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INNER MATRICES AND DARLINGTON SYNTHESIS

Stephan Ramon Garcia

02.03.2004

Abstract. We describe and parameterize the solutions of the scalar valued Dar-
lington synthesis problem. In the case of rational data we derive a simple procedure
for producing all possible solutions.

1. Introduction

In this note we outline a function theoretic approach to the Darlington synthesis
problem from electrical network theory. We consider the following (scalar valued)
version of this problem: Given a function a(z) belonging to the Hardy space H2 of
the unit disk D, do there exist functions b, c, and d also belonging to H2 such that
the matrix

(1) U =

(
a −b
c d

)

is unitary a.e. on the unit circle ∂D? Such a matrix U is called a (2 × 2) inner
matrix. It is known [1, 5, 6] that this problem is solvable if and only if ‖ a ‖∞ ≤ 1
and a is pseudocontinuable of bounded type (see [7, 14]). The second condition is
equivalent (via [7, Th. 2.2.1]) to asserting that a is noncyclic for the backward shift
operator on H2.

We require a basic working knowledge of the classical Hardy space H2 and of
the inner-outer factorization theory for H2 functions (see [8]). Our main tool is the
following theorem, proved in Section 3:

Theorem 1. If φ is a nonconstant inner function, then U is unitary a.e on ∂D

and detU = φ if and only if

(1) a, b, c, d belong to (zφH2)⊥.

(2) â = d and b̂ = c.
(3) |a|2 + |b|2 = 1 a.e. on ∂D.

Here ·̂ denotes a certain involution of the backward shift invariant subspace
(zφH2)⊥ of H2. We discuss this involution in Section 2 and briefly remark that it
can be used to provide an explicit analog of Beurling’s theorem for the backward
shift operator on H2.
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2 STEPHAN RAMON GARCIA

The remainder of this note concerns the application of the preceding theorem
to the description and parameterization of the solutions to the scalar valued Dar-
lington synthesis problem. Using our method we derive a simple procedure for
parameterizing all solutions given rational data a(z).

The author wishes to thank D. Z. Arov, J. W. Helton, M. Putinar, D. Sarason,
and H. S. Shapiro for their comments and suggestions.

2. The Backward Shift

Before proceeding we require a few facts about the backward shift operator
B : H2 → H2. This is the bounded linear operator defined by

(Bf)(z) :=
f(z)− f(0)

z

for f in H2. In terms of Taylor coefficients at the origin, the backward shift operator
simply sends the sequence (a0, a1, . . . ) to (a1, a2, . . . ). Our interest lies in the study
of B-invariant subspaces of H2 and their application to the theory of inner matrices.

A subspace M of H2 is called B-invariant (henceforth simply “invariant”) if
BM ⊆ M. It is well-known (see [4]) that the proper, nontrivial invariant subspaces
for the backward shift operator are precisely the subspaces (φH2)⊥ where φ is a
nonconstant inner function. In terms of boundary functions on ∂D we have

(2) (φH2)⊥ = H2 ∩ φzH2.

Fix a nonconstant inner function φ and consider the antilinear involution ·̂ on
(φH2)⊥ defined by

(3) f̂ := fzφ.

Although it is evident from (2) that (3) defines an involution of (φH2)⊥, we can
check this directly. For any h in H2 we have

〈f̂ , zh〉 = 〈fzφ, zh〉 = 〈φh, f〉 = 0

and hence fzφ, despite its appearance, belongs to H2. The computation

〈f̂ , φh〉 = 〈fzφ, φh〉 = 〈fz, h〉 = 0

shows that f̂ also belongs to (φH2)⊥.

We will call this operator the conjugation operator on (φH2)⊥ and refer to f̂ as
the conjugate of f . Each function f belonging to (φH2)⊥ can be written uniquely
in the form

f = f1 + if2

where f1 and f2 belong to (φH2)⊥ and are self-conjugate. Indeed, this decomposi-
tion is given by the equation

f = 1
2
(f + f̂) + i 1

2i
(f − f̂).
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Moreover, writing f = f1 + if2 we have the formula f̂ = f1 − if2 for the conjugate
function.

