1 gives that
lims→0+‖Tsf − f‖BMO = 0.

Note that wmo(Tsf − f)(t) ≤ ‖Tsf − f‖BMO for all 0 < t ≤ 1.
On the other hand

wmo(Tsf − f)(t) = sup
|I|≤t

1
|I|

∫
I

∣∣(Tsf − f)(eiθ)−mI(Tsf − f)
∣∣ dθ

2π

≤ sup
|I|≤t

1
|I|

∫
I

∣∣Tsf(eiθ)−mI(Tsf)
∣∣ dθ

2π

+ sup
|I|≤t

1
|I|

∫
I

∣∣f(eiθ)−mI(f)
∣∣ dθ

2π

= 2 wmo(f)(t)

The Lebesgue dominated convergence theorem gives lims→0+‖Tsf − f‖MOp = 0.

3. Integrable harmonic oscillation.

Throughout this section, given z ∈ ∆ \ {0}, we denote by Iz the open arc in T with
midpoint z

|z| and length |Iz| = 1 − |z|. Given an arc I ⊂ T and λ ≤ |I|−1 we shall
write λI for the arc with the same midpoint and length λ|I|.

Let us collect several known facts to be used later on.
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Lemma 3.1. There exist constants 0 < C, C1, C2, C3 < ∞ such that

(i) 1− |z| ≤ |eiθ − z| ≤ C (1− |z|), eiθ ∈ Iz, and z ∈ ∆.

(ii) C1
1
|Iz| ≤ Pz(eiθ) ≤ C2

1
|Iz| , eiθ ∈ Iz, and z ∈ ∆.

(iii) 1
4k|Iz| ≤ Pz(eiθ) ≤ C3

1
4k|Iz| , eiθ ∈ 2kIz \ 2k−1Iz, k ∈ {1, 2, . . . , N + 1}, where

N = [log2
1
|Iz| ] and z ∈ ∆.

Proof. All the statements follow from the estimates

1− |z| ≤ |eiθ − z| ≤
∣∣∣eiθ − z

|z|

∣∣∣ + (1− |z|)

and ∣∣∣eiθ − z

|z|

∣∣∣ ≤ |eiθ − z|+ (1− |z|).

For 0 < p < ∞ we define

‖f‖HOp = ‖f‖L1(T) +
(∫ 1

0

[who(f)(t)]p
dt

t

)1/p

to get a quasi-norm in the space HOp(T).

Proposition 3.2. If f ∈ L1(T) and 0 < t ≤ 1 then wmo(f)(t) ≤ cwho(f)(t).

Proof. Let I ⊆ T be an arc such that |I| ≤ t. Consider z ∈ ∆ for which I = Iz. From
|Iz| = 1− |z| ≤ t we have 1− t ≤ |z| < 1.

Using (ii) in Lemma 3.1 we have

1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π
≤ 1
|Iz|

∫
Iz

|f(eiθ)− P (f)(z)| dθ

2π

+ |mI(f)− P (f)(z)|

≤ 2
|Iz|

∫
Iz

|f(eiθ)− P (f)(z)| dθ

2π

≤ C

(∫ π

−π

|f(eiθ)− P (f)(z)|Pz(θ)
dθ

2π

)
≤ Cwho(f)(t)

Now taking the supremum over all arcs we get wmo(f)(t) ≤ C who(f)(t).

Theorem 3.3. Let 0 < p < ∞. Then HOp(T) = MOp(T) with equivalent quasi-
norms.
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Proof. HOp(T) ⊆ MOp(T) follows from Proposition 3.2.
Assume now that f ∈ MOp(T). Let us show that f ∈ HOp(T) and ‖f‖HOp ≤

C‖f‖MOp .
Let t ∈ (0, 1]. For any z ∈ ∆ with |z| = 1 − t we consider the arc I = Iz, which

gives |Iz| = 1 − |z| = t. Take N and Ik (k = 0, 1, . . . , N) so that Ik = 2kIz where
I0 = I, IN−1 ( T, and IN = T.

