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One-Bit Compressive Sensing of Dictionary-Sparse Signals

R. Baraniuk, S. Foucart, D. Needell, Y. Plan, and M. Wootters

Abstract

One-bit compressive sensing has extended the scope of sparse recovery by showing that

sparse signals can be accurately reconstructed even when their linear measurements are subject

to the extreme quantization scenario of binary samples—only the sign of each linear measure-

ment is maintained. Existing results in one-bit compressive sensing rely on the assumption that

the signals of interest are sparse in some fixed orthonormal basis. However, in most practi-

cal applications, signals are sparse with respect to an overcomplete dictionary, rather than a

basis. There has already been a surge of activity to obtain recovery guarantees under such a

generalized sparsity model in the classical compressive sensing setting. Here, we extend the

one-bit framework to this important model, providing a unified theory of one-bit compressive

sensing under dictionary sparsity. Specifically, we analyze several different algorithms—based

on convex programming and on hard thresholding—and show that, under natural assumptions

on the sensing matrix (satisfied by Gaussian matrices), these algorithms can efficiently recover

analysis-dictionary-sparse signals in the one-bit model.

Key words and phrases: compressive sensing, quantization, one-bit compressive sensing, tight

frames, convex optimization, thresholding.

1 Introduction

The basic insight of compressive sensing is that a small number of linear measurements can be

used to reconstruct sparse signals. In traditional compressive sensing, we wish to reconstruct an

s-sparse1 signal x ∈ R
N from linear measurements of the form

(1) y = Ax ∈ R
m (or its corrupted version y = Ax+ e),

where A is a m × N measurement matrix. A significant body of work over the past decade

has demonstrated that the s-sparse (or nearly s-sparse) signal x can be accurately and efficiently

recovered from its measurement vector y = Ax when A has independent Gaussian entries, say,

and when m ≍ s log(N/s) [DSP, EK12, FR13].

1A signal x ∈ R
N is called s-sparse if ‖x‖0 := |supp(x)| ≤ s ≪ N .
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This basic model has been extended in several directions. Two important ones—which we focus on

in this work—are (a) extending the set of signals to include the larger and important class of dic-

tionary sparse signals and (b) considering highly quantized measurements as in one-bit compressive

sensing.

Both of these settings have important practical applications and have received much attention in

the past few years. However, to the best of our knowledge, they have not been considered together

before. In this work, we extend the theory of one-bit compressive sensing to dictionary sparse

signals. Below, we briefly review the background on these notions, set up notation, and outline our

contributions.

1.1 One-bit measurements

In practice, each entry yi = 〈ai,x〉 (where ai denotes the ith row of A) of the measurement vector in

(1) needs to be quantized. That is, rather than observing y = Ax, one observes y = Q(Ax) instead,

where Q : Rm → A denotes the quantizer that maps each entry of its input to a corresponding

quantized value in an alphabet A. The so-called one-bit compressive sensing [BB08] problem

refers to the case when |A| = 2 and one wishes to recover x from its heavily quantized (one

bit) measurements y = Q(Ax). The simplest quantizer in the one-bit case uses the alphabet

A = {−1, 1} and acts by taking the sign of each component as

(2) yi = Q(〈ai,x〉) = sgn(〈ai,x〉),

which we denote in shorthand by y = sgn(Ax). Since the publication of [BB08] in 2008, several

efficient methods, both iterative and optimization-based, have been developed to recover the signal x

(up to normalization) from its one-bit measurements (see e.g. [PV13a, PV13b, GNJN13, JLBB13,

YYO12, JDDV13]). In particular, it is shown [JLBB13] that the direction of any s-sparse signal x

can be estimated by some x̂ produced from y with accuracy

∥∥∥∥
x

‖x‖2
− x̂

‖x̂‖2

∥∥∥∥
2

≤ ε

when the number of measurements is at least

m = Ω

(
s ln(N/s)

ε

)
.

Notice that with measurements of this form, we can only hope to recover the direction of the

signal, not the magnitude. However, we can recover the entire signal if we allow for thresholded

measurements of the form

(3) yi = sgn(〈ai,x〉 − τi).
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In practice, it is often feasible to obtain quantized measurements of this form, and they have been

studied before. Existing works using measurements of the form (3) have also allowed for adaptive

thresholds; that is, the τi can be chosen adaptively based on yj for j < i. The goal of those works

was to improve the convergence rate, i.e., the dependence on ε in the number of measurements m.

It is known that a dependence of Ω(1/ε) is necessary with nonadaptive measurements, but recent

work on Sigma-Delta quantization [SWY15] and other schemes [BFN+14, KSW14] have shown how

to break this barrier using measurements of the form (3) with adaptive thresholds.

In this article, we do not focus on the decay rate (the dependence on ε), nor do we consider adaptive

measurements. However, we do consider nonadaptive measurements both of the form (2) and (3).

This allows us to provide results on reconstruction of the magnitude of signals, as well as the

direction.

1.2 Dictionary Sparsity

Although the classical setting assumes that the signal x itself is sparse, most signals of interest

are not immediately sparse. In the straightforward case, a signal may be instead sparse after some

transform; for example, images are known to be sparse in the wavelet domain, sinusoidal signals

in the Fourier domain, and so on [Dau92]. Fortunately, the classical framework extends directly to

this model, since the product of a Gaussian matrix and an orthonormal basis is still Gaussian.

However, in many practical applications the situation is not so straightforward, and the signals of

interest are sparse not in an orthonormal basis but rather in a redundant (highly overcomplete)

dictionary; this is known as dictionary sparsity. Signals in radar and sonar systems, for example,

are sparsely represented in Gabor frames, which are highly overcomplete and far from orthonormal

[FS98]. Images may be sparsely represented in curvelet frames [CDDY00, CD04], undecimated

wavelet frames [SED04], and other frames which by design are highly redundant. Such redundancy

allows for sparser representations and a wider class of signal representations. Even in the Fourier

domain, utilizing an oversampled DFT allows for much more realistic and practical signals to be

represented. For these reasons, recent research has extended the compressive sensing framework

to the setting where the signals of interest are sparsified by overcomplete tight frames (see e.g.

[RSV08, CENR10, GNE+14, Fou16]).

Throughout this article, we consider a dictionary D ∈ R
n×N which is assumed to be a tight frame,

in the sense that

DD∗ = In.

To distinguish between the signal and its sparse representation, we write f ∈ R
n for the signal of

interest and f = Dx, where x ∈ R
N is a sparse coefficient vector. We then acquire the samples of

the form y = Af = ADx and attempt to recover the signal f . Note that, due to the redundancy

3
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of D, we do not hope to be able to recover a unique coefficient vector x. In other words, even when

the measurement matrix A is well suited for sparse recovery, the product AD may have highly

correlated columns, making recovery of x impossible. With the introduction of a noninvertible

sparsifying transform D, it becomes important to distinguish between two related but distinct

notions of sparsity. Precisely, we say that

• f is s-synthesis-sparse if f = Dx for some s-sparse x ∈ R
N ;

• f is s-analysis-sparse if D∗f ∈ R
N is s-sparse.