This decomposition immediately yields an explicit function-theoretic characteri-
zation of (φH2)⊥ [10], and hence functions which are pseudocontinuable of bounded
type [7, 14]. Suppose that ζ is a point on ∂D such that φ has a nontangen-
tial limiting value at ζ of unit modulus and c is a unimodular constant satisfying
c2 = ζφ(ζ). By (3), a self-conjugate function f satisfies f = fzφ a.e on ∂D and
hence f(z) = cr(z)kζ(z) where

kζ(z) =
1 − φ(ζ)φ(z)

1 − ζz

and r(z) is a function in the Smirnov class N+ whose boundary values are real a.e.
on ∂D. Such functions are described explicitly in [11, 12].

From (2) it follows that a function f in H2 belongs to (φH2)⊥ if and only if

there exists a function g, having the same outer factor as f , such that g = fzφ a.e.

on ∂D. In this case we have g = f̂ .

Given a pair of conjugate functions f, f̂ belonging to (φH2)⊥, we write

f = IfF, f̂ = Ibf
F

where If and Ibf
are inner functions and F denotes the common outer factor of f

and f̂ . From (3) we deduce that the equation

Ibf
F = IfFzφ

holds a.e. on ∂D. Since If is inner this is equivalent to

IfIbf
=

Fzφ

F
.

and hence the inner function If Ibf
depends only upon F and φ, not on the particular

pair of conjugate functions in (φH2)⊥ with common outer factor F . We denote this
inner function IF and call it the associated inner function for F (with respect to
φ). It satisfies the equation

(4) IF F = Fzφ

a.e. on ∂D.
Pulling our observations together we conclude that for any outer function F in

(φH2)⊥ there exists a unique inner function IF such that if I is an inner function,
then the function IF belongs to (φH2)⊥ if and only if I is a divisor of IF .

3. Matrix Inner Functions

If a matrix U of the form (1) is unitary a.e. on ∂D, then its determinant detU
must be an inner function, say φ. It turns out that the entries of U (including a
itself) belong to (zφH2)⊥, the backward shift invariant subspace of H2 generated
by φ. The precise relationship between the inner function detU and the entries of
U is given in the following proposition (from [10], the thesis of the author):
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Theorem 1. If φ is a nonconstant inner function, then U is unitary a.e on ∂D

and detU = φ if and only if

(1) a, b, c, d belong to (zφH2)⊥.

(2) â = d and b̂ = c.
(3) |a|2 + |b|2 = 1 a.e. on ∂D.

Proof. (⇒) If the matrix U is unitary a.e. on ∂D, then the determinant

φ = ad + bc

is inner. Comparing entries in the identity U = (U∗)−1 yields the equations

a = dφ,

b = cφ

a.e. on ∂D which establish conditions (1) and (2). The identity UU∗ = I yields
condition (3).

(⇐) Suppose now that conditions (1), (2), and (3) hold. Write a = IaF , b = IbG,
c = IcG, and d = IdF where Ia, Ib, Ic, Id are inner and F, G are outer. Consider
the entries in the matrix product

UU∗ =

(
IaF −IbG
IcG IdF

) (
IaF IcG
−IbG IdF

)
.

Condition (3) ensures that the entries on the main diagonal of the product are both
identically 1. The upper right corner of the product is the function

X = IaFIcG − IbGIdF

which we must show vanishes identically. A few manipulations yield

IaId

F

F
− IbIc

G

G
= X

IcId

FG
.

Since a, d and b, c are conjugates, we see that IaId = IF and IbIc = IG and hence
(by (4) with zφ in place of φ)

X
IcId

FG
= φ − φ = 0

and hence X vanishes identically. A similar argument shows that the bottom left
corner of the matrix product vanishes and thus U is unitary a.e. on ∂D. We now
compute the determinant:

detU = ad + bc = IaIdF
2 + IbIcG

2 = IF F 2 + IGG2 = |F |2φ + |G|2φ = φ

which completes the proof. �

The preceding theorem tells us that 2 × 2 inner functions resemble quaternions
of unit modulus, for we have

(5) U =

(
a −b
b̂ â

)

where |a|2 + |b|2 = 1 a.e. on ∂D. Moreover, the formula for the determinant of U
assumes the form

φ = aâ + bb̂(6)

= IF F 2 + IGG2.(7)
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4. Darlington Synthesis

Results of Arov [1] and Douglas and Helton [6] tell us that the scalar valued
Darlington synthesis problem with data a(z) has a solution if and only if

(1) ‖ a ‖∞ ≤ 1,
(2) a is pseudocontinuable of bounded type (see [7, 14] for details).