Using (iii) in Lemma 3.1 we have∫
T
|f(eiθ)− P (f)(z)|Pz(eiθ)

dθ

2π

≤2
∫

T
|f(eiθ)−mI(f)|Pz(eiθ)

dθ

2π

≤ C(
∫

I

|f(eiθ)−mI(f)|Pz(eiθ)
dθ

2π

+
N∑

k=1

∫
Ik\Ik−1

|f(eiθ)−mI(f)|Pz(eiθ)
dθ

2π
)

≤ C

(
1
|I|

∫
I

|f(eiθ)−mI(f)| dθ

2π

+
N∑

k=1

1
4k|I|

∫
Ik\Ik−1

|f(eiθ)−mI(f)| dθ

2π

)

≤ C

(
wmo(f)(t) +

N∑
k=1

1
2k|Ik|

∫
Ik

|f(eiθ)−mI(f)| dθ

2π

)
.

On the other hand, by (4),

1
|Ik|

∫
Ik

|f(eiθ)−mI(f)| dθ

2π

≤ 1
|Ik|

∫
Ik

∣∣∣∣f(eiθ)−mIk
(f) +

( k∑
j=1

mIj
(f)−mIj−1(f)

)∣∣∣∣ dθ

2π

≤ 1
|Ik|

∫
Ik

|f(eiθ)−mIk
(f)| dθ

2π
+

k∑
j=1

|mIj
(f)−mIj−1(f)|

≤ 1
|Ik|

∫
Ik

|f(eiθ)−mIk
(f)| dθ

2π
+

k∑
j=1

|Ij |
|Ij−1|

wmo(f)(|Ij |)

≤ wmo(f)(|Ik|) +
k∑

j=1

2wmo(f)(|Ij |)

≤ (1 + 2k)wmo(f)(|Ik|).
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Combining both estimates one gets

∫
T
|f(eiθ)− P (f)(z)|Pz(eiθ)

dθ

2π
≤ C

(
wmo(f)(t) +

N∑
k=1

1 + 2k

2k
wmo(f)(|Ik|)

)
.

Taking the supremum over {z : |z| = 1− t} and using |Ik| = 2kt we obtain

sup
|z|=1−t

∫
T
|f(eiθ)− P (f)(z)|Pz(eiθ)

dθ

2π
≤ C

(
wmo(f)(t) +

Nt∑
k=1

1 + 2k

2k
wmo(f)(2kt)

)

where N = Nt = [log2
1
t ] + 1. This implies that

who(f)(t) ≤ C

(
wmo(f)(t) +

Nt∑
k=1

1 + 2k

2k
wmo(f)(2kt)

)
.

For 0 < p < 1 we have

[who(f)(t)]p ≤ Cp

(
[wmo(t)(t)]p +

Nt∑
k=1

(1 + 2k)p

2pk
[wmo(f)(2kt)]p

)
.

For p ≥ 1 we apply Hölder’s inequality to obtain

[who(f)(t)]p ≤ Cp

(
[wmo(t)(t)]p +

Nt∑
k=1

(1 + 2k)p

2k
[wmo(f)(2kt)]p

)
.

Now integrating, and taking into account that 1 ≤ k ≤ Nt = [log2
1
t ] + 1 is

equivalent to 0 < t ≤ 2−k, we get

∫ 1

0

[who(f)(t)]p
dt

t
≤ Cp

∫ 1

0

[wmo(t)(t)]p
dt

t
+ Cp

∫ 1

0

Nt+1∑
k=1

(1 + 2k)p

2k min{p,1} [wmo(f)(2kt)]p
dt

t

≤ Cp‖f‖p
MOp + Cp

∞∑
k=1

(1 + 2k)p

2k min{p,1}

∫ 2−k

0

[wmo(f)(2kt)]p
dt

t

≤ Cp‖f‖p
MOp + Cp

∞∑
k=1

(1 + 2k)p

2k min{p,1}

∫ 1

0

[wmo(f)(t)]p
dt

t

≤ C‖f‖p
MOp .

Putting together all the estimates we have the result.

Revista Matemática Complutense
2005, 18; Núm. 2, 465–477

476
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