We note that analysis sparsity is a stronger assumption because, assuming analysis sparsity, one

can always take x = D∗f in the synthesis sparsity model. See [EMR07] for an introduction to the

analysis sparse model in compressive sensing (also called the analysis cosparse model).

Instead of exact sparsity, it is often more realistic to study effective sparsity. We call a coefficient

vector x ∈ R
N effectively s-sparse if

‖x‖1 ≤ √
s‖x‖2,

and we say that

• f is effectively s-synthesis-sparse if f = Dx for some effectively s-sparse x ∈ R
N ;

• f is effectively s-analysis-sparse if D∗f ∈ R
N is effectively s-sparse.

We use the notation

ΣN
s for the set of s-sparse coefficient vectors in R

N ,

ΣN,eff
s for the set of effectively s-sparse coefficient vectors in R

N .

We also use the notation Bn
2 for the set of signals with ℓ2-norm at most 1 (i.e., the unit ball in ℓn2 )

and Sn−1 for the set of signals with ℓ2-norm equal to 1 (i.e., the unit sphere in ℓn2 ).

It is now well known that, if D is a tight frame and A satisfies analogous conditions to those in

the classical setting (e.g., has independent Gaussian entries), then a signal f which is (effectively)

analysis- or synthesis-sparse can be accurately recovered from traditional compressive sensing mea-

surements y = Af = ADx (see e.g. [RSV08, Blu11, CENR10, DNW12, GNE+14, NDEG13, PE13,

Fou16]).

1.3 One-bit measurements with dictionaries: our setup

In this article, we study one-bit compressive sensing for dictionary-sparse signals. Precisely, our

aim is to recover signals f ∈ R
n from the binary measurements

yi = sgn〈ai, f〉, i = 1, . . . ,m,
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or

yi = sgn (〈ai, f〉 − τi) , i = 1, . . . ,m,

when these signals are sparse with respect to a dictionary D.

As in Section 1.2, there are several ways to model signals which are sparse with respect to D. In

this work, two different signal classes are considered. For the first one, which is more general, our

results are based on convex programming. For the second one, which is a more restrictive, we can

obtain results using a computationally simpler algorithm based on hard thresholding.

The first class consists of signals f ∈ (D∗)−1ΣN,eff
s that are effectively s-analysis-sparse, i.e., they

satisfty

(4) ‖D∗f‖1 ≤
√
s‖D∗f‖2.

This occurs, of course, when D∗f is genuinely sparse (analysis sparsity) and this is realistic if we

are working e.g. with piecewise-constant images, since they are sparse after application of the

total variation operator. We consider effectively sparse signals since genuine analysis sparsity is

unrealistic when D has columns in general position, as it would imply that f is orthogonal to too

many columns of D.

The second class consists of signals f ∈ D(ΣN
s )∩ (D∗)−1ΣN,eff

κs that are both s-synthesis-sparse and

κs-analysis-sparse for some κ ≥ 1. This will occur as soon as the signals are s-synthesis-sparse,

provided we utilize suitable dictionaries D ∈ R
n×N . One could take, for instance, the matrix of an

equiangular tight frame when N = n + k, k = constant. Other examples of suitable dictionaries

found in [KNW15] include harmonic frames again with N = n+ k, k = constant, as well as Fourier

and Haar frames with constant redundancy factor N/n.

Figure 1 summarizes the relationship between the various domains we deal with.

coefficient space R
N

(N > n)

D

D∗

{
x (analysis)

D∗f (synthesis)

signal space R
n

f =

{
Dx

D(D∗f)

(n ≫ m)

A

measurement space R
m

Af + e

quantize

y = sgn(Af + e)

Figure 1: The coefficient, signal, and measurement domains.
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1.4 Contributions

Our main results demonstrate that one-bit compressive sensing is viable even when the sparsifying

transform is an overcomplete dictionary. As outlined in Section 1.1, we consider both the challenge

of recovering the direction f/‖f‖2 of a signal f , as well as the challenge of recovering the entire

signal (direction and magnitude). Using measurements of the form yi = sgn〈ai, f〉, we can recover

the direction but not the magnitude; using measurements of the form yi = sgn (〈ai, f〉 − τi), we

may recover both.

In (one-bit) compressive sensing, two standard families of algorithms are (a) algorithms based

on convex programming, and (b) algorithms based on thresholding. In this article, we analyze

algorithms from both classes. One reason to study multiple algorithms is to give a more complete

landscape of this problem. Another reason is that the different algorithms come with different

trade-offs (between computational complexity and the strength of assumptions required), and it is

valuable to explore this space of trade-offs.

Recovering the direction. First, we show that the direction of a dictionary sparse signal can

be estimated from one-bit measurements of the type sgn(Af). We consider two algorithms; our

first approach is based on linear programming, and our second is based on hard thresholding. The

linear programming approach is more computationally demanding, but applies to a broader class

of signals.

In Section 3, we prove that both of these approaches are effective, provided the sensing matrix

A satisfies certain properties. In Section 2, we state that these properties are in fact satisfied

by a matrix A populated with independent Gaussian entries. We combine all of these results to

prove the statement below. As noted above, the different algorithms require different definitions of

“dictionary sparsity”. In what follows, γ,C, c refer to absolute numerical constants.

Theorem 1 (Informal statement of direction recovery). Let ε > 0, let m ≥ Cε−7s ln(eN/s), and

let A ∈ R
m×n be populated by independent standard normal random variables. Then, with failure

probability at most γ exp(−cε2m), any dictionary sparse2 signal f ∈ R
n observed via y = sgn(Af)

can be approximated by the output f̂ of an efficient algorithm with error

∥∥∥∥∥
f

‖f‖2
− f̂

‖f̂‖2

∥∥∥∥∥
2

≤ ε.

2Here, “dictionary sparsity” means effective s-analysis-sparsity if f̂ is produced by convex programming and

genuine s-synthesis sparsity together with effective κs-analysis-sparsity if f̂ is produced by hard thresholding.
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Recovering the whole signal. By using one-bit measurements of the form sgn(Af − τ ), where

τ1, . . . , τm are properly normalized Gaussian random thresholds, we are able to recover not just the

direction but also the magnitude of a dictionary-sparse signal f .

We consider three algorithms; our first approach is based on linear programming, our second

approach on second-order cone programming, and our third approach on hard thresholding. Again,

there are different trade-offs to the different algorithms. As above, the approach based on hard

thresholding is more efficient, while the approaches based on convex programming apply to a

broader signal class. There is also a trade-off between linear programming and second-order cone

programming: the second-order cone program requires knowledge of ‖f‖2 while the linear program

does not (although it does require a loose bound), but the second-order cone programming approach

applies to a slightly larger class of signals.

We show in Section 4 that all three of these algorithms are effective when the sensing matrix A

is populated with independent Gaussian entries and when the thresholds τi are also independent

Gaussian random variables. We combine the results of Section 4 in the following theorem.