By a well-known theorem of Douglas, Shapiro, and Shields [7], condition (2) above
is equivalent to asserting that a belongs to (φH2)⊥ for some nonconstant inner
function φ. We can soon say much more.

Theorem 1 clearly implies that the two conditions above are necessary for the
problem to have a solution. Moreover, any solution U must be of the form (5)
described by the theorem and the initial data a(z) belongs to the backward shift
invariant subspace generated the determinant of U .

Now suppose that a(z) is a function that satisfies ‖ a ‖∞ ≤ 1 and belongs to
(zφH2)⊥ for some nonconstant inner function φ. It is not immediately obvious
that a function b(z) can be found such that |a|2 + |b|2 = 1 a.e. on ∂D and that
b also belongs to (zφH2)⊥ (unless, of course, a is an inner function). Although
the existence of such a b can be inferred from Theorem 1 and the results of the
aforementioned authors, we provide a direct proof (from [10]) based on our methods.
The fact that b can be chosen to lie in (zφH2)⊥, it turns out, is the key to our
entire theory.

Theorem 2. If the function a(z) belongs to (zφH2)⊥ for some nonconstant inner
function φ and ‖ a ‖∞ ≤ 1, then there exists a function b(z) in (zφH2)⊥ such that
|a|2 + |b|2 = 1 a.e. on ∂D.

Proof. If a(z) is an inner function, then the result is trivial. Therefore assume that
a is not an inner function. As before, let a = IaF where Ia and F denote the inner
and outer factors of a, respectively. Since IF F = Fφ a.e. on ∂D we find that

φ − IF F 2 = φ(1 − |F |2)

there. Since F is not an inner function and φ − IF F 2 belongs to H∞, it follows
that ∫

∂D

log(1 − |F |2) =

∫

∂D

log |φ − IF F 2| > −∞

and hence there exists an outer function G in H∞ such that |G|2 = 1 − |F |2 a.e.
on ∂D. Therefore

IG2 = φ − IF F 2 = φ|G|2

for some inner function I. Since IG = Gφ a.e. on ∂D, we see that G belongs to
(zφH2)⊥ and hence I = IG. We may let b = IbG where Ib is an inner function
dividing IG. �

Using Theorems 1 and 2 we can now describe the solution sets for the scalar
valued Darlington synthesis problem. Moreover, in the case of rational data a(z)
we can use our theory to produce a simple algorithm for producing all possible
solutions.
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5. Primitive Solution Sets

Suppose that we are given data a(z) such that the scalar valued Darlington
synthesis problem is solvable and that the matrix U is one particular solution. By
Theorem 1, detU = φ is an inner function and

U =

(
a −b
b̂ â

)

where â and b̂ denote the conjugates of a and b in (zφH2)⊥ as defined in Section 2.
From the solution U we can construct infinitely many other solutions via a simple
process.

If I1 and I2 are inner functions (possibly constant), then the matrix

(8) U ′ =

(
a −I1b

I2b̂ I1I2â

)

is another solution. As such, it must be of the form dictated by Theorem 1. Indeed,
we may write

U ′ =

(
a −(I1b)

(̃I1b) ã

)

where detU ′ = I1I2φ and

f̃ := f(I1I2φ)

denotes the conjugation operator on (zI1I2φH2)⊥. Noting that detU divides detU ′,
we now consider solutions with minimal determinant.

We say that a solution U is primitive if the inner function φ = detU is the
minimal inner function such that detU divides detU ′ for any other solution U ′. This
is equivalent to requiring that φ is the minimal inner function such that a belongs
to (zφH2)⊥. Note also that every primitive solution shares the same determinant,
up to a unimodular constant factor. We call the inner function φ the minimal
determinant for the problem (with data a(z)). Recall that Arov [2, 3] considered
a similar concept (“minimal denominators”) in the more general operator valued
setting.