Theorem 2 (Informal statement of signal estimation). Let ε, r, σ > 0, let m ≥ Cε−9s ln(eN/s),

and let A ∈ R
m×n and τ ∈ R

m be populated by independent mean-zero normal random variables

with variance 1 and σ2, respectively. Then, with failure probability at most γ exp(−cε2m), any

dictionary sparse3 signal f ∈ R
n with ‖f‖2 ≤ r observed via y = sgn(Af − τ ) is approximated by

the output f̂ of an efficient algorithm with error

∥∥∥f − f̂

∥∥∥
2
≤ εr.

We have not spelled out the dependence of the number of measurements and the failure probability

on the parameters r and σ: as long as they are roughly the same order of magnitude, the dependence

is absorbed in the constants C and c (see Section 4 for precise statements). As outlined earlier, an

estimate of r is required to implement the second-order cone program, but the other two algorithms

do not require such an estimate.

1.5 Discussion and future directions

The purpose of this work is to demonstrate that techniques from one-bit compressive sensing can

be effective for the recovery of dictionary-sparse signals and we propose several algorithms to

accomplish this for various notions of dictionary sparsity. Still, some interesting future directions

remain.

3See footnote 2.
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Firstly, we do not believe that the dependence on ε above is optimal. We do believe instead that a

logarithmic dependence on ε for the number of measurements (or equivalently an exponential decay

in the oversampling factor λ = m/(s ln(eN/s)) for the recovery error ) is possible by choosing the

thresholds τ1, . . . , τm adaptively. This would be achieved by adjusting the method of [BFN+14],

but with the strong proviso of exact sparsity.

Secondly, it is worth asking to what extent the trade-offs between the different algorithms reflect

reality. In particular, is it only an artifact of the proof that the simpler algorithm based on hard

thresholding applies to a narrower class of signals?

1.6 Organization

The remainder of the paper is organized as follows. In Section 2, we outline some technical tools

upon which our results rely, namely some properties of Gaussian random matrices . In Section 3,

we consider recovery of the direction f/‖f‖ only and we propose two algorithms to achieve it. In

Section 4, we present three algorithms for the recovery of the entire signal f . Finally, in Section 5,

we provide proofs for the results outlined in Section 2.

2 Technical ingredients

In this section, we highlight the theoretical properties upon which our results rely. Their proofs are

deferred to Section 5 so that the reader does not lose track of our objectives. The first property

we put forward is an adaptation to the dictionary case of the so-called sign product embedding

property (the term was coined in [JDDV13] but the result originally appeared in [PV13b]).

Theorem 3 (D-SPEP). Let δ > 0, let m ≥ Cδ−7s ln(eN/s), and let A ∈ R
m×n be populated by in-

dependent standard normal random variables. Then, with failure probability at most γ exp(−cδ2m),

the renormalized matrixA′ := (
√

2/π/m)A satisfies the sth order sign product embedding property

adapted to D ∈ R
n×N with constant δ — D-SPEP(s, δ) for short — i.e.,

(5)
∣∣〈A′f , sgn(A′g)〉 − 〈f ,g〉

∣∣ ≤ δ

holds for all f ,g ∈ D(ΣN
s ) ∩ Sn−1.

Remark 1. The power δ−7 is unlikely to be optimal. At least in the nondictionary case, i.e., when

D = In, it can be reduced to δ−2, see [BL15].

As an immediate consequence of D-SPEP, setting g = f in (5) allows one to deduce a variation of

the classical restricted isometry property adapted to D, where the inner norm becomes the ℓ1-norm

(we mention in passing that this variation could also be deduced by other means).
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Corollary 4 (D-RIP1). Let δ > 0, let m ≥ Cδ−7s ln(eN/s), and let A ∈ R
m×n be populated by in-

dependent standard normal random variables. Then, with failure probability at most γ exp(−cδ2m),

the renormalized matrix A′ := (
√

2/π/m)A satisfies the sth-order ℓ1-restricted isometry property

adapted to D ∈ R
n×N with constant δ — D-RIP1(s, δ) for short — i.e.,

(6) (1− δ)‖f‖2 ≤ ‖A′f‖1 ≤ (1 + δ)‖f‖2

holds for all f ∈ D(ΣN
s ).

The next property we put forward is an adaptation of the tessellation of the “effectively sparse

sphere” (see [PV14]) to the dictionary case. In what follows, given a (noninvertible) matrix M and

a set K, we denote by M−1(K) the preimage of K with respect to M.

Theorem 5 (Tessellation). Let ε > 0, let m ≥ Cε−6s ln(eN/s), and let A ∈ R
m×n be popu-

lated by independent standard normal random variables. Then, with failure probability at most

γ exp(−cε2m), the rows a1, . . . ,am ∈ R
n of A ε-tessellate the effectively s-analysis-sparse sphere

— we write that A satisfies D-TES(s, ε) for short — i.e.,

(7) [f ,g ∈ (D∗)−1(ΣN,eff
s ) ∩ Sn−1 : sgn〈ai, f〉 = sgn〈ai,g〉 for all i = 1, . . . ,m] =⇒ [‖f − g‖2 ≤ ε].

3 Signal estimation: direction only

In this whole section, given a measurement matrix A ∈ R
m×n with rows a1, . . . ,am ∈ R

n, the

signals f ∈ R
n are acquired via y = sgn(Af) ∈ {−1,+1}m, i.e.,

yi = sgn〈ai, f〉, i = 1, . . . ,m.

Under this model, all cf with c > 0 produce the same one-bit measurements, so one can only hope

to recover the direction of f . We present two methods to do so, one based on linear programming

and the other one based on hard thresholding.

3.1 Linear programming

Given a signal f ∈ R
n observed via y = sgn(Af), the optimization scheme we consider here consists

in outputting the signal flp solution of

(8) minimize
h∈Rn

‖D∗h‖1 subject to sgn(Ah) = y, ‖Ah‖1 = 1.

This is in fact a linear program (and thus may be solved efficiently), since the condition sgn(Ah) = y

reads

yi(Ah)i ≥ 0 for all i = 1, . . . ,m,

9
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and, under this constraint, the condition ‖Ah‖1 = 1 reads

m∑

i=1

yi(Ah)i = 1.

Theorem 6. If A ∈ R
m×n satisfies both D-TES(36s, ε) and D-RIP1(25s, 1/5), then any effectively

s-analysis-sparse signal f ∈ (D∗)−1ΣN,eff
s observed via y = sgn(Af) is directionally approximated

by the output flp of the linear program (8) with error

∥∥∥∥
f

‖f‖2
− flp

‖flp‖2

∥∥∥∥
2

≤ ε.

Proof. The main step is to show that flp is effectively 36s-analysis-sparse when D-RIP1(t, δ) holds

with t = 25s and δ = 1/5. Then, since both f/‖f‖2 and flp/‖flp‖2 belong to (D∗)−1ΣN,eff
36s ∩ Sn−1

and have the same sign observations, D-TES(36s, ε) implies the desired conclusion. To prove the

effective analysis-sparsity of flp, we first estimate ‖Af‖1 from below. For this purpose, let T0 denote

an index set of t largest absolute entries of D∗f , T1 an index set of next t largest absolute entries

of D∗f , T2 an index set of next t largest absolute entries of D∗f , etc.. We have

‖Af‖1 = ‖ADD∗f‖1 =

∥∥∥∥∥∥
AD


∑

k≥0

(D∗f)Tk



∥∥∥∥∥∥
1

≥ ‖AD ((D∗f)T0
) ‖1 −

∑

k≥1

‖AD ((D∗f)Tk
) ‖1

≥ (1− δ)‖D ((D∗f)T0
) ‖2 −

∑

k≥1

(1 + δ)‖D ((D∗f)Tk
) ‖2,

where the last step used D-RIP1(t, δ). We notice that, for k ≥ 1,

‖D ((D∗f)Tk
) ‖2 ≤ ‖(D∗f)Tk

‖2 ≤
1√
t
‖(D∗f)Tk−1

‖1,

from where it follows that

(9) ‖Af‖1 ≥ (1− δ)‖D ((D∗f)T0
) ‖2 −

1 + δ√
t
‖D∗f‖1.

In addition, we observe that

‖D∗f‖2 = ‖f‖2 = ‖DD∗f‖2 =

∥∥∥∥∥∥
D



∑

k≥0

(D∗f)Tk



∥∥∥∥∥∥
2

≤ ‖D ((D∗f)T0
)‖2 +

∑

k≥1

‖D ((D∗f)Tk
)‖2

≤ ‖D ((D∗f)T0
)‖2 +

1√
t
‖D∗f‖1.

In view of the effective sparsity of D∗f , we obtain

‖D∗f‖1 ≤
√
s‖D∗f‖2 ≤

√
s ‖D ((D∗f)T0

)‖2 +
√

s/t‖D∗f‖1,

10
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hence

(10) ‖D ((D∗f)T0
)‖2 ≥

1−
√

s/t√
s

‖D∗f‖1.

Substituting (10) in (9) yields

(11) ‖Af‖1 ≥
(
(1− δ)(1 −

√
s/t)− (1 + δ)(

√
s/t)

) 1√
s
‖D∗f‖1 =

2/5√
s
‖D∗f‖1,

where we have used the values t = 25s and δ = 1/5. This lower estimate for ‖Af‖1, combined with

the minimality property of flp, allows us to derive that

(12) ‖D∗flp‖1 ≤ ‖D∗(f/‖Af‖1)‖1 =
‖D∗f‖1
‖Af‖1

≤ (5/2)
√
s.

Next, with T̂0 denoting an index set of t largest absolute entries of D∗flp, T̂1 an index set of next

t largest absolute entries of D∗flp, T̂2 an index set of next t largest absolute entries of D∗flp, etc.,

we can write

1 = ‖Aflp‖1 = ‖ADD∗flp‖1 =

∥∥∥∥∥∥
AD



∑

k≥0

(D∗flp)T̂k



∥∥∥∥∥∥
1

≤
∑

k≥0

∥∥∥AD
(
(D∗flp)T̂k

)∥∥∥
1

≤
∑

k≥0

(1 + δ)
∥∥∥D

(
(D∗flp)T̂k

)∥∥∥
2
= (1 + δ)



∥∥∥ (D∗flp)T̂0

∥∥∥
2
+
∑

k≥1

∥∥∥ (D∗flp)T̂k

∥∥∥
2




≤ (1 + δ)

[
‖D∗flp‖2 +

1√
t
‖D∗flp‖1

]
≤ (1 + δ)

[
‖D∗flp‖2 + (5/2)

√
s/t
]
.

This chain of inequalities shows that

(13) ‖D∗flp‖2 ≥
1− (5/2)

√
s/t

1 + δ
=

5

12
.

Combining (12) and (13), we obtain

‖D∗flp‖1 ≤ 6
√
s‖D∗flp‖2.

In other words, D∗flp is effectively 36s-sparse, which is what was needed to conclude the proof.

Remark 2. We point out that if f was genuinely, instead of effectively, s-analysis-sparse, then a

lower bound of the type (11) would be immediate from the D-RIP1. We also point out that our

method of proving that the linear program outputs an effectively analysis-sparse signal is new even

in the case D = In. In fact, it makes it possible to remove a logarithmic factor from the number

of measurements in this “nondictionary” case, too (compare with [PV13a]). Furthermore, it allows

for an analysis of the linear program (8) only based on deterministic conditions that the matrix A

may satisfy.

11
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3.2 Hard thresholding

Given a signal f ∈ R
n observed via y = sgn(Af), the hard thresholding scheme we consider here

consists in constructing a signal fht ∈ R
n as

(14) fht = Dz, where z := Ht(D
∗A∗y).

Our recovery result holds for s-synthesis sparse signals that are also effectively κs-analysis-sparse for

some κ ≥ 1 (we discussed in the introduction some choices of dictionaries D making this happen).

Theorem 7. If A ∈ R
m×n satisfies D-SPEP(s+t, ε/8), t = ⌈16ε−2κs⌉, then any s-synthesis-sparse

signal f ∈ D(ΣN
s ) with D∗f ∈ ΣN,eff

κs observed via y = sgn(Af) is directionally approximated by

the output fht of the hard thresholding (14) with error

∥∥∥∥
f

‖f‖2
− fht

‖fht‖2

∥∥∥∥
2

≤ ε.

Proof. We assume without loss of generality that ‖f‖2 = 1. Let T = T0 denote an index set of

t largest absolute entries of D∗f , T1 an index set of next t largest absolute entries of D∗f , T2 an

index set of next t largest absolute entries of D∗f , etc.. We start by noticing that z is a better

t-sparse approximation to D∗A∗y = D∗A∗sgn(Af) than [D∗f ]T , so we can write

‖D∗A∗sgn(Af)− z‖22 ≤ ‖D∗A∗sgn(Af)− [D∗f ]T ‖22,

i.e.,

‖(D∗f − z)− (D∗f −D∗A∗sgn(Af))‖22 ≤ ‖(D∗f −D∗A∗sgn(Af))− [D∗f ]T ‖22.

Expanding the squares and rearranging gives

‖D∗f − z‖22 ≤ 2〈D∗f − z,D∗f −D∗A∗sgn(Af)〉(15)

− 2〈[D∗f ]T ,D
∗f −D∗A∗sgn(Af)〉(16)

+ ‖[D∗f ]T ‖22.(17)

To bound (17), we invoke [FR13, Theorem 2.5] and the effective analysis-sparsity of f to derive

‖[D∗f ]T ‖22 ≤
1

4t
‖D∗f‖21 ≤

κs

4t
‖D∗f‖22 =

κs

4t
‖f‖22 =

κs

4t
.

To bound (15) in absolute value, we notice that it can be written as

2|〈DD∗f −Dz,f −A∗sgn(Af)〉| = 2|〈f − fht, f −A∗sgn(Af)〉|
= 2|〈f − fht, f〉 − 〈A(f − fht), sgn(Af)〉| ≤ 2ε′‖f − fht‖2,

12
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where the last step followed from D-SPEP(s + t, ε′), ε′ := ε/8. Finally, (16) can be bounded in

absolute value by

2
∑

k≥1

|〈[D∗f ]Tk
,D∗(f −A∗sgn(Af))〉| = 2

∑

k≥1

|〈D([D∗f ]Tk
), f −A∗sgn(Af)〉|

= 2
∑

k≥1

|〈D([D∗f ]Tk
), f〉 − 〈A(D([D∗f ]Tk

)), sgn(Af)〉| ≤ 2
∑

k≥1

ε′‖D([D∗f ]Tk
)‖2

≤ 2ε′
∑

k≥1

‖[D∗f ]Tk
‖2 ≤ 2ε′

∑

k≥1

‖[D∗f ]Tk−1
‖1√

t
≤ 2ε′

‖D∗f‖1√
t

≤ 2ε′
√
κs‖D∗f‖2√

t
= 2ε′

√
κs

t
.