Any solution U ′ can be written in terms of a primitive solution via (8). Indeed,
suppose that U ′ is a solution with determinant U ′ = φθ where θ is an inner function
and φ is the minimal determinant for the problem. Let the outer functions F and
G be defined as in the preceding sections and let IF and IG denote the associated
inner functions for F and G with respect to φ. In terms of boundary functions, we
may write the solution U ′ as

U ′ =

(
a −c

cφθ aφθ

)

where c belongs to (zφθH2)⊥ and has outer factor G. Since the conjugate â of a
in (zφH2)⊥ is aφ we conclude that detU ′ equals

φθ = IF F 2θ + IG2θ

where I is some inner function. Comparing this with (7) we conclude that I = IG.
In particular, the product of c and cφθ (the boundary function for the conjugate
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of c in (zφθH2)⊥) equals IGθG2. Therefore U ′ can be written in the form (8) for
some inner functions I1 and I2 such that I1I2 = θ.

We can therefore completely describe all possible solutions to our problem by de-
scribing all primitive solutions. We call a complete collection of primitive solutions
sharing the same minimal determinant a primitive solution set. Since the minimal
determinant is determined only up to a unimodular constant factor, there will be
infinitely many primitive solution sets. These can be easily related to one another
via (8) where the inner functions I1 and I2 are unimodular constants.

Fix a minimal determinant φ to our problem. Our present task, therefore, is
to describe all solutions U with determinant φ. By Theorem 1, we may identify
each such solution with its upper right entry, b(z). Since the outer factor G of b
is completely determined by condition (3) of Theorem 1, we may actually identify
each solution with the inner factor of b.

The inner factor of b must be a divisor of IG (which is determined by (7)) and
hence there is a bijective correspondence between matrices in our primitive solution
set and the inner divisors of IG. In particular, a primitive solution set has a natural
partial ordering which arises from this correspondence.

Example 1. If IG is constant, then each primitive solution set consists of precisely
one solution. In other words, the solution to the general problem is essentially
unique since all solutions can be constructed via (8) from a single primitive solution.
In this situation b must be a self-conjugate outer function.

As an illustration, consider the data

a(z) =
1 + φ(z)

2

where φ is any inner function. This function generates (zφH2)⊥ by [7, Th. 3.1.5]
and hence any solution with determinant φ is primitive. Note also that a is self-
conjugate and that the outer function

b(z) =
1 − φ(z)

2i

belongs to (zφH2)⊥ and is also self-conjugate (hence IG = 1). The matrix

(
a −b
b a

)

is therefore the unique solution with minimal determinant φ.

Example 2. If IG is a finite Blaschke product of order n, then a primitive solution
set contains at most 2n solutions, the exact number depending upon the multiplicity
of the zeroes of IG. This situation occurs frequently in the case where the data
a(z) is rational. When IG is a finite Blaschke product, a primitive solution set is
linearly ordered if and only if IG is a power of a single Blaschke factor.

Example 3. If IG is an infinite Blaschke product, then a primitive solution set is
uncountably infinite and cannot be linearly ordered. Indeed, the primitive solutions
are in a bijective, order-preserving correspondence with the Blaschke subproducts
of IG and hence in correspondence with the subsets of the natural numbers.
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Example 4. If IG is a singular inner function, then the primitive solution set is
uncountably infinite. It is linearly ordered only when IG is an atomic inner function
corresponding to a point mass. As a consequence of this example and the preceding
several, a primitive solution set can never be countably infinite.

Example 5. If IG is the square of an inner function, then symmetric primitive
solutions exist. By a symmetric solution, we mean here a solution U such that
U = U t where U t denotes the transpose of U . Observe that if IG = I2 where I
is an inner function, then the function b = IG belongs to (zφH2)⊥ and is self-
conjugate. This yields the primitive solution

(
a −b
b â

)
.

Using (8) with I1 = −i and I2 = i we obtain the symmetric solution

(
a ib
ib â

)
.

6. Rational Data

We now obtain primitive solution sets for the Darlington synthesis problem for
rational data a(z). The involution technique developed here, we believe, can shed
new light on an old problem. We first go through the solution step-by-step.

Suppose that we are given a rational function a(z) belonging to H∞ and satisfy-
ing ‖ a ‖∞ ≤ 1. The function a, being rational, is noncyclic for the backward shift
operator and hence the scalar valued Darlington synthesis problem with data a(z)
is solvable. Since the problem is trivial if a is an inner function, we assume that a
is not a finite Blaschke product.