Putting everything together, we obtain

‖D∗f − z‖22 ≤ 2ε′‖f − fht‖2 + 2ε′
√

κs

t
+

κs

4t
.

In view of ‖f − fht‖2 = ‖D(D∗f − z)‖2 ≤ ‖D∗f − z‖2, it follows that

‖f−fht‖22 ≤ 2ε′‖f−fht‖2+2ε′
√

κs

t
+
κs

4t
, i.e., (‖f−fht‖2−ε′)2 ≤ ε′

2
+2ε′

√
κs

t
+
κs

4t
≤
(
ε′+

√
κs

t

)2

.

This implies that

‖f − fht‖2 ≤ 2ε′ +

√
κs

t
.

Finally, since fht/‖fht‖2 is the best ℓ2-normalized approximation to fht, we conclude that

∥∥∥∥f −
fht

‖fht‖2

∥∥∥∥
2

≤ ‖f − fht‖2 +
∥∥∥∥fht −

fht

‖fht‖2

∥∥∥∥
2

≤ 2‖f − fht‖2 ≤ 4ε′ + 2

√
κs

t
.

The announced result follows from our choices of t and ε′.

4 Signal estimation: direction and magnitude

Since information of the type yi = sgn〈ai, f〉 can at best allow one to estimate the direction of a

signal f ∈ R
n, we consider in this section information of the type

yi = sgn(〈ai, f〉 − τi), i = 1, . . . ,m,

for some thresholds τ1, . . . , τm introduced before quantization. In the rest of this section, we give

three methods for recovering f in its entirety. The first one is based on linear programming, the

second one on second-order code programming, and the last one on hard thresholding.

We are going to show that using these algorithms, one can estimate both the direction and the

magnitude of dictionary-sparse signal f ∈ R
n given a prior magnitude bound such as ‖f‖2 ≤ r.

13
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We simply rely on the previous results by “lifting” the situation from R
n to R

n+1, in view of the

observation that y = sgn(Af − τ ) can be interpreted as

y = sgn(Ãf̃), where Ã :=




−τ1/c

A
...

−τm/c


 ∈ R

m×(n+1), f̃ :=

[
f

c

]
∈ R

n+1.

The following lemma will be equally useful when dealing with linear programming, second-order

cone programming, or with hard thresholding schemes.

Lemma 8. For f̃ , g̃ ∈ R
n+1 written as

f̃ :=

[
f[n]

fn+1

]
and g̃ =:

[
g[n]

gn+1

]

with f̃[n], g̃[n] ∈ R
n and with fn+1 6= 0, gn+1 6= 0, one has

∥∥∥∥
f[n]

fn+1
−

g[n]

gn+1

∥∥∥∥
2

≤ ‖f̃‖2‖g̃‖2
|fn+1||gn+1|

∥∥∥∥∥
f̃

‖f̃‖2
− g̃

‖g̃‖2

∥∥∥∥∥
2

.

Proof. By using the triangle inequality in R
n and Cauchy–Schwarz inequality in R

2, we can write
∥∥∥∥

f[n]

fn+1
−

g[n]

gn+1

∥∥∥∥
2

= ‖f̃‖2
∥∥∥∥∥
1/fn+1

‖f̃‖2
f[n] −

1/gn+1

‖f̃‖2
g[n]

∥∥∥∥∥
2

≤ ‖f̃‖2
(

1

fn+1

∥∥∥∥∥
f[n]

‖f̃‖2
−

g[n]

‖g̃‖2

∥∥∥∥∥
2

+

∣∣∣∣∣
1/gn+1

‖f̃‖2
− 1/fn+1

‖g̃‖2

∣∣∣∣∣ ‖g[n]‖2
)

= ‖f̃‖2
(

1

fn+1

∥∥∥∥∥
f[n]

‖f̃‖2
−

g[n]

‖g̃‖2

∥∥∥∥∥
2

+
‖g[n]‖2

|fn+1||gn+1|

∣∣∣∣∣
fn+1

‖f̃‖2
− gn+1

‖g̃‖2

∣∣∣∣∣

)

≤ ‖f̃‖2
[

1

|fn+1|2
+

‖g[n]‖22
|fn+1|2|gn+1|2

]1/2 

∥∥∥∥∥
f[n]

‖f̃‖2
−

g[n]

‖g̃‖2

∥∥∥∥∥

2

2

+

∣∣∣∣∣
fn+1

‖f̃‖2
− gn+1

‖g̃‖2

∣∣∣∣∣

2


1/2

= ‖f̃‖2
[ ‖g̃‖22
|fn+1|2|gn+1|2

]1/2 ∥∥∥∥∥
f̃

‖f̃‖2
− g̃

‖g̃‖2

∥∥∥∥∥
2

,

which is the announced result.

4.1 Linear programming

Given a signal f ∈ R
n observed via y = sgn(Af − τ ) with τ1, . . . , τm ∼ N (0, σ2), the optimization

scheme we consider here consists in outputting the signal

(18) fLP =
σ

û
ĥ ∈ R

n,

14
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where ĥ ∈ R
n and û ∈ R are solutions of

(19) minimize
h∈Rn,u∈R

‖D∗h‖1 + |u| subject to sgn(Ah− uτ/σ) = y, ‖Ah− uτ/σ‖1 = 1.

Theorem 9. Let ε, r, σ > 0, let m ≥ C(r/σ+σ/r)6ε−6s ln(eN/s), and let A ∈ R
m×n be populated

by independent standard normal random variables. Furthermore, let τ1, . . . , τm be independent

normal random variables with mean zero and variance σ2 that are also independent from the

entries of A. Then, with failure probability at most γ exp(−cmε2r2σ2/(r2 + σ2)2), any effectively

s-analysis sparse f ∈ R
n satisfying ‖f‖2 ≤ r and observed via y = sgn(Af − τ ) is approximated by

fLP given in (18) with error

‖f − fLP‖2 ≤ εr.

Proof. Let us introduce the “lifted” signal f̃ ∈ R
n+1, the “lifted” tight frame D̃ ∈ R

(n+1)×(N+1),

and the “lifted” measurement matrix Ã ∈ R
m×(N+1) defined as

(20) f̃ :=

[
f

σ

]
, D̃ :=

[
D 0

0 1

]
, Ã :=




−τ1/σ

A
...

−τm/σ


 .

First, we observe that f̃ is effectively (s + 1)-analysis-sparse (relative to D̃), since D̃∗f̃ =

[
D∗f

σ

]
,

hence
‖D̃∗f̃‖1
‖D̃∗f̃‖2

=
‖D∗f‖1 + σ√
‖D∗f‖22 + σ2

≤
√
s‖D∗f‖2 + σ√
‖D∗f‖22 + σ2

≤
√
s+ 1.

Next, we observe that the matrix Ã ∈ R
m×(n+1), populated by independent standard normal

random variables, satisfies D̃-TES(36(s + 1), ε′), ε′ :=
rσ

2(r2 + σ2)
ε, and D̃-RIP1(25(s + 1), 1/5)

with failure probability at most γ exp(−cmε′2) + γ′ exp(−c′m) ≤ γ′′ exp(−c′′mε2r2σ2/(r2 + σ2)2),

since m ≥ Cε′−6(s+1) ln(eN/(s+1)) and m ≥ C(1/5)−7(s+1) ln(eN/(s+1)) are ensured by our

assumption on m. Finally, we observe that y = sgn(Ãf̃) and that the optimization program (19)

reads

minimize
h̃∈Rn+1

‖D̃∗h̃‖1 subject to sgn(Ãh̃) = y, ‖Ãh̃‖1 = 1.

Denoting its solution as g̃ =

[
g[n]

gn+1

]
=

[
ĥ

û

]
∈ R

n+1, Theorem 6 implies that

∥∥∥∥∥
f̃

‖f̃‖2
− g̃

‖g̃‖2

∥∥∥∥∥
2

≤ ε′.

In particular, looking at the last coordinate, this inequality yields
∣∣∣∣∣

σ

‖f̃‖2
− gn+1

‖g̃‖2

∣∣∣∣∣ ≤ ε′, hence
|gn+1|
‖g̃‖2

≥ σ

‖f̃‖2
− ε′ ≥ σ√

r2 + σ2
− σ

2
√
r2 + σ2

=
σ

2
√
r2 + σ2

.

15



One-Bit Compressive Sensing of Dictionary-Sparse Signals

In turn, applying Lemma 8 while taking f = f[n] and fLP = (σ/gn+1)g[n] into consideration gives

∥∥∥∥
f

σ
− fLP

σ

∥∥∥∥
2

≤ ‖f̃‖2
σ

‖g̃‖2
|gn+1|

ε′ ≤ ‖f̃‖2
σ

2
√
r2 + σ2

σ

rσ

2(r2 + σ2)
ε =

‖f̃‖2
σ

r√
r2 + σ2

ε,

so that

‖f − fLP‖2 ≤ ‖f̃‖2
r√

r2 + σ2
ε ≤ rε.

This establishes the announced result.

Remark 3. The recovery scheme (19) does not require an estimation of r to be run. The recovery

scheme presented next does require such an estimation. Moreover, it is a second-order cone program

instead of a simpler linear program. But it has one noticeable advantage, namely that it not only

applies to signals satisfying ‖D∗f‖1 ≤ √
s‖D∗f‖2 and ‖D∗f‖2 ≤ r but more generally to signals

satisfying ‖D∗f‖1 ≤ √
sr and ‖D∗f‖2 ≤ r. For both schemes, one needs σ to be of the same

order as r for the results to become meaningful in terms of number of measurement and success

probability. However, if r is only upper-estimated, then one could choose σ ≥ r and obtain a weaker

recovery error ‖f − f̂‖2 ≤ εσ with relevant number of measurement and success probability.

4.2 Second-order cone programming

Given a signal f ∈ R
n observed via y = sgn(Af − τ ) with τ1, . . . , τm ∼ N (0, σ2), the optimization

scheme we consider here consists in outputting the signal

(21) fCP = argmin
h∈Rn

‖D∗h‖1 subject to sgn(Ah− τ ) = y, ‖h‖2 ≤ r.

Theorem 10. Let ε, r, σ > 0, let m ≥ C(r/σ+ σ/r)6(r2/σ2 +1)ε−6s ln(eN/s), and let A ∈ R
m×n

be populated by independent standard normal random variables. Furthermore, let τ1, . . . , τm be

independent normal random variables with mean zero and variance σ2 that are also independent

from A. Then, with failure probability at most γ exp(−c′mε2r2σ2/(r2 + σ2)2), any signal f ∈ R
n

with ‖f‖2 ≤ r, ‖D∗f‖1 ≤
√
sr, and observed via y = sgn(Af − τ ) is approximated by fCP given in

(21) with error

‖f − fCP‖2 ≤ εr.

Proof. We again use the notation (20) introducing the “lifted” objects f̃ , D̃, and Ã. Moreover, we

set g̃ :=

[
fCP

σ

]
. We claim that f̃ and g̃ are effectively s′-analysis-sparse, s′ := (r2/σ2 + 1)(s + 1).

For g̃, this indeed follows from ‖D̃∗g̃‖2 = ‖g̃‖2 =
√

‖fCP‖22 + σ2 ≥ σ and

‖D̃∗g̃‖1 =
∥∥∥∥∥

[
D∗fCP

σ

]∥∥∥∥∥
1

= ‖D∗fCP‖1 + σ ≤ ‖D∗f‖1 + σ ≤ √
sr + σ ≤

√
r2 + σ2

√
s+ 1.
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We also notice that Ã satisfies D̃-TES(s′, ε′), ε′ :=
rσ

r2 + σ2
ε, with failure probability at most

γ exp(−cmε′2) ≤ γ exp(−c′mε2r2σ2/(r2 + σ2)2), since m ≥ Cε′−6s′ ln(eN/s′) is ensured by our

assumption on m. Finally, we observe that both f̃/‖f̃‖2 and g̃/‖g̃‖2 are ℓ2-normalized effectively

s′-analysis-sparse and have the same sign observations sgn(Ãf̃) = sgn(Ãg̃) = y. Thus,
∥∥∥∥∥

f̃

‖f̃‖2
− g̃

‖g̃‖2

∥∥∥∥∥
2

≤ ε′.

In view of Lemma 8, we derive
∥∥∥∥
f

σ
− fCP

σ

∥∥∥∥
2

≤ r2 + σ2

σ2
ε′, hence ‖f − fCP‖2 ≤

r2 + σ2

σ
ε′ = rε.

This establishes the announced result.

4.3 Hard thresholding

Given a signal f ∈ R
N observed via y = sgn(Af − τ ) with τ1, . . . , τm ∼ N (0, σ2), the hard

thresholding scheme we consider here consists in outputting the signal

(22) fHT =
−σ2

〈τ ,y〉Dz, z = Ht−1(D
∗A∗y).

Theorem 11. Let ε, r, σ > 0, let m ≥ Cκ(r/σ + σ/r)9ε−9s ln(eN/s), and let A ∈ R
m×n be

populated by independent standard normal random variables. Furthermore, let τ1, . . . , τm be in-

dependent normal random variables with mean zero and variance σ2 that are also independent

from the entries of A. Then, with failure probability at most γ exp(−cmε2r2σ2/(r2 + σ2)2), any

s-synthesis sparse and effectively κs-analysis sparse signal f ∈ R
n satisfying ‖f‖2 ≤ r and observed

via y = sgn(Af − τ ) is approximated by fHT given in (22) for t := ⌈16(ε′/8)−2κ(s+ 1)⌉ with error

‖f − fHT‖2 ≤ εr.