We may write

a(z) =
P (z)

R(z)

where P (z) is a polynomial relatively prime to

R(z) = (1 − λ1z) · · · (1 − λnz).

Since a belongs to H∞ we must have |λk| < 1 for each k = 1, 2, . . . , n. There are
two cases, depending on the degree m of P (z).
Case I: If m ≤ n, then a(z) belongs to (zφH2)⊥ where φ denotes the finite
Blaschke product

φ(z) =
n∏

k=1

z − λk

1 − λkz
.

Any function belonging to (zφH2)⊥ is of the form Q(z)/R(z) where Q(z) is a
polynomial of degree ≤ n. A short calculation shows that

(9) Q̂/R(z) =
Q#(z)

R(z)
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where the polynomial Q#(z) is defined by

Q#(z) = znQ(1/z).

In particular, we need the following special cases of (9):

(10) â(z) =
P#(z)

R(z)
, φ(z) =

R#(z)

R(z)
.

The second formula follows immediately from the fact that the functions φ and 1
both belong to (zφH2)⊥ and are conjugates.

The finite Blaschke product φ is the minimal determinant corresponding to the
data a(z). To see this, observe that (via a partial fraction decomposition) φ is
the minimal inner function such that a belongs to (zφH2)⊥. Alternatively, apply
Theorem 3.1.5 of [7] after noting that the inner factor of â (namely the finite
Blaschke product corresponding to the zeros of P#(z)) is relatively prime to φ
since otherwise P (z) would not be relatively prime to R(z). Thus if we produce all
solutions U with determinant φ we will have succeeded in describing a primitive
solution set for the data a(z).

By Theorem 1 and (6) we seek solutions U of the form

U =

(
a −b
b̂ â

)

where
φ = aâ + bb̂.

Write

b(z) =
Q(z)

R(z)

where Q(z) is an unknown polynomial of degree ≤ n. By (9) and (10) we must
solve the equation

(11)
R#

R
=

P#P

R2
+

Q#Q

R2

for the polynomial Q(z). This reduces to the simple equation

(12) Q#Q = R#R − P#P

for Q(z). Several aspects of (12) are worth mentioning.
First, observe that (12) can be obtained directly from a(z) without factoring

R(z) into linear terms. Second, we have not yet made use of the assumption that
‖ a ‖∞ ≤ 1. It turns out that the solvability of (12) actually implies that ‖ a ‖∞ ≤ 1.
If we can find a polynomial Q(z) satisfying (12), then we can solve (11). However
(11) is merely another way of saying that

φ = aâ +
Q#Q

R2
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which implies that (since â = aφ a.e. on ∂D)

(1 − |a|2) =
Q#Q

R#R
=

∣∣∣∣
Q

R

∣∣∣∣
2

≥ 0

holds a.e. on ∂D. Since a is bounded, we see that ‖ a ‖∞ ≤ 1 as claimed.
To solve (12) for the unknown polynomial Q(z) (and hence find the function

b = Q/R) we consider inner-outer factorizations. Let us write b = IbG and b̂ = Ibb
G

where Ib and Ibb
are inner functions and G denotes the common outer factor of b

and b̂. Since

bb̂ =
R#R − P#P

R2

we see that

(13) IGG2 = IbIbb
G2 =

R#R − P#P

R2

where IG denotes the associated inner function for G. As noted in Section 5,
we need only find the outer function G and the inner function IG to completely
parameterize all solutions U with determinant φ. To find these functions, we must
merely produce the inner-outer factorization of

R#R − P#P

R2
,

a rational function easily obtained from the data a(z). We can simplify this even
further.

Since the outer factor of any function in (zφH2)⊥ also lies in (zφH2)⊥, it follows
that G belongs to (zφH2)⊥. Hence G is of the form

G(z) =
S(z)

R(z)

where S(z) is a polynomial of degree ≤ n. Moreover, since G(z) and R(z) are outer
functions, it follows that the polynomial S(z) is also an outer function. Thus (13)
reduces to

IGS2 = R#R − P#P

where IG is a finite Blaschke product (possibly constant) whose zeroes are precisely
the zeros of R#R − P#P (a polynomial of degree at most 2n) which lie inside the
unit disk.