Proof. We again use the notation (20) for the “lifted” objects f̃ , D̃, and Ã. First, we notice that

f̃ is (s + 1)-synthesis sparse (relative to D̃), as well as effectively κ(s + 1)-analysis sparse, since

D̃∗f̃ =

[
D∗f

σ

]
satisfies

‖D̃∗f̃‖1
‖D̃∗f̃‖2

=
‖D∗f‖1 + σ√
‖D∗f‖22 + σ2

≤
√
κs‖D∗f‖2 + σ√
‖D∗f‖22 + σ2

≤
√
κs+ 1 ≤

√
κ(s + 1).

Next, we observe that the matrix Ã, populated by independent standard normal random variables,

satisfies D̃-SPEP(s+1+t, ε′/8), ε′ :=
rσ

2(r2 + σ2)
ε, with failure probability at most γ exp(−cmε′2r2),
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since m ≥ C(ε′/8)−7(s+1+ t) ln(e(N +1)/(s+1+ t)) is ensured by our assumption on m. Finally,

since y = sgn(Ãf̃), Theorem 7 implies that
∥∥∥∥∥

f̃

‖f̃‖2
− g̃

‖g̃‖2

∥∥∥∥∥
2

≤ ε′,

where g̃ ∈ R
n+1 is the output of the “lifted” hard thresholding scheme. i.e.,

g̃ = D̃z̃, z̃ = Ht(D̃
∗Ã∗y),

In particular, looking at the last coordinate, this inequality yields

(23)

∣∣∣∣∣
σ

‖f̃‖2
− gn+1

‖g̃‖2

∣∣∣∣∣ ≤ ε′, hence
|gn+1|
‖g̃‖2

≥ σ

‖f̃‖2
− ε′ ≥ σ√

r2 + σ2
− σ

2
√
r2 + σ2

=
σ

2
√
r2 + σ2

.

Now let us also observe that

z̃ = Ht

([
D∗A∗y

−〈τ ,y〉/σ

])
=





[
Ht(D

∗A∗y)

0

]
,

or[
Ht−1(D

∗A∗y)

−〈τ ,y〉/σ

]
,

hence g̃ = D̃z̃ =





[
D(Ht(D

∗A∗y))

0

]
,

or[
D(Ht−1(D

∗A∗y))

−〈τ ,y〉/σ

]
.

In view of (23), the latter option prevails. It is then apparent that fHT = σg[n]/gn+1. Lemma 8

gives ∥∥∥∥
f

σ
− fHT

σ

∥∥∥∥
2

≤ ‖f̃‖2
σ

‖g̃‖2
|gn+1|

ε′ ≤ ‖f̃‖2
σ

2
√
r2 + σ2

σ

rσ

2(r2 + σ2)
ε =

‖f̃‖2
σ

r√
r2 + σ2

ε,

so that

‖f − fHT‖2 ≤ ‖f̃‖2
r√

r2 + σ2
ε ≤ rε.

This establishes the announced result.

5 Postponed proofs and further remarks

This final section contains the theoretical justification of the technical properties underlying our

results, followed by a few points of discussion around them.

5.1 Proof of D-SPEP

The Gaussian width turns out to be a useful tool in our proofs. For a set K ⊆ R
n, it is defined by

w(K) = E

[
sup
f∈K

〈f ,g〉
]
, g ∈ R

n is a standard normal random vector.
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We isolate the following two properties.

Lemma 12. LetK ⊆ R
n be a linear space andK1, . . . ,KL ⊆ R

n be subsets of the unit sphere Sn−1.

(i) k/
√
k + 1 ≤ w(K ∩ Sn−1) ≤

√
k, k := dim(K);

(ii) w (K1 ∪ . . . ∪KL) ≤ max {w(K1), . . . , w(KL)}+ 3
√

ln(L).

Proof. (i) By the invariance under orthogonal transformation (see [PV13b, Proposition 2.1]4), we

can assume that K = R
k × {(0, . . . , 0)}. We then notice that supf∈K∩Sn−1〈f ,g〉 = ‖(g1, . . . , gk)‖2

is the ℓ2-norm of a standard normal random vector of dimension k. We invoke e.g. [FR13, Propo-

sition 8.1] to derive the announced result.

(ii) Let us introduce the nonnegative random variables

ξℓ := sup
f∈Kℓ

〈f ,g〉, ℓ = 1, . . . , L,

so that the Gaussian widths of each Kℓ and of their union take the form

w(Kℓ) = E(ξℓ), ℓ = 1, . . . , L, and w (K1 ∪ · · · ∪KL) = E

(
max

ℓ=1,...,L
ξℓ

)
.

By the concentration of measure inequality (see e.g. [FR13, Theorem 8.40]) applied to the function

F : x ∈ R
n 7→ supf∈Kℓ

〈f ,x〉, which is a Lipschitz function with constant 1, each ξℓ satisfies

P(ξℓ ≥ E(ξℓ) + t) ≤ exp
(
−t2/2

)
.

Because each E(ξℓ) is no larger than maxℓ E(ξℓ) = maxℓw(Kℓ) =: ω, we also have

P(ξℓ ≥ ω + t) ≤ exp
(
−t2/2

)
.

Setting v :=
√

2 ln(L), we now calculate

E

(
max

ℓ=1,...,L
ξℓ

)
=

∫ ∞

0
P

(
max

ℓ=1,...,L
ξℓ ≥ u

)
du =

(∫ ω+v

0
+

∫ ∞

ω+v

)
P

(
max

ℓ=1,...,L
ξℓ ≥ u

)
du

≤
∫ ω+v

0
1du+

∫ ∞

ω+v

L∑

ℓ=1

P (ξℓ ≥ u) du = ω + v +

L∑

ℓ=1

∫ ∞

v
P (ξℓ ≥ ω + t) dt

≤ ω + v + L

∫ ∞

v
exp

(
−t2/2

)
dt ≤ ω + v + L

exp(−v2/2)

v

= ω +
√

2 ln(L) + L
1/L√
2 ln(L)

≤ ω + c
√

ln(L),

where c =
√
2+(

√
2 ln(2))−1 ≤ 3. We have shown that w (K1 ∪ . . . ∪KL) ≤ maxℓw(Kℓ)+3

√
ln(L),

as desired.
4strictly speaking, [PV13b, Proposition 2.1] applies to the slightly different notion of mean width defined as

E
[
sup

f∈K−K〈f ,g〉
]

19



One-Bit Compressive Sensing of Dictionary-Sparse Signals

We now turn our attention to proving the awaited theorem.