We can factor R#R − P#P into inner and outer factors without necessarily
knowing its zeroes, obtaining S2 and hence S. This immediately yields the (possibly
identical) solutions

(
P/R −S/R
S#/R P#/R

)
and

(
P/R −S#/R
S/R P#/R

)

to our problem. Finding the other (if any) primitive solutions with determinant φ
is trickier.
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Since G = S/R is an outer function in (zφH2)⊥, we have

Ĝ = IGG =
S#

R
.

Therefore the desired inner function IG is given by the formula

IG =
S#

S
.

Since S is an outer function, the zeroes of IG must be precisely the zeros of S#

which lie inside the open unit disk. However, S and S# may have common zeros
which lie on ∂D. We can discard these without actually finding them by simply
calculating the greatest common divisor of the polynomials S and S#. Without
loss of generality, we assume that this has been done and hence that the zeroes of
S# all lie inside the open unit disk.

Once the zeroes of S# have been found, we can easily complete our primitive
solution set since these solutions can be identified with the functions

b(z) = IbG = Ib

S

R

where Ib is an inner divisor of IG. The polynomials Q(z) are simply the functions
IbS.
Case II: If m > n, then we use zm−nφ in place of φ and define

Q#(z) = zmQ(1/z)

for polynomials Q(z) of degree ≤ m. The only substantial difference is that the
polynomial R#R−P#P is now of degree ≤ 2m. The details are left to the reader.

Why is the polynomial R#R − P#P so important? Since (if m ≤ n)

R#R − P#P

R2
= φ − aâ,

we see that the roots of R#R−P#P correspond to the roots of the function φ−aâ
in the complex plane. On ∂D this equation simplifies to

R#R − P#P

R2
= φ(1 − |a|2)

and hence the roots of R#R − P#P which lie on ∂D are exactly the points at
which |a| = 1. Since the zeroes of R#R − P#P occur in pairs symmetric with
respect to ∂D, we find that the number of zeros inside the unit disk (counted
according to multiplicity) depends on the degree of R#R−P#P and the number of
times (according to multiplicity) that the data function a(z) assumes its maximum
possible modulus of one on ∂D. The number of solutions in a primitive solution set
therefore depends qualitatively on how many times the data a(z) assumes extreme
values. See Example 1, for instance.

We remark that the Schur-Cohn algorithm [13] can detect the number of zeroes
of a polynomial inside the disk, on its boundary, and outside. Therefore in many
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situations, we can produce information on the number of solutions in a primitive
solution set without explicitly finding the roots of polynomials.

We conclude now with a procedure which produces a complete primitive solution
set to the scalar valued Darlington synthesis problem.
Algorithm:

Suppose that we are given a rational function a(z) satisfying ‖ a ‖∞ ≤ 1.

(1) Write a(z) = P (z)/R(z) where R(z) has constant term 1 and P (z) is rel-
atively prime to R(z). Let the degrees of P and R be denoted m and n,
respectively.

(2) If m ≤ n, then form the polynomial R#R − P#P (of degree at most 2n)

using the definition Q#(z) = znQ(1/z) for polynomials Q(z) of degree ≤ n.
(a) The outer factor of R#R − P#P is a polynomial S2 of degree ≤ 2n.

The matrices

(
P/R −S/R
S#/R P#/R

)
and

(
P/R −S#/R
S/R P#/R

)

are primitive solutions with determinant φ = R#/R.
(b) Find the roots of the polynomial

S′ :=
S#

gcd(S, S#)

(of degree N ≤ n). These zeroes all lie inside the unit disk.
(c) For each subset {ω1, . . . , ωk} of the roots of S′ such that k ≤ ⌊N

2
⌋,

T (z) = S(z)

k∏

j=1

z − ωj

1 − ωjz

is a polynomial of degree N − k yielding the primitive solutions

(
P/R −T/R

T #/R P#/R

)
and

(
P/R −T #/R
T/R P#/R

)
.

This yields a complete set of primitive solutions with determinant φ.
(3) If m > n, then form the polynomial R#R − P#P (of degree at most 2m)

using the definition Q#(z) = zmQ(1/z) for polynomials Q(z) of degree ≤ m.
Proceed as in the previous case.
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