Proof of Theorem 3. According to [PV13b, Proposition 4.3], with A′ := (
√

2/π/m)A, we have

∣∣〈A′f , sgn(A′g)〉 − 〈f ,g〉
∣∣ ≤ δ,

for all f ,g ∈ D(ΣN
s )∩Sn−1 provided m ≥ Cδ−7w(D(ΣN

s )∩Sn−1)2, so it is enough to upper-bound

w(D(ΣN
s ) ∩ Sn−1) appropriately. To do so, with ΣN

S denoting the space {x ∈ R
N : supp(x) ⊆ S}

for any S ⊆ {1, . . . , N}, we use Lemma 12 to write

w(D(ΣN
s ) ∩ Sn−1) = w

( ⋃

|S|=s

{
D(ΣN

S ) ∩ Sn−1
})

≤
(ii)

max
|S|=s

w(D(ΣN
S ) ∩ Sn−1) + 3

√
ln

((
N

s

))

≤
(i)

√
s+ 3

√
s ln (eN/s) ≤ 4

√
s ln (eN/s).

The result is now immediate.

5.2 Proof of TES

We propose two approaches for proving Theorem 5. One uses again the notion of Gaussian width,

the other one relies on covering numbers. The necessary results are isolated in the following lemma.

Lemma 13. The set of ℓ2-normalized effectively s-analysis-sparse signals satisfies

(i) w
(
(D∗)−1(ΣN,eff

s ) ∩ Sn−1
)
≤ C

√
s ln(eN/s),

(ii) N
(
(D∗)−1(ΣN,eff

s ) ∩ Sn−1, ρ
)
≤
(
N

t

)(
1 +

8

ρ

)t

, t := ⌈4ρ−2s⌉.

Proof. (i) By the definition of the Gaussian width for Ks := (D∗)−1(ΣN,eff
s ) ∩ Sn−1, with g ∈ R

n

denoting a standard normal random vector,

(24) w(Ks) = E


 sup
D

∗
f∈ΣN,eff

s

‖f‖2=1

〈f ,g〉


 = E


 sup
D

∗
f∈ΣN,eff

s

‖D∗f‖2=1

〈DD∗f ,g〉


 ≤ E


 sup
x∈ΣN,eff

s

‖x‖2=1

〈Dx,g〉


 .

In view of ‖D‖2→2 = 1, we have, for any x,x′ ∈ ΣN,eff
s with ‖x‖2 = ‖x′‖2 = 1,

E
(
〈Dx,g〉 − 〈Dx′,g′〉

)2
= E

[
〈Dx,g〉2

]
+ E

[
〈Dx′,g′〉2

]
= ‖Dx‖22 + ‖Dx′‖22 ≤ ‖x‖22 + ‖x′‖22

= E
(
〈x,g〉 − 〈x′,g′〉

)2
.
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Applying Slepian’s lemma (see e.g. [FR13, Lemma 8.25]), we obtain

w(Ks) ≤ E


 sup
x∈ΣN,eff

s

‖x‖2=1

〈x,g〉


 = w(ΣN,eff

s ∩ Sn−1).

The latter is known to be bounded by Cs ln(eN/s), see [PV13b, Lemma 2.3].

(ii) The covering number N (Ks, ρ) is bounded above by the maximal number P(Ks, ρ) of elements

in Ks that are separated by a distance ρ. We claim that P(Ks, ρ) ≤ P(ΣN
t ∩ BN

2 , ρ/2). To justify

this claim, let us consider a maximal ρ-separated set {f1, . . . , fL} of signals in Ks. For each i, let

Ti ⊆ {1, . . . , N} denote an index set of t largest absolute entries of D∗f i. We write

ρ < ‖f i − f j‖2 = ‖D∗f i −D∗f j‖2 ≤ ‖(D∗f i)Ti
− (D∗f j)Tj

‖2 + ‖(D∗f i)Ti
‖2 + ‖(D∗f j)Tj

‖2.

Invoking [FR13, Theorem 2.5], we observe that

‖(D∗f i)Ti
‖2 ≤

1

2
√
t
‖D∗f i‖1 ≤

√
s

2
√
t
‖D∗f i‖2 =

√
s

2
√
t
,

and similarly for j instead of i. Thus, we obtain

ρ < ‖(D∗f i)Ti
−(D∗f j)Tj

‖2+
√

s

t
≤ ‖(D∗f i)Ti

−(D∗f j)Tj
‖2+

ρ

2
, i.e., ‖(D∗f i)Ti

−(D∗f j)Tj
‖2 >

ρ

2
.

Since we have uncovered a set of L = P(Ks, ρ) points in ΣN
t ∩ BN

2 that are (ρ/2)-separated, the

claimed inequality is proved. We conclude by recalling that P(ΣN
t ∩BN

2 , ρ/2) is bounded above by

N (ΣN
t ∩BN

2 , ρ/4), which is itself bounded above by

(
N

t

)(
1 +

2

ρ/4

)t

.

We can now turn our attention to proving the awaited theorem.

Proof of Theorem 5. With Ks = (D∗)−1(ΣN,eff
s )∩Sn−1, the conclusion holds whenm ≥ Cε−6w(Ks)

2

or when m ≥ Cε−1 ln(N (Ks, cε)), according to [PV14, Theorem 1.5] or to [BL15, Theorem 1.5],

respectively. It now suffices to call upon Lemma 13. Note that the latter option yields better

powers of ε−1 but less pleasant failure probability.

5.3 Further remarks

We conclude this theoretical section by making two noteworthy comments on the sign product

embedding property and the tessellation property in the dictionary case.
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Remark 4. D-SPEP cannot hold for arbitrary dictionary D if synthesis sparsity was replaced by

effective synthesis sparsity. This is because the set of effectively s-synthesis-sparse signals can be

the whole space R
n. Indeed, let f ∈ R

n that be written as f = Du for some u ∈ R
N . Let also

pick an (s− 1)-sparse vector v ∈ kerD — there are tight frame for which this is possible, e.g. the

concatenation of two orthogonal matrices. For ε > 0 small enough, we have

‖v + εu‖1
‖v + εu‖2

≤ ‖v‖1 + ε‖u‖1
‖v‖2 − ε‖u‖2

≤
√
s− 1‖v‖2 + ε‖u‖1
‖v‖2 − ε‖u‖2

≤ √
s,

so that the coefficient vector v + εu is effectively s-sparse, hence so is (1/ε)v + u. It follows that

f = D((1/ε)v + u) is effectively s-synthesis sparse.

Remark 5. Theorem 3 easily implies a tessellation result for D(ΣN
s )∩Sn−1, the “synthesis sparse

sphere”. Precisely, under the assumptions of the theorem (with a change of the constant C),

D-SPEP(2s, δ/2) holds. Then, one can derive

[g,h ∈ D(Σs) ∩ Sn−1 : sgn(Ag) = sgn(Ah)] =⇒ [‖g − h‖2 ≤ δ].

To see this, with ε := sgn(Ag) = sgn(Ah) and with f := (g − h)/‖g − h‖2 ∈ D(Σ2s) ∩ Sn−1, we

have ∣∣∣∣∣

√
2/π

m
〈Af , ε〉 − 〈f ,g〉

∣∣∣∣∣ ≤
δ

2
,

∣∣∣∣∣

√
2/π

m
〈Af , ε〉 − 〈f ,h〉

∣∣∣∣∣ ≤
δ

2
,

so by the triangle inequality |〈f ,g − h〉| ≤ δ, i.e., ‖g − h‖2 ≤ δ, as announced.